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de Carvalho, and Tânia Maria Mendonça Campos

Task Design in a Paper and Pencil and Technological

Environment to Promote Inclusive Learning: An Example

with Polygonal Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Fernando Hitt, Mireille Saboya, and Carlos Cortés

ICT and Liminal Performative Space for Hyperbolic Geometry’s
Teaching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Panagiota Kotarinou and Charoula Stathopoulou

Improving the Teaching of Mathematics with the Use

of Technology: A Commentary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Sixto Romero

v



Part II Technology, a Tool for Teaching and Learning

Mathematics: B. Learning

Domains of Manipulation in Touchscreen Devices and Some

Didactic, Cognitive, and Epistemological Implications

for Improving Geometric Thinking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Marcelo Bairral, Ferdinando Arzarello, and Alexandre Assis

Graphs in Primary School: Playing with Technology . . . . . . . . . . . . . . . 143

Daniela Ferrarello

Pocket Calculator as an Experimental Milieu: Emblematic Tasks

and Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Ruhal Floris

The Street Lamp Problem: Technologies and Meaningful Situations

in Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

Elisa Gentile and Monica Mattei

A Framework for Failed Proving Processes in a Dynamic Geometry

Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

Madona Chartouny, Iman Osta, and Nawal Abou Raad

Disclosing the “Ræmotionality” of a Mathematics Teacher

Using Technology in Her Classroom Activity . . . . . . . . . . . . . . . . . . . . . 255

Marina De Simone

Integrating Arithmetic and Algebra in a Collaborative Learning

and Computational Environment Using ACODESA . . . . . . . . . . . . . . . 285

Fernando Hitt, Carlos Cortés, and Mireille Saboya

L-System Fractals as Geometric Patterns: A Case Study . . . . . . . . . . . . 313

Anna Alfieri

Learning and Technology? Technology and Learning?

A Commentary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

Peter Appelbaum

Part III Communication and Information: A. Communication

Inside and Outside the Classroom

e-Mathematics Engineering for Effective Learning . . . . . . . . . . . . . . . . 349

Giovannina Albano

Learning Paths and Teaching Bridges: The Emergent

Mathematics Classroom within the Open System

of a Globalised Virtual Social Network . . . . . . . . . . . . . . . . . . . . . . . . . 371

Andreas Moutsios-Rentzos, François Kalavasis, and Emmanouil Sofos

e-Collaborative Forums as Mediators When Solving

Algebraic Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395

M. Pilar Royo, César Coll, and Joaquin Giménez
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Introduction

Fernando Hitt

Abstract Technology and its use in mathematics education has been the subject of

study for many decades. In the past some researchers wondered how to transform a

constructivist theory that could include technological resources, e.g., “Constructiv-
ism in the computer age” (Forman and Putfall 1988); the development of this

theoretical framework and new theoretical frameworks attempt to better explain

the phenomena of learning and teaching in a technological environment (Artigue

2000, 2002a, b; Baron et al. 2007). The effort of teachers and researchers is

enormous, and the influence on the educational environment with respect to tech-

nological resources is not as pleased as they expect it. And this despite the fact that

speeches of education administrators, educational reforms and programs of study

and teacher associations (see, e.g. NCTM 2008, 2011), make a special emphasis on

the importance of using technology in the learning and teaching of mathematical

concepts.

Keywords Mathematics and technology • E-learning • Task-design •

Representations • Paper-and-pencil
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Under this perspective, the mathematics teacher, who wants to use technology in

the mathematics classroom in a reasoned way, must take into account a lot of

variables that allow him/her to reach a broad view of the problems of teaching and

learning mathematics in technological environments. If we take the famous phrase

of Euclid (II century BC) formulated by King Ptolemy: “There is no real way to

learn geometry,” we could apply here: “There is no real way to know how to use

technology in the mathematics classroom”. The choice of which technology to use

in the mathematics classroom and why, should take into account different variables

for a reasoned choice. The variables involved can be of different types, cognitive

(to answer the why), economic (f.e., use of free computer packages or commercial),

social (f.e., promote individual learning, including e-learning and/or collaborative

learning or both) or institutional (f.e., linked to the curriculum). The technology is

present in our daily lives, therefore it is important to reflect on what we could do in

the mathematics classroom to support teaching and learning of mathematics in

technological environments.

The CIEAEM (International Commission for the Study and Improvement of

Teaching Mathematics) aware of those problems above mentioned promoted

reflexion about the use of technology in the mathematics classroom in their last

three congress CIEAEM 65, 66, and 67. As a product of selecting important articles

presented at those meetings, the editorial committee present this volume, covering

different properties related to the use of technology in mathematics education:

• as tools allowing a new kind of dynamic representation and giving opportunities

to teachers to emphasize particular knowledge construction, as elements of the

learning environment of students, offering an opportunity to comprehend math-

ematical concepts in a dynamic way,

• but also as tools allowing a new way of communication between the different

actors, and facilitating dealing with information and information processing.

The first part of the book deals with the role of technology in the teaching and

learning of mathematics while the second part treats of information and communi-

cation properties of technology.

Technology, a Tool for Teaching and Learning Mathematics

With the development of theories such as “Instrumental genesis” (Rabardel 1995),
acquisition of resources for teaching (Gueudet and Trouche 2010) etc., are given

new theoretical elements that allow us to better tackle this phenomenon related to

the lack of influence in the educational environment. One aspect that has been noted

by researchers is the lack of mathematical tasks on technological environment that

mathematics teachers could use in the mathematical classroom (Aldon 2009, 2010,

2011; Artigue 2000, 2002a, b; Hitt 2007; Hitt 2011; Hitt and Kieran 2009).

Precisely related to this point, both in the academic community, and in CIEAEM

(65, 66 and 67) congresses, we have seen the growing concern of teachers and

2 F. Hitt



researchers in relation to the “task design” that includes the technological variable

as an important element in the teaching and learning mathematics, not neglecting

the use of paper and pencil. In that context, the issue of the use of paper and pencil

and it’s replacement (or it’s complement) by touchscreen technologies is addressed

and research has to answer questions about new gestures and their relationships

with the construction of knowledge through personal representations; those repre-

sentations are crucial in the mathematical modelling process. Even if in the past

socio-constructivist and sociocultural theoretical approaches were constructed, in

this era, research related to those approaches in a technological milieu is presented

in the CIEAEM community; as you can find in this volume.

In relation about what has been said, a key question would be, how the proposed

mathematical task in a technological environment influences the acquisition of

knowledge? What elements are important to retain in the design of mathematical

tasks in computing environments? How to construct a task depending of the milieu?

The editors of this volume, aware of the importance of this problem have been

proposed as the first part of the book the theme Technology, a tool for teaching and

learning mathematics. We initiate the book with the following aspect.

Teaching Mathematics

In relation with the theme “teaching with mathematics” we present four chapters.

The first chapter is related to the concept of space and with the development of the

child, the acquisition of this concept. In this chapter special attention is made by the

author (Sabena) to relate her research with tasks used in textbooks and the Italian

National Curriculum. The bee robot used by Sabena reminded us the turtle used by

Papert but the playground is no more the screen of a computer but the local space of

children. Sabena, taking a Vigotskian perspective, analyses authors that in the past

were aware about the development of space like Piaget and Inhelder. And, under

this Vigotskian perspective, Sabena highlights several important notions, as antic-

ipation and control that children developed in her teaching experiment. In chapter

“Mediation of technological resources in lessons on polyhedra: analysis of two

teaching actions”, the authors Lobo da Costa, Pimentel and Mendonça, pay atten-

tion to teachers’ actions mediated by technological resources. Their subject is

related to three-dimensional geometry, specifically with polyhedral-prisms. They

show the problems where two different teachers have to control the activity of the

children in class and want to reach the objective they already had fixed. They

conclude about the mediators of technological resources that should be paid

attention like the reality of the classroom, students’ interest, the number of students

per class, the knowledge of the students, the need to cope with the prescribed

curriculum and available time. Authors of chapter “Task design in a paper and

pencil and technological environment to promote inclusive learning: An example

with polygonal numbers”, Hitt, Saboya, and Cortés, address an issue that seems

very important in this computer age; the authors stress the importance of task-
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design related to the use of technology and related to a sociocultural approach to

promote learning (method ACODESA of teaching). Under this perspective,

a problem situation seems more adequate to promote learning under this perspec-

tive. Then, under this approach, the authors propose a careful task-design, which

is different to that of an exercise or a problem. Then, in this chapter, authors

present their theoretical and methodological approach and in chapter “Integrating

arithmetic and algebra in a collaborative learning and computational environment

using ACODESA”, they show the results of their experimentation in secondary

education, following the method ACODESA of teaching. In chapter “ICT and

liminal performative space for Hyperbolic Geometry’s teaching”, Kotarinou and

Stathopoulou are showing Instructional Computer Technology together with

‘Drama in Education’ (DiE), drama taken as a milieu to develop a mathematical

understanding of non-Euclidean geometries. The authors conclude that an approach

to non-Euclidean geometry is difficult for the students, because they are confronted

with contradictory statements emerging from different axiomatic systems. The role

of the combination of ICT and DiE played a major role to cop with this difficulty. In

conclusion of this theme the Sixto Romero’s chapter: Improving the teaching of

mathematics with the use of technology: A commentary gives a global vision of this

first and important part of the book.

Learning Mathematics

Related to the second part of the same theme about Technology, a tool for teaching

and learning mathematics, the eight following chapters are related to the section:

learning mathematics. The first chapter of this section is chapter “Domains of manip

ulation in touchscreen devices and some didactic, cognitive and epistemological

implications for improving geometric thinking” and the authors, Bairral, Arzarello,

and Assis, are addressing an important issue related to technology in this century, that

is to say, touchscreen devices. The mathematical content related to this chapter is

geometry. The gestures we made when solving a mathematical task using a

touchscreen device is analysed by these authors, from a didactic, cognitive and

epistemological perspective. The authors of this chapter show that the process leading

to the solution of a mathematical task differs in a pencil and paper approach from that

about a touchscreen device. They stress two intertwined domains of manipulation as

the results of their experimentation, the constructive domain and the relational domain

directly related to geometrical thinking. In chapter “Graphs in primary school: Playing

with technology”, Ferrarelo shows how introduce elements of Graph theory in

primary school, presenting the mathematical activities in an enjoyable milieu. Tech-

nology permits this enjoyable approach in teaching and learning. This approach needs

a careful task-design to be effective with the aim of the teacher. Under this perspec-

tive, Ferrarelo is addressing important aspects of mathematics activity in primary

school, that is creativity and independence. In chapter “Pocket calculators as an

experimental milieu: Emblematic tasks and activities”, we have an important

4 F. Hitt
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approach to the use of calculators. The author (Floris) is showing interesting activities

to use in primary and secondary level and also in teachers training. Taking into

account Brousseau’s notion of ‘milieu’, Floris shows aspects of the process of

instrumentation and instrumentalisation when using a calculator. He also shows

how mathematical expectations are modified when using technology. Chapter “The

street lamp problem: Technologies and meaningful situations in class” is related to

experimentation with teachers and students, using an open-ended problem “The street

lamp problem”. The authors of this chapter, Gentile and Mattei, analyse the perfor-

mance of students of a lower secondary school when manipulating materials as paper

and pencil, pictures and flashlights before using a DGS software. They conclude about

the importance of using DGS to represent a generic situation and they study the

situation changes. The activity in this technological milieu permits the conjecture and

process of validation. They postulate that both, paper and pencil and technology are

important in the process of learning mathematics. The Meta-Didactical Transposition

(MDT) offers a framework allowing to express the relationships of researchers and

teachers working at different levels of a same educational project; this viewpoint

brings to the chapter a meta analysis of the geometrical activity in term of teacher

training. In chapter “A framework for failed proving processes in a Dynamic Geom

etry Environment”, also in a Dynamic Geometric Environment, Chartouny, Osta and

Raad, analysed students’ performances related to an open geometry problem. They are

interested about students’ arguments when proving: Deductive justifications by struc-
tural thought experiment, and failed proving process. This last led them to divide their

analysis in several stages, the analysis of Failed construction, Failed conjecture, and
Failed proof. The authors claim that focusing on those stages can help teachers and

researchers to anticipate and to undertake analysis of students’ errors to better teach

and better understand the students’ knowledge construction. In chapter “Disclosing

the “ræmotionality” of a mathematics teacher using technology in her classroom

activity” we have a completely different approach to analyse how technology influ-

ences teachers’ cognition and affect, De Simone analyses a teacher activity from this

perspective. The teacher uses a DGS (GeoGebra) and an applet (Virtual scale) in a 9th

grade class about linear equations. De Simone shows how technology affects the

epistemic emotionality, the teleological emotionality and the communicative emo-

tionality of the teacher. Authors of chapter “Integrating arithmetic and algebra in a

collaborative learning and computational environment using ACODESA”, Hitt,

Cortés and Saboya, address an important topic related to the articulation of arithmetic

and algebra in a technological milieu. In their experimentation, the authors utilise the

ACODESA method of teaching, showing with detail what means to learn in a

sociocultural approach, and how to promote a mathematical activity related to pre-

diction, argumentation, conjecture and validation in a technological environment, to

construct a cognitive structure were arithmetical thinking is a support to control the

algebraic activity. This eleven chapter is related to the third chapter where the authors

presented their theoretical approach about Activity theory in its 5th generation and

their methodological approach about task-design and that of teaching. In chapter

“L-system fractals as geometric patterns: A case study”, Alfieri takes into consider-

ationArtigue’s (2013) crucial questions about learningmathematics in a technological
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environment. The author shows us how to promote geometric knowledge using

technology and relating this knowledge with real life taking into account L-system

fractals. Under this approach, students conjectured and modelled shapes of real world.

To finalize this section we have the commentary chapter written by Appelbaum, who

discusses the content of the section, posing general questions and answering trough the

results given by different authors. The questions Appelbaum analyse are: can we tame

technology? Can learning with technology help us to better comprehend technologies,

and how to classify, categorize, exploit, and control them? Learning with/out/for

technology?

Communication and Information

Communication Inside and Outside the Classroom

New paradigms of this century have highlighted the importance of communication

both inside and outside the classroom, whether researchers or teachers follow a

constructivist, socio-constructivist or sociocultural paradigm, communication is an

essential part of their research program (Aldon et al. 2009). Technology plays an

important role in this communication, and simultaneously imposes its way of being

used. In the past, this communication outside the classroom was not fully efficient

because we did not have mobile resources as we currently have. Then, the use of

digital whiteboards, platforms as Moodle, tablets and smartphones has transformed

the way we communicate both inside and outside the mathematics classroom. How

to make an efficient use of these resources in the classroom and beyond? Under

these ideas the CIEAEM committee has proposed this theme in their congress.

In relation with this theme, the three next chapters look deeper into the commu-

nication potentiality of technology. The first of them is chapter “e-mathematics

engineering for effective learning” written by Albano. She addresses the problem of

learning mathematics in a technological environment, taking into account the

methodology of Didactic Engineering, she is extending the classical didactical

triangle (Student, Mathematics and Tutor for each vertex) to a tetrahedron where

the added vertex represents the author. She shows the need of a fourth vertex if we

are immersed in an e-learning environment, and as a consequence, she proposes a

Didactical tetrahedron as model, expanding in a way this methodological approach

when immersed in a technological environment. Chapter “Learning paths and

teaching bridges: The emergent mathematics classroom within the open system

of a globalised virtual social network” is written by Moutsios-Rentzos, Kalavasis,

and Sofos, they investigate the views of primary teachers, principals and school

advisors with respect to social networking sites (SNS). Using a questionnaire in

their study, they analyse what kind of preferences and teachers, principals and

advisors related to the teaching in primary school, privilege uses of networking

sites. They answer the question: in which ways (if any) the aforementioned SNS
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realities and epistemic views about mathematics seem to be linked with SNS and

mathematics as a school course? The authors answer this question analysing data

from three points of view: symbolic/normative, pragmatic representations, desired/

intentioned actions and from a mathematics didactics and general didactics per-

spective. In chapter “e-collaborative forums as mediators when solving algebraic

problems”, Royo, Coll, and Giménez, investigate an e-collaborative learning

related to algebraic problem solving. They follow students’ interventions when

solving algebraic problems in a forum, permitting the students to express their

points of view and letting them to reflect before answering to a question. The

authors think this approach permit the students to have more confidence and deep

reflection because the students have more responsibility when proposing or answer-

ing to the whole group.

Information’s Tools, to Inform Oneself and to Inform Others

Another important aspect detected by the editors of this volume, is on how teachers

appropriate themselves the information to teach courses and to communicate with

their colleagues. The issue of the documentation of teachers in the digital era has to

be addressed as well as the documentation of students. Technology modifies the

way information is transmitted and mathematical education has to take into account

the new ways of learning through connected networks as well as new ways of

teaching with an extensive documentation (Aldon 2010; Gueudet and Trouche

2009; Trouche and Drijvers 2010). The tools to learn and inform others are

important in the process of teaching. The problems facing the educational environ-

ment for information to flow in both directions are huge. How the researchers can

appropriate themselves about the teachers’ experiences and in turn, how the

teachers can appropriate themselves about research results. Bilateral information

represents one of the biggest problems to solve in the educational environment.

In relation with this theme, we have two chapters. Aldon, Durand-Guerrier, and

Ray wrote the chapter “Problems promoting the devolution of the process of

mathematisation: An example in number theory and a realistic fiction”. The authors

address the big problem of learning about modelling. They studied this topic related

to modelling phenomena from both mathematical and real-life situations, and

modelling a phenomenon in a fictional context in a technological environment.

Using Brousseau’s theoretical approach in a collaborative milieu, the authors gave,

in the mathematical classroom, a particular importance to the devolution of the

problem. The experimentation of these authors is immersed in collaborative

research among researchers, teachers and students. Addressing the problem of

learning about modelling, authors explain also how the project is developed in

this collaborative research approach. In chapter “A classroom activity to work with

real data and diverse strategies in order to build models with the help of the

computer”, Ginovart, uses mathematical models that depending on the parameters

these models can be applied to different contexts. The task-design was implemented
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to elaborate the tasks related to real data that should by analysed using technolog-

ical devices. This permitted the students to recalculate as necessary to better model

the phenomenon in question, this search of a better model promoted visualization

processes in the students. Finally, related to this theme, Hahn analysed five chap-

ters. Highlighting the importance of questioning the notion of problem, the notion

of knowledge, the notion of activity and device, in her chapter, she made a global

analysis of the five previous chapters, emphasising the differences of approaches

and theirs particularities.

Technology and Teachers’ Professional Development

The last session, but not the least, takes an interest in teachers training in the digital

era. Teacher education is a political issue that policy makers have to take into

consideration in the cultural and social context of the society. The injunctions, often

insistent, of introducing technology in the classroom have to face the reality of

teachers’ technological knowledge and the necessity of teachers’ training (Clark-

Wilson et al. 2014). It is well known that we can divide the teachers into three

populations, those that completely reject the use of technology, those who believe

that problems of teaching and learning mathematics are solved immediately with

technology, and those who believe that they must make a rational use of techno-

logical resources in order to have a real impact on teaching and learning mathe-

matics. How to convince the mathematics teacher about the importance of the use

of technological resources? How to convince the enthusiastic teacher who must

make a rational use of technology? What problems of teaching and learning will

have to confront future mathematics teachers in the use of technological resources?

Related to this theme we have five chapters, chapter “A study on statistical

technological and pedagogical content knowledge on an innovative course on quan

titative research methods” written by Serradó, Meletiou-Mavrotheris, and

Paparistodemou. Their study is double, first, it is related to the affordance a Quan-

titative Research Methods course to develop students’ Statistical Technological and
Pedagogical Content Knowledge (STPACK), and second, to investigate the effects of

the STPACK model in graduate education studies. The packages used in their

experimentation are Fathom, TinkerPlots, and Probability Explorer. That software

allowed them to design activities to use them as amplifiers and reorganisers from a

statistical perspective. In chapter “The professional development of mathematics

teachers: Generality and specificity”, Polo stresses the professional development of

mathematics teachers from a general and a specific point of view. Two groups of

teachers were analysed from a pedagogical, psychological and sociological role as a

teacher. Polo’s concerns is that there is a lack of integration of the different theoretical
models used to describe the role of the teacher and a poor relation between prospec-

tive teachers and teachers in service. In chapter “Integration of digital technologies in

mathematics teacher education: The reconstruction processes of previous trigonomet

rical knowledge”, Lobo da Costa, Esteves, and Brisola studied the integration of
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digital technologies in the classroom with two case studies, one with prospective

teachers and the other with a teacher in service. Their theoretical approach is related

also with TPACK and they added the Rabardel’s perspective about the instrumenta-

tion theory. The results show that non-traditional design training can help to develop

the professional knowledge in prospective teachers and in-service teachers. In chapter

“Formative assessment and technology: Reflections developed through the collabora

tion between teachers and researchers”, Aldon, Cusi, Morselli, Panero, and Sabena,

addresses the problem of formative assessment in relation to a European project

FaSMEd. This project is immersed in a collaborative research between teachers and

researchers. Their study uses a three-dimensional framework where one of the axis is

related to « functionalities of the technology ». Their results show how different

functionalities of technology enable the development of formative assessment strat-

egies and more important a characterisation of the dynamics that intervene in a

collaborative research study, where the researchers learn from the teachers’ practices
and the teacher learn from the theoretical approach of the researchers. In chapter

“Teaching intriguing geometric loci with DGS”, Ferrarelo, Mammana, Pennisi, and

Taranto, stress a teaching experiment developed in several high schools in the South

of Italy. Their theoretical approach is based on the TPACK framework, using DGS

software. Some of the results show the importance of high school teachers to work

with university professors in a collaborative task-design perspective. Teachers think

that the software GeoGebra is useful to better understand mathematical topics. The

technological approach attracted attention and interest of the students, and that

motivated them to participate actively in the experiment. Finally to close this

theme, FitzSimons wrote a chaper from an integrative perspective taking into account

the five previous chapters related to the theme, and taking into consideration the

whole structure of the book, arriving to the conclusion that: the five chapters that are

the subject of this commentary have much to offer teachers and researchers alike, and

she commends each team for its innovative work on behalf of the students concerned

and, hopefully, students of the future.

Finally, Aldon presents a global conclusion related to all the chapters, giving

special attention to what the commentators had stressed in their analysis.
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Technology, a Tool for Teaching and
Learning Mathematics: A. Teaching



Early Child Spatial Development: A
Teaching Experiment with Programmable
Robots

Cristina Sabena

Abstract This contribution addresses young children development of spatial com-

petences, and investigates the didactic potentialities offered by a programmable

robot. The theoretical framework addresses the delicate relationship between space

as lived in everyday experience versus space as a mathematical notion, and takes a

multimodal perspective on mathematics teaching and learning. An experimental

study has been conducted in kindergarten school. The qualitative data analysis of

video-recordings constitutes the background against which children spatial devel-

opment is discussed.

Keywords Multimodality • Kindergarthen mathematics • Spatial thinking •

Programmable robots

Introduction

Attention on early years mathematics is emerging in recent times in research, as

witnessed by the new Thematic Working Group in CERME, (http://www.cerme8.

metu.edu.tr/wgpapers/wg13_papers.html), and the ICMI Study 23 Conference

(http://www.umac.mo/fed/ICMI23/). As in the latter case, the focus of attention is

placed in particular on the development of whole numbers competences, which are

fundamental steps for children mathematics education. Less attention is given to

other competences, such as the spatial ones.

Spatial competences develop through a complex process, requiring long-time

experiences in meaningful contexts. Kindergarten and the first year of primary

school are the proper places for these experiences, constituting the base on which

the learning of geometry can be grounded, first as modeling of spatial properties,

and then as theoretical elaboration specific on the mathematics field. However,

especially when starting primary school, spatial competences are often overlooked

(at least in Italy, but this may not be an isolated case), being the major efforts put on

numbers.
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This chapter focuses on children development of spatial competences, and

explores the didactic potentialities offered by programmable robots. Cognitive

aspects will be on the foreground, and in particular the delicate relationship

between space as lived in everyday experience versus space as a mathematical

notion will be addressed. On the background of psychological results on spatial

conceptualisation in children, and taking a multimodal perspective on mathematics

teaching and learning, an experimental study has been conducted in kindergarten

school. The study was based on the teaching experiment methodology and explored

the didactic potentialities offered by a programmable robot with a bee-shape, with

respect to children development of spatial competences. In the following, after a

theoretical discussion on young children spatial thinking development, the meth-

odology of the teaching experiment will be described, and a case study data analysis

will be provided, from video-recordings and collected written materials of the

classroom activities in a kindergarten school.

The Development of Spatial Thinking in Early Years

The complexity of children spatial conceptualization processes has been pointed

out by research in psychology and education for several years. Great differences in

different theorizing in the field prevent researchers from reducing these processes to

simple and linear models of learning, based on rigid pre-determined steps.

Concerning spatial relationships, we can consider three different fields of experi-

ences, which correspond to three different kinds of space, requiring each specific

perceptive and exploration modalities (Bartolini Bussi 2008):

• The body space, that is the internal reference frame relative to the awareness of

body movements, its parts, and to the construction of the body schema;

• Specific external spaces, including different kinds of living spaces (the house,

the town, the school,. . .) and different representative spaces (the sheet of paper,

squared papers, the computer screen, . . .);
• Abstract spaces, that are the geometrical models developed within mathematics

science in its history.

The first two kinds of spaces refer to actual spaces in real world, the latter one

belongs to the world of mathematics. Such a categorization must not be thought as a

sort of hierarchical scale, or as a developmental sequence. On the contrary,

according to Lurçat (1980): “it appears difficult to imagine a development in

which the body schema is constructed before, to allow then the knowledge of

external world” (p. 30, translation by the author). As a matter of fact, several studies

agree in recognizing a fundamental role to the experiences that the child makes both

in his/her family and in specific educational settings, and suggest to go beyond

linear models, which position abstract space at the end of a developmental process

(in the stage of formal operations, in the Piagetian case). A discussion in this

direction may be found in Lurçat (1980), and in Donaldson (2010).

14 C. Sabena



Recent strands in cognitive sciences place perception and everyday experiences

with the body as grounding pillars for more abstract knowledge conceptualization,

included the mathematical knowledge. In particular, the embodied cognition per-

spective (Lakoff and Nú~nez 2000) proposes a model for the “embodied mind”, as a

radical criticism of the dualism between the mind and the body of classical

cognitivist approaches.

If mathematics is no longer a purely “matter of head”, it becomes of paramount

importance to carry out mathematical activities in suitable contexts in which

children can interact with different kinds of space and spatial thinking. Concerning

the external space, we can distinguish further between macro-spaces and micro-
spaces (Bartolini Bussi 2008):

• macro-spaces are those in which the subject is embedded (the subject being part

of the macro-space); their exploration is carried out through movement, and their

perception is only local and partial, requiring usually to coordinate different

points of views;

• micro-spaces are external to the subject; their exploration is carried out through

manipulation, and their perception is global.

A park is an example of macro-space, whereas a sheet of paper and a book page

are examples of micro-space. As an intermediate category, called meso-space, we
can consider the big posters often used in classroom for group-work: children can

enter into them, but also look at them at distance. The essential aspects in this

distinction are the different modalities of perception and exploration: the school

garden, for instance, can be an example of macro-space—when the child is playing

within it—or of micro-space, when the child is observing it from a window above.

The body space and the external spaces share fundamental differences with

respect to abstract spaces: as a matter of fact, they can be perceived and explored,

and are featured by fundamental directions (vertical and horizontal) and by typical
objects (e.g. a door in a room, a fridge in a kitchen). On the contrary, abstract spaces

(like the geometrical ones) are isotropous and homogeneous, i.e. do not have any

privileged directions, nor special points. These features may be sources for diffi-

culties for students, when facing tasks with figures in non-prototypical positions, as

in the assessing item reported in Fig. 1 from Italian National test INVALSI

2012–2013, grade 5): Four isosceles triangles are cut from a paper sheet, with
the same base and different heights. In each case, the height of the triangle is the
double of the previous one. In triangle A the height measures 2 cm. Which is the
total length of the paper sheet?

Among the advantages of introducing reference systems like the Cartesian one in

the geometrical space, we find the introduction of privileged points (in particular,

the origin point) and special directions (those parallel to the axis).

In mathematics, reference systems are objective or absolute, in the sense that

they do not depend of the position of the subject using them. Objective references

are the product of the historical-cultural development of society and have to be

introduced by the teacher starting from the subjective references (which depend on

our position in the external space).
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According to Lurçat (1980), our subjective references depend heavily not only to

external objects (e.g. a door in a room), but also on our ways to project our body

schema into objects. Subjective reference systems can be egocentric, if the descrip-
tion is provided according to the subject position (e.g. “to my left”) or allocentric,
when the reference is made with respect to another object or person (e.g. “to the left

of the house”). Egocentric systems are the first to develop in children, but not the

only ones. While Piaget and Inhelder (1956) claimed that children until 8–9 years of

age are incapable of decentralize with imagination and so of correctly using

allocentric references, following studies have refuted this conclusion, and proved

that also children aged 3 are able to decentralize, if faced with problems compre-

hensible to them (for a discussion, see Donaldson 2010). Being able to coordinate

egocentric and allocentric perspectives constitutes an important competence for

spatial and geometrical development, and in Italian curriculum is placed as a goal

for Primary school (MIUR 2012). An example of task requiring this competence is

reported in Fig. 2, again from the Italian National Assessment test. Two children are

looking at an object from different positions and the students are asked what the girl

is seeing, thus activating an allocentric perspective:

On the base of this discussion of results from psychology, we can ground the

hypothesis that the reality faced by young children (and indeed, by all of us) is full

of cognitively-different spatial contexts, which require different related specific

competences. In order to reach this goal, Lurçat (1980) underlines the importance

of choosing carefully the requests to the child in the spatial activity:

. . .not all spatial behaviours necessarily imply a knowledge on space. In order to have

knowledge, a suitable activity is necessary: for instance, going in a place, locating objects,

positioning in the space of places and objects [. . .]. As in other psychical fields, it does not

exist an age for the development, which can be considered independent from the concrete

conditions of existence (p. 16, translation by the author).

An educational implication of this perspective is that in order to develop the

necessary different spatial competences, children need to be involved since their

early childhood in dedicated activities with dedicated task design. For instance, in

Fig. 1 Non prototypical positions in an Italian National Assessment item (INVALSI 2012–2013),

grade 5
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order to foster the passage from ego-based to allocentric references and lay the

foundations of objective reference systems, activities on the change of points of

view, such as the realization of maps of familiar places, can be proposed already at

the kindergarten.

Along with meaningful experiences in different spaces, languages constitute a

second fundamental set of sources of knowledge, including verbal and non-verbal

means of communications.

The key role of verbalization not only as a communicative means but also for

thinking processes has widely been discussed in Vygotskian studies (e.g. Vygotsky

1934), and stressed by Lurçat (1980) concerning spatial development:

It seems hard to separate, in the appropriation of the environment realized by the young

child, these two sources of knowledge, the one practice, the other verbal, since both

converge early in the first months of life (pp. 15–16, translation by the author).

For mathematics, we know the importance of symbols and graphical represen-

tations of various kinds—in particular for geometry, of geometrical figures and

Cartesian plane systems. Each of these representations situates in a specific way in

the external space of the child: usually, school lessons heavily exploit

bi-dimensional micro-spaces, such as the blackboard, the book sheet, or more

recently the computer/tablet screen. The passage from experience and perception

in the tri-dimensional (macro-) space to these representation spaces is a very

complex process, so far little studied in literature. Also at primary school, this

passage is often taken for granted and in many cases written representations are

used but not problematized.

Fig. 2 Allocentric

perspective required in an

Italian National Assessment

item (INVALSI

2012–2013), grade 2
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In such a passage, on the one hand the use of artefacts can be exploited as

didactic resources in the development of children spatial competences, and on the

other hand gestures and embodied means of expression may play an important role

in synergy with verbal language, according to a multimodal perspective (Arzarello

et al. 2009; Bazzini et al. 2010; Sabena et al. 2012). The role of artefacts will be

discussed in the next section.

The role of embodied resources such as gestures, gazes, and body postures in

thinking processes (and of course in communicative ones) has been pointed out in

psychological literature with cognitive and linguistic focus (McNeill 1992, 2005).

The study of gestures and embodied resources in synergy with verbal language has

gained a certain attention also in mathematics education, in an increasing variety of

contexts, such as: students solving problems (Radford 2010), students and teachers

interacting (Arzarello et al. 2009; Bazzini et al. 2010; Bazzini and Sabena 2015),

the teacher’s lectures (Pozzer-Ardenghi and Roth 2010), considering not only the

semantic but also the logical aspects of mathematical thinking (Arzarello and

Sabena 2014). For what concerns spatial tasks, iconic and pointing gestures come

to the fore: iconic gestures are those ones which resembling the semantic content

they refer to, and pointing gestures are usually performed with the index forefinger

and have the function of indicating something in the actual context.

The Teaching Experiment: Methodology

On the base of the outlined theoretical frame, an experimental study has been

planned and carried out in a kindergarten school in Northern Italy, with the goal

of studying the didactical possibilities for children spatial conceptualization offered

by programmable robot toys.

The study is based on the teaching-experiment methodology. The activities have

been organized around a programmable robot1 with a bee-shape (Fig. 3a), a

technological artefact new to the children. The robot is a kind of tri-dimensional

and touchable version of the well-known Logo turtle by Papert (1984), and its

movement can be programmed through buttons placed on the upper part (Fig. 3b):

they are four arrows for onward and backward steps, right and left turns, and a pause

of one second. The robot bee can move on a plane with 15 cm-long steps (the same

measure of its length). Steps are marked by a quick stop, which creates a silent

pause with respect to the noise of the movement, and by the lightening of its eyes

(see Fig. 4b). Pushing the green button “GO”, the robot executes the previously

programmed sequence. A specific button (“clear”) allows the user to clear the

memory from past commands.

1Bartolini Bussi and Baccaglini-Frank (2015) carried out a study with the same artefact in primary

school, about the introduction of the definition of rectangle.
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The teaching-experiments involved four classrooms of 5 years old children, and

was carried out with the collaboration of the four teachers, four Master students in

Primary school education, and the author. Being inserted in the usual school

activities, the experiments had didactic as well as research goals.

From a didactic point of view, the activities had the general goals of promoting

competences related to spatial thinking, but also problem-solving. These compe-

tences were linked to the use of a new artefact, in the context of exploring it through

a playful environment. Concerning spatial thinking, the passage from egocentric to

allocentric reference systems is particularly involved, in particular when the robot

is not oriented parallel to and with the same orientation as the children. On the other

hand, the activity of programming in advance the movements of the robot, and

checking afterwards the consequences of the choices, by means of observing the

obtained movement, offers a suitable context for stimulating and developing antic-

ipation and control processes, which are at the base of successful problem-solving

(Martignone and Sabena 2014).

The didactic dimension intertwines with the research one. The study had mainly

an explorative character of the potentialities and the limits of the artefact-based

activities with respect to the identified didactical goals. Such an analysis needs to

consider the specific activities proposed to children, and the role of the teacher in

their management.

Fig. 3 (a, b) The programmable robot used in the teaching-experiment

Fig. 4 (a, b) Initial exploration of the artefact in the meso-space
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The key-role of the teacher in using with success artefacts in the mathematics

teaching and learning has been pointed out and stressed by Bartolini Bussi and

Mariotti (2008):

The role of the teacher is crucial, in fact the evolution of signs, principally related to the

activity with artefacts, towards mathematics signs, is not expected to be neither spontane-

ous nor simple, and for this reason seems to require the guidance of the teacher (ibid.,

p. 755).

Adopting a Vygotskian perspective, Bartolini Bussi and Mariotti elaborate the

Theory of Semiotic Mediation, according to which the fundamental elements of

didactical activities involving artefacts are the signs that emerge when using the

artefact, and above all the role of cultural mediator accomplished by the teacher

when using the artefact as a tool of semiotic mediation: this expression refers to the
fact that when using an artefact (for accomplishing a certain task) new meanings

emerge. These meanings are linked to the use of the artefacts but can be general and

can evolve under the guidance of the teacher:

Any artefact will be referred to as a tool of semiotic mediation as long as it is (or it is

conceived to be) intentionally used by the teacher to mediate a mathematical content

through a design didactical intervention (ibid., p. 754).

An important didactic feature of this theory is the “mathematical discussion”

(Bartolini Bussi 1998), in which the whole classroom is collectively engaged in

discussing the personal meanings emerged from an activity, relating them—with

the essential guidance of the teacher—to the mathematical signs.

The teaching experiment with the robot has been planned sharing the same

Vygotskian view, assigning great relevance to the peer as well as teacher-students

interaction, and focusing on the evolution of signs developed during the technol-

ogy-based activities. Due to the young age, the specific mathematical contents have

been limited, and the discussions have regarded more general competences, at the

base of spatial and logical thinking.

The activities have been video-recorded and the obtained videos have been

analysed in detail. Furthermore, children written drawings related to the activities

have been collected and analysed.

The Teaching Experiment: Analysis

Children were organized in groups of about 10–12, with one or two bee-robots at

disposal. For each group, the activities developed along 5–6 one-hour meetings,2

for a period of about 1 month. Most of activities involved the whole group, with the

2In Italy, usually we use the term “lesson” starting from Primary school, were formal education

begins (also with textbooks, notebooks, and so on). In kindergarten, activities unfold in a less

formal way.
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coordination of the teacher, and only in some cases individual work was required

(e.g. to produce a drawing).

The first meeting was always dedicated to the introduction of the new artefact.

The initial exploration of the robot has been carried out letting the children play

with the robot. In some groups, the activity was organized around a table, while in

others children were sitting in a circle on the floor (see Fig. 4a): the resulting

delimitation of space produced a sort of meso-space, since the children could

globally perceive it with their sight, but also enter into it and explore it with

their body.

One of the games played in this context was “sending the bee to my friend

(name)”. In this game, each child had to name a friend, and to program the bee so to

be able to send it where stated. We observed that when programming, every child

always started positioning herself/himself behind the robot (as in Fig. 4b). It is the

most natural choice, since it keeps the cognitive burden low: in this way, in fact, the

reference system introduced by the robot (allocentric system) is coincident with the

child one (egocentric system). We kept therefore this choice in those activities

focusing on more specific aspects of the artefact, such as estimating the length of

the steps, compared with those of the teacher or of the children (see Fig. 5).

Other games required the imitation with one own body of some movements

made by the robot, with or without verbal description. The imitation is simple if the

child is oriented in the same way of the bee-robot (for instance, if the child is

following the robot), because grounded on the ego-based reference system. When

the robot is oriented differently with respect to the child, the task increases in

difficulty, because it requires reproducing, during one’s own movement, an external

point of view. In other terms, it requires coordinating the egocentric system not only

with an allocentric one, but with a mobile allocentric one: it is a coordination

constantly in need of control and adjustments. In our experiences, verbalization has

constituted an important supporting tool: when accompanying the bee-robot move-

ment with a verbal description (such as ‘onwards, onwards, onwards, turn right’),
the task was more easily faced by children. However, verbal indications were of

little help for children with difficulties in knowing right from left (a problem for

which the bee-robot could not offer any support).

Fig. 5 Egocentric perspective kept during the comparison of steps lengths
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With each group of children, at least a couple of meetings were dedicated to an

activity on a poster showing a path to be travelled by the robot. The paths were all

structured with lengths multiple of 15 cm (the exact dimension of the robot, and of

its steps) and with right angle turns, so to be viable by the robot in an exact number

of steps and rotations. These choices were meant to ask the children to program

rotations, which were never activated in the explorative phase, avoiding problems

provoked by non-perpendicular turnings—impossible to program with the bee-

robot.

An example is the ‘Bee game’3 (Fig. 6), a sort of Snake and ladders game. The

game setting facilitated the introduction of the rule of ‘moving the bee only through

its buttons’ (and not pushing or rotating it with the hands, as the children were

tempted to do. . .). In our intentions, the race setting would have also fostered the

need of programming as many segments of the path as possible, in order to reach a

farther place. For instance, if the first roll of the dice gives ‘3’, the children have to

program the sequence ‘two onwards, turn left, one onward’. However, in our

experiments the children did not fulfil this expectation. Indeed, in all groups

children preferred to program one segment at a time: in the given example,

programming two steps onwards, observing the robot movement, then program-

ming one turn leftwards, observing the turn, and then programming the final two

steps. Figure 6b shows a child while programming this last segment: again, the

ego-based perspective is taken by the child in order to carry out the task.

Probably we missed the occasion of challenging the children, by introducing an

additional rule, such as ‘programming the robot sitting always in the black arrow

place’. This request would have forced the children to coordinate their egocentric

perspective with the moving perspective of the robot (allocentric for the children).

The activities were alternated with collective discussions, which constituted

occasions for reflection on what happened. Discussion organized before to carry

out new activities are of particular interest. In a group, a guided discussion

Fig. 6 ‘The bee-game’: Ego-centric perspective to program the movement

3In Italian the popular game Snake and ladders is called ‘Gioco dell’oca’ (‘The goose game’).
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introduced the activity on the path. The bee-robot was not on the scene (Fig. 7a): the

discussion constituted a moment of reflection for the children, during which the

development of the spatial competences is realized by observing and describing the

present scene, but also recalling past experiences with the artefact, and anticipating

potential actions through imagination. We are going to analyse in greater details

what happened.

The teacher guides the discussion with the goal of making the children to

observe that the path is not linear. As a matter of fact, in the previous activity

children moved the robot using only the “onward arrow”, without turns. The

general goal of the activity is to make the students program more complex

sequences involving turns, such as ‘forward-forward-turn left-forward’.

1. Teacher: Today we explore this (looking at the poster). What comes to your

mind looking at this?

2. Stefano: It is a road
3. Viviana: A flower and a house

4. Teacher: And whose is the house?

5. All the children: The bees!
6. Teacher: And how is it this road? Is it straight?

7. All children: Noooo!
8. Stefano: It has some curves (with his hand he is traveling the road, Fig. 7b)

Fig. 7 (a–c) The setting of the activity “Let’s help the bee to reach the flower”
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9. Cristina: It makes like this and like this (she travels the road with her hands, as
Stefano is doing)

10. Other children do not make any verbal comment, but touch the entire path with
their hands (Fig. 7c).

The teacher’s questions have the goal to help the children becoming aware of the

characteristic of the road along which they will make the bee travel. Though not

explicit, they play an important role with respect to the anticipatory thinking needed

to program the robot. The children immediately answer to the question with very

poor descriptions, made of the list of the elements of the poster, without relating

them each other. They describe the road with deictic terms (“like this”) that contain

little information without the co-timed gesture. In order to push them to provide

more suitable verbal descriptions, the teacher closes her eyes and asks them to

better explain:

1. Teacher: And then? Let’s do like this: I close my eyes and you tell me how is the

road, because I do not know it. . .Is there a starting point? And an arrival?

Explain to me.

2. Fabio: The start is in the house and maybe over there (pointing gestures) where
there is the flower, it is the arrival.

3. Teacher: But in this way I would not be able to arrive: you must explain well.

4. Fabio: You must go straight (pointing gesture, Fig. 8a), then turn (moving and
turning his body, Fig. 8b, c, and making a turning gesture with right hand,
Fig. 8d), go still a bit straight, then turn again, go straight and you are arrived at

the flower.

1. Teacher: But I don’t know where to turn, how can I understand which part to

turn. . .
2. The children continue to explain mainly with deictic terms such as “here”,

“there”, accompanied by gestures.
3. Teacher: No, no, if you had to explain it only with words?

4. Chiara: Left and right

Fig. 8 (a–d) Fabio’s gestures accompany the introduction of the terms « straight » and « turn ». In

pictures b–d also the body rotation can be observed
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5. Teacher: Left and right, or towards. . .So, explain me better, you can do it: not

like “I make some curves”, but how many, I go straight and how far, or right-

wards, or towards the benches, towards the door. . .

The first description provided in describing the poster referred to static elements:

the house, the flower, and the road (lines 2–6). Soon after (from line 9), when

pushed to better describe the path, a dynamic perspective is brought to the fore:

children use dynamic pointing gestures (also materially touching the poster) and

then words referring to the motion along the path (e.g. Fabio in line 13).

The teacher suggests some reference points, such as the starting and the arrival

points (line 10), and insists on asking the children to provide a clear explanation

(“explain well”). In line 13 Fabio introduces two verbs that characterize the

movement of the robot: going straight, and turning. The introduction of these two

terms is accompanied by two specific gestures: a deictic gesture made with the

extended index (Fig. 8a), and a dynamic gesture, combined with the full-body

rotation (Fig. 8b–d). The body movement and the hand gesture are the only semiotic

resources that express the information about the direction of the rotation (left-

wards). The teacher insists constantly about more accurate verbal descriptions,

making this goal explicit to the children (line 15), and giving some indication on

what aspects to mention: quantifying (line 17: “I go straight and how far”),

subjective (“rightwards”), and objective references (“towards the benches, towards

the door”). Analysing the following part of the video, we can see that children will

seize only the subjective references, whereas for the quantification they will go by

trial and error with the bee-robot.

The first path is run with the bee-robot programmed only with straight short

traits, so the teacher asks to make more elaborate programs. But before asking to

program the entire path, she sets an intermediate goal, consisting in programming

until the third square, indicated with e deictic gesture on the poster (Fig. 9).

Fig. 9 The teacher

indicates an intermediate

goal to reach
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The first attempts fails. Fabio then wants to give instructions to his mates, and

the teacher pushes him to state precisely what he is saying:

1. Teacher: Think at which arrows you have to push.

2. Fabio: So, you have to push once the arrow, right

3. Teacher: To go forward, straight, backwards. . .how?
4. Fabio: Forward. Then you must do the. . .left. . .here (he indicates the direction

to the left of the robot, Fig. 10a), then you must do again

5. Anna: Straight
6. Fabio: Straight and. . .and then we arrive here (indicates on the path the third

square, that is the arrival point stated by the teacher).

The teacher asks to Fabio to repeat his proposal, so that all children can listen to

it, before to check with the robot. Fabio would like to act directly on the robot, but

the teacher insists that he gives the instructions from his place: the child accom-

panies then the verbal instructions with deictic gestures (Fig. 10b), and his mates

follow them. We observe that Fabio is placed on the side with respect to the path

direction: his egocentric reference system is therefore not aligned with that of the

robot. Looking at the video we can clearly see that the child meets difficulties in

accomplishing this task: to overcome them, he speaks slowly, and tries to incline his

body so to position himself in the same direction as the robot (this can only be

guessed by Fig. 10b, but is clearly visible in the video). The problem of program-
ming many steps consecutively, when rotations are included, seems therefore

strictly linked to the problem of coordinating different reference systems. The
specific requests of giving instruction to others, while remaining far from the

robot and in a different position, allowed Fabio to face the difficulties of the task,

and to overcome them successfully, activating and developing his spatial compe-

tences, intertwined with the anticipatory thinking. As we can see from Chiara’s
intervention (line 22), also other children participated to Fabio’s endeavour, either
listening carefully, or pushing the robot buttons, or suggesting words, or checking

Fig. 10 (a, b) Fabio’s gestures during his verbal instructions
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in their mind his instructions: through the social interactive context, the request

made by the teacher to an individual child, becomes a resource for making all

children facing the complex task, each according to their actual capacities and

specific attitudes.

Conclusion

Through teaching experiments in kindergarten, some potentialities and limits of

robot-based activities for the development of spatial conceptualization were inves-

tigated. They were intertwined with anticipation and control competences, crucial

to problem-solving in different fields.

Programming tasks, in fact, require children to imagine the consequences of

their own actions, and allow later them to verify their correctness (in our case,

through the observation of the robot actual motion). Anticipatory processes, that are
cognitive processes carried out while imagining the consequences of our actions in

a hypothetical future, are of paramount importance in problem-solving activities

(Martignone and Sabena 2014). Their counterpart is control processes, which can

be activated when checking if the actual robot motion does correspond to the

programmed sequence of steps. In the light of our experimentation, we can affirm

that robotic artefacts can offer great potentialities for the activation of these kinds of

processes, but such activation requires an acute attention that in 5-years-old chil-

dren is still in its initial development. Many children, in fact, showed great

difficulty in keeping in mind even a small sequence of commands, and this

difficulty made impossible to them to activate suitably control strategies.

For what concerns spatial conceptualization, robotic activities carried out in the

material world can foster in children the intertwining and coordination between

different reference systems. As discussed in the first part of the chapter, the

coordination between different reference systems and points of view is necessary

in order to face geometry problems.

A first remark regards the activations of different reference systems. In our

observations, in order to face the proposed tasks, children always spontaneously

took the egocentric perspective. Of course, to make sense of what their mates or the

teacher were doing with the artefact, children were often in the need of coordinating

their ego-based perspective with the allocentric one assumed by the robot. How-

ever, our findings suggest that specific constraints have to be set up on the task in

order to ‘force’ children to actively work with allocentric perspective: for instance,

have the children to imitate the movement of the robot when is not parallel to them,

or to program it from a certain fixed position.

Both ego- and allo-centric perspectives are subjective reference systems, used in

the space of reality. As discussed above, geometrical space requires the use of

objective references. In the proposed activities, we did not focus on the passage

from subjective to objective references. Some hints have been made by the teachers

(as the one documented in the analysed episode), but with no success. Our
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impression is that specific activities need to be designed in order to reach this goal,

possibly in later age.

A second remark concerns two different spatial conceptualizations that emerged

during the artefact-based activities: a static and global one, and a dynamic and
paths-based one. The two perspectives do not constitute a dichotomy. For instance,

in line 8 in the excerpt above Stefano is blending both of them: his words are

referring to a global feature, and the gestures expressing dynamic ones (Fig. 7b). In

the overall experimentations, gestures have often offered a window into the chil-

dren’s conceptualization of space, and new spatial terms have often been used the

first time accompanied by corresponding gestures (as Fabio in line 13).

Evidence of how the experience with the robot paths has influenced the chil-

dren’s conceptualization of space can be seen also in several children drawings.

Figure 11(b, c) reports the drawings made by two children, who had had the robot

moving on a grid made by straight lines (Fig. 11a). In the children’s drawings, the
grid looses its global features and becomes a sequence of steps.

The paths-based perspective has been certainly fostered by the use of the bee-robot,

and future research is needed to investigate its role in early spatial thinking. Studies in

cognitive science within the embodied mind approach have shown that motion

constitutes the source domain of many concepts, and that also static objects are

often conceptualized in terms of motion4 (Lakoff and Nú~nez 2000). Starting with

motion activities seems thus promising for children spatial development.

The last remark concerns the crucial role of the specific requests made to the

children. For instance, we encountered a great “resistance” from children to pro-

gram sequences of steps that could include one or more turning: they preferred to

divide the path in straight parts, and program each of them separately. Rotations in

particular were never spontaneously linked to following onward steps. Probably

programming an entire long sequence requires cognitive capacities still under

construction by the children, but maybe the main difficulty lies in the fact that the

goal of reaching a certain place through a single program sequence had not any

understandable ‘sense’ for the children (Donaldson 2010). We could observe that

even when this goal was proposed within a competitive setting (like a team

Fig. 11 (a–c) The grid used during the activities with the bee-robot and two drawings made

afterwards by children

4Talmy (2000) has called ‘fictive motion’ the cognitive mechanism underlying the description of a

static object (e.g. a path, in our example) in motion terms (e.g. ‘it starts. . .it goes. . .’).
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competition), the children did not undertake it. As a matter of fact, programming a

certain artefact using less time as possible can be a goal for adults, which are often

under time pressure. In the case of children, pleasure was given in using the robot as

long as possible, because they liked it. In our task design, we initially

underestimated this essential dimension, and not a few times the goals that we

had chosen for the activities were completely neglected by the children.

The mediation of the teacher has therefore been necessary to introduce the

possibility itself of articulated programs, and to make their benefits explicit to the

children. The teacher mediation in the activities was accomplished through natural

language, as well as embodied resources such as gestures, as in the analysed

episode, but also through the introduction of written signs to register the commands

given or to be given to the robot (see an example in Fig. 12).

The different resources (words, gestures, written signs) intertwined in complex

interpretative processes of the programming code used by the robot, represented by

the arrows buttons (Fig. 4b), and its actual movement. The introduction of written

signs has not been here discussed, and requires further examinations. It has a

limited scope for kindergarten level, but it constitutes an interesting didactic path

for primary school, since it regards the delicate passage from experiences in macro-

space of reality to the use of micro-space of representation, the fundamental

background of much geometric activity.
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Mediation of Technological Resources
in Lessons on Polyhedra: Analysis of Two
Teaching Actions

Nielce Meneguelo Lobo da Costa, Maria Celia Pimentel de Carvalho,

and Tânia Maria Mendonça Campos

Abstract This chapter aims at discussing the mediation of technological resources

done in geometry classes, in particular, for the teaching of polyhedral-prisms and

pyramids – in primary school. The focus is to understand teaching actions and the

use of technological resources by observing two teachers on geometry classes and

analyzing results from this “in loco” survey. Zeichner’s ideas about teacher’s
reflective practice and the view of Serrazina about the teacher as a manager of

curriculum defined the theoretical framework. The methodology was qualitative,

grounded in the complexity theory. We observed two different teachers’ actions and
the mediation of available resources in order to help students’ participation and the

development of the classes.

Keywords Teaching practice • Technological resoucers • Geometry classes •

Primary school • Mediation

Introduction

Mathematics provides the students with the possibility of dealing with everyday

situations, criticizing, developing creativity and skills such as communication,

reasoning, phenomena interpretation and solving routine problems among others,

leading those students to reason according to their existing and/or intuitive

knowledge.

The study of Mathematics in elementary education intends to develop some

students’ skills, such as communicating, thinking in a variety of ways, interpreta-

tion phenomena, solving daily problems, among other activities that make them

reason through their existing knowledge and intuition or make them try to construct

new knowledge. This way the students get mobilized in different situations of

learning.
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In order to assist students to develop these skills, the teacher needs to propose

interesting and challenging teaching situations. The technological resources

selected by the teacher to do this, may help the students to establish the connection

between the classroom, the society and daily life. This will leading them to perceive

mathematics as a tool for thought and for facing challenging situations. The

students will become agent of social change. The use of technological resources

is central in the composition of teacher’s pedagogical practices and another critical
issue is how to do the mediation of the chosen resources.

According to Ma (1999), in order to improve the mathematical knowledge of the

students, one should begin by improving the teachers’ own knowledge of the

subject, that is, elementary school mathematics. Such knowledge regards the

teachers’ initial education and continuing education programs. The act of thinking

would help update their practice in the classroom, both in planning and in relation to

their peers.

Therefore, we started thinking about the matter: What is the current state of
integration of technological resources regarding teaching and learning geometry
in elementary schools? With this question in mind we start to research what really

happens in two class related to the use of technological resources by primary

teachers.

We regard as technological resources, every material that a teacher may choose

to use in class in order to help students mobilize their existing knowledge as well as

to assimilate and integrate new knowledge. We consider as technological resources,

materials like chalk, chalkboard, ruler etc. We follow Moran (2007) which defines

technological resources as the means, the support and the tools that teachers use in

the classroom. We agree that writing with chalk on the blackboard is a communi-

cation technology and good organization makes writing and learning easier. They

also mention that the teacher´s way of looking, making gestures and speaking, may

generate good or bad results in the action, knowledge acquisition. So, they may help

develop the students’ learning process.

In this chapter, mediation of technological resources in geometry classes will be

analyzed from the action of two primary teachers in the same school, notably the

5th grade. This text is an enlarged version of Carvalho et al. (2013).

The Research

The investigation that supports this chapter aimed at investigating the pedagogical

practice of teaching in elementary schools, particularly at the use of technological

resources and the mediation of these resources. We have observed two different

teacher’s actions and the mediation of available resources in order to help students’
participation and the development of the classes. The focus of this chapter is to

understand teaching actions and the use of technological resources by observing

these two teachers in geometry classes, and to analyze results from this “in loco”

survey.
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The research theoretical basis stems from the following: Zeichner’s (1993)

reflective teacher and Serrazina’s (1998) view on teachers and their relationship

with curricular development. Serrazina considers reflection as an important com-

ponent of the teachers’ professional development, since it will enable them to

enhance their theoretical and methodological knowledge, thus constantly deepen-

ing their reflections.

Zeichner (1993) also shares the idea of reflection for professional development.

He believes that teachers act according to their personal theories, so in order to

understand their teaching practices, it is necessary to analyze the situation in which

teachers do their work. The author goes on to say that when the teacher does not

reflect on his or her teaching practices, they are doomed to follow the same

procedure class after class, while applying a curriculum they have not chosen.

The research methodology was qualitative grounded in the principles of the

Morin’s (2006) complexity theory, assumed by Moraes and Valente (2008) as a

way to do qualitative research.

For them search, from the perspective of complexity, is to assume the interpre-

tative character and epistemological dimension that asserts that knowledge is not

copying of reality, but rather a result of the action that considers the individual

cognitive structures. Also within this classification, consider the methodological

dimension of research the predominance of qualitative methods, whereas the

dialogue with the quantitative methods, if there are theoretical and methodological

compatibility for both. The strategy is the action method open adaptive and

evolutionary knowledge, contemplating not only the process but the product as

well. The search procedures adopted in this respect are flexible and revisable in

every stage of the investigation. Uncertainty is always present in the pursuit of

scientific truth. This means that Moraes and Valente (2008), claim that the entire

“objectivity is always an objectivity in parentheses, since the observer, whether

consciously or not, is always included in the system that distinguishes” (p. 8),

participating in the reality to be investigated. These authors still summarize it by

saying that the researcher faces:

a relational, indeterminate, non-linear, diffuse and unpredictable dynamic reality. This

multidimensional reality is possessed of a complex nature, consisting of different levels:

a macro physical, a microphysical and a virtual one. Thus, the complexity pervades the

different levels of reality. It is also a constitutive factor of life that allows this common

tessitura and the existence of different life nourishing streams of life and are nurturers of

their relational, interdependent and self-organizing processes. (p. 21)

The validity is directly linked to the accuracy of the results requiring the

rationale of the essential concepts, the definition of data to be collected, the

processes and tools used for the collection of such data, organization, analysis

and interpretation of data, the tools used and how the data are analyzed. In this

sense, it is worth emphasizing the non-neutrality of the observer researcher, since

he is the filter and the reading of reality that is personal and not neutral.

The investigation was done in two phases: documentation and field research in

an elementary public school in S~ao Paulo city by observing two 5th grade teachers

in action in 16 lessons with children aged between 9 and 10 and some of the school
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meetings. We collected the data, in the phase of field research, by a questionnaire,

semi-structured interviews with the two teachers, classrooms audio records, video,

images, and a researcher field book.

The analysis was carried out from three main points: mathematical content, the

practice and the technology used during the classes. The categories analyzed were

the class routines, the interactions with the students, how the math contents were

developed and the technology used (see Fig. 1). The observation protocol based on

Hernández et al. (2000) guided us to compose those categories. We selected the

following analysis aspects: lesson procedures (class routine, surface organization

and work habits), interactions with the students (the role of the teacher, the role of

the students, student-student interaction), how the students behave concerning the

task, clear significance and evaluation criteria.

The Research Subject

The characterization of the research subjects Teacher Piera and Teacher Ana

(fictitious names) was done from the semi-structured interview and from the initial

questionnaire:

• Teacher Piera is a pedagogue and a specialist in educational psychology. She has

been teaching primary school for 34 years and prefers to teach fifth graders. She

considers the use of technological resources essential to the education process,

she is interested in learning using technological resources, but she has not used

educational software aimed at teaching math in her classes. For her the techno-

logical resources that can foster learning are ludic activities, games, dynamic,

calculators, concrete material, music, drama, etc.

1. Lesson procedures (classroom learning environment, what is said, how it is said).
Order and work habits revealed.

2. Interactions with the students
The role of an elementary school teacher 

� Proposing questions, showing models to be followed, negotiating/imposing 
criteria, supervising activities, providing information/resources, clearing doubts.

The role of elementary school students
� Proposing questions, being mere executers/spectators, participating in decisions, 
proposing initiatives, managing their own activities and others.
� Student-student interaction in the classroom regarding the job at hand. 

3. Development form of the mathematical content
The teacher explains significance criteria 

� For the proposed learning tasks
� For the proposed situation

Evaluation carried out at the observed situation
4. References regarding innovation – technology resources

Fig. 1 Class observation protocol (Source: Private collection, Adapted from Hernandez et al.

2000)
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• Teacher Ana is a pedagogue and has been teaching primary school for 17 years.

She also prefers to work with fifth graders. She does not use mathematical

software in her classes, but uses other digital features such as calculators and

DVDs besides the non-digital resources as books, golden bead material, solid

geometric shapes, etc.

We observe that both teachers are experienced in teaching and they have good

academic background. Both prefers to teach fifth grade students because they affirm

it is easier to control the classes, and that the students are more obedient and

complying. Both teachers declared that they used different technological resources

to teach mathematics, but they did not use software to teach geometry at the time of

the survey.

Mediation of Technological Resources: The Episodes

In this chapter, we chose to discuss episodes of classroom situations, in which both

teachers approached the same geometry content. In them we were able to observe

the actions of both observed teachers and here we focused the discussion on

different mediations and classroom management styles.

The following reported episodes are related to Teacher Piera’s fourth observed

math lesson and to teacher’s third observed math lesson.

The observed classes established the same objectives as the competences and

abilities to be developed by the students and indicated the use of the same techno-

logical resources. (See Fig. 2)

We started discussing the episode of Teacher Piera’s mediation, related to the

situation she developed with her students, described below.

Piera’s Mediation to Explore Prisms

The lesson focusing on prisms started with the teacher asking the students to open

the Student’s book to page p. 28 (see Fig. 3).

Content: Space and form: prisms
Skills: Recognizing similarities and differences between polyhedral (such as 
prisms, pyramids and others). Identify relationships between the number of 
elements (such as faces, vertices and edges of a polyhedron).
Resources: Student’s book (p. 28 and 29), chalk, blackboards, notebooks, 
pencils, erasers, scissors, cardboard, a set of prisms in wood or cardboard, scrap.

Fig. 2 Content, skills and resources (Source: Carvalho, p. 93)
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It took a few minutes for students to calm down in their seats. The teacher asked

the students to listen while she read the student’s book.
Teacher Piera read:

– Page 28, prisms and their denominations, you noticed . . .

She interrupted her reading to remember what happened in the previous

lesson:

– Do you remember that in the last class we saw the boxes that Patricia, the little

girl built? So the first box she built, we built one too, didn’t we?

A student corrected her:

– Two boxes.

And the teacher objected vehemently:

– ONE!!! This lilac one, which she built. From the rectangular box she made

another, but we just built the lilac one. We put together a little box, okay? Now,

today we are going to study prisms.

Teacher Piera read the first sentence of the book and prompted the students,

stopping in the middle of a sentence:

– Prisms are geometric figures that have the faces _____???

And asked the students, in a more emphatic way:

– What are faces again, people?

Fig. 3 Student’s book (S~ao Paulo, 2010) (Source: Carvalho, p. 97)
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Some students answered:

– The sides.

– That’s it! Look, remember that we saw them? A prism is any geometric figure

that has rectangular faces, okay? It’s a rectangle, some are bigger, others are

smaller.

It is worth mentioning that the teacher meant the lateral faces although she did

not say that. She drew a triangular based prism, a pentagonal base and another of

hexagonal base on the blackboard (see Fig. 4).

She explained the concept then:

– We saw, the other day, what Patricia did; she built a little box that had a base. . .

So, she interrupted the explanation and asked:

– What is it, when you have three sides?

Some students said:

– A triangle.

– A triangle, right? A triangular base and sides of the box are ...

– Rectangular. Some students responded.

– We’ve seen a box like that, but before that, we saw that other one. When you

have five sides, what is that?

– A PENTAGON, the students said.

– Look at the base, the two bases are pentagons, because the faces are rectangular,

so they are thin.

And she continued:

– Well ... and then?

Fig. 4 Blackboard with

prisms (Source: Carvalho

2012, p. 95)
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Now she interrupted to comment with a student:

– You will know how to do all of this, and you will make beautiful boxes.

The teacher continued:

– Prisms are different; they are called according to the shape of their bases. For

example, this one is a triangular based prism, why?

Some students shouted the answer at the same time and the teacher replied:

– The bases, eh, there are three bases, so they are triangular. This one is a prism of

what type of base?

A student replied:

– A pentagon.

The teacher continued:

– Pentagonal because the base has 5 ...?

– SIIIIIDES! students groaned with boredom.

The teacher said:

– And when you have 5 sides, it is a...?

– Pentagooooon, again they groaned.

Teacher Piera started to talk with the students about the concept of the base of a

prism with three, four, five and six edges, which had been seen in the previous class.

She asked the students about these concepts, and the students responded in unison.

Then she wrote, under each picture drawn on the blackboard, the answers to be

copied by students in their book.

A student criticized the design of a prism the teacher had made on the black-

board, and she said to him:

– Igor, you know better than I do?

She continued:

– I ask you to come here to the blackboard and draw it for us.

And the student went to the board and nailed it. After he has finished drawing,

the teacher said that he was too bold to defy her.

We believe that, at this point, one possibility would be for the teacher to have

validated the student’s boldness pointing out that he had the courage to apply her

skills.

The teacher returned to the chalkboard to conceptualize the figures she had

drawn. Students responded to questions she asked. She used the same procedure to

explain the concept of triangular and pentagonal prisms as she did to explain the

hexagonal prism.
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So, she asked the students what was the concept of prism by saying:

– Why, again, do you call it Prism?

A student replied:

– Because the bases are rectangular.

And the teacher explained:

– The sides, the faces are rectangular, only the bases are the ones that form

different figures, the two bases, now the sides, the faces are rectangles.

It is worth mentioning that by saying “faces” the teacher is referring to the sides

and when she says “sides” she uses language that can cause confusion, but those

terms are familiar to the students once they have been used when studying two-

dimensional figures.

The teacher asked if everyone had already filled the answers in their books and

went on to explain the exercise number 2. She explained the exercise in Fig. 5, by

writing it on the blackboard.

Piera guided the students and drew on the blackboard showing how faces should

be placed on the paper or on the blackboard, in order to represent the 3-dimentional

figure (see Fig. 6).

In reality, the teacher used the cavalier perspective for the cube1. Geometric

concepts to develop the cavalier perspective are supposed to assist in visualizing

and in solving problems. However, it has not been possible to identify if she knows

rudiments of perspective and if she uses it consciously.

Teacher Piera said to the class:

– What we are doing here [on the board] are 3-dimensional drawings, isn’t it
“chic”?

Continuing the dialogue, the teacher asked the students to give examples of

rectangular boxes they knew. And they said:

– Box and loaf of bread.

1You can set the cavalier perspective as an oblique cylindrical projection on a plane parallel to one

of the main faces of the object. Most representations of geometric figures in the books are in

cavalier perspective. In cavalier perspective, there are the following properties: (1) figures and

segments parallel to the plane of projection (paper plane) are represented in true greatness;

congruent figures, situated in different planes, but parallel to the plane of the paper, have congruent

representations-this is contrary to the vision, but according to the reality of the objects; (2) per-

pendicular threads to the plane of the paper are represented by oblique segments (if adopted,

making angles of 30� to the bottom edge of the paper), and has reduced its length (if adopted, the

reduction of 50); (3) parallel to each other and straight segments are represented by straight

parallel segments and each other (it is a cylindrical projection); (4) keep the midpoints of the

segments and the centroid of figures; (5) as Convention, trace the lines that are visible to the

observer and trace the invisible lines. Fonte: http://www.apm.pt/apm/geometria/inoveg/egtext1.

html
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After this conversation, the students drew a cube on their student’s book (see

Fig. 7).

She continued showing a worksheet with the printed figure saying:

– Now we are going to try to make a cube. Don’t ruin your paper because we do

not have any more to spare. What we are going to do first is: paint the figure, then

after painting you’re going to cut on those outer black lines, after cutting it...,

– Hey, guys, if this is not done, it is impossible to form a solid.

After the guidelines given by the teacher, some students tried to reverse the

instructions, for example, first cutting before painting, which the teacher did not

allow. It was possible to notice that, at this time of the lesson, the students were

involved in the task. Although the students were sitting as if they were working in

pairs, each one had his or her own material (Fig. 8).

In Fig. 9 we can see worksheets being painted, cut and pasted by the students.

The teacher was talking informally around the classroom watching the students,

while they built the solids. She asked what prism was being built and all in unison

they responded that it was a cube.

While the students worked on the solid’s plan, Piera copied the constant table on
p. 29 of the student’s book in order to explain it later.

Fig. 6 Cube and

rectangular box on the

blackboard (Source

Carvalho 2012, p. 100)

Fig. 5 Student’s book – Personal answer (Source: S~ao Paulo 2010, p. 28)
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Teacher Piera picked up a cube she had made and, taking into account, one by

one of the items, which the table requested, she filled the number of sides, number

of bases, and total number of faces. The students participated responding orally

while they calculated their scores and added numbers in their own assembled cubes.

The students counted the items of the other figures in the book.

Then she read exercises 2 and 3 on p. 29 of the book and explained the concept of

vertex, “where any two lines meet”.

We emphasize in the Student’s book, that item 2 shown in the figure above,

proposes a discussion among the students about the information collected on item

1 table (see Fig. 10) and students should write the conclusion they have reached.

However, the teacher chose not to discuss that item. That is, it was not discussed

among the students nor did the teacher make any reference to it at the time. She told

the students to go straight to item 3.

So, the students answered item 3 based on the figure of a prism (see Fig. 11).

Item 3 proposes the following questions, concerning the figure on the left “How

many vertices are there in this prism?” and about the figure on the right “How many

edges are there?”

Fig. 8 2D planning of a

cube (Source: Carvalho

2012, p. 100)

Fig. 7 On the left, the

drawing of a cube made by a

student (Source: Carvalho

2012, p. 99)
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Fig. 9 Students working on painting, cutting and assembling the cube (Source: Carvalho 2012,

pp. 101–102)

Fig. 10 Table from the Student’s book copied on the blackboard (Source: S~ao Paulo 2010, p. 29)
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Teacher Piera went on drawing the prism on the blackboard and showing where

the vertices and the edges were, and suggested that the students touch them in order

to feel their forms with their hands. She asked them to show in their production,

where the side of the prism was. She asked where the base was, and answered it

herself: “they are the two edges.”

The teacher asked:

– Where’s the edge?

A student replied:

– It is this line here, showing it in the prism.

The teacher continued by explaining:

– And the vertex, which is the meeting point of the two lines. Every time two lines

meet, there is a line here and here is another one, this is a vertex. See how easy it

is to learn geometry?

After the explanations, she explored in exercise 3, the blue figure, for students to

fill out the answer (see Fig. 11).

We have analyzed that when conducting this activity, Teacher Piera’s mediation

strategy was to avoid the discussion and lead the students to finish the activity since

class time was running out. The teacher assigned the homework for the next day and

considered the class was over.

Figure 12 shows that the end of the class could have been considered a time of

evaluation of the dossier, which was not observed by the teacher.

Fig. 11 Exercises from the Student’s book, page 29 (Source: Carvalho 2012, p. 104)
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As soon as the bell rang to announce the end of the class, some students literally

ran to the blackboard and began to draw geometric figures, showing evidence of

their interest, which was not explored by the teacher; and making evident the need

for more discussions on the activities (see Fig. 12).

After the lesson, we talked to Teacher Piera and conducted the following

interview, about this lesson and the students’ development:

Researcher: Teacher Piera, do you think your students get more involved in
this kind of activity?

Teacher Piera: Yes, we get a little crazy, but they participate and easily
understand, you see? Now I am thinking that the school should
also provide some geometric solids, to show to the students, some
bigger ones, so that they could handle and touch.

Researcher: Do you teachers bring the solids?
Teacher Piera: Yes, the school does not have them, but I think it’s a question of

asking, because when we ask, they buy them, that is when they
have the money, but they buy them. For the next budget, if I
remember correctly we have asked. The school used to have
several solids, they were kept in a bag, in class students formed
groups and each student could have and handle at least one
geometric solid of each type.

From Teacher Piera’s answers, we can interpret that she considers the type of

activity developed in this class as appropriate to promote more active participation

on part of the students and, also, to foster learning. However she analyzes that such

an activity is more difficult to mediate (“we get a little crazy”), since students are

working in groups with more autonomy. That hinders the focus of discussions. In

addition, we observed that the teacher declared the lack of school’s necessary

technological resources, which hinders the development of the activity in class.

However, she assumes that this may be due to a failure of the school’s own teachers,
who do not request such resources at a time when the school has funds to purchase

school supplies. This highlights the need for more coordination between teachers

Fig. 12 Students drawing prisms on the blackboard after class (Source: Carvalho 2012, p. 105)
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and pedagogical coordinator, in order to provide the technological resources that

will be used in class.

Also from her answers, we can observe that, in spite of years of practice, the

teacher doesn’t feel safe and cannot deal very well with situations in which students
bring their previous knowledge. As she said to herself, that kind of lesson she gave

gets students involved, but drives her a little crazy and she blames the entity for not

providing materials that will help the class to be more dynamic. She made it clear

that she prefers to conduct the classes according to the school’s established

curriculum.

We have noticed that the teacher’s role was to drive students’ development of

concepts and rationale for which answers were given. Apparently the students

managed their own activity, because the teacher was not always available to

check all their tasks in all their notebooks. We have highlighted the action of

some students of running to the blackboard when the lesson ended. They felt at

ease to show each other their ability to make drawings of prisms.

We can validate what Nacarato (2011) calls the questioning process, which is a

tool that aids the formation of autonomous individuals, who will act critically and

reflectively, with competence to propose changes when necessary, i.e. have the

ability to change the environment in which they live.

The established skills in this class have been developed, with emphasis on

materials such as chalks, blackboards, notebooks, pencils and erasers. At the end

of the class, the students used scissors, bond paper with 2D geometric shapes.

Ana’s Mediation to Explore Prisms

Ana’s lesson was the third observed lesson in the research. She began by asking

students to open the Students’ book top. 25, and worked the content of operations

involving natural numbers, additive field, multiplicative field and situations involv-

ing composition.

In the second part of the lesson the content of space and form was developed –

polyhedral – prisms.

The teacher read the textbook then went on to work the content of p. 26 and 27 as

shown in Fig. 13.

In the Student’s book there is space for students to create their reply. Teacher

went on to discuss p. 26 and, after reading the statement, she asked the students:

– What is your idea of three-dimensional [things]?

A student answered:

– It’s the third dimension.

The teacher repeated her question:

– And what does it mean? Have you ever heard about a 3D movie? Have you seen

it? So, what is 3D?
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Another student tried to answer with a question:

– Is it the three-dimensional?

The teacher asked:

– And what is ‘three-dimensional’?

A third student answered:

– Does it have to do with 3D glasses?

Teacher said:

– It has 3 what? – Three dimensions, three measurements.

The intention of the lesson was to help develop the skill of recognizing similar-

ities and differences among polyhedrons, such as prisms, pyramids and others. To

build the concept of 3D – three dimensions, teacher brought back the concept of

2D – two dimensions, by drawing and explaining how to represent the third

dimension like Fig. 14.

Next, the teacher invited the students to look up the definition of those concepts in

the dictionary and then, she drew a cube on the blackboard saying that it had three

measurements: height, width and depth. She went on to ask the students to count the

sides while she showed them on the blackboard. She explained to the students that

they were seeing the representation of the cube on the blackboard in two dimensions.

Fig. 13 Student’s book (Source: S~ao Paulo 2010, pp. 26–27)
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She reinforced the idea of the difference between a two-dimensional and a three-

dimensional figure, pointing out that the first had two measurements and the latter,

three, in her own words. Ana related ‘two’ to “bi” (Greek radical for ‘twice’), as in
‘twice champions’ and “tri” (Greek radical for ‘three times’) to ‘three times’ as in
‘three times champion’.

Teacher explained that any side of an object that is drawn in three-dimensional

shape can be seen. With the drawing of the cube she had made she said, “this figure

has three dimensions: length, width and height.” She asked the students to tell her

which sides they were, and at the same time she showed them on the blackboard.

She explained that it is possible to see only the height and the length and then drew a

square on the board, while saying:

– I drew a die. How many dimensions are there?

Some students answered in unison:

– Threeeeeeeee!!!!

Teacher Ana asked where the three dimensions were and explained that what

they saw on the blackboard was just a representation of two dimensions. She

demonstrated that if represented by a drawing, which she called width, now

completed a three-dimensional figure.

Then she related this explanation to activities done in previous lessons, in which

two-dimensional figures were studied, in this case, polygons such as Pentagon,

Hexagon, among others.

The teacher finished off with a drawing on the board saying:

– You can see that all figures have three measurements; all of them have height,

width and depth. In each of them, there are different three-dimensional geomet-

ric shapes. The different two-dimensional geometric shape measurements are

height and width. If you look at them in front view, they have two dimensions

and when looking sideways, they have three dimensions (sic).

Fig. 14 Tridimensional

figure represented in 2D

(Source: Private collection)
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Teacher Ana read the written explanation on p. 26 and asked the students to do

the exercises on that page and the following one after reading the statement aloud

for them. She demanded that they “work in silence” and waited for a few minutes.

At this point, a student interrupted the teacher, announcing that he had already

done the exercise and showed it to her. She said vehemently:

– Wait ... you are not supposed to do it now. If you did, you keep your mouth shut

and let the others hear the explanation!

A student asked for an explanation about the third exercise on p. 27, in which a

design of a geometric figure similar to what was seen during class was proposed.

When replying, teacher picked up the shoebox (Fig. 15) and asked students to

imagine another way of drawing a rectangular box. While students worked, the

teacher walked around their desks, watching the results.

After the end of the period given for students to solve the exercises, she corrected

the exercises on page 26 on the blackboard, with oral participation of the students.

Teacher orally discussed what kinds of polyhedral there are and asked students if

any of them would know now how to define what is a three-dimensional figure.

The students responded in a beat:

– An object that has height, width and length.

Then teacher drew a checkered cube on the blackboard and asked the students to

identify its dimensions. She explored, always orally, the figures from the same page

of the book, then she directed the students to work individually and do exercise 1 on

that page and also two other exercises on the next page, concerning polyhedral.

On the blackboard, she provided the answers to (a), (b), (c), of exercise 1 p. 26,

with oral participation of students and their imagination, once they used the figures

that are in the book. Because of that, some of the faces of the figures represented

could not be seen and, sometimes, the children identified incorrect dimensions. At

the end, she announced that on the following week, the students would crop and

make their own solids, which actually happened, as you can see in Figs. 18 and 19.

She resumed the exercise correction on p. 27 and read the instructions on item

2. She proposed that the students do the exercise, whose response should be

Fig. 15 An example:

shoebox (Source: Carvalho

2012, p. 145)
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personal, but teacher herself immediately showed on the blackboard how to make

the drawing and drew the suggested box on the board.

She declared that she was not a designer, so they should have no expectation of a

good drawing and went on from desk to desk to check if students had copied the

rectangular box or the cube.

Then she handed flyers with multiplication calculation exercises for homework.

She showed how these calculations were to be made, giving as an example, one of

items of the flyer on the blackboard (Fig. 16).

In order to analyze the categories that showed up in this class were the ecology of

the room that remained the same from the previous class, meaning, students’ desks
were arranged in rows. In her performing role as a teacher, she kept the students’
attention focused on her that is, she led their reasoning, suggesting that they

imagine other forms of solid, and asked them not to say out loud what they’ve
imagined or thought. Actually, class management has been routinely like this: the

teacher tries to work with the whole class with a few highlights of interventions

from individual students.

As for the technological resources, the teacher made the dictionary available for

students to look up the definition of three-dimensional shapes. It was a positive

action, because she was able to show the importance of the use of such a resource.

In the fourth period observed, she worked the contents of transactions involving

natural numbers – multiplicity field. Space and shape-polyhedral-geometric figures,

were developed in the second part of the class with the following report. She

Fig. 16 Student’s book (Source: S~ao Paulo 2010, p. 45)
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addressed the concept of prism again and its different faces, the concept of edge and

vertex, studied in the previous lesson, to resolve the item 4 of p. 45.

The proposal of item 4: fill the table with the number of edges, faces and vertex

of each geometric shape: teacher drew the prisms of that exercise on the blackboard

and went on, along with the students, filling in the table, they in their book and she

on the blackboard.

She moved on to correcting item 5 on p. 46-multiplication by two-digit numbers.

She put the math problem on the board and did the calculation with the students.

She proceeded in the same way to check items 6 and 7 of the same page. In order to

resolve item 6 she justified for students that they were not very familiar with

division calculations yet, but those were going to start showing up more frequently,

so she would teach them little by little how to proceed.

Following that, some examples of geometric figures were seen in a video that is

part of the school’s support material. The students were able to identify them by

associating them to some buildings in the city of S~ao Paulo (Fig. 17).

After showing the video, teacher explored the content of p. 48 and 49, showing

the figures with the marked buildings forming prisms. She identified FIESP

(SP) building is not a pyramid as it is commonly called, because the side faces

are quadrilaterals and not triangles.

After that, the students did the exercises in their Student’s book (see Fig. 18).

After showing the video the teacher suggested that the students study for the

June test and for that they should be identifying all geometric shapes that are part of

everyday life.

After the class we talked to the teacher about the use of the computer lab. This

dialogue can be read below:

Researcher: Teacher, what is the sequence of these planned activities?
Teacher Ana: With these activities, we’re working the concept of three

dimensions, next lesson I will give the measurement of the edges,
then I can ask the students how to calculate the perimeter of a face,
and also the area. In each class I will teach them something new.

Researcher: May I ask something about the computer lab? I know that there are
specific classes for the students in the computer lab with an IT
(Information Technology) teacher. And what about the other

Fig. 17 Video related to

geometric figures of the

buildings of S~ao Paulo city

(Source: Carvalho 2012,

p. 149)
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teachers? Is there some kind of incentive from the principal or the
pedagogical coordinator so that teachers can, use digital
technology to teach mathematics or science for example?

Teacher Ana: Yes, there is. I’m currently developing a project with my students
in Portuguese Language about water and I want to let them search
the internet after they finish the activity proposal for the IT teacher
in the lab class.

Researcher: Then is it possible to develop classes in a computer lab?
Teacher Ana: Yes, but last year the IT teacher complained that she couldn’t let

everyone go online to a specific website at the same time, because
that was overloading the system, and it caused it to get too slow.
There are assistants who help the IT teacher and I think they could
give a hand to the students who finish the lab activity, so that they
can do some kind of inquiry for me.

Researcher: Oh, Yes!
Teacher Ana: Tomorrow, when I get home, I’m going to prepare this lesson.

According to the principal, we, can use the computer lab, however
when we use it, we are responsible for the equipment. So we prefer
to be in the computer lab with the IT teacher, because in reality the
work should be done together, right? So, I know there are barriers
that we will face in the course. It’s hard because there is a part of
the book that asks for technological resources and we have to have
this feature available at school. I’m going to talk to the
pedagogical coordinator and ask for help. Maybe if the
assistants could give me some support in the laboratory, we
could effectively with the students.

Researcher: Oh, I see!
Teacher Ana: If the students do something wrong in the computer lab, I will

justify to the Director that the equipment is there to be used by the
students. My fear is that a student may make some stupid mistake
and then we are held responsible for it, right?

Fig. 18 Exercises

corresponding to the video

assisted by student (Source:

Carvalho 2012, p. 150)
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We emphasize that neither Teacher Piera, nor Teacher Ana do any work in the

computer lab. The time that students are given for this practice is guided by the IT

teacher advisor. Either way, teachers could request the lab in other schedules, but

they don’t for the reasons explained above.

The analysis of the data in teacher’s class departing from the defined categories

reveals the usual organization routine and habits, namely desks arranged in rows as

in all other classes observed. The students’ action development was focused on

teacher’s action, that is, students performed the task proposal when she so guided.

TV and video were used as technological resources in class. After watching

them, the students did the corresponding exercises in Students book, managing their

own tasks.

In her role as a teacher, Teacher offered information and resource models to

suggest that the students investigate other buildings around town; she related it to

the content of a similar situation in the previous lesson, clarified and explained a

content sense concepts criteria studied in this class. The evaluation happened

through the questions and answers during class.

On the fifth class each student received a sheet on which a planned figure was

printed. The teacher distributed among the students several models of Polyhedra

(cubes, two types of pyramids, prisms of triangular and hexagonal base), each

planned on a page. Students were told to paint the sides of the figure, and cut

them, then paste the tabs to assemble and complete the polyhedron.

After assembling solids teacher kept all the productions in the classroom cabinet,

as evidenced by the photo in Fig. 19.

At the end of this class, teacher did not make any comments on operation of

solids. She did not wrap up the subject, either. Probably because there was no time

for it. However, considering the categories established for analysis, it was found

that the routine in this class was different from previous ones. Class proceeded

dynamically, the interaction teacher/students and students/students was one of

Fig. 19 Teacher and students during explanation of exercise (Source: Private collection)

52 N.M. Lobo da Costa et al.



sharing during task execution proposal. The students were able to participate in

making decisions; they initiated and ran the activity itself. Various technological

resources were used, and none of them was innovative or digital. There was no

formal assessment of the established competences (Fig. 20).

Conclusion

Analyzing the episode observed, i.e. the lesson in Piera’s class and looking into the
categories for analysis, we can say that class management of the school class was

made to centralize the students’ attention on the figure of the teacher. Teacher ruled
the class, seeking dialogue with the students and getting them to understand the

content, making use of questions and answers. The order and work habits were the

routine, which led the students to have a passive role since they merely copied the

blackboard and accompanied explanations.

Analyzing the mediation of technological resources in the classroom done by

Teacher Piera we identify her difficulty in bringing students to manifest or expose

their knowledge and show their doubts, unless it was done at her command. The

students should only respond if their teacher asked a question, that is, during all her

time in class. We infer that this may be a reflection of her fear of losing control of

the class and of dispersing the students’ attention. Another question that may have

influenced this attitude was the need to develop the curriculum planned for that

school year due to time, which she considered scarce.

Considering the way in which technological resources were used in Teacher

Piera’s class, we commented to her, that she should lead the class so that the

students could freely explore the solids. However, that would require rearranging

class time, and dropping the established routine, which could cause her to lose

control of the class. We observed in the classroom, where the technological

resources were offered to teach polyhedra, the exploitation of solids by the students

was controlled by the teacher, taking place under her command.

However, analysis of mediation showed that in Teacher’s Ana class activities

happened with participation of students, who were encouraged to express their

Fig. 20 Solid built and stored in the classroom cabinet and a student showing your prism (Source:

Private collection)
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ideas, explaining what they knew about the subject matter and could devote joyfully

to the painting activity, cutting, gluing and assembling solids. Though, Teacher Ana

also sought to centralize and direct the discussions and keep the students’ attention
under her control at times. Teacher Ana deals better than Teacher Piera with the

time for class issue and considers it enough to fulfill the curriculum. However,

manipulation and collective discussion on the geometric characteristics of the

polyhedra could not be exploited by the Teacher Ana because the class time ran out.

We realize that using the school laboratory seemed difficult for both teachers,

because there weren’t monitors or somebody to support them. This situation

discouraged them from going to the lab with only the students. Teacher Ana

could use videos in the classroom as a technological resource and Piera couldn’t.
We observed that Teacher Piera did not feel confident using these features, since

she would have to rearrange her lesson plan, which would require more time and

she was afraid of losing control of the class.

We emphasize that, for teachers to better manage their time, according Serrazina

and Oliveira (2005), they must be responsible for the activities they will propose to

their students, i.e. they must take ownership of the curriculum and believe in the

activities they will propose. Activities imposed by the pedagogical teams or by the

central organs of Education are not always well received by teachers. In both

classes, we could observe a verbatim reproduction of what is stated in the Students’
book, in order to meet the expected curriculum and official statements to the State

of S~ao Paulo.

We highlight that logically our intention was not to compare the mediations,

especially since they are also linked to personal characteristics of the teachers.

However, from the analysis of the mediation of technological resources that

teachers used, we can conclude that features, such as the reality of the classroom,

students’ interest, the number of students per class, the previous knowledge gap

among students, the need for compliance with the prescribed curriculum and the

available time will interfere in mediation.
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Task Design in a Paper and Pencil
and Technological Environment to Promote
Inclusive Learning: An Example
with Polygonal Numbers

Fernando Hitt, Mireille Saboya, and Carlos Cortés

Abstract This paper discusses mathematical task design in a collaborative envi-

ronment (the ACODESA teaching method), where activities with both paper and

pencil and technology play a central role in learning mathematics. The use of

problem situations under a sociocultural framework in the mathematics classroom

requires careful mathematical task design to develop mathematical abilities in the

classroom, promote diversified thinking, and achieve balance between pencil and

paper and technological activities within an activity theory framework. While the

task design approach examined in this paper is general, it is exemplified through

mathematics teaching tasks appropriate for secondary school entry level.

Keywords Task design • Paper and pencil • Technology • ACODESA • Socio-

cognitive conflict

Introduction

The literature on mathematics education regarding problem solving is evolving. As

mentioned in chapter “Integrating arithmetic and algebra in a collaborative learning

and computational environment using ACODESA”, Brownell (1942) makes dis-

tinctions among the concepts of exercise, problem and puzzle, thus focusing on

issues related to primary school level. This led to a new trend linked to the solving

of arithmetic word problems and gave birth to, among others, the current problem

solving approach. Thus, a new paradigm linked to problem solving emerged, where

the distinction between exercise and problem was, and is, preponderant. However,
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this distinction is not so simple, in that, depending on the problem, either conver-

gent thinking (using closed type problems) or divergent thinking (problems with

multiple solutions or open problems) could be generated. The latter approach can be

related to the Theory of Didactic Situations (TDS) (Brousseau 1997) and even the

emergence of the notion of the epistemological obstacle (Brousseau 1983). The

design of mathematical tasks under this paradigm took a unique approach. How to

detect an epistemological obstacle in pupils’ activity? How to encourage pupils to

overcome a certain kind of epistemological obstacle? What kind of activity is

needed to promote the overcoming of such an obstacle?

Gradually, design problems became more and more important in research on

mathematics education. For example, in his notion of conceptual field, Vergnaud

(1990) notes that a concept is developed through a set of problems, a set of

operators, and a system of signs. Thus, the type of problems that are proposed in

the classroom will determine to some extent the mathematical concept pupils are

constructing. In the mid 1980s (as seen in Mason et al. 1982; Schoenfeld 1985) the

trend for problem solving took on great force, with, for example, research on

problem solving (see Kilpatrick 1985) generating such curriculums as Standards
in the USA (NCTM 2000). According to Kilpatrik (ibid.), “A problem is generally

defined as a situation in which a goal is to be attained and a direct route to the goal is

blocked” (p. 2).

A different approach to the foregoing is promoted by the Freudenthal School,

which promoted the resolution of problems in context, where, under this approach,

the study of mathematical modelling process is essential in a strand known as

“Realistic mathematics.” Gravemeijer and Doorman (1999) describe the character-

istics of the current Freudenthal School. Realistic mathematics is likely to have

strongly influenced the notion of problem situation, in which the solution is not

necessarily unique. Indeed, realistic mathematics promoted other kinds of curricula

linked more closely to the notion of problem situation. The ensuing discussion leads

to the question as to whether an exercise, a problem and a problem situation are.

Exercise, Problem or Problem Situation

Advances in mathematics education brought about the need to carefully identify the

definition of an exercise, a problem or problem situation. A definition depends on

the theoretical framework that has been selected. Given the interest here in defini-

tions linked to mathematics learning environments when using both paper and

pencil and technology, this paper seeks to associate these definitions with the

notions of non-institutional and institutional representation in order to then link

this to Leontiev (1978) and Engestr€om’s (1999) activity theory.

Exercise If reading a mathematical statement immediately suggests a procedure to

follow, it can be said that the task is an exercise.
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Problem If reading a mathematical statement does not induce the reader to imme-

diately think of a procedure to follow, and requires them to transform the statement

and/or use institutional representations and/or produce non-institutional represen-

tations to understand and make progress in the proposed task, it can be said that it is

a problem.

Problem Situation If the reading of a mathematical statement as in the case of a

problem, neither provides a procedure to follow, but in this case, a model must be

built (possibly not unique), needed to interpret the phenomenon linked to the

statement, then it can be said that this is a problem situation.

This distinction enables the identification of the differences among mathemat-

ical tasks that should be considered when designing an activity for the mathematics

classroom. The followers of problem solving were more interested in the resolution

of problems, as defined above. A different perspective was provided by Lesh and

Doerr (2003), Blum et al. (2007), and Lesh and Zawojewski (2007), among others,

which dealt with problem solving and modelling, and presented an approached to

realistic mathematics and what is meant by the term problem situation.

Indeed, from the perspective of this study, the three types of tasks mentioned

above are required for the organisation of mathematical activities in the classroom.

The difficulty arises in the organisation of those types of tasks that is needed in

order to follow a fixed syllabus. A possible way to overcome this problem may be

for the teacher to use the proposition outlined in Simon (1995) and Simon and Tzur

(2004) as related to a Hypothetical Trajectory of Learning, which is discussed in the

subsequent sections.

One of the first problems to overcome is the fact that the expert (in this case the

mathematics teacher) has already constructed different types of thinking (arith-

metic, algebraic, geometric) that allow her/him to transform their representations

effectively. The beginner (the pupil) has not necessarily built these official repre-

sentations, and, even if they have, the difficulty arises when they are required to

handle them efficiently (as a competence). Generally, learning theories based on the

concept of representation focus on the efficient use of institutional representations

in the construction of knowledge (as is the case, for example, in Duval’s 1995 work
which focuses on the notion of register). In the context of our approach, non-

institutional and institutional representations are of great importance to the con-

struction of knowledge; also a collaborative learning process is of great significance

in a socio-cultural environment, to the refinement of the evolution of the

non-institutional representations in which they are promoted to the level of formal

representation.

Institutional Representation Representation found in textbooks, websites, software

use, or those used by mathematics teachers.

Non-institutional Representation Representation that emerges spontaneously dur-

ing the resolution of a non-routine mathematical task as a result of a functional

representation that has been generated by the action of understanding or solving

a task.
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Functional and Spontaneous Representation A functional representation is a men-

tal representation linked to an activity. From reading the statement of the task, a

need and purpose emerge, which, in terms of Leontiev (1978), mediate the activity

undertaken by the individual as a whole. A mental representation is constructed and

linked to other concepts, providing the spontaneous representation as a product.

The manipulation of objects or artefacts mediates the generation of mental pro-

cesses which become increasingly complex, as do their external productions.

Leontiev’s work (1978) on activity theory is immersed in a sociocultural per-

spective on learning. Leontiev was interested in the subject and object relationship,

while it is in the work of Engestr€om (1999) where the variable community was

explained in the model (see the next section related to ACODESA1).

Socio-cognitive Conflict In the past, many researchers, such as Piaget, Inhelder,

Brunner and others, were interested in the notion of cognitive conflict. In Bruner’s
theoretical framework (1966), cognitive conflict occurred when the individual was

aware of a mismatch between the enactive, iconic or symbolic representation

related to the activity. This study takes Varela et al. (1991) definition of enactive:

Cognition is not the representation of a pregiven world by a pregiven mind but is rather the

enactment of a world and a mind on the basis of a history of the variety of actions that a

being in the world performs (p. 9)

In the context of this study, the term iconic could refer to a drawing related to the

situation, or a symbol as an institutional representation, with the teacher (expert)

easily noticing mismatches between different modes of representation. However,

this study is interested in the processes of communication pupils use to point out a

mismatch between the spontaneous representations they produce, thus creating a

socio-cognitive conflict.

Method of Teaching ACODESA (Collaborative Learning,
Scientific-Debate, Self-Reflection)

Looking within a sociocultural framework, in order to organise mathematical work

in the classroom and create a form of socio-mathematical norms, it is important to

follow a specific educational model. This study is interested in individual work

immersed in a collaborative learning structure for the consolidation of knowledge.

Our experience has shown us that these aims are not easy to achieve in the

mathematics classroom. Thus, the authors designed a teaching model known as

ACODESA which is related to an approach involving collaborative learning,

scientific debate and self-reflection (see Hitt 2007, 2013; Hitt and Gonzalez-Martin

1Acronym which comes from the French abbreviation of Apprentissage collaboratif, Débat
scientifique, Autoréflexion.
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2015) and which includes several steps to be implemented in the mathematics

classroom when solving a mathematical task. It is described below in more depth:

1. Individual work. Production of spontaneous non-necessary institutional repre-

sentations related to the task, with prediction processes encouraged.

The design of mathematics classroom situations should follow a structured plan

for the use of both paper and pencil and technology. The activity starts when

reading the statement of the situation. This mental activity, as mediated by paper

and pencil, produces the spontaneous representations linked to the activity of

understanding and searching for a goal, even if this is not a well-defined or easy

process. Reference to the use of paper and pencil is made in a broad sense2. Thus,

the use of paper and pencil is intended to be a mediator between pupils’ mental

representations (i.e. functional representations) as linked to the situation and the

activity of understanding, and thus promotes the production of spontaneous repre-

sentations linked to actions that are not necessarily institutional (Hitt 2013; Hitt and

Gonzalez-Martin 2015). This first stage provides the pupil with preliminary ideas

that she/he discusses with other members of her/his team. Following an approach

where activity and communication go hand in hand (activity theory) creates a link

between activities, motives, actions, objectives and operations in the context of

Leontiev’s work in this area. This stage and that described below are crucial to the

production of spontaneous representations and to the commencement of the process

of their evolution.

2. Teamwork on the same task. Process of prediction, argumentation and valida-

tion. Pupils refine their representations in response to their results.

Teamwork helps to refine both the initial ideas and the ability to follow a path

towards the resolution of the problem situation. The functional representations that

gave rise to spontaneous representations in the individual phase initiate a new

process of refinement, which takes into account both the manipulation of physical

objects and communication with others. This process is linked to argumentation

(persuasion in many cases), prediction and validation, and both testing and taking a

position. It is at this stage where cultural norms come into play directly, with

teamwork and organisation crucial for the distribution of partial tasks. The question

then arises as to how many people are to be allocated to each team. For example,

Sela and Zaslavsky (2007) show the difference between teams of two and four

people, stressing the fact that, in a two-person team, participation is more balanced,

while, with four people, there is an immediate tendency that one of them may take a

leadership role with the others becoming followers. As such, teams of two or three

people are suggested. It is necessary for the team members to determine who

2Touchscreens are used more and more in schools (see the chapter on this matter in Bairral et al.,

this volume). The paper and pencil component can be converted to the use of an electronic

notebook in the production of (not exclusively) institutional representations. Currently, there are

some electronic devices, such as notebooks, that can be connected to an iPad for simultaneous use

with other applications.
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manipulates physical objects (and how they are manipulated), who uses the com-

puter (e.g., see Hoyles 1988), who notes the progress of the team, and who comes

forward to present the achievements of the team for plenary discussion. In fact, it is

here that both activity theory and Engestr€om’s (1999) model are very important (see

Fig. 1). At this stage, the teacher’s role is to guide rather than provide their opinion

on how the teams performed.

3. Debate (could become scientific debate). This is related to a process of argu-

mentation and validation and the refinement of representations. According to

Legrand (2001), the teacher’s role is crucial at this stage for the promotion of

scientific debate. In general, if the design of the task is related to a problem

situation or an open problem, different results from the teams will be presented

for discussion. In general, teams will have a natural tendency to protect their

results, with the teacher required to regulate the discussion (socio-cultural

norms) and decrease the persuasion and argumentation that can lead to predic-

tion and validation. Again, spontaneous representations that have surely under-

gone a process of refinement first through working in small teams can be refined

in large group discussion.

4. Self-reflection (individual work – the reconstruction of what has been carried out
in the classroom).

Given that the literature has shown, in the classroom, consensus to be ephemeral

(Thompson 2002; Hitt and Gonzalez-Martin 2015; Hitt et al. 2015), this study

included a stage involving a reconstruction process activity. The teacher must

collect everything produced during the previous stage and provide a new copy of

the task. Karsenty (2003) demonstrates that after a certain period of time, adults

forget the mathematics they have learned. The question as to how to build stable

knowledge is one that led to this stage being implemented here and also to the

Fig. 1 ACODESA and the Engestr€om model as adapted to the aims of this study
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importance attached here to individual reconstruction. It is at this stage that the

notion of historicity has a strength action; where the pupil has been influenced by a

socio-cultural process of learning and is prone to a sociocultural construction of

knowledge. This stage also requires reconstruction related to achievements in terms

of individual work, teamwork and plenary discussion designed to strengthen

knowledge.

5. Process of institutionalisation. The teaching undertaken by the teacher takes the
pupils’ results into account and uses the official representations.

In a sociocultural knowledge construction process, where the pupil is an active

actor in that environment (activity theory), a mathematical concept is not produced

through a dogmatic presentation by the teacher. Institutionalisation occurs at the

end of those preliminary stages, where the teacher takes pupils’ productions into
account while refining the concept and, if necessary, providing both the institutional

position and its official representations.

ACODESA takes Engestr€om’s model into consideration in the organization of

pupils’ classroom activities by placing special attention on the artefacts they use.

Task Design

As seen in previous sections, task design is not a new feature in mathematics

education. For example, when conducting a teaching experiment, it is important

to build a hypothetical model to guide the researcher in the teaching process. More

precisely, as described above, both Simon (1995) and Simon and Tzur (2004)

proposed the Hypothetical Learning Trajectory (THA) method, which allows the

teacher to organise and design mathematical activities for use in the mathematics

classroom.

Interested in the learning of mathematics in a sociocultural environment and

given the technology involved, researchers in this study considered, for example,

the following elements, as described by Arcavi and Hadas (2000, pp. 25–27), as

being of fundamental importance to a design based on a Dynamic Geometrical

System (DGS):

1. Visualization. “Visualization generally refers to the ability to represent, trans-

form, generate, communicate, document, and reflect on visual information”.

2. Experimentation. Besides visualization, playing in dynamic environments

enables students to learn to experiment.

3. Surprise. It is unlikely that students will fruitfully direct their own experimen-

tation from the outset. Curriculum activities, such as problem situations, should

be designed in such a way that the kinds of questions students are asked can

make a significant contribution to the depth and intensity of a learning

experience.
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4. Feedback. Surprises of the kind described above arise from a disparity between

an explicit expectation of a certain action and the outcome of that action. The

feedback is provided by the environment itself, in that it reacts as requested.

5. Need for proof and proving. Dreyfus and Hadas (1996) discuss and exemplify

how one can capitalize on such student surprises in order to instil and nurture the

need for justification and proof.

An analysis of the above characteristics reveals that the DGS is an important

element. Under this view, Duval’s 2002 approach to Arcavi and Hadas’ mathemat-

ical visualisation process is very pertinent, since it relates to the discrimination of

visual variables on a register as possibly associated with corresponding elements on

another register.

The problem with these approaches is that spontaneous representations in the

resolution of problem situations are not fully considered in these contexts. These

spontaneous representations generally do not belong to a register. This study is

interested in the unofficial representations that pupils produce in a paper and pencil

environment (Hitt 2013; Hitt and Gonzalez-Martin 2015) and the evolution toward

institutional representations (e.g., those on a computer screen) through a process of

communication with others and the use of technology.

As the notion of learning with which this study is concerned is linked to

collaborative work, other perspectives must also be considered, such as those of

Prusak et al. (2013), who, with respect to the creation of tasks to promote produc-

tive argument, suggest the following:

1. The creation of collaborative situations,
2. The design of activities that trigger socio-cognitiveconflicts,
3. The provision of tools for checking hypotheses.

Indeed, for the perspective of this study, Arcavi and Hadas, as well as Duval and

Prusak et al., can be taken into account in both paper and pencil and technological

approaches (Hitt and Kieran 2009; Hitt et al. chapter “Integrating arithmetic and

algebra in a collaborative learning and computational environment using

ACODESA”) formulated using ACODESA.

In this context, visualisation refers to the ability to represent, transform, and find

significant visual variables that may be associated with other elements from another

separate representation through a process of communication with others. This thus

promotes an evolution where the mathematical activity in question is “seen” and

creates an improved approach to the resolution process.

Healy and Sutherland (1990), on one side, and both Hitt (1994) and Hitt et al.

(in this volume), on the other, illustrate how pupils or pre-service teachers “see” the

task of constructing a process for the generalisation of polygonal numbers differ-

ently. For example, both Hitt (1994) and Hitt et al. (chapter “Integrating arithmetic

and algebra in a collaborative learning and computational environment using

ACODESA”) found different approaches, such as that related to changing the

number of elements on the diagonal in order to obtain the next triangular number

(Fig. 2), or that focusing on the number of elements on the base or on one side of the
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triangular arrangement. Both Healy and Sutherland (Idem) and Hitt (1994) used a

triangular arrangement, specifically with an equilateral triangle, while this study

used an isosceles triangle rectangle. This arrangement generated the conjecture (see

chapter “Integrating arithmetic and algebra in a collaborative learning and compu

tational environment using ACODESA”) relating to calculating any triangular

number using the formula for calculating the area of a triangle (base * height/2).

Pupil conjecture thus created a socio-cognitive conflict, as pupils pointed out that

calculating T6 and T8 (triangular numbers 6 and 8) visually did not obtain the same

result.

The expert (the mathematics teacher) “sees” triangular numbers institutionally

in order to complete a rectangular array, as seen in Fig. 3. The visual triangular

number is duplicated and a transformation performed, thus obtaining a similar

arrangement that is able to show a rectangular arrangement (Fig. 3), thus revealing

the conclusion that:

Tn ¼ n nþ 1ð Þ
2

:

Pupils’ visual processes do not necessarily agree with the ways in which teachers
visualise. The teacher uses official representations that enable her/him to be effi-

cient in handling the institutional representations. They, as experts, are able to

articulate representations that have developed ways to “see” into the passage,

distinguish from one representation to another. Thus, the expert is able to

Fig. 2 Process of

visualising and articulating

visual information in a

numerical approach

Fig. 3 Transformation of

the triangular number to

find a general rule
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immediately identify the important visual variables (as described by Duval) to be

transformed and/or converted into another representation.

The question thus arises in terms of how to develop this expertise by our pupils.

The purpose of this study was to create socio-cultural norms in the mathematics

classroom through the design of activities that promote a learning process based on

the manipulation of physical objects, the production of representations, and the

processing of devices for the efficient use of such representations in order that

pupils are able to solve problems and problem situations. Furthermore, the aim was

to ensure that:

1. individually, the pupil begins, as a result of the preparatory work undertaken in

relation to the mathematical activity, to attack the same activity from a socio-

cultural perspective using teamwork.

2. by comparing their results with other pupils (in teams of two or three), the pupil

possibly creates socio-cognitive conflicts involving productive arguments, with

action and communication linked through objectives that they have to follow.

3. the plenary discussion furthers productive arguments, as well as anticipatory

processes, the promotion of reconciliation among representations, validation

processes, the production of counter-examples and the ability to check hypoth-

eses. Once again, action and communication go together.

4. self-reflection promotes the strengthening of knowledge in order to stabilize it,

with historicity (that which was undertaken collaboratively as an essential

element of the process of reconstruction) a main component of reconstruction.

5. the process of institutionalisation enables the review of that which has been

undertaken by pupils in order to promote the official representations and com-

munication that will further advance their mathematical knowledge.

Considering these characteristics, the design of the activities used in this study

begins with a presentation page (the front page). General pupil information is

obtained in order to identify their work on an individual basis, as well as their

results from the teamwork activity. It can be useful to include, on this page,

instructions for the use of different colour inks when working either individually

or with others in order to identify any development or evolution.

During the first stage, the mathematical task begins with the promotion of

diversified thinking and, therefore, requires an open problem or problem situation.

The statement outlining the activity will promote the production of functional

representations that will trigger the production of spontaneous representations.

This study proposes a block of five questions which allows pupils to individually

create their own strategies (for a full outline of the experiment, see chapter

“Integrating arithmetic and algebra in a collaborative learning and computational

environment using ACODESA”). The task design depends on the use of artifacts in

the construction of knowledge. For example, in Hitt and Gonzalez-Martin (ibid.),

pupils used a rope, flexible wire and a rule, as well as paper and pencil, when

attacking the mathematical task. Another example, as seen in Hitt and Kieran

(Idem), sees the first stage designed to generate a strategy for a paper and pencil

environment. This was then confronted with a second stage that featured the pupils’
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own algebraic productions as well as those provided by a CAS calculator, thus

requiring them to reconcile their own productions with those produced technolog-

ically, as well as requiring team discussion. A third stage is related to the promotion

of a specific conjecture and the need to convince others, with proof not taught at this

educational level.

This study aimed to explore this approach with pupils who are beginning

secondary school and, as such, are yet to be introduced to algebra, with the design

intended to promote the construction of the concept of a variable through a process

of collaborative learning under a sociocultural approach (see chapters “Integrating

arithmetic and algebra in a collaborative learning and computational environment

using ACODESA” and “Problems Promoting the Devolution of the Process of

Mathematisation: An Example in Number Theory and a Realistic Fiction”). In

fact, researchers in this study considered it necessary to construct an algebraic-

geometric-arithmetic thinking before developing an “exclusively” algebraic think-

ing detached from arithmetic itself. As such, the design of this experiment took into

account Healy and Sutherland’s (1990) work, who followed an Excel-based

approach to polygonal numbers as well as Hitt’s (1994) paper and pencil model

which also used an applet that exclusively generated the value of any polygonal

number. This experimentation also was implemented with a Mexican population in

order to generate a comparison with the type of strategies used by those pupils who

have already taken an algebra course (see chapter “Integrating arithmetic and

algebra in a collaborative learning and computational environment using

ACODESA” for details).

A first block was thus designed to promote visualisation, abstraction and gener-

alisation processes from a perspective that seeks to create diversified thinking (see

Fig. 4).

1) Look carefully at these numbers. What is the fifth triangular number? Make a 
representation. Explain how you proceeded. 

2) In your opinion, how are the triangular numbers constructed? What do you 
observe? 

3) What is the 11th triangular number? Explain how you find it. 
4) You have to write a SHORT email to a friend describing how to calculate the 

triangular number 83. Describe what you would write. YOU DO NOT HAVE 
TO DO THE CALCULATIONS! 

5) How do you calculate any triangular number (we still want a SHORT message 
here).

Fig. 4 First task design block for the generation of diversified thinking and spontaneous

representations
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It is expected that spontaneous representations and personal strategies make

their appearance during this first stage. Based on the same questions, it is expected

that pupils will work in teams before engaging in plenary discussion.

In the example considered here, teamwork is required in the second block of

questions. The aim is to promote in pupils the ability to generate the iteration

processes related to a spreadsheet environment (Excel or CAS), similar to that

obtained in Healy and Sutherland (1990).

As we can see in the two blocks of questions (see Fig. 5), the pupils generate

different types of strategies. It is intended that pupils acquire a broad vision of how

to address a problem situation and the various products linked to different strategies

in order to promote different kinds of representations.

A comparison was sought between the strategies used in Healy and Sutherland

(Excel and secondary school pupils) and Hitt (1994), which involved a group of

secondary and primary teachers using Excel, and another group of teachers using

paper and pencil and an applet. Generally, there are several kinds of generalisations

used to calculate a triangular number:

• trig. Δn ¼ na before þ position (Healy and Sutherland 1990),

• Tri(n) ¼ 1 þ 2 þ 3 þ . . . þ n (Hitt 1994),

It is noteworthy that the task generates the production of different types of

representations, with the type depending on the technological environment. This is

the case with pupil production in this new approach to the construction of polygonal

numbers (see chapter “Integrating arithmetic and algebra in a collaborative learning

and computational environment using ACODESA”).

In the third block of the task, interest focused on the use of an applet that gives

pupils the opportunity to immediately verify their generalisation strategies, or to

request a polygonal number, etc. Thus pupils are able to receive immediate

Develops the same ideas as in the previous section but using Excel (or CAS). 
Here we ask you to find:

What would you do to discover the 6th, 7th, and 8th triangular number?
Is it possible to calculate the triangular number 30, triangular 83, and triangular 
120?
How do you do this?
What are the limitations and possibilities of this approach?
Provide the operations to be performed in order to undertake this calculation with 
any polygonal number.

Fig. 5 Second part of the task
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feedback on the veracity of their conjecture using the applet. The applet (see Cortés

and Hitt 2012) is to be used precisely in this 3rd block.

The applet is able to request the first four polygonal numbers selected (triangu-

lar, square, pentagonal, etc.) and is also able to request a “large polygonal number”

(see Fig. 6). Paper and pencil work with the use of the applet allows pupils to check

their guesses. If the pupil’s conjecture does not agree with the result given by the

applet, the pupil must return to their team and review the process that led to the

construction of their conjecture, which, thus, fosters productive communication

among pupils.

Pupils are asked to use the Poly applet for the proceeding set of questions in

which the arrangement of the triangular numbers was changed, using an equilateral

triangle (which corresponds to the institutional representations that pupils usually

encounter in textbooks) (Fig. 7).

Fig. 6 Examples of the use of the POLY applet with polygonal numbers

a) Here are the five first triangular numbers.

Find a formula to calculate the numerical value of any triangular number. You can 
use the POLY applet to find the formula. 

APPROACH (OPERATIONS, DRAWINGS…)

Write the rule or formula you found: 

Using your rule or formula, calculate the following triangular numbers.
Position Corresponding value

Triangular 10
Triangular 20

With the formula, can you calculate the triangular number 120?
Triangular 120 = _____________

Fig. 7 Third block of questions and use of the POLY applet
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From a psychological point of view, the framing of the triangular numbers,

which does not leave enough space after the first 5 examples, promotes a tendency

to abandon the drawings (see Hitt 1994), while the presentation of the activity

promotes the generalisation process.

Building on strategies produced byHitt (idem) has lead to the following output (it is

important to stress that this study is carried out with primary and secondary school

teachers and focuses on pupil performance, with chapter “Integrating arithmetic and

algebra in a collaborative learning and computational environment usingACODESA”

discussing secondary school pupils):

• f xð Þ ¼ x2þx
2

(Hitt 1994)

A summary questionnaire, which does not include the use of technology, is used

for the self-reflection stage. Pupils are expected to be able to rebuild their repre-

sentations, as well as any algebraic expressions that they have produced, thus

enabling them to calculate any triangular number (Fig. 8).

As stated above, the reconstruction stage is very important. Research results

(Karsenty 2003; Thompson 2002; Hitt and González-Martı́n 2015) show the fra-

gility of knowledge and the importance of implementing, in the mathematics

classroom, activities that can strengthen the construction of such knowledge.

In the case of pupils who are beginning to study algebra, validation can be

restricted, while, in the case of the use of the task with pre-university students

and/or future teachers, one can request demonstrations using mathematical induc-

tion processes. For example, the applet does not work when using large numbers.

Furthermore, working with both the official representations of the polygonal

Here there are the first four triangular numbers

1) What is the 11th triangular number? Explain how you found it. 
2) Write a SHORT email to a friend describing how to calculate the triangular 

numbers 30, 83 and 120. Describe what you would write. YOU DO NOT 
HAVE TO DO THE CALCULATIONS! 

3) How do you calculate any triangular number (we still want a SHORT message 
here).

4) The following configuration of a triangular number can be found in some 
textbooks:

Does your strategy always enable you to calculate any triangular number?

Fig. 8 Task designed for the self-reflection stage (reconstruction activity)

70 F. Hitt et al.

http://dx.doi.org/10.1007/978-3-319-51380-5_13
http://dx.doi.org/10.1007/978-3-319-51380-5_13


numbers and the construction of algebraic expressions associated with those num-

bers, another block of questions could be added. These would request a further and

higher generalisation process (see Table 1), which would be built as a single

algebraic expression that enables any polygonal number to be calculated.

Conclusion

This paper proposes task design elements to be developed in the mathematics

classroom under a sociocultural approach. While some authors point out the

importance of creating sociocognitive conflicts in the mathematics classroom,

they suggest an organisational schema for performing an activity, with, for exam-

ple, Prusak et al. (2013) proposing the following for a 75-min class:

For the first 15–20 minutes, the instructor facilitated a whole class discussion to create a

shared understanding of the activity; then, for approximately 5 minutes, each student

engaged in the task individually; during the following 45 minutes, students worked in

dyads or triads, solving tasks collaboratively and writing a common justification on a

worksheet; for the final 5–10 minutes, there was a plenary, where the instructor led a

whole class discussion to summarise. (p. 270)

In contrast to the methodological approach outlined above, the methodological

approach advocated here takes into account the fundamental point that consensus is
ephemeral and, as such, it is therefore necessary to consider a knowledge recon-

struction stage (referred to as self-reflection in this methodology) in order to

strengthen and stabilize knowledge (Karsenty 2003; Thompson 2002; Hitt and

González-Martı́n 2015).

This task design is more related to problem situations that generate diversified

thinking and, as a possible consequence, socio-cognitive conflicts in a process of

action and communication. To overcome a socio-cognitive conflict, the authors of

this study suggest the promotion of signification processes, as described by Radford

(2003), in the mathematical classroom (see chapter “Integrating arithmetic and

Table 1 Generalisation for calculating any n polygonal number of p sides

Calculation of polygonal n Expression for generalisation

Tn ¼ n nþ1ð Þ
2

T 3� sidesð Þn ¼ n n�1ð Þ
2

Cn¼ n2 C 4� sidesð Þn ¼ n2 ¼ 2n nþ0ð Þ
2

¼ n 2nþ0ð Þ
2

Pn ¼ n 3n�1ð Þ
2

P 5� sidesð Þn ¼ n 3n�1ð Þ
2

Hn¼ n2þ n(n� 1) H 6� sidesð Þn ¼ 2n 2n�1ð Þ
2

¼ n 4n�2ð Þ
2

En ¼ n 5n�3ð Þ
2

E 7� sidesð Þn ¼ n 5n�3ð Þ
2

. . . . . .

Polygonal p� sidesð Þn ¼ n p�2ð Þn� p�4ð Þð Þ
2
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algebra in a collaborative learning and computational environment using

ACODESA” on this issue). Consequently, some of our problem situations may

take more than one session of a course. In fact, the task design in Hitt and Gonzalez-

Martin (ibid.) aimed to create a chain of activities that encompassed the concept of

covariation between variables, function in context, and mathematical modelling,

over the course of 13 class sessions.

Practice has shown that, as a method such as ACODESA is not easy to imple-

ment in the mathematics classroom, it is very important that, working together,

researchers and teachers can create learning situations such as those suggested in

this chapter for the mathematics teacher. Generally, it is not possible to fully present

in research articles the complete activity implemented in an experiment, due to a

lack of space. The problem situations dealt with here usually occupy several pages

permitting regulate, in some extent, pupils’ productions and promoting their

evolution.
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matiques, 10(23), 133–170.

74 F. Hitt et al.



ICT and Liminal Performative Space
for Hyperbolic Geometry’s Teaching

Panagiota Kotarinou and Charoula Stathopoulou

Abstract The use of technology tools creates new situations and new dynamics in

Geometry’s teaching in the classroom, enhancing the ways of its understanding. In

this chapter, the experience of using ICT together with ‘Drama in Education’ (DiE)
in a teaching experiment, regarding the axiomatic definition of Hyperbolic Geom-

etry through Poincaré’s Disk, in a class of 11th grade students is described. The use
of ‘Drama in Education’ techniques created a space appropriate to transform

traditional classroom practices. In this space, a liminal space, students became

more active and involved in (re)negotiating different discourses, their own learning

processes and conceptions of Hyperbolic Geometry while interactive Java software

allowed them to explore a non Euclidean Space. The use of ethnographic research

techniques (i.e. participant observation and interviewing) helped us to gather

empirical evidence concerning students’ experiences. Moreover, our research

revealed considerable evidence that it was Drama techniques which motivated

students and offered them fuller participation in the teaching process, while ICT

helped them visualize the Poincaré’s Disk and through it understand key elements

of Hyperbolic Geometry.

Keywords Interactive java • Liminal performative space • Hyperbolic geometry •

Poincaré model

Introduction

The awareness that mathematics appear as a difficult school subject dictates, inter

alia, the revision of teaching in order to enhance students’ interest and their active

participation in class. As pointed out by Mayer (2005), one of the biggest problems

in learning in the school context is to motivate students to fully commit themselves
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to the learning process, without this becoming a boomerang in the long term,

causing them resentment from the school experience (Kohn 1993; Appelbaum

and Clark 2001).

We consider the integration, into the same scene where the teaching of mathe-

matics occurs, of all available resources and techniques, as an enrichment of

teaching mathematics and simultaneously challenge the perception of students

about the nature of mathematics. In such a context, the students face the challenge

of seeing mathematics as a continuous spectrum that penetrates various aspects of

life both now and in the future, touching both individual and social needs. Talking

specifically about geometry, and in particular about the teaching of Geometry,

“structure of traditional geometry has never been a convincing didactical success. . .
to my opinion it failed because its deductivity could not be reinvented by the learner

but only imposed” (Freudenthal 1971, pp. 417–418).

In recent years, alternative approaches in geometry teaching have been studied.

The use of new technologies (Jones 2011; Laborde et al. 2006; Oldknow 2008), the

study of the applications of geometry in various sectors (Fletcher 1971), the use of

the History of Geometry applications with appropriate material from historical

sources, as well as the use of the arts, have created new educational situations,

involving students actively in the process of teaching / learning.

This chapter presents a project focused on axiomatic foundation of hyperbolic

geometry, designed by the two authors and implemented by the first one in a

classroom of 11th grade students. This interdisciplinary project was implemented

with the use of new technologies and “Drama in Education” techniques, which we

claim that created an in-between/liminal space where new practices, new discourses

and new tools emerged, while new technologies helped students’ visualization and

hence understanding of geometrical concepts we dealt. The challenge of the

uniqueness of Euclidean space for the interpretation of the world was an additional

provocation which students were asked to handle in this new context.

Subsequently, we will briefly present the importance of the teaching of Hyper-

bolic geometry in school and the role of new technologies for its teaching and we

will describe the liminal space created by Drama techniques. We will close with the

presentation of the design and implementation of the research, concluding with the

discussion of results.

Teaching Hyperbolic Geometry Through ICT

The discovery of non-Euclidean Geometries is a rupture in the history and evolution

of mathematics, through the separation of reality from mathematical space and

through the conscious realization that mathematical structures, in their role as

models, are the new mediating artifacts to explore space (Hegedus and Moreno-

Armella 2011). As characteristically Hegedus and Moreno state “With Euclidean

ontology a mirror was placed between the world and mathematics. Non Euclidean

Geometry broke the mirror” (ibid, p. 379).
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The teaching of Geometry at school imposes, as an absolute and undeniable

truth, that Euclidean geometry is the model, which interprets and represents our

space (Thomaidis 1992). The teaching of non-Euclidean geometries would help

students recognize that there are several other geometries and spaces, other than the

Euclidean ones, and to realize that mathematics is not an absolute truth (Kazim

1988, cited in Thomaidis et al. 1989). Directing students to investigate properties of

other geometries, in order to see how the basic axioms and definitions lead to quite

different –and often contrary– results, helps students to gain an appreciation of the

Euclidean geometry as one of the many axiomatic systems (NCTM 1989, cited in

Gray and Sarhangi n.d.). Comparisons between similar geometrical concepts in the

various axiomatic systems contribute to a better understanding of these concepts

(Lénárt 2004, 2007).

The Hyperbolic Geometry has been chosen for introducing students to non-

Euclidean geometries, because it is the “closest” in the Euclidean geometry para-

digm, including changes in only one of its postulate; the famous fifth postulate

(Dwyer and Pfeifer 1999). Offering a “world” in which all shapes are altered,

Hyperbolic Geometry can help students reflect on the definitions of geometric

objects and thus to understand the typical definitions of shapes (Austin et al. 1993).

Towards the end of the nineteenth century Poincaré attempted to remedy the

visualisation problem by creating three models for hyperbolic geometry, while he

was investigating different aspects of analysis. One of his most famous and

commonly used is the Disc model, which employs the interior of a unit circle for

hyperbolic space. The Disc model is particularly interesting since it forms the basis

for a series of pictures by Escher, entitled ‘Circle Limits’ (Stevenson 2000). With a

Euclidean model of Hyperbolic Geometry, Poincaré replaced the infinite plane with

a finite circular disk where the circumference of the disc represents hyperbolic

infinity. In the Disc model hyperbolic lines are shown as either Euclidean ‘straight’
lines (the diameters of the circle) or the arcs of circles orthogonal to the circum-

ference of the disc. Inside our hyperbolic ‘world’ the other shapes are defined in the
usual manner. The angles are measured in the Euclidean manner, from the angle

between the tangent lines of the curves at the vertex of the angle, while the

definition of the distance is not the Euclidean one (Davis 1993).

• Poincaré’s Disk, like every model, helps us prove the consistency of Hyperbolic

geometry as an axiomatic system. In Poincaré’s Disk the five postulates of

Hyperbolic geometry (with the first four the same of Euclidean ones) are verified

and for this reason the Disc constitutes a model of this geometry. It shows

therefore that Hyperbolic geometry is consistent, to the extent that Euclidean

one is (Davis 1993).

• This model, from teaching perspective, enables us through visualization, to teach

students Hyperbolic geometry as a consistent axiomatic system and help them

distinguish some of the unusual theorems and properties of this geometry.

• Another model for Hyperbolic geometry is ‘Cold Plate Universe’ (Gray 1989,

apud Stevenson and Noss 1998) which can be obtained by projecting the positive

branch of a two-sheet hyperboloid from a point beneath the viewing plane. In the
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flat model of ‘Cold Plate universe’ the whole of hyperbolic space is represented,
as in Poincaré’s Disk, as the interior of a unit Euclidean circle, with the

circumference of the circle representing ‘infinity’. In ‘Cold Plate universe’ the
temperature decreases as one moves radially towards the circumference of the

circle. Consequently a metal ruler used to mark out distances along the arcs of

circles would contract as it is moved out from the centre and the ‘unit length’
would decrease. At the same time the magnitudes to be measured would also

contract and the measurement results would remain the same, while the magni-

tudes could not coincide even if they are equal. However, living in this surface

one would be unaware of the variation in length and the change in distance

measure would only become apparent, if one could compare the rule with that in

a ‘constant temperature’ Euclidean world (Stevenson and Noss 1998, p. 234). In
this model distance measure, which varies with position, is a key perceptual

feature and is also contrary to our usual perception of distance measures in

Euclidean Geometry and our experience of everyday life (Stevenson 1999). In

Hyperbolic Geometry then the concept of equality as congruence is changed and

the model of ‘temperature’ helps us in teaching, to address the fact that in

Poincaré’s Disk while the angle measure is preserved, equal shapes do not

necessarily coincide.

• As Hilbert proved in 1901, it is impossible to embed an infinite simply connected

surface of constant negative curvature isometrically into Euclidean 3-space. As a

sequence unlike the situation in Spherical geometry, we cannot embed the whole

hyperbolic plane into Euclidean 3-space and thus to visualize Hyperbolic

Geometry, we have to resort to a model (Series 2010).

• Gutiérrez (1996, apud Christou et al. 2007) considers ‘visualization’ in mathe-

matics as the kind of reasoning activity based on the use of visual or spatial

elements, either mental or physical, performed to solve problems or prove

properties. Visualization helps us extract useful information from complex or

often voluminous data sets, through the use of interactive graphics and imaging

(Kaufman 1994). Computer-based learning environments commonly comprise

symbolic as well as static and dynamic pictorial representations, frequently

combined with the possibility of modifying them interactively (Christou et al.

2007). The real power of computer graphics lies in its ability to accurately

represent objects for which physical models are difficult or impossible to

build, combined with its ability to allow the user to interact with simulated

worlds. Interactive computer graphics can provide new insights into the objects

of pure geometry, providing intuitively useful images, and, in some cases,

unexpected results (Hanson et al. 1994, p. 74).

• The teaching of Hyperbolic Geometry is usually implemented through models

such as the hemisphere model (Lénárt 2004) or the Poincaré’s Disk (Dwyer and

Pfeifer 1999; Krauss and Okolika 1977). As a teaching means for understanding

the Poincaré’s Disk, the use of new technologies is recommended through

relevant software, as Geometer’s Sketchpad (Dwyer and Pfeifer 1999; Gray

and Sarhangi n.d.) or Interactive Java software “NonEuclid” (Austin et al.

1993), as well as haptic tools, as the trasparent hemisphere (Lénárt 2004) and
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the paintings of the famous Dutch painter Maurits Cornelis Escher (Menguini

1989, apud Furinghetti and Somaglia 1998).

• In this paper, a teaching experiment about axiomatic foundation of Hyperbolic

geometry and its basic notions is presented, which was held through its model of

Poincaré’s Disk and Gray’s (1989) model “Cold Plate Universe”. In our teaching

experiment we used ‘Drama in Education’ conventions to motivate and actively

engage all of the students, with the students having to create ‘Radio broadcasts’
concerning “Platterland”; a land with Poincaré’s Disk shape. In order for the

students to conceive Poincaré’s Disk and thus key elements of Hyperbolic

geometry and to be able to present them through “Radio broadcasts”, we

exploited the Java applet by Joel Castellanos, Joe Dan Austin and Ervan Darnell

and the book Flatterland by Ian Stewart (2002), as well as the Escher paintings

Circle Limit I, II, III.

“Drama in Education” and Liminal Space

Drama in Education, according to O0 Neil and Lambert (1990, p. 11), is a mode of

learning, in which, through the pupils’ active identification with imagined roles and

situations, they can learn to explore issues, events and relationships. It is a perfor-

mative art form with pedagogical character that has as a basic aim the pupils’
understanding about human behaviour, themselves and the world they live in

(Idem, p. 13). It is also a dynamic and creative methodological tool for the various

curricular subject areas through collective actions and lived experiences, putting

children in the position of the actor (experience), spectator (judgement), author

(meaning) and director (form). DiE combines: Form and Content, Action and

Reflection, Logic and Imagination, Thinking and Feeling, Body and Spirit. In

Drama, participants create a story, an imaginary world, they perform roles, explore

an issue or face problems and decide, act and reflect upon their actions (Avdi and

Chadzigeorgiou 2007). Drama in Education enables participants, either during the

drama itself or after the drama in a discussion, to look at reality through fantasy, to

see below the surface of actions to their meaning (Wagner 1999, p. 1).

The key elements and techniques of DiE derived from the world of traditional

theatre, and like any art it is highly disciplined (Wagner 1999). Way (1967), first

attempted the separation of Drama from the theatre, considering that:

Theatre is largely concerned with communication between actors and a audience; Drama is

largely concerned with experience by the participants, irrespective of any function of

communication to the audience. . .Theatre is undoubtedly achievable with a few - a very

small minority, but there is not a child born anywhere in the world, in any physical or

intellectual circumstances or conditions, who cannot do Drama. (p. 3)

DiE is an activity focusing rather on the process than on the outcome-the

theatrical performance. In DiE there is no distinction between actor and audience;

the learner is both participant and observer, playing a role while interacting with
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others in role (Andersen 2004, p. 282). The success of a DiE activity is assessed by

the ideas, expressions, skills, abilities, imagination and creativity that it causes,

rather than pupils’ theatrical skills or the aesthetic effect, as in a professional

theatrical production.

Drama in Education is not limited to experience, but goes to the awareness of

this experience and in this way learning is achieved. Heathcote (1984) notes that:

I have struggled to perfect techniques which allow my classes. . .to be able both to

experience and reflect upon their experience at the same time: simultaneously to understand

their journey while being both the cause and the medium of the work. (p. 127)

In Educational Drama, a series of conventions that freeze or delay the action are

used, in order for the students to analyse, interpret and understand it. In Drama,

students think about their ideas when they are ‘in role’ and can better understand the
process of thinking, once they leave the role (Andersen 2002). The time for

observation and discussion following each activity helps children to distance

themselves, to elaborate and understand what preceded it, to judge situations, to

evaluate the behaviours and attitudes of others, but also to be self-assessed.

In DiE, the teacher and the students participate in-role to create stories and

scenes, through which students can experience the curriculum in an emotionally

rich context. The aim for the students is to pay attention and care in an “as if” world,

a world that they feel it as real, even if they know that it is not (see also chapter

“Problems Promoting the Devolution of the Process of Mathematisation: An Exam

ple in Number Theory and a Realistic Fiction” of this book). When students

experience a role in this imaginary world, they build faith and feelings for the

characters, the situations and conflicts of this imaginary world. Through this belief

and through this participation and involvement in Drama, students gain interest in

the knowledge of the curriculum.

Liminality and Drama in Education The concept of liminal space in perfor-

mance studies comes from the field of social anthropology (Arnold Van Gennep)

and was introduced by Victor Turner (1982), who came to performance theory from

anthropology. Richard Schechner (2002, cited in Gerofsky 2006, p. 7), a key

performance theorist with a background in both anthropology and theatre, develops

the idea of liminal cultural space as a quality of the actual physical spaces where

performances are enacted. Limen is a threshold, the boundary line between two

places or (metaphorically) two states of being. As limen in the bottom part of a

doorway, which is not a separate place but connects two other places the ‘inside’
and ‘outside’, the empty space in ritual and aesthetic performances, becomes

actually and conceptually a passageway, a threshold in which action remains, to

use Turner’s phrase, “betwixt and between”. The space expands and becomes a

living space which does not necessarily follow the rules and conventions of

everyday life. An empty theatre space is liminal, open to all kinds of possibilities

– that space by means of performing could become anywhere. Performers can

explore personas that are not their quotidian selves and actors can convincingly

play in role, because the story space of the stage lies in the expanded limen between

truth and falsehood (Gerofsky 2012, p. 244). In performance, this liminal space is
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expanded and opened up and becomes a space which allows for exploration of the

contradictions, paradoxes, transitions and transformations that take place as we pass

boundaries (Gerofsky 2015). As Gerofsky declares (2006),

A classroom can be a liminal space – a space of possibility, a passageway, an expanded

marginal space with room for play. Classrooms are designed to allow for flexible spatial

arrangements; if we are willing to work in the space of the culturally liminal, a classroom

can be as mutable as a theatre space. (p. 7)

In a performative place these liminal spaces are open to an emotional, physical

and intellectual involvement of students, which may lead them to a deeper under-

standing and appreciation of mathematics (Gerofsky 2015).

In this paper we claim that Drama in Education techniques in the Mathematics

class can create a new liminal space, as described by Gerofsky (2006), a passage

way between worlds, where boundaries are blurry. A passage way between learning

and play, between different disciplines, as mathematics and art, between “teacher as

knower” and “student as listener”, between performers and audience between body

and mind, between imaginary and real.

Within this space, where the verb “learn” –linked to school practice– and the

verb “play” –linked with non classroom-context– coexist, the use of new technol-

ogies is faced as a play by students. In this place, through a constructive dialogue,

conditions and prerequisites are created for greater and more effective participation

of students in the learning process, as it seems from the results of the project which

follows.

The Research: Participants, Setting and Methods

• Empirical data for the research presented in this paper, arose from our endeav-

ours towards exploring the dynamics of Drama in Education Techniques in

teaching Geometry in high upper school.

• The research was carried out in a group of 26 eleventh grade students in an urban

elementary school in the greater area of Athens, and took place in one

academic year.

• The use of ethnographic research techniques (i.e. participant observation and

interviewing) helped us to gather empirical evidence concerning students’ expe-
riences and mathematics achievement and retention of knowledge. All students’
presentations were videotaped and analysed regarding the proper use of math-

ematical notions in their dialogues.

• In terms of the research methods used, we designed and implemented an

interdisciplinary didactical intervention, based on a teaching experiment meth-

odology (Chronaki 2008). The teaching experiment (25 teaching periods) –titled

“Is our world Euclidean?”– is focused on a detailed design of the teaching of the

axiomatizing of Euclidean and Non-Euclidean geometries as well as the history
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of Euclid’s fifth postulate. The present paper describes the part which refers to

the axiomatic foundation of Hyperbolic Geometry.

The Teaching Experiment

The teaching experiment was carried out, by the researcher in teaching role (first

author in this paper), in 6 teaching periods, in Geometry, Literature and Greek

Language classes. The teaching aims were to enable students: (a) perceive the

axiomatic foundation of Hyperbolic geometry, (b) perceive the role of the postu-

lates in an axiomatic system, (c) redefine Euclidean geometry by comparing the

similarities and differences of Hyperbolic geometry with the Euclidean one,

(d) perceive the role of a model in mathematics and (e) challenge students’
stereotypical images about Geometry.

Specifically, the following stages were encountered as entries to the teaching

intervention;

• as introduction to the topic, a lecture enhanced with digital projection was

provided by the teacher/researcher,

• subsequently, the students were asked to work in teams, using appropriate

bibliographical resources such as digital material and literary books, for them

to acquire suitable knowledge regarding their presentations,

• a summing up activity by the teacher/researcher ensued where there was ample

chance to discuss ideas at the public space,

• the teams prepared their presentations with drama conventions,

• after rehearsing, students performed their presentations,

• a concluding and reflective session followed.

Briefly the activities of this project included:

• Three digital presentations, concerning: (a) historical data, key concepts of

Hyperbolic Geometry and elements of the Poincaré’s Disk, (b) works of the

painter Escher and (c) basic theorems of Hyperbolic geometry.

• Activities in IT lab using the Interactive Java software “NonEuclid” by

Castellanos et al.

• Study of the chapter “Platterland” from Ian Stewart book “Flatterland”.

• Radio broadcasts concerning “Hyperbolic” geometry and its Poincaré’s Disk.

A more detailed description of these activities follows.

During the Literature class (3 h), a digital presentation with historical data, key

concepts and theorems of Hyperbolic geometry, elements of the Poincaré Disc,

model of this geometry was conducted by the researcher. In Poincaré’s Disk, the
notions of a point, straight line, segment, angle, triangle and parallel lines were

defined. For the students to perceive that distances are not maintained unchanged

with position, we used the model “Cold Plate universe” (Gray 1989, apud
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Stevenson and Noss 1998). Finally through the Poincaré’s Disk we presented the

axiomatic foundation of Hyperbolic geometry and we explained the postulate that

replaced the 5th Parallel Postulate. A discussion with students followed about the

notion of an axiomatic system, about its consistency, the independence of the

axioms, and the meaning of a model of an axiomatic system.

Subsequently, students in groups studied excerpts from the chapter

“Platterland” from Ian Stewart book “Flatterland” concerning Poincaré’s Disk

of Hyperbolic geometry, in order to prepare a radio broadcast with the same name

issue. The chapter of Ian Stewart’s book, in which the protagonists visit

“Platterland” (a land with the shape of Poincare disk) addresses the following

mathematical concepts: (a) parallel lines in Poincaré’s Disk, (b) the infinite

distance of the centre of the circular disc to its circumference, (c) the distance

between two points (with the apparent shrinkage of shapes as they approach the

circumference), (d) the straight lines as the arcs of circles orthogonal to the

circumference of the disc, (e) the independence of Euclide’s 5th postulate.

Suitable shapes illustrate basic properties that characterize the disk, such as that

the shortest path between two points on the disc is not the segment of the

Euclidean straight line, but the Poincaré straight line, that parallel lines are not

equidistant, with the distance between parallel lines approaching to zero (the

equidistant line of a Poincaré straight line, it is not a straight line) and that from

a point not on a straight line an infinite number of straight lines passes through it

and do not intersect it.

In Geometry class (1 h), the students used ICT (Interactive Java software

“NonEuclid” by J. Castellanos et al.) for visualizing the Poincaré’s Disk, the axioms

and basic concepts of this non-Euclidean geometry. “NonEuclid” creates an inter-

active environment for ruler and compass constructions in the Poincaré’s Disk and

thus enables the user to explore non-Euclidean geometry. For these reasons

‘NonEuclid” is a tool in the teaching of the axiomatic foundation of Hyperbolic

geometry.

The 23 students that were present worked on computers with worksheets, in

groups of two (seven groups) or of three (three groups) and explored the Poincaré’s
Disk by drawing points, lines, segments, angles and perpendicular to a given

straight line (see Fig. 1). They also measured segments and angles and wrote

their comments about the construction of cycles, line segments of equal length

and of the measurement of the sides and angles of a triangle. Finally the axiomatic

foundation of Hyperbolic geometry was held through the model.

Before students prepare their texts for “Radio broadcasts”, a short summing up

activity (1 h) was held, during which, Escher work from the unit Circle Limit

Exploration was presented. In these paintings, Poincaré straight lines were identi-

fied and the equality of shapes was discussed through the repeated patterns of

Escher work (see Fig. 2). Then in Modern Greek Language class (2 h), students’
teams prepared, wrote and presented their own texts for the radio broadcasts

concerning Hyperbolic geometry and its Poincaré’s Disk.
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The six radio broadcasts that were presented, were in the form of a radio show in

which, a radio producer discusses with invited scientists or with some residents of

Platterland, or makes quiz and receive phone calls from the audience. The radio

broadcasts were presented from behind a screen so that the students not be seen by

the audience (see Fig. 3).

After students’ presentations time was dedicated for reflection (see Fig. 4).

Fig. 1 Working on

computers

Fig. 2 Hyperbolic

geometry through Escher

work

Fig. 3 Radio broadcasts
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Results

The Learning of Mathematical Notions

Students’ performance (and comprehension through performance) of the mathe-

matical concepts was evaluated through analysis of the worksheets, via relevant

questions in specifically organized interviews and through analysis of the enacted

dialogues in students’ radio broadcasts.

Analysis of Worksheets All the students’ teams had to execute, according to the

worksheet, various commands of the software, in order to draw basic shapes in

Poincaré’s Disk and visualize through them the axioms and some basic theorems of

Hyperbolic geometry. In the beginning, they had to draw from the command

“construction”, straight lines, line segments, angles, the midpoint of a segment

the bisector of an angle, the perpendicular to a straight line. Students executed

easily all these commands, expressing surprise with the differences they observed

between the geometric figures in Poincaré’s Disk and the corresponding figures in

Euclidean geometry.

Students after learning, through corresponding commands, to measure distance

and angles, they had to do five different activities: (a) Draw several circles (b) Draw

segment at specific length (c) Measure different rays of a circle and (d) Draw triangles

and measure their sides and angles and then write what they observe. This task could

only be done through the use of this software, through which students were able to

design these schemes, work extremely difficult, if not impossible with conventional

means as pencil and paper. In the above questions, five of the ten teams gave answers

in four ones, three groups in three and two in only two questions.

Regarding students’ understanding the Poincaré’s Disk of Hyperbolic geometry,

the analysis of the worksheets of the teams showed that the students understood the

basic notions of the model, with the majority of them responding properly to most

Fig. 4 Time for

reflection. . .
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questions relating the circle (the centre and its rays), the apparent shrinking of

segments of specific length and the sum of the angles of a triangle. Some students

indeed provided additional interpretations of certain phenomena, which they had

read in the book Flatterland and we had discussed in a previous class period.

Thereafter we present in detail the students’ answers to the various questions.

During the construction of different circles (first question) all of the ten groups

observed that something different with circles in Poincaré’s Disk occurred. They

observed that the centre was not where one would expect to be and that it didn’t
coincide with the centre of the Euclidean circle (see Fig. 5). They write about it as

following: “the centre of the circle is not the same with the circle of Euclidean

geometry”, “the centre is not as in a usual circle”. Two of the teams tried addition-

ally to justify it “the centres are more distant (from the Euclidean centre) as we

move to the circumference of the Disk. This happens because along the circumfer-

ence, it is cooled and it shrinks”, “Each circle has not the same centre as the circle in

Euclidean geometry. This is because as we move away from the centre, we are

seemingly changing, but not the distance from the centre, of the points of the

circle”. A single group responds in a different way “when the centre of the circle

is located approximately in the centre of the circular disk, the rays appear symmet-

rical, but while it is removed from the centre of the circular disk, the radius look

different.”

In the second question “Draw segments at specific length, and write your

comments”, all groups answered correctly. One of the groups observed the curvi-

linear shape of the segment, while the rest of the teams noted that the segments,

although of the same length, seemed unequal. Some of their answers, are written in

more formal mathematical language and some not: “We drew line segments of the

same length and we noticed that the line segment seems smaller near the circum-

ference, in contrast to the segment that is near the centre of the circle. They have the

same length but the unit length decreases”, “the closer to the centre, the segments

appear bigger”, “as you go out, leaving the centre, you shrink.”

In the third question, students were asked to draw a circle and measure various

rays. All of the eight teams who responded have the same answer, writing that the

rays are equal even if they seem unequal (see Fig. 6). “Although the rays have the

same length, they look different, and not equal to each other”, “they are equal, even

Fig. 5 Drawing circles in

Poincaré’s Disk
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though the centre is not the centre of the circle in Euclidean Geometry”, “all the

rays are of equal length, although they seem unequal.”

Finally, the students were asked to draw a triangle, to measure its sides and angles

and write their comments (fourth question). Five of the groups made the measure-

ment of the sum of the angles of the triangle and found it to be less than 180 degrees

(see Fig. 7), while the other teams did not have time to answer this question.

We asked the teams that they had managed to answer all the questions, to try to

draw a rectangle and a square according to the Euclidean definitions of these

shapes. The students tried to construct a rectangle but they constantly failed. At

first, the students plotted a segment of Poincaré’s Disk, as the base of the rectangle.
Then they designed, on the same side of the base, two equal segments, perpendic-

ular to it and they joined their edges, or they designed two straight lines e1 and e2
perpendicular to the base and a third straight line e3 perpendicular to e1 and

Fig. 7 The sum of the

angles of the triangle is less

than 180 degrees

Fig. 6 The rays are equal

even if they seem unequal

ICT and Liminal Performative Space for Hyperbolic Geometry’s Teaching 87



intersecting e2 (see Fig. 8). Both drawings, in Euclidean geometry lead to a

quadrilateral, though in Hyperbolic the former leads to a shape having two right

angles and each of the other two angles less than a right angle and the latter to a

quadrilateral with three right angles and the fourth less than a right angle. The finding

that there is no rectangular in the hyperbolic world stunned them. From our obser-

vation during students’ work, we realized that their effort to construct in the model, a

straight line, a circle and a rectangle helped them to renegotiate and understand the

relevant concepts of Euclidean geometry. Also their rectangle construction effort and

the finding that the sum of the angles of a triangle is less than 180 degrees made them

understand the role of the Euclidean geometry 5th axiom.

Analysis of Dialogues in Radio Broadcasts Following the analysis of the six

radio broadcasts texts that students prepared about Hyperbolic Geometry, we

observe that two teams did a full description of the Poincaré’s Disk, while the

remaining teams referred to only a few concepts, those that they considered

important or had been impressed by. In three radio broadcasts students referred to

Platterland’s shape which had the shape of Poincaré’s Disk: “I was impressed that in

“Platterland” there are only two dimensions and that while from far away the

country it seems to have a certain extent, when actually reaching there, you realize

that it is infinite” and also defined straight lines (four teams): ‘Defining in this

model as straight lines the arcs of circles orthogonal to the circumference of the

disc, imagine a circle and curves inside it’. In one broadcast the particular shape of

the circle is emphasized: “In Hyperbolic geometry the centre of the circle tends to

its circumference, yet its radii again are equal” and also that parallel lines are not

equidistant (two teams): “The distance between parallel lines is not constant”.

Finally in all broadcasts students talk about the apparent decrease in the length of

a segment and to justify this phenomenon they use the model “Cold plate”,

“because the objects shrink, depending on the temperature. In the periphery the

temperature is zero degrees Celsius and as they go towards there they shrink” while

in two, they talk about the alternative 5th postulate: “From a point not on a straight

Fig. 8 Trying to draw a

rectangle
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line an infinite number of parallels lines passes through it”. Closing the analysis, we

want to add, that two groups in their radio shows, although they referred to

Hyperbolic geometry, they gave information about Poincaré’s Disk, identifying

Hyperbolic geometry with its model.

We will quote as an example, an excerpt from the radio show “Weird and True”,

in which the students chose as a framework a fictional interview of a reporter with a

Mathematician Guest and a resident of Platterland, a country with the shape and

properties of the Poincaré’s Disk.

The Radio host Good morning our dear listeners. Today we will analyse in our

show, a really special topic, that of the Hyperbolic geometry.

I am pleased to announce that we will host a resident of the long

distance Platterland and a Mathematician, with a PhD in

Non-Euclidean geometries. With the help also of our good

colleague we will introduce you to this unknown to us

Geometry. Let’s listen to what they have to say.

The reporter I was impressed by the fact that in Platterland there are only two

dimensions and that although from away the land appears to a

certain extent, actually arriving there, you realize that it is

infinite.

Mathematician

Guest

In Euclidean geometry what we call a straight line, in their own

world we perceive it as an arc that intersects the circumference

at right angles. It is noteworthy that Platterland is a circular disc,

without its circumference and the points are defined only within

it...

The Radio host Indeed, all this is very interesting. Let us listen now, the

experiences of our guest, who is a resident of Platterland.

The resident The objects of Platterland as they remove to infinity, they shrink,

although this can not be perceived by a person moving in

Platterland, because as the object shrinks, at the same time the

meter shrinks too. So in every measurement we have the same

result.

The Radio host Thank you. Now, we say goodbye to all of you and we renew our

appointment, next week.

Analysis of the Interviews Two months after the activities sixteen students were

asked questions about Hyperbolic geometry (in 16 semi-structured interviews) for

the retention of knowledge from the use of the specific tools to be examined. From

their responses it seemed that students were so impressed by the Poincaré’s Disk
that they identified it with hyperbolic space. The majority of students responded

that they were impressed by the shape of the lines in Poincaré’s Disk (11 replies)

“First of all, curves were considered as straight lines. For those who were in

hyperbolic world it seemed like a normal straight line, it was just a matter of how

you see things. Do you see them from outside or inside? It’s completely different

what we call in Euclidean geometry a straight line and what we call in Hyperbolic

geometry straight’, and the apparent change of segments of the same length
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(six replies): “As the objects of Platterland remove to infinity, they shrink, although

this can not be perceived by a person moving in Platterland, because as the object

shrinks, at the same time the meter shrinks too. So in every measurement we have

the same result”. Three students mentioned with surprise the sum of the angles of a

triangle in Poincaré disc: “In Euclidean it is 180�, in Hyperbolic it is more than

180�”, and the non existence of the square: “Especially this finding about the

square; we will never forget that there is no square”, while some students highlight

the importance of the fifth postulate: “Changing the 5th postulate, essentially

changes the whole theory of geometry”.

Summing up, from the analysis of all the aforementioned data, we can conclude

that the students understood the basic concepts of Hyperbolic geometry through

Poincaré’s Disk, and it was ICT which played an important role in this, by

contributing to the visualization of the model.

Mathematics as a Creation Under Constant Negotiation

Students were actively involved with the new and strange to them non Euclidean

geometry,

Sofia The fact that I saw other geometries, basically because I like those weird

things, intrigued me; i.e. to see a geometry which I have not seen before, in

which the line segment was a curve. I had never seen something like this

before. Or to tell me that this circle is infinite, it has infinite points, it is

immense. This piqued my interest more and to tell the truth, I started then

searching about it at home and on the internet and I liked it more. I put the

book of geometry aside, I do not want to see it again in my life and I sat and

read something what I had not understood.

Thus the teaching of Hyperbolic geometry provoked students’ perception about

mathematics as a science of the absolute truth. Their involvement in this procedure

helped students perceive Mathematics as corrigible and as a creation under constant

negotiation, modifying thus their epistemological beliefs about mathematics and

provoked the dominant belief that Euclidean geometry is the only model which

interprets and represents our real world, shaking thereby other certainties.

Stefanos Certainly the plasticity of mathematics emerged and the way

mathematics are created and changed depends on the needs of the

mathematician, of the scientist and of the human being generally. It is

clear that mathematics is a complex notion, which is not restricted to

only one way of understanding reality. . .
Angela Finally there are and alternative views and we cannot say which is

absolutely right and which not.
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The Role of ICT and Drama in Education in the Project

Our research aim of the teaching experiment was exploring the dynamics of Drama

in Education Techniques in teaching Geometry in high upper school. The entire

teaching experiment included a number of activities that would give students the

appropriate knowledge for their presentations. We wanted the students through our

lectures, the work in teams, the study of the relevant bibliography, the study of

extracts from a book of “mathematical literature” and the use of new technologies

to understand the concepts and presenting them with various techniques of Drama

in Education.

Students’ Experiences Both from the responses we got in the semi-structured

interviews with the pupils, and from the observation during the whole process, it

seemed that the pupils were motivated within these expanded contexts, and that

they became cooperative through their engagement in new teaching practices.

Students referred positively to the whole project and highlighted its multimodality.

The following quotes are indicative:

Peter It was interesting, it was nice that we used in teaching many different

methods and tools, which prevented anybody to be bored. It was a row of

different things, it was theatre, it was a normal presentation by the

teacher, it was computers, even a radio broadcast. I think it is very

interesting; it just needs its time.

Giolena You know something, we had no problem, I personally had no problem

that you would tell us, “today we will do a radio show or we will go to

computers”. I just liked that you would come to do a different lesson,

instead of sitting on chairs and get bored.

Angeliki emphasizes the variety of teaching means in the project, which enabled

her to express herself by the one which suited more to her identity.

Angeliki As I have told you before, in Geometry class I was feeling boredom. But

in the project, even if it was a sketch, ok the sketch was not my best,

because you saw that I cannot talk, I have a problem, I knew that we

would read something new and then in computers it was very nice,

because although it was geometry we would learn something

interesting.

The enthusiasm and the interest of the students during the teaching experiment

were observed by their teachers -observers also in the teaching experiment- and the

researcher herself.

Maria M. (Greek

Language teacher)

I saw them (the students) enchanted. Because they were

creating.

Kostas K. (Greek

Literature teacher)

I was enchanted by the fact that I saw the children to be so

much interested.
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The researcher, from the observation and the video recording of students during

their work in groups and during preparing their presentations, she saw that the

students seemed full of vitality, talking to each other, explaining to each other,

teasing each other, laughing, having fun and in general developing important

communication.

Drama in Education Techniques From all these activities of the teaching exper-

iment, we wanted to identify those which most attracted students’ interest and

motivated them to work. So, in the interviews, we addressed the following question

to the students: “What was the most significant and interesting activity for you, in

the project?”

All the 15 students that were asked in the interviews, answered that the sketches

were for them the most important activity, what they liked most and were the

motivation for their active participation in the teaching experiment.

Chris I believe that the presentations were the most interesting part.

Tzina This was pretty nice, because when you just write it will not be very

different, because who will see it. But when you do a sketch is more

interesting, more beautiful. . .
Antonis the presentation for me, sparkled my interest. I think, it missed me

something like this, in Geometry class.

When we asked the students to present their thoughts, during the final discussion

reflecting the whole project, seven students also stressed that it was the happenings

with DiE techniques that impressed them the most, without justifying always their

opinion.

Mina For me, from all this, it was the sketches that I liked more.

Some of them stated that they liked the DiE techniques while they were not

interested in the subject of Mathematics.

Effie ... for me, mathematics is not the best subject, but I believe that in this way

the lesson became more interesting.

In the researcher’s question in the interviews: “In the project you could have

stopped after having participated in all other activities, till the writing the dialogues

of the sketches, but without performing them. Would it be the same for you?”

students’ answers highlight that what differentiated the “project” were the activities
with DiE techniques.

Sofia If we just studied or just wrote, we would have been bored to death and

even more.

Nicky [without the presentations] I do not think that anyone would be interested.

Vicky It was completely different than just writing stuff, from comprehending

something yourself and trying to pass it to others. It was very nice.
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Even Angeliki, the student who found difficulties in expression through theatre

techniques, replied that she was negative in non-performing.

Angeliki they were interesting, although I couldn’t.

We believe that this students’ choice is due to the liminal space created by the

DiE techniques, a space with blurry boundaries between learning and play, between

mathematics and art, between performers and audience, between imaginary and

real, between body and mind. This liminal space, which was a combination of

lesson and fun, in which students learned and enjoyed through playing, it supported,

according to students, the learning process.

Virgianna It was a combination of lesson and entertainment. . . In the project,

except that we cooperate, you can learn things without realizing

it. I was getting knowledge in such a way, it was as entertainment. It

was a perfect way for one to have a good time and get knowledge.

Petros recognizes the teaching in this context as a game or fun.

Petros All this dramatic, theatrical thing is like a game. Maybe this entertaining

form is missing.

Students, in the final reflection of the whole experiment, emphasized the feeling

of well-being which they felt during the project. The phrase “we had a good time,”

was something that was repeated continuously.

Zoe It was certainly something different. We combined Mathematics with other

subjects of the curriculum, as the Greek Language, we cooperated, we had a

good time.

Many students in the interviews repeat: “we had a good time” too.

Christos In the project, we are in groups, we had a good time, everyone

participated.

John It was a different experience. It was something new. We had a

good time.

In our question “What would a visitor have seen in our class during your

activities?” the students gave us an image of a class full of joy and energy,

highlighting that the whole process was beneficial not only at a cognitive but at

an affective level as well.

Giolena I think that an observer would see (in the class), that we had understood

what we had learned from you, and that he would see more joy,

teamwork, and not so much boredom.
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The teaching context with DiE techniques gave opportunity to students for fun,

humour, jokes and laughter contributing to students” well-being.

Vicky I liked all this, the way we did all this, with the theatre and the

cooperation and that we laughed and that the time passed too quickly,

i.e. I was looking at the clock and I was saying, “well how did the time

pass?” and I wanted more.

Nikoleta Initially it was more interesting than a common lesson, we laughed.

The students’ well-being in the teaching experiment, helped them get involved

in the learning process, in contrast with the typical class which usually caused them

boredom.

Gina It was very nice, it was something special and I agree with those who

previously said that the hour of mathematics that we made these sketches, it

was fine, because the time passes better and you learn more things, because

when it is a boring lesson you do not learn so many things or you do other

things, but when things are like this you get more.

The Role of ICT By observing students as they worked with computers and as

they completed their worksheets, we conclude the active participation of students in

the activity with computers. Students constantly played with the shapes, trying to

understand the new and strange to them geometry, with its different fifth postulate

and the different basic theorems. The students had heard about all these topics in the

teacher’s presentation and they had read in the book Flatterland, about the pro-

tagonists’ experiences from their visit in Platterland. All these, took a form through

the NonEuclid software. The interactivity of the software allowed them to design

their own basic shapes and, through the design of many of such schemes, to

discover that equality is not identical with congruence and that there are no squares

and rectangles as defined in Euclidean geometry. Their exclamations and conver-

sations were indicative for that finding.

In our teaching experiment we wanted to explore further, through interviews, the

views of students themselves about their experience with the activity on the

computers. From their replies, we see a positive approach to the use of applet

NonEuclid in the teaching of Hyperbolic geometry.

Giolena Perfect. I m not good at all with computers, I see a PC and I am afraid

that the keyboard will fly away, but this thing regarding Geometry, the

shapes that we were drawing lines, was top fun. I’m even considering

downloading it and sit alone and play with it.

Mina Fine, it was related with the technology, we are a technology savvy

generation.

Sofia Through the sketches and the use of computers we learned more things

than in a classical Geometry lesson.
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Only one student, Angela, showed her preference for the activity with com-

puters, having informed us that her wish was to study computer science and that she

didn’t like being exposed through theatrical techniques.

Aggeliki I liked this very much, it was my favourite among all we did. Especially

regarding Hyperbolic geometry and all in the plane of Platterland, it

was very interesting. With computers Mathematics can become more

creative.

We asked them then, if computers helped them understand the Poincaré’s Disk
and in this way they facilitated the creation of radio show.

Aggeliki Yes, because I got it. When the time came to say the text, I got what it

was all about, therefore it was easier to do so, even though I didn’t
remember what the exact script was. If I didn’t understand the text,

I would have to memorize the text, whereas now that I understood what

the text was talking about I could change things around.

Aggelikiwho had stated that it had difficultieswith geometry due to the shapes “It’s
the shapes, I can not manage with so many lines”, in this activity with the computers,

she dealt and understood many different shapes, “Perhaps”, as she added, “because it

was something different and new. In geometry we do the same things, so many years

now, while with computers it was different, I had not seen this things before”.

Mina believes that new technologies helped her understand the text of

Platterland, expressing at the same time the complaint that this does not happen

in their daily lesson of geometry.

Mina But that was only about Platterland, in our daily lesson about Euclidean

geometry, we didn’t do nothing.

Finally we had two responses from students, which stated that the computers did

not help them in understanding the concepts.

Gina . . . most of the things, I understood them by the story, not by the

computers.

Tatiana The computers, I had forgotten them. They left me nothing. It was

interesting that we did, I had never done something like this before, but

I’m more with the arts.

Concluding Remarks

In this chapter, we presented an example of creating a specific space in geometry

class –a space formed by a mediating tool different than those used in traditional

teaching of geometry. It seemed that this space, a liminal space, inspired students to
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actively engage in the learning process and acquire complex mathematical con-

cepts, such as that of the foundation of an axiomatic system. Students experienced

how hyperbolic geometry is axiomatically founded and how basic axioms and

definitions can lead to different and sometimes contradictory results regarding

Euclidean geometry. The students’ contact with a non-Euclidean geometry was

an opportunity for them to renegotiate the basic concepts of Euclidean geometry –

as a geometry and not as “the” Geometry—and gain a deeper and more holistic

understanding of geometry. Their contact with this geometry enabled them to

appreciate the liberation of geometry as a science that tries to describe the spatial

properties of the world we live in and contributed to the creation of an image of

Geometry as an interesting curriculum subject.

We believe that the most important factor of what it was achieved, was the

multimodality of teaching, the utilization at the same time in mathematics class-

room, both of new technologies and of DiE techniques. The analysis of our research

data suggests that ICT and DiE helped for the mathematical knowledge to be

developed in a class of high school students who were involved actively and

effectively. More specifically, ICTs have helped students visualize the Poincaré’s
Disk and through it understand key elements of Hyperbolic geometry, while Drama

offered students the motivation for a dynamic learning through the rich experience

that involves body, feelings and senses. In this liminal space, created by DiE

techniques, with the blurry borders –classroom/non-classroom–, our students in a

collaborative framework addressed mathematical concepts –geometric concepts–,

wrote texts and they performed them, pretending roles, experiencing mathematics

in terms of aesthetics, humour and emotions.

This space, as it was open to an emotional, physical and intellectual engagement

of students, inspired students’ greater participation in mathematical thinking and

expression and led them to a deeper understanding and appreciation of mathemat-

ics. In this space the use of interactive tools, as java applet, for the exploration of

non Euclidean spaces showed us clearly how ICTs can allow students to experience

worlds that otherwise would not be accessible.
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Improving the Teaching of Mathematics

with the Use of Technology: A Commentary

Sixto Romero

Abstract Current trends in mathematics education have emphasized the impor-

tance of using technology as a means by which students can work in other “pencil

and paper” environments and can draw conclusions that will benefit them in the

learning process. The non-use of new technologies may prevent the achieving more

ambitious goals. The aim of the four chapters presented by Sabena, Lobo da Costa

and co-authors, Hitt and co-authors and, Kotarinou and Stathopoulou is to show

how the use of technology can help in the teaching and learning of mathematics,

provided that process is well directed by the teacher.

Keywords Algorithm • Learning and teaching • Mathematical model •

Mathematical task • Spatial competence • Sociocultural context • Technology

Introduction

In chapter “Early Child Spatial Development: A Teaching Experiment with Pro

grammable Robots”, Sabena presents the development of spatial skills in young

children inspecting the educational capabilities provided by programmable robots.

In chapter “Mediation of Technological Resources in Lessons on Polyhedra: Anal

ysis of Two Teaching Actions”, Lobo da Costa, Pimentel and Mendonça, through

the mediation of technology resources prepared in geometry class, allow a greater

understanding of the shares in the T/L a process through reflective practice teacher

as a fundamental agent management framework that needs the reported activity.

Hitt, Saboya and Cortés, in chapter “Task Design in a Paper and Pencil and

Technological Environment to Promote Inclusive Learning: An Example with

Polygonal Numbers” analyzing the design of mathematical tasks in a collaborative

environment (the teaching method ACODESA) propose a methodology in which

individual and social approaches are envisaged in the construction of mathematical

knowledge. Finally Kotarinou and Stathopoulou present the axiomatic definition of

Hyperbolic geometry through the Poincare model as an introduction to
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Non-Euclidean geometry developed abstractly from the set of knowledge that

emerged in the study of Euclid’s fifth postulate.

Comments on Chapter “Early Child Spatial Development: A

Teaching Experiment with Programmable Robots”

As a first comment on the contribution of Sabena, it is necessary to reflect on the

concept of space. It appears as a fundamental skill that accompanies the develop-

ment of cognitive skills throughout the growth of children. In every stage of

development, it is essential to know who we are and what our role in life is. It is

important to note that when we lose consciousness the first thing we ask is: “Where

am I?” because knowing who we are, where we are, at what stage of our existence

we are, are the three basic issues allowing the contextualization of our own

existence notions.

Even if it seems logical and natural for adults to evolve in space, the question of

the development of the concept of space is an important issue for the learning

process in the first stage of the life (Romero 2000).

For Piaget, acquiring the spatial notion is intrinsically linked to the acquisition of

knowledge, and it is through this knowledge that the child’s development begins at

an early age. “The existence of multiple perspectives relating to various individuals

is therefore already involved in the child’s effort to represent space to himself.

Moreover, to represent to himself space or objects in space is necessarily to

reconcile in a single act the different possible perspectives on reality and no longer

to be satisfied to adopt them successively” (Piaget 1954).

The notion of space (Parzysz 1991) can only be understood in terms of the

construction of objects, and would need to begin by describing this to understand

the first: only the degree of objectification that the child attributes to things informs

us about the degree of externality according to the space. This cognitive beginning

is enriched as the child grows and learns about space. For Craig (1995): “...

knowledge of spatial relationships is achieved during the preschool period. This

is logical because it is the age at which learning concepts like: inside, outside, near,

far, up, down, above and below . . .” (p. 394).
Piaget dedicated two volumes to study the development of spatial knowledge,

based on performing a large quality of different experiments. In 1947, in collabo-

ration with Inhelder he writes “The representation of space in the child”, and deals

with how ontogenetic development arises in topological relationships, projective

and Euclidian. In his second work, in 1948, with Inhelder and Szeminska (“Spon-

taneous geometry in the child”), he studies the genesis of Euclidean geometry, that

is, the conservation of length measurement, as well as surface and volume.

Based on the psychological work of Piaget, Inhelder, Lucart and Vygotsky, as

well as on the didactical approach of Arzarello, among others, Sabena supports the

hypothesis that the reality in early childhood is full of different spatial cognitive
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aspects and requires different specific skills that must necessarily be related. She

focuses on the development of spatial competences of children, and explores the

educational potential offered by programmable robots. Cognitive aspects are in the

first plane and in particular the delicate relationship between space (Hershkowitz

et al. 1996) and everyday experience versus space as a mathematical notion.

Analyzing Sabena’s experiment, it occurs that mathematics teaching with tech-

nology has to deal with a set of scientific and technical knowledge. Throughout the

last century it gained increasing importance in everyday life as well as in the

development of modern society. Teacher training in mathematics education

requires relatively specific attention to the acquisition of knowledge. In general,

educational programs with different materials (providing structured information to

students by simulating phenomena) offer an environment more or less sensitive to

the circumstances of the students’ work, and especially, more or less rich in

possibilities for interaction among young children; but all of these share essential

characteristics:

• They use the material as a support in which students perform the activities.

• They are interactive, immediately responding to the students’ actions and per-

mitting dialogue and exchange of information between the material used and the

child.

• They can identify the children’s work and adapt to their rhythm and activities.

They are easy to use because a minimum of knowledge is required to perform the

tasks (De La Fuente 2010). Thus, the author of this chapter emphasizes that high-

tech gadgets surround today’s young people and hardly attracted by simple mech-

anisms. Robots represent a technological element of great attraction to be very close

to the type of devices that they use daily. Robotics is a branch of the scientific and

technological knowledge that studies the design and construction of machines

capable of performing repetitive tasks, where high precision is needed, dangerous

work for human beings or unrealizable tasks without intervention of a machine. In

the work of Sabena (“Early Child Spatial Development: a Teaching Experiment

with Programmable Robots”) the spatial development of skills shown by exploring

the educational potential through programmable robots, places value on how the

experience with a robot has influenced the children conceptualization of the concept

of space.

Comments on Chapter “Mediation of Technological

Resources in Lessons on Polyhedra: Analysis of Two

Teaching Actions”

The theoretical framework of Lobo da Costa, Pimentel and Mendonça’s work is

based on Zeichner and Serrazina’s ideas. It is a very attractive example in which the

mediation of technological resources used in geometry classes is studied;
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particularly for dealing with three dimensional solids like polyhedral, prisms and

pyramids, in elementary school.

As a reflection and following the scheme of the previous chapter, it is necessary

to indicate that the presence of technology in education is no longer a novelty but a

reality (De Lange et al. 1993). The contexts of the teaching-learning have changed

their single appearance in the classroom, at least materially. The main issues are the

new mathematics education processes and the way to involve all the agents (Fig. 1).

Having high expectations of the technological means, giving it potential for the

treatment of information, should not prevent assessment and reflection on the

ability to transform information. The objects are not simply the media or technol-

ogy (NCTM 2000). The objects of evaluation and reflection are the active agents

involved, and the contexts of teaching and learning we designed and put into

practice and, ultimately the use of technological resources for the generation of

knowledge. The ending aim is always education.

Research presented by Lobo da Costa, Pimentel and Mendonça analyses the role

of technological resources in the geometry classroom, specifically that which is

based on the concept of polyhedral. The mathematical content, practice and tech-

nology used during the experience are presented in detail. The categories analyzed

were the class routines, interactions with students in order to see how the mathe-

matical content was developed and the technology used.

They emphasize that, according to Serrazina and Oliveira (2005), teachers, in

order to manage better their time should be responsible for the activities, contents

and class organization proposed to students. Activities imposed by the teaching

staff or by the central bodies of education are not always well received by teachers.

A literal reproduction of what is stated in the recommendation to students in order

to meet the curriculum planned and imposed by academic authorities is mainly

observed in both groups of this experimental study, with few time spent in manip-

ulations and collective discussions.

It is important that the authors of the study do not compare mediations, since

they are linked to confirm the personal characteristics in the way in which techno-

logical resources were used. However, from the analysis of the incidence and

mediation of technology resources that teachers use, they conclude that the main

Fig. 1 Relation between

the different actors in a

process of teaching
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features are: the reality of the classroom, the student interest, the number of students

per class, the breach in prior knowledge of the students, the need for compliance

with the prescribed plan of studies and the time available; and these will be

considered as factors that interfere in the mediation.

The presented experience, as Volkert (2008) points out, shows the intrinsic

difficulties of solid geometry impeding the introduction of systematic teaching.

Solid geometry is much more complicated than its homologue on a plane. Also, the

problem of intuition and evidence is far more complex and problematic in Solid

geometry. So the history of Euler’s theorem is a very good illustration of this theme.

These difficulties can be taken together with others like for instance, in secondary,

spatial geometry is relegated and in some cases completely absent.

We can emphasize that in the chapter developed by Lobo da Costa, Pimentel and

Mendonça the use of physical objects, models and figures is the main tool for

teachers to help students understand the geometric concepts, hence the ability to

display (or spatial imagination) is imperative to learn geometry. The display is very

useful in any area of mathematics and especially in the field of geometry. The

teaching of elementary geometry has always been based on intensive use of objects,

figures, diagrams, charts, etc. to help understand the concepts, properties, relation-

ships or formulas studied. Thus, as indicated by Hershkowitz et al. (1996), geom-

etry appears to students as the science that studies the physical space and the

convenience of using graphical representations to help the understanding of geo-

metric concepts extends beyond elementary Euclidean geometry as developed by

Kotarinou and Stathopoulou in chapter “ICT and Liminal Performative Space for

Hyperbolic Geometry’s Teaching”.
As a personal opinion based on the experience I have accumulated since 1975,

by collaborative work with teachers from different levels of education, the almost

complete unanimity among mathematics teachers that adequate display capability

is an essential tool for geometrical learning that is rarely accompanied by a

reflection on the learning processes of visualization. This is not an innate ability

that can be let develop spontaneously, but a model is necessary, as the display is a

complex activity in which several elements are necessary to be understood and

learnt in order to be used.

Comments on Chapter “Task Design in a Paper and Pencil

and Technological Environment to Promote Inclusive

Learning: An Example with Polygonal Numbers”

The third chapter started by making a first reflection on problem solving as a way to

mathematical modeling. The research in Mathematics Education has focused its

attention for some time on designing activities based on mathematical modeling of

real situations, with the conviction of obtaining greater assurance in profit by our

students of mathematics learning, and therefore teaching. One of the most complex
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problems that education faces in different educational levels where the teaching of

mathematics is concerned relates the way of articulating the contents with other

areas of knowledge and even with mathematics in itself.

For our students, most content organized into topics are disconnected from the

real world and science applications, as a consequence this means that they do not

conceive the utility of mathematics in their training. In recent years, research in

Mathematics Education realizes that one of the striking issues is the design of

activities based on the modeling of real situations. In many countries and in

different conditions, its inclusion in the curriculum has allowed the development

of diverse types of cognitive capabilities, metacognitive and crosscutting to help

understanding the role of mathematics in today’s society (Aravena and Caama~no
2007; Blomhoj 2004; Keitel 1993). Therefore, today’s society must provide the role

to deal with problem solving, make estimates, and take decisions, and face a

mathematization of culture and the surrounding environment. That is, modelling

mathematics is tending to promote understanding (Niss 1989) of the concepts and

methods, thus allowing a more comprehensive overview of mathematics.

Over the course of history, mathematics has occupied a prominent place in

school curricula. It has achieved this prominence, not because of the importance

in itself but for cultural and social reasons.

We collect the idea of Jean Pierre Kahane, French mathematician and professor

emeritus at the University Paris Sud Orsay, a former student of the Ecole Normale

Superieure, and member of the Academie des Sciences (mathematics section) since

1998 when he asserts:

the reflection on the teaching of mathematics is done from all angles, from all status: it can

be from the daily work in the classroom, difficulties of teachers and students of all

educational levels. It can be done through a detailed examination, test study; or extra-

curricular activities, the gymkhanas, rallies, competitions, olympics, ultimately all mani-

festations of animation and diffusion of mathematics; or the role and evolution of the

mathematical sciences in the whole of science and society. (Gras et al. 2003, p. 5)

As in France, in many countries, teachers grouped or not in Societies of

Teachers, Editors of publications in Mathematics Education have taken initiatives

in order to make proposals and initiatives in the field of Problem Solving and

Mathematical Modelling (Romero and Romero 2015) to improve the binomial

teaching/learning of mathematics. Problem solving has a long tradition in mathe-

matics. George Polya considered Euclid’s Elements as a collection of problems

(a sequence of statements and solutions). Together with Gabor Szeg€o, he produced
under the title of Exercise Analysis, a collection graduate of problems.

The authors, Hitt, Saboya and Cortés, utilize problematic situations in the

sociocultural context of mathematics class that requires careful design to develop

skills in the classroom, promote diversified thinking and achieve a balance between

the pencil, paper and technological activities referred to in the theoretical frame-

work of the activity (Balacheff 2000). The ACODESA methodology presented in

the chapter differs in five main phases (Individual work, Teamwork on the same

task, Debate, Auto-reflection and Process of institutionalization), and the design of

the activities under this perspective and with the use of technology is not a trivial
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task in the mathematics classroom. A comprehensive work to develop the activity

and the details that need to be provided to present a complete vision of the activity

need a significant space that is not always available in a research context. Deficient

communications in all aspects involved in the development of problem solving

activities makes it more difficult for teachers to follow those activities.

In the design of tasks, they are taking into account Arcavi and Hadas (2000)

suggestions; based on a Dynamic Geometric System that stands out for the elements

of visualization, experimentation, surprise, evaluation, need testing and demonstra-

tion, as key elements of the analysis detailed. Also, the prospect of collaborative

work (Prusak et al. 2013) allows for the design and creation of tasks (Kieran et al.

2015), suggesting problematic situations that enrich the visualization of the prob-

lem (Fig. 2).

The authors present very appropriate examples. The use of the concept of

triangular number as one that may be in the form of an equilateral triangle with

other figurative numbers were studied by Pythagoras and the Pythagoreans, who

considered sacred 10 written in a triangular shape, and they called Tetraktys.

The dynamism presents examples, related to:

• Visualizing information through a numerical approach.

• Find a generic pattern.

• Affirm that generally the tasks of connecting the different representations of a

concept, is not considered by many teachers as fundamental in the construction

of mathematical knowledge and, in particular teachers minimize the task of the

conversion among representations.

Hitt et al., proposed that the task of the conversion, among representations,

would enable the development of mathematical visualization processes. This visu-

alization has to do with mental processes and transformation productions on paper,

on the blackboard or on the computer, generated from a reading of mathematical

statements or graphics, promoting the interaction between representations for a

better understanding of mathematical concepts involved.

In conclusion, the tasks and the methodology proposed by the authors of this

chapter “Task Design in a Paper and Pencil and Technological Environment to

Promote Inclusive Learning: An Example with Polygonal Numbers” inculcate in

students the learning of mathematisation, defined as problem solving that triggers a

process of:

Fig. 2 ACODESA method

of teaching, seeing the

individual in a social

context of learning
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Identification of relevant mathematical concepts and then progressively simplify reality in

order to transform the problem into one susceptible to locate an a mathematical solution ...

by finding regularities and patterns, [. . .] It need to use various competencies for

mathematisation task. (OECD 2004, pp. 27, 28 and 29)

Comments on Chapter “ICT and Liminal Performative

Space for Hyperbolic Geometry’s Teaching”

A teaching experiment about axiomatic foundation of Hyperbolic geometry and its

basic notions, using ‘Drama in Education’ conventions to motivate and actively

engage all of the students, is presented in this chapter “ICT and Liminal Performa

tive Space for Hyperbolic Geometry’s Teaching”. The fundamental purpose of the

work presented by Kotarinou and Stathopoulou, using, as a case study, the intro-

duction of Hyperbolic geometry through the Poincaré model, is to show that the

creation of new problematic situations with the use of technology allows more

dynamic teaching of geometry in the classroom, improving understanding.

It is interesting to know the theoretical framework in which the activity is

presented by the authors. There are many comparisons between Euclidean geom-

etry and Hyperbolic. For example, it could well be that Hyperbolic geometry was

actually true in our world cosmological scale. However, the proportionality con-

stant between the deficit angle and a triangle area should be extraordinarily small in

this case, and Euclidean geometry would be an excellent approximation to this

geometry for any ordinary scale. In the Poincaré model H2, all the hyperbolic space

is represented in a disc of the radius, r ¼ 1. The edge of the disc represents the

infinite. Within the disk all the postulates of Euclid are satisfied except the 5th (the

parallel postulate):

1. It can draw a straight line through two points.

2. It can prolong a straight line indefinitely from a finite straight line.

3. You can draw a circle with given center and known radius.

4. All right angles are equal.

5. If two lines are drawn which intersect a third in such a way that the sum of the
inner angles on one side is less than two right angles, then the two lines
inevitably must intersect each other on that side if extended far enough.

In H2 the sum of the internal angles of a triangle is lower than 180. More

surprisingly, two lines with different directions may be parallel. Poincaré model

to visualize these aspects of Hyperbolic geometry, but being all the space within a

disk, the lines are righteous actually are perceived as curves (hence they are called

“Geodesic”). And the metric that allows us to measure distances within the

Poincaré disk is not Euclidean. These ideas can be shown and manipulated in a

relatively easy way with the use of appropriate software. The time spent by students

working with computers is really very important for the visualization, recognition
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and exploration of a non-Euclidean geometry, a geometry that is not in our daily life

(Fig. 3).

Kotarinou and Stathopoulou point out that students who carried out the experi-

ence came to understand the principles of Hyperbolic geometry through the

Poincaré model with the analysis of worksheets. The experiment shows that most

participants adequately responded to most of the issues of the circle (the center and

its rays), the apparent decline in segments of specific length and the sum of the

angles of a triangle. Some students gave further explanation of certain phenomena

especially those who had read the book Flatterland, discussed in a previous class

period, but not accessible to many. Therefore, it is important to note that the

implementation of Hyperbolic geometry in the Poincaré model are useful for the

following concepts:

• The hyperbolic space H2 is a disk of radius, r ¼ 1, centered at the origin in the

Euclidean plane R2, called Poincaré disk.

• The points in the hyperbolic space H2 are points in the Euclidean plane that are

within the Poincaré disk.

• The lines passing through two points in H2 are Euclidean circles passing through

two points on disk and are orthogonal to the Poincaré disc.

• The lines passing through the origin (i.e., the center of the Poincaré disk) are

circles of radius r ¼ 1, they are Euclidean lines.

• The angles are Euclidean, the measure of angle formed between two geodesics

(hyperbolic lines) is the angle between the tangents of the circles at the point

where they are intercepting.

• The inversion of a point on the circle is an isometry (preserves angles and

distances) and is interpreted as the reflection of a point in a hyperbolic line.

It should be noted as very positive the use of ICT (interactive Java) by students to

display the model of Poincaré (axioms and basic concepts of non-Euclidean

geometry), thus creating an interactive environment, ultimately providing a new

tool in teaching the axiomatic basis of hyperbolic geometry. The working group of

Fig. 3 Transformations in Poincaré’s disk (https://rastergraphics.wordpress.com/2012/06/27/

geometria-hiperbolica-disco-de-poncare/)
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students with worksheets, exploring the Poincaré’s model has enabled them to draw

points, lines, segments, angles and lines perpendicular to a given line. Thus writing

the comments on the construction of cycles, line segments of equal length and

measuring sides and angles of a triangle has allowed students to understand the

axiomatic basis of Hyperbolic geometry in an enjoyable manner, creating a relaxed

environment and satisfaction in students. This chapter presented by Kotarinou and

Stathopoulou is interesting because the experience presented deals with a new

practice leading to new paradigms and new tools with new technologies that have

helped the process of students’ visualization and therefore the understanding of the

geometric concepts presented (Gutiérrez 2006).

Conclusion

First, it can be concluded from the above Chapters of Sabena, Lobo da Costa et al.,

Hitt et al., and Kotarinou and Stathopoulou, that if the conception of the role of the

teacher is close to traditional transmitter and organizer of knowledge and practical

activities, where visualization is rarely used in the classroom, the assessment will be

related to working methods explained in class, impeding autonomy of the students.

Enquiries from Presmeg (1997) identifying various types of mental imagery is

used by students to solve mathematical problems. The most commonly used in

geometry are:

– Concrete images (pictures in the mind): figurative mental images of real objects.

– Kinetic images: mental images associated with muscle activity as a movement of

a hand, head, etc. For example, when a student, describing a figure with parallel

segments, places the hands stretched parallel and moves them up and down.

– Dynamic images: mental images in which the displayed image (or any of its

elements) is a moving object. Unlike the kinetic images, these images do not

provoke physical movement, but are only displayed in the mind.

For his part, Bishop (1989) describes two processes taking place when using

images:

– Interpretation of figurative information: the process that takes place when trying
to read, understand and interpret an image to extract information from it.

– Visual information processing: the process that takes place when converting

non-visual information in images, or transforming an image already formed into

another image.

The experience at different levels of education (Blomhoj 2004) shows that the

treatment of theoretical aspects can be a tool for the practice of teaching problem

solving as a path to mathematical modeling. The role played by teachers and

researchers in mathematics education should perform interesting work in many

mathematical domains such as, for instance, problem solving, almost unexplored in

the Primary and/or Secondary school (Romero and Castro 2008), which can
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produce in an original and creative way, activities enriching the process of teaching.

Many of these domains can be planned so that they can become powerful generators

of important skills, not only mathematics but crosscutting, number theory, graph
theory and optimization theory chaos, topology, data processing, coding theory and
cryptography, fractals mathematical models, or competences presented by Sabena,

Hitt et al., Lobo da Costa et al., and Kotarinou and Stathopoulou.

As a final comment related to learning objectives, it is necessary:

– To analyze, to delve into the research methods in mathematics: particularization,

finding general laws, building models, generalization, using analogies, conjec-

tures and demonstrations, among others.

– To use mathematical models for the mathematization of reality and problem

solving (Romero et al. 2015); experiencing their validity and usefulness, criti-

cizing limitations, improving them and communicating findings and

conclusions.

Moreover, when asked to bring the issue to the classroom, we must be explicit

regarding the educational goals we are demanding:

(a) To practice problem solving as the most genuine activity in any specific field of

mathematics, where the technology can be an impressive and a fantastic aid.

(b) To bring the students to approach mathematical knowledge, prioritize and solve

challenges, search for explanatory models, inquiry and discovery.

(c) To tackle the aspects of the creation process and/or detection in mathematics we

must focus on bringing into the classroom in order to achieve the educational

goals we have set ourselves (Watanabe and Mcgaw 2004).

What the teacher says in class is not unimportant, but what students think is a thousand

times more important. The ideas must be born in the minds of the students and the teacher

should act only as a midwife. This principle is based on let the students discover by

themselves as much as feasible under the given circumstance. (Unknown, http://

lovelypokharacity.blogspot.com.es)
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Domains of Manipulation in Touchscreen
Devices and Some Didactic, Cognitive,
and Epistemological Implications
for Improving Geometric Thinking

Marcelo Bairral, Ferdinando Arzarello, and Alexandre Assis

Abstract In this chapter, we discuss the results of a research project which

investigates aspects of students’ cognitions during the process of solving tasks

dealing with a Dynamic Geometric Environment with touchscreen (DGEwT). In

this chapter, we discuss data from two teaching experiments carried out with

Brazilian and Italian high school students dealing with GeoGebraTouch (GT) and

a Geometric Constructer (GC) software. With the focus on strategies used by

students to solve the proposed tasks, we suggest two domains: Constructive and

relational. Furthermore, we suggest the drag-approach as an important form of

manipulation to improve geometrical thinking. Finally, we present a selected

variety of representative examples of didactic, cognitive, and epistemological

implications for learning and researching with the use of DGEwT.

Keywords Mobile devices • Manipulation on screen • Sketchometry • GeoGebra

App • Geometric Constructer

Introduction

The significance of the gesture in supporting mathematical reasoning in a techno-

logical context is an emerging field of research in mathematics education, partic-

ularly in the interaction with touchscreen learning devices. As a past improvement,
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we have had a first shift from paper-and-pencil to dynamic geometry environments

which include drag-and-drop activities (e.g. Cabri Géomètre, Sketchpad, etc.).

Today, we experience a further shift and continuous improvements with the tran-

sition to multi-touch environments (e.g. Geometric Constructor, SketchPad

Explorer, or Sketchometry) that allow a variety of simultaneous finger actions.

The emergence of multi-touch devices provides new insights as well as chal-

lenges in mathematics learning and instruction. For instance, simulating rotation

and other kinds of rotating movements on screen are made possible by means of

touchscreen devices (Bairral et al. 2015a). Due to the fact that students and teachers

become increasingly familiar with multi-touch technology and manipulation, we

believe that looking for types of manipulation can provide new epistemological

insights in regard to the geometrical conceptualizing through the application of

touchscreen devices.

We recognize the touchscreen manipulation as a human action: embodied and

multimodal. It can also reveal the mathematical thinking of learners while working

on tasks with multi-touch devices. In this chapter, we illustrate some strategies used

by students who applied rotation actions in order to solve tasks on GeoGebraTouch,

or by students who dealt with the Geometric Constructor software to solve a

Varignon Theorem task.

Interaction, Motion and Geometric Learning with DGEwT

With the focus on the user, there are differences between handling a usual PC –

where dragging is produced with the help of a mouse – and making use of the touch

screen of a tablet – where they can use their fingers in order to move figures.

Additionally, it makes a difference whether users can use more than one finger – as

in multi-touch environments – or only one finger. In this section, we reflect on how

we dealt with these singularities theoretically.

Interaction on Touchscreen Devices

To click the mouse or to touch a screen are increasingly common routines of our

daily lives. Each form of such handling implies different sensory perceptions; (the)

sensitivity differs whether one uses a wired or wireless mouse, touches the screen of

an ATM or that of a cell phone.

With the focus on their usage, environment mobile touchscreen user interfaces

employ a specialized interaction model. The interaction of current mobile

touchscreens, for example, is based on the computer’s recognition and tracking of

the location of the user’s input on the display.

Adopting an embodied cognition perspective in our research, we highlight

reciprocal connections between touchscreen manipulation and cognition. Contrary
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to what happens by in clicking, manipulating touchscreen interfaces implies a

continuity of action, such as the spatiality of the screen, the simultaneity as well

as the combination of movement, and – depending on the resource device – the

response speed of the device. The following picture depicts one student’s gestures
who tried to explain one of the properties of the isosceles trapezoid (Bairral and

Arzarello 2015) (Fig. 1).

The student uses his hands to represent the two sides that are not parallel.

Although the picture does not show manipulation on screen, it describes specific

configurations and actions of the fingers performing an action (Sinclair and Pimm

2014) with the construction made.

When we manipulate the screens of our devices by means of touchscreen

technology, we perform a set of movements. These movements are not necessarily

gestures such as signs or expressions of joy, silence, or doubt. Some of the

manipulations that we perform induce specific mathematical cognition, for example

when we want to enlarge or reduce the size of a picture with the help of an image

editor (e.g. Paintbrush), or by means of touchscreen manipulation.

On such occasions, we either pull the image diagonally, upwards, or downwards;

or we click on one of its vertices, so both dimensions – width and height – are

reduced or enlarged proportionately. In case that we do not perform this type of

movement, i.e. if we manipulate only one dimension, the result will be a deformed

image.

Nevertheless, although all these manipulations are based on the same mathe-

matical concept (the method of the diagonal as a way to generate similar figures),

they are not necessarily of the same value with respect to cognition (the action of

enlarging without deforming), epistemology (the simultaneous changing of differ-

ent elements of the shape, e.g. points, sides, angles, areas, etc.), or space (work and

manipulating area on the screen).

In order to guide our analysis of this process of embodiment expression, we can

find support in Damásio (2010) for whom “also the most stable aspects of bodily

function are represented in the brain, in the form of maps, thus contributing with

images for the mind” (p. 39). Damásio further states that “Complex brains like ours

naturally create explicit maps of the structures that make up the body, with a greater

or lesser degree of detail. Inevitably, the brain also maps the functional states that

are naturally taken up by these corporal components” (Idem, p. 119).

Fig. 1 Student’s
construction and

embodiment reflection on

GC
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We could argue that the brain mapped the fact that the touchscreen device is

going to enlarge the figure or that a soft and quick lateral touch will make the screen

slide to one side. The size of the screen, or the user’s familiarity with it, can have an

impact on the ways of manipulation. This is the spatial dimension, i.e. the screen

handling and interaction area (Tang et al. 2010).

In case of the widening of an image by means of clicks, the shape illustrated in

Fig. 2 (a and b) involves the actions of selecting, clicking and dragging on a point.

When we touch the screen with only one hand (Figs. 2c and 3a), or both hands

(Fig. 3b), on the screen, we map a specific area on the screen. Even in case that

manipulation is done in order to see specific, punctual details of an object on the

screen, the movement of this second action involves a simultaneous manipulation

of dots.

Still, in regard to the enlarging of an image, although the simultaneous manip-

ulation with two fingers (Fig. 3a) is the most usual, the second enlarging strategy

(Fig. 3b) also follows the cognitive orientation structure of moving in a diagonal

direction.

In the same way that simultaneous touchscreen manipulation of points on the

screen brings about implications of an epistemological order, it also makes our

cognitive structures more complex, for example through the simultaneous move-

ment of various elements (e.g. angles, sides, area, etc.) in a figure. These move-

ments will depend on the performance – the response speed – of each device

(Bairral et al. 2015a, b, c).

Ways of Manipulation on Screen

Most current tabletop interaction techniques rely on a three state model: contact-

down, contact-move, and contact-up – more akin to mouse dragging (Tang et al.

2010). In other words, interaction occurs in response to two dimensions of the input

action (Yook 2009; Park 2011). This enables some basic or active finger actions for

input such as tap, double tap, long tap (hold), drag, flick, and multi-touch (rotate).

They are summarized in Table 1.

Fig. 2 (a) Illustration of an enlargement in a drawing program; (b) Distortion in a drawing

program; (c) Enlargement through sliding on the screen (Bairral and Arzarello 2015)
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Manipulation – as a basic action – refers to a designated closed motion that

occurs in response to the user’s input, e.g. scale, flip, move, or push. Open motion

occurs in relation to the user’s input by reflecting the spatial and temporal quality of

the finger action. In relation to geometrical thinking that we observed on students

who were dealing with DGEwT, we named the basic action as constructive domain

and the active action as relational.

After interpreting and using Yook’s (2009) framework, which identifies each

type of touchscreen in relation to geometrical thinking throughout the proposed

tasks, we provide a scheme that includes another alternative to the drag approach

and three further options for the rotating action (Fig. 4).

Due to the nature of the geometrical proposal, we identified that touches of the

relational domain were predominant, while touches such as drag free, flick, or rotate

occurred only a few times.

Regarding the usage of single or multi touch fingers, we observed (Arzarello

et al. 2014; Assis 2016) that students manipulated the figures using mainly one or

two fingers only (Tang et al. 2010). Due to the fact that they occasionally worked in

Fig. 3 (a, b) Sliding on the screen to enlarge with two fingers (Source: Google picture)

Table 1 Yook framework quoted by Park (2011, p. 23)

Action Type Motion

Basic Refers to tap and hold which are the basic ways of interacting

with a touch interface

Tap

(single)

Closed

Tap

(double)

Hold

(single)

Hold

(multi)

Activea It is a combination of the basic action and the performed finger

action, which includes drag, flick, free, or rotate

Drag Open

Flick

Free

Rotate
aAccording to Yook’s (2009) framework the four active actions can be associated to multi hold

manipulation
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pairs, it occurred that students also shared fingers (e.g. they used one finger each) or

hands to manipulate a figure. This especially occurred when the shape had multiple

geometric objects or constructions.1

The dominant approach was dragging. The usage of rotating appeared a few

times; those appearances differed in a way that allowed us to distinguish three

different ways of rotating which are illustrated in the scheme below. For example,

we observed students doing rotation into some shape. We are of the opinion that

looking for different types of manipulation provides new epistemological insights

on the geometrical conceptualization within the use of touchscreen devices.

Even though we are not only looking for alternative kinds of touch that represent

mathematical concepts (e.g. rotation), we agree with Boncoddo et al. (2013) that a

particular way of manipulation may serve as an important function of grounding

mathematical ideas in bodily form which may communicate spatial and relational

concepts. Specifically for geometrical thinking – inspired by Hostetter and Alibali

(2008) – we consider it important to stress that in touchscreen devices manipula-

tions are based on visuospatial images: linguistic factors influence gestures, and

ways of touchscreen manipulation can be regarded as intentional communications.

Performing Rotation on Touchscreen Devices

Although rotating appeared only a few times, these appearances allow us to

distinguish three different kinds of rotation while working with a Geometric

Constructer (GC) multi-touch device (Arzarello et al. 2013, 2014): rotation using

one finger; rotation using two fingers, but one of the two fingers is fixed: and

rotation with two fingers, with both in movement, as it is illustrated in the schemes

below (Fig. 5).

Fig. 4 Ways of manipulation on DGEwT (Arzarello et al. 2013)

1To see this kind of motion, please download the video: https://youtu.be/qC-G96NssJk
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In the above table (Table 2), we illustrate each kind of rotation by relating them

to the geometric process that was applied in order to solve the task with the help of

the Geometric Construct software.

Although the first two types seem equal on mathematical terms, we are of the

opinion that – cognitively – they can provide different insights in regard to the use

of the fingers. In order to grasp the fingers actions conceptually, we need to

determine the centre of rotation individually in each point that we are about to

rotate. With the use of two fingers, this cannot not be done beforehand.

Fig. 5 Ways of rotation on GC or on GeoGebraTouch

Table 2 Examples of students’ rotating on GC

Rotation types using

GC Example Geometric process

Rotation using one

finger

Student constructs and moves

the selected point with the index

finger

Rotation using two

fingers, but one of the

two fingers is fixed

Student keeps index finger fixed

and moves the middle finger to

observe what happens

Rotation with two fin-

gers (both in

movement)

Student selects two points and

rotates the shape

Arzarello et al. (2014, p. 46)
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Following this idea, this kind of finger movement results in new concepts in

regard to the way we deal with rotation. Following the same idea, we agree with

Sinclair and Pimm (2014) that this type of manipulation – two fingers in movement

– involves contact with a screen and perform an action. Due to the fact that mobile

touchscreen devices provide a wider range of freedom with respect to manipulation,

we conclude that this particular kind of rotation may serve as an important function

in order to ground mathematical ideas in bodily form. It may also reveal spatial as

well as relational concepts (Boncoddo et al. 2013) in the field of plane

transformations.

To investigate on manipulation on screen, especially if it is the case that students

use more than two fingers, may be an interesting and challenging issue in future

mathematics education research with touchscreen mobile devices. As we argued

before, due to the nature of the software GC (multi-touch) as well as due to the

geometrical task on the Varignon Theorem that was proposed beforehand, we

observed that rotation manipulation occurred a few times (Arzarello et al. 2014).

To solve the task, students did not apply the rotation action or other related plane

transformation concepts.

Finally, on a theoretical basis, it seems important to highlight that the process of

performing an action (Sinclair and Pimm 2014) by applying a concept such as

constructing or other kinds of geometric strategies within DGEwT led us to assume

that:

• Our brain has the ability to adjust to its environment; the touches on screen

broaden the formerly established concepts of our brain (Damásio 2010).

• Human actions, as well as geometric concepts, are multimodal; what distin-

guishes them is that geometric concepts are also multimodal in their realization –

the transition from virtual to actual. Indeed, by this transition due to which they

become objects of thought and consciousness, geometric concepts are provided

with certain features. These have to be put into practice by means of sensuous,

multimodal, and material activities (Radford 2014, p. 354).

• In geometrical reasoning, there is a profound symbiosis of symbolic, analytical

constraints, and figural properties. It is important to consider three categories of

mental entities when referring to geometrical figures: the definition, the image –

based on the perceptive-sensorial experience, e.g. the image of a drawing – and

the figural concept (Fischbein 1993). Figural concepts do not evolve naturally in

a way that they represent their ideal model. Consequently, one of the main tasks

of mathematics education in the domain of geometry is to create types of

didactical environments which systematically provoke a close cooperation

between these two aspects up to the point where they fuse into unitary mental

objects (Fischbein 1993, pp. 160–161).

• The interaction with a figure on screen can be differentiated according to the

altering options by which subjects perceive them. Arzarello et al. (2012) point

out two main cognitive and epistemic modalities according to which the figures

on the screen were perceived and treated accordingly. A modality is ascending –

from the environment to the subject – when the user explores the situation – such
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as a figure on the screen – open-mindedly in order to see whether the situation

itself has the potential to reveal something that is of interest to the user. The

situation is descending – from the subject to the environment – when the user

explores the situation with a conjecture in mind. In the first case, the applied

actions have an explorative nature, i.e. to see if something happens; in the second

case, they have a checking nature, i.e. to see if the conjecture is corroborated or

refuted.

• In the transitional process from an inductive to a deductive approach, the drag-

approach screen manipulation should be seen as a cognitive tool to empower

learners to make assumptions and verify argumentations during the process of

solving the task (Arzarello et al. 2014).

Teaching Experiments with DGEwT

In this section, we summarise the results from two teaching experiments (TE) that

we conducted in Brazil (Rio de Janeiro)2 and in Italy (Torino) with High School

students working with two touchscreen devices: GeoGebraTouch (GwT) and Geo-

metric Constructer (GC) (Table 3).

The analytical process that is presented as TE 1 and TE 2 was mainly based on

the videodata.3 We are of the opinion that the analysis should consider the interac-

tion with touchscreen devices as paths of interaction rather than points of interac-

tions. In most cases, it would be mathematically inappropriate to reduce the data of

an entire process to a single point. In each session, optionally on their own or in

pairs, the students worked on proposed activities.

TE 1: High School Students Dealing with GeoGebraTouch

This TE was conducted with High School students of 15–17 years of age at the

Instituto de Educaç~ao Rangel Pestana (Nova Iguaçu, Rio de Janeiro, Brazil). None
of them have had previous experiences with a dynamic geometry environment

(DGE) or scholarly induced knowledge on plane transformations. In each session,

the students worked on assigned activities with GeoGebraTouch which is described

in Table 4.

Each session lasted two hours; in each lesson the students were asked to

complete three activities similar to the one illustrated above. We observed all of

2In Brazil we are working with prospective mathematics teachers as well as with Sketchometry

devices. We decided not to discuss data from their TE in this chapter.
3In recent analyses we used SCR PRO (Assis 2016) as a strategy to review some details that

emerged from the video analysis.

Domains of Manipulation in Touchscreen Devices and Some Didactic, Cognitive. . . 121



the students’ manipulations on the screen and identified their kinds of actions

(e.g. tap, hold, drag, flick, free, and rotate). Our analysis of this teaching experiment

focuses on the student’s strategies to solve the tasks, e.g. the application of rotation
or other plane transformation concepts.

Besides alternative kinds of rotation applied by students to solve the geometric

tasks that differ to the ones discussed in the previous section, further – curricular

and cognitive – justifications to analyze students performing rotation or other plane

transformations are the following:

• Rotation and other gyrating movements on screen are often applied due to the

various alternatives of handling touchscreen devices (Kruger et al. 2005; Tang

et al. 2010).

• Rotation and other plane transformations remained unaddressed in Brazilian

geometry classrooms so far.

Table 3 Teaching experiments information

TE 1 TE 2

Age 15–17 years old 16–17 years old

Amount of hours of

research session

8 h, 4 sessions 6 h, 3 sessions

Device GwT GC

Touch feature Single touch Multi-touch

Name of the Institution Instituto de Educaç~ao Rangel Pestana Liceo Volta

Previous experience

with software

All of them had no previous experi-

ence with DGE

All of them had previous

experience with Cabri

Sources for data

collection

Written answers for each task Written answers for each

taskVideotape

Sheet of icon Videotape

Software Recorder Pro (SCR PRO)

for tracking touches on screen

Geometric content Rotation and plan transformation Quadrilaterals

Proposed and analyzed

task in this chapter

Star Varignon Theorem

Table 4 GeoGebra touchscreen features

Software Interface Device features

GeoGebra

touch

Runs and allows save con-

structions off-line

Version used on the analyzed

task in this paper: 4.3

Single touch only
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• Touchscreen devices provide possibilities of gyrating movements on screen, or

with the device itself, which might result in new insights on embodied cognition.

• Rotation and other plane transformations are concepts that involve intrinsically

embodied motions.

The proposed task with GeoGebra is the following (Figs. 6 and 7):

The analysis in this TE process was mainly based on (1) the videodata of

students working with the GeoGebraTouch software, (2) written answers on each

task, and (3) the use of the students’ lists of icons.
In the following pictures, as well as with the timing intervals, we illustrate and

describe how the student Adriano deals with the task on GeoGebra by using single

touch. He starts (12:14) to construct lines and reflects triangles related to them. By

moving the line (27:34) he tries to locate the triangle coincident to the other; but

since these actions remain unsuccessful, he decides to restart the construction.4

Fig. 6 Star task

4The whole video is available on https://www.youtube.com/watch?v¼qC-G96NssJk
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Interestingly, he keeps his left finger below a point on the line while using his

right finger to rotate the line. Throughout this entire process, he carefully observes

and adjusts his actions. The next figures illustrate how Adriano constructs lines and

uses reflection to move the triangles.

The student constructs lines (28:28) and uses the reflection tool (28:33) in order

to move the triangle. Afterwards, he constructed additional lines and repeated the

process of reflecting those triangles (35:51). In the next three figures, we illustrate

how Adriano applies a rotation motion by keeping his thumb on the line. At 38:17,

we observe him making a rotation motion with his index finger to move the triangle

and complete the shape (38:18).

The next set of pictures show how Adriano uses his constructions (38:18) in

order to finalize the task.

Fig. 7 Three main sources of data collection
aList containing all GeoGebra icons (Appendix 3). Each student had his/her own list and during

each TE they filled it in and reviewed it to their own accord
bThe red arrows indicate motions on screen performed by students
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Again using his index finger, Adriano selects the line (38:19) and translates it so

that the triangles connect. He creates another line and reflects the triangle (49:48).

Afterwards, he adjusts and finishes the construction in accordance with the task

statement.

TE 2: High School Students Working with the Geometric
Constructer

The GC is a free dynamic geometry software developed in Japan by Yasuyuki

Iijima at the Aichi University of Education (Iijima 2012). We chose the GC

software because it is software which incorporates all the potentialities of usual

DGE in a touch-screen device. With the term ‘potentialities’ we refer to the two

main features (Arzarello et al. 2014): (i) the possibility of using more than one digit

(multi-touch) on screen to interact with the software, and (ii) the possibility to

design constructions as opposed to mere explorations.

With the GC, we are able to construct basic geometrical objects (e.g. points,

segments, lines, or circles), measure such, drag, make traces of geometrical objects,

etc. Below, we summarize students’ working processes as well as results while

dealing with the Varignon Theorem5 task. This entails the illustration of selected,

representative aspects of their geometrical thinking captured by means of their

manipulations. These are described in the following chart (Table 5).

The analytical process was done in two main steps: (1) identification of each type

of manipulation (Arzarello et al. 2014; Park et al. 2011; Yook 2009) and (2) con-

struction of the timeline (Appendices 1 and 2) to describe the global cognitive

movement throughout interaction on GC software.

Based on the videodata, we created a timeline which illustrates the ways of

touchscreen and shows geometric aspects from students’ interaction with the GC

software (Arzarello et al. 2014, p. 47). In the following two charts, we illustrate

5In quadrilateral ABCD, the middle points (E, F, G and H) on each side have been drawn, forming

quadrilateral EFGH. What characteristics does EFGH have? What happens if ABCD is a rectan-

gle? What if it is a square? What if it is any quadrilateral? Demonstrate.
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parts of a timeline which shows students’ actions in order to solve task 36 by means

of the GC software. The analysis has shown that they perform four types of basic

actions: tap single, scale, hold single, and hold multi (Fig. 8).

Although, in order to construct a geometrical figure (e.g. a point, a line, an angle,

or a circle, etc.) with the GC software the user has to use the software icons, we

observed all the manipulation directly on the screen. For instance, we didn’t
consider touch on the icon as a case of the tap or hold action. Instead, we observed

more than a single kind of touch at a time, but in order to categorize them clearly we

selected the type of touch that was predominant in that specific situation.

Due to the nature of the task, which was situated in the domain of open

construction and exploration, the types of touches that we predominantly identified

were on the relational domain; for example, drag free, drag approach, and flick.

Rotation did not occur in the process of solving this task. As we can see in Fig. 9,

the drag approach was dominant (e.g. in interval 8:31–15:02).

Table 5 Example from students working on the Varignon Theorema

Screen example

Task High School student Undergraduate student

Varignon

Theorem

Geometric

strategy

Student constructs the diagonals AC and

BD by tapping (with one finger) on point

A and C, and then on point B and D

Student using different colors to edit

the construction and measuring inter-

nal angles from the quadrilateral

EGHF
aThe whole video is available on http://www.gepeticem.ufrrj.br/portal/materiais-curriculares/

varignon-touchscreen-no-construtor-geometrico-2/

6Build a quadrilateral ABCD. On each of its sides build a square external to the quadrilateral with

one side coincident to the side of the quadrilateral. Consider the centers of the squares that have

been built: R, S, T, U. Consider the quadrilateral RSTU: what can you observe? What commands

do you use in order to verify your conjecture? This activity was thought as a task to introduce

curiosity among students for the Napoleon Theorem, which was explored on the next

assigned task.
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Domains of Manipulation and Geometric Thinking Within
DGEwT

In the following screenshots, we show a summarized approach of students dealing

with the software features. They further illustrate types of manipulation in order to

identify conceptual reasons which prove that the EFGH shape is a parallelogram.

These screenshots illustrate four different approaches towards the picture given to

them (see footnote 4) (Fig. 10).

The analysis of the timelines (see Appendix) shows the progress of the altering

approaches of touches. The students’ constructions, strategies, and reasoning either
moved from basic to active, or from active to basic actions.

We built on the two types (basic or active) of finger actions (Table 6) to say that

the cognitive process with GC could be seen in two interrelated domains of

manipulation: firstly, in the constructive domain, where students basically refer to

tap and hold which are the basic or isolated ways of constructing geometric objects

(point, line, circle, shape etc.) with a touch interface. Secondly, the relational

domain is a combination of the constructional and the performed touches which

thereby include drag, flick, free, or rotational approaches. The Table 6 below

illustrates how we moved from a global observation – by means of a timeline – to

a descriptive one – with the focus on some cognitive processes concerning the two

domains of touches (Bairral and Arzarello 2015).

Fig. 9 Part of the timeline illustrating active actions

Fig. 8 Part of the timeline illustrating basic actions
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Even though we did not expect this, we observed that students also constructed

geometric objects in the relational domain (Arzarello et al. 2014); they also showed

more interacting and reflecting about the construction in this particular domain.

Due to the nature of the geometry tasks we identified a predominance of

touchscreen types on the relational domain; touches such as drag free, flick, or

rotate occurred few times.

In the construction domain, students act as discrete observants; they focus on

some specific construction, a constructed object, or touch something on the screen.

In contrast to the relational domain, their manipulations seem more focused on their

Fig. 10 Summarized student’s drag approach and reasoning on Varignon task

Table 6 Relating domains of touches, cognitive processes, and motions

Domain of

manipulation

Geometric

process Motion

Example of touches and students’ strategy
descriptions

Constructive Discrete

construction

and “iso-

lated” obser-

vation

(perception)

Closed,

predetermined

(specific goal,

basic

construction)

Student

constructing

angle to

observe rela-

tion among

diagonals and

the side of

quadrilateral

ABCD

Relational Related con-

struction and

global

observation

Open, but

focused on

emergent con-

ceptual

demand of the

task

Student using

two fingers and

dragging point

AB to the left

to transform

the initial

shape – a

square – into a

rectangle and

observing what

happens with

shape EFGH
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questioning, on conceptual understanding as well as on other emerging demands

concerning their manipulation as a whole. The manipulations in regard to the

construction domain seem focused on only predetermined motions, although

motion through relational manipulations facilitates motion that is ‘open’ in the

sense of that it can generate more unpredictable processes.

The Drag Approach Way of Touch and Semiotic Bundles
in Geometric Tasks in DGEwT

The drag approach7 seems to be a useful kind of touch in regard to the relational

domain. It is a kind of manipulation that students apply when they are confronted

with a specific geometric property, shape, or construction. During this process, we

identified that the usage of the drag approach was dominantly applied when

students aimed to clarify their reasoning.

Table 7 illustrates a student’s strategy to adjust his constructions of the star task

on GeoGebra (see Fig. 6) by applying the drag approach. The drag-approach is a

type of screen manipulation on the relational realm. Even when a student uses only

one finger, the drag-approach works as a refreshing, quite stabilizing and reflecting

way to a deep understanding of the geometric properties that emerge from the

manipulation on drag free or other ways of touchscreen use. It seems to be an

appropriate tool to facilitate mathematical justification, prove, and further geomet-

ric discoveries.

According to Arzarello et al. (2009), a semiotic bundle is a system of signs –

with Peirce’s comprehensive notion of the sign – that is produced by one or more

interacting subjects and evolves in time. Typically, a semiotic bundle is made of the

signs that are produced by a student or by a group of students while solving a

problem and/or discussing a mathematical question. Possibly the teacher too par-

ticipates to this production and so the semiotic bundle may include also the signs

produced by the teacher (Arzarello et al. 2009, p. 100).

The way of touch could not be identified as the only cognitive resource in

students’ learning processes. Rather, pictorial representations, cultural artifacts,

speaking, writing and gestures are examples of tools of a bundle of semiotic

resources (Arzarello et al. 2009) that contribute to an understanding of the process

of knowledge construction as well as for the development of tasks that foster the

improvement of the geometric thinking within DGEwT as we show in Table 8.

In other assigned tasks on rotation or other kinds of plane transformation, we

observed students applying composed forms of transformations. The picture above

illustrates how manipulation on a touchscreen, the device, its features, and other

artefact mediators are intertwined in the process of construction and performing

plane transformation strategies with the software. While observing students apply-

ing rotation and reflection we came to the conclusion that looking for specific types

7Inspired by Arzarello et al. (2002).
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of manipulation – as well as including the concept of the semiotic bundle – can

provide new epistemological insights on geometrical conceptualizing in DGEwT.

Conclusion and Implications of DGEwT

In the next sections, we present a variety of implications that summarize the main

results which emerged from the two teaching experiments illustrated in the previous

sections of this chapter.

Didactical Implications

Inmathematics education, a considerable amount of research stresses the key role of the

task in each environment – with or without ICTs. The pedagogical importance of

carrying out research on touchscreen use is not that it is trendy. Rather than that, it is

Table 7 Illustrating student’s drag-approach and reasoning on star task

Screen shots

Student constructs and moves the vertices freely (without the use

of the grid squared)

Student adds the square grid on his construction and adjusts the

star’s vertices in some points (intersections of the grid)
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important to design new ways of instruction with that type of technology in order to

empower learners with high abilities to acquire mathematical knowledge (Leung 2011).

Since our research is embedded in the dynamic geometry environment (Ibid),

manipulation in this kind of environment should be regarded as a cognitive tool in

order to empower learners with amplified abilities to explore. Also, again in

agreement with Leung, we are of the opinion that a mathematical task within GC

becomes meaningful when it involves conjecturing, activities which require an

explanation, and that provokes learners to engage in situated discourses in order

to communicate their mathematical reasoning or argumentation. We aimed to fulfil

these requirements with the provision of tasks such as the Varignon Theorem.

To solve a task, which involves the concept of rotation, using GeoGebra with

single touch (as discussed on TE 1), we observed that the students used their fingers

– no more than two (Tang et al. 2010) – similar to the students who dealt with the

software GC in an open task (see TE 2).

In the TE 1 – due to the fact that the students were unacquainted with DGE, the list

of icons (see Appendix 3) was didactically helpful for them. During each teaching

experiment, they had the opportunity to remember the functionality of the tool,

review it, and add new items to the list. Throughout the sessions, we observed that

they resorted to the list to identify the most appropriate tool to apply in order to fulfil

the task. Besides defining the functions of a specific icon, they further took notes on

the geometric concept or strategy that underlied such icon. Revisiting and rewriting

their notes on the list of icons can also be considered a process of learning.

Besides cognitive challenges and constraints with respect to the used software,

we identified that the use of DGEwT can also provide new pedagogical issues in

regard to the wording of mathematical instructions. In addition, our identification of

the different types of manipulation can lead to improvements of the software,

basically related to the drag action and touch (Iijima 2012).

Cognitive and Epistemological Implications

The cognitive process of solving geometric tasks within DGEwT could be seen in

two intertwined domains of manipulation (Arzarello et al. 2014; Bairral et al.

2015a, b, c): the construction domain which refers to tap and hold as the basic or

isolated ways of constructing a geometric object, and the relational domain which is

a combination of the constructional domain and the performance on the

touchscreen. Although the students dealt with the device naturally, their manipula-

tion was apparently restricted by software constrains (or facilitated by the possibil-

ities offered) or by the proposed geometry task.

In respect to the two TE illustrated in this chapter, we are of the opinion that any

kind of manipulation that promotes open motion, e.g. relational ways of touching,

are appropriate in order to provide new epistemological challenges concerning

geometric knowledge as well as altering kinds of proving. Since the drag approach

is a relational action, it seems to be an appropriate tool to improve justification and

proving competences within the mathematics classrooms setting that uses
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touchscreen devices. As one restriction to that – depending on the aim of the teacher

–, the task has to be selected carefully, and the teacher should promote that the

students work independently on the task by experimenting with altering kinds of

touches. Identifying in which geometric constructions the manipulation with more

than two fingers occurs may be another interesting issue for future studies. What

was not being discussed by this study is the issue of the two domains of manipu-

lation analyzing kinds of touches on different touchscreen devices.

As simultaneous touchscreen manipulation of spots on the screen brings about

implications of an epistemological order, it also adds complexity to our cognitive

structures. This particular feature was observed by one of the students in our research.

According to him, “in a very complex figure, moving several elements at the same time

can become a bit difficult”. Besides this cognitive implication, the use of touchscreen

devices in the teaching of mathematics brings about transformations in didactic and

epistemological realms, but the necessary educational research is still needed.

Another relevant issue that needs to be considered is the way how using a multi-

touch-screen allows alterations on the task design in a substantial way. More pre-

cisely, multi-touch screen devices allow a design of geometrical problems in a way

that differs from familiar ones in such ways that the combination with non-multi-

touch screen environments would be very difficult. For instance, from TE 1 we are

intrigued how students – without previous instruction concerning rotation and reflec-

tion – apply these two concepts, mostly in form of a composition of the two.

Research Implications

Our prior assumption was that the single touch provided by GeoGebra would

restrict our possible observations of altering kinds of rotational manipulation on

the screen. However, as we illustrated in TE 1, even students without previous

experiences with rotation, or reflection, used those concepts intuitively, isolated, or

even a mixed variation of the two tools (Assis 2016).

Usually in Brazil, plane transformations (e.g. isometries) are conceptually mapped

in the following sequence: reflection, axial symmetry, rotation, and translation. The

composition of plane transformations is underexplored in geometry lessons when the

instruction uses traditional resources. In that sense, DGEwT seems to be a powerful

resource for changing tasks as well as the nature of the geometric understanding

concerning plane transformations. In our current analysis, we provided tasks where

students had to apply the concept of rotation. In this paper, we present results from

students dealing with GeoGebra touch to solve the proposed task.

In a more recent analysis (Bairral et al. 2015a, b, c), we further observed that the

drag approach manipulation – as discussed within the TE 2 – could be applied using

only one finger. The application apparently depends on the device features and the

task proposal. This sort of touch should be seen as a cognitive tool that empowers

learners to conjecture and explore their line of argumentation during the process of

solving the task. This allows us to ascertain that the drag approach provided by the

preconditions of a multi-touch environment can suitably support and improve the
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students’ justifying (i.e. exploring) and proving (i.e. conjecturing) performances

(Bairral and Arzarello 2015).

According to Arzarello et al. (2012), using DGE there is an alternation between

an ascending and a descending modality: when there is a shift to a descending one,

this is, possibly marked by the production of an abduction, which can also deter-

mine the transition from an inductive to a deductive approach. Within DGEwT the

only difference seems to be in the time according to which such exchange takes

place: in touch-screen modalities, the changes seem to happen more frequently than

in mouse modalities. Possibly, this can have cognitive consequences similar to

those ascertained by Arzarello (2009) in TI-inspired environments in comparison to

Cabri-géomètre ones; but this statement is in need of further investigation before

being an assured scientific result. At the moment, it is only a plausible conjecture.

To achieve our aim – which was to observe the development of geometric

thinking –, the next step after the identification of each kind of manipulation was

to construct timelines (see Appendices 1 and 2) and to gain information of the

global cognitive movement of the interaction with the device. For each analyzed

activity, we constructed one separate timeline. Depending on the type of task, some

kinds of touches were not classifiable, but in all the timelines that we constructed

we noticed a clear accumulation of active actions. In summary, the timeline has

been methodologically and didactically important in order to:

• Illustrate the global cognitive movement related to the various kinds of touches

(e.g. from constructive to relational and vice-versa) throughout the students’
working on the tasks.

• Show selected local cognitive movements of the kinds of touches throughout a

variety of geometric aspects in certain intervals.

• Allow researchers to determine and record certain intervals where students’
geometrical thinking focused on the relationship of touches on the screen with

other semiotic resources.

Another resource used for data collection was the Screen Recorder Pro device

(SCR PRO), which allows to capture, in addition to the audio, the touches on the

surface of the tablet (see Table 8). In the PRO version, the application does not limit

the recording time and should take into account the ability of the device itself.

However, the application installation requires a procedure that changes the tablet

configuration. This feature was utilized in implementations carried out with the GC,

since the acquisition and installation have been carried out only after the period in

which implementations are made with the touch GeoGebra.

Final Remarks

Mathematics applied by students to solve a task in a paper-and-pencil environment

differs from the mathematics applied on a touchscreen device. In this chapter, we

highlighted two intertwined domains of manipulation – the constructive and the
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relational domain – for geometrical thinking development with DGEwT. The

constructive domain refers to tap and hold; these are the basic, or isolated, ways

of constructing geometric objects. The relational domain is a combination of the

geometric construction and the performed touch. In the relational realm, the drag

approach appears as a useful way of touch to improve geometric thinking. With this

type of manipulation, students can make use of one or more than one finger.

We are of the belief that it is not important that the teacher monitors the students’
application of certain types of touches on the screen. By taking device features and

performances into account, we conclude that teachers need to be aware of the

singularity of each kind of touch while proposing tasks that aim to trigger the

students’ intrinsic motivation to work into mathematics activities that enhance

findings, reflections, and the development of mathematical thinking in its various

aspects (Bairral et al. 2015a, b, c).

Inspired by Fischbein (1993), we argue that logic, image, and manipulation – on

screen or gesturing on it – should be inseparable from geometrical reasoning with

touch devices. In this process, it is important to interpret geometrical figures as

mental entities which possess conceptual and figural properties (Fischbein 1993,

p. 160).

Our brain adjusts to its surrounding environment (Damásio 2010); this implies

that the touches on the screen or other touch performances add new mappings to the

brain. These should be taken into account regarding teaching and learning pro-

cesses. As a proofing example, the following picture illustrates how students

interact with a touch device and its features of manipulation – as well as performing

action (Sinclair and Pimm 2014) with hands on the screen – without previously

established knowledge on plane transformation which we also illustrated in the

TE 1 (Fig. 11).

In this geometrical process, the students apply figural concepts for executing

constructions and transformations. They use images based on their perceptive-

sensorial experience (Fischbein 1993). In this process – a sensorial process –

motion and manipulation on screen make up an important cognitive function and,

by becoming objects of thought and consciousness, geometric concepts are

endowed with particular determinations; they have to be actualized in sensuous

multimodal and material activity (Radford 2014, p. 354).

Fig. 11 Manipulation on touch devices interplaying symbolic, analytical and figural properties
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Appendices

Appendix 1: Timeline of the Varignon Theorem Task
(Discussed on TE 2)

Appendix 2: Timeline of the Task Shown in note (a) of Table 5
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Appendix 3: List of Icons Elaborated for TE
with GeoGebraTouch

Domains of Manipulation in Touchscreen Devices and Some Didactic, Cognitive. . . 139



References

Arzarello, F. (2009). New technologies in the classroom: Towards a semiotics analysis. In

B. Sriraman & S. Goodchild (Eds.), Relatively and philosophically earnest: Festschrift in
honor of Paul Ernest’s 65th birthday (pp. 235–255). Charlotte: IAP.

140 M. Bairral et al.



Arzarello, F., Olivero, F., Paola, D., & Robutti, O. (2002). A cognitive analysis of dragging

practises in Cabri environments. ZDM, 34(3), 66–72.
Arzarello, F., Paola, D., Robutti, O., & Sabena, C. (2009). Gestures as semiotic resources in the

mathematics classroom. Educational Studies in Mathematics, 70(2), 97–109.
Arzarello, F., Bartolini Bussi, M. G., Leung, A. Y. L., Mariotti, M. A., & Stevenson, I. (2012).

Experimental approaches to theoretical thinking: Artefacts and proof. In G. Hanna & M. de

Villliers (Eds.), Proof and proving in mathematics education (pp. 97–137). Dordrecht:

Springer.
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Graphs in Primary School: Playing
with Technology

Daniela Ferrarello

Abstract It is very important to motivate primary school students in a way that

they enjoy mathematics, e.g. by encouraging their creative perspective on it. This

could be achieved by using everyday tools, i. e. tools children are familiar with in

regard to manipulation. With respect to, for example, graph theory teachers can

introduce the subject matter by giving the instruction to draw and play with several

graphs with paper-and-pencil, or with the help of advanced technology. This

technology is a precious tool for conjecturing activities due to the high variety of

cases that can be observed and compared simultaneously – which is also a lot less

time consuming than with paper-and-pencil activities. In this chapter, we describe

selected graph theory activities for third and fourth classes of primary school which

were designed for the application of technology; for this purpose, we named these

activities mathematics laboratory.

Keywords Graph theory • Primary school • Technology

Graphs in Primary School: Why and How?

Everyone should enjoy learning because if you enjoy what you do – in comparison

to doing something because it is your obligation to do so – you get maximum results

with a minimum of effort. This is particularly true for children. At the beginning of

institutionalized education, i.e. for pre-school children, mathematics is not yet that

“monster” as some older children might perceive mathematics. Five-year-old

children tend to enjoy mathematics as an internalized experience (Vygotsky

1986) rather then externally suggested to them. Thought and emotion agree; this

influences the learning process positively because as Brown (2012, p. 186) states:

affect, far from being the “other” of thinking, is a part of it. Affect influences

thinking, just as thinking influences affect (see, e.g., Chapter “A Framework for

Failed Proving Processes in a Dynamic Geometry Environment”, this volume).
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As soon as children enter young adulthood, they commonly develop a negative

attitude towards mathematics (Di Martino 2007) which originates from many

causes, including the experience of unfit teaching methodologies. These include,

for example, learning without manipulating, learning without self-generated

hypotheses, or without connecting mathematical concepts to reality (Mammana

and Milone 2009a, b). This possibly results in an alienation of pupils from math-

ematics as well as from the viewpoints of thinking and affection.

Too often, teachers do not integrate all the potentialities of their digital native

students, who could make use of their natural inclination towards technology to

learn better and faster. On the other hand, the use of technology is already

integrated in teaching mathematics: just think of 2.0 classes, or the high variety

of software and apps designed for math teaching and learning. Of course, technol-

ogy is not a panacea for all math related problems, which can be seen by the many

ongoing studies that are concerned with the advantages and disadvantages of

technology in the classroom practice such as Drijvers’ study (2012). Obviously,

the use of technology is not self-sufficient in a way to ensure learning to occur in

favourable ways.

This strongly technology-based teaching experiment with primary school chil-

dren is build up on laboratorial modalities as well as learners’ real-world experi-

ences that we called “horizontal teaching” (Ferrarello et al. 2014). Horizontal

teaching is a kind of teaching in which the teacher aims to envision the student’s
perspective and set up a learning environment that originates from this shared

perspective. Horizontal teaching necessitates that the teacher acquires knowledge

on the students’ perspective on life, to understand their needs, to analyse their

reality. This consequently requires an extra effort of the teacher, but it is effective

and promises to enlarge not only the students’ knowledge, but also the teacher’s
knowledge (see Fig. 1).

In this context, we apply the term “reality” not only to physically existent,

touchable objects, but also to situations and characters that are familiar to children

with the aim to motivate their effort to study. These could be, for example, cartoon

characters, personal relationships, etc. And by “envisioning the student’s perspec-
tive” we refer not only to the application of mathematical concepts familiar to the

pupils, but also to code switch to a level of language use to which students can

adapt to.

In this sense, the use of technology is intended to be a language that is familiar to

pupils and therefore could be applied to the above-mentioned setting up of a

learning environment that originates from a shared perspective of teacher’s and

student’s knowledge.
In this respect, we developed a mathematics classroom activity for primary

school children on the concept of graphs. In fact, a small variety of graph-theory

concepts are sufficiently simple enough to be proposed to primary school children.

The basic mathematical concept of a graph is quite straightforward: a graph G¼ (N,

E) consists of a set N, whose elements we call nodes, which we represent as points;

and a set E, formed by couples of nodes that we call edges, which are represented as
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lines; i.e., an edge is a line connecting two nodes A and B in the set N, if the couple

{A, B} is in E.

The prior, situational aim of this teaching experiment is to make children enjoy

mathematics; the secondary, future-oriented aim is to familiarise children with the

concept of modeling real-life situations with the aid of graphs. The mathematical

concept of the graph is well suited for this intention because it is easily visualizable,

drawable, open for an explorative, creative take on it, and also because it is quite

useful to describe real-life situations by schematizing them.

It is not by chance that there is an increasing attention towards graph theory in

several international projects (e.g., http://math.illinoisstate.edu/reu/). Not only is

there an undeniable effectiveness graphs and their several representations, but also

National Standards – in Italy, at least – ask for tools that enable to “represent

relations and data and, in significant situations, use the representations to get

information, formulate opinions and make decisions” as an aim for students at the

end of primary school (Ministero dell’Istruzione, dell’Universit�a e della Ricerca

2012) in order to support a concept of mathematics as “a context to solve and pose

significant problems”. These tools are provided by graph theory, but despite such

precise requests, Italian teachers often do not integrate graph theory into their

teaching in primary school; even further, quite a high amount of teachers are not

familiar with the basic concepts of graph theory.

The approach of this activity is adapted from the one described in Aleo et al.

(2009) and based on mathematics laboratories (Chiappini 2007). For our teaching

environment, we altered the activities in such a way that they fit the requirements of

eight to nine years-old students. Additionally, they are enriched with the use of

technology as described in the following sections. Theoretical references to topics

can be found in Higgins (2007) and Wilson (1996).

The next part of the chapter deals with the methodology used in the teaching

experiments and further presents the technology provided to the children – namely

the software and games used. We give a description of all the aspects and suitable

activities of graph theory involved in the courses. Moreover, for a more detailed

insight in our study, we describe a complete instructional unit in detail. Finally, we

present the main results and draw possible conclusions. A short glossary of the

basic definitions we used in our teaching experiment (in alphabetical order),

Fig. 1 Horizontal teaching

(Ferrarello et al. 2014)
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together with a collection of activities, is provided in the appendix at the end of the

chapter.

Methodology

The teaching experiment activity has been carried out three times, twice during the

school year 2012/2013 and once in school year 2013/2014. It was led by the author

– who is not a primary-school teacher – and therefore was both a researcher as well

as a teacher during the teaching experiment activities. In regard to practical duties,

she was tutored by an assistant. Each teaching experiment activity – which had a

total duration of about three month – consisted of 12 weekly meetings; the children

participated voluntarily. They came from different morning classes – but from the

same grade – and were put together into groups of 14 to 20 children. In total, about

50 students participated.

Some activities, like Eulerian and Semieulerian graphs, were given the time of

more than one meeting because the different sub-contents were based upon one

another, so the children were given the time to think about the subject matter at

home as well as the possibility to enjoy the topic instead of consuming it in a “fast

and furious” way. Other activities, like the ones on nodes and edges, were intro-

duced simultaneously because they relate to the same mathematical concept.

The activities were embedded within the laboratorial methodology, which

means that they were embodied-mind oriented by making children manipulate the

objects and discover their properties. Activities proposed by the teacher (i.e. the

author of this chapter) as problems to be solved were introduced to the children on

the whiteboard. This led to the situation that some students attempted to solve the

posed problem directly on the whiteboard while other students tried to solve it in

their exercise books or suggested a strategy to their fellow students. Intermediate

and final tests, combined with satisfaction questionnaires, were collected and

analyzed. The teaching experiment was not filmed, except for selected moments

during the production of a poster.

Technologies

As it was said before, technology is a significant tool for our activity. In agreement

with diSessa et al. (1991), “we believed that design, construction, and exploration

of dynamic games and simulations would provide a rich context for an initial

exploration into what children’s science might involve” (p. 3). We used different

technologies, e.g. paper-and-pencil, coloured chalks, etc. and dynamic software to

handle graphs, online games, etc.

The whole teaching experiment activity was held in classes with Multimedia

Interactive Whiteboards in addition to a classical blackboard and chalks. This
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resulted in children who manipulated graphs with paper-and-pencil, dragging nodes

and deforming edges both with a dynamic graph editor and online games namely

with the YED Graph Editor (http://www.yworks.com/en/products_yed_ about.

html) which is a dynamic software that is designed to draw and explore graphs.

Its main advantage is that you can easily draw nodes just with a click; and you can

choose nodes of many shapes which represent several objects (e.g. people, geomet-

ric shapes, but also any kind of picture you want to import – just by dragging the

pictures into the working area). For example, to draw an edge from node A to node

B you just have to click on A and – keeping the mouse pressed – move on B – and

release.

To drag nodes and to adjust edges with the help of this software is a very

explorative and creative take on the mathematical concept of graphs. In our activity,

many potentialities of the software there were not intended to be applied; the

children were just asked to use the basic functions, i.e. the ones sufficient to our

purposes such as drawing graphs, moving nodes, changing shapes to edges,

colouring nodes and edges with different colours, creating a random graph, or

changing the layout of the graph by putting it in a random shape.

Although the tool bar was in English, children did not encounter any difficulties

in using the software. They learned to use the software by mimicking the teacher

and trying for themselves afterwards.

Icosien (http://www.freewebarcade.com/game/icosien)

The pictures below illustrate an online game that includes Eulerian, Semieulerian,

and Hamiltonian paths in given graphs (see Fig. 2, Fig. 3) by wrapping the string

around the nails to create the given shape in each level.

It is not an educational software, it is just a game. Moreover, it is not a game that

is intended for children. However, this game was probably the most successful

activity within our teaching experiment because children quickly learned how to

Fig. 2 Semieulerian graph

in Icosien
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construct and play with Eulerian graphs although they were not able to reach level

5 without knowing “the trick” (see paragraph “An instructional unit: Eulerian and

Semieulerian graphs”). After they discovered and explained “the trick” about the

degree of the nodes, they succeeded to complete all nine Eulerian levels.

The levels on Hamiltonian graphs were more difficult to complete – even for

adults – mostly because of the lack of a clear winning strategy. This is presumably

why children were not able to solve more than four levels.

Fly Tangle 3 (http://www.gamesforwork.com/games/play-
18303-Fly_Tangle_3-Flash_Game)

Fly Tangle 3 is a game in which one drags nodes of a graph in order to show its

planarity (Fig. 4).

Not all children succeeded in the completion of this game. In order to make all

the students enjoy the activity and make them practice their mathematical skills

Fig. 3 Hamiltonian graph

in Icosien

Fig. 4 Planar graph in Fly

Tangle
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without risking frustration due to failure, we used YED to draw random planar

graphs and changing the layout randomly. Then, the students came to the white-

board and dragged the nodes to put each graph in a planar layout.

Strand (http://www.kongregate.com/games/ewmstaley/strand)

Strand is another online game whose aim it is to draw planar graphs with nodes of

given degrees. This game is quite helpful to understand the basic concept of planar

graphs because there are more basic levels to solve compared to Fly Tangle.

Moreover, while Fly Tangle graphs are already drawn, Strand graphs are to be

constructed. It showed that it was easier for children to build planar graphs step by

step instead of adjusting tangled graphs. Furthermore, this game is applicable to

reason about degrees. In fact, every node has a variable number that is the number

of nodes yet to be connected with it. For instance, in the graph of Fig. 5, there is a

missing edge between the two nodes with a “1” degree left, while the “0” degree

nodes are complete.

It is worth to note that in many levels there is not a unique solution. This is good

with respect to encourage children’s creativity.

Activity and Topics

The contents of the project are summarized in Table 1 together with some of their

related activities.1

In the following, we describe a selected variety of the activities that have shown

to be the most intriguing examples arising from “real” problems, by using multiple

Fig. 5 A planar graph to be

constructed in Strand

1Activities written in bold are those we are analyzing within this chapter.
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software, and online games. As examples, we briefly present the activities 1), and 3)

as well as justifying our motivation to use them. The whole path on Eulerian and

Semieulerian graphs, including activities 6), 7), 8), is discussed in detail in the

following section while other activities are illustrated at the end of the chapter, in

the appendix.

Introduction to Graph Theory

Activity (1) The K€onigsberg Bridges Problem

This puzzle has been introduced by telling the well-known K€onigsberg bridges

story, and making the children try and find a possible path in the map of K€onigsberg
by touching every bridge just once. A schema of the K€onigsberg city was drawn

which included the Pregel river, the islands, and the seven bridges. It was drawn on

the blackboard, and in a second step students tried to find a proper path. Then, the

children were told how a famous mathematician, named Euler, had the idea to

Table 1 Topics and activities

Topics Activities

Introduction of graphs and basic definitions: The K€onigsberg bridges problem;

Graphs to solve real problems; Searching flights between cities by looking at

air lines’ maps;Nodes and edges;

Degree of nodes; Matching Disney princesses with their
boyfriends;Bipartite graphs and matching problems;

Paths; The genealogic tree of Dragon Ball cartoon;

Cycles; football championship.

Trees.

Eulerian and Semieulerian graphs: Pictures of points joined by lines, that one
can draw without lifting the pencil from the
paper and drawing each line only once;

Graphs whose edges you all have to visit

just once.

Words or sentences you can discover in a
graph whose nodes are letters;

Online game Icosien.

Hamiltonian graphs: The problem to sit around a table with friends

both on your right and on your left;

Graphs whose nodes you all have to visit

just once.

Violetta’s tour.

Planar graphs: Three cottages problem;

Graphs that can be drawn on the plane in

such a way that its edges intersect only at

their endpoints.

Online game Fly Tangle;

Online game Strand.

Graph colouring: Maps you can colour by using the least num-

bers of colours such that adjacent regions have

different colours.
Colour nodes of a graph in such a way

adjacent nodes have different colours.
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model this problem by assigning a point to every region of the city and a line to

every bridge. Children were asked to draw the appropriate graph upon the map of

K€onigsberg by using the appropriate software (in this case YED) to handle graphs.

After the graph (Fig. 6) was completely drawn, the children copied it in their

exercise books and continued to work on it by themselves with pencil-and-paper.

Whenever some of them claimed to have found the solution, he/she came to the

whiteboard to show his/her possible solution. We did not immediately reveal that

the problem does not have a single solution, so the children continued to work on

the activity at home – also asking their parents about this problem.

Additionally, other examples of graph problems that required every edge to be

visited just once were given in order to make pupils aware that similar problems are

actually solvable. Later on, the problem of K€onigsberg was shown to be unsolvable
when Eulerian and Semieulerian graphs were introduced.

One of the greater misconceptions of mathematics – since primary school –

concerns “the” solution of a problem: every problem – they taught us – has a

solution; and it has just one solution, preferably reachable with a particular method

and only that method. This idea of mathematics does not really do justice to the

complex and creative concepts of mathematics; and, above all, it does not fit the real

world. If we want to teach real mathematics in real world situations, we should

make students aware that many problems are “open” to no solution, or multiple

solutions. The K€onigsberg’s puzzle was one of the “no solution” problems we

posed while several “multiple solutions” problems were handled, for instance, by

using the game Strand.

Activity (3) The Matching of Disney Princesses with Their
Boyfriends

A drawing of Disney princesses and their boyfriends was given to the students (see

Fig. 7); each princess had an assigned boyfriend. But, all princesses and their

boyfriends were mismatched. So, the students were asked to correct and redraw

Fig. 6 Model of the

K€onigsberg’s problem by

graphs (made with YED)
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the connections to end up with the right matches (see Fig. 8). It could be observed

that they had a lot of fun with this activity – partly because they had more

knowledge about the right matches than the teacher. This graph is useful to

introduce the degree of a node.

Teacher: How many boyfriends can a princess have?

Students: Just one!

Moreover, it is useful to introduce isolated nodes.

Teacher: Does Ursula have a boyfriend? Which degree does Ursula have?

Students: Zero!

After the students have finished to match up the princesses with their boyfriends,

one can use these graphs for to explain the mathematical notion of a function: if we

take Ursula out of the equation and follow the requirement that every princess has to

Fig. 7 Wrong connections between princesses and boyfriends (made with YED)

Fig. 8 Right connections between princesses and boyfriends (made with YED)
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have only one boyfriend, we develop a function from the set of princesses to the set

of boyfriends – a non onto function, actually, because of Gaston and Sebastian, who

have no girlfriend.

Finally, we adjusted the graph by putting all the princesses upside and all the

boyfriends downside (as older students usually do with bipartite graphs), so that the

graph is ready to represent a function with a separated domain and image set.

This is one of many examples of graphs that can be used in order to introduce the

notions of functions and relations.

In general, the activity was appreciated because of its integration into the

students’ reality. If it is true that the “concrete” is the “abstract” that becomes

familiar – also fictional objects such as cartoon princesses – they thereby become

real objects. Presumably, this is why the children manipulated these objects with

naturalness and straightforwardness. It was natural for them not only to connect

matching characters with a line and correct wrong connections, but also to move

nodes in such a way that the set of nodes resulted in two split partitioned sets.

An Instructional Unit: Eulerian and Semieulerian Graphs

In this section, we describe concept of Eulerian and Semieulerian graphs in detail.

For matters of clarification, we named Eulerian and Semieulerian graphs

“walkable”.

At first, we briefly refer to the process of acquiring and using knowledge

described by Spijkerboer (2015) with the use of the O.B.I.T. model: Remember,

which means to acquire knowledge by the use of appropriate words or images;

Understand, which refers to the acquisition of knowledge by practising procedures;

relate, i.e. the use of already acquired knowledge by relating it to new situations;

and Creative Application, which includes the use of knowledge in order to establish

individual approaches of how to deal with a task.

The first two items, Remember and Understand, are linked to the surface

approach, and focus on reproduction and memorization in order to relate “what I

know” to “how to do it”. The other two items, Relate and Creative Application, are

part of the deep approach and focus on relationships among different aspects of the

content and the competencies to “know what to do with what I know”. Quite often,

we are tempted to think that the deep approach is better than the surface approach.

But, both approaches have a value, especially for kids, who need the surface

approach. What we, as teachers, should not do is to stop at the surface approach,

but to use also the insight and creativity to make students able to apply their

creativity as well. Further, we should give the students time and space to grasp

the concept of what they are working on – to deepen their understanding of it, to

elaborate on it, and to use it creatively.

As we are going to explain in detail, in this teaching experiment we used both

approaches; and we focused on the appropriate use of words and included story-

telling to strengthen the chances that the mathematical concepts are being remem-

bered. Further, we included games for practicing the reproduction of solving
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strategies, we used insight and argumentation to deepen the concept, we used

stories as tasks to make it easier to apply knowledge that is already there, and we

encouraged students to transfer their newly acquired knowledge to their own daily-

life problems or to observe reality in order to draw further connections to the

mathematical concept of graphs.

We started with the Remember phase of the O.B.I.T. model: For matters of

simplification, we named Eulerian and Semieulerian graphs closed walkable and

open walkable, respectively, because the concept of walking is graspable for

students while the mathematical technical terms are not. Further, it made them

recall the activity where they walked through the edges of the graph and therefore

had an idea of what is requested for a graph to be walkable.

The instructional unit proceeds with the following phases:

Historic Introduction

The topic was introduced by the seven bridges problem (activity 1). We retold the

story and invited the students to think about a possible solution for the inhabitants

of K€onigsberg. As discussed before, the students were guided to solve the

problem with an appropriate mathematical model, i.e. a graph. This was when

we passed from the real-life situation to the graph of Fig. 6, which is based on the

picture of the city of K€onigsberg with the help of the YED software. This

mathematical problem remained unsolved for a couple of lessons. During that

time, it sometimes happened that parents asked their children whether they had

managed to solve that problem. For us, this meant that children got highly

involved into the problem and even thought about it outside of the classroom

situation – eager to solve it.

For reasons of motivation, solvable problems – as the classical cabin of Fig. 13 –

were presented to the students to make them aware that not all problems are

unsolvable or difficult, so that they would have fun and acquire a sense of self-

efficacy during the process.

After nodes, edges, and degrees were introduced, the children could practice on

those walkable graphs. By analyzing and practicing on these graphs, the students

were asked to identify similarities among walkable graphs and to discover that such

graphs had only nodes of even degree – which are mathematically defined as

Eulerian graphs, but we called them closed walkable –, or just two nodes of odd

degree – which are mathematically defined as Semieulerian graphs, but we called

them open walkable. Then, students practiced with several graphs, decided whether

they were walkable or not by hand, drew walkable graphs without lifting the pencil

from the paper (activity 6), and practiced paths in walkable graphs – especially by

means of the online game Icosien (activity 8). In addition, we realized such graphs

also with strings (see Fig. 9).
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Paper-and-Pencil Games

A variety of figures was presented to the group of primary school children (see

Fig. 10). They were then asked to draw the individual graphs in one go and the

premise to pass every edge just once.

In general, we noticed that students were quite excited about this activity. At the

beginning, they were convinced that it was always possible, especially after several

consecutive successes. When they failed to accomplish to redraw a graph

(e.g. graph e in Fig. 10) they were convinced that they had made a mistake rather

than thinking about the possibility that it might be impossible to do so, so they went

on trying and trying. When we claimed that it was impossible to redraw “graph e” as
a walkable graph, they did not believe it and kept on trying.

Practice with Sentences

After that, we practiced on words and sentences. The graph in Fig. 11 was used to

practice paths – especially Semieulerian paths. For this purpose, we posed the

question “Can you read the sentence hidden in the graph?”

Starting from a node of an odd degree – in this case G – you end up in the other

node of odd degree – in this case E. The sentence that has formed is “Grafo

percorribile”, which is Italian for «walkable graph». As explained in the following,

this graph was further used to introduce loops and multiple edges. When letters

occur twice such as “R” in the word “percoRRibile” they have to be repeated, which

means that we have a loop in “R”, i.e. an edge that connects a node to itself. When

there is a sequence of three letters whose first and third letter are the same, as the

two I of IBI in the word “percorrIBIle”, you have to return to the first letter by

passing the second letter. In this case, you need a multiple edge between the first

and the second letter.

Fig. 9 Graphs realised with

strings

Graphs in Primary School: Playing with Technology 155



Children played not only with sentences as in Fig. 11, but also with anagrams

and graphs related to possible configurations of letters, e.g. as in the popular game

Ruzzle, where letters can be used consecutively if they are neighbours in vertical,

horizontal, or diagonal direction. The graph associated to a Ruzzle level is made of

the letters shown in the game board as nodes; two letters are connected by an edge if

you can use them consecutively in a word. For example, to form the word “sea” you

have to follow the path ‘s’, ‘e’, ‘a’. You can do that because ‘s’ and ‘e’ are

connected and ‘e’ and ‘a’ are connected. However, you cannot form the word

“tea” because ‘t’ and ‘e’ are not connected (see Fig. 12).

Figure 12 illustrates a graph that is linked to the highlighted rectangle. After they

were shown this example, the students were asked to think about their own set of

letters with their individual connections among such letters. The aim was to find a

set with the least possible number of letters, but with the most possible number of

words. The students did this activity at home; and when they were back in school,

they were quite proud to show the word-graph they had produced on their own.

Fig. 10 Graphs to be

explored with respect to

eulerianity

Fig. 11 Semieulerian

graph to represent a

sentence (made with YED)
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Such examples are considerably useful to practice on paths, but for them it was

rather challenging to identify walkable paths. This is why they came up with the

idea that not all graphs are walkable even though it was the first concept of graphs

that had been introduced to them. Before the introduction of this activity, they had

always been induced to consider eulerianity in every graph they were confronted

with, even if the task made explicit that they were dealing with, for instance, a

Hamiltonian graph, or trees.

Conjecturing by Online Games

The online game “Icosien” proofed to be quite useful to practice on Eulerian and

Semieulerian graphs. This is partly because this game clearly indicates actions that

are not allowed. For example, if you intend to connect two nodes that are not

connected by string, or you want to cross an edge twice the string – that is yellow –

becomes red. While working with the online game, the children were independent

from the teacher’s advises. We intervened only occasionally because it was our aim

that every child tries by him/herself – aided by the software or receiving sugges-

tions by classmates if necessary. Rarely, a student quit the game because he/she

failed a level. In the majority of cases the atmosphere among the students was

collaborative, so if someone needed assistance the other students helped him/her.

At the beginning, the children tried to construct graphs by wrapping the string

around the nails starting off from an arbitrary node. This solving strategy stopped

working out at level 4, and they began to notice that for some graphs – the Eulerian

ones – the starting point is irrelevant while for other graphs – the Semieulerian ones

– only two nodes were suited to be the starting point. The strategy of odd-degree

nodes was evident in the graph of Fig. 13, the cabin they were able to solve also

with paper and pencil, and we decided later on to use just this graph for reasoning

activities. Little by little, they identified that if there are two nodes with odd degrees

(the degree of a node was already introduced in the previous lessons), they needed

to start from one of them.

Fig. 12 A Ruzzle frame and a graph related to some letters of the frame
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In the end, with the help of this winning strategy, all students were able to solve

all levels of the online game. What was striking was that the students were solely

satisfied to have established a strategy to win the game; however, they did not show

any interest in the motivation why their strategy was successful. Instead, they

preferred to think that it was a trick. In other words, they were satisfied with the

surface approach, being on the stage of having memorized (Remember in the

O.B.I.T. model) the concept and to know how to act to “win the game” (Understand

in the O.B.I.T. model).

The following activities were closer linked to the deep approach because it was

our aim to establish a full understanding of the concept instead of letting “whatever

works” to be sufficient. This turned out to be quite challenging for such young

students.

Argumentation by Chalk (In Case That Technology Does Not Work)

Technology was indeed quite useful for experimenting activities; however, it would

not have been useful for reasoning. The online game was not suitable for the

purpose to argue about odd degrees in Semieulerian graphs because the children

would have been too focused on the game itself rather than on reasoning. This is

why, instead of the whiteboard and our fingers, we used the blackboard and

coloured chalks. Even though we did not explicitly talk about directed graphs, we

used oriented edges (see Fig. 13). We argued about Semieularian paths on the basis

of students’ examples, i.e. {1,2}, {2,3}, {3,4}, {4,2}, {2,5}, {5,4}, {4,1}, {1,5}.

Due to this approach, the students did not encounter any difficulties in using

oriented edges; on the contrary, they intuitively made use of arrows to follow a

path. Then, we coloured every source with a green chalk and every sink with a red

chalk. After that, we focused on the two nodes 1 and 5 – they are the starting source

and the ending sink – and counted the green and red edges. In 1, we counted two

green edges and a red one because the path first goes through edge {1,2}, then

Fig. 13 A graph used to

argue on Semieulerian paths

158 D. Ferrarello



through edge {4,1}, and finally through edge {1,5}. After passing {1,5}, the path

abandons node 1 because our path equals a Semieulerian graph. This is because of

the odd number of edges. In that case, the first two edges are edges were the path

changes its direction – but will pass the edges for a second time – while the last edge

indicates the end of the path. We did similar examinations on node 5, which we also

pass twice, i.e. in {2,5} and again in {5,4}, and then we end the path in {1,5}. So

this second path has one green starting source and two red ending sinks – one of

which is used to complete the path.

The other nodes are classified as passing nodes because their amount of being a

starting source and ending sink is equal.

This figure proofed helpful to make young students understand the motivation

for the two odd-degree nodes of Semieulerian graphs. In regard to Eulerian graphs,

we identified that the starting point coincides with the final point, i.e. we have the

same number of outgoing and incoming edges. The entire phase of argumentation

was teacher-led who stimulated the students with questions, encouraged them to

express their thoughts, made them reflect on their own actions and claims, and,

finally, thanked them for their insights and reflective reasoning.

Ongoing Test: Eulerian Carnival

Halfway through each activity we integrated a test to monitor each student’s
learning progress. In the first year, the test was about Eulerian and Semieulerian

graphs. The students were given a variety of graphs and were asked whether these

are Eulerian or not. In the case of a positive answer, they were asked to give an

example. The majority of students completed this test successfully. In the second

year, additionally to a selection of classical exercises, we decided to integrate a

story which was already used in the first year as a whole class activity – “The

Eulerian carnival”.

The story taken from Aleo et al. (2009, p. 112) is the following:

We are in a strange place called Polygonsland, peopled by polygons, namely the Decagon,

that is the king of the land, Mr. Equilater Triangle, Mr. Isosceles Triangle, Mr. Square,

Mr. Rectangle, Mr. Pentagon and Mr. Hexagon. For the three days of Carnival, the naughty

king Decagon, as he usually does every year, announces a contest. The inhabitants of

Polygonsland are requested to walk in the path drawn in Fig. 14, by passing from every

street, but only once. Each inhabitant starts from an assigned emplacement, as shown in

Fig. 14: A for Isosceles Triangle, B for Rectangle, C for Square, D for Pentagon, E for

Equilateral Triangle, F for Hexagon.

In the emplacement O there is a treasure, when you pass by O you can take the treasure.

It is not requested that O is the last emplacement to visit.

Question 1 Why did we say that the king was naughty? . . . Is the king sure that no one

could win? . . . Why? . . .

But during the night Mr. Isosceles Triangle, who is smart and knows graph theory,

decides to modify the trace by adding a new street in such a way to win.
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Question 2 Which street is built by Isosceles Triangle to win the contest? . . .

So, the first day of the contest Mr. Isosceles Triangle wins. The king is surprised, but the

contest goes on. Mr. Equilateral Triangle, who knows graphs too, and understood every-

thing, during the second night also modifies the path, in such a way he wins.

Question 3 Which street is built by Equilateral Triangle to win? . . .

So, the second day of the contest Equilateral Triangle wins. The king is disappointed,

but the show must go on. Finally Mr. Rectangle, who is smart as his brothers Triangles,

decides that is right to give to all the possibility to win. And during the third and last night

modifies the whole path in such a way everyone could win.

Question 4 Which change can Rectangle do in such a way everyone could win? . . .

The solving of the questions required from the children to apply acquired knowl-

edge about Eulerian and Semieulerian graphs. The results were that the students

were able to answer to the first question correctly. This was a result that we did not

definitely expect because the students were only used to count the degree of the

nodes – but while working with Eulerian or Semieulerian graphs – they were not

used to more than two nodes of odd degree. Usually, when they identified a graph

they could classify, they started to count the degree of nodes until they encountered

a node of odd degree which they used as a starting point. The only graphs they had

encountered before which were not Eulerian or Semieulerian were the graphs of

Fig. 10. And in that case, they had managed those graphs before starting to count the

degrees. So, the situation described in question one was unusual.

By the time that they identified that the graph of Fig. 14 neither Eulerian nor

Semieulerian, they had already acquired enough knowledge in order to know how

to make it Semieulerian. The aim of the task was to build a street. A few children

solved the task by deleting an edge so that the two nodes connecting that edge

Fig. 14 Path for

Polygonsland contest (Aleo

et al. 2009, p. 112)
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changed their parity. Of course, this was a possible solving strategy and such

answers were positively considered.

Some difficulties arose on question four, even though all students were familiar

with the fact that an Eulerian path could start anywhere in the graph. We later

identified that a few of them had not understood that the request could have been

translated into “make the graph Eulerian” – possibly because question two and three

both asked for semieulerianity.

Finally, we conclude – on the basis of the test results – that the majority of

students were able to relate acquired knowledge with the presented task.

Embodiment with Wool Strings

As a final activity in class, the children created posters which summarized the main

ideas that had arisen during the teaching experiment. One of these deliverables was

solely on walkable graphs (see Figs. 9 and 15) and was realized by manipulated real

wool strings which were wrapped around split pins, similar to the online game

Icosien.

In order to make every child an active part of the activity, the class was divided

into three homogeneous teams according to the self-assigned preferences of stu-

dents, i.e. drawers, writers, and thinkers. In each group, students designed their

poster together once the teacher assigned the task to each group. The thinkers then

defined the graphs to be used. In the whole, they worked as a team, but each student

had an individual role. At the beginning of the working progress, each student in

each group proposed his/her own graph to the others. After that, they decided which

one they want to use. The drawers were asked to apply their ability of drawing

which resulted in a mixture of experimenting and purposeful manipulating of the

graphs; It was not a mere copy of the thinkers’ graphs. The writers were in charge of
the title and subtitles, e.g. in Fig. 15 they decided for “inizio” and “fine” – Italian

words for “begin” and “end” respectively. As for the wrapping of the strings, all

members of the team were asked to participate because it is important to join mind

and body as well as putting the concepts they had studied into practical actions. This

requirement did not pose any difficulties; all students were quite eager to participate

in this activity.

Final “Fighting” with Parents

In the first year in which we carried out this teaching experiment, their children

from the very beginning, especially in regard to the online games, involved the

parents. In the second year, the teacher asked the students not reveal “the trick” of

walkable graphs, so that the parents could be invited to the last meeting of the

experiment for a “Children vs Parents Contest” based on the online games. The

games that were used for the contest were Icosien and Strand; and the children

clearly won the contest. In fact, it showed that the children had not only practised on
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Eulaerian and Semieulerian graphs during the teaching experiment, but they also

had internalized the underlying definition and reasoning. Further, it showed that the

children were very proud to win against their own parents which implemented that

they knew something that their parents did not. The parents, on the other side, were

proud to see their children so happy and excited about mathematical contents.

Results and Conclusion

This teaching experiment had two major aims. Firstly, mathematical oriented, we

wanted the children to be able to represent relations and data and – in significant

situations – use representations to get information. Secondly, emotionally oriented,

we wanted the children to be happy when doing mathematics. We will briefly

discuss both aspects.

The majority of children were able to master the activities as is shown by the

ongoing and final tests. Moreover, in the first lessons, when the basic concept had

been introduced, the teacher asked the students to name suitable examples from

their everyday life. They were able to identify the model of a graph in many

settings, which indicates that they mastered the “Creative Application” ability the

of O.B.I.T. model. An example is illustrated in Fig. 16. The figure represents a city,

but indeed it can be interpreted as a graph. The children successfully connected the

studied topic with the real life situation.

Fig. 15 Poster realised by

children on “walkable”

graphs
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In the ongoing of the teaching experiment, it has clearly shown that the YED

artefact, which was used to draw several graphs, was a helpful tool. At the

beginning of each activity, objects were presented by the software as one precise

symbol, e.g. pictures of cartoon characters, letters, cities, persons, etc. The software

provided a high variety of symbols and included the possibility to drag each object

into the working area so that it could be used as a node of a graph. But, whenever a

topic had been mastered, the children went on by using standard symbols of nodes –

which was usually a dot. They were able to abstract from the real objects and

worked on the model rather than on the problem itself; they manipulated not only

real objects (e.g. characters, cities, etc.), but also mathematical objects

(e.g. graphs). Moreover, they were able to use conceptual metaphors: they inferred

properties of a certain source domain (i.e. real objects) by manipulating a target

domain (i.e. graphs) (Lakoff and Nú~nez 2001). The software contributed to this

transition.

Another feature of the software – the possibility to drag nodes or change the

shape of edges – made children aware of isomorphisms among graphs which look

different at first sight. As a matter of fact, they were able to transform a graph

without deleting or adding an element, but by simply changing the shape. Not every

child was able to grasp this concept by him/herself, but at the end of the teaching

experiment – after various manipulations of graphs on the YED software – they

were all convinced that it is possible to preserve mathematical properties in

differently looking graphs.

The major disadvantage that we encountered on the use of the software was the

English language; but, as we mentioned earlier, the tools that were required for our

purposes were self-explanatory so that the Italian translations were not needed.

As for the online games, we focus on Icosien because it was the most frequently

used during the teaching experiment. The wide range of possibilities to freely

experiment was highly appreciated by the children, and they eagerly lined up to

come to the whiteboard in order to do so. From a teaching and learning point of

view, the game is useful because students can experiment by themselves without

Fig. 16 A picture of a city, seen by children as a graph
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the constant assistance of a teacher. The game itself restricts actions and signals the

end of it. The children are guided without any external intervention. Another

disadvantage of such a game is that it makes the students primarily focus on the

game itself. Their focus of attention was on winning the game, not on the analysis

why a certain property is held. Due to this, we used the game to conjecture, but we

did not use it to reason or argue. Even though the use of technology has a high

variety of advantages, it showed that time as well as pencil-and-paper activities help

students to reason successfully.

From the emotional point of view, students of both schools were enthusiastic to

encounter mathematics as we did in our teaching experiment that is without

numbers, calculations, or systematic operations, but rich of princesses, relatives,

football players, and real-life situations. They encountered “another mathematics”

which was different from what they previously experienced. Somehow, they saw

mathematics with the eyes of a mathematician. The students understood mathe-

matics as a game. Indeed, the activities required reaching a target while obeying the

“rules of the game”. On the basis of previous experiences, teachers often focus too

much on the application of rules of mathematics instead of making students analyse

the origin of such rules. If mathematics could be understood as a game more

frequently, students would be more encouraged to think about how to improve

the rules on higher levels as well as about strategies that are important in order to

achieve your aim: Aside from playing by the rules it is allowed to use creative

strategies to win in the most elegant and fastest way.

Young students appreciated the possibility to play with mathematics through

online games – even at home. It happened that children insisted on their parents to

play with them, and even a grandfather was invited to play. They further enjoyed

the possibility to draw their own graphs once they understood how to do so (see

Fig. 17).

Lilia Teacher, I thought of another graph!

With reference to the paper-and-pencil activity in the previous section, after the

teacher said that the graph f in Fig. 10 was not walkable, Lorenzo, an eight-years-

old student, said:

Lorenzo Then graph g is not walkable either; they are the same!

This showed that the student was able to identify the model underneath the

drawings without any guiding explanation of the teacher.

Technology had a fundamental part in this teaching experiment. As mentioned

before, we used “old technology” (e.g. pencils, paper, blackboard, and chalks) to

reason and to fully understand, but the application of “new technology” was very

useful in the practical part because it made children independent. This was also

previously discussed on Icosien. There, the students constructed different graphs

without the assistance of the teacher, and they continued to work independently at

home – with the online games and with YED. The possibility to drag nodes and/or
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change shapes to edges made the manipulation of graphs easier; otherwise, one

would have been obliged to continuously redraw each representation of the same

graph. Moreover, by transforming the graph instead of redrawing it, the students

identified that the features of a graph do not change by the mere alteration of its

representation.

In addition to observing the students, other teachers of the students have been

interviewed. They noticed that the children’s logical skills increased as well as their
active participation in class. They posed questions more frequently instead of

passive listening. So, the students learnt to learn, and they transferred this new

skill to their whole learning process.

What was difficult was the argumentation activity. The students were much

more interested in experimenting and learning new “tricks” rather than in reasoning

on possible explanations. But when they were actively engaged into the discussion

and invited to participate actively instead of mere listening, this helped them to

concentrate on the topic.

In the second year of my teaching experiment, my tutor – a primary school

teacher – took notes at each of my lectures and then organized meetings with other

primary school math teachers to share materials and ideas for possible future math

sessions. It showed that this teaching experiment was highly appreciated by

teachers because primary school teachers – but also high-school teachers – are

not familiar with the underlying aspects of graph theory. Further, they appreciated

the idea that graphs can be used to model problems from real life situations, to

represent relations, to mathematize situations. Additionally, the teachers who took

part to these meetings had the opportunity to address questions about innovative

teaching/learning processes of mathematics.

Finally, this chapter ends on comments written by children in the final satisfac-

tion questionnaire: “I think that graphs are more funny than games”, “I think that

this laboratory on graphs helped me to reason more quickly”, “Mathematics is

beautiful, intriguing and is of help”.

Fig. 17 A student drawing

a graph by herself
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Appendix

This appendix provides a short glossary of those concepts in graph theory we dealt

with in the chapter and a collection of some activities we carried out with the

children.

Short Glossary of Graph Theory

– Bipartite graphs: a graph G¼ (N, E) is said bipartite if it is possible to divide the

set N into two subsets N1 and N2, in such a way that every edge in E joins a node

in N1 with a node in N2.

– Coloring of a graph: a colouring of a graph is a function from the set of nodes to

a set of colours, that assigns a colour to every node in such a way that connected

nodes have different colours.

– Complete graph: a graph is complete if every couple of nodes is connected by an

edge. A complete graph with n nodes is indicated by Kn.

– A bipartite graph with bipartition sets N1 and N2 is said complete bipartite if

every node in N1 is connected to every node in N2. A complete bipartite graph

with m nodes in N1 and n nodes in N2 is indicated by Km,n.

– Cycle: a cycle is a path that is closed. Moreover, the starting node is the only

node repeated in the path (repeated as the ending node). For instance, in the

graph G¼ (N, E) with N¼ {1, 2, 3, 4, 5} and E¼ {(1,2), (1,3), (2,3), (2,4), (3,4),

(3, 5), (4,5)}, the path C ¼ [(1,2), (2,3), (3,1)] is a cycle, while the path P ¼
[(1,2), (2,3), (3,5), (5,4), (4,3), (3,1)] is not a cycle because not only node 1 is

repeated, but also node 3.

– Degree of a node: the degree of a node in a graph is the number of edges

involving the node.

– Eulerian and Semieulerian graph: a graph is called Eulerian if there is a closed

path containing every edge of the graph just once. (An Eulerian graph has all the

nodes with even degree). A graph is called Semieulerian if there is an open path

containing every edge of the graph just once (a Semieulerian graph has exactly

two nodes with odd degree).

– Graph: A Graph G ¼ (N, E) consists of two sets, N and E. N is called the set of

nodes, and its elements are represented by points. E is a set of couples of nodes,

called edges. If two nodes are a couple in E, then the two points representing the
two nodes in the edge are joined by a line. Whenever the couples are sorted, the

graph is said “directed”, otherwise it is said “undirected”. When we say just

graph, without specifying directed or undirected, we implicitly mean undirected.

– Two nodes A and B can be connected by one edge, in this case we indicate the

edge with (A, B), or by two or more edges, in this case we indicate the edges with

s1¼(A,B), s2¼(A,B), . . .. Edges connecting the same couple of nodes are called

multiple edges, and a graph with multiple edges is said multigraph.
– Hamiltonian graph: a graph is called Hamiltonian if there is a cycle involving all

the nodes (it is not requested that this cycle involves all the edges). This cycle is

called Hamiltonian cycle.
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– Loop: a loop is an edge connecting a node with itself.

– Path: a path in a graph G ¼ (N, E) is a sequence of consecutive edges, for

instance if we have N ¼ {1, 2, 3, 4, 5} and E ¼ {(1,2), (1,3), (2,3), (2,4), (3,4),

(3, 5), (4,5)}, a path could be P ¼ [(1,2), (2,4), (4,3)]. A path is said open if the

first node of the first edge in the path (starting node) is different by the last node

of the last edge in the path (ending node), closed otherwise.

– Planar graph: a graph is planar if it can be drawn in a plane without graph edges
crossing, i.e. if it can be drawn in such a way an edge can touch another edge just

in the common node.

– Tree: a tree is a graph without cycles and connected, where a graph is connected
if there is always a path between any two nodes.

Some Activities on Graph Theory in Primary School

Activity on Hamiltonian Graphs (We Called Hamiltonian Graphs

“Visitable”) Violetta’s Tour

How can we help Violetta (a pop singer very popular among children) to adjust the

trip of her Italian tour in such a way that she stays in every city she planned to visit

just once? This problem is connected to reality, not only because the cities are the

real stops of Violetta’s tour in 2014, but also because we checked for flights

between the cities in question (but, for the sake of simplicity, only with just one

airline,). The children constructed the graph in Fig. 18 without difficulty by

connecting cities joined by a flight.

Fig. 18 Hamiltonian graph to represent a tour (made with YED)
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The use of the software was irreplaceable. Even when the graphs are simple,

with just a low number of nodes – like the previous one – the same activity is much

more difficult to be carried out with paper-and-pencil. In fact, the students made

first attempts in their exercise books by drawing several cases or by colouring used

edges, but this was unsuccessful. As soon as they came to the whiteboard and could

drag nodes digitally, the task could be resolved easily. Additionally, several Ham-

iltonian graphs were explored by means of the online game Icosien. But the students

met difficulties in finding Hamiltonian paths because they did not have any strategy

to follow.

Activities on Planar Graphs

As for planar graphs, we applied the well-known three cottages problem (another

unsolvable problem, after the “seven bridges” impossible path): there are three

cottages and three utilities, each cottage has to be connected to each utility, but we

want to draw connections in such a way that they intersect just in utilities and

cottages.

The children started by constructing the requested bipartite graph in their

exercise books: they drew the six nodes in two separated lines, as they were used

to due to the Disney’s princesses graph. Then, they started to draw the edges from

cottages to utilities one by one, avoiding making them touch. All students were

successful up to the fifth edge, but they failed at the sixth edge because the problem

is not solvable. Then, a few children tried to solve the task at the whiteboard. This

time, the edges were already drawn – by the teacher – and the students dragged the

nodes, unsuccessfully of course. After that, a modified version of the problem –

simplified with three cottages and two utilities – was posed and solved very soon.

This problem was useful to introduce complete graphs with n nodes, named Kn

and complete bipartite graphs with n and m nodes in the two sets of nodes, named

Kn,m. The children were asked to analyse complete graphs and were guided to

discover the “trick” of triangulations when they have a K4 inside a graph as shown

in Fig. 19.

The “triangulation trick” was often used in the games at school (as fly tangle, see

paragraph “Technologies”) and in the home-made games which consisted of

Fig. 19 A planar graph containing a subgraph K4 (made with YED)
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adjusting planar random graphs produced by the YED software. The students were

guided to discover that for K5 – and higher – complete graphs are not planar and so

are graphs containing not planar graphs. Similarly, they easily grasped that com-

plete bipartite graphs are planar until K2,3 They tried this with the K3,3 of the

cottages problem and hence found an easy solution for K2,3.
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Pocket Calculator as an ExperimentalMilieu:
Emblematic Tasks and Activities

Ruhal Floris

Abstract In this chapter, we present and analyze calculator-based tasks and

activities conceived as means for the learning of mathematics in several grades of

primary and secondary school. The tasks or activities have been experimented with

students and pre-service teachers. The intent is to show how a set of calculator-

based tasks can be organized in a way that they promote the development of

theoretical aspects. The results show that a high variety of numerical activities

can be proposed in such a way, but that a further institutional promotion is

necessary. The analyses are based on the concept of ‘milieu’ by Brousseau (Theory
of didactical situations in mathematics. Kluwer, Dordrecht, 1997) with an anthro-

pological approach (Chevallard Y, Recherches en Didactique des Mathématiques,

19(2):221–266, 1999; Lagrange JB, Educational Studies in Mathematics

43(1):1–30, 2000).

Keywords Calculator • Arithmetics • Fractions • Early algebra • Theory of

situations • Learning milieu • Adidacticity • Anthropologic approach •

Praxeologies • Teaching

Introduction

In a considerable amount of countries, a relatively large number of primary and

secondary mathematics teachers do not consider it important to teach how to use a

calculator; they presumably assume that this is something pupils learn from their

classmates or outside school. At least, this is the case in the French speaking part of

Switzerland. The consequence, observed in higher secondary school, is that the

calculator skills of the students are not as far developed as they should be at that

point; for example, a few of the observed students showed difficulties to success-

fully enter expressions such as
ffiffiffi

2
p � 1, but entered

ffiffiffiffiffiffiffiffiffiffiffi

2� 1
p

instead. This lack of

competences could possibly lead to the situation that when they study formal

calculations with square roots and try to check that
ffiffiffi

2
p � 1
� �

ffiffiffi

2
p þ 1
� � ¼ 1, the
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calculator is of no help for them. We are of the opinion that this situation is a cause

of social inequalities. A small group of students are able to use their calculators as a

powerful checking tool while others limit their use to basic operations; this phe-

nomenon has been observed on the use of symbolic calculators by Guin and

Trouche (1999). This is why we are of the opinion that working with calculators

on a regular basis is necessary in primary and secondary school. Furthermore, we

believe that calculators are highly beneficial tools in regard to mathematics learning

on the premise that their use is well introduced to the students and that the

calculators are incorporated within appropriate tasks or activities (that is, well-

designed sequence of tasks). In recent years, we regularly observed lessons where

the teacher aimed to integrate such kind of tasks and activities at different school

levels. Further, we integrated them in our pre-service teacher workshops: the

secondary student teachers were asked to adapt one calculator-based activity into

their teaching1 which was then evaluated on in a feedback discussion. In this

chapter, we synthesize and analyze the results of different calculator-based teaching

experiments with primary and secondary school students (Del Notaro and Floris

2011; Weiss and Floris 2008) as well as within teachers’ training (Floris 2015). Our
analysis aims to answer the main research question whether the use of calculators

enhances the learning of mathematics and how it does so. We interpret the research

question by integrating the theoretical perspective, selected didactical situations,

and praxeological anthropology. These aspects of our interpretation will be thor-

oughly described in the next section.

Theoretical Background

Our main theoretical reference is Brousseau’s theory of didactical situations (1997).
This theory emphasizes the role of the adidactical milieu in the teaching-learning

process of mathematics; the gist of this theory is that, in the end, taught knowledge

has to be transferable and applicable to the real, non-didactical world. But, this can

only be realized when the non-didactical world is – at least partly – integrated into

classroom activities. This is due to the fact that mathematics is mainly a procedural

science, i.e. it is impossible to merely memorize questions and their answers, but it

requires to learn how to suggest solutions to an infinite variety of possible questions

– even with respect to simple additions.

As one example for adidactical feedback, we refer to the task where we asked the

students to enlarge a tangram puzzle (Ibid); the students were assigned to groups,

and each student of each group had to enlarge one piece of the puzzle. The feedback

was provided by the final assembly of the puzzle: in case that it was impossible to

put the pieces of the puzzle together because their sizes did not match, the former

1In Geneva, secondary teachers follow a two-year training and in the second year they teach half-

time in school.
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mathematical enlargement procedure, e.g. the addition of constant values to the

measurements, was thereby invalidated. In this situation – the adidactical milieu –

the nullification of the applied mathematical procedure is not provided by a teacher,

but by the situation itself. Here, it is important to acknowledge that the milieu is not

limited to the external situation, but it also refers to the goals defined by the teacher

and to students’ prior knowledge.
In everyday teaching, the adidactical part of the didactical milieu often is of

understated significance. In consequence, the learner is held accountable to create

individual “milieus”, but in case that this option is out of reach for the individual

learner the learning outcome is weak. The conjecture of Brousseau’s theory is that

an adidactical milieu provides rich feedback and thereby successfully supports

learning processes. On the basis of these hypotheses, the research question evolves

to how the integration of calculators into the classroom can be a successful learning

milieu. We will aim to provide an answer by giving examples of different grades

where the calculator was used to assist this adidactical learning milieu.

Our methodology is mainly qualitative; our data basis was students’ and

teachers’ gestures, calculator manipulations, and utterances. Finally, we compare

our findings to Brousseau’s theory to assess the learning potential of the proposed

tasks alongside with their feedback.

In our opinion, an analysis of effective teaching methods needs to integrate the

anthropological approach by Chevallard (1999). According to this approach, prax-

eology (from Greek ‘praxis’ and ‘logos’) is a four-part mathematical concept which

includes a type of tasks, technique, technology, and theory. The first two compo-

nents are practically oriented whereas, here, technology is the discourse that

justifies or explains the technique. It becomes theory when the discourse is more

structured. In the educational context, and in the domain of applying technological

tools, Lagrange (2000) reduces praxeology to three components: tasks, techniques

and theories, i.e. Chevallard’s last two components are being combined. Lagrange

further considers a study of Rabardel (1995) which analyses the process of tools’
transformation to effective working instruments. Thus, within the anthropological

approach, discourse is said to link technique and theory; this assumption entails the

conjecture that this linkage enhances the mathematical quality of learning processes

in the long term. Furthermore, the concept of praxeology is especially helpful for

the analysis of the introduction of new techniques.

In summary, the conditions for a profitable learning milieu according to the

above mentioned theories are:

LM1 A task, or a set of tasks, that involves some sort of adidactical feedback

which is independent from the teacher.

LM2 A more or less explicit presence of a tight mathematical link between

theory and technique.

In the following paragraphs, we discuss a set of selected examples. First, we

present two summarized examples and then present as well as thoroughly analyze

two further examples.
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A First Example: A Milieu for Place-Value Notation

The following tasks are intended for students at the end of primary school or early

secondary school (i.e. 11–12 years-old students). We suggest that the reader takes

out a calculator and solves them while thinking about the mathematical properties

involved.

1. Type in the number 89254 on your calculator. Without deleting this number,

using mathematical operations, find the shortest way to display the number

89454.

2. Type in the number 89254 on your calculator. Without deleting this number,

using mathematical operations, find the shortest way to display the number

80404.

3. Type in the number 89254 on your calculator. Without deleting this number,

using mathematical operations, find the shortest way to display the number

892054.

4. Type in the number 4.56 on your calculator. Without deleting this number, using

mathematical operations, find the shortest way to display the number 4.056.

As a whole, these tasks refer to the domain of place-value notation, which is one

of the main domains in primary school. This set of tasks proposes a learning milieu

for this fundamental arithmetical property because the use of this property is

necessary to solve the tasks. In the course of a workshop, these tasks have been

proposed to students and pre-service teachers in primary and secondary education

with the underlying intention to prepare them to integrate the calculator into their

teaching. We were surprised of the outcome that some of them had difficulties with

solving the tasks, even despite their mathematics knowledge. One of our possible

interpretations of this is linked to Brousseau’s didactic contract (1997):

It is the set of the reciprocal obligations and sanctions that each partner in the didactic

situation imposes, or believes to impose, explicitly or implicitly, on others, and those that

are imposed on him or her, or he or she believes that they are imposed on him or her.

(Translation by Indiogine 2010, n.p.)

At primary school, without specific instructions on a different handling of the

calculator, it is only used to obtain the result of a direct calculation. What is

proposed in the example above is an inversion of a common task: the result is

given and the operation is asked for. It is what Brousseau refers to as breaking the

didactic contract and further elaborates on the students’ and teachers’ perplexity
about this. Activities which propose such disruptions are interesting because they

introduce adidacticity into the milieu; or, rephrased slightly different, ignorance

triggers learning processes. Here, the teacher has the choice either to instruct the

students to find the solution by themselves, or to indicate possible solving strategies

(e.g. let a fellow student propose an answer). An alternative to level out the state of

not knowing is to propose a slightly easier task beforehand:

174 R. Floris



1(a) Type in the number 89254 on your calculator. Without deleting this number,

using mathematical operations, find the shortest way to display the number

89264.

Evidently, the kind of feedback that is given by the calculator is in agreement

with the definition of feedback of LM1, a calculator coming clearly from the

non-didactical world (see previous section). With respect to LM2, on the basis of

the anthropological approach, we focus on the theoretical aspect. This refers to the

fact that the numbering position within the tasks links the way to solve them and

explains the solving strategy at the same time. For example, in case that the task

requires to change the digit two into a four, you have to add 200 because the digit

‘2’ is at the hundreds place of the positional notation system.

A Second Example: Milieu for Arithmetics Operation
Properties

At the beginning of this section, we provide a second example for a possible

integration of calculators into the classroom setting. Again, we suggest that the

reader takes out a calculator and solves it while thinking about the mathematical

properties involved:

1. Determine all digits of the numbers 712, 713, 714, etc. in their standard (base 10)

expression.

One possible answer could be that a student thinks that the requested answer for

712 is 13841287200 (see Fig. 1).

In such a case, the feedback provided by the calculator is inadequate. This is why

the teacher has to supplement the students with sufficient validation techniques. For

example, one technique could be to determine the digits of 710 and 711 first, and then

determine the result for 712 with the help of the calculator. Or the teacher could pose

the question if it is possible that the last digit of the displayed result is zero. This is

how the milieu is enriched with paper-and-pencil calculations, which are necessary

to give the right answer to this task. In this situation, the students’ calculations are
expedient with a mixture of calculator and paper-and-pencil calculations. With the

help of the TI-30XSMultiView2, it is possible to get the results to 711, i.e. 711 ¼
1977326743. This result can then be used in order to work out all digits of 712 by

computing

712 ¼ 7ð711Þ ¼ 7� ð1977326743Þ ¼ 7� ð1977326740þ 3Þ
¼ 7� 197732674� 10þ 21 ¼ 1384128718� 10þ 21 ¼ 13841287201:

2It is the official calculator in the schools of Geneva, provided to all 10 years-old students.
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This kind of calculation requires the students’ ability to apply certain operation

properties correctly, in this case distributivity. As a result, the integration of the

calculator into mathematics teaching is not only meant to be a calculation tool, but

its application needs to be carefully instructed. Hence, the following task could be

proposed afterwards to further strengthen the new didactical milieu which is

dialectic of calculator and paper-and-pencil work:

2. Without multiplication and with a minimum of operations, please calculate the

following products on your calculator: 387�204 and 87�199.

AMilieu at Primary School: DivisionWithoutMultiplication

Description of an Experiment

1. Is it possible to equal 24 by repeating the sequence “þ 6 ¼ ?”3 (See Fig. 2)

2. Is it possible to equal 24 by repeating the sequence “þ 7 ¼ ?” (See Fig. 3)

These two tasks are examples from a long-term experiment with six to seven

years-old students. The experiment lasted over the time span of about four months

and was held once a week. The task was to identify all possible integers n that equal

Fig. 1 Display for the

result of 712

3Starting from zero, that is after a reset of memory.
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24 in the sequence “ þn ¼ ? ”. The calculation result was then changed to another

value. It was possible to choose between individual work or group work. This phase

was followed by a public collection and discussion of results on the blackboard. A

final table is presented in Fig. 4. During the discussion phase, wrong propositions

were given by students which were then peer-reviewed by the other stu-

dents and under teacher’s management.

After the final agreement on the correctness of the table, the students were asked

to express their findings, for example all the ‘1’ in the first column, the alternate

occurrences of ‘2’, lines with only two numbers called ‘poor’ targets.
In the next session, another set of targets was proposed.

This kind of work, described in Del Notaro and Floris (2011) enriched the

classroom study with various arithmetic properties such as parity, multiples and

divisors, and primes. The use of the calculator played an important role in order to

check properties and to discard wrong ideas. The following feedback instructions

were summarized on the blackboard:

1. Make sure that for odd targets there are only odd divisors, and that there are even

and odd divisors for even targets.

2. The ‘poor’ numbers are primes (a prime number is odd, except for “2” – but not

all odd numbers are prime).

Fig. 4 Correct results for the targets between 18 and 25

Fig. 2 Repeating the

sequence “ þ6 ¼? ”

Fig. 3 Repeating the

sequence “ þ7 ¼ ? ”
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The 90-minutes working sessions were held weekly. After three months, the

teacher introduced the idea of writing also the number of repetitions to reach the

target together with the chosen number, for example adding 6 (time ‘2’) to get

12 (Fig. 5). This provided a new possibility to control one’s results: if there is a pair
(a, b), there must be a pair (b, a).

Fig. 5 Writing the number of key iterations to reach the target

Fig. 6 A table for multiplication control
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By studying the above table (Fig. 6), the following new rules were identified:

1. Check with your calculator: multiplying the two numbers (in a column) results in

the target.

2. Check that there is the reverse correspondent of each multiplication (commuta-

tive rule).

3. When there is only one pair and its reverse, the number is prime.

4. A target with a pair type (a, a) is a square and a is its square root.

The usual phenomena of a frantic search (called ‘fishing’ by Artigue 1997;

Meissner 2005) was observed, mostly instead of the use of already institutionalized

knowledge (such as provided in the list of control rules). But at mid-term, cognitive

changes could be observed in the students’ actions, especially on their first approach
to multiplication.

This activity provides powerful adidactical feedback. The target can be reached

and mathematical properties can be verified with the calculator and the judicious

use of different tables. As a result, the properties of LM1 and LM2 are completely

fulfilled. The learning milieu is in the sense of Brousseau (1997) because the

teacher’s input triggered the students to pose various questions which were

answered by the milieu itself.

Detailed Analysis of an Example of Simplification
of Fractions

The Type of Tasks

We focus on simplifying procedures for great fractions in case that a calculator is

available. For numerators and denominators beyond 100, students of lower secondary

school are generally not able to make use of a stored repertoire of mathematical results

to find a common divisor of numerator and denominator; therefore, they are urged to

apply other procedures to perform this type of task. In a former research (Weiss and

Floris 2008), a series of simplifying fractions have been proposed for different types of

students – at the age of about 15 years – with permission to use the calculator (Fig. 7).

It often occurred that students considered a fraction like 187/340 irreducible

because they did not consider common divisors beyond ten. These students are

Fig. 7 Which fractions are

irreducible?
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subject to the basic didactic contract in which the teacher proposes fractions

simplified by 2, 3, 5, 7, or 10. The tasks which were proposed in this teaching

experiment – a bit beyond this contract – aimed to extend the mathematical

knowledge of students. In this specific case, it aimed for the awareness of mathe-

matical procedures to make any fraction irreducible; hence, the decomposition of

the numerators and denominators into prime factors, which is deeper founded into a

theoretical context4 than the use of GCD (Fig. 8).

The mathematics curriculum of the French part of Switzerland includes the study

of divisibility of integers and of their decomposition in a product of primes. But,

these mathematical procedures remain rather isolated and algorithmic and are not

linked to other parts of the curriculum (Floris 2013).

Analysis: Milieu, Praxeology, Instrumentation

We claim that the set of tasks in Fig. 7 promotes an experimental learning milieu for

the simplification of any numerical fraction. Following Brousseau (1997), there is

here a fundamental aspect, an essential basic knowledge, corresponding to the

prime factorization of integers. By proposing these tasks, the teacher introduces

the students to these techniques as well as to the advantages of their use. The

feedback (LM1), however, is not entirely adidactical. The teacher is required to

assist students, for example by suggesting to look for other common divisors in case

that they stop with ten. On the basis of the students’ first attempts to solve those

tasks, the teacher can then present the calculation of Fig. 8 and ask the students to

revise the tasks in the same way.

To set the task according to the LM2 condition, we first need to analyze this

calculation on the basis of Lagrange’s (2000) three components of praxeology. First

of all, the task aims to make any fraction irreducible. As a first step in Fig. 8, the

subtask is to decompose numerator and denominator, the technique being the

algorithm of successive divisions by all prime factors taken in increasing order.

The underlying theory is the theorem that the decomposition exists and that it is

unique. At this school level, this theory is generally not made explicit, and in this

specific case it is replaced by the use of the algorithm (because it always works). As

a second step, the subtask is to obtain a product of fractions by using the definition

of this product (technique) which is justified by a definition of a fraction (theory).

As a third step in Fig. 8, the subtask is to replace a/a fractions with “1”, using the

corresponding property (technique), which is also justified by a definition of

637 7×7×13 7 7 13 7 71× ×1
1183 7×13×13 7 13 13 13 13

= = = =× ×
Fig. 8 A theoretical

transparent simplification

4See detailed praxeological analysis below.
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fraction. Finally, the neutrality of the number one is used. A more refined analysis –

which integrates properties of the integer ring as associativity and commutativity of

multiplication – could be made.

This analysis shows the importance of the teacher’s involvement into the

students’ working process, e.g. with respect to the choice of hints and degree of

institutionalization (i.e. theoretical statements). These have to be observed to

evaluate the theoretical level of the mathematical procedures. Furthermore, the

entire curriculum on fractions is called into question: how and when are fractions

and their operations defined? In some school programs in Switzerland, the multi-

plication of fractions is taught after simplification, whereas fractions themselves are

defined in a rather intuitive way (e.g. as parts of pizzas, etc.) never followed by a

rigorous definition.5

Inspired by this work, a pre service teacher proposed a similar set of fractions to

his students; and, after showing them how to factorize by decompositions, he asked

them to directly get the decomposition with the application of a symbolic calcula-

tor.6 Further, the students were asked to check their results on this task as well as on

other ‘complicated’ fractions. He also introduced them to Geogebra and Aplusix7 as

a means of generating decompositions. Finally, he presented a mathematical tech-

nique to obtain simplification using the symbolic features of the calculator

(MATHPRINT mode, see Fig. 11 below). Here again, a contract disruption helps

to promote an experimental milieu for learning as well as enriches the theoretical

part of the praxeology corresponding to simplification of fractions – that is, in

particular, the linkage with the decompositions of integers and the awareness

towards the existence and unicity of any complete simplification of a fraction.

Activities on Non Decimal Numbers and the Limits of a
Calculator

Scientific calculators intended for scholarly mathematics treat fractions and square

roots in a problematic way which is why quite a lot of primary teachers – or even

graduates of mathematics – think that they have certain knowledge whether a

decimal development is infinite or not.8 What we present in the following section

are activities aimed to analyze these peculiarities. Further, the analysis aims to give

5Our favourite one being ‘a / b is a real solution of equation b x ¼ a with a, b integers and b

different from zero, positive real numbers being defined as lengths’.
6A TI-92 in this case.
7There is a CAS part in Geogebra (Geogebra.org); Aplusix is a useful program allowing direct

control of numerical equalities and algebraic equivalences (Aplusix.com). Other tools can be

easily found on the web, e.g. www.calculatorsoup.com/calculators/math/prime-factors.php.
8They also are of the opinion that transcendent functions are programmed according to their

Taylor series. Most of them ignore the CORDIC algorithms (https://en.wikipedia.org/wiki/

CORDIC).

Pocket Calculator as an Experimental Milieu: Emblematic Tasks and Activities 181

http://geogebra.org
http://aplusix.com
http://www.calculatorsoup.com/calculators/math/prime-factors.php
https://en.wikipedia.org/wiki/CORDIC
https://en.wikipedia.org/wiki/CORDIC


a detailed insight on the workings of scientific calculators in order to understand

them and to use them successfully. During the analysis, it was rather difficult to

separate this manipulative learning from the mathematics one, so the reader will

have to understand it while working out the activities. The first activity is intended

for twelve to thirteen years-old students. The second activity is designed for older

students when studying square roots.

Tasks on the Decimals of 3/7

1. Transform 3/7 into a decimal notation with the use of your calculator. Enter the

result into the third row of your calculator (here TI-30XSMultiView) and

multiply this result by 7 (Fig. 9). What can you conclude?

2. Transform 3/7 into a decimal notation with the use of your calculator. Then,

immediately multiply the result by 7 (press * and then 7, see Fig. 10). Explain the

difference to what had happened before.

3. Is the decimal notation of 3/7 periodic? If yes, determine the period. Can it be

done using the calculator?

Comments

The activity described above highlights how the calculator manages approxima-

tions. As for the long multiplications proposed above in this chapter (see second

example), it suggests a negotiation between the answers of the calculator and those

that can be obtained by using the usual paper-and-pencil algorithms. It leads to an

increased knowledge on the functioning of the calculator in case of hidden

decimals:

TI30XS Multiview™ uses internally 13 digits for calculations and it displays 10 in the

results. If the first hidden digit is 5, 6, 7, 8 or 9, the digit displayed as the right of the screen

will be increased by 1, it is the rounding rule. (Calculator guide book)

Fig. 9 Checking the

decimal result of 3:7

Fig. 10 Multiplying

directly by 7 the decimal

calculator result of 3:7
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Another feature of the TI30XSMultiview™ is the possibility to partially work in

a non decimal world, called the MATHPRINT mode (Fig. 11). These features are

generally ignored by teachers and students at this level (lower secondary schools)

but could be presented after the completion of the previous activity on 3/7. It was

often the case that pre service teachers proposed these tasks in their classroom.

They further introduced the MODE menu and its different features. The discussion

about these tasks among the teachers was quite interesting (Floris 2015). Some of

them (mainly the teachers of lower secondary level) said that they were reluctant to

propose activities like the previous one, or the comparison between the calculator

results of 1020þ1–1020 and 1020–1020þ1, to their students. Their reluctancy relates

to a loss of confidence in using the calculator. Others emphasized that the limits or

errors of the calculators did not happen erratically but in precise cases. Moreover,

they claimed that working on these examples has to go alongside with an under-

standing and teaching of the concerned features. In the following section, we will

present a similar activity for fifteen to sixteen years-old students.

Analysis

For this activity, the focus of the analysis is on learning how the calculator

processes numbers with more than ten decimals and study periodical decimal

expressions. Additionally, the framing of decimal numbers with similar questions

as in the activity below will be considered. At this level, students simply consider

two decimals in their calculations when solving problems, and these decimals are

not always correctly rounded. It is considered to be a part of the didactic contract

and this is why teachers generally accept it. From the point of view of the milieu,

the activity seems to implement an uncertainty, but many students do not note this

and accept the situation without stepping back. At this stage of their scholarly

learning process, students already developed the habit to use the calculator only for

calculations, but what is required here is a thoughtful, reflexive approach. This

phenomenon is described as instrumentalisation by Rabardel (1995). Furthermore,

the mathematical treatment requires a long division that corresponds to a didactic

contract disruption. Thus, the relation between calculator tasks and paper-and-

pencil tasks is quite straightforward: They are either combined for a (complex)

calculation, or for checking one. This could explain the unwillingness of some

Fig. 11 Different

treatments of fractions and

divisions in CLASSIC

(above) and MATHPRINT

mode
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teachers to address this with their students. From the perspective of the praxeolog-

ical approach, it is interesting to note that the technique corresponding to the

treatment of the third question is long division, and that the theory is a property

of this operation, i.e. the recurrence of rests.

This analysis shows the high efforts of teachers to construct enriching learning

milieus with the help of these tasks. They have to consider it as a basis for a

sequence of lessons on the properties of decimal numbers, framing, periodicity and

long division. In this way, the adidactical feedback (LM1) can be constructed by the

combination of mathematical properties already familiar to the students and the use

of the calculator. Such a medium term study could further entail a search for all

decimal figures of 1:31, or 1:29 by again combining the application of calculators

and paper-and-pencil tasks. This would improve the students’ handling skills of

such mathematical tools in agreement to the instrumentation process of Rabardel.

Activity Around the Square Root of 8

1. Is
ffiffiffi

8
p

equal to 2? Justify.

2. Is
ffiffiffi

8
p

equal to 3? Justify.

3. Is
ffiffiffi

8
p

equal to 2,5? Justify.

4. Find two numbers with three decimal digits which frame
ffiffiffi

8
p

.

5. Is
ffiffiffi

8
p

equal to 2,828427125?

6. Do the following task with the calculator in CLASSIC mode:

Calculate the square root of 8. Then, put the result directly to the square.

Compare your result with the result of task 5. What can you conclude?

7. Find the best possible framing of
ffiffiffi

8
p

using the calculator.

8. What is the decimal value of
ffiffiffi

8
p

?

9. With the calculator in CLASSIC mode, calculate
ffiffiffi

8
p þ ffiffiffiffiffi

7,
p

and then
1

ffiffiffi

8
p � ffiffiffi

7
p : Are the results reliable?

What conjecture can we draw from these results?

Can we prove this conjecture?

In MATHPRINT mode, does the calculator confirm the conjecture?

Explain the results given in MATHPRINT mode (Fig. 12).

10. Identify a generalization of the conjecture established in point 9.

This activity can be analyzed identically to the previous one. It was proposed to

high school students, and while they were working on the task we could observe

difficulties linked to the didactical contract. Probably, these were due to the sparse

experiences with calculators of the concerned students. Nevertheless, the activity

was chosen by many teachers who were highly interested to improve their students’
instrumentation of calculators because it is a part of the calculus chapters of the
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high school curriculum. With the aim of efficiency, they mainly proposed the

above-mentioned version of the set of tasks.

Experimental Milieu with Calculator for Early Algebra9

In this section, we aim to present the advantages of a compulsory school calculator

like TI30XII concerning the study of algebra. In some countries, there has been a

recent shift in the curricula towards new ideas for the introduction of algebra. In the

1960s, the New Math reform proposed a structured approach to algebra which was

based on the properties of the sets of numbers (i.e. integers and rational numbers).

The letter calculation rules were then worked on in isolation. However, the current

proposal, called ‘early algebra’, endorses a dialectic between the numerical and

algebraic conceptual domains. The literal calculations are considered both a pro-

duction tool of number sequences and a description tool of numerical properties

(e.g. for any integer n, the expressions 2n and 2nþ1 equal sequences of even

numbers, respectively odd, and thus describe the parity). Furthermore, it is possible

to express algebraic properties in the numerical world; for example, 25¼52

expresses the fact that 25 is a square, or 333 ¼ 3 � 111 expresses that 333 is a

multiple of three (i.e. divisible by three):

One of the major goals of early algebra is generalizing number and set ideas. It moves from

particular numbers to patterns in numbers. This includes generalizing arithmetic operations

as functions, as well as engaging children in noticing and beginning to formalize properties

of numbers and operations such as the commutative property, identities, and inverses.

(Wikipedia ‘early algebra’ in 2017)

But even in case that the theoretical aspect is attached less weight in many

classrooms, the formal approach towards the algebraic domain has changed insig-

nificantly – apart from the integration of a few motivational activities at the

beginning of schoolbook chapters (these are mostly based on the formulas for

areas and perimeters). However, these are not connected to the main domain that

is being addressed in such a chapter. The study of computational techniques still

predominates; this provokes the impression of some students to see algebra as a

series of rules or laws which are devoid of meaning and poorly articulated within

the numerical frame (Pilet 2012).

Fig. 12 Calculator outputs

for the activity (question 9)

9See http://ase.tufts.edu/education/earlyalgebra/.
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Calculation Programs

Within this new perspective on algebra, the notion of calculation programs is a key

element. The name ‘calculation program’ – rather than formula – was chosen to

emphasize the dialectic between the numerical and algebraic conceptual domains.

This idea is at the heart of the so-called ‘square-edged’ activity, where the aim is to

establish a method to identify the number of small coloured tiles on the edge

regardless of the size of the square (Fig. 13). A detailed analysis of this activity

can be found in Eduscol (2008).

This activity can be integrated into the study of literal calculations at various

points, whenever it is most suitable with respect to the learning process. For

example, in the Swiss textbooks of the year 2000, it was proposed at the beginning

of the section on Algebra. In the year 2010, however, the activity was integrated at

the end of the section as an ‘application’ (which is further specified in the teacher’s
comments). After the analysis of the results of a profound diagnostic test, Pilet

(2012) proposes such a task for the reworking of the meaning of algebraic manip-

ulations. In addition to that, we propose to integrate this ‘square-edged’ activity in

an early algebraic setting to create awareness for literal computing at the beginning

of secondary school because it further provides precise numeric challenges. This is

because the activity asks students to predict the number of small coloured tiles for a

square of sides of 6, 11, 37, 88, or 2012 tiles. It showed that higher values led

students to abandon calculation procedures based on counting. At this level, the

goal is not necessarily to introduce letters. For a square of 37 tiles per side, such a

procedure may limit entries to obtain solely calculations like: 4 � 37–4 or

37þ37þ35þ35 or 37þ36þ36þ35 or 36þ36þ36þ36. For numeric values exceed-

ing ten, the use of the calculator can be accepted. A possible approach for teachers

could be to ask students to identify different calculations and then explain why the

results are equal. We would expect explanations such as

37þ37þ35þ35¼37þ36þ36þ35 or 37þ37þ37þ37–4¼36þ36þ36þ36 which is

equal to (37–1)þ(37–1)þ(37–1)þ(37–1). The calculator is used to validate the

calculation programs and their equivalence.

With the variation of tasks, these records may achieve a calculation program

status, that is a ‘model’ or ‘pattern’ of calculation which associates each calculation
with a diagram like the following (Fig. 14).

We observed the working on this activity in a class of twelve to thirteen years-

old students who are said to have difficulties in mathematics. They worked in

Fig. 13 ‘Square-edged’
activity
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groups of three to four students. It showed that for some of them, the calculator was

a helpful tool in regard to discussions because it assisted them to work out

similarities to the calculation programs. The writings of the groups exemplify the

successful dialectic of numerical and algebraic conceptual domains (see Fig. 15).

At this point, Eduscol (2008) proposes that teachers introduce a literal symbol:

The production of a formula appears as an answer to the question of the general description

of a situation involving specific numerical values and the use of letters solves the problem

of the appointment of the variables involved in the situation.

However, this is not a mandatory recommendation at this point of the learning

process, i.e. after the introduction of the topic. Our personal observations showed

that an immediate introduction can overextend students; thus, the idea to integrate

letters into calculations or equations is solely induced by the teacher without the

students having an actual need for it.10

An alternative could be that the teacher claims that the numerical expressions are

equal and proposes to study this type of scriptures further; for example, this could

be achieved by tasks on the properties of sums of consecutive numbers – with the

focus on numbers. For example, the sum of three consecutive numbers is equal to

the triplication of the middle number because 88þ 89þ 90¼ (89–1)þ 89þ (89þ
1) ¼ 89 þ 89 þ 89–1 þ 1 ¼ 3 x 89. The aim of these activities is to establish an

early algebraic perspective on numerical expressions. This is linked to the idea that

algebra is a kind of modelling of the numbers world within a numeric-algebraic

dialectic whose lack or weakness is related to the difficulties of many students (Pilet

2012). The calculators which are used in secondary schools nowadays, which are

types of calculators with two or more displayed lines, is of great assistance for this

kind of calculating (see Fig. 16). It follows that these feedbacks and linkages help to

fulfill properties LM1 and LM2.

Additionally, the calculator can be useful when working on symbolic calcula-

tions; for example, by pressing the key TABLE one gains access to the feature to

create a sort of spreadsheet that introduces formula11 (Fig. 17).

Fig. 14 Different patterns

of calculations for the

number of tiles in the edge

10There is a way to enhance this ‘symbol gap’. Following Brousseau’s formulation phase (1997),

the teacher may propose a contest between groups: he will choose one student from each group,

and then give a value for the number of tiles of a side. The student that gives the quicker answer

gets a point for her group. The groups have the right and the time to prepare a method. In the

subsequent validation phase the contest is about the best methods.
11The TI30X Multiview, given to all students in the schools of Geneva.
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From Calculation Programs to the Modelling of Arithmetic
Properties

The dialectic of numerical and algebraic conceptual domains can be realized in

connection to the TABLE key of the calculator, for example by asking students to

produce lists of even, odd, or multiples of a given number (Fig. 18). Modelling with

formulas can lead to a more logic-based type of thinking on properties such as the

thesis that the sum of even numbers is an even number, or that the sum of an even

number and an odd number is an odd number, etc.

What can further be studied are the properties of sums of consecutive numbers

whether using letters or not. It is interesting to compare this aforementioned work

Fig. 15 Early algebra: dialectic between numerical and algebraic conceptual domains

Fig. 16 Multiple lines

display in nowadays school

calculators

Fig. 17 How to use TABLE key (with the example of the study of the sum of three consecutive

integers)

188 R. Floris



with the following example, which is proposed in a current textbook of secondary

school (Fig. 19 from CIIP 2012, p. 99).

In such exercises, the dialectic with numbers is not explicitly integrated. The

decision to combine the results of this activity with the use of the calculator,

constructing paper-and-pencil numerical tables, or integrating the use of the

TABLE key function, is the teacher’s responsibility.
Another operation that is provided by TABLE is the comparison of calculation

programs. For example, in regard to the ‘square edged’ activity, we can introduce

the different formulas that are obtained within the activity and then observe whether

the values are the same. This motivates the study of literal transformations like their

justification based on properties such as distributivity or commutativity. An anal-

ysis of this has shown that this new point of view offers an enhancing relationship

between algebraic techniques and the properties founding them.

As TABLE allows the integration of only one formula at a time, this necessarily

involves paper-and-pencil transcriptions as well as working in groups of two, three

or four students who are assigned to program one formula each. One could argue

that it would be better to use a spreadsheet, but the formulas of such a software are

not written as polynomials in x which is why they require a technical introduction.

Furthermore, it would entail to work in the school’s computer room, unless your

classroom provides tablets or laptops.

From Calculation Programs to Equations

Problems like “Which number did I think of?”, allow to proceed to the notion of an

equation:

Fig. 18 Programming a

sequence of odd numbers

using TABLE key

Soit un nombre entier n.
a) Comment écrire le nombre entier qui le suit immédiatement ?
b) Comment écrire le nombre entier qui le précède immédiatement ?
c) Comment écrire le cinquième de n ?
d) Comment écrire le carré de n ?

Fig. 19 Classical work on algebraic scriptures (Let n be an integer (a) How to write (express) the

immediately following number? (b) How to write (express) the immediately preceding number?

(c) How to write (express) the fifth of n? (c) How to write (express) the square of n?)
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I think of a number, add its double, divide the result by 3, and add 75. I come up with 80!

Which number did I think of? Why?

One possibility to resolve this problem is to approach it arithmetically by starting

from the end and reverse the operations. This allows students to grasp the type of

problem and then move on to a different one which suggests the use of two different

calculation programs at the same time. In such a case, the arithmetical approach

would be awkward:

I think of a number. I multiply it by 3. I add 10. I get the original number sevenfold, plus 30.

Which number did I think of? Why?

This type of problem allows a wide variation of different statements and pro-

motes working on the numerical properties of the ‘facts’. The task set will also

comprise ‘math-magic’ tricks:

Think of a number, add 2000, divide the result by 20, subtract 100, and multiply all by 20.

You end up with the number you thought of at the beginning! How do you explain it?

Or

Think of a number between 1 and 9. Double it. Add 2 to the result. Multiply the new

result again by 5, add 12, multiply the new result by 10, subtract 220.

Compare the number you get started with the number you had thought! Can you

explain?

These statements proposing sequence operations allow easy translation into

calculation programs.

An interesting presentation for a same kind of problem is the following activity,

“The Lost Number”:

I type the following sequence into my calculator:

6 × ? - 3 - 2 × ? + 7 Enter

Provided that the two grey boxes mask the same number and the calculator gives 24 as

result, can you identify this number?

Can you identify the number in case that the result is 592, 1.2, 69.2, -163.6, or 88?

In case that students aim to solve the task by random trials with the calculator –

with or without the TABLE key – these random trials become rather time consum-

ing as soon as the given result is something else than an integer. In fact, for many

teachers, this activity aims to motivate the use of equations and is supposed to

disqualify the use of the calculator. This intent, however, stems from a teaching

position that does not consider the numerical-algebraic dialectic.
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Equations, Equalities, Calculation Program DATA Key
and Spreadsheet

With problems such as “Which number did I think of?”, or “The Lost Number”, the

notion of equation can be introduced by further maintaining a numerical-algebraic

dialectic. The question remains how exactly the calculator can be of use here. We

already observed that the TABLE key only allows the display of a single column.

On the TI34XMultiview, the DATA key provides a small spreadsheet (see Fig. 20).

However, the use of this key is not self-explanatory and therefore requires instruc-

tions. But this effort is advisable to take in case that the DATA key functions will be

further integrated into the classroom teaching in other contexts. These are, for

example, numerical equations resolutions, proportionality, and programming a

formula (functions):

Comments About the Milieu for Algebra

In agreement with our research question and with the conditions LM1 and LM2, it

clarified in the course of our study that a milieu has to entail a variety of activities

that link numbers and letters on the basis of arithmetical properties; this is a long-

term project. We already presented selected options of how the calculator could be

of help, but a large scope research to assess how a learning milieu could be set up

for the student (LM1) is still pending. What needs to be constantly considered is

whether the numerical expressions are truly providing the correct feedback.

The proposed sets of tasks link naturally with theory, hence the condition LM2 is

satisfied.

Didactic Building of a Milieu with Calculator: An Example

Is the Calculator a Milieu?

All tasks or activities that are presented here share that they require the use of the

calculator as a mathematical learning tool. From this given, the question arises

whether the calculator itself is a learning milieu. According to Brousseau (1997), a

learning milieu consists of various elements that will help teaching, in particular,

the results of actions of the student such as calculations, drawings, or

manipulations.

Fig. 20 Programming

formulas using DATA key
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This learning milieu further entails the elaboration on the connection between

the tasks proposed by the teacher and what is actually achieved by the students. The

results that are generated with the calculator can be considered a part of that milieu.

The calculator itself, however, is not a milieu just as paper-and-pencil calculations

are not a milieu either. They require a linkage with to the other properties of a

milieu, and the use of the calculator further requires an official classroom status.

The TI-30 calculator, for example, provides the answer 1�1010 to the operation

9999999999þ1. But without a prior introduction by the teacher, this result is not a

part of the learning milieu. Nevertheless, the teacher should be able to provide a

suitable answer to the meaning of this result in case that a student, for example of

upper primary school, is interested in that; it is a basic part of the didactic contract.

A didactic work that would take such an interest into account cannot be straight-

forward. It would go back to the number of digits of an integer, leading to small-

range working theorems, such as “performing an addition, the number of digits does

not increase, or it increases by 1”. It would also include investigations of the

number of digits displayed by the calculator. Figure 21 provides a sketch of one

possible way to create a learning milieu.

Multiplication proves the most interesting operation for such an investigation.

One could pursue answers to the question of how the number of digits of the product

relate to the number of the digits of the factors.

A study this type, however, would only be of anecdotic interest. It could only be

meaningful in the context of a medium length teaching process which includes

technical work with mathematical properties. This is how the study on arithmetic

properties with primary school pupils presented above was structured. In the

example in Fig. 21, the theory corresponds to the positional writing of numbers in

base ten and all mathematical properties on which it is based, particularly those of

the ring structure. The reformation of the curricula in the 1970s has clearly shown

that it is a long process to change the workings of a (mathematical) institution. This

interjection does not include that we advocate the return of calculations in different

bases, or the introduction of the study of the rings.

Considering the notion of the learning milieu, we observed that it cannot operate

sustainably without the presence of praxeologies (Chevallard 1999) formed by

Fig. 21 A didactic inquiry

for different scriptures of

numbers
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tasks, techniques, a vocabulary describing actions, and properties that relativize the

results of these actions (e.g. “by adding the same even number several times, you

always get an even number as a result”). This is the logos or theoretical part of

praxeologies. We highly believe in the value of material results such as physical

objects, traces on a blackboard, on paper, or on the screen of a calculator. The

physical part of the milieu is essential to recall the actions performed and to help the

development of conjectures (i.e. a table, a list on the blackboard or calculator

displays). The study on the process of the “course �a vingt” (Brousseau 1997)

highlights this role of the milieu. In this respect, the use of calculators which

display the mathematical transactions is very important, as well as the opportunity

to present the results to the whole class using an emulator and a data projector.

Kieran and Guzman (2007) highlighted this in their calculator-based experiment for

lower secondary school.

Result

The main research question was how the working with calculators in the classroom

can become a learning milieu.

Therefore, we presented a survey of selected qualitative studies as well as

examples on the use of calculators at different learning levels. In the theoretical

part at the beginning, we specified the conditions LM1 (feedback of the milieu) and

LM2 (links with theory) as a basis for a learning milieu. A high variety of examples

illustrated how these conditions could be totally or partially fulfilled. In the ‘target’
examples, the necessary requirements for a learning milieu are fulfilled in a

complete manner and the calculator is an essential tool. The theoretical output is

impressing at this school level: the students handled properties of divisors, prime

numbers, and square roots. In other examples, the feedback of the milieu showed to

be more problematic which was mostly due to interferences of the didactic contract

and flaws in the teacher’s management. In these cases, what needs to be prepared is

an accurate didactic engineering in order to propose challenging and theoreticaly

rich tasks. Such tasks are provided in the fractions and decimals examples.

From a methodological point of view, it was experienced how the properties

LM1 and LM2 could be effective as means of analysing the learning potentialities

of calculator activities.

Conclusion

Students’ experiences set out the basis to create learning milieus for mathematics.

These are the reality in which they anticipate their actions and act. Technology,

even a pocket calculator, complicates the learning situation by adding specific

feedback which can be valid and therefore useful, but sometimes also surprising.
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The tool “calculator” cannot be successfully integrated in an instant. It requires

long-term planning which needs to be integrated into the curricula. In Switzerland,

this is accomplished in the new “Plan d’études romand” (CIIP 2010), but in a rather

minimalist manner and without links to specific mathematic subjects. However, the

present contribution showed that calculator activities could improve the study of

arithmetic properties in a significant way such as fraction operations, square roots,

approximation, and algebra. Due to the status quo, the integration of the calculator

is in the sole responsibility of the teacher. In our pre-service institution in Geneva,

they are prepared for this, but, as we have demonstrated, a long-term institutional

strategy is still necessary to transform individual efforts to an effective instrumen-

tation of calculators for the students.
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The Street Lamp Problem: Technologies

and Meaningful Situations in Class

Elisa Gentile and Monica Mattei

Abstract The chapter describes a problem solving activity posed with the use of

a Dynamic Geometry Software to middle school students. The problem leads

students to face a meaningful situation to be explored, and forces them to make

conjectures, to discuss and to formulate an argument. The activity starts with the

manipulation of materials (paper and pencil, pictures and flashlights) and con-

tinues with the transposition of this exploration through technology. We discuss

the use of problem solving activities to improve the argumentation skills and the

added value of technology in exploration activities.

Keywords Problem solving • Geometry • Discussion • Meta-Didactical

Transposition

Introduction

The activity in this chapter belongs to an international research project entitled

“Problem Solving with GeoGebra”, which involved two different countries,

Australia and Italy, with the aim of engaging in-service secondary school teachers

in professional development based on best practices in mathematics. This

research project is connected to a national project, named PLS (Piano nazionale

Lauree Scientifiche – National Programme for Scientific Degrees), born in 2004

from the collaboration among the Italian Ministry of Education, the National

Conference of Headmasters of Science and Technology University Faculties and

Confindustria1 with two aims: to increase the number of students enrolled in

Scientific Departments and to improve the professional development of teachers,

promoting collaborations between school teachers and university teachers.
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The project was mainly focused on teachers and their professional development,

during and after a short course led by researchers and teacher-researchers. The

course was addressed to in-service teachers that voluntary choose to attend an 18-h

professional development workshop for teachers that took place in several after-

noons during the school year. The project involved two communities: the commu-

nity of researchers, who designed the tasks and the educational programme, and the

community of teachers who attended the course. The teachers were also asked to

experiment with the activity in their classes, and to reflect on what transpired

throughout the activity with the other teachers and the researchers. The teachers

were observed during both the course meetings and during the didactical experi-

mentation in the teachers’ classrooms; the resulting data were analysed using

techniques of “Meta – Didactical Transposition” (Aldon et al. 2013; Arzarello

et al. 2012, 2014).

The teaching experiment performed is an adaptation to a middle school context

of an open-ended problem, “The street lamp problem”. The street lamp problem has

been studied previously by the team of researchers in Turin, originally addressed to

higher secondary school students (14–19 years old) in order to involve them in a

problem-solving activity, activating their argumentation skills. Since this research

focused on lower secondary school (11–13 year old students), we needed to adapt

the problem to this context. In particular, we paid attention to maintaining the

“openness” of the problem and the idea of problem solving, but we inserted

additional questions to slightly guide the students (and the teachers) to better

understand the problem.

In this chapter we analyse both the students’ side, reporting what happened in

class, and the teachers’ side, focusing on the development of their professionalism.

Overview of Research in Mathematics Education

with Technologies

The CIEAEM Manifesto (2000) reflected about the changing role and the impor-

tance of technology related to mathematical education. One of the key questions

was:

How can the development and spread of new information technologies really give better

access to mathematical knowledge for all? (CIEAEM 2000, p. 7).

The importance of technology in mathematical education was then underlined

by the National Council of Teachers of Mathematics in its two positions, proposed

in 2008 and 2011 (NCTM 2011). In the most recent one we can read:

It is essential that teachers and students have regular access to technologies that support and

advance mathematical sense making, reasoning, problem solving, and communication.

Effective teachers optimize the potential of technology to develop students’ understanding,
stimulate their interest, and increase their proficiency in mathematics. When teachers use

technology strategically, they can provide greater access to mathematics for all students.

(NCTM 2011, p. 1).
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A very important study about technology and mathematics education was the

first ICMI Study in 1985 (Churchhouse et al. 1986). After that many frameworks

followed, emphasizing different aspects of the integration between technology and

didactical practice. For example, the CIEAEM Manifesto (2000) considers modern

technology as a tool to support, facilitate, organise and rationalise learning and

teaching.

In the position about technology, NCTM (2011) highlights that numerous

studies, even more recently, have shown that a mindful use of technologies in

class can support both advanced mathematical thinking (problem solving, reason-

ing, arguing, justifying and even proving) and the acquisition of mathematical

procedures. Furthermore, technological tools used with didactical intent comple-

ment mathematical teaching-learning, and prepare students for their future lives in

which technology will play a crucial role.

The simple availability of technology is not sufficient for effective teaching-

learning process (NCTM 2011); both the teacher and the curriculum can change the

nature of the pedagogical action, mediating the use of technological tools.

According to these points, the focus of the research is now about the role of the

teacher in constructing effective teaching-learning environments using technology

(Artigue et al. 2009; Clark-Wilson et al. 2014; Drijvers et al. 2010). Therefore, it is

important to involve teachers in a professional development programme based not

only on the technology itself but also on didactical methodologies, best practices,

task design and so on (Drijvers et al. 2010). NCTM (2011) pointed out this key

concept in this except:

Programs in teacher education and professional development must continually update

practitioners’ knowledge of technology and its application to support learning. This work

with practitioners should include the development of mathematics lessons that take advan-

tage of technology-rich environments and the integration of digital tools in daily instruc-

tion, instilling an appreciation for the power of technology and its potential impact on

students’ understanding and use of mathematics. (pp. 1–2)

Teaching and Learning with Tools: DGS as an Example

In the last years a great number of studies concerning learning with tools (not only

technological ones) have been carried out, especially in the Italian reality. A very

important document by UMI (Union of Italian Mathematicians) was produced

during years 2000 through 2003 (see UMI 2001, 2003), collecting key ideas for

curriculum improvement. Some of these ideas were included in the official docu-

ment (Guidelines) of the Italian Ministry of Education during its last review of the

National Curriculum (in 2012 for the first cycle of education and in 2010 for the

second one). The UMI documents pointed out that “basic”2 materials could be used

2We are using the word “basic” without a negative meaning but, on the contrary, with the meaning

of simple and easy to find in every house or classroom. Nevertheless, the Italian word used for

defining these materials (UMI 2003) can be translated with the word “poor”.
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as a meaningful starting point not only in primary schools but also at other levels of

education. The integration of these materials with technological tools can enhance

the teaching-learning process.

We can locate Dynamic Geometry Software (DGS), micro-worlds designed for

specific educational tasks, in the theoretical and political context described above.

DGS allows students to explore, investigate and observe; to look for invariants,

regularities or patterns; and to formulate conjectures and test them within the

software. Knowledge is embodied in this software in ways that facilitate students

facing it directly, constructing mathematical meanings and objects in the process of

using the software (Bartolini Bussi et al. 2004). Marrades and Gutierrez (2000)

underlined this as a non-traditional learning environment:

The contribution of DGS is two-fold. First, it provides an environment in which students

can experiment freely. They can easily check their intuition and conjectures in the process

of looking for patterns, general properties, etc. Second, DGS provides non-traditional ways

for students to learn and understand mathematical concept and methods. (p. 8)

Many research studies have been carried out regarding the role of DGS in

proving mathematical theorems (Arzarello et al. 1999; Marrades and Gutierrez

2000; Paola and Robutti 2001; Sinclair and Robutti 2013). The contribution of

DGS in constructing knowledge and in promoting justifying competencies is

widely recognised among the community of researchers. About this topic, Marrades

and Gutierrez (2000) stated:

DGS environment may help students use different types of justification, setting the basis for

them to move from the use of basic to more complex types of empirical justifications, or

even to deductive ones. (p. 96)

Sinclair and Robutti (2013) pointed out that the role of the teacher is crucial: the

teacher needs to help students develop “schemes of use” (Rabardel 1995). That is,

students have to learn not only how to do a specific action (e.g. dragging, measur-

ing) but also the reasons behind their actions, why some actions are not available on

every object (e.g. non-draggable points), how and when measuring is useful, and

furthermore to learn the limits of using measures with DGS for proofs and justifi-

cations. It is important to introduce the scheme of use in a cognitive and

metacognitive way, rather than to teach the students a sequence of instructions

and rules and then expecting them to reflect on the exploration made.

In this chapter we focus mainly on the role of the integration between “basic”

materials and DGS and the emerging of justifying approaches in middle school

students.

Realistic Mathematics Education

Although the problem was not created under the framework of Realistic Mathe-

matics Education (RME), a Dutch approach to Mathematics Education (see Van

den Heuvel-Panhuizen and Drijvers 2014) that is rarely employed in Italy, this
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theoretical framework came up during the discussion of the teaching experiment at

CIEAEM 66 Conference held in 2014, and we decided to analyse our data in light of

this approach, since we can recognize some common ideas with our framework. In

fact, the question posed at the CIEAEM meeting was about the reality behind the

problem, and we emphasized that the problem was designed to involve students as

actors in the learning process, representing a meaningful situation through a

“realistic” problem.

Van den Heuvel-Panhuizen and Drijvers (2014) explain in this way the meaning

of “realistic problems”, which we believe matches with the intent of our activity:

Although “realistic” situations in the meaning of “real-world” situations are important in

RME, “realistic” has a broader connotation here. It means students are offered problem

situations which they can imagine. [. . .] It is this emphasis on making something real in

your mind that gave RME its name. Therefore, in RME, problems presented to students can

come from the real world but also from the fantasy world of fairy tales, or the formal world

of mathematics, as long as the problem are experientially real in the student’s mind. (p. 521)

The International Research Project and Its Theoretical

Framework

The open problem analysed belongs to an international research project that

considered the interactions between the community of researchers, who designed

the educational programme, and the community of teachers who attended the

professional development workshop. The “Meta-Didactical Transposition”

(Aldon et al. 2013; Arzarello et al. 2012, 2014) is the framework used to analyse

the data collected through the observation of the teachers.

The Meta-didactical Transposition Model

Meta-Didactical Transposition (MDT) is a new model for framing teacher educa-

tion projects. Its focus is the interaction between the praxeologies of the researchers
and the praxeologies of the teachers (in-service or pre-service training), and the

dynamics between internal and external components (Aldon et al. 2013; Arzarello

et al. 2012, 2014). It is an adaptation of the Anthropological Theory of the Didactic

(ATD) by Chevallard (1999) to teacher education. Its main theoretical tool is the

notion of praxeology, which can be described using two levels:

1. the “know how” (praxis): a family of similar problems to be studied and the

techniques available to solve them;

2. the “knowledge” (logos): the “discourses” that describe, explain and justify the

techniques that are used for solving that task. The “knowledge level” can be

further decomposed in two components: Technologies and Theories.
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In other words, a praxeology consists in a Task, a Technique and a more or less

structured argument that justifies or frames the Technique for that Task.

The MDT model considers the meta-didactical praxeologies, which consist of

the tasks, techniques and justifying discourses that develop during the process of

teacher education, and focus on the mechanisms in which the praxeologies of the
researchers’ community are transposed to the community of teachers, and how this

implementation transforms the professionalism of teachers. In this way, we can

observe a shift from the “savoir savant” to the mathematical and pedagogical

knowledge necessary for teaching.

There are two communities involved in this project: the community of teachers

(who are in training) and the community of teacher-researchers (who designed the

task, act as trainers and observe the teachers). Each of these communities has its

own praxeologies; the challenge at the end of the project is to create shared
praxeologies, thanks to the brokers.

A broker is a person who belongs to more than one community (e.g. a teacher-

researcher belongs to the community of mathematics experts and to the community

of school-teachers). Brokers are able to make new connections across communities

and facilitate the sharing of knowledge and practices from one community to the

other. The creation of such connections by the brokers is called brokering.
Some of the components of the two communities’ praxeologies can change

during the educational programme and move from external to become internal

(Fig. 1), in terms of the community to which they refer.

Institutional Context

One of the current Italian paradigms for the research in Mathematics Education is

“Research for innovation” (Arzarello and Bartolini Bussi 1998), based on teaching

experiments in classroom that involve school teachers in every phase of the

Fig. 1 Internal and external components in MDT
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research, with different roles: teacher-researchers (working with the group of

researchers), teacher-trainers (doing education programmes for teachers) and

teachers (involved in teacher programmes as learners and working in class as

teachers). Sometimes the same teachers may have different roles in different phases

of the project: for example, a teacher-researcher can be also teacher-trainer during

the process of professional development in the education programme for teachers.

National Curriculum – Grade 1–8

Since in this chapter we discuss a problem proposed to lower secondary school

pupils, it is important to understand this problem in the context of the lower

secondary school curriculum.We present here a brief analysis of the Italian national

curriculum for mathematics education.

In September 2012 the Italian Ministry of education released a new version of

the National Curriculum for the first cycle of education (from 3 to 14 years old). The

National Curriculum is organized into “Goals for the development of competences”

and “Learning Objectives”, and explains the expected knowledge and competence

at the end of lower secondary school. The National Curriculum is also accompanied

by a description of the main ideas of the teaching-learning process and of the

different school subjects.

Here you can find some quotations from the National Curriculum for the lower

secondary school excerpted because of their relevance for the framework of the

activity we proposed (bold by the authors).

The resolution of problems is a characteristic of mathematical practice. Problems need to be

understood as real and significant issues, related to everyday life, and not just as repetitive

exercises or questions that are answered simply by recalling a definition or a rule. Gradu-

ally, stimulated by the teacher’s guidance and the discussion with peers, the student will

learn to deal with difficult situations with confidence and determination, representing them

in several ways, conducting appropriate explorations, dedicating the time necessary for

precise identification of what is known and what to find, conjecturing solutions and

results, identifying possible strategies.

Particular attention will be devoted to the development of the ability to present and

discuss with their peers the solutions and the procedures followed.

The conscious and motivated use of calculators and computers must be encouraged

appropriately [. . .] to check the accuracy of mental and written calculations and to explore

the world of numbers and shapes.

The development of an adequate vision of mathematics is of a great importance. This

vision does not reduce mathematics to a set of rules to be memorized and applied, but

recognizes mathematics as a framework to address significant problems and to explore

and perceive relationships and structures that are found and occur in nature and in the

creations of men.

Furthermore, we framed our activity with the following Goal for the develop-
ment of competencies:
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To explain the procedure followed, also in written form, maintaining control on both the

problem-solving process, both on the results.

and the following Learning Objective:

To know the definitions and properties (angles, axes of symmetry, diagonals,...) of the main

plane figures (triangles, quadrilaterals, regular polygons, circles).

The National Curriculum provides clear instructions: the teaching of Mathemat-

ics must start from meaningful situations to stimulate and involve students, and to

give significance to the topics. In particular, in our experimentation we encouraged

the use of technological devices, since the use of technology can effectively support

the reaching of some of the National Curriculum goals. As a matter of fact, using a

dynamic Geometry software like GeoGebra, students are main actors in their

learning process: they can easily explore situations, generalize problems, make

and check conjectures.

Class Context

We proposed this activity to 12 year-old pupils belonging to two different schools.

One class, whose teacher was Monica, came from “Istituto Don Bosco” in San

Benigno Canavese (Turin). It was a 25-student class, including 4 boys with learning

disabilities. During the school year they showed interest and curiosity in front of

Maths problems, especially involving real situations. In the first part of the year,

students started to use GeoGebra as a tool for exploring the geometrical content of

the curriculum in an active way. They showed, first of all, astonishment and then a

strong desire to learn how the software works.

The other class, whose teacher was Elisa, came from “Scuola Media Holden” in

Chieri (Turin). The class was composed of 2 students: a male and a female. They

were interested in and curious about the activities proposed during maths lessons.

They were used to working with a laboratory methodology and to discussing results

and ideas with the teacher. They started to use GeoGebra to explore Geometrical

properties (such as angles, perpendicular and parallel lines, etc.) as a support for

manipulation of materials (paper folding, paper and pencil, etc.). Both the classes

experienced the activity in the second part of the school year, in the same week of

April.

The Street Lamp Problem

The street lamp problem, as we said before, is an open problem. The starting

situation is a meaningful situation for the students: the municipal technician has

to put a unique street lamp in a triangular pedestrian area, designed by the previous

administration. The technician has to find the best point for the street lamp in order
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to light up the entire triangular area. This is the text of the problem given to the

students of lower secondary school:

The City Council has decided to build a small triangular pedestrian area planned by the

previous administration. The registered project foresees only one street lamp as illumi-

nation for the whole area. Here there is the picture of the pedestrian area (Fig. 2).

Can you help the technician, who will have to deal with the installation, to find the exact

point where the street lamp should be placed?

Part 1: You can use the picture of the pedestrian area and an electric flashlight to simulate

the street lamp. Explain how you will proceed to find the best place to locate the

street lamp.

Part 2: Now open the file GeoGebra Streetlamp.ggb. You will find the pedestrian area to be
lit. Together with your group try to find, using GeoGebra, the best point.

What are the operational guidelines that you could give to the municipal technician to

identify the point to put the lamp in? What are the relationships of that point with the

triangle that defines the pedestrian area?

Part 3: In your opinion, does the position of the point depend on the shape of the pedestrian

area? What happens if the triangular shape changes? Be careful! It always remains a

triangle but with a different shape! Try to explore the situation with GeoGebra: draw in

a new sheet a generic triangle and save the file as Park.ggb. Explain what you have

discovered and give reason for your answers.

In order to guide our young students, we divided the problem into three parts,

beginning with the exploration with “basic” materials and arriving at the use of

GeoGebra. In this activity the use of GeoGebra was thought not only to establish

confirmation of previous conjectures but also to enable exploration of a more

general situation. We also added the sentence related to the operational guidelines

to be given to the technician as a way to foster students’ argumentation skills:

forcing them to explain to a third person how to find the exact point can help them to

more deeply understand the geometrical properties of that point (e.g. it is the

intersection of the perpendicular bisectors, it is equidistant from the vertices, etc.).

Design of the Open Problem

The design of the problem involved the community of teacher-researchers together

with university researchers; they worked to construct the project and the activities

Fig. 2 The pedestrian area,

covered with grass
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(Bardelle et al. 2014). The streetlamp problem is a transformation of an OECD Pisa

item, expected to have only one answer (the circumcentre, see OECD 2003) within

an open-ended problem, focusing on multiple solution methods and argumentation

skills.

The task in the OECD (2003) Pisa Test was:

The City council has decided to construct a streetlamp in a small triangular park so that it

illuminates the whole park. Where should it be placed? (p. 26)

The problem has been transformed into a more open one, working mainly on

three aspects: exploration (with “basic materials” and with GeoGebra), different

solutions and discussion.

The idea of giving more space to exploration with both “basic” materials and

GeoGebra has been made explicit by adding the sentences:

You can use the picture of the pedestrian area and an electric flashlight to simulate the street

lamp. Explain how you will proceed to find the best place to locate the streetlamp. [. . .]
Now open the file GeoGebra Streetlamp.ggb. You will find the pedestrian area to be lit.

While the idea of giving more space to different solutions depending on the

constraints has been made explicit by adding:

Together with your group try to find, using GeoGebra, the best point. [. . .] In your opinion,
does the position of the point depend on the shape of the pedestrian area?

The idea of giving more space for discussion has been suggested by the follow-

ing request:

What happens if the triangular shape changes? [. . .] Explain what you have discovered and
give reason for your answers.

Giving more space to exploration meant to let students face the problem for a

first time with the use of paper, pencil and an electric flashlight to simulate the lamp,

for a second time using a DGS such as GeoGebra to analyse the problem from a

static point of view and for a third time using GeoGebra that enables and even cries

out for a dynamic perspective where constraints can change.

This exploration with “basic” materials and technological tools helps the

students to grasp the dynamicity of the problem and to consider different

solutions depending on the shape of the pedestrian area and on the constraints

they fixed.

The OECD Pisa item was focused on the transformation of the problem into a

mathematical problem: “locating the centre of a circle that circumscribes the
triangle” (see OECD 2003 pp. 26–27). The reformulation, instead, is focused on

the argumentation skills of the students. In fact the problem does not have a clear set

of information to start with (e.g. Is the park inside a residential area? Is it possible to

put the lamp outside the pedestrian area? ...). The different solutions depend on the

choices made by students, on the ideas they consider relevant for the problem, and

on the constraints they fix. Having different possible solutions forces the students’
argumentation skills, and requires them to develop a strategy for defending their

solutions, explaining their reasons, justifying their choices and even proving.
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The methodology we used in designing the activity is based on the idea of a

“mathematics laboratory” (UMI 2003) not as a physical place, external to the class,

but as an approach to mathematics itself:

A mathematics laboratory is not intended as opposed to a classroom, but rather a method-

ology, based on various and structured activities, aimed to the construction of meanings of

mathematical objects. A mathematics laboratory activity involves people (students and

teachers), structures (classrooms, tools, organisation and management), ideas (projects,

didactical planning and experiments). [. . .] In the laboratory activities, the construction of

meanings is strictly bound, on one hand, to the use of tools, and on the other, to the

interactions between people working together (without distinguishing between teacher and

students). (UMI 2003, p. 28).

The tools of the laboratory can be “basic” materials (transparent sheets, paper

folding, grid paper, use of pins and twines), mathematical machines3 or technolog-

ical tools, such as DGS or CAS. During and after the laboratory, the “mathematical

discussion” (Bartolini Bussi 1996) is the key point, in fact through the discussion it

is possible to construct meanings and common ideas.

Aim of the Activity

The problem as posed is related to the exploration of a contextualized situation that,

regarding mathematical content, leads to the centres of a triangle, focusing on their

geometrical properties.

In Monica’s classroom, pupils had already studied triangles and triangles’
centres, whereas in Elisa’s classroom only triangles and the concepts of perpendic-

ular bisector of a segment, angle bisector, median and altitude had been introduced.

Then, in the first situation the problem-solving aim was meant to consolidate

acquired knowledge with the testing of the students’ competences in using known

mathematical concepts within unknown contexts. In the second situation, the aim

was more aptly describe as construction of mathematical objects along with a

co-construction and discovery of related geometrical properties.

The aim of this activity was not to create students skilled in the use of GeoGebra,

but rather to support the development of skills requisite to exploring, conjecturing,

justifying and arguing; the aim was also to construct a curriculum around a

meaningful problem, powerful in engaging students in a specific context and

stimulating their problem-solving competencies. Within this use of technology,

the focus was not on the tool per se, but on the learning process mediated by the

tool, on the new possibilities opened by the tool and on the mathematical objects

constructed with the tool. Exploration, argumentation, justification and explanation

are the key concepts in this problem-centred activity: it allows students to do maths

and to build a piece of knowledge through finding solutions by themselves,

3For further information, see UMI (2003, p. 28).
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exploring, arguing and justifying their choices. The power of open-ended problems

is that the solution depends not only on the problem itself, but also on the

interpretation of the problem that students make, on the constraints they fix, on

the assumptions they make. Furthermore, the use of a dynamic software environ-

ment generates a learning environment that is naturally open-ended because of the

way that the dynamic software demands the changing of constraints. It allows the

creation of a family of related problems that share characteristics but, at the same

time, provoke new directions of exploration caused by the changing constraints.

This use of exploration problems, matched with the use of technology, since the

lower secondary school, can help students to face with proofs and can improve their

proving competencies, that will become central in the further studies.

Although in the text of the problem there is a reference to the real world, the

focus was not to create a realistic problem, plausible from the point of view of the

real life. The main aim was to create a problem able to involve students as actors in

the learning process and to shift to them the responsibility of learning. In this sense

we can say that the problem is not “real”, meaning belonging to real-life, but is

“realistic” because it is meaningful for the students, according to RME approach

(Van den Heuvel-Panhuizen and Drijvers 2014).

Description of the Activity

The activity was organized into 4 phases: three of them were developed by group

work while the last one was collective.

1. Analysis of the situation using “basic” materials. Students explored the open

problem with “basic” materials: paper and pencil, a flashlight and the picture of

the park.

2. Exploration of the problem with static use of GeoGebra.

3. Exploration of the generic situation with dynamic use of GeoGebra.

4. Collective discussion in order to construct together the meanings of the objects

involved in the activity.

Research Questions and Observation’s Methodology

The research questions we asked ourselves at the beginning of the teaching exper-

iment can be divided into two categories:

Students related

• What is the value added by this activity to the competence of our students?

• Is the use of technology an added value to the activity?

Teachers related

• Had the brokering been performed fostering the creation of shared praxeologies?
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During the activity, in order to observe and analyse both students and teachers’
works, we used a logbook to record, day by day, the things done, the materials used

and to write observations about our behaviour as well as the behaviour of the

students. Since we gave them forms, with some questions that guided the explora-

tion of the problem, to work with and to fill in, we also collected them to reflect on

our experimentation in teaching methodology. Elisa observed Monica’s class

during the activity, while Elisa’s lessons were videotaped.

Critical Analysis

In order to answer out research questions, we critically analyse the activity,

focusing on both the work of the students and the teachers.

Critical Analysis of the Activity in Monica’s Classroom

Students were divided into working groups of 4–5 people and they were asked to fill

in a report giving a shared answer to the questions. We are going to analyze these

protocols focusing on the most interested passages.

First Phase

As soon as the students received the flashlight, they started using it to simulate the

lamp. First, they noticed that the lamp can be put perpendicular to the ground or

oblique: this aspect disoriented them since they were used to exercises with only

one solution. Discussing within the group and then all together, guided by the

teacher, they agreed that the perpendicular position lights up better than the oblique

one. The teacher, in order to encourage them, explained that in this kind of activity

there is not a right answer or a wrong one but “every” answer, if justified, is right.

Then they drew some of the fundamental elements of the triangle and two

different conjectures emerged concerning the best point: four groups over six

chose the barycentre and the other two the circumcentre.

During the previous lesson, the teacher showed, using a cardboard triangle and a

pencil as a support, the physical property of the barycentre of being a point of

equilibrium. This demonstration suggested students and could, reasonably, had

influenced their choice.

From their protocols we can notice that while students were working in a

mathematical context they were making considerations concerning the real context.

For instance, in Marta’s group protocol (that chose the barycentre) we read:

The lamp however must be high to light up more the fixed area.
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And in Umberto’s one:

Putting the lamp in the centre [barycentre], we notice that lifting it up we are able to light up

all the park.

Also Alessandro’s group, that chose the circumcentre instead, noticed what is

shown in Fig. 3.

Second Phase

We gave the students a GeoGebra file with the picture of the pedestrian area and

asked them to work on it. They reproduced with GeoGebra the same construction

made with paper and pencil. The static use of GeoGebra helped students to clearly

visualize their conjectures and to reflect on the suitability of the choice made.

Sometimes, after a discussion with peers, they changed their minds as we are going

to analyse.

For example, Umberto’s group wrote (see Fig. 4).

They discussed together looking for a better solution.With the help of GeoGebra,

they built several triangle’s centres and drew some circumferences. They agreed

that the best one, with their constraint of wasting as least as possible light, was the

circumcentre. Finally they wrote:

The circumference we have drawn fits perfectly with the triangle.

They noticed that the circumference passed through all the three vertices (Fig. 5),

linking together their geometrical knowledge with the exploration of a realistic

problem.

Fig. 3 Alessandro’s group solution

Fig. 4 Umberto’s group consideration
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The technological tool helped students to approach to the problem in different

ways and to connect mathematical objects to their meanings.

The first solution of Giulia’s group was the barycentre, but after a discussion

they decided to search for a circumference passing through all the vertices, they

drew it with GeoGebra and then they used their mathematical knowledge about the

circumference circumscribed to a triangle to find the point:

We found the barycentre, then we noticed that it wasn’t the best solution. We drew the

circumference through three points [the vertices] and we used the tool perpendicular

bisector on every side of the triangle to find the intersection.

Third Phase

Dragging the triangle drawn with GeoGebra, students were able to explore different

situations, making observations that were not possible with the only use of paper

and pencil. We are going to report two meaningful quotations in order to support

our assertion.

Marta’s group (that moved to circumcentre) wrote:

In the case of the triangle representing the park, the lamp was inside the area, but changing

the shape of the triangle we saw that the circumcentre is outside. But if the lamp is higher,

even if it were outside the park, it will light up everything [all the park]. We also noticed

that, the lamp [put] outside the park lights besides it also the surroundings.

While Alessandro’s group wrote:

[The lamp] can light the park even if it is outside but, in the reality, such high lamps do not

exist.

Paying attention to students’ work and listening carefully to their discussion, as

teacher we noticed that the more they explored, the more they became curious and

interested. Some groups, as we have reported, wondered which was the connection

between the abstract situation (the triangle, the centre of the circumference and the

circumference) and the real situation where we have to use a real lamp. Comparing

Fig. 5 Solutions in Umberto’s group: first barycentre and finally circumcentre
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the geometrical solution found with the real situation, students noticed that there

were some problems in putting the street lamp outside of the pedestrian area and,

furthermore, they wondered about the maximum possible height of a lamp.

Fourth Phase

We guided the students to explain their solutions in order to convince the other

classmates about their ideas. This part of the activity deeply involved students’
ability of justify and argue. Almost the students took actively part in the discussion,

explaining their ideas or making observations. We report the most interesting

considerations:

The barycentre is not always the best solution! In some cases you have to waste a lot of light

in order to light up all the area.

Another student said:

If the circumcentre is outside the park, you need a very high lamp that could not exist in the

real world.

This two sentences point out that students are simultaneously reasoning on two

levels: the mathematical one and the realistic one, considering geometrical proper-

ties and real problems. Other considerations raised, concerning the situation where

the circumcentre is outside the park: “We cannot put the lamp in another property”,

“Or in a river” beat one classmate “Or in the middle of a motorway” said another.

The ending of the activity was not the choice of ONE solution, but of a SET of

solutions and a SET of justifications for those constructions:

• The barycentre seemed to be a suitable point since it was always inside the

triangle. Students noticed that in some cases the lamp lights up a big area around

the park but they agreed that this was an added value;

• A group of students agreed that the circumcentre is always the best solution, even

if it is outside the park, because the circumference passes through all the vertices;

• Other students agreed that the circumcentre is the best point in the case of an

acute angled triangle while, in the case of an obtuse angled triangle, the best

choice is the barycentre.

Finally we briefly asked them (because the lesson was ending) a personal

opinion about the activity. Most of the students were rather surprised from the

activity proposed: since schoolbooks usually have closed problems, at the begin-

ning they felt disoriented. Then, they told to have appreciated the use of technology

because it allowed them to explore in order to find the point.

Furthermore, students with learning disabilities, that were often bored and

distracted during traditional lessons, were actively involved in group working,

and in one case a student acted as leader working with GeoGebra.
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Critical Analysis of the Activity in Elisa’s Classroom

Elisa’s students have already studied the fundamental elements of triangles (angle

bisectors, perpendicular bisectors, medians and altitudes) but they never faced the

triangle’s centres, nor in a theoretical way, neither in an exploration activity. The

street lamp problem was used as a starting point for the discovery of such centres.

Since the class was very small, composed of only two students, they worked in pair.

On one hand this represented an advantage: in fact, it allowed the teacher to follow

students’ reasoning very closely, on the other hand it represented a disadvantage:

the collective discussion was less rich because no other point of view was present.

The teacher introduced the activity leveraging on the “realistic” connotation of

the problem (in the RME meaning), trying to involve the students as actors:

T: This is a realistic problem, we have to try to understand how to solve this problem,

knowing that there is not only one correct answer. This is not a “standard” problem,

like an exercise. . . you finish it and you get the result. . . that is the same to the one

written in the book. Here, we have to let our brain work. . .
V: Right!

T: The same happens in our everyday life. . . in our real life we do not have the result at

the end of the book, right?

The exploration phase is very important and it is important to do this activity at

first time manipulating some materials. As soon as Edoardo picked up the flashlight,

he moved it up and down, looking at the light on the picture of the park (Fig. 6).

E: Up or down?

Although the initial idea was to put the streetlamp vertical (as the flashlight in

Edoardo’s picture) the students engaged a discussion to decide what kind of

streetlamp use.

T: Try to discuss. . . I will do in this way. . . I will do in that way. . .
E: I will do this [puts the flashlight on one vertex]

V: Yes, but. . . here [points the farthest vertex] there is no light. . .

Fig. 6 Edoardo with the flashlight
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E: However. . . if we put the lamp here [points where Valentina pointed before] it does

not light up there [points the vertex in which he put the lamp before]

[. . .]
V: Up. . . [puts the flashlight perpendicular to the sheet, but it lights up also outside the

park]

E: It is too high!

V: But it lights up everything!

E: And, what about here? [he comes back to his original idea – a vertex]

V: No!

During the exploration with “basic” materials they used the flashlight and the

fingers or a pen to simulate the lamp (Fig. 7)

T: Think about. . . what does the lamp look like?

E: It is high, like this [points the picture of the lamp on the paper]

V: A straight line and then like this. . . [puts the flashlight down] [. . .] Maybe we can use

Edoardo’s finger. . .

The discussion continued, with the teacher posing some level-raising questions

and helping the students to make a decision about the kind of streetlamp. The shape

of the lamp represented the first constraint chosen by the students, as underlined by

the words of the teacher.

T: And... how can you choose the point?

[. . .]
E: I got it! We will put the lamp here [points the centre of the triangle, with the flashlight

perpendicular to the sheet]

[. . .]
E: Let’s try to have a different lamp. . .
V: As I told before!

T: . . . Have we decided that we like more this kind of lamp? Ok, so we have done a

CHOICE:

how does our lamp look like? Our streetlamp is one of those with the light bulb

hanging down. And now. . . where do we put it?

Fig. 7 The model of the lamp
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The students decided to draw the angle bisectors in order to find the point (Fig. 8).

Probably they chose in a first time the angle bisectors because the teacher worked a

lot on this topic, constructing them in several ways: using paper folding, tracing

paper, compass, GeoGebra, also exploring the property of their points of being

equidistant from the sides of the angle.

After drawing the angle bisectors and discovering that they all meet in the same

point, they pointed out that the height of the flashlight/lamp was an important

variable for the problem in order to light up the entire park.

During the second phase the students worked on the GeoGebra file prepared by

the teacher, with the same picture of the park used with the flashlight. Students used

GeoGebra as a static instrument reproducing the same construction made with the

flashlight and the compass. In this phase they never tried to drag the triangle,

because the picture of the park (underlying the triangle) forced them to focus on

that specific triangle. The previous activity with “basic” material helped students in

this technological phase, the mediation of these instruments enabled them to find a

first solution to the problem connecting the image of the circular light of the

flashlight with the concept of circumference. In particular, Valentina used the

flashlight also with the screen of the computer and Edoardo found the mathematical

object connected and represented it in GeoGebra.

T: And now, that is the point you have chosen, how can we manage. . .
V: In GeoGebra there is not a lamp-tool. . .[puts the flashlight near the screen of the pc,

representing the same situation explored before with paper and pencil]

E: I got it... [draws a circumference]

V: Edo, what have you done?

E: I drew a circumference

T: What circumference?

E: Passing through the farthest point

V: From the lamp

E: The circumference has to pass through the point A, because it is the farthest and then

we are sure that the circumference contains the other two points. . . In fact, if I draw a

circumference passing through C, something remains out. . . (Fig. 9).

Fig. 8 The construction of angle bisectors
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Once this solution was found, the students were happy and thought to have

solved the problem. The teacher suggested some further reflections on the question.

T: And, in your opinion, is this the BEST point? What is the meaning of BEST point?

The students, then, checked other possible situations and drew the perpendicular

bisectors (apparently without a particular reason). They discovered that the circum-

ference in that case passed through all the three vertices and decided that this one

was the most beautiful solution.

V: We have found a new point! [. . .] The circumference now “takes” everything! And it

is also smaller than the other one! (Fig. 10)

T: What has happened?

V: With the perpendicular bisector. . . the circumference now “takes” all the points

[points at the vertices] instead before it takes only the point A. Now there is more

light, while before, with the bigger circumference, the light was less intense. So this

one is PERFECT.

T: Why do you like this point more than the other?

V: Because it is more centred, the circumference is smaller and it lights up more the park!

T: And what other characteristics does this point have?

V: If we do a smaller circumference, then it does not pass any more through all the

vertices. This point is BEAUTIFUL.

Then the students investigated the properties of this centre (circumcentre) while

they were trying to explain to the technician how to reach the point, and discovered

that it has the same distance from the vertices. The teacher continued asking

questions in order to connect the geometrical situation with the realistic one.

T: How would you explain to the technician how to find the point?

E: He has to construct the perpendicular bisectors.

T: Yes... and the technician will say to you “I do not know how to construct a

perpendicular bisector”.

Fig. 9 The right radius of the circumference
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E: I will say to him “Take half of each side of the park. . .”
T: And then? [. . .] What kind of point is the centre?

E: It has the same distance from A, B and C [the vertices], because if the circumference

centred there passes through A, B and C. . . then the distance is the same.

V: It is perfect.

E: Let’s ask GeoGebra. . . [uses the distance tool to verify if the point is equidistant from
the vertices. Figure 11]

T: Can we say to the technician how to construct the point?

E: With the perpendicular bisector tool.

T: But does he have this tool?

V: No.[. . .]
E: Walk away from the sides of the park, perpendicularly, starting in the midpoint.

The students explored the problem from a dynamic point of view. Valentina

suggested to draw a lot of different triangles, but Edoardo immediately replied that

Fig. 10 Circumcentre versus incentre

Fig. 11 The distances from the centre
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they could use the dragging tool, he drew a generic triangle and moved the

vertices around. They reproduced the same construction for the circumcentre and

they noticed that, dragging the triangle, there were some situations in which this

point seemed not so “beautiful” as before: the streetlamp was outside the park and

the circumference was big. They explored with GeoGebra in order to find what

kind of triangle was it and they argued it was the obtuse angled triangle. They

dragged the triangle unless it was “less obtuse angled” (measuring the angle with

GeoGebra) and they verified with the zoom tool that the circumcentre was still

outside (Fig.12).

At first they recognised that, when the circumcentre is outside the park, the

streetlamp needs to be taller in order to light up the whole area. The teacher asked if

there were other problems in putting the streetlamp outside and then they decided

that it would be not suitable to have it outside the park, then they moved back to the

incentre for the obtuse angled triangle.

Through this activity the teacher became aware of some aspects of their students

she never observed before: Edoardo, who has some difficulties with calculations,

procedures and sequential activities, showed wide intuition and a great accuracy in

the geometrical construction, while Valentina became more self-confident, in

particular facing problems, instead of being “afraid” of problems such in previous

experiences, and solved the task with determination.

Elisa’s students, used to laboratory and discussion, were able to discover by

themselves that, for instance, the three angle bisectors of a triangle meet in a unique

point, that, in a generic triangle, this point is not the same as the intersection of

perpendicular bisectors or medians or altitudes and that the circumcentre is equi-

distant from the vertices. Only at the end of the activity, during the institutionali-

zation discussion, the teacher gave the “names” to these points and formalized

definitions and properties.

Comment About the Activity Experienced

The technology represents a key element of this teaching experiment. Technology

is involved in the activity with the use of a DGS – GeoGebra – to explore the

problem. GeoGebra has the power, as others DGS, of being dynamic, so the

Fig. 12 Obtuse angled

triangle: the circumcentre is

outside (zoom tool)
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students can manipulate dynamically the shapes they constructed by dragging them,

they can also modify the shape (enlarge, restrict, etc.) keeping unchanged the

construction protocol.

The manipulation in this activity occurred twice, the first time was a concrete

action with materials, while the second was a construction and dragging activity

carried out with the software. Within the first part, students focus the problem and

try to find a solution that will be confirmed, rejected or modified by the observation

of the dynamic situation represented with technology.

The integration between “basic” materials and GeoGebra helped students to con-

struct knowledge, and the dynamic use of GeoGebra gave students space to explore,

conjecture and argue. One of the added values of this kind of activity is the mediation

of instruments and technology (think about Valentina with the flashlight on the screen).

The first phase pointed out that the tools we named “poor/basic” (in the meaning of

simple) are instead very “rich” elements for the comprehension of the problem. But the

use of technology offers more possibilities to investigate the problem with constraints

changing over time. Without technological tools the activity’s solution could be very

different, the dynamicity of the software helped students to emphasize the critical

aspects, such as the obtuse angled triangle case and to grasp the variability of the

situation over time. For instance, when they used the picture of the triangle it was notA

generic triangle, but it was THE particular triangle drawn. When they draw instead a

triangle with GeoGebra, it was really a generic one: using the dragging it can change,

but maintaining its own properties as a triangle. Looking at the experience, we noticed

that students were able to use their knowledge in a real situation, different from the one

in which they have learnt it, improving their competences. Finally, they have been able

to manage a collective discussion, sharing their ideas and constructing together the

meanings. As teachers we noticed that open-ended problems give the possibility of

discussing about various aspects, even different from those designed.

Critical Analysis of the Teachers

We tried to find some answers to the research questions analysing the data collected

during the teacher-training course: written materials (the beginning questionnaire

and the logbook) and also video materials (the beginning interview).

We applied the MDT model to Monica, who belonged to the teachers’ commu-

nity while Elisa belonged to the teacher-researchers’ community and acted as a

broker during the educational programme.

Initially, the use of GeoGebra in lower secondary school and the use of open-

ended problems are external components for the teachers, as we can recognize in

the following excerpt from Monica’s interview:

I: Do you use technology in your class? What kind of software?

M: Although I’ve been teaching for many years, this is the first year I use technology in

class. This year we have the Interactive White Board (IWB) in class and I also
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attended some courses to learn how to use GeoGebra in class. We don’t have a

computer lab big enough to contain all the students, so I worked in class with the

IWB, showing the files and the constructions. Students downloaded the software in

their personal devices and used it to solve some homework.

Also the focus on the National Curriculum was an external component:

I: Does your Annual Programme of Education follow the National Guidelines?

M: When we wrote the Annual Programme, we followed the previous year’s programme.

When I started to work in this school the other teachers working here before had

already written the programme and I didn’t change anything. We never compared the

National Guidelines with our Programme. Actually the reference with the Guidelines

is missing, but I know the National Guidelines and I think the Programme follows

their main ideas.

The laboratorial methodology (group work and discussion) was also an external

component for Monica:

I: Are you used to collective discussion? What kind of activity do you manage with

collective discussion?

M: I like that students compare their ideas and reasons, but I think that in a middle school

(maybe due to the age of the students) it is difficult to manage effective discussions.

Students are interested, but they are not able to organize properly a discussion, they

have to learn to talk one at a time and to listen to their mates. You waste a lot of time

trying to manage the mess and this persuades me not to use the discussion. [. . .]
Sometimes I use it during science lessons.

I: Are you used to group work? Do you think it is useful?

M: I never used group work with this class. They are 25 students and for reasons of time

and organization I avoided it. Maybe group work is useful. I have always the problem

of managing time: group work needs a lot of time.

At the beginning Monica was sceptical and worried about proposing the activity

to her students due to its openness and, furthermore, because the students were very

young (12 years old). But she accepted the challenge. At the end of the educational

programme the National Curriculum, the use of GeoGebra in middle school classes

and the laboratorial methodology became internal components in her praxeologies
as we can notice in these excerpts from Monica’s logbook.

During the activity the students seemed very interested and involved, working seriously on

the task given, arguing and justifying their solutions in an accurate way. I felt very involved

in this activity; they worked with interest and curiosity and this gave me a great satisfaction

and an incentive to repeat in the future this kind of experience. I’m going to design other

activities like this one and I will use group work for other tasks.

Elisa acted as a broker, being a teacher as Monica but also a member of the

researchers’ community (as a teacher-researcher). She discussed with Monica and

the other teachers, sharing ideas and doubts, reflecting on their didactical practice.

The action of brokering was performed by the teacher-researchers during the face-

to-face sessions of the course and also through the Moodle platform with forums

and discussions.
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Among the preaxeologies of the researcher community, we choose to analyse

the praxeology of designing a task for the teachers. We can recognize the four

elements identified in ATD (Chevallard 1999):

Task: designing the activity for teachers and students;

Technique: finding a problem considered linked to the topics of Curriculum;

opening a close-ended problem, adapting it to the aims of the project, the

methodology to induce, the use of GeoGebra and the institutional constrictions;

Technology: institutional (the new curriculum), from research about exploring,

conjecturing, arguing, proving, the use of mathematics laboratory and the use

of GeoGebra;

Theory: research elements such as: open problem, conjecturing and arguing, math-

ematics laboratory, meta-didactical transposition with the related literature as

background.

This praxeology became a shared praxeology when Monica, during the educa-

tional course, designed tasks for her own students, in particular Monica took part in

the following year to another PLS educational programme, focused on Task design

for students.

Conclusion

During the activity, students worked in two different environments: the paper and

pencil environment and the technological environment. Technological tools

allowed students to explore a variety of different situations simply by dragging

the construction made in the specific case. With DGS they can easily represent a

generic situation and then study how it changes, test the different ideas and

solutions found and validate those most appropriate to their model while justifying

choices. Both paper and pencil and technology are important tools for problem

solving, but the real potential stands in their integration. Using only paper and

pencil or only technology, students do not achieve the same results as they do when

using them together. The key point is the mediation and integration of the two

environments.

Furthermore, the experience was useful for teachers and students alike. Monica

experienced a new approach and new praxeologies, improving her professionalism

as a teacher, while her pupils were involved with a leading role in the activity: they

have made decisions, discussed, argued and mobilized their competencies. Elisa

had the opportunity of observing again her didactical practice and to reflect further

upon it.

Taking part in an international project is a great opportunity for sharing ideas,

methodologies, doubts and for the construction of shared praxeologies, that will be,
from now on, a critical component of the praxeologies of the teachers involved in

the training.
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leur intégration? In C. Ouvrier-Buffet & M.-J. Perrin-Glorian (Eds.), Approches plurielles en
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A Framework for Failed Proving Processes
in a Dynamic Geometry Environment

Madona Chartouny, Iman Osta, and Nawal Abou Raad

Abstract The study aimed to evaluate the potentialities of Dynamic Geometry

Environments (DGE) in the teaching and learning of mathematical proof by

analyzing students’ cognitive processes while solving an open geometry problem.

The study was conducted in a grade-10 math class in a Lebanese school. Data were

collected through whole-class observation with analysis of paper-based data and

closer observation of 12 pairs of students. The analysis focused on the mistakes that

occurred at the three stages of the proving process: the construction and manipu-

lation of the figure; the formulation of the conjecture; and the proof itself. The

results suggest the development of a “framework of failed proving processes” that

classifies errors by type and by explanations for the failure.

Keywords Proof • Dynamic geometry • Secondary • Failed proving processes •

Conjecture elaboration

Introduction

The teaching and learning of mathematical proof has always been a challenging

process for both students and teachers. Many research studies in mathematics

education have been conducted to investigate proving processes and to analyze

the types of proofs produced by students. (Balacheff 1988; De Villiers 2012; Hanna

and De Villiers 2008; Harel and Sowder 2007). Some studies have led to epistemic

and pragmatic strategies aimed at the advancement of the teaching and learning of

proof in school mathematics. Harel and Sowder (ibid) identify proving as the

process that an individual or a community employs to remove doubts about the

truth of a statement. De Villiers (2012), however, rejects the definition of proof in

terms of its verification function or any other function. He argues that “proof should
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rather be defined simply as a deductive or logical argument that shows how a

particular result can be derived from other proven or assumed results; nothing more,

nothing less” (p. 4). In this definition, the truth or validity of the statements, whether

the premise or the conclusion, is not the main concern. Hanna and De Villiers

(2008) argue that even though there are diverse definitions to proof in formal

mathematics one crucial principle underlies all of them. This principle is: “To

specify clearly the assumptions made and to provide an appropriate argument

supported by valid reasoning so as to draw necessary conclusions” (p. 329). This

main principle is at the core of proof, yet it also expands to situations that

are external to mathematics and establishes a base for the reasoning of human

beings.

Many researchers have analyzed the types of proofs produced by students and

classified them according to the types of arguments presented. Balacheff (1988)

studied students’ proofs as products and provided a classification of proofs

according to a continuum from empirical to deductive arguments. Additionally,

he distinguished two types of justification, namely pragmatic and conceptual

justifications. Pragmatic justifications are based on the use of examples, actions

or showings, whereas conceptual justifications are based on abstract formulations of

properties and of relationships among these properties

Marrades and Gutiérrez (2000) built on Balacheff’s classification by adding

sublevels to the existing categories, as well as a new category, that of failed

justifications: “Failed justifications are necessary to complete the classification

because the assessment of students’ justification and proof skills cannot be associ-

ated only to correct solutions of problems” (p. 94). A failed justification occurs

when students employ empirical or deductive strategies to solve a proof problem,

yet either fail to elaborate a correct conjecture, or, in case that they do elaborate a

correct conjecture, they nevertheless fail to provide any justification.

According to Harel and Sowder (1998), proving or justifying a result involves

ascertaining – that is, convincing oneself, and persuading – that is, convincing

others. In their 1998 study, they constructed a framework for the analysis of

students’ proof schemes generated from teaching experience, interviews with

secondary school and college students, and the work of other researchers in the

field. Proof or justification schemes were in this framework organized into three

categories: externally based proof schemes, empirical proof schemes, and analytic

proof schemes. Each of these categories represents a cognitive level; the classifi-

cation framework is not concerned with the content of proofs or their methods.

Hoyles (1998) highlighted the common practice, in the math education litera-

ture, of presenting types of proofs in hierarchical structures where the empirical

precedes the deductive. Despite the need for students to distinguish empirical

proofs from deductive ones, the question remains whether empirical pragmatic

proofs develop into conceptual ones, or whether links can be forged between the

two types. In general, Hoyles showed that students are usually aware of the

limitations of empirically-based proofs, and that they recognize that a theoretical,

formal proof is needed.
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Boero (2007) proposes that a reform of the way proof is being taught in the

classrooms is needed:

Old teaching models (essentially based on learning and repetition of proofs of relevant

theorems as they are written in textbooks) do not fit the current needs of students and

teachers. (. . .) Therefore entirely new approaches are needed. And these approaches must

take into account the actual complexity of the subject. (p. 19).

In recent decades, educational technologies, which are an example of such novel

approaches, have been introduced to the teaching and learning of proof. Educa-

tional technologies have been made widely accessible to schools, and research on

new technologies has demonstrated their importance for the teaching and learning

of mathematics in general, and for the teaching and learning of proof, especially for

argumentation methods and techniques. The mathematics education literature is

indeed rich with research in this regard (e.g. Artigue 2010; Laborde and Sträßer

2010; Leung et al. 2013; Mariotti 2006).

The study presented in this chapter, and conducted in a Lebanese context,

attempts to contribute to this body of research. Its aim is to investigate the role

that Dynamic Geometry Software (DGS) can play in supporting students’ thinking
when solving geometry problems, and analyze the cognitive processes that students

use, and the types of conjectures and proofs that they produce in such an

environment.

Laborde (1998) introduced a distinction between objects, relations and opera-

tions belonging to the theoretical domain (denoted by T), and entities – including

physical actions and opinions – belonging to the spatial-graphical domain (denoted

by SG). When working on a geometrical problem, students are usually expected to

give an answer belonging to the theoretical domain (Laborde 1998). Laborde adds

that teachers accept that students use drawings and figures as auxiliary means; but

these drawings or figures are typically not meant to be referred to in the solution.

However, the solution of a geometry problem lies in both the SG and T domains,

and is characterized by continuous shifts between them. The Dynamic Geometry

Environment (DGE) presents the learner with a combination of the two domains

since it provides diagrams whose behavior is controlled by the theory.

According to Artigue (2010), the DGE can help in generating conjectures and

eventually lead to the construction of proofs, based on the dragging possibility, the

instant feedback, and the dynamic figures resulting from dragging. The DGE tools

are loaded with potentialities that can unite theoretical knowledge with concrete

siuations in a new environment meaningful to students. One example is the possi-

bility given to students by the dragging tool of examining a seemingly infinite

number of instances of the same geometrical figure to support a certain conjecture.

In addition, while dragging, students go back and forth between concrete figures

and theoretical knowledge, which helps them progress from the empirical to the

theoretical level.

Leung et al. (2013) suggested that a defining characteristic of DGE is the

dependency among points and objects of a construction: when basic points are

dragged, each dependent element moves together with the others while preserving
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the properties of the construction. Dragging is seen as a powerful epistemic tool that

supports geometrical reasoning and, in particular, it becomes a tool capable of

producing conjectures. Behind this epistemic power is an implicit assumption that

connects the world of DGE to the formal axiomatic world of Euclidean geometry.

Trying to make explicit such assumption, we state it as the following dragging exploration
principle: During dragging, a figure maintains all the properties according to which it was

constructed and all the consequences that the construction properties entail within the

axiomatic world of Euclidean geometry. (p. 458)

Graphical representations are central in the teaching of geometry as they allow

the student to “see” geometric properties, to form conjectures, to experiment with

and verify a given property. However, representations can also be confusing and

deceiving, as they may appear to show relations among objects that are not

necessarily properties of the geometric figure that the teacher intends the students

to examine, which leads to wrong interpretations. For this reason, the important

distinction between a drawing and a figure was introduced by Parzysz (1988) and

developed later by Laborde and Capponi (1994). According to Parzysz (1988), the

figure is a theoretical object defined by a descriptive text, an imaginary object, or an

idea; the drawing is only the illustration of this figure. Laborde and Capponi (1994)

define a figure as a theoretical construct associated with each of its possible

drawings. Students interpret drawings based on their mathematical knowledge as

well as on the nature of the drawings and the way they are represented. This is why

and where ambiguities emerge, creating problems caused by different interpreta-

tions. It is neither easy nor evident to detach oneself from the perceived drawing in

order to access the theoretical figure, as students have to distinguish the properties

of the perceived drawing that correspond to the theoretical figure from the ones that

are only spatio-graphical properties that cannot be used in the conjecture or proof.

In DGE teachers usually expect students to construct figures that preserve all

their properties under dragging. However, Healy (2000) observed that many stu-

dents worked differently. They started with constructions that verified some of the

properties, and then used these constructions to find ways of obtaining the

remaining properties. This strategy should not be totally rejected, since it allows

the student to search for the required properties while exploring the figure. Healy

thus introduced the distinction between soft and robust constructions. A robust

construction is one that holds under dragging, and that has all required geometrical

properties. Soft constructions are “constructions, in which one of the chosen

properties is purposely constructed by eye, allowing the locus of permissible figures

to be built up in an empirical manner under the control of the student” (p. 107).

In DGE, dragging plays different roles according to the purpose of its use. In

robust constructions, dragging is used as a verification tool: the correctness of the

figure is verified when its properties remain invariant under dragging. While

dragging for verification, students move from the general to the specific, since a

multitude of drawings with the same geometrical properties is produced from the

generic robust figure. On the other hand, in soft constructions dragging is used as a

construction tool rather than a verification tool. The dependent property is evident
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when the other property is manually incorporated using dragging; thus the general

can emerge from the specific.

Another role for dragging highlighted by Mariotti (2014), is the role of mediator

between geometrical invariants and logical statements. In fact, dragging to elabo-

rate a conjecture is a complex process, since it requires the interpretation of

perceptual data by decomposing the image in order to identify a geometrically

significant relationship between its elements and properties. For example, when

dragging to search for consequences, students need to interpret the geometrical

dependence between “direct invariants” and “indirect invariants” as the logical

dependencies between premises and conclusions of conditional statements: direct

invariants are properties given by the problem, that is, invariant properties observed

between independent elements; while indirect invariants are the consequences of

the properties given by the problem, or invariant properties observed between

dependent elements.

The Study

In the Lebanese curriculum in effect at the present time (CERD 1997), proof writing

begins at grade 7 (students at the age of 11 or 12) and continues through the

intermediate school (grades 7, 8 and 9) and the secondary school (grades 10, 11

and 12). Beginning from the secondary school, i.e., grade 10 (at the age of 15 or 16),

proof writing becomes more rigorous and formal. It is at this level that students are

asked to formalize their thinking, link different mathematical domains in one

context, choose among a variety of solution strategies what is most appropriate

for the given context, and write clear and concise justifications for their solutions.

However, the Lebanese curriculum neither includes explicit instruction of logic, nor

does it explicitly address techniques or conditions of argumentation and proof as an

independent topic of study. Students are implicitly expected to acquire the proving

abilities as a by-product of their learning of geometrical theorems and properties,

and through working on solutions to geometrical problems. It is assumed that if

students know the properties of geometrical shapes, they should be able to develop

proofs based on those properties.

Given this background, the aims of this study are: (1) to provide students with a

learning environment, namely DGE, in which they can be supported in their

approach to proof; and (2) to analyze the students’ cognitive processes while they
engage in conjecturing and proving activities. The study examines the proofs

produced by the students at different stages of the proving process, including the

construction and manipulation of geometric figures, as well as the formulation of

the conjecture and the proof itself. These stages are, of course, neither linear nor

independent. On the other hand, while most of the previous research works devel-

oped classifications of only valid proofs, the present study focuses on the failed

proofs produced by the students, in order to gain a deeper understanding of their

nature, at which stage they occurred, and the reasons behind them.
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Method

The study took place in a tenth-grade mathematics class of a Lebanese school, and

consisted of a series of geometrical problem solving sessions during which students

(15–16 years old) worked using a DGS, namely GeoGebra, on solving an open

geometry problem that required conjecturing and proving. The problem was taken

from Olivero (2002), and involved the angle bisectors of a quadrilateral.

The study used a qualitative research method, both in the data collection and

analysis. The method used consists of an analytical process of theory-building
(Eisenhardt 1989) which was highly iterative, including going back and forth

from one case to another, from building a category to looking back at the data

and literature; this process allowed new elements and explanations to constantly

emerge and to be continuously refined.

Data were collected through observation. The proving process is twofold:

external practices and internal practices. External practices consist of what students

do and say, of behaviors that can be directly observed, such as dragging, drawing,

sketching on paper, talking, etc. Internal practices represent the students’ reasoning
processes. Students’ thoughts and internal practices had to be externalized through

dialogues, thus all students were set to work in pairs. Observations were conducted

on two different levels: observation of the whole class and observation of specific

pairs of students. All students participating in the study were introduced for the first

time to GeoGebra in grade 8. Thus by grade 10, when the study was conducted,

students were familiar with the basic commands and features of GeoGebra, and

capable of different types of constructions and manipulations.

Whole-Class Observation During the problem-solving session, the work of the

whole class was observed, i.e., 22 pairs of students. The observer targeted one pair

of students at a time and took detailed notes and screenshots of all significant and

interesting instances of the solving processes. In addition, paper material produced

by each student was collected. The paper-based materials included sketches as well

as written conjectures and proofs generated by the class. During observation and

data collection, special attention was given to the interplay between the spatio-

graphical field (including DGE objects, paper drawings, etc.) and the theoretical

field (including geometrical properties, theorems and definitions).

Observation of Specific Pairs of Students In addition to class observation, the

primary research tool used to document the details of students’ proving processes

was the observation of selected pairs of students. Students’ interactions with each

other, with the mathematical ideas of the problem, and with the computer were

closely observed and recorded. Given that the research aim of this study required

the analysis of students’ proving processes, i.e., the production of conjectures and

proofs, effective techniques were necessary for uncovering these processes. Both

video and audio data were needed, since the analysis included the use of DGS and

other supports such as paper and pencil, as well as the interaction between the

students in each pair. The work of 12 pairs of middle and high achieving students
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was videotaped. The selection of pairs of students to observe was based on four

criteria: Selected students were (1) used to working in pairs, (2) capable of

producing conjectures and proofs, consequently middle to high achievers, (3) talk-

ative – because the analysis was based on what is “visible” from the proving

processes, and (4) willing to be video-taped during class.

The problem-solving sessionstarted with the teacher introducing the problem.

Then the students were left alone to work on the problem for 60 min. Students were

asked to write their conjectures and prove them. The teacher did not intervene. The

main goal of these sessions was to access students’ basic and essential ideas

involved in their proving processes, during their interaction with DGS, and while

moving back and forth between the elaboration of conjectures and their justification

and formalization.

The Problem

In order to observe the proving processes there was a need to find a context where

they happen naturally and can be easily and authentically observed. The choice of

the mathematical context, i.e., the open proof problem was crucial. In previous

studies (Leung 2012; Mariotti 2012), open proof problems affirmed themselves to

be adequate contexts for observing proving processes, because they tend to allow

the observation of the whole process, from exploring to conjecturing and proving.

The choice of the problem to be used in this study was based on the following

theoretical and pragmatic considerations: (1) The chosen problem is in accordance

with the definitions of open problems given by Charnay (1992) and Mogetta et al.

(1999). The statement is short and does not suggest any particular solution method.

It cannot be reduced to the execution of a set of routine procedures that students

might have memorized by heart; (2) The chosen problem is a type 2 problem

according to the classification of Laborde (2001). That is, the nature of the problem

is not changed by the DGE which simply acts as a visual amplifier facilitating the

mathematical task, i.e., exploration, identification of properties and analysis. This

type of problem can be used as a research tool for investigating students’ concep-
tions. It acts as a window on students’ ideas and understandings; (3) The chosen

problem lies in a conceptual domain familiar to the students; its difficulty does not

reside in the understanding of the problem (Charnay 1992). The students partici-

pating in the study have a good mastery of the mathematics needed for the solution

of the problem; they were taught these mathematical concepts in previous grades

and are now capable of employing them skillfully.
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Statement of the Problem (Previously Used by Olivero 2002)

1. Let ABCD be a quadrilateral. Consider the bisectors of its internal angles and the

intersection points H, K, L, and M of pairs of consecutive bisectors.

2. Drag ABCD, considering different configurations, and explore how HKLM

changes in relation to ABCD.

3. Write down conjectures and prove them.

Type of Tasks Evoked by the Problem

The problem was chosen as it evokes the implementation of different types of tasks

and the use of various DGE tools:

• Construction and exploration tasks: Students need to construct, draw or drag

different types of quadrilaterals to explore the nature of HKLM in relation to the

nature of ABCD. It is expected that the figures will be soft constructions using

Polygon or Points and Segments as they are easily transformed into different

types of quadrilaterals ABCD. However, the question remains whether students

might use robust figures, to which end might they be used, and how their use

could affect the proving process.

• Conjecturing tasks: This problem is characterized by the richness of potential

conjectures. There are more than one or a couple of correct conjectures that

students can develop. They are free to explore any type of quadrilateral such as

special and regular quadrilaterals, to group different cases together such as the

cases of the square and rhombus, to focus on a specific quadrilateral and to

investigate its types, such as the trapezoid, or to explore any other case they

desire to investigate.

• Proving tasks: While some proofs are straightforward, necessitating the use of

only one property, others are more complex. Students need to recall the proper-

ties of special quadrilaterals, congruent triangles, bisectors of supplementary

angles, or parallelism and properties of corresponding angles. They also need to

identify which angles, sides or triangles they want to use and isolate them

visually or by using DGE options such as coloring or marking angles and

segments.

Solution of the Problem

To facilitate the description of solutions in the rest of the chapter, the Correct

Conjectures are coded consecutively CC1, CC2, . . .; the proof(s) are coded simi-

larly to the corresponding conjecture i.e., P1 is the proof of the conjecture CC1, P3

is the proof of CC3; letters are added to the number of the proof to represent
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different proofs for the same conjecture i.e., P1a and P1b are two possible proofs

for the conjecture CC1. The code IC is used for Incorrect Conjectures.

As mentioned above, the problem has many solutions, since there are different

types of quadrilaterals that can be investigated, conjectured and proven. The cases

that were most commonly investigated are the following:

CC1. If ABCD is a parallelogram, then HKLM is a rectangle (Fig. 1).

P1a. In a parallelogram the consecutive angles are supplementary; in particular

dADC + dDCB¼ 180�; also in the triangleKDC, dKDC þ dKCD¼ 1
2
(dADC þ dDCB)¼ 90�

leaving 90� to dDKC. The same proof should be applied to two additional angles

chosen from dKHM, dHML and dKLM thus making HKLM a rectangle.

P1b. The same conjecture could also be proven using corresponding angles:

• Consider I the intersection point between (DC) and (AM), the bisector of dBAD.

– dBAI ¼ ½ dBAD so dAID ¼ ½ dBAD (dBAI and dAID alternate interior angles)

– dKCD ¼ ½ dBCD ((CK) bisector of dBCD)

– But dBAD¼ dBCD (opposite angles in a parallelogram)

Therefore, the two angles dAID and dKCD are equal and have the position of

corresponding angles, so (KC) is parallel to (AM).

• Similarly, (DK) is parallel to (BM) thus HKLM is a parallelogram.

• In addition, dDKC ¼ 90� (same proof as in P1a) thus HKLM is a rectangle.

CC2. If ABCD is a rectangle, then HKLM is a square (Fig. 2).

P2. The proof will be divided into two phases: showing that HKLM is a

rectangle, then showing that it’s a square.

• Showing that HKLM is a rectangle by showing that it has three right angles:

– dAMB ¼ 180� – ( dMAB þ dMBA) ¼ 180� – (45� + 45�) ¼ 90�.
– Similarly, dDKC ¼ 90�

– dKLM or dKHM ¼ 90� (using triangles BLC or AHD respectively to show dBLC

or dAHD ¼ 90� then vertically opposite angles).

Fig. 1 The case where

ABCD is a parallelogram
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The first phase could be proven using the same proof as P1b, as ABCD is a

parallelogram.

• The second phase requires the use of congruent triangles to show consecutive

equal sides, as follows:

– KC ¼ KL + LC and KD ¼ KH + HD

– KC ¼ KD (KCD right isosceles triangle at K with base angles of 45�)
– LC ¼ HD (BLC and AHD are congruent triangles)

Thus KH ¼ KL, and HKLM is a square.

CC3. If ABCD is a rhombus then H, K, L, and M coincide (Fig. 3).

P3. This case requires the instantiation of only one property, namely, the

bisectors of a rhombus are also its diagonals, so they intersect at one point;

thus H, K, L and M are coincident.

CC4. If ABCD is a square, then H, K, L, and M coincide (Fig. 4).

P4. Since the square is a special rhombus, this case requires the same proof P3.

Description of Students’ Work

The following section presents the work of four of the observed student pairs, which

were found to be most interesting and significant for the purpose of this study. The

description focuses on the important moments in students’ work and prepares the

ground for the detailed analysis presented in the subsequent section. The four

observations are named consecutively O1, O2, O3 and O4.

O1. Kevin and Sam

Kevin and Sam explored the case of the random quadrilateral, i.e. a quadrilateral

that is not a trapezoid, a kite, or a parallelogram, and four types of special

quadrilaterals. For each case, they drew a new figure by placing the vertices of

Fig. 2 The case where

ABCD is a rectangle
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the quadrilateral in the form of the intended shape based on perceptual

approximation.

IC1. If ABCD is a random quadrilateral then HKLM is also a random

quadrilateral

Kevin and Sam drew a random quadrilateral using the Segment tool (Fig. 5).
Without dragging or doing any manipulation, they directly wrote the conjecture

IC1. They did not attempt any proof.

This conjecture is considered as an empty conjecture. A quadrilateral cannot be

proven to be “random” since random quadrilaterals are not defined according to

specific characteristics or necessary geometric properties.

CC1. If ABCD is a square then H, K, L and M coincide

Fig. 3 The case where

ABCD is a rhombus

Fig. 4 The case where

ABCD is a square
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Students used the Regular Polygon tool to construct the square. Then, they

developed the conjecture CC1 but did not attempt to find a proof.

CC2. If ABCD is a rectangle then HKLM is a square

To test the case of the rectangle, Kevin and Sam made a new drawing by placing

the vertices to form a rectangle based on visual approximation by means of the

Polygon tool (Fig. 6).

Kevin: I think it’s the same as the square

Sam: Mmmmm why?

Kevin: both have angles of 90�

Sam: Oh yes, you’re right.

When they saw that H, K, L and M formed a square they doubted the correctness

of the drawing. After some reflection, Kevin accepted the graphical result since he

was able to find part of a theoretical support: he noticed that in triangle ABM,

dMAB ¼ dMBA ¼ 45� thus dAMB ¼ 90�, and formulated the conjecture CC2.

However, the proof they developed was incomplete, mainly because they used

“(AB) parallel to (HL)” without proving it first:

• In triangles ABM and MLH

– dAMB ¼ dHML ¼ 90� (vertical angles)
– dMHL ¼ dHLM ¼ 45� alternate interior angles with dABM and dMAB

((AB) parallel to (HL))

Thus HLM is right isosceles and MH ¼ ML

• Having 2 consecutive equal sides and 4 right angles then HKLM is a square.

CC3. If ABCD is a parallelogram then HKLM is a rectangle

Fig. 5 O1-When ABCD is

a random quadrilateral
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To test the case of the parallelogram, Sam made a new soft drawing also based

on visual approximation (Fig. 7). Kevin and Sam developed the conjecture CC3

and proved it as follows:

• In the triangle KDC,
dKDC þ dKCD ¼ 1

2
( dADC þ dDCB) ¼ 1

2
.180� ¼ 90�

We deduce that dDKC ¼ 180� – 90� ¼ 90�

• Similarly dAMB ¼ 90�.
• Thus HKLM is a rectangle.

However, they did not mention explicitly the fact that dHKL and dHML are 90�, as
they are vertically opposite to dDKC and dAMB respectively. Also, they showed only

two right angles.

IC2. If ABCD is a right trapezoid then HKLM is a rectangle

Kevin and Sam were able to prove that dHML and dHKLare right angles (Fig. 8):

• In triangle ABM, dMAB þ dMBA¼ ½ dDAB +½dABC¼ 90� thus dAMB¼ 90� which
implies that dHML ¼ 90�.

• In triangle DKC, ½( dADC þ dDCB) ¼ ½•180� ¼ 90� thus dDKC ¼ 90� which

implies that dHKL ¼ 90�.

Fig. 6 O1-When ABCD is

a rectangle

Fig. 7 O1-When ABCD is

a parallelogram
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They were not able to go further and prove a third angle right. Nevertheless,

Kevin insisted that HKLM should be a rectangle, despite the fact that the drawing

shows it not to be a rectangle. When writing the proof, they only stated the previous

two right angles dHML and dHKL but concluded that HKLM is a rectangle having four

right angles.

O2. Eric and Vicky

Eric and Vicky started their work by developing three conjectures consecutively

and then attempting to prove them. At the end, they developed a fourth conjecture

and attempted to prove that one as well.

Eric and Vicky drew the quadrilateral ABCD using the Polygon tool and then

throughout the session they dragged its vertices to form the intended shape, each

time based on perceptual approximation. They stopped at each figure and observed

how HKLM varied as a result of the changes effected to ABCD. They developed

three correct conjectures for the cases where ABCD is a rectangle, a square and a

parallelogram. When Vicky pointed out that they need to prove these conjectures,

the conjecturing phase was interrupted and they started working on the proofs.

Following are the conjectures developed at the beginning of the session.

During the proving phase, Eric and Vicky worked on four different conjectures,

two of which are correct and two are incorrect:

CC1. If ABCD is a rectangle then HKLM is a square

Eric and Vicky dragged A, B, C and D to form a rectangle (see figure in Table 1).

They showed that in triangle ADM, dMAD ¼ dMDA¼ 45� thus dAMD¼ 90�; similarly

dBKC ¼ 90� and dDLC ¼ 90� thus HKLM is a rectangle. They tried using congruent

triangles to further show that it’s a square but failed to isolate the triangles needed

for the proof.

CC2. If ABCD is a square then H, K, L and M coincide

Fig. 8 O1-When ABCD is

a right trapezoid

238 M. Chartouny et al.



Eric and Vicky Eric dragged A, B, C and D to form a square (see figure in

Table 1) and developed a deductive proof by saying that the angle bisectors in a

square are also its diagonals, which intersect at a single point.

IC1. If ABCD is a parallelogram then H, K, L, and M coincide

Eric dragged A, B, C and D to form a parallelogram which happened to be a

rhombus in which H, K, L, and M coincided (Fig. 9). Eric and Vicky thought that

ABCD was only a parallelogram and elaborated the conjecture. They did not notice

that this new conjecture contradicted the conjecture CC3 previously elaborated in

the conjecturing phase. Since the conjecture was incorrect it led to a wrong proof as

Eric and Vicky argued that in a parallelogram the angle bisectors are also the

diagonals which intersect at one point.

IC2. If ABCD is a rhombus then HKLM is a square

Eric and Vicky dragged to form a rhombus ABCD but the sides were not exactly

equal, thus H, K, L and M did not coincide (Fig. 10). When they saw that points H,

K, L, and M formed a small square (although in their drawing HKLM looked more

like a rectangle), they generated another wrong conjecture: “If ABCD is a rhombus

then HKLM is a square”. They only showed that HKLM is a rectangle by stating

that in a rhombus the diagonals which are also the angle bisectors are perpendicular,

so the angles are right making it a rectangle, which is a failed proof.

Table 1 O2. The first three conjectures

CC1. If ABCD is a rectangle then HKLM is a square.

CC2. If ABCD is a square then H, K, L, and M

coincide.

CC3. If ABCD is a parallelogram then HKLM is a

rectangle.
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O3. Matt and Jessica

The work of Matt and Jessica was divided into two separate phases: a conjecturing

phase followed by a proving phase. Following are the conjectures developed at the

beginning of the session.

In the proving phase, Matt and Jessica worked on proving the first two

conjectures:

CC1. If ABCD is a parallelogram then HKLM is a rectangle (see Table 2)

• (AK)//(CM) since they are two lines coming from two equal and opposite angles.
Similarly (DM)//(BK).

• In the triangle MDC, dMDC þ dMCD ¼ 1
2
( dADC þ dBCD) ¼ 1

2
• 180� ¼ 90� thus

dDMC ¼ 90�.
• Thus HKLM is a rectangle being a parallelogram with one right angle.

Matt and Jessica showed that the opposite sides are parallel and that there is one

right angle. However the property used to show the parallel sides was incorrect.

Fig. 9 O2-When ABCD is

a parallelogram

Fig. 10 O2-The

parallelogram ABCD

mistaken for a rhombus
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CC2. If ABCD is a rectangle then HKLM is a square.

Matt and Jessica considered a new drawing which happened to be a particular

case where AB ¼ 2 BC thus M and K were the midpoints of [AB] and

[DC] respectively (Fig. 11).

The proof was as follows:

• HKLM is a rectangle since it has 4 right angles:

– In the triangle MDC, dMDC þ dMCD ¼ 1
2

dADC þ 1
2
dBCD ¼ 90� thus dDMC

¼ 90�. Similarly dAKB ¼ 90�.
– In the triangle ADH, dADH þ dHAD ¼ 1

2
dADC þ 1

2
dBAD ¼ 90� thus dDHA ¼ 90�

which implies that dKHM ¼ 90�. Similarly dKLM ¼ 90�.

Table 2 O3. The first four conjectures

CC1. If ABCD is a parallelogram then HKLM is a

rectangle.

CC2. If ABCD is a rectangle then HKLM is a

square.

IC1. If ABCD is a square then HKLM is a square.

IC2. If ABCD is a trapezoid then H, K, L and M

coincide.
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• HKLM is a square since it is a rectangle with two consecutive equal sides:
We consider the two triangles DHK and AHM:

– dDHK ¼ dAHM ¼ 90�.
– DH¼AH (ADH right isosceles triangle)

– dHDK ¼ dHAM ¼ 45�

Therefore HK ¼ HM.

The proof started correctly; however, in the second phase, when showing that the

triangles DHK and AHM are congruent, the students considered dHDK ¼ dHAM
¼ 45�, which worked only because M and K happened to belong to [AB] and

[DC] respectively. Because the drawing represents a special case of the figure, the

proof is not generic.

O4. Tom and Mary

Tom and Mary started their exploration with the case of the square ABCD. They

directly observed that H, K, L, and M are coincident, since the angle bisectors in a

square are also its diagonals, which intersect at a single point. Thus the first

conjecture was CC1. If ABCD is a square then H, K, L and M coincide.

Then they considered the case of ABCD being a right trapezoid (Fig. 12). As

they were not able to determine the nature of HKLM at first sight, they measured the

angles of quadrilateral HKLM. Based on those measures they developed the

conjecture IC1. If ABCD is a right trapezoid then HKLM has two right angles

and one angle of 60�. They proved the two right angles as follows:

• In the triangle KDC, dCKD ¼180� �(1
2
dADC +1

2
dBCD) ¼ 90� thus dHKL ¼ 90�.

• In the triangle MBA, dBMA ¼180� – 1
2
( dADC þ dBCD) ¼180� – 1

2
.180� ¼ 90� thus

dHML ¼ 90�.

Fig. 11 O3-Special case
drawing for the rectangle

ABCD
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They tried, in vain, to prove that dMHK ¼60�. They did not realize that the

measure of dMHK is a spatio-graphic one relative only to this particular instance of

the figure.

Analysis of Students’ Proving Processes

Building on the four previous cases, it can be seen that a majority of the proofs that

the students developed were flawed. Tracing back through the mistakes, we can see

that they originated at different moments of the proving process: some mistakes

were found at the graphical level, which lead to both a failed conjecture and a failed

proof; other mistakes were found at the conjecturing level, i.e., the figure was

correct but the subsequent conjecture was not, leading to a failed proof; while other

mistakes were at the theoretical level, i.e., students failed to find a correct theoret-

ical support for their conjecture.

We developed an associated typology of failed proving processes with three

main types, namely: Failed Construction, Failed Conjecture and Failed Proof;
each type can be elaborated with particular sub-types illustrated in the following

sections. The purpose of this typology is not to define a totally self-contained set of

categories, but rather to make it easier for a teacher or researcher to undertake an

analysis of different possible mistakes when assigning proving tasks within DGE.

Failed Construction

This first type indicates that the mistake originated from the figure, causing the

subsequent conjecture and proof to be incorrect. The following three types of

Failed Construction were identified, based on the analysis of the students’ work.

Type 1 We consider the following two examples (see Table 3) taken from O2 and

O3 respectively.

Fig. 12 O4-Displaying the

measures of the angles of

HKLM when ABCD is a

right trapezoid
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Therefore, the first type of Failed Construction can be named Inaccurate
Drawing. An Inaccurate Drawing results from a construction which is based on

visual approximation and does not incorporate the use of any DGE tool that can

validate it. An Inaccurate Drawing can create the illusion of elements that do not

exist in reality or properties of the figure which are incorrect.

Type 2 A second type of Failed Construction (see Table 4) was observed twice

in O3.

This type of Failed Construction can be named Special Case Drawing. A
Special Case Drawing is a correct drawing but it incorporates (on purpose or not)

extra properties. Thus the subsequent conjecture and proof are applicable only to

this special case and cannot be generalized.

Type 3 A third type of a Failed Construction was seen in the work of a pair from

the class who drew the figure shown in Fig. 13. The conjecture that they developed

was: “If ABCD is a parallelogram then HKLM is a right trapezoid”. Although the

conjecture was consistent with the figure but it was incorrect because the figure in

itself was incorrect: the angle bisectors were not constructed using the Angle
Bisector tool; instead they were constructed through using Line through Two Points
and adjusted based on visual approximation, thus a rectangle was not formed.

This type of Failed Construction can be named Incorrect Construction. An
Incorrect Construction is caused by the misuse or non-use of the proper tools

available in DGE. Instead of a formal axiomatic construction protocol, students

might construct the figure based on visual approximation and/or use some tools out

of context, which leads to an incorrect construction.

Table 3 First type of failed construction

Case O2 – Eric and Vicky O3 – Matt and Jessica

Figure

Conjecture IC2. If ABCD is a rhombus then

HKLM is a square.

IC1. If ABCD is a square then HKLM

is a square.

Comments The mistakes found in both conjectures originated at the graphical level since both

drawings were inaccurate:

The sides of the intended rhombus

ABCD were not exactly equal; thus

instead of coinciding, H, K, L and M

formed a small rectangle seen as square

by the students.

The sides of the intended square

ABCD were not exactly equal; thus

instead of coinciding, H, K, L and M

formed a small square.
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Failed Conjecture

The second type of failed proving processes is Failed Conjecture. Three types of

Failed Conjecture were identified, based on the analysis of the students’ work.

Type 1 In O1, Kevin and Sam dragged the vertices of ABCD to form a right

trapezoid (Fig. 14). Even though it was clear in the drawing that HKLM is not a

rectangle, Kevin insisted that HKLM should be a rectangle and elaborated IC2. If

ABCD is a right trapezoid then HKLM is a rectangle.

Table 4 Second type of failed construction

Figure

Conjecture CC2. If ABCD is a rectangle then

HKLM is a square.

IC2. If ABCD is a trapezoid then H, K,

L and M coincide.

Comments Both drawings represent special cases of the figure. The observations made based

on these drawings do not hold for all other instances of the figure; therefore the

conjecture and/or proof are not generic.

Although the conjecture is correct, the

proof was based on the fact that dHDK

¼ dHAM ¼ 45� which is specific to this

case of the figure where the length of

ABCD was double its width. If the

rectangle was not constructed with this

special relation the points K and H

would not belong to the sides of ABCD

and the angles dHDK and dHAM would

not be not 45�.

The conjecture itself is incorrect since

in a different instance of this fig. H, K,

L and M will not coincide

Fig. 13 The angle bisectors

incorrectly constructed
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Another example of such a conjecture is taken fromO2. Eric and Vicky dragged

ABCD to form a parallelogram but without noticing that they formed a rhombus

(Fig. 15). They saw that H, K, L, and M coincided and thus formulated the

following conjecture: “If ABCD is a parallelogram then H, K, L, and M coincide”;

whereas the correct conjecture for the case of the parallelogram in general is: “If

ABCD is a parallelogram then HKLM is a rectangle”. In the particular case where

the parallelogram is a rhombus, the vertices of the rectangle HKLM coincide. As a

proof, Eric suggested that the bisectors of the angles of a parallelogram are also the

diagonals which intersect at one point.

The figure at hand is a rhombus but Eric and Vicky thought it was a parallelo-

gram; thus the constructed figure is correct but the elaborated conjecture did not

accurately describe it, which resulted in a failed conjecture and a failed proof.

This type of Failed Conjecture can be named Conjecture-Figure Inconsistency.
It occurs when the figure is correct but the students generate a conjecture that does

not properly reflect its properties. They fail in recognizing all the invariants of the

figure that lead to the desired conclusion since they focus on those recognized at

first sight and perceived to be right.

Type 2 In O4. Tom and Mary developed IC1. If ABCD is a right trapezoid then

HKLM has two right angles and one angle of 60� (Fig. 16). They based their

conjectures on the measures they took for the angles of HKLM in a specific instance

of the figure. They showed that dHKL ¼ 90� and dHML ¼ 90�. They did not realize

Fig. 14 Conjecturing that

HKLM is a rectangle

although in the figure it is

not

Fig. 15 The rhombus

ABCD mistaken for a

parallelogram
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that the measures of these two angles are true in all instances but the measure of

dMHK is a spatio-graphical one relative only to this particular instance of the figure.

This type of Failed Conjecture can be named Spatio-graphical Conjecture. A
Spatio-graphical Conjecture occurs when students analyze geometric figures on the

basis of their appearance and the visual transformations that they perform on the

drawings. They do not take into consideration the geometrical relational properties

of the figure.

Type 3 InO1, Kevin and Sam drew a random quadrilateral (Fig. 17) and developed

the conjecture: “If ABCD is a random quadrilateral then HKLM is also a random

quadrilateral”.

This type of Failed Conjecture can be named Empty Conjecture since the

premise does not provide any properties to work with; it is rather defined by the

Fig. 16 Considering the measures of the angles of HKLM

Fig. 17 When ABCD is a

random quadrilateral
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absence of properties; similarly for the conclusion, a quadrilateral cannot be proven

to be “random”.

Failed Proof

Building a proof is, in fact, a complex process as it involves locating the informa-

tion needed to apply a property or a theorem, selecting from among several known

rules, and selecting from among several theories that provide justification for the

chosen rule. Four types of Failed Proof were identified, based on the analysis of the
students’ work.

Type 1 In O2, Eric and Vicky worked on proving “If ABCD is a rectangle then

HKLM is a square”. First, they showed that HKLM is a rectangle. Then they tried

using congruent triangles to further show that it’s a square but failed to isolate the

triangles needed for the proof.

This type of Failed Proof can be named Incomplete Proof. An Incomplete Proof
occurs when students have a road map for their proof, start part of it but interrupt

their proof due to obstacles in finding theoretical justifications or simply due to time

constraints. The students are aware that the proof is incomplete and do not assume

the conjecture to be successfully proven.

Type 2 In O3, Matt and Jessica worked on proving “If ABCD is a parallelogram

then HKLM is a rectangle”. They showed that the opposite sides are parallel, and

that the quadrilateral has one right angle. However, the property used to show the

parallel sides was incorrect: (AK)//(CM) since they are two lines coming from two
equal and opposite angles. Because the figure (Fig. 18) was strongly convincing,

the students invented a property to fit what they saw as true on the screen.

This type of Failed Proof can be named Fabricated Property. It occurs when
students observe in DGE a relationship among certain objects of the figure and

invent a property that fits. Instead of analyzing the relationships observed in the

D

A

B

C

K

M

L
H

Fig. 18 Fabricating a

property to justify that

(AK)//(CM).
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spatio-graphical field according to the properties of the theoretical field, the theo-

retical field is manipulated to fit the relationships observed in the spatio-graphical

field.

Type 3 InO1, Kevin and Sam were proving “If ABCD is a rectangle then HKLM is

a square” (Fig. 19). In the proof they assumed that (AB) is parallel to (HL) without

proving it first:

This type of Failed Proof can be named Assumed Hypothesis. Given that the

spatio-graphical field is a powerful influence on students’ minds, students might

confuse the hypothesis of the problem with the properties revealed by the dynamic

figure, and thus assume as hypothesis, a property that needs to be proven.

Type 4 In O1, Kevin and Sam were proving the conjecture “If ABCD is a

parallelogram then HKLM is a rectangle”. They showed that HKLM has two

right angles and deduced that it is a rectangle. They did not realize that the

arguments that they presented to show that HKLM is a rectangle are necessary

but insufficient since three right angles were needed to show that it is a rectangle.

This type of Failed Proof can be named Overreached Conclusion. An

Overreached Conclusion occurs when students are unable to identify all the nec-

essary and sufficient conditions for a property to be true. The reached conclusion

might be true but it is not supported with all the necessary arguments.

Discussion

Interplay Between the Spatio-Graphical Field
and the Theoretical Field

According to Laborde (1998), the solution of a geometry problem lies in both the

Spatio-Graphical (SG) and Theoretical (T) domains, and is characterized by con-

tinuous shifts between them. Students work at three different levels while solving a

Fig. 19 Assuming a

property of the figure as

given
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problem: at a spatio-graphical level, when they observe spatio-graphical invariants;

at a theoretical level, when they use definitions and theorems; and at a combination

of the spatio-graphical and the theoretical level, when they understand and justify

spatial observations in theoretical terms. The mistakes and difficulties identified in

the proving process can be better understood in light of this distinction: since

students are perceived to work at three different levels (SG, T, or SG and T), then

each mistake can be localized in one of these levels and analyzed accordingly.

From the results of the analysis of students’ work, the only mistake that occurred

at the spatio-graphical level is the Incorrect Construction resulting from a purely

technical obstacle related to knowing the tools available in DGE the required

inputs, and the generated outputs.

The mistakes that occurred at the theoretical level are: Empty Conjecture,
Incomplete Proof and Overreached Conclusion. These mistakes are purely theoret-

ical since students were either unaware of the problem in formulating a conjecture

having a premise and/or conclusion too general to be proven (the case of the empty

conjecture), or they did not find the necessary and sufficient theoretical support for

the conjecture (case of the incomplete proof and overreached conclusion)

The remaining observable mistakes in this study, i.e., Inaccurate Drawing,
Special-Case Drawing, Spatio-graphical Conjecture, Conjecture-
Figure Inconsistency, Assumed Hypothesis and Fabricated Property, occurred at

the spatio-graphical and theoretical levels. These mistakes were the ones most

frequently observed in students’ work, and indeed these are widely discussed in

the literature. According to Laborde (1998), the use of diagrams is usually a tedious

task for students, because they can be interpreted on two different and ambiguous

levels by students. On the one hand, they refer to theoretical objects defined by

axioms, properties and theorems, while on the other hand, students are drawn to

engage in a purely empirical and perceptual activity because of the strong graphical

and spatial properties that diagrams provide. When dealing with a geometrical

figure, students always find it hard to distinguish between what you are allowed

to read and say, what you are allowed to read without saying, and what you are not

allowed to read.

The main obstacle behind the Inaccurate Drawing, Special-Case Drawing and

Spatio-graphical Conjecture is the confusion between drawing and figure. Laborde
and Capponi (1994) defined a figure as a theoretical construct associated with all its

possible drawings. The drawings are interpreted based on the mathematical knowl-

edge of the student and on the nature of the drawing and the way it is represented.

This is why and where most students face ambiguities that create interpretation

problems. It is not easy for them to detach themselves from the drawing in order to

access the figure, as they have to distinguish the properties of the drawing which

correspond to the figure from the ones that are only spatial, perceived properties that

cannot be used in the conjecture or proof. According to H€olzl (2001), DGE makes it

easier for students to determine which geometrical properties of the figure can be

“read”, since they are those that hold under dragging; the correct constructions are
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those that preserve these properties under dragging. In particular, the appropriation

of dragging is what should allow the students to distinguish between a drawing and

a figure and thereby facilitate the transition between them.

The reason behind the Conjecture-Figure Inconsistency errors/difficulties can be
interpreted using Mariotti’s (2006) work; she argues that in order to generate

conjectures, the student has to interpret the motion dependency observed through

dragging in terms of the concomitant, logical dependency between what will

become the premise, and the conclusion of the statement of a conjecture. It is not

given that students are capable of transforming perceptual data into a conditional

relationship. In fact, it is a task which is not at all trivial.

An Assumed Hypothesis occurs when students confuse the direct and indirect

invariants identified by Mariotti (2014). The direct invariants are the invariant

properties given by the problem possible to be used in a hypothesis. The indirect

invariants are invariant properties observed as a consequence of the relationship

between direct invariants, and therefore are not part of the hypothesis; they need to

be proven.

The obstacles that the students who participated in this study faced in the case of

Fabricated Property were also observed by Duval (1994), who underlines that

students tend to over-trust the shapes and properties they recognize at first sight; the

first look of the figure seems to exclude a mathematical look at this figure. In

addition, students did not seem capable of identifying the solution elements that

they could read in the figure, because this required them to focus on specific parts

more than others.

Instructional Strategies for Remediation

The difficulty identified in the proving process and occurring at the spatio-graphical

level, i.e., Incorrect Construction, may be remediated in the technological field as

students practice the use of DGE tools, each one according to the way it was

designed and to the purpose behind its use. The difficulties that occurred at the

theoretical level, (Empty Conjecture, Incomplete Proof and Overreached Conclu-
sion), may be remediated in the geometrical field, outside DGE. Students need to

learn and practice the content of a proof, i.e., the required theorems and properties,

as well as the structure of a proof, i.e., the technique of writing a logical chain of

deductive arguments. As for the remaining mistakes, namely the ones that occurred

at the spatio-graphical and theoretical levels, they may be remediated by instruc-

tional strategies on the nature of geometry in a DGE, thus at a combination of both

fields. Since the nature of geometry is fundamentally changed in a DGE (Laborde

and Sträßer 2010; Mariotti 2012), students need to be aware of the rules and
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strategies inherent to DGE in order to be well-prepared to solve problems in this

environment. Instructional interventions should focus on:

• Introducing the difference between a drawing and a figure, which is overlooked

in the paper-and-pencil environment but essential to DGE.

• Familiarizing the students with the differences between soft and robust con-

structions, and the optimal use of each type; this distinction is nonexistent in the

paper-and-pencil environment.

• Defining and experimenting with invariants under dragging, and highlighting the

difference between direct and indirect invariants.

• Scaffolding the students in discovering the different roles that can be played by

the dragging tool, such as a construction tool and a verification tool.

Conclusion

In terms of the framework of types of justifications developed by Marrades and

Gutierrez (2000), students in this study elaborated two types of justifications:

Deductive justifications by structural thought experiment, and failed justifications.
However, not all failed justifications were comparable, since students faced obsta-

cles in the figure, or in the conjecture or in the proof itself; therefore, for a more

accurate description, we prefer to adopt a more general term, “failed proving

processes”, rather than “failed justifications”; this leads to a wider analytic frame-

work. The analysis of participating students in this study led to a framework of

failed proving processes, one that was not possible without the DGE. It consists of

three main categories: Failed Construction, Failed Conjecture, and Failed Proof.
Failed Figure means that the mistake was at the graphical level; the figure was

either incorrect, inaccurate or represented a special case. Failed Conjecture desig-
nates that the mistake was found in the conjecture, which was based on spatial

properties, inconsistent with the figure or an empty conjecture. The last type was

Failed Proof indicating a mistake in the proof; the proof was either incomplete,

used a fabricated property, assumed a property observed in the figure as hypothesis,

or overreached the conclusion by not presenting sufficient arguments.

The purpose of this framework is not to define a totally self-contained set of

categories, but rather to make it easier for teachers and researchers to anticipate and

to undertake an analysis of different possible mistakes as they design or analyze

proving tasks within DGE. Therefore, when teachers become aware of the difficul-

ties that students might confront in DGE, and of the resulting mistakes, they would

be better equipped to teach, warn, and guide students. The framework of failed

proving processes developed in this study can be validated in further research and

extended if new categories emerge. In another study, a teaching sequence based on

the suggestions of instructional strategies for remediating the difficulties faced in

the proving process can be developed, implemented in a classroom, and its
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efficiency evaluated. Other research can conduct a comparative study to analyze

whether these mistakes would present themselves differently in the paper-and-

pencil environment and in which way.
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Duval, R. (1994). Les différents fonctionnements d’une figure dans une démarche géométrique.
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Disclosing the “Ræmotionality” of a
Mathematics Teacher Using Technology
in Her Classroom Activity

Marina De Simone

Abstract In this chapter, I will focus on the relation between affect and technology

during the classroom activity of a mathematics teacher. This constitutes a first

approach for developing a new aspect of my PhD thesis where, in general, I tried to

bring together cognitive and affective dimensions in the classroom behaviour of

mathematics teachers, often considered separately. In particular, in this paper, I will

focus on the practice of a teacher who routinely uses digital technologies in her

mathematical activity, showing how her expectations on the use of technology are

actually reflected in her classroom experiences and how these expectations inform

us about the reasons of their actions.

Keywords Technology • Mathematics teaching • Emotional orientation • Linear

equations

Introduction

Over the last two decades, mathematics education research has increasingly

focused on the role of digital technologies in teaching/learning processes (Artigue

2007, 2010; Clark-Wilson et al. 2015; Gueudet et al. 2013). Many studies have

documented how the use of ICT can enhance students’ learning (Artigue 2013;

Buckingham 2013; Clark-Wilson et al. 2013). As a result, curriculum documents

and professional development programmes commonly encourage teachers to

employ technology in their practice. However, teachers using technology have to

cope with factors of a different nature than they are used to. In particular, as

presented in this chapter, I will discuss how cognitive and the affective factors

are unavoidably intertwined in the practice of a teacher who uses digital technol-

ogies in her classroom practice. In fact, the teacher decides to employ technology

not only on a rational level, but also on an affective one, because she has expec-

tations toward students’ learning, and toward integrating ICT into her practice.
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Looking at this teacher’s expectations for the use of technology, I could also infer

numerous reasons for the decisions she makes in her classroom in general.

The core of my research is the decision-making of the teacher, because, as much

research in mathematics education has consistently highlighted, decision-making

has a very crucial role in teaching activity. For example, Bishop pointed out that

decision-making is “at the heart of the teaching process” (Bishop 1976, p. 42).

From a theoretical point of view, I rely on the notion of “emotional orientation”

(Brown and Reid 2006), locally analysing teacher’s decisions drawing on the

philosophical theory of rationality (Habermas 1998). In particular, I employ the

neologism “ræmotionality” (De Simone 2015), which refers to the rationality and

the emotions of the teacher as a unicum, that is, as a unique example or specimen.

Entering in the structure of this chapter: in the first section, I illustrate the

theoretical perspective that contextualizes my work, explaining also the analytical

tool I chose for analysing my data; in the second section, I present qualitative data

analyses of five excerpts of the activity of a teacher, Silvia, who uses two kinds of

technology while explaining linear equations (GeoGebra and two Java applets); in

the third section, I make some concluding remarks, highlighting both points

common to the two different types of technology, and how my theoretical frame-

work allows me to make an in-depth analysis of a teacher who uses digital

technologies in her practice. I would like to underline that my research is a

qualitative study in which I attempt to construct theoretical concepts for analysing

particular case studies. These theoretical concepts might be applicable to other

cases, without the presumption of generalization.

Linear equations is a mathematical topic that is very interesting to analyse in

terms of the coordination among different representation registers, especially using

digital technologies. Thus, I choose to develop the analysis about examples

concerning linear equations to study how multi-representations influence and

intervene in the affective and rational decisions within the mathematics activity.

Theoretical Perspective and Methodology

As already anticipated in the introduction of the paper, my research interest is the

study of the intertwinement between the emotional and the rational aspects in the

decision-making processes of a mathematics teacher, who uses digital tech-

nologies in her practice.

In the mathematics education literature, several authors have focused on the

decision-making of the teacher in classroom. For example, Schoenfeld (2010)

offered a model for describing the decision-making of teachers according to three

different elements: “their knowledge and other intellectual, social, and material

resources; their goals; and their orientations (their beliefs, values, and preferences)”

(Schoenfeld 2011, p. 1). As he pointed out, these three aspects are deeply related,

and the third one, orientation, heavily affects the other two.
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In my work described here, I combined two different theoretical perspectives:

the philosophical speculation offered by Habermas (1998) and the concept of

“emotional orientation” developed by Brown and Reid (2006). The integration of

these two theories has produced a new possible theoretical lens, which I have called

“ræmotionality”, through which I tried to bring together the rationality and emo-

tions of the mathematics teacher, often considered separately.

The Habermasian philosophical speculation has been re-elaborated and adjusted

to mathematics education by many researchers (see, e.g., Boero and Planas 2014).

Habermas centred his theory on the concept of discursive rationality proper of a

rational being (e.g., the mathematics teacher) involved in a discursive activity. He

explains that discursive rationality is constituted by three different components: the

epistemic rationality, the teleological rationality, and the communicative rational-

ity. These three components of rationality are always present and intertwined in the

discursive activity of a rational being. In particular, we face an epistemic rationality

when we can simultaneously give an account of the justification of the knowledge at

play, the teleological rationality surfaces when “the actor has achieved this result on

the basis of the deliberately selected and implemented means” (Habermas 1998,

p. 313), and the communicative rationality “is expressed in the unifying force of

speech oriented toward reaching understanding” (Habermas 1998, p. 315).

Within the mathematics-related affect research, Brown and Reid (2006) pro-

posed the notion of emotional orientation in order to study the decision-making

processes both of the teacher and the students. As the words themselves suggest, the

“orientation” in a teacher’s decision-making processes is “emotional”, that is,

affected by emotions in particular ways. Hence, this concept allows me to speak

of the interconnection between rationality and emotion. For operationalizing the

notion of emotional orientation, I propose an adaptation of the concept of the

“emotional orientation” of a teacher in terms of her “set of expectations”: the

term “expectation” is connected to her “emotions of being right” when she uses

specific criteria for accepting an explanation from the class rather than other ones

(Ferrara and De Simone 2014).

My research questions are twofold: How does the use of emotional orientation

help me understand the decisions of teachers relating to the use of technology, and

thus complement the Habermasian rationality framework? And, How does

ræmotionality help me understand why teachers make certain choices in their

teaching with digital technologies and not others?

This chapter focuses on the work of an Italian teacher-researcher,1 Silvia, while

she explains linear equations in her grade 9 classroom, in a scientifically-oriented

secondary school in the Piedmont region of Italy. The teacher was first interviewed,

and the interview was transcribed for analysis. Teacher’s usual lessons in the

classroom were also videotaped. All voice and bodily movements during the

classroom activities were recorded. The videos were transcribed for data analysis.

1In Italy, the teacher-researcher is a teacher of the school who participates to the research carried

out within the academic research group.
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Concerning the structure of the analysis, I first considered the a-priori interview
and, from what Silvia explicitly described to me, I was able to identify some of her

expectations for the use of technology in terms of what she hoped for her students.

At this stage these expectations were only potential, because they were not yet

driving the action of Silvia in her classroom. Hence, I also looked at what actually

happened in the classroom, in order to see if there was a correspondence between

what the teacher stated a-priori and how she actually behaved in classroom. For

determining this correspondence or non-correspondence, I looked at “emotional

indicators”, namely the gestures, facial expressions, word emphases, repetitions,

rhetorical questions, pauses, the tone of voice, and so on. These emotional indica-

tors informed me on the emotionality of the teacher, where the term “emotionality”

is defined “in terms of behaviours that are observable and theoretically linked to the
(hypothetical) underlying emotion” (Reber et al. 1995). Hence, the expectations of

the teacher became visible through her emotionality. In this way, I outlined the

emotional orientation for the teacher, intended as the set of her expectations. In the

diagram below (Fig. 1), the relations among these different concepts are

schematised.

Following the initial emotional schematization, I went deeper into the lessons of

the teacher, in order to identify the intertwinement between her rationality and

emotionality. In particular, I looked at her decisions related to the use of ICT,

through the three components of rationality (epistemic, teleological and communi-

cative); simultaneously looking at the emotional indicators and expressions of her

expectations, I was able to say something about why she made linkedsome deci-

sions and not others.

In particular, the emotionality will be always intertwined with the rationality of

the teacher. For this reason, I describe the emotionality of the teacher using the

adjectives of the Habermasian rationality, epistemic emotionality, of teleological

emotionality and of communicative emotionality (De Simone 2015): these

Habermasian adjectives constitute the different components of ræmotionality. For

Fig. 1 Diagram about relations of different concepts
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example, the epistemic emotionality surfaces when the teacher decides to draw on

the properties of equations via the model of a virtual scale, and, at the same time,

says, with a blaring tone of voice, the expressions “to put on the scale” and “to take

away from the scale”, manipulating the virtual scale. This way, it is not only which

kind of knowledge she chooses to consider (properties of equations, epistemic

rationality), but why she decides to focus on it in that way (through the virtual

scale). The reason is connected to her expectation that using the virtual scale will

help students understand the meaning of the properties of equations, by having the

possibility of visually manipulating the scale. This expectation is made visible

through the tone of voice of the words “to put on the scale” and “to take away

from the scale”. In other words, the epistemic emotionality is related to why the

teacher uses that specific justification of the knowledge at play.

The teleological emotionality could be highlighted when, for example, the

teacher decides to explain equations with the graph option of Geogebra for geo-

metrically interpreting the solution and, simultaneously, with the highest pitch of

her tone of voice, repeats many times the verb “to see”, pointing to different

elements on the graph. In addition to the action the teacher undertakes to accom-

plish a goal, namely interpreting geometrically the resolution of a linear equation,

we can also observe that she expects GeoGebra to help students to reason about

equations, “seeing” through the graphical register of GeoGebra. This expectation is

made visible through the tone of voice of the verb “to see”, while gesturing on the

graph. Thus the teleological emotionality is related to why the teacher makes these

actions to achieve a particular goal.

The communicative emotionality surfaces, for example, when the teacher has an

insistent rhythm to her voice, as she directs the class to look at what happens both

on the graph and on the “Algebra view” of GeoGebra. In this instance, there is not

just the matter of her speech oriented towards reaching understanding within the

classroom, but also the question of why she decides to communicate with an

insistent rhythm. Her reason for this repetition is connected to her expectation

that students are facilitated to connect different registers of representations through

the use of technology. Hence, the communicative emotionality is related to why the
teacher uses a particular type of speech during her discursive activity in the

classroom.

For pragmatic necessities of analysis, these three types of emotionality could

appear separated. Nevertheless, it is important to stress that they are always

intertwined and present in the discursive activity of the teacher.

Data Analysis

From what Silvia explicitly described during the a-priori interview, I detected

different expectations of the teacher, mostly concerning the role of technology.

These expectations are actually reflected in her classroom activity and contribute to

shaping her emotional orientation.
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I will show five examples of Silvia’s activity in the context of linear equations

for shaping a convincing and representative outline of Silvia’s ræmotionality in

using two types of technology: first GeoGebra and then a Java applet.

Firstly, I will quote the passages of the interview from which I identified her

expectations involved in these examples. Then, I will analyse her ræmotionality,

looking at both the decisions of the teacher and, simultaneously, at the emotional

indicators, expressions of her expectations. This way I can reveal the different

components of her ræmotionality, and thus explain why Silvia takes those decisions

and not others.

During the analysis of teacher’s activity on linear equations, three different

treatments of graphical representations developed by Duval in 1988 also emerge.

In particular, Duval speaks of the “démarche de pointage”, the “démarche
d’extension” and the “démarche d’interprétation globale”. The first approach, dé
marche de pointage, concerns the focus on particular points of the graph. For

example, it is related to the drawing of the graph of a first grade equation or to

the reading of the coordinates of an interesting point of a graph. The “démarche
d’extension” concerns the imagination of a set of infinitely potential points that

have a particular property. The “démarche d’interpretation globale” is related to

the association between what happens on the graph and on the algebraic represen-

tation of the graph.

GeoGebra

First Example

This example comes after two lessons in which Silvia had introduced the concept of

equation as a mathematical statement that two expressions are equal. The solution

of an equation is the value that, when substituted for the unknown, makes the

equation a true statement. Then, in this excerpt, she begins to work on the dynamic

geometric software GeoGebra for introducing the solution to an equation from a

geometrical point of view. In this example, two of Silvia’s expectations that I have
extracted from the a-priori interview are involved. I quote the passages of the

interview that allowed me to identify them.

In the middle of the a-priori interview, Silvia presents her way of introducing

linear equations:

I introduce linear equations through an activity of M@at.abel (M@at.abel is an Italian

teacher education programme for in-service mathematics teacher supported by the Ministry

of Education). In particular, we consider a pseudo-real situation of a boy who walks with

constant velocity and we ask, knowing the velocity, how many kilometers he covers while

the time passes. “How many kilometers while the time passes” is a linear function, then, on

GeoGebra, we consider a table and we start to see after how much time he will cover 300m

and then we go to see [she mimes the solution on the graph] the answer on the graph of

GeoGebra. We start from that for talking of equations because, after we have the straight

line [she mimes the straight line], we can read on the graph of GeoGebra and then we have

the intersection between the oblique straight line that represents the velocity and the

horizontal straight line that represents, for example, 300m. Then we are able to see the
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intersection point as the solution of an equation. Always working on the graph of

GeoGebra, I try to highlight that if I translate the graph up or down [she mimes the

translation] the solution is simply translated up or down. Hence, I can add or subtract the

same term to both sides of the equation and I will obtain the same solution.

Hence, it can be plausible to think that Silvia has the expectation that students
learn “to see” through the graphic register of GeoGebra in order to reason (think
of) about the equations. I used the verb “to see” with the quotation marks, because,

during the interview, Silvia herself used this verb for referring to the discussion of

the equations.

Then, from the following of the interview, I infer that Silvia has the expectation
that the use of GeoGebra helps students to pass from one representation register
to another. Indeed, as I am going to show, Silvia believes that GeoGebra could

facilitate students in coordinating the different registers, stressing that, when she

passes from one register to the other, they are all equivalent ways to speak about the

same thing:

Using GeoGebra, I expected that students are able to intertwine the graph, Algebra,

numbers and words not just for the equations, but for all of the mathematical concepts. I

believe that this is the power of GeoGebra. For example, yesterday, with my 11 grade

classroom, when I spoke of the definition of the arithmetic progression, I remained

astonished because they were able to see the graph of a straight line: we were in the

classroom, within a totally numerical environment and they were quickly passed from the

numbers to the graph without problems and in a fruitful way. I believe that this is a very

important added value. I hope that GeoGebra helps students in thinking and searching for

counterexamples even when they don’t have GeoGebra at their disposal. In particular, for

the equation I expected that they see the deep link among equations, inequalities, zero of a

function: they are all equivalent different ways to speak of the same thing.

From the interviews’ excerpts, there are initial hints of the fact that the teacher
considers GeoGebra to be a useful tool for fostering students’ imagination. In fact,

firstly, GeoGebra allows students to actually see things, when they directly work

with it. As time goes on, this thing gives an “added value” to the use of the software,

namely the fact that GeoGebra supports students’ imagination, even when they

don’t have it at their disposal.
The two expectations are actually reflected in her classroom activity. Indeed, I

am going to make the analysis of two excerpts in which these expectations are

present, surfacing the ræmotionality of the teacher referring to the use of GeoGebra.

The first one refers to the discussion of a graphical solution for an equation. The

class is working on the already quoted M@t.abel activity. They have to solve the

equation 1/5x + 1/2 ¼ 8. The solution of it is the time Luca uses to cover 8 km,

starting from 500 m from the starting line. Hence, knowing that he uses 15 min to

cover 3 km, namely his velocity is 1/5 km/min, the time he uses is the solution of

1/5x + 1/2 ¼ 8.

Listen to Silvia as she explains the task to the classroom:

#1 T: In the activity we prepared a slider k that varies from �15 to 15 and

(blaring tone of voice) then we considered two equations. [. . .] The

equation previously solved was 1/5x + 1/2 ¼ 8. To solve this equation
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we have already said that, actually, we could work on two different

(pronouncing) functions, precisely on two (pronouncing) straight lines:
one was this straight line (she draws on GeoGebra the function y ¼ 1/5x
+1/2) (pause and she looks at the screen) and the other one was y ¼ 8.

Then, you have told me, if you remember, that the solution to the equation

was the intersection point between these two straight lines. (rhetorical
question) Do you remember it? There was Elena who said “(highest pitch)
I go to see where I intersect and then I read the solution”. Actually, the

solution we have to read is not on the y-axis, but it is on the x-axis,

because it is the value of x that is of interest to us as solution and (blaring
tone of voice) then the fact of asking to draw the perpendicular line to the

x-axis passing through A served simply to say that (highest pitch) I can go
to read the solution. I can go to read the solution here (she stands up and
she goes on the screen, pointing to the abscissa of the intersection point
and then she looks at the class as in Fig. 2).

(highest pitch) Going to read this number or (speeding up) given that I

cannot be sure of the value of this number because GeoGebra has limits, I

can read it here (she points to the “Algebra view” of GeoGebra). In the

“Algebra view” the point A has coordinates 37.5 and 8 and, then, the

solution of the equation is the number 37.5. If instead of x I put 37.5 the

two straight lines intersect and they have the same value (Fig. 3), ok? (she
nods and she returns to the pc).

Then we were asked to draw another two straight lines: one is y¼ 0.2x

+0.5+k (Fig. 4).

In this case, k is equal to 1 and we see that GeoGebra writes (pointing
to the “Algebra view”) y¼ 0.2x + 1.5. Why 1.5? (pause: a student tries to
say something but he does not finish the sentence) because k

#2 S1: It is 1

#3 T: It is 1and, then, 1 plus 0.5 is 1.5, it has already calculated (referring to
GeoGebra). The other straight line is y ¼ 8+k (blaring tone of voice and

Fig. 2 Pointing the abscissa of the intersection point (Here in after, the description of the rest of

the figures is included in the correspondent analysis)
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she looks at the class) if I write y ¼ 8+k, in the “Algebra view” it will

write 8 + k? ( facial expression in Fig. 4, long pause and she continues to
look at the class) (smiling) I don’t hear answers (she looks at the class
smiling).

#4 Ss: Not

#5 T: Not, what will it write? (same facial expression as in Fig. 5)

#6 Ss: 9

Discussion

Silvia works with GeoGebra in order to talk about the graphical solution of an

equation. She has already introduced it in the previous lesson, in fact the teacher

Fig. 3 The two straight lines intersect

Fig. 4 Another straight line
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reminds students that they could work on two straight lines: y ¼ 1/5x + 1/2 and

y ¼ 8. She pronounces both “functions” and “straight lines” (#1), in order to

recalling that the solution of the equation is related to the intersection point between

them. Hence, she is working on the global interpretation of the straight lines (dé
marche d’interpretation globale) for focusing on the intersection point between

these two functions (démarche de pointage).
Moreover, she “plays” with two representations of the line: a geometrical repre-

sentation of the straight line and the graphical representation of a function. Silvia

seems quite sure that the students remember this, indeed, she rhetorically asks “Do

you remember it?”. Then, she recalls what a student said in the previous lesson (#1).

Furthermore, she clarifies that they have constructed the perpendicular line to the

x�axis passing through A, because the solution of the equation can be “read” on the

x�axis (démarche de pointage). Silvia accompanies this justification with a blaring

tone of voice (#1), for stressing it as much as possible. She repeats this fact looking at

the class for feedback and pointing to the solution (see Fig. 2). She uses many times

the expressions “to read the solution” and “to go to see” on the graph.

Then, stressing that GeoGebra has limits, she invites students to read the

solution, not directly on the graph, but on the “Algebra view” of it. This is

interesting: she is saying that it has limits if we look visually, but not if we look

numerically. From a didactical point of view, the teacher would like to present the

calculus as something more rigorous than visual representation. From the other

side, she wants to pass on the “Algebra view”, speeding up, because she surely has

the expectation that students reason on equations visually on the graph; however,

Fig. 5 Facial expression
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she needs students to coordinate the registers for institutionalizing the mathematics

at play. In terms of Duval’s theory, this represents a global vision in which the

teacher stresses the association between the graphical and the numerical solution

(demarche globale).
After that, she continues with the activity in which they are requested to draw

another couple of straight lines depending on k: y ¼ 0.2x + 0.5 + k and y ¼ 8 + k.

The teacher highlights that GeoGebra gives automatically the value of k to the first

function (y ¼ 0.2x + 0.5 + k), and then she seems to want from the students the

response for the second equation (y ¼ 8 + k). In fact, after asking, with a blaring

tone of voice, what happens for y ¼ 8 + k, she pauses, as in Fig. 5. The blaring tone

of voice is probably intended to reveal how GeoGebra directly makes the addition

both on the Algebra view and on the graph, according to the value of k. Then, she

smiles when she says that she isn’t hearing any answers, perhaps to keep the mood

light (#3).

Hence the teleological emotionality of Silvia is constituted by considering the

two straight lines and their intersection point to find the solution (rational key).

Moreover, the teleological involves the fact that she is expecting that students are

used to “seeing” through the graphic register in order to find the solution. This

emotional key is revealed, for example, by the fact that she often says, increasing

her tone of voice, “to read the solution” and “to go to see” on the graph (#1, #2),

possibly to draw the attention of the class to these important aspects of her lesson.

This emotional aspect is shown also by the rhetorical question, “Do you remember

it?” in #1. Finally, it is reveled by her gesture in Fig. 3 in which she mimes the

intersection between the straight lines.

The epistemic emotionality of the teacher is, from one side, the geometrical

interpretation of the solution of an equation, accompanied by how the software

works (rational key). From the other side, it is related to her expectation that

students know how to pass from one register of representation to another one

(emotional key). This is strictly related to being able to “see” through the graphic

register to reason about equations. For example, she hopes that students recognize

the solution on the graph, pointing to it and maintaining a certain facial expression

(Fig. 1), and seeking feedback from the class. Then, in #1, from her increasing

velocity of speaking, her need to quickly pass from the graphical register to the

algebraic one for formalizing the calculation becomes clearly visible. Moreover,

she hopes that students are able to link how the algebraic and graphic registers of

GeoGebra work together. In fact, after asking with the blaring tone of voice what

happens for y¼ 8+k, she pauses with a facial expression as in Fig. 5. It is quite clear

that the teacher is expecting an intervention from the students. Moreover, her

smiling probably communicates a desire for more participation from the class

(#3). Actually, this attitude did trigger several comments from the students.

Her speech is full of emotional hues because she has certain hopes and needs in

relation to her students. She changes her tone of voice to emphasize what she is

saying, such that students understand the importance of it. Especially in this part of

the lesson, she seems like a soloist, because she speaks exclusively for most of the

time. Because of this, her pausing is meaningful: when she stops, she has the need
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for students to speak. Being that her discourse is not neutral, we can speak of the

communicative emotionality of Silvia.

Second Example

After discussing the graphical solution for an equation, Silvia continues to work on

GeoGebra, because of her expectation that GeoGebra can help students to pass

more easily from one representation register to another; and she aims to link the

vertical translation of the straight lines to the concept of equivalent equations from

an algebraic point of view:

#1 T: (pronouncing) What are we doing (Fig. 6: gesture moving her hand up
and down for the translation)?

#2 S3: Equivalent equations

#3 T: (repeating and nodding) We are constructing many equivalent

equations. You remember that in the previous lesson we have said

that we have equivalent equations (same gesture as in Fig. 6), namely

equations written (pronouncing) in a different way, but that they have

(pronouncing) always (pausing) the same result. (Highest pitch) Do we

Fig. 6 Gesture moving her

hand up an down for the

translation
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have equivalent equations just for k ¼ 7.5, for k ¼ 3 (speeding up) that
are the equations we have seen? or do we have equivalent equations for

many values of k (she returns to the pc and she moves k, looking at the
class and smiling waiting for an answer, Fig. 7)?

#4 Ss: Many

#5 T: For many or for each value of k (she continuously moves k)?
#6 Ss: For all of them

#7 T: For each value of k. For each value of k I obtain however equivalent

equations. The filling of the table was just to write equivalent equations.

For example, when I write 0.2x + 1.5, what value has k to have 1.5?

(pause and she lifts up her chin)
Confusion in the classroom

#8 S2: 1

#9 T: 1. Then, If I give the value 1 (she returns on GeoGebra to put k equal to
1) I see that the equation is (pointing) 0.2x + 1.5 ¼ 9. (Pronouncing)
What happened to the sides of the equations? What did we do to the

sides of the equation (she lifts up her chin, Fig. 8)?
# 10 S1: We have added 1

#11 T: We have added 1 (pausing)
#12 S1: To both sides

#13 T: (smirking) We have added 1 to both sides. In the previous lesson, we

have said that the first principle of equivalence said us that we could

add the same number to both sides and that the result of the equation

does not change, ok? then I could add or subtract the same number to

both terms and have (pronouncing) always equivalent equations. Then,
what does it mean (returning on the “Algebra view”)? It means that I

can add to both sides (moving k), see that the blue straight lines have the

Fig. 7 Waiting for an

answer
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same movement, they have the same translations (she mimes the
translation moving hands up and down: Fig. 9), namely they have

exactly the same movement, then we add or subtract to both sides

exactly the same quantity, our result doesn’t change. If I wanted to

Fig. 8 Facial expression

Fig. 9 A mime of the

translation

268 M. De Simone



obtain the result of the equation, I would take k, I would do such that B

coincide (pronouncing) exactly with the x-axis (she is doing it on
GeoGebra). To let coincide B exactly with the x axis, what value I

have to give to k?

#14 S11: �8

#15 T: �8. If I give �8 to k, what happens is that B belongs to the x axis

(Fig. 10). The second side of the equation (pronouncing) takes the

value 0. The first side of our equation has a certain expression and I,

actually, go (pronouncing) to see where the blue equation intersects the
x-axis (Fig. 11). I go to find what it is called the (pronouncing) zero of

function (gesture to accompany the pronouncing) because it is the point
in which the straight line touches the x axis, ok?

Discussion

At the beginning, Silvia explicitly asks to her class what they were doing in the

previous part of the lesson (#1). This action comes along with her pronouncing and

her posture of waiting (see Fig. 6) for having as much as possible the attention of the

Fig. 10 Gesture along the

x-axis

Fig. 11 Gesture to

accompany the pronouncing
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entire class, because they are about to construct an important link. Then, satisfied,

she repeats, nodding, what a student answers (#3), remembering the definition of

equivalent equations. She pronounces “in a different way” and “always” (#3) in

order to focus the attention of students on these two crucial words of the definition.

Moreover, returning to GeoGebra, Silvia asks for how many values of k they can

have equivalent equations. This question comes along with an increasing volume of

voice and her emblematic posture in Fig. 6, in which she seems quite satisfied that

students are able to answer. Actually, while Silvia moves the slider k, students

become aware that they can have equivalent equations for infinite values of k,

because the number of straight lines that could be potentially constructed moving k

is also infinite.

The teacher exploits the opportunity of imaging something, without actually

seeing it. In fact, she moves the slider k continuously, and this allows students to

realise that they could potentially construct infinitely many straight lines, even if

they cannot visualize all of them on the screen. Another interesting thing is that in

#4 students just answer “many”, but then after seeing the teacher continuously

moving the slider, say all together “for all of them” (#6). This has an important

effect on the algebraic point of view: in fact, they become aware of the infinity of

the straight lines on the number of equivalent equations.

In this brief moment, constructing in their minds the straight lines they could

have sliding k, they are at the level of the “démarche d’extension” �a la Duval that
draws on infinite sets of potentially equivalent straight lines.

After, Silvia explains how the first principle works,2 showing that if k is

1, GeoGebra automatically adds 1 on both sides (#7, #9). She accompanies this

discussion with many questions for her students, pauses and facial expressions with

the chin up (#7, #9). It is quite clear that she is waiting for answers from the class.

This is also indicated by her smirk in #13 when a student says that they have added

1 to both sides. Then, she repeats what the first principle says, again pronouncing

“always” (#13). In terms of what happens on the graph, she highlights that the

straight lines are translated of the same value, hence the result doesn’t change. To
explain what happens she uses a specific example: adding 0 to both sides. In fact,

she invites her students to move the intersection point of the straight lines on the

x-axis. She stresses this fact by pronouncing “exactly with the x-axis” (#13). At this

moment, exploiting the “démarche globale” that links the graphical and the
numerical aspects, Silvia introduces the concept of the zero of a function, stating

both “zero of the function” and “because it is the point in which the straight line

touches the x axis” (#15).

Hence, her teleological emotionality involves both the construction of the link

between the concept of equivalent equations and the translation of the straight lines

2She speaks of the properties of the equations, that in Italy, we call “first principle of equivalence”

and “second principle of equivalence”. The former says that adding or subtracting the same

quantity to both sides of an equation produces an equivalent equation. The latter says that

multiplying or dividing by a quantity ( 6¼ 0) both sides of an equation produces an equivalent

equation.

270 M. De Simone



(rational key), and her expectation that, with GeoGebra, students are able to link

these two different representation registers. Moreover, she hopes that it is not too

difficult for students to see the translations of the straight lines as adding a quantity

to both sides of the equations (emotional key). In fact, she wants to link the

translation of the straight lines to the properties of equations they have already

seen from an algebraic point of view. This emotional counterpart is revealed, for

example, by her pausing as in Fig. 8, her satisfaction after the answer of a student,

her pronouncing key-words (#1, #3), her gesture in Fig. 9 moving the hands up and

down for miming what happens to the straight lines and, at the same time, for

linking the movement the operations of addition and subtraction on the algebraic

expressions.

She justifies how the first principle of equivalence functions using how

GeoGebra works and she makes the specific example of adding 0 to both terms of

the equation (rational key). At the same time, she is expecting that students are able

to connect the algebraic register to the graphical one (emotional key). In particular,

Silvia introduces the zero of the function as the intersection point of the straight line

with the x-axis. The emotional key is revealed by pronouncing several times

“exactly with the x-axis” and by her gesture to recall what they have already

done with the scale. These two intertwined aspects form the epistemic emotionality
of the teacher.

During all the activity, Silvia, being emotionally involved, cannot have a “plain”

discourse, indeed she uses the language of the body, gestures, change of the tone of

voice and so on. For this reason, it can be always highlighted the communicative
emotionality of Silvia. With a pure rationality I could keep track just of what she is

saying, but, looking at the emotional timbres, I could also say something about the

fact that she hopes and needs in using the technology with her students.

Java Applets

In the a-priori interview, she anticipates that she will use two Java applets featuring
virtual scales for reinforcing the meaning of the principles of equivalence. They

have already experienced them from both the algebraic and the geometrical points

of view.

From a mathematical point of view, through these scales, we can represent and

solve simple linear equations. After having shaped the given equation using the

unit-blocks and the x-boxes (whose weight is unknown) on each side of the scale,

we can make arithmetical operations. The aim is to have one x-box on one side and

the number of unit-blocks on the other one, from which we can read the solution.

The user chooses the operation to be performed, and after each operation the new

equation is updated so that both the original equation and the latest equivalent form

are seen together. The first scale only allows working with positive whole numbers

as coefficients, while the second one has been designed to work with negative

numbers. In fact, in the latter, there are negative values for the unit-blocks and the

x-boxes, represented by red balloons for thinking of something that lifts, conveying

the idea of subtraction. One of the key ideas that should be highlighted is that no
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operation can be performed on just one side of the equation. Moreover, the virtual

scale is a useful tool for visualizing the addition and subtraction of quantities (first

principle of equivalence), but it is more obscure concerning the meaning of division

and multiplication in terms of the scale. This limit will also surface in Silvia’s
lessons.

In the interview piece I’m going to quote, Silvia speaks about the metaphor of

the virtual scale. I detected her expectation that students understand the meaning
of the principles of equivalence through the direct manipulation of the virtual
scale, drawing upon their arithmetical or algebraic knowledge for bypassing the
technology’s limit:

I will use the virtual scale for underlining the principles of equivalence, using a tool that

students know [. . .] I stress the first principle of equivalence with another register, different
from the words, namely the fact that if I add or subtract something from one side of the

scale, I have to add or subtract the same thing from the other side of it [. . .] I will use it after
doing the principles of equivalence first with GeoGebra and, then, from an algebraic point

of view. Hence, if someone has not still got them, could catch their meaning through these

scales [. . .] There are balloons for the negative values and this is again good for me, because

it is not only an idea of adding, but also that of subtracting. In conclusion, the use of the

virtual scale is an added support for understanding the first principle of equivalence. The

choice of technology [. . .] is because all of the students can use the scale and this is an

important value [. . .] it is one thing to use it and quite another to see someone else uses it;

second, the students have the web link of the scales and they could use it also at home.

Then, the most important thing is that I can physically manipulate it without seeing other

people doing that. For example, through moving to the trash the small cubes or using the

arithmetical operations, the students can physically see what happens, also seeing the direct

result of the operation. On the contrary, when you are working from an algebraic point of

view, removing 5 from both sides doesn’t allow you to see an immediate effect. I just see a

number that changes, while with the scale I see the scale that goes up and down: they are

things for grasping the meaning of the principle of equivalence. For the second principle of

equivalence the thing is more complicated: you cannot see the division with the metaphor

of the scale, namely we cannot physically do the division on it. This is a scale limit, in fact

it’s interesting that the positive values are the small cubes, while the negative ones are the

balloons. We do the division in a numerical way, it’s not a visual thing. [. . .] From what I

can see on the video, dividing means having a lower number of cubes, but that’s all.

Third Example

In this example, she uses the virtual scale that works just with positive integers

numbers:

#1 T: in this scale there is already written (pronouncing) an equation. Then, the

equation that is written involves (pronouncing) to put (she mimes the first
member, Fig. 12) on the first side the things on the first plate and (she
mimes the second member, Fig. 13) in the second side the things on the

second plate. For example, (she looks at the screen of a student), here
there is written 3x+1, then it means that I put three small cubes (she mimes
again the first member, Fig. 14) that correspond to the x, (she is speaking
with the same student), (with a sparky tone of voice and pronouncing) take
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Fig. 12 A mime of the first

member of the equation

Fig. 13 A mime of the

second member of the

equation

Fig. 14 Another mime of

the first member of the

equation
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them and put them with the mouse, (she remains as in posture of Fig. 14)
one, two, three and then one, namely one small cube. Then, on the other

side (she mimes the second plate, Fig. 15) there are four, then

(pronouncing) let’s put 4 small cubes. When we have put four small

cubes and even when we have put 4 of them, the scale remains in

equilibrium (she mimes the balance, Fig. 16). The small cubes can be

carried from one side to the other, obviously if I have a pan balance (she
mimes the balance again, Fig. 16) in equilibrium, if I take a small cube

from the left plate and I move it on the right plate, the scale will not

continue of remaining in equilibrium. Actually, (rhetorical question) what
happens? It happens that the right plate will weigh more than the left plate,

then the scale will become in perfect unbalance (she mimes the unbalance,
Fig. 17). For arriving to the equilibrium, what has to happen to the small

cubes whose values are equal to 1?

#2 Ss: I have to remove it also from the other side.

Fig. 15 Mime of the

balance plate

Fig. 16 Mime of the

balance
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#3 T: exactly as we said above (highest pitch) for the equations, the first

principle of equivalence says us that we can remove a small cube from

one side and another small cube from the other side. If someone is lucky in

“gaming” (the applet on her computer does not work), removing a small

cube is possible because there is a trash and I can take the small cube and

move it to the trash. If I move to the trash one small cube just from one

side, the scale becomes unbalanced, but if I remove a small cube also from

the other one, the scale is again in equilibrium. Then I also have some x,

but if I remove one x, then I have to remove also from the other side the

same value corresponding to x. Then I finished and I solved the equation

when on one of the two plates I have one x and on the other plate I have

just small cubes valuing 1, such that I can say which is the equivalent of

the value of x.

Discussion

In the above excerpt, she is presenting the virtual scale in order to see the first

principle of equivalence for the equations through the metaphor of the virtual scale

(rational key). In particular, firstly, she explains how to set up the equation on the

virtual scale (#1) and, then, she introduces how this Java applet works: it is possible

to discuss the balance or the unbalance of the virtual scale moving the small cubes

on the plates to the “Trash” or not (a button offered by the applet). She mimes the

balance (Fig. 16) and the unbalance (Fig. 17) of the virtual scale when she is

thinking of what happens if she removes “a small cube that values 1” just from

“one side” of the scale (#1), without students actually setting up the equation on the

applet. Evidently, in this case, the scale would be unbalanced. It is very clear in this

moment that Silvia is again drawing on the fact that the virtual scale could also

Fig. 17 Mime of the

unbalance

Disclosing the “Ræmotionality” of a Mathematics Teacher Using Technology 275



foster students’ imaginations, without their actually acting on it. Moreover, from

her gesturing in #1, it is also visible that Silvia is exploiting the potential of using a

virtual scale: there is an intrinsic dynamism in the use of it (adding, moving to the

trash, the balance, the unbalance) that constitutes an added value with respect to a

static scale drawn on the blackboard, upon which students cannot practically work

without visualizing the results of their actions on it.

Hence, we can deduce from the excerpt Silvia’s expectation that students

understand the meaning of the first principle of equivalence directly manipulating

on the virtual scale and that students are able to translate into mathematical

expression what is played at the metaphor level (emotional key). This emotional

key is revealed by her use of numerous verbs that refer to the physical action on the

scale: for example, she pronounces the verb “to put” as the action of student is

actually happening (“put them with the mouse”, “to put. . . on the first plate”, “let’s
put 4 small cubes”); she invites a students using a sparky tone of voice to “take them

(the small cubes) and put them with the mouse” as she actually places the cubes on

the plate with her hands; the gestures of miming the balance and the unbalance that

accompany the dynamism of the actions of carrying “from one side to the other”, of

“take away a small cube from the left plate and I move it on the right plate”, for

referring to the unbalance. Furthermore, the rhetorical question “What happens?”: it

is very immediate for the students to visualize that removing one weigh from one

plate of a scale in balance provokes its unbalance, and that for returning to a state of

equilibrium, it is sufficient to remove the same weight from the other plate. Hence,

the teleological emotionality of Silvia is demonstrated here, because she not only

invokes the action of considering the virtual scale for seeing in another way the

principle of equivalence for the equations, but also indicates her hope that they

become aware of the meaning of the first principle: she communicates implicitly via

her lesson that each of them can directly act themselves on a virtual scale,

immediately visualizing the results of their actions on the scale.

Furthermore, she justifies the balance and the unbalance of the virtual scale

through making this model analogous to the algebraic form of the principle of

equivalence, by stressing that there are two equivalent manners for explaining how

the first principle of equivalence works (rational key). This rational key is accom-

panied by the fact that she expects again that it is useful to directly act on the virtual

scale (emotional key). This emotional key is revealed in this excerpt by her exactly

repeating for two times, at the end and at the beginning, the same words, explaining

what happens when moving the small cubes on the scale in terms of the equilibrium

or unbalance of the balance. Moreover, due to the fact that the applet sometimes

could not work, she considers “lucky” the students who can use the applet, for

actually becoming aware of the meaning of what they are doing. These latter

emotional and rational keys shape together Silvia’s epistemic emotionality, because
it is not only the matter of constructing the equivalence between the algebraic form

of the principle and the metaphor of the scale, but also her expectations for students

become themselves aware of it through using the virtual scale, that create the

possibility of physically manipulating the scale.

The prosody, the gestures, and the repetitions highlighted above, sketch the

Silvia’s emotional engagement, and accompany her verbal communication. This
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emotional involvement is unavoidable during her decision-making processes; it is

for this reason that I speak of Silvia’s communicative emotionality.

Fifth Example

In this example, the teacher presents the virtual scale that also works with negative

numbers:

#1 T: This is an applet conceived for working with negative numbers (she
changes again the problem) –3x–2 ¼ �5, the principle is always the

same, but now I have to remove (pronouncing –3x and at the same time
she raises one hand for miming the lifting, Fig. 18) –3x, then I have to

lift, then I can do –3x with some balloons that are –x and I can do �2

with some balloons that are �2 (Fig. 19) and I can do �5 with some

balloons that value �5. Now if I have to solve this thing (another time

Fig. 18 Miming the lifting

Fig. 19 Balloons that value

-5
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she is detaching from the screen) what can I do? (pause and she looks at
the class)

#2 S3: Adding 2

#3 T: (nodding) Adding 2, if I add 2 to both sides, what happens? From one

side 2 balloons explode and from the other side it happens the same.

What can I still do?

#4 S11: Removing 3

#5 S17: Adding 3

#6 T: Then adding 3 and then multiplying by 3. If I multiply by 3 what

happens? (the applet gives as result –9x ¼ �9 and she smiles)?

#7 S4: They multiply each others

#8 T: (smiling, Fig. 20) They triple, right? The balloons triple. Then, for

coming back to the previous thing, what can I do?

#9 Ss: Sividing by 3 (the applet gives –3x ¼ �3)
#10 S6: And then adding 3 for knowing the value of x

#11 T: If I add 3 (she writes 3, but she does not press on “Enter” and she asks at
the class) what happens on the left?

#12 S6: 3 balloons will explode

#13 T: (nodding) Three balloons and on the other plate?

#14 S5: There are no more balloons

#15 T: There are no more balloons then what will happen? (She smiles and then
she pushes on the “Enter” button and 3 small cubes of value 1 are
created on the left plate, Fig. 21). Here (she refers to the right plate)
3 balloons are exploded, while there (she refers to the left plate) the three
units that we added are arrived. The equation is become this one (she
points to the rectangle of the equivalent equations), namely –3x+3¼0,

0 because �3+3 is 0 and then it becomes 0. Now, what is happening?

(again she detaches from the computer and she is going towards the
class and she pauses) I want the value of x, actually (she turns towards
the equation on the scale) here I have some balloons with –x, how can I

know the value of x? I want have some x and not –x.

Fig. 20 Smiling: they

tripled, right?
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Noise in the classroom
#16 S4: Divided by –x

#17 S9: You can explode the balloons

#18 T: How can we explode the balloons?

#19 S5: +3x

#20 T: (nodding) +3x, because it is dangerous divided by –x, because we don’t
know what is x, x could also be 0. If I do +3, what happens?

S8: it is –3x+6¼6

#21 T: (she returns on the screen and she points to the plates) On one side I will
have 3 units (she mimes them on the virtual plate of the scale).

On the other side I already have 3 of them and I will have three more.

However, I want to explode the balloons, then I add 3x, because in this

way if I add 3x, what happens? On one side the 3 balloons explode (she
points to the left plate of the scale) and on this side (right plate) it comes

3 values of x and now I have to know the value of x, how can do it? (She
detaches from the computer and she looks at the class)

#22 Ss: Divided by 3

#23 T: Divided by 3 and I obtain that 1 is equal to x, so which will be the

solution?

#24 Ss: x equal to 1

#25 T: Not, the number 1 because yesterday we have said that the solution was

the number that makes true our sentence. If I say x equal to 1 actually I’m
saying the sentence, I say that (pronouncing) x is equal to 1, I’m not

saying the solution, and it is exactly the same thing writing (she points to
the algebraic expression on the screen, Fig. 22) 1 equal to x or x equal to
1: it is the same equality.

Fig. 21 Three new

balloons on the right plate
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Discussion

Silvia has explained that another Java applet exists which is designed to use a scale

that also works with negative numbers. In the above excerpt she wants to solve the

equation –3x–2 ¼ �5, applying the principle of equivalences (rational key). She

uses this particular virtual scale because she has the expectation that students can

better understand the meaning of working with negative numbers through its

modelling of the important principles. For example, she speaks of the monomial

–3x (#1): actually, in the scale, the balloons could convey the sense of negative

values, because there is something that “lifts” the plate of the scale (emotional key).

The emotional key, for example, is evident from her pronouncing –3x, for focusing

the attention of the students on the fact that they are going to speak of this –3x,

because it has an important role in this context. Moreover, the expectation of better

understanding the meaning of –3x through the use of the virtual scale is visible

through her gesture of “lifting” in relation to the balloons (see Fig. 18), for better

clarify this as something that has a negative weight.

In this brief passage we can also note the teleological emotionality of Silvia,

because we find both actions for solving an equation and also her expectation that

doing this with the virtual scale can assist students in better anchoring the meaning

of operating with negative numbers to something that is very intuitive (such as the

metaphor of the balloons). However, she detaches from the screen of the computer

when she asks her students how to solve the equation –3x–2¼�5. It seems that she

is on the algebraic level of solving the equation, not interpreting the resolution of it

on the level of the metaphor of the scale (#1). Actually, one student answers on the

same algebraic level (#2: “adding 2”), not referring to the scale. The teacher quickly

returns to the scale for seeing the effects of having added 2 in terms of the balloons

that are exploded. The interesting thing is that she uses “sides” instead of “plates”.

This is another hint of the fact they, firstly, worked on the numerical level. Again

they return to the numerical level, in fact they arrive at the equation –9x ¼ �9,

working on the algebraic manipulation level. But again, she wants to focus the

Fig. 22 Pointing the algebraic expression on the screen
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attention of the students on the effects of this operation in terms of the virtual scale,

interpreting the multiplying by 3 as a tripling of the balloons. She smiles (see

Fig. 20), perhaps because she is in an uncomfortable situation: actually, operating

on the scale, they have just complicated the equation (# 8). Then, she actually wants

to return to the previous equivalent equation, �3x ¼ �3 (# 8). So she asks the

students what they have to do on the mathematical level. After her question,“what

happens on the left?” (#11), a student returns to the level of the metaphor, answer-

ing “3 balloons explode” (# 12). It is interesting that, yet again, Silvia has used the

opportunity given by the applet of “reasoning without seeing”. In fact, she poses

this question in #11, but she does not press “Enter”, expecting instead feedback

from the class. Actually S6 answers on the level of imagination, thinking of what

the applet would do. Silvia explains in response that, on the right plate, there are no

more balloons, because �3+3¼0 (she justifies it on the numerical level), while on

the left plate, 3 small cubes appear; the equation becomes –3x+3¼0, and she points

to the rectangle in which the applet writes all the equivalent equations constructed

during the resolution. Again, she smiles – probably because she knows that it is

difficult to justify the things just remaining on the metaphor of the scale – and, at

this point, she is considering the mathematical level (# 15). Concerning the emo-

tional involvement, she actually detaches from the screen; but after, she turns

towards the virtual scale. The interesting thing is that although one student answers

on the algebraic level (#16: “divided by –x”), the other one would like to answer on

the metaphor level (#18: “you can explode the balloons”). The teacher chooses to

go more deeply into the metaphor level, asking how to explode the balloons. A

student proposes to divide by 3x, but Silvia explains that would be dangerous

because they don’t know the value of x (# 20). Instead, she justifies the impossi-

bility of adding 3x, from an algebraic point of view: actually it cannot be explained

through the metaphor of the scale. This intertwining between the algebraic manip-

ulation and the effects of it in terms of the metaphor of the scale continues, until the

finding of the solution, namely the number 1. In particular, she explains that the

solution is not x¼1, because this is still a sentence with the verb “to be equal to”,

namely an equation, returning to the mathematical definition of equation. It seems

that she is reviewing all the passages of solving the equation from the algebraic

point of view, because it is not very simple directly working on the scale with the

balloons and the small cube. But, after, she always returns to the metaphor for

highlighting the results of what they did in terms of the balloons, that is, for linking

the arithmetical operation to a possible meaning of it. There is a dialectic between

the algebraic level and the metaphor level. The technology and Algebra comple-

ment each other: where the former does not explain, the latter intervenes, and where

the latter lacks an actual meaning the former intervenes to make visible the results

of the algebraic manipulation. In summary, in addition to the justifications of the

passages within the resolution of the equation (rational key), the teacher expects

that the virtual scale will help students to anchor the effects of their algebraic

manipulations in terms of the scale metaphor, drawing upon their mathematical

knowledge when it is not clearly evident what to do, simply by using technology

(emotional key). This emotional key is demonstrated by her unconscious detaching
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from the screen of the computer when she clarifies what happens on the mathemat-

ical level, and again by her returning to the screen when trying to reinterpret it in

terms of the metaphor. Moreover, she often smiles when she is uncomfortable, in

becoming aware that reasoning on the level of technology has just complicated the

problem. When she is uncomfortable in this way, she attempts to fix things by

referring to the mathematics knowledge. Hence, Silvia’s epistemic emotionality is
revealed in the dialectics between the two levels.

Finally, her communication is both oriented towards reaching understanding by

the class and also full of eloquent facial expressions, gestures and specific tone of

voice; students grasp meanings conveyed by the combinations of these, and answer

her questions, also influenced by how she is speaking. In other words, students

understand what she is expecting from them because she cannot hide her hopes and

needs. For this reason I further highlight Silvia’s communicative emotionality.

Conclusion

As already described in the introduction to this chapter, my work concerns the

analysis of a case study. For this reason, I cannot infer general conclusions. I show

instead how the theoretical perspective enables a detailed analysis of the behaviour

of the teacher. In particular, through the concept of emotional orientation, intended

as the set of the expectations of the teacher, it is possible to outline the teacher’s
ræmotionality. As demonstrated in the data analysis, the components of the

ræmotionality of the teacher (the epistemic emotionality, the teleological emotion-

ality and the communicative emotionality) are always related to why she decides to

put into play that specific knowledge related to the technology; to why she chooses

to act in a specific manner for achieving a particular goal connecting to the use of

digital technologies; and to why she speaks in that way for reaching understanding

within the classroom. In this sense, complementing Habermasian rationality with

the affective dimension allows me to detect reasons for the decisions of the teacher

that occur in the moment.

Moreover, in the data analysis, I considered the use of two kinds of technology:

GeoGebra and the applet virtual scale. Even if they are very different, there is at

least one common point between them: the fact that both of them “feed” the

creativity and the imagination of students. For example, in the case of GeoGebra,

students see just some straight lines moving up and down, because of the constraints

of the screen. But, thanks to the dynamic quality of the technological environment,

and the illusion of “continuity” generated by the software, students can immedi-

ately imagine that they could potentially construct infinitely many straight lines,

obtaining the same abscissa of the intersection point. This has an important effect

from an algebraic point of view: in fact, the dynamic continuity reflects possibility

of infinitely many different equivalent equations we can construct from an algebraic

point of view. Hence, the fact that technology helps students in training their

imagination facilitates also the coordination among different registers of
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representation. Furthermore, during the a-priori interview, Silvia declares that

GeoGebra supports the imagination of students even when they don’t have the

technology at their disposal.

Concerning the use of the Java applet, very often the teacher and also the

students imagine what might happen in terms of the metaphor evoked by the virtual

scale, without actually acting on it. For example, in the third example, Silvia

discusses the equilibrium and the unbalance of the scale using only one’s imagina-

tion (#1), and the students do the same (#2). Moreover, Silvia asks students what the

virtual scale is going to do, without press the button “Enter” for actually see the

effect of the operation on it.

These concluding remarks evolved out of my analysis of the different excerpts I

share above. I was curious to know if they were merely my conjectures or not. For

this reason, I again interviewed Silvia, asking her a direct question about her

expectation for technology in general. Look at what she answered:

“In the last GeoGebra Day,3 Barzel said that the technology can be used as a white box or as

a black box: as the former when I know the theory and I want to know if it works; as the

latter when I want to make conjectures, counterexamples. I am faced in this discourse [. . .]
The technology helps you in introducing a difficult topic, because it allows you to see the

things. Through the technology, it is clear the link among the different registers of

representation. It is so much evident that you have not to explain things [. . .] For example,

seeing the graphs in movement and making conjectures on them helps very much the

imagination. It helps me also when I don’t have the technology at my disposal, because in

my head I can imagine the graph, the formula, the table of the points and so on very easily,

having behind the support of the technology. Then, the technology helps you to imagine

“what it would be, if”. The technology does not flatten the thinking level, but it increases

it.”

Silvia describes her expectation that the use of technology in general fosters
students’ imagination for constructing mathematical concepts. This is for me a

way to “close the circle”. From the a-priori interview, I identified the expectations

on GeoGebra and the Java applet in a separated way; but after the analyses I became

aware of the fact that I could infer something more generally on the use of

technology. Actually there exists a deep link between the reasons of using different

technologies. Moreover, it also becomes clearer why Silvia uses technology as

often as she does in her classroom activity.

After having identified teacher’s expectations on the use of digital technologies

within the mathematics classroom, it is interesting to investigate if these expecta-

tions are really translated into student learning. During the experimentation, there

are different episodes in which it is possible to verify such actual transfer from

teacher’s expectations to students’ learning, but another more precise study would

be necessary to pursue this related set of questions. I look forward to sharing my

analysis as a future development of my research.

3During the last GeoGebra Day (in the city of Torino in 2015), Barbel Barzel has made a

conference, from the title: “From the value of teaching mathematics with technology: discovering,

conceptualising, modelling”.
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Integrating Arithmetic and Algebra
in a Collaborative Learning
and Computational Environment Using
ACODESA

Fernando Hitt, Carlos Cortés, and Mireille Saboya

Abstract In the transition from arithmetic to algebra and in light of the disjunction

between the natural and symbolic approach to algebra and the choice of a natural way

of learning, this paper discusses the development of a cognitive control structure in

pupils when they are faced with a mathematical task. Researchers sought to develop,

in novice pupils in both Quebec (12–13 years old) and Mexico (14–15 years old), an

arithmetic-algebraic thinking structure that would promote mathematics competen-

cies in a method based on collaborative learning, scientific debate and self-reflection

(ACODESA, acronym which comes from the French abbreviation of Apprentissage
collaboratif, Débat scientifique, Autoréflexion), and immersed in an activity theory

approach. This paper promotes the equal use of both paper and pencil and technology

in order to solve amathematical task in a sociocultural and technological environment.

Keywords Arithmetico-algebraic thinking • ACODESA • Collaborative learning •

Technology • Polygonal numbers

Introduction

Over the course of the last century, the mathematics curriculum took arithmetic as a

proper subject for study at primary school level education, and algebra as a proper

subject for secondary school level. This dissociation influenced research in math-

ematics education, which, in turn, reverberated through the academic programs

implemented. Examining the work of psychologists before the 1940s, Brownell

(1942) noted that psychologists used “puzzles” in the study of intelligence to
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analyse processes related to the “insight” involved when individuals solved such

problems. Brownell proposed a radical change focusing on the study of the resolu-

tion of the arithmetic verbal problems used in textbooks.

Brownell’s work (Ibid.) attracted the attention of psychologists and educators

interested in studying the skills involved in solving arithmetic word problems as a

means of understanding the phenomena linked to learning mathematics.

The experience of solving puzzle type problems (where, for example, from

9 matches one is required to build four equilateral triangles, and then, from

6 matches, one is asked to build the same number of equilateral triangles) gave

rise to the analysis of solving problems that had single or multiple solutions. From a

psychological point of view, these factors led, in the case of a problem with one

solution, to an analysis of convergent thinking linked to direct efforts towards

achieving a goal. In the case of problems with multiple solutions, this led to an

analysis of both divergent thinking (Guilford 1967) and creativity (Bear 1993). In

fact, Guilford’s model (Ibid.) stressed the importance of developing divergent

before convergent thinking. Gradually, Brownell’s approach led to an extensive

research strand focusing on the phenomena related to the resolution of arithmetic

problems in primary school and the development of arithmetic thinking.

What Is Arithmetic Thinking?

Brownell’s characterisation (Ibid.) of exercises, problems and puzzles encouraged

psychologists and mathematics teachers to focus their research on the study of

arithmetic problem solving. Polya (1945) expanded problem solving to other levels

of education, thus promoting the emergence of a new paradigm. Some mathematics

educators followed this trend and contributed their own new theoretical approaches

(RME through the influence of Freudenthal; Mason et al. 1982; Schoenfeld 1985;

Santos-Trigo 2010). Returning to primary school level, for example, Vergnaud’s
work (1990) on solving arithmetic problems led to the identification of both

arithmetic in problem solving and conceptualisation in primary school, and led to

the theoretical approach related to “conceptual fields”.

Similar approaches led to some research products in order to characterise

arithmetic thinking. For example, Verschaffel and De Corte (1996), taking into

account the research conducted in the 1990s, propose arithmetic thinking related to:

(a) number concepts and number sense; (b) the meaning of arithmetic operations;

(c) control of basic arithmetic facts; (d) mental and written arithmetic; and, (e) word

problems using digital literacy and arithmetic skills.

While progress was made in the study of learning problems linked to the

resolution of arithmetic problems, research continued toward an understanding of

the problems related to learning algebra (Booth 1988). The notion of variable began

to be studied (Sutherland 1993), thus promoting investigation into the learning of

covariation between variables (Carlson 2002) and the identification of the role of
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the variable as an unknown, as a large number, and as a variation between variables

from a functional point of view (Trigueros and Ursini 2008).

Given the organisation of the curriculum, which designated arithmetic for

primary school and algebra for secondary school, researchers began to talk

about the problems related to the transition from one level to the other. At the

same time, the emergence of the notion of epistemological obstacle in the

French school (Brousseau 1976/1983) possibly reinforced this idea of a “break”

between arithmetic and algebra. Vergnaud (1988) points out that the transition

from arithmetic to algebra is linked to an epistemological obstacle. Other

approaches, related to the notion of the unknown in solving linear equations,

led to the notion of a “cut” between arithmetic thinking and algebraic thinking

(Filloy and Rojano 1989) or even the cognitive obstacle (Herscovics and

Linchevski 1994). These studies announced the need to characterise algebraic

thinking.

What Is Algebraic Thinking?

As mentioned in the previous section, the research paradigm linked to the

“thinking break” between arithmetic and algebra was essential for the charac-

terisation of algebraic thinking. Under this paradigm, Kieran (2007)

characterises algebraic thinking using a model called GTGm: Generational

algebraic activities involve the forming of expressions and equations; Trans-

formational activities such as factoring, expanding, and substituting; and,

Global/meta-level mathematical activities such as problem solving and model-

ling. An analysis of this model reveals that, in the past, much of the secondary

school level research focused on the teaching of algebra in section G and T of

Kieran’s model. It is likely that the Gm section is linked to the Freudenthal

School’s research results regarding realistic mathematics, at the heart of which

approach is mathematical modelling.

Visual Aspects in Curricular Change in Mathematics

In the early 1990s, an important curricular change in the field of mathematics

began. The visual aspects were highlighted in curriculum changes, promoting

displays of the mathematical aspects. A clear example can be seen in the US

Standards (NCTM 2000). In this context, geometric aspects in problem solving

began to be included in algebra. It was explicitly important to approach a concept

through the use of different representations of that concept. From a curricular

standpoint as well as from a general standpoint related to research in mathematics

education, mathematical visualisation has attracted the attention of researchers.

These changes began from a curricular perspective, with a new approach to

Integrating Arithmetic and Algebra in a Collaborative Learning and. . . 287



teaching algebra and the promotion of a geometric-algebraic approach to algebra.

Progressing along this research line, for example, Zimmermann and Cunningham

(1991) begin the preface of their book with the question: What is visualisation in

mathematics? This study explicitly referred to an important role in the production

of external representations:

Mathematical visualization is the process of forming images (mentally, or with pencil and

paper, or with the aid of technology) and using such images effectively for mathematical

discovery and understanding. (p. 3)

Technology influenced enormously in these changes. Graphical representations

that caused major programming problems were resolved, thus giving rise to the

production of computer software and enabling an approach to mathematics from the

multiple representations user standpoint.

Early Algebra and the Emergence of a New Paradigm

While the previous section discussed the “rupture” approach to characterise arith-

metic thinking and algebraic thinking, little by little other research programs arose,

which were initially tied to the idea of the “generalization of arithmetic” (see

Mason 1996; and Lee 1996). Along these lines, Radford (1996) comments how

these authors stressed an approach to the learning problem regarding “algebra as a

generalised arithmetic”, and goes on to discuss the role of the unknown and the

equation:

The above discussion suggests that the algebraic concepts of unknowns and equations
appear to be intrinsically bound to the problem-solving approach, and that the concepts of

variable and formula appear to be intrinsically bound to the pattern generalization

approach. Thus generalization and problem solving approaches appear to be mutual

complementary fields in teaching algebra. How can we connect these approaches in the

classroom? I think this is an open question (p. 111).

From this perspective, a new paradigm was born. Kaput (1995, 2000) proposes a

research program under the following guidelines, with the first two at the heart of

the learning of algebra and the other three completing this learning:
1. (Kernel) Algebra as a generalization and formalization of patterns and constraints, with,

especially, but not exclusively, Algebra as Generalized Arithmetic Reasoning and

Algebra as Generalized Quantitative Reasoning

2. Kernel) Algebra as syntactically guided manipulations of formalism

3. (Topic-strand) Algebra as the study of structures and systems, abstracted from compu-

tations and relations

4. (Topic-strand) Algebra as the study of functions, relationships and joint variation

5. (Language aspect) Algebra as a cluster of (a) modelling and (b) Phenomena-controlling

languages. (2000, p. 3)

Kaput called this research program Algebrafying the K-12 Curriculum (2000),

while Carpenter et al. (2003, 2005) initiated the Early algebra research project in
1996. This new paradigm formed part of research programs in the twenty-first
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century. Thus, the Early Algebra movement, in which Carpenter and Kaput played

an important early role, is well situated in the USA. The book Early Algebraization,
edited by Cai et Knuth (2011), shows the progress of research in that area in other

countries. In this book, one can appreciate a division between the “enthusiastic” and

“cautious” researchers with regard to the Early Algebra movement.

Among the enthusiasts are Blanton and Kaput (2011), as are Britt and Irwin

(2011, p. 139), who even criticised Filloy and Rojano’s approach by highlighting

Carraher et al. (2006) with regard to their Early Algebra proposal. Similarly,

Schliemann et al. (2012) show how algebraic notation can be introduced in ele-

mentary school in order to develop mathematical content, stating: “The 5th grade

lessons focused on algebraic notation for representing word problems, leading to

linear equations with a single variable or with variables on both sides of the equal

sign.” (p. 115).

Among the cautious, are Cooper and Warren (2011), who argue that:

The results have shown the negative effect of closure on generalisation in symbolic

representations, the predominance of single variance generalisation over covariant gener-

alisation in tabular representations, and the reduced ability to readily identify commonal-

ities and relationships in enactive and iconic representations. (p. 187)

In this regard, Radford (2011, p. 304) states that: “... the idea of introducing

algebra in the early years remains clouded by the lack of clear distinction between

what is arithmetic and what is algebraic”. On this, the debate remains open, for

example, Lins and Kaput (2004) characterising the movement as:

. . .algebrafied elementary mathematics would empower students, particularly by fostering

a greater degree of generality in their thinking and an increased ability to communicate that

generality. (p. 58)

As spokespersons for the Early Algebra working group at ICMI 12th (Lins and

Kaput 2004), they openly criticised past generations, whose results were exclu-

sively related to “sad histories”, and specified that, in contrast, the Early Algebra

movement presents research results linked to “happy stories” regarding the expe-

rience of learning algebra content.

The Third Excluded Strikes Back!

In light of the research results described above, this study approached the problems

of learning algebra by introducing new variables that could not be left out of the

discussion. As new theoretical approaches about learning algebra are born, so are

different general learning paradigms. Research in the last century was strongly

cognitivist, with Harel et al. (2006), surprised to learn that, in the PME studies on

the period of 1995–2005, most of the investigations related to Advanced Mathe-

matical Thinking were much more cognitive and less socio-constructivist or socio-

cultural. While communication in the mathematics classroom emerges as an
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essential element, the literature begins to show that researchers are inclined towards

a socio-constructivist or sociocultural approach.

Our Theoretical Approach to an Introduction to Learning
Algebra

The research objectives for this study are founded on a cultural approach, which takes

into account the theory of activity and which views communication in the classroom

as essential. The work of Engestr€om (1999) is taken as a culturally unifying approach,

as advocated by Vygostky (1962), incorporating Leontiev’s (1978) activity theory, in
which communication is an essential element in the building of knowledge as

described by Voloshinov (1973). Our approach to Radford’s processes of significa-
tion, is immersed in a mathematics classroom teaching method named ACODESA

(see Hitt 2007; Hitt and González-Martı́n 2015; Hitt et al. 2017), that also take into

account a self-reflection component.

An analysis of the literature on the followers of the Early Algebra movement

shows that some research is aimed at building a “Fast Track” from arithmetic to

algebra. This study posits that a functional approach to algebra should be followed,

such as that developed in both Passaro (2009) and Hitt and González-Martı́n (2015).

This study concurs with some followers of Early Algebra, in that the use of patterns

is able to generate generalisation processes in pupils, and, thus, proposes, in the

context of the use of patterns, the following:

Generalisation. Construction of the subsequent term in a series when the previous

terms are provided. Construction of an intermediate term when the previous and

subsequent terms are provided. Construction of a term when the term in the

series is a “large number” and when the first terms of the series have been

provided. Construction processes for “any term from the series.”

This study considers generalisation in the context of a pattern, where, rather than

as a way of moving quickly from arithmetic to algebra, it is an element used to

integrate into the pupils’ mathematical structure. This will enable the pupils to

develop the skills of prediction, argumentation and validation (Saboya et al. 2015),

and will assist them in their transition from arithmetic to algebra and vice versa.
Indeed, a research program is proposed here that would develop arithmetic-alge-
braic thinking within a sociocultural context of knowledge construction.

As described above, this chapter, seeks to make a modest contribution, in that it

represents the beginning of a research program. Our research is focused on specific

content related to the construction of polygonal numbers in a sociocultural envi-

ronment within Engestr€om’s post-Vygotskian model (1999), and takes into account

the results of those post-Vygotskian authors considered as comprising the fifth

generation, such as Nardi (1997):
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The object of activity theory is to understand the unity of consciousness and activity.

Activity theory incorporates strong notions of intentionality, history, mediation, collabo-

ration and development in constructing consciousness. (p. 4)

As the use of technology in the learning of mathematics is a variable yet to be

mentioned here, Mariotti’s (2012) work on the role of artefacts as mediators in a

learning process is integral to the inclusion of technology in a sociocultural

environment.

The use of patterns, and especially the construct of generalisation, is related to

mathematical visualisation. Visualisation, as mentioned by Duval (2002), is differ-

ent from perception. In our case, then, the following applies:

Visualisation. Considering perception as something created by the individual – a

“transparent” mental image depicting the situation with which s/he are faced –

visualisation requires the transformation of representations associated with the

task at hand, and the ability to articulate other representations that emerge in

pupils’ resolution processes, as associated with the task.

This study is not only interested in institutional representations (which can be

associated with a register of representations, as described by Duval 1995). It is also

concerned with the non-institutional semiotic representations that can be produced

in a visualisation process (diSessa et al. 1991; Hitt 2013; Hitt and González-Martı́n

2015; Mariotti 2012) and which emerge in a semiotic process of signification

(Radford 2003) when pupils follow a process of resolving a mathematical activity

immersed in a technological setting.

Institutional representation. Representation found in textbooks, computer screens

or those used by the mathematics teacher.

Non-institutional representation. Representation produced by pupils, as linked to

actions undertaken in a process of resolving a non-routine activity different of

the institutional representation.

Since the method proposed here is related to polygonal numbers and the use of

technology, ideas related to the construction of polygonal numbers that date back to

the time of the Greeks were considered here. Furthermore, including technology as

one of the variables led to the inclusion of Healy and Sutherland (1990) and Hitt

(1994), who, in Excel environments and Excel and LOGO environments, respec-

tively, conducted investigations into the construction of polygonal numbers by

secondary school and pre-service teachers respectively.

Healy and Sutherland (Ibid.) mention that the result obtained by those secondary

level pupils (in the Excel environment) that expresses a relationship linked to the

calculation of a triangular number “n”, “trig. Δn¼ na beforeþ position”, is a non-
institutional representation linked to a process of iteration. Hitt (ibid.) criticises

these results, indicating that activities in an exclusively Excel environment provoke

“an anchor” which does not allow them to switch to a classical algebraic context.

Hitt (Ibid.) aimed to combine working with paper and pencil with the use of an

applet constructed using the LOGO program. In light of these results and consid-

ering new theoretical and curricular contributions, both approaches are of
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contemporary importance, in that they generate diversified thinking for the produc-

tion of non-institutional representations and iteration processes. Secondly, they

enable the careful design of activities that promote the use of paper and pencil,

while also fostering the evolution of the non-institutional representations that

emerge at the initial stage into institutional representations within meaningful

processes (a broader discussion on task design is provided in chapter “Task Design

in a Paper and Pencil and Technological Environment to Promote Inclusive Learn

ing: An Example with Polygonal Numbers” of this volume).

Methodology

Our research was developed within two populations, with one group from Quebec

comprising 13 first grade secondary school pupils (aged 12–13 years old), and the

other from Mexico, which consisted of 14 third year secondary school pupils (aged

14–15 year-old). Pupils agreed voluntarily to take part in the experiment, which

aimed to gain insight into the problem, as occurring in the two populations

individually, rather than comparing results.

• The Quebec experiment used Excel and an applet called POLY (see below),

which had been designed exclusively for this activity (Cortés and Hitt 2012).

Two researchers, known here as R1 and R2, developed the teaching experiment

in a sociocultural setting. Two cameras and several voice recorders were used in

this experiment.

• The Mexican experiment used a calculator (TI-Nspire) instead of Excel and the

POLY applet. The activities were developed by one teacher, known here as P1,

and another researcher, known here as R3. One camera was used in this

experiment.

This study adheres to a teaching method known as ACODESA is divided into

5 steps (fully explained in chapter “Task Design in a Paper and Pencil and

Technological Environment to Promote Inclusive Learning: An Example with

Polygonal Numbers”):

• Individual work: production of official and non-official representations related to

the task.

• Teamwork on the same task. Process of prediction, argumentation and

validation.

• Debate (could become scientific debate). Process of argumentation and

validation.

• Self-reflection (individual work in a process of reconstruction)

• Process of institutionalisation.

Engestr€om’s (Ibid.) model was used to organise the ACODESA steps, taking

into account a sociocultural learning setting. In previous research undertaken by

these authors (see Hitt 2007; Hitt 2011; and, Hitt and González-Martı́n 2015), the
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self-reflection step was implemented immediately after plenary discussion. Due to

problems of knowledge retention (Hitt and González-Martı́n idem; Karsenty 2003;

Thompson 2002), for this experiment we decided that for the self-reflection step, it

would be interesting to implemented 45 days after the plenary debate.

The two first activities were implemented as an introductory activity in order to

remind pupils of some of the Excel commands and provide a historical approach to

polygonal numbers. The ACODESA method was implemented after the two pre-

vious activities.

1. Resolution of two arithmetic word problems in a paper and pencil setting and a

plenary discussion about how, according to the population, to solve them with

either Excel or a calculator. This was implemented to remind pupils how to use

Excel or a calculator.

2. Introduction to polygonal numbers from a historical point of view.

3. Invitation to the populations to solve the activity in line with the ACODESA

characteristics shown in Fig. 1.

The tasks were used in both countries with only a few changes.

The second part of the activity was designed to work with Excel or CAS and to

be verified with the POLY applet.

Analysis of the Quebec Results

The first introductory part of the session comprised the individual resolution of the

two word arithmetic problems using paper and pencil, and a plenary discussion

about how to solve the same problems using Excel. Researcher R1 conducted the

Fig. 1 ACODESA, as immersed in activity theory in line with Engestr€om’s model
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plenary discussion, immediately after which Researcher R2 conducted a short

historical introduction to polygonal numbers and then initiated the first part of the

ACODESA activity related to polygonal numbers. In this first step, individual work

was required, as was work in a pencil and paper environment.

Once the pupils had undertaken the first individual explorations, R2 organised

the teamwork, with Team G1 comprising three girls, Team G2 comprising 3 girls,

Team G3 comprising 3 boys and a girl, and Team G4 comprising a boy and two

girls. Only one computer was permitted for each team.

1) Look carefully at these numbers. What is the fifth triangular number? Make a 
    representation. Explain how you proceeded. 
2) In your opinion, how are the triangular numbers constructed? What do you 
    observe? 
3) What is the 11   triangular number? Explain how you found it. th

4) You have to write a SHORT email to a friend describing how to calculate the 
     triangular number 83. Describe what you would write. YOU DO NOT HAVE
     TO DO THE CALCULATIONS!
5) And, how do you calculate any triangular number (we still want a SHORT 
    message here).

Triangular
number 1

Triangular
number 2

Triangular
number 3

Triangular
number 4

10631

Fig. 2 First five questions in a paper and pencil environment

Develop the same ideas as in the previous section, but this time using Excel (or a 
calculator). Here is what we are requesting of you: 

What do you do to find the 6        , and 8   triangular numbers? , 7 thth th

Is it possible to calculate the 30   triangular number, the 83   triangular number,  
and the 120   triangular number?

th rd

th

How do you do this? Explain

What kind of limitations and possibilities do you encounter when calculating 
under this approach?

Please show the operations you must undertake when calculating a polygonal 
number.

Fig. 3 Second part of the activity
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Teamwork and the First Results

After pupils exchanged ideas, R2 requested a plenary discussion, asking each team

to present its findings on how to calculate the 11th Triangular number (T11). Three

teams (G1, G2 and G4) presented their findings, while members of Team G3

mentioned that their strategy was similar to the first team (see Fig. 3).

An initial and surprising outcome was the emergence of three different strate-

gies. Their initial production (see Fig. 3) indicates that the pupils have undertaken a

process of visualisation. They realised that it is possible to move along the diagonal,

adding balls progressively, while one can add to the number of balls along the

diagonal in an arithmetic progression. Pupils presented the first three iconic figures

with their respective values and a process of generalisation in order to calculate T11

(see Fig. 4).

It seems that these pupils have undertaken a visualisation process in order to

construct a general numerical progression. The action of adding balls along on the

diagonal is transformed by adding the number of balls to the arithmetic progression,

thus abandoning the iconic representation used to calculate the 3rd triangular

number.

Team G2 presented the results of their calculation of T11 with a single figure,

indicating that, in the first column, one should place 11 balls, and then reduce the

number of balls in the next column by one (10) in order to reach, at the end, only

one ball, imagining the 1st column with 11 balls, the next with 10, and so on (see

Fig. 5). An initial process of visualisation and generalisation is then made with only

one drawing, thus inducing a numerical process which is inverted, as compared to

that presented by the first team in Fig. 5. Team G2’s visualisation process is more

compact than Team G1, in that the team members made a direct iconic represen-

tation of T11, expressing their process arithmetically. This example is generic in

Fig. 4 The representation used by Team G1

Fig. 5 The representation used by Team G2
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that they were able to represent any triangular number under this visual

representation.

Team G3 mentioned that they had a similar approach to Team G1. A boy from

Team G4 (named G4-1 hereafter) then approached the blackboard. From his first

representation onwards, this pupil substituted the iconic ball-based representation

for a more practical one, explaining that whenever one passed from one triangular

number to the next, one had to add the appropriate number (see Fig. 6, below and

left).

While giving his explanation, he suddenly changed the strategy without

discussing this with his team members. He changed the representation he was

using to calculate T11 for one which enabled him to construct both an iterative

process to calculate T11 and a generic algorithm for any Triangular number (see

Fig. 6). It seems that, through a process of signification (Radford 2003), the pupil

was constructing a sign that enabled him to arrive at an iterative process for the

calculation of triangular numbers.

An analysis of the pupils’ written productions reveals that there were pupils in

each team who undertook iconic calculations solely counting ball by ball. One

female member of Team G3 said nothing in response to the “leader” of the group

indicating that they had done something similar to Team G1, when in fact she had

actually done something similar to Team G2.

Process of Generalisation

R2 then requested that teamwork continue, approaching team G4 and mentioning

that, when undertaking a calculation, they should show their working. A female

member of Team G4 (known as G4-2) interjected by saying that she did not

understand how to calculate T83, thus initiating a dialogue between G4 and R2,

with G4-1 and G4-2 mainly involved in the discussion.

R2 You must calculate it ... and show what you did.

(...)

G4-2 I do not understand.

G4-2 I do not understand.

R2 Well, here we do not tell you the number of....

G4-1 Is this number related to the diagonal?

Fig. 6 The representations used by Team G4 to calculate T11
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G4-2 The number on the side?

(...)

G4-1 I take 83 on the side or on the diagonal and then you can count 1, 2, and 3 up to

83.

R2 It’s interesting, you have two different strategies.

In this excerpt, trying to assimilate that which was presented to the whole group

by her teammate G4-1, G4-2 ceases to refer to the iterative process, instead only

associating the number of balls, either vertically, at the base, or on the diagonal,

and, thus, jumping from one triangular number to the next.

Once the pupils had worked in teams, R2 again requested a process of recapit-

ulation in a large group discussion, asking pupils how they would perform the

calculation of the triangular number T83 (Fig. 7).

This extract is extremely important to the research conducted in this study.

Pupils proposed a calculation of T83 that is identical to that proposed by Team G1

for the triangular number T11 – namely T83¼ 1þ 2þ 3þ � � � þ 83. R2 tried to

verbalise the calculation in terms of a generalisation for any triangular number.

Pupils had no difficulty with this kind of process of generalisation. The symbolic

process was executed naturally, with the assignation of a variable seeming not to

disturb pupils at all. Even when the researcher proposed the use of a heart (♥) as a
variable, this did not appear to disrupt the pupils in any way.

While, right up until this point, it is possible to say that pupils have been

following various processes of generalisation, the question remains as to who,

precisely, undertook this process. Throughout this process, pupils generally seemed

to show that there was consensus. How stable was the pupils’ knowledge as it

emerged from a process of communication in the mathematics class? Can these

pupils retain these results in the future?

Once this part of the activity had been completed, R2 asked the pupils to return to

work in teams, suddenly announcing “I can calculate any triangular number with

three operations. Can you?” This was a question that resonated with some pupils, as

described below.

Generalisation and Emergence of the Concept
of the Variable

At this stage, pupils could use Excel in order to continue the activity. The idea of

using a single computer introduced an unanticipated variable. The owner of the

computer determined the user. For example, in Team G3, the owner of the computer

(a boy) was the only user. This reminded researchers of Hoyles’ (1988) recommen-

dation that attention should be paid to the constitution of a team when mixing boys

and girls in a computational setting.

Once teamwork had commenced, pupil G4-1 called R1 over, saying that his

group had formed a strategy to calculate any triangular number. He mentioned that
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their strategy involved taking any triangular number, for example 101, adding

1, dividing by two and multiplying the result by 101. R1 told them to use another

number, such as100. Then, G4-1, stating that he would add one to 100 and divide the

result by two, suddenly stopped, turned to his companion (G4-2) and asked whether

it made sense to get a decimal number when dividing by two. R1 suggested that they

discuss their strategy again and use the Poly applet to verify their results. R1

remarked that the team had used Excel to calculate the triangular numbers up to

T84 in a column and that they had the operation (indicated in Fig. 8) in their

workbook.

Dialogue between the researcher and pupils Interpretation 

Pupil 1: Uh ... you have to add up all the numbers 
    from 1 to 80 for the triangular number of 80 ... er 
    from 1 to 83 for the triangular number of 83. 

R  : Yes, but if you give me a number, which can 
     change, it can always change. What kind of 
     operation do I have to do?

2

 

G4  1: You added together 1 + 2 + 3 + 4 +5 + 6 etc.,
     until you arrive at your number. Ben! Then the 
     answer is the ... your answer is the triangular 
     number.

-  

 

R  : Ok. So there I would do 1 + 2 + 3 + ...2  

G   1: ... 4 + 5 + 6 ...4-  

R  : until my number.2  

Pupil 1: Etc, until your number. You add up all this
    and it gives you your triangular number. 

R  : How do I write my number I do not know?2  

G   1: Question Mark!4-  

R  : Question Mark? Do you all agree? Yes? That's 
     going to be my number I do not know?

2

 

G   1: + x.4-  

Pupil 3: Yes + x. 

R  : x? Do I put something else? Yes, do I? (Point to a 
     pupil)

2

 

Pupil 4: Any letter. 

R  : Any letter, yes. There? A heart? Can   we put a 
     heart?

2

 

G   1: You can put anything that is not a number.4-  

Addition of 1 + 2 + 3 + ... + 83 

R  tried to promote a 
generalisation.

2  

    Using words, the pupils could
describe the last number "until you 
arrive at your number." 

    R   repeated the question, but 
continued to say "until your 
number."

2

    As there had been no change, R
directly asked “how do I write the 
number I do not know?”

2

    Here pupils have shown that 
they have mastered the situation, 
suggesting several symbolisms. 

   Even the      (heart) proposed  by 
R  did not bother the pupils.

 
2  

Fig. 7 Dialogue between R2 and the group in a plenary session
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This is another key episode in this research. Pupils already had an algorithm to

calculate T83, which was to add 1þ 2þ 3þ � � � þ 83. It was G4-1who put the

iterative algorithm on the board (see Fig. 6), using it with Excel to calculate up to

T84. The hypothesis explored in this study is that, using T83 and T84, the pupil built

his new algorithm.

Both the design of the activity and the pupils’ processes show the possibility of

reconciling work with pencil and paper and technology. In addition, and very

importantly, the team destabilization generated by R1’s question about using an

even triangular number (T100) caused the team to reflect on that which is expressed

by the use of the letter “x” in the arithmetic operations (see Fig. 9). It seems that

pupil G4-1 had written 100 þ 1 divided by two (“no matter what you get”), in this

case x, the result (x) must be multiplied by 100. Finally, the pupils used the POLY

applet to ensure that the conjecture obtained might work with other triangular

numbers.

The POLY applet is able to show a series of polygonal numbers or to give a

specific polygonal number (as in Fig. 10). Due to screen limitation problems, if a

polygonal number is too big, the applet can only provide the numeric result and thus

excludes the figure.

Discovery of an Algebraic Expression for Calculating any
Polygonal Number

The session was ending and R2 called for a plenary discussion. G4-1 asked to

present what his team had found. G4-1 exemplified their strategy with T46 and

explained their algorithm. After R2 explicitly asked him to explain how they had

discovered their strategy, he repeated the algorithm, but did not mention how the

discovery was made. It seemed that he did not understand R2’s question.

Fig. 8 Technology and

paper and pencil – the

construction of a strategy
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When the bell rang and R2 had finished the session, a girl’s voice, almost

drowned out by the noise made by the pupils, indicated that she would have liked

to know how the three operations could be used to calculate any triangular number.

R2 mentioned that there was no time for that explanation and that she would show it

to her later. However, as G4-1 mentioned that he knew this, R1 and R2 asked him to

write it on the blackboard, even though the entire class was on their feet and ready

to leave the classroom, whereupon G4-1 wrote the following algebraic expression

(see Fig. 11).

The researchers reacted very positively to this development at the end of this

stage of ACODESA, deciding at that time to interview G4-1 to obtain more

Fig. 9 Construction of a general strategy to calculate any triangular number

Fig. 10 Examples using POLY (series of triangular numbers and the fifth pentagonal number,

including partition into triangles if required)

R  : x + 1, x... So it is your triangular number? [Trying to interpret 
      what the pupil wrote]

2

G4  1: x is not my triangular number, it is my base number, plus one, 
       divided by two, it's going to give y  y times x gives the triangular 
       number.

-
. 

Fig. 11 Symbolising in a communication process
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information about the process of constructing the algebraic expression. The inter-

view provided a few elements of which researchers were already aware. While G4-1

insisted that it was through the POLY applet that he had come to discover the

formula, both pupil productions (Fig. 9) and R1’s discussion with Team G4 seem to

indicate that the discovery took place while working with either Excel and pencil

and paper, with Poly allowing them to check their conjecture.

Self-Reflection Phase Without Technology. What Happened
45 Days Later?

Aware of the problem with student retention of the mathematics that they learn and

also aware, thus, that “consensus is ephemeral”, the authors decided to make the

self-reflection phase as different as possible to that which had had been undertaken

in other experiments. Also, given that a talented pupil had been discovered in the

sample, it was decided that an additional challenge would be added to the self-

reflection activity (which, while generally the same, excludes technology) exclu-

sively for him. So, in addition to the reconstruction process related to triangular

numbers, he was asked to work with pentagonal numbers, something which was not

dealt with in the classroom experiment.

It seems that G4-1 did not pay attention to the examples given about triangular

numbers, as he wrote that he already knew the formula to calculate any triangular

number. He applied a wrong formula and did not check his results against the

examples provided. However, and to the researchers’ surprise, in a paper and pencil
task (the use of technology is not allowed in this phase) that followed a similar

process of finding relationships among the first four examples provided for pentag-

onal numbers, he constructed both the fifth pentagonal number and a general

expression that allowed him to calculate any pentagonal number.

The results obtained are presented below. The data was collected on an individ-

ual basis before the teamwork and self-reflection phase 45 days later, with only

eight pupils sampled from the other phases, plus others that could not be taken into

account. Pupils 1–13 (the last being G4-1) were identified in order to observe

progress and setbacks.

Fig. 12 G4-1
0s production in the self-reflection phase
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Table 1 shows two setbacks and four advances, not counting pupil G4-1, who

used an incorrect algebraic expression to calculate the triangular numbers. The

female pupil (subject 11) followed her teammates from Team G3 passively.

While her strategies were different, she did not discuss them with her teammates.

The owner of the computer in team G3 became the leader, which corresponds to

Sela and Zaslavsky’s research (2007) with four people working together. This male

pupil, when using the computer, showed his colleagues various things not related to

the task, thus creating a situation unrelated to the requested task. Teams G1 and G2

were more homogeneous and presented more balanced participation, with both

teams composed of girls. The computer owner from team G4 was strongly com-

mitted to the task and adapted very quickly to the rhythm of his colleagues, with one

of the setbacks for the team posed by G4-2 (G4-3 was not present during the self-

reflection phase). More careful study is required to analyse the role of technology in

sociocultural learning. In fact, this, bearing in mind Hoyles (1988) on Girls and
computers and the results reported by Sela and Zaslavsky (2007), leads to the

realisation of the importance of creating teams consisting of a maximum of two

or three subjects, and of trying to balance the use of technology in each team.

Experiment Conducted in Mexico

The experiment conducted in Mexico proceeded as follows. Once the initial

problems were resolved in order to introduce pupils to the TI-Nspire calculator,

the teacher asked the pupils to work on the first five questions individually (see

Fig. 2). Four teams with three pupils and one team with two pupils were formed,

and in which each pupil had a calculator (TI-Nspire).

Individual Work

Two types of strategies emerged from the individual work – one linked to the

drawings as shown in the examples, and the other to the formation of a table of

values. Again, spontaneous representations linked to functional representations

appeared in the communication process (Fig. 13).

Table 1 Results from the ACODESA self-reflection phase after 45 days

I. Anchor

to the

drawing

II.

Drawing

þ addition

III. Abandoning

drawing þ
addition

IV. Abandoning

drawing þ another

strategy

“Algebraic expression”,

triangular or pentagonal

numbers

1, 2 3, 4, 5, 6, 7 8, 9, 10, 11 12 13

45 days without technology

4, 8 1, 5, 7, 12 11, 13
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Teamwork

One team made up of Diana, Karla and Omar underwent a reconciliation of

strategies, with Diana and Karla making the calculation by counting balls from

the drawings, while Omar used a table of values. Through this strategy integration

process, Diana and Karla left their strategy and decided to use the table of values.

The pupils’ individual productions and the film of the plenary session are the

only evidence of the individual work carried out by the subjects. A useful research

technique was that pupils were asked to write with red ink when working in teams

(see Fig. 14).

There is no evidence of how the formula was obtained. The formula appeared in

Karla’s productions and was written in red ink during the teamwork phase. This

shows that, in her team, she adopted the table of values and proposed an algebraic

expression. At this secondary level pupils had already learned about the notation of

variables, and can clearly be seen to use the variables x and y. The formula enables

pupils to estimate the calculation of polygonal numbers. Our hypothesis is that

1. Adding 1 to the first 
range.

2. With 1 added to the first 
range and both the line at 
the base of the and the 
diagonal \ | .−

Fig. 13 Spontaneous representations used by one pupil

Fig. 14 Karla’s individual work and teamwork
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having used y ¼ x2/2 (related to base * height/2) and having realised that it did not

work with the examples given in the table, these pupils decided to approximate the

results, thus giving y ¼ 0.52 * x2. They did not present their proposal in the large

group discussion.

A surprising result is that many Mexican pupils participating in this research

immediately associated the triangular arrangement of the triangular numbers, base
* height/2, with the calculation of the area of a triangle, thinking that this was the

algebraic expression required.

This was the first thing that emerged during the large group presentation, having

been captured from the beginning of the pupil discussion.

Plenary Discussion

Monica, facing the blackboard, gave as example the T8 (see Fig. 15), describing the

following as necessary in order to calculate it.

R3 intervened, saying that, at this point, it was necessary to review her theory.

She was then interrupted by the pupil Rob.

Rob ... But... this, the triangular number 8 would be 36 and not 32 – then it

cannot be.

R3 Please come to the blackboard Rob.

Rob This is number 6 [pointing to the figure just produced by Marı́a]. We apply

the formula that says the base multiplied by height would be 6 by 6 giving

36 divided by 2, giving us 18, while the triangular number would be 21.

This, therefore, is not the formula [points to the base * height/2 formula].

P1 What is the difference between. .. if you apply the formula that tells you,

apply the formula. Write it there.

Marı́a [Writes the formula].

P1 In this case, what is the basis?

Rob [Writing] 6 * 6/2 is 18 and there is the triangular number.

P1 What is the triangular number?

Pupils 21 [answering chorus]

Rob The difference would be 3.

P1 The difference would be...?

Monica: To calculate the area of the triangle would 
require 8 times 8, giving 64, which, divided 
by 2, is 32...

Another pupil: [a girl is heard addressing her 
classmate in a very low voice] But no, that 
would be 36!

Fig. 15 Monica presenting the calculation of T8
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Rob 3.

Rob calculates the Triangular 8, and, typing the formula, obtains 32.

P1 And what is it for the triangular number 8?

Rob It’s 36.
P1 The 8?

Rob starts counting the balls for the figure that was already on the blackboard,

and says that it is 36.

Pupils The difference is 4.

Rob realizes that the formula does not work and that he has shown a counter-

example (similar to the comment made by the unidentified girl). However, so far he

is not able to build the exact formula for triangular numbers.

EUREKA! Rectification of the Formula in a Scientific Debate

In the midst of the discussion, a surprised voice is heard, saying, “and from 8 it is

four, then it would be half.”

Gaby Half of 8 is 4, and 4 is what is missing from 32 to 36 in the formula, then we

have to put the base multiplied by height divided by two more.... [PAUSE]

plus the half of [PAUSE] plus the half of the triangular number, half

[PAUSE] half of the base.

While speaking, Gaby paused several times while she completed the transforma-

tion of her numerical idea into a geometric-algebraic idea. It is clear that the control

element was provided by the arithmetic relationship and the transformation from that

into a geometric relationship. However, something else occurred in the process of

communication when Gaby was verbalising what she was thinking: there was a

process of deduction. At this very moment, the pupils were rejecting their initial

conjecture in favour of a new one, using the arguments to refute the conjecture.

P1 Write it!

Pupil I think that we, all together, are arriving at something, not alone!

The sociocultural construction of knowledge has occurred at this stage of

scientific debate, in accordance with ACODESA. The pupil openly expresses the

co-construction generated through the debate.

Gaby goes to the blackboard to write the idea that she had just thought of.

Gaby How do I represent half the base?

Interestingly, at this point, Gaby has difficulties in transforming the geometric

argument “half the base” into algebraic terms:
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R3 . . . One half, or that in half.

Gaby writes b�h
2

þ 1
2
.

Many pupils worked together to undertake the final writing activity. In this

process, Gaby was guided by her colleagues because she did not fully understand

the process of algebrafying “half the base”. Finally, she wrote: b�h
2

þ b
2

P1 And how do you represent the triangular number in that formula you are

writing there? How do you represent the triangular number?

Pupils .... The base or the height...

Gaby writes the formula b�h
2

þ b
2
.

P1 Precisely, what she said, the height is the same as the...

Pupils The base.

P1 Replace it and do not write the height.

Pupil It would be base times base.

Gaby misspelled the formula and was corrected by her peers, after which she

wrote: b�b
2

þ b
2
.

P1 Ok then, base times base is what?

Pupils Base squared.

Gaby writes finally the formula b2

2
þ b

2
.

P1 Do you think that is the formula? Verify it with the triangular number 15

Gaby Do I have to count the balls in a drawing?

P1 No, no, no you have already got the formula!

Self-Reflection Phase Without Technology. What Happened
30 Days Later?

This phase, referred to here as self-reflection without technology, comprised a

questionnaire (with slight modifications) similar to that completed by the partici-

pants 30 days previously. Only 10 of the 14 pupils participated, with the main idea

at this stage being a reconstruction of what had been undertaken in the classroom.

The questionnaire for the self-reflection phase had three questions:

1st Question Calculate the 27th triangular number.

2nd Question Write the formula for calculating any triangular number.

3rd Question Using your formula, calculate the 313th triangular number.

The results are as follows: from the ten pupils, two continued the process of

“drawing balls and counting”, while four of the ten rebuilt a similar expression related

to the area of a triangle – b � h/2. A pupil was able to reconstruct the formula, but

mistook the result of calculating T27 by finding a triangular number to provide 27 as a
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result, with the closest being T7 ¼ 28. It is possible that he made a mistake when

counting the balls. He followed the same strategywhen calculating T313. Among those

who were able to reconstruct the right formula were Alejandra, Omar and Rob.

Conclusions

These results reveal the importance of building arithmetic-algebraic thinking in

order to support algebraic thinking. The experiment conducted in Quebec with 1st

year secondary pupils (11–12 years old) revealed the following:

• It was performed in a sociocultural environment, with a gradual construction of

the concept of the variable, and patterns built from the visual work.

• The strategy consisted of visualisation processes that related drawings, arith-

metic addition series, iterations and formulas. Pupils used natural language with

letters representing variables.

• The validation process was supported by the use of technology.

• The availability of a device on the table, shows that its use is delicate (Hoyles

1988). In the case of one team, it was the owner of the computer who exclusively

used it. In the team with a boy and two girls, the boy mostly used his computer,

the girls used it when he was at the blackboard.

• Even though there was more progress than setbacks in the self-reflection phase,

the results show that concluding that consensus had occurred should be under-

taken with caution.

The experiment conducted in Mexico with 9th grade secondary pupils

(14–15 year old) revealed the following:

• It was performed around visualising a process related to the area of a triangle,

with use of variables to represent the variation (x, y, b, h).

• The validation process rested more on visual configurations.

• The technology was not widely used by the pupils. Plenary discussion and

co-construction attracted the pupils’ attention.
• Again, it showed that “consensus is ephemeral”, with only four out of ten able to

rebuild the formula and one of them mistaking the number of the triangular with

the result.

A surprising fact is that the institutional representation n (n þ 1)/2 did not

emerge in neither of the two populations. This demonstrates the importance of

pupils’ spontaneous representations in the construction of mathematical concepts

(Hitt 2013; Hitt and González-Martı́n 2015). This reveals that evolution of sponta-

neous representations is important in a signification process. During the institu-

tional stage under the ACODESA model, the teacher must collect different ideas

and productions and relate them to the institutional representations.

Our research is taking into account the importance made in the 40s when

psychologists payed attention to the importance to moving from analysis of pupils’
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performances when solving puzzles to the analysis of pupils’ problem solving

activity (see Brownell 1947). Our approach, in this technological era goes from

an arithmetic context to an algebraic one, in a natural way using technology as a

tool in a process of generalization and, in a sociocultural context of learning. In this

way, pupils construct arithmetic relations (product of this is what is shown in Fig. 9)

that permit them to control their process of generalization to an algebraic context in

a milieu of creativity and autonomy (see Fig. 12). The results are showing the

importance to promote the production of spontaneous representations and conver-

sions among them even if they are not the institutional representations. This

contrast directly with Kirshner’s approach (2000) concerning his ideas of exercises,
probes and puzzles; and, about his restricted approach to learning algebra focusing

on the algebraic register about visually salient rules (Kirshner 2004). Our research

takes as central a task-design where the but is related to enchained tasks, to be

solved by the pupils in a sociocultural milieu, and the teacher role is to promote

students’ reflexion and productions of spontaneous representations, not only the

algebraic one.
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L-System Fractals as Geometric Patterns: A
Case Study

Anna Alfieri

Abstract Digital technologies are impacting all aspects of personal, social and

professional life by now, spreading out at an incredible speed. We should take into

account all these changes in the teaching and learning processes of mathematics,

implying new challenges and responsibilities. In this paper, the role of technology

in a mathematics education activity is analysed into two aspects: in terms of its

operational features for presenting mathematical content, to research for informa-

tion on the web, to work in an e-learning environment with students, and then for

enhancing cognitive learning processes in the student, through the digital manipu-

lation of geometric objects. The context is the L-system fractal theory.

Keywords L-system fractals • Technology • Education

Introduction

New technologies strongly influence our social and professional lifestyle, becoming

necessary in our communication, as considerably as in our relationships with

authorities and Institution. They also affect the learning process and teacher’s
work inside and outside school, contributing to an evolution of the relationship

between teachers and students, and creating new challenges and responsibilities.

Many questions arise regarding the impact of technology on mathematics edu-

cation. Artigue (2013) highlights some crucial questions that have been shared and

discussed within our community:

How to avoid an increasing divorce between social practices and school practices, with the

resulting negative effects on the image of the discipline and the students’ motivation for

engaging in its study? How to benefit in mathematics education from the incredible amount

of accessible information and resources? How to benefit from the changing modes of social

communication and Internet facilities for creating and supporting communities of mathe-

matics teachers, and definitively break with the vision of the teacher as a solitary worker?

(p. 5)
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The issues introduced by Artigue (Ibid.) led me to renew the mathematics

education methodology through ICT. In fact, the most relevant aims in my educa-

tional activities are:

1. Developing a mathematics education open to the external world, remaining

anchored to the epistemology of the discipline;

2. Giving students more autonomy in geometric knowledge;

3. Using new technologies to better address the specific needs students may have.

From Solitary Teaching to a Community Mathematics
Project

In this evolving technological context, Artigue (Ibid.) highlights:

Learning mathematics is not achieved just by accessing mathematical information or even

direct answers on the Internet. Accepting to live in the digital era is accepting to have this

flux of information entering the school world. (p. 5)

This “flux of information” also leads to discover countless technological tools

that teachers can test with their students in the classroom, even if often the teacher is

left alone in this researching process.

For this reason, many teachers are looking for training course to introduce new

technologies in their learning and teaching processes; they need to find community

with other teachers to share experiences, to exchange results, and to know the issues

that have been addressed by other teachers in similar educational contexts.

In Italy, for example, the national M@t.abel project is a very important educa-

tional program, involving several mathematics teachers. The M@t.abel project,

performed by INDIRE (Istituto Nazionale Documentazione, Innovazione, Ricerca

Educativa), introduces teachers to mathematical training through examples of real

class activities. The teachers work together in a technological platform and are

included in virtual classes, managed by a pool of tutors (including the author of this

chapter), in order to discuss and share their experiences cooperatively (Arzarello

et al. 2006). M@t.abel is an important national activity that turns solitary teachers

into members of “communities of practice” (Wenger 2000).

Another interesting national project is Matematica & Realt�a (M&R), managed

by the department of mathematics at the University of Perugia. This project deals

with making proposals to develop innovative and educational connections between

mathematics and the real world (Brandi and Salvadori 2004). The Liceo Scientifico

“Luigi Siciliani” in Catanzaro (Italy) has been taking part in the M&R project for

8 years with a pool of teachers (me included).

The central focus of M&R is mathematical models, defined as a result of a

rationalization and abstraction process, which allows teachers and students together

to analyze the problem, to describe it, and to create a representation with the

universal symbolic language of mathematics (Ibidem).
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The M&R project employs a variety of activities, including: mathematical

modelling and best maths presentation competitions. A central feature of the project

is the creations of mathematical laboratories, organized in each participating

school; in these laboratories, the teacher proposes different themes, related to

M&R, depending on the age of the pupils and in connection to compulsory

mathematical content. For instance:

1. Linear mathematical models of reality (for 15–16 years old students);

2. Iterative functions and fractal geometry (for 16–17 years old students);

3. Nonlinear mathematical (exponential and trigonometric) models of reality (for

17–18 years old students).

In Liceo, many different mathematical laboratories have taken place since 2006,

attended by approximately 1000 students. The M&R project is one of the most

important extra-time activities in the school to entail additional credit to the

students.

The Role of Technology: FromClassroom to Cloud-Learning

My experience in the project concerns geometry, in particular fractal geometry,

geometric properties of fractal figures, and geometric transformations. In this

chapter, I am going to describe the educational activity concerning Lindenmayer

Fractals (or L-system fractals, as they are commonly called), in order to examine

the role of new technologies in this specific teaching and learning process. Tech-

nological tools can have several educational functionalities, three of which are

suggested by Drijvers (2012):

1. The tool function for doing mathematics, which refers to outsourcing work that

could also be done by hand,

2. the function of learning environment for practicing skills,

3. the function of learning environment for fostering the development of concep-

tual understanding. (p. 3)

In the M&R activity, the teaching and learning of fractal geometry have dealt

with through several stages; in each of these, technology plays a relevant role

characterized by a significant use of ICT. The different “functionalities” allow me

to split the teaching activities into following steps.

Working Steps

The educational activity in the L-Fractal M&R project has three different steps:
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1. Fractals class, an extra-time course about fractal geometry;

2. Fractals webquest, the design of a final project about L-system fractal theory;

3. Fractals cloud learning, a methodology used to work online.

In my experience, each of these steps is related to one of the three different facets

of using technology and its tools. In Fractals class technology is used to present

geometrical objects and their properties; in fractals webquest it is employed for

researching information on the web; and in fractals cloud learning it is used to share
and to work with students in an e-learning environment (see Table 1).

These connections are explained in the following sections. Actually, these

different types of the use of technology are not distinct and are deeply intertwined.

However, in the design of the activities, the use of a specific facet of technology has

characterized the corresponding phase more than any other.

Fractals Class: Technology for Learning by Presenting

Fractals class is a basic course about fractal geometry, which I have been devel-

oping in my school since 2006. It requires 16 h (2 hour per week in a single lesson).

Many 16–17 years old students choose to attend the course voluntarily (see Fig.1).

The principal aims of the course are:

1. Modelling the world around us using affine transformations;

2. Building the most famous fractals (Sierpinski’s Triangle, Koch’s Snowflake,

etc.);

3. Plotting fractals with software tools;

4. Making conjectures and simulations using free software;

5. Mixing traditional teaching and new technologies.

The geometrical content, dealt with in the fractals class, includes:

1. Geometric transformations and matrices (composition of geometric transforma-

tions), the inverse of a geometric transformation, affine transformations (rota-

tion, contraction, translation);

2. Iterated function system, codes of fractals, evolution of an iterative process of

figures patterns and attractors;

3. Fractal properties.

Table 1 Connection among steps of activity, role of technology and tools

Step activity Role of technology Tools

Fractals class Presenting fractal theory Interactive with e-board, laptop

Fractals webquest Researching for data and

information

Internet

Fractals cloud
learning

Working and sharing in virtual

environment

Google doc, Google drive,

PowerPoint, Paint
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During this step, the teacher works using the following educational strategies:

1. Interactive lesson and practice

The teacher explains the basic concepts of fractal theory: affine transformations

and the most famous fractal codes. Then she enhances the learning process through

some exercises. At this stage, the student is encouraged to work alone.

2. Cooperative learning

The teacher arranges students in small groups to work together, in order to

improving communication and cooperation. Cooperative learning fosters their

participation and their involvement without inhibition, promoting skills develop-

ment of the students. Peer-to-peer communication multiplies the value of the

educational message and increases its effectiveness: sending and receiving com-

munications spread throughout the network of students, and are not limited to the

first sender.

In this step, the presentation of fractal theory is simplified by using interactive

whiteboards (IWB) during the lessons. Some aspects of direct teaching, such as

explaining, modelling, directing and instructing, are facilitated by the IWB, or more

specifically, the software accessed via a large screen presentation device. (Wood

and Ashfield 2007). The quality and clarity of multimedia resources may offer

enhanced visual material for presenting to a large audience, and the teacher is able

to move between varieties of electronic resources, with greater speed in comparison

to non-electronic tools. In this step, technologies, such as the IWB, may change the

pedagogic practice to make easier the learning process of several mathematical

contents.

Fig. 1 Fractals class: during the lesson
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Fractals WebQuests: Technology for Learning
by Searching For

At the conclusion of the fractals class, the teacher offers an advanced course about

L-system fractals. This is a new step of the activity, called fractals webquest. The
teacher assigns a final project work concerning L-system fractals which would

enable students who complete the assignment to participate in the annual M&R

competition, “Best Maths Presentation”, a special feature of the yearly M&R

National Congress at the University of Perugia. Each year, there are many groups

of students, from the fractals class, who wish to experience this unique educational

opportunity.

During this step, the role of the teacher is to support students in cultivating the

critical skills, necessary for appropriately utilizing media tools inside and outside of

school. Living digitally means that, when a question springs up or a problem arises,

we already have instant access to relevant information or even the correct answer.

For this reason, the student must learn to consciously explore and use this flux of

information (Fig. 2).

The webquest educational approach has the primary goal of discovering addi-

tional information on a specific topic, and to create a presentation, using the

collected data. Bernie Dodge at the University of San Diego (USA) brought

international recognition to webquest pedagogy in the mid-1990s, defining

webquests as:

An inquiry-oriented activity in which most or all of the information used by learners is

drawn from the Web. WebQuests are designed to use learners’ time well, to focus on using

information rather than looking for it, and to support learners’ thinking at the levels of

analysis, synthesis and evaluation. (Dodge 2001, p. 6)

The Internet is a chaotic space, in which anything or nothing can be found. The

network carries a plethora of information, presents endless realities, news, and

experiences; the Internet lives on exchanges, enriching overall products with

multiple subscribers.

This chaotic knowledge must be deciphered, selected, structured; otherwise,

without the skills of artfully curating what you find and search could seem sterile

and superficial. The webquest helps students to avoid getting lost in the network

and to use their time efficiently. In order to achieve such efficiency and clarity of

purpose, a good webquests contains at least these accompanying parts (Dogde

2001):

1. An introduction that sets the stage and provides some background information.

2. A task that is doable and interesting.

3. A description of the process, the learners should get through in carrying out

the task.

4. A conclusion that brings closure to the quest.

The strategy employed during this step of my activity is based on two kinds of

webquests:
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1. Short Term WebQuests.

It consists of two lessons to gather data and to elaborate their structure. The

project work about L-system fractals is divided into four different parts:

1. Fractals in general (what a fractal is and the most important properties of

fractals);

2. Mathematical content (affine transformations and matrices);

3. L-system fractals (theoretical definitions about L-system fractals and their

codes);

4. Logo (or Turtle) language and free software for plotting images of fractals.

2. Longer Term WebQuests.

At this phase, the students collect materials about L-sytem fractals from the

Web. Each student has to analyse, study and summarize the documents respecting

the sequence of previus points in Short WebQuest, without the teacher’s help. After
completing this part, the learner is able to create an original presentation about

L-system fractals, using the material downloaded from Internet.

The role of the teacher, in this step, is to guide students’ choices, and to introduce
a timeline.

In this activity, students acquire the ability to look for information on the web or

in data sources, including web documents, databases and freeware software, to

Fig. 2 Fractals Webquest: During the Lesson
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select the most relevant parts, and to apply the most suitable results of their search

in developing their topic.

Fractals Cloud-Learning: Technology for Learning
by Sharing

After fractals class and the fractals webquests, the teacher works with the groups of

students to prepare multimedia presentations for the national M&R congress.

Fractals cloud-learning is the name of this step.

New technologies enable people to customize the working/learning environment

using a range of instruments to match personal interests and demands. This is the

reason why it has been explored the educational potential of ‘cloud computing‘, in
our activities. Web 2.0 tools offer the opportunity to interact and to cooperate with

one another in a social media dialogue as creators of user-generated content in a

virtual community, in contrast with websites that limit users to a passive view of the

content (Despotović-Zrakić at all. 2013; Katz 2009). Examples of Web 2.0 tech-

nologies include social networking sites, blogs, wikis, video-sharing sites. Web 2.0

or cloud-based technologies support that trend begins with the emergence of the

Internet: a shift away from large organizational control of the instructional function

toward the individual user.

These emerging technologies, not necessarily created for higher education,

support, require individual creativity and autonomy, and foster the growing trend

towards user-generated content and knowledge, in a way that many institutionally

developed products do not.

They also have the potential to promote sharing, openness, transparency and

collective knowledge construction. A part of their proliferation can be ascribed to

the low-cost instructional innovation; the emerging technologies enable, along with

ease of utilization in a higher education environment of shrinking budgets and

increased competition for information technology budget.

In my educational activity, Google Docs® and Google Drive® (see Fig. 3) are

applied and used as a part of an e-learning environment, where students and

teacher toghether can exchange and share ideas and information and they can

work in a synchronous way – despite not being in the same classroom – in order

to achieve the final version of the multimedial presentation about L-system fractals.

Google Drive® is used as storage space for students’ files, while Google Docs® is

used as a learning and teaching tool for working between teacher and students

simultaneously. About the role of technological tools, in general, Railean (2012)

claims that:

The role of these tools for teachers is to provide a learning environment for team work as a

need for each child in order to develop self-regulated skills. Imitation, cooperation,

confrontation, discussions and sharing are all part of the development of the individual

and his or her socialization. These tools play an important role in their cognitive, affective

activities. (p. 22)
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The advantages, in addition, of using Google Docs® are:

1. Many people can work at the same time on the same document and everyone can

see people’s changes as they make them, and every change is saved

automatically.

2. Everyone can also propose changes directly by suggesting an edit without

editing the text. These suggestions won’t change the original text until the

document owner approves them.

3. Everyone can collaborate in real time over chat, too. If more than one person has

the document open, he just has to click to open a group chat. Instant feedback is

possible without leaving the document.

In Google Docs®, the teacher acts more systematically as advisor, guide and

supervisor, as well as a provider of the frameworks in the learning process of her

students.

The Role of Technology in the Cognitive Learning Process
During the Project

During this educational activity, I recognize another important role of technology in

the knowledge of Geometry: the use of ICT enhances cognitive learning processes

of the students and allows themselves to discover in autonomy some geometrical

properties. In fact, during the development of the L-fractal theory, I observe a

Fig. 3 Fractals cloud-Learning: a discussion board in Google Doc®

L-System Fractals as Geometric Patterns: A Case Study 321



dialectic between technology and the construction of the geometric content: there

are some moments in which technology supportes the comprehension of theory and

there are others in which the use of technology transforms theoretical properties in a

repetitive training of procedures, these must be reduced. In order to discuss this

aspect, a summary of the L-system fractals is necessary.

What an L-System Fractal Is

L-system fractal geometry regards a mathematical theory of plant development.

Fractals are geometrical figures, characterized by unlimited repetition of the same

shape on lower sequence. Fractal’s proprieties are: self-similarity; scaling laws and

non integer dimension (Mandelbrot 1977; Gowers 2004).

Aristid Lindenmayer (1925–1989) was a Hungarian biologist who created a

formal language called Lindenmayer System or L-system to generate fractals.

The central concept of L-system is the rewriting process, that is a technique for

defining complex objects by successively reproducing parts of a simple initial

object using a set of rewriting rules or productions (Prusinkiewicz and Lindenmayer

1990).

In L-system, a string can be defined as an ordered tripletG¼ (V,ω, P) in which:

1. V is a finite set of symbols called “alphabet”;

2. ω 2 V+ is a non-empty word called axiom (V+ is the set of all non-empty words

over V);

3. P is a finite set of production: P � V x V*, V* is the set of all words over V.

P defines how the variables can be replaced with combinations of constants and

other variables. A production (a, ω) 2 P is written as a! ω. The letter a and the
word ω are called the predecessor and the successor of this production, respec-

tively. It is assumed that for any letter a 2 V, there is at least one word ω 2 V∗

such that a ! ω.

The Connection Between L-System Fractals and Technology
Through Productions of Students

Many software of computer graphics, based on L-system theory, are available on

the Web, they allow us realistic visualization of plant structures and their develop-

ment processes. During the activities, the generated fractal images fascinate the

students for their colors and shapes, similar to real plants, but the use of technology,

for creating these patterns, supportes them, especially, in reasoning and solving

some problems, in developing of their curiosity. According to the position of

NCTM (2011) (National Council of Teachers of Mathematics):
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It is essential that teachers and students have regular access to technologies that support and

advance mathematical sense making, reasoning, problem solving, and communication.

Effective teachers optimize the potential of technology to develop students’ understanding,
stimulate their interest, and increase their proficiency in mathematics. When teachers use

technology strategically, they can provide greater access to mathematics for all students.

(p. 1)

In the Italian educational program, regarding high school mathematics curricu-

lum, there are the same goals: problem solving ability, creative thinking and logical

thinking to enhance mathematical ability of modelling reality. For achieving these

purposes, during my educational activity, the following theoretical issues from

L-system theory are proposed and discussed with students:

(a) Converting logical and formal rules of L-system language in geometrical
patterns: making fractals;

(b) Proving that if the starting figure changes, the fractal does not: fractals as
attractors;

(c) Modelling reality: fractals as geometric patterns.

Every issue is the expression of a specific goal and for everyone the technology

plays a relevant role, that I summarize in the table below (see Table 2). Goals,

issues and contents are connected and solved by a digital manipulating of geometric

objects. Actually, it is difficult to separate the single goal from the single content

and single issue; they are interconnected in fractal theory. This is a necessary

attempt to analyse the “dialectic” relation between the use of technology and the

comprehension of L-system fractal theory, at this school level.

The issues (a), (b), (c) will be discussed separately in order to document what

happens during the activity and to describe the role of technology in the compre-

hension of fractals. For the description, I am going to use many images from two

final multimedia presentations, made by students during the M&R activities:

1. “To make a tree. . . it takes an L-system fractal”
2. “Fractal snowfall in Catanzaro”

Both works were presented at M&R National Congress in Perugia in 2012 and

2014, the first topic was also presented at European Mathematical Congress for

Students in Gothenburg.

Both works are an example of mixing affine transformations and L-system

fractals for modelling real world: in the first case the world of trees and in the

second one the world of snowflakes.

(a) Converting logical and formal rules of L-system language in geometrical
patterns: making fractals.

In this issue, the formal language and the geometric patterns are compared: the

passage from the numerical codes and formal rules of the L-system fractal to the

visualization of the geometric patterns is allowed by technology.

In fact, one of the geometric system that computer graphics used for the

L-system’s generation is called Turtle Geometry.
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A state of the turtle is defined as a triplet (x, y, α) where the Cartesian

coordinates (x, y) represent its position, and the angle α, called the heading, is the

direction the turtle is facing in.

Given step size d and the angle increment δ, the turtle can respond to commands

represented by the following symbols:

1. F (it moves forward a step of length d the state changes to (x’¼ x + d � cos α ,
y’¼ y + d � sin α, α) a line segment between points (x, y) and (x’, y’) is drawn);

2. f (it moves forward a step of length d without drawing a line);

3. + (it turns left by angle δ, the state changes to (x, y, α + δ));
4. – (It turns right by angle δ, the state changes to (x, y, α� δ)).

Given a string ν, the initial state of the turtle (x0, y0, α0) and fixed parameters

d and δ, the turtle interpretation of ν is the figure drawn by the turtle in response to

the string ν. Specifically, this method can be applied to interpret strings which are

generated by the L-system (Prusinkiewicz, 1999). This language has been used to

generate many fractal figures, during the project work, with students, like into

following examples.

Example 1: Quadratic Koch

1. Axiom ω: F � F � F – F, start angle 0�, turn angle 90� (it corresponds to the

initiator or starter figure of the fractal) (Fig.4a);

2. Production p: F! F� F + F + FF� F� F + F (it corresponds to the generator

of the fractal) (Fig.4b);

3. Quadratic Koch island at the fifth generation (Fig.4c).

Example 2: A snowflake

1. Axiom ω: F--F--F--F--F, start angle 18�, turn angle 36� (initiator or starter

figure of the fractal) (Fig.5a);

2. Production p: F¼F--F--F-----F+F--F (generator of the fractal) (Fig.5b);

3. Snowflake at the fifth generation (Fig.5c).

In order to manipulate geometric objects and to plot the fractal figures, the

students use a free software, called Fractal Grower. It is a Java program (http://

www.cs.unm.edu/) created by the University of New Mexico.

Table 2 Connection among goals, content, issues and solution by technology

Goals

L-system fractals

contents Issues

Solution by

technology

Logical

thinking

String, ω axiom,

p production, turtle-

language

Converting logical and formal

rules in graphical patterns

Computing codes in

graphical patterns

Problem

solving

ability

Affine transformation,

contraction, rotation,

translation

Proving that the fractal does

not change, if the starting fig-

ure changes

Applying new codes

in geometric

transformations

Creative

thinking

Logo-language Modelling reality by fractals Plotting graphical

patterns
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The software allows students to visualize immediately the codes of fractals in

figures and realize if they are corrected or not. Visualization is very signifi-

cant aspect in learning geometric process. According to Duval (2000), three kinds

of cognitive processes involved in it can be distinguished: visualization processes,

construction processes with tools, and reasoning. Duval (2000) also analyses the

role of visualization in the solution processes of a geometry problem and distin-

guishes several approaches to a diagram in geometry:

An immediate perceptual approach that may be an obstacle for the geometric interpretation

of the diagram, an operative approach that is used for identifying sub-configurations useful

for solving the problem and a discursive approach that is related to the statement describing

the givens of the problem. (p. 64)

The construction of fractals, in its visualizazion aspect, is a geometric problem

solved by a “discursive approach”. The students, in fact, understand and convert the

affine transformations in the codes of fractals and transform them in images succes-

sively. Only the use of technological tools can help students to solve and to interpret

these steps correctly. Besides they make some conjectures about geometrical

properties of fractal figures. For example, changing the start angle or the turn

angle or the turtle code, they are able to verify new hypotheses and visualize their

solutions quickly. In this case, the visualization improves the theoretical knowledge

Fig. 4 (a) Axiom or initiator. (b) Production, generator. (c) A quadratic Koch island

Fig. 5 (a) Axiom or Initiator. (b) Production, Generator. (c) A snowflake
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of formal languages in order to turn them into geometric information and vice

versa. In addition, I would highlight that technology has a role as more “reorga-

nizer” than an “amplifier” (D€orfler 1993; Pea 1987). Fuglestad (2007) describes

these functionalities by:

The amplifier metaphor means doing the same as before, more efficiently, but not

fundamentally changing the objects and tasks we work on, whereas seeing ICT tools as

organizers implies fundamental changes in objects to work on, and the way we work. For

example in using a graph plotting program as an amplifier the software produces quickly

the graph as the end product, whereas seen as a reorganizer the function graph itself is

seen as a new object which can be manipulated either directly or by setting parameters.

(p. 250)

The features of the software used in the activity allowed us to manipulate geometric

objects directly, setting codes and formal language and experiencing new in order

to reduce the moment of repetitive application of the same geometric rules and

to understand better the fractal theory.

(b) Proving that if the starting figure changes, the fractal does not: fractal as an
attractor

In the recursive process of fractals, the rules of production are more important than

an axiom. The starting figure is not decisive for the fractal; it could be a triangle or a

square, in any case, after a few iterations, the figure converges to the same fractal as

an attractor. This important feature of fractal is not evident to the student, unless he

uses technology like in Examples 3 and 4.

Example 3: A triangle as starting figure

1. Axiom ω: F++F++F, start angle: 90�, turn angle 60� (a triangle corresponds as
initiator or starting figure of the fractal) (Fig. 6a).

2. Production p: F¼F-F++F-F (it corresponds to the generator of the fractal)

(Fig. 6b).

3. Koch fractal at sixth generation (Fig. 6c).

Example 4:A square as starting figure

If the students change the starting figure, using a square:

axiom ω: f++f++f++f, start angle: 0, turn angle 45�, with the same production

and same number of iterations, they obtain the same attractor (see Fig. 7a–c).

Through the manipulation of geometric objects graphically (translating, turn-

ing or reducing them), the students transform numerical codes in dynamic figures

and find out some properties of geometric objects in fractal theory. In fact, the

technology offers them the opportunity to learn and explore the fractal geometry

in autonomy.

(c) Modelling reality: fractals as geometric patterns.

Modelling real world means to study shapes and patterns, to discover similarities

and differences among objects, to analyse the components of a form and to

recognize their different representations (Barnsley 1993; Edgar 2008;

Prusinkiewicz and Lindenmayer 1990; Steen 1990). According to Steen (ibid.):
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Patterns are evident in the simple repetition of a sound, a motion, or a geometric figure, as in

the intricate assemblies of molecules into crystals, of cells into higher forms of life, or in

countless other examples of organizational hierarchies. Geometric patterns can serve as

relatively simple models of many kinds of phenomena, and their study is possible and

desirable at all levels. (p. 139)

For describing the complexity of the nature, we need to enforce the turtle

language by adding new symbols (Prusinkiewicz 1999):

[ (It pushes the current state of the turtle onto a pushdown stack. The information

saved on the stack contains the turtle’s position and orientation);

] (It pops a state from the stack and make it the current state of the turtle. No line

is drawn, although in general the position of the turtle changes);

! (It branches out smaller pattern in the same).

Trees and snowflakes representations generated by the students are very similar

to real shapes, as reported in the Examples 5, 6, and 7:

Example 5

Axiom: f (line as initiator), start angle: 0� turn angle: 20�

Production: f ¼f [+f] f[-f][f] (as generator) (see Fig. 8)

Fig. 6 (a) Axiom or initiator. (b) Production, generator. (c) A snowflake

Fig. 7 (a) Axiom or initiator. (b) Production, generator. (c) A snowflake
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Fig. 8 (a) Axiom or initiator. (b) Production, generator. (c) A tree. (d) A fractal tree branch at fifth

generation
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Example 6

Axiom: f (line as initiator), start angle: 0� turn angle: 7�

Production: f ¼ ![+f][------f]![+++++f][-------f]-![+f][--f]-!f (as generator)(see

Fig. 9)

Fig. 9 (a) Axiom or initiator. (b) Production, generator. (c) A tree. (d) A fractal tree at fifth

generation
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Example 7

Axiom: ω:f+f+f+f+f+f (initiator), start angle: 0�, turn angle: 60�

Production: f¼f++f-f-f-f-f++f (as generator) (see Fig. 10)
Some links of the videos about L-system fractals, made by students and posted

on youtube.com, are reported below:

https://youtu.be/1tNfXrp2JXI

https://youtu.be/EYCHgLr3YhY

https://youtu.be/4E7ECRwEbu0

https://youtu.be/UXWDpmlc2-k

https://youtu.be/DQTf-QOxmzA

Fig. 10 (a) Axiom or Initiator. (b) Production, generator. (c) A snowflake. (d) A fractal snowflake

at fifth generation
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In my activity, ICT are essential in order to plot fractals with many iterative

applications, to manipulate fractal codes for creating different figure, to make

conjectures for applying affine transformations to the figures. These applications

increase the sense of independence and autonomy in the students and stimulate their

creativity and imagination.

Conclusion

The educational experience described in this chapter, based on L-system fractals

and ICT is extremely rewarding. In fact, discovering mathematics in real life

through the study of geometric shapes, increasing students’ geometric knowledge,

and also showing them that there are new educational approaches to geometry

mediated by new technologies are the principal aims achieved at the end of this

educational activity.

Web 2.0 tools are significant in my activities with students, for:

1. Introducing theoretical content about L-system fractals, an uncommon topic at

this school level;

2. Turning formal language into geometric figures and analysing fractal properties;

3. Working in e-learning and teaching spaces (using of Google Docs®).

The students are able to make conjectures, to create fractals and to model the real

world through geometric shapes. At the beginning, they study the theoretical

content and then check their results by multimedia tools.

The outcomes achieved during these activities are: strengthening mathematics

skills (geometric transformations, iterative processes and functions) in the sense of

the definition given by Programme for International Student Assessment (PISA):

Mathematical skill is the ability of an individual to identify and understand the role that

mathematics plays in the real world, to operate based assessments and to use mathematics

and confront it in ways that meet the needs of the life of that individual as citizen exercising

a constructive role, committed and based on the reflection.

The educational activity, applied in this project, features an inclusive

approach between theacher and student, among students, it stimulates students’
curiosity, it fosters the knowledge of geometrical properties in autonomy and it

enhances their sense of self-confidence. In addition, the teacher also gains from this

experience:

– Discovering new educational approaches with students in order to make math-

ematical content interesting and more accessible;

– Experimenting with new methodology to renew his/her own teaching of math-

ematical topics.

New challenges are still to be experienced regarding the educational

approach described in this chapter, for example to extend it to more mathematical
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topics and above all to involve the whole class, not only those students who

voluntarily participate in any optional activity.
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Learning and Technology? Technology
and Learning? A Commentary

Peter Appelbaum

Abstract Should we or can we understand learning better by working with

technology, and then better support learning through technology? Research that

compares learning with “low-tech” technologies (paper and pencil, models and

metaphors) with learning with “high-tech” technologies (calculators, dynamic

software environments, touch-interactive devices) promises contributions to this

question. This commentary argues that learning uses technology while technology

uses learning, as demonstrated by the studies in this section of Sourcebook.

Researchers in these chapters resist a common tendency to conceive of technology

outside of humanity, and in this way offer models of richly informed by the

co-construction of humans and their technologies.

Keywords Technology • Curriculum • Reseach questions • Professional

development

Can we understand learning better, and then provoke more, better, deeper, or a

different sort of learning, by working with technology? How can teaching with

technology help us to better learn about learning? Does it help to compare learning

with “low-tech” technologies – paper and pencil, models and metaphors – with

learning that transpires along with the use of “high-tech” technologies – efficient

devices such as calculators, dynamic software environments, touch-interactive

devices? If so, how/what/when? The chapters in Part II lead us into such questions

by providing a variety of examples of classroom-based research where the collected

and analyzed data focuses primarily on learners. The studies described in this part

also offer opportunities to compare across different types of boundaries: the bound-

ary of national, cultural context (chapter “Domains of Manipulation in Touchscreen

Devices and Some Didactic, Cognitive and Epistemological Implications for

Improving Geometric Thinking” by Bairral, Arzarello, and Assis, between Italy

and Brazil; chapter “Integrating Arithmetic and Algebra in a Collaborative Learn

ing and Computational Environment Using ACODESA” by Hitt, Cortés, and
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Saboya, between Quebec and Mexico), the boundary between low-tech and high-

tech forms of technology (chapter “Graphs in Primary School: Playing with Tech

nology” by Ferrarello, between paper and pencil and graphing calculators; chapter

“Pocket Calculator as an Experimental Milieu: Emblematic Tasks and Activities”

by Floris, between activities with and without calculators; chapter “The Street

Lamp Problem: Technologies and Meaningful Situations in Class” by Gentile and

Mattei, among paper and pencil, pictures and simulations, and dynamic software;

chapter “A Framework for Failed Proving Processes in a Dynamic Geometry

Environment”, by Chartouny, Osta, and Raad, between paper and pencil and

dynamic software; chapter “Integrating Arithmetic and Algebra in a Collaborative

Learning and Computational Environment Using ACODESA” by Hitt, Cortés, and

Saboya, between paper and pencil and calculators; and chapter “L-System Fractals

as Geometric Patterns: A Case Study”, by Alfieri, among paper and pencil,

webquests, and technology-based presentations), the boundary between planned

and implemented curriculum (chapter “Disclosing the “Ræmotionality” of a Math

ematics Teacher Using Technology in Her Classroom Activity”, by De Simone;

chapter “L-System Fractals as Geometric Patterns: A Case Study”, by Alfieri), the

boundary between types of interactivity of touch devices (chapter “Domains of

Manipulation in Touchscreen Devices and Some Didactic, Cognitive and Epistemo

logical Implications for Improving Geometric Thinking” by Bairral, Arzarello, and

Assis), the boundary between required and voluntary use of technology to pursue

mathematical investigations (chapter “L-System Fractals as Geometric Patterns: A

Case Study”, by Alfieri), and boundaries across different stages of lessons (chapter

“Domains of Manipulation in Touchscreen Devices and Some Didactic, Cognitive

and Epistemological Implications for Improving Geometric Thinking” by Bairral,

Arzarello, and Assis; chapter “Disclosing the “Ræmotionality” of a Mathematics

Teacher Using Technology in Her Classroom Activity”, by De Simone; chapter

“Integrating Arithmetic and Algebra in a Collaborative Learning and Computa

tional Environment Using ACODESA” by Hitt, Cortés, and Saboya; chapter “L-

System Fractals as Geometric Patterns: A Case Study”, by Alfieri).

One boundary left under-theorized by this collection is that between what we

mean or might mean by “learning,” and what we mean or might mean by “tech-

nology.” The orientation of this collection, as with much research in mathematics

education, frames the research around the following sorts of questions:

• Can we tame technology so that it promotes learning rather than discourages it

from taking place?

• Can we understand technology better and then make more profoundly useful

technologies, or use technologies in cleverer ways, if we study technologies

through how learners interact with them?

• How can learning with technology help us to better comprehend technologies,

and how to classify, categorize, exploit, and control them?

Questions that I would like use to further consider as we reflect on the implica-

tions of the research reported in this collection include:
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• What could it possibly mean to learn without technology? Or to have technology

without learning?

• Are we inadvertently trying to tame learning so that it promotes appropriate

rather than inappropriate technologies from taking hold in learning

environments?

• How does what is considered technology influence what we say about

technology?

• How does what one considers learning influence what we say about technology?

And I will conclude with what I see as the strengths of this collections for

responding to implications of the learning-technology dichotomy for how we

understand both learning and technology: when technology and learning are

assumed prior to research to be distinct categories of things that can be defined,

studied, and then brought into interaction, we find that technology in such research

is already constructed, and hence reality is already predetermined to be created out

of technology which is outside of human beings and humans “learning.” Technol-

ogy in this way is an add-on to a more fundamental notion of learning (and

teaching/learning of course); this creates a sort of hierarchy, one way or the

other, between learning with and without what is considered technology.

Can We Tame Technology?

A careful reading of the chapters in this part suggests that it might be possible that

technology can be tamed and domesticated in order to nourish and support learning.

My impression is that one approach to such domestication is to first of all keep all

technology out of the classroom, and then to let it enter under careful scrutiny and in

limited ways. By this I mean that learners who live in a technological-device-rich

world outside of school are described as existing in a different world in the

classroom. This is consistent with my own experience of many school mathematics

learning environments in numerous countries: I rarely see learners with mobile

phones, televisions, tablets, music players, fitness devices, and so on, coming

together in classrooms in ways that are similar to how they interact outside of

school, multitasking with entertainment, school assignments, social networking,

and so on, all at the same time. What we see in such classrooms are a sort of sterile,

technology-free environment into which calculators, tablets, dynamic software, or

Internet exploration is introduced for examination and study. Technology becomes

an intervention in the learning experience, analogous to a medical study of a drug

for its effects on test subjects. Of course, it is questionable whether one can really

establish a technology-pure environment, given that humans are technological

beings. Technology as a tool that humans create in order to help them accomplish

something far more challenging or impossible without the tool is a matter of

semantics: pencil and paper is a technology for communication and learning as

much as a touchscreen device; language is a tool for thinking and making sense of
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the world around us, for communication, for reflection, and so on; mathematics as a

field of knowledge if a kind of technology. Still, there is something to be said for

electronic technologies, such as calculators, touchscreen devices, dynamic software,

and social networking, and that is what we are looking at in this part of this volume.

Once we domesticate technology it seems possible to imagine selective and

controlled design, hybridization, and specialization, similar to the ways in which

humans have carefully bred forms of livestock and plant life over generations and

millennia to maximize perceived benefits. So we can and should ask, “Can we

understand technology better and then make more profoundly useful technologies,

or use technologies in cleverer ways, if we study technologies through how learners

interact with them?” And the research collected here provides a strong “yes” in

response. For example, calculators, spreadsheets, and dynamic software environ-

ments speed up the process of collecting specific cases of mathematical phenomena

– values, variables, functions, shapes, locations along a graph, or properties of

geometric constructions. Once this process of collecting specific cases is sped up

enough, it is possible for learners to more efficiently consider at once the collection

of cases rather than individual instances. This quite naturally supports a focus on

collections of cases and generalizations, and in this way promotes a kind of learning

that values consistent attempts to generalize, and to study the process of general-

ization itself as a learner. While this does not change the nature of learning –

mathematics educators have always valued processes of generalization, it suggests

that technology can indeed enhance the likelihood that learners can have more

experiences with generalizing more often. In fact, the research collected here

strongly supports the notion that dynamic software in particular models in its

very form the idea of generalization, making dynamic software significantly rich

in potential for promotion of a disposition to generalize.

Nevertheless, we should be cautious to assume that technology forces general-

ization. Similar dreams have been provoked by educational tools throughout the

centuries – whether the tools are pictures drawn on the sand, blocks grouped into

tens of tens, pegs arranged in arrays on boards, or circles cut into various numbers

of equal pieces. Adults who already understand mathematical concepts “see” the

mathematics in these models of mathematical concepts, since the models were so

nicely constructed to represent the concepts themselves. So a picture in the sand,

base-ten blocks used to model the decimal system of numbers, geoboards upon

which rubber bands can create shapes, and fraction circles, appears to the adults to

scream the mathematics concepts at a high volume. What researchers have found is

that, yes, these models can often be helpful in learning environments, but they can

also simply reproduce the same issues with learning and teaching, since the learners

do not bring the concept fully formed to their experiences of the materials. Instead,

learners often mis-learn or un-learn concepts with the models, or mindlessly

attempt to follow procedures for manipulating the models with no concurrent

development of understanding. So it is not automatic that technologies that speed

up the creation of specific cases, or which rapidly generate seemingly infinitely

many examples of a geometric construction following certain properties, will force

learners to generalize; it is rather those who approach a task with a propensity to
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generalize will readily grasp that generalization is indeed possible in such situa-

tions. What we can say based on these chapters is that learners who have been

enculturated prior to experiences with technology to pursue generalization can take

advantage of technologies that support generalization, and are likely to do so.

Can Learning with Technology Help Us to Better
Comprehend Technologies, and How to Classify, Categorize,
Exploit, and Control Them?

Here too we can use the research reported in this part to say yes.We have examples of

researchers who have designed interventions to study differences that they have

perceived between low-tech paper and pencil and dynamic software, drawing pic-

tures and using calculators, different kinds of touchscreen devices, and software

versus internet-based investigations. In each case, it is possible to identify important

differences among the forms of technology. And in each case, a teacher can use these

differences in their planning to design encounters that exploit the differences. On the

one hand, it is worth pointing out that, on a certain level of analysis, there is little

change in pedagogical techniques: if learners are engaging with paper and pencil,

drawings, constructions on a screen, calculators, or dragging images on a touchscreen

to create transformations, the critical pedagogical method is to facilitate reflection

upon changes that can be observed when one looks at the changes that one is able to

make happen through interaction with the mathematical objects. This can take the

form of individual thinking, small group or large group discussion, reports by

individuals or small groups to an audience (either the rest of the class or people

outside of the class), or written reports for a particular audience (a private journal, a

letter to the teacher, a video posted online, or an interactive online presentation).

I note two important points thanks to the researchers collected in this part. First,

new technology requires educators to translate what they know and believe into

new contexts, and this process alone might be the most valuable aspect of technol-

ogies for learning, because it provides ways for the teachers to promote what they

value in the learning experience. Sometimes the learners surprise us in how they

interact with the mathematics or with the technology, and in the process, clarify

through their successes in achieving our goals for them whether or not our values

for learning are consistent with our expectations. De Simone makes this paramount

in her research on ræmotionality in chapter “Disclosing the “Ræmotionality” of a

Mathematics Teacher Using Technology in Her Classroom Activity”. In this study

we clearly see how a teacher’s hopes, dreams and fears for her students are enacted

in her decisions about technology in her classroom; it is in this study in particular

that we can most easily consider as well how learning and technology are difficult to

unravel from each other, because the learning experience influences how the

technology is defined, experienced and exploited, or not; at the same time, we see

in the discussion with teacher Silvia how the technology influences the learning
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experience, because it is enacted in the classroom in accordance with her emotional

investments for her students.

But we also see the value of translation in the other chapters in this part.

Chartouny, Osta, and Raad bring their interest in cognitive processes for the

development of proof into the dynamic geometry world in chapter “A Framework

for Failed Proving Processes in a Dynamic Geometry Environment”. Because of

their interest in stages of proof sophistication, they looked for this in their work with

geometry learners. In the process, they highlighted important ways that teachers can

use interaction with dynamic software to carry out ongoing assessment of specific

kinds of misunderstanding within instructional experiences; in this way they sug-

gest how teachers can plan for embedding such assessment within instruction,

simply by interacting with learners as they are exploring open problems. Similarly,

in chapter “The Street Lamp Problem: Technologies and Meaningful Situations in

Class”, Gentile and Mattei clarify the relationships among conjectures, exploration

of cases, and argumentation through their own use of dynamic geometry environ-

ments with learners. Hitt, Cortés, and Saboya translate an interest in algebraic

thinking as emerging from investigations into number relationships chapter “Inte

grating Arithmetic and Algebra in a Collaborative Learning and Computational

Environment Using ACODESA”; Floris also demonstrates this aspect in chapter

“Pocket Calculator as an Experimental Milieu: Emblematic Tasks and Activities”,

as do Ferrarello in chapter “Graphs in Primary School: Playing with Technology”

with graphing calculators and Alfieri in chapter “L-System Fractals as Geometric

Patterns: A Case Study” with explorations designed to help students appreciate that

the reproduction rule is more important in determining a fractal than its seed shape.

It seems that we are still at an early stage of classifying technologies. So far we

have paper and pencil and other picture-creating tools; calculators and spreadsheets

and other similar tools for carrying out repetitive calculations – whether arithmet-

ical, tabular, or creating a static graph; dynamic environments, in which it is easy to

drag and change elements while holding others static; social networking, incorpo-

rating extensive opportunities to research what others have already done; and

touch-devices, in which the ways in which one interacts with the screen might,

according to Bairral, Arzarello, and Assis in chapter “Domains of Manipulation in

Touchscreen Devices and Some Didactic, Cognitive and Epistemological Implica

tions for Improving Geometric Thinking”, have significant impacts on the episte-

mologies that are carried through the learning experience. Sensorial process,

motion and manipulation on-screen take an important cognitive role in this

research; in their movement into existence, in which they become objects of

thought and consciousness, geometric concepts are endowed with particular deter-

minations, which are in turn actualized in sensuous, multimodal and material

activity. On the other end of the experiential dimension, we might have the

webquest activities described by Alfieri in chapter “L-System Fractals as Geometric

Patterns: A Case Study”. Because the students volunteered to pursue these beyond

what is ordinarily expected of learners, and for an outside audience as part of a

regional presentation competition, the learners carried their own expectations for

learning into the experience, rather than being manipulated by the technological

encounter into a particular form of thinking or learning.
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Learning with/out/for Technology?

I want to return to the image evoked earlier, of a technologically pure environment

into which we inject technology as an intervention. Could we have learning without

some form of technology? This rhetorical question makes it clear that humans do

not really exist independent of technologies. The history of humanity is one of

co-evolving with our technologies, in ways similar to other animals with which we

share our planet (including birds, mammals, dolphins, octopi, etc.). So it is impor-

tant to tease out what the research highlighted in this section on learning can help us

to think about in this broader context. Technology runs the risk of being understood

as a prosthetic device – an enhancement either for the teacher to more powerfully

trigger learning, or for the learner to more powerfully see, hear, and sense in

general, the mathematics (Haraway 1991). This has positives and negatives in

terms of giving superpowers – in terms of what we can accomplish in a given

amount of time, what we can perceive in one glance, what we can produce, and so

on; but also in the process creating super-power-related weaknesses (for example,

in the rush to generalize about functions as exponents change, we overlook the

nuances of a change in constants; or, in the rush to find patterns in shaped numbers,

we no longer see patterns within the same shapes of numbers of objects; or, in our

attempts to explore geometric relationships, we rely on argumentative fallacies as

in chapter “A Framework for Failed Proving Processes in a Dynamic Geometry

Environment”). Sometimes educators want to slow down rather than speed up

processes, because the volume of information is overwhelming for the learner. At

other times, technology narrows our focus too much, or not enough. In these

instances, technologies understood as enhancing powers of perception turn into

disabilities of oversensitivity to too many stimuli (Appelbaum 2007).

We sometimes inadvertently limit “technologies” to devices outside of people.

What about language, knowledge, and specific terrains of subject expertise such as

mathematics itself, as technologies? (Keitel et al. 1993) When we reduce technol-

ogies to tools outside of people, we also reduce learning to perception, and we

exploit metaphors of perception (often reduced to an ideology of vision) to describe

learning; in these ways we miss out on other forms of learning not captured by

perceptual discourse. How might we help learners feel, taste, smell, and otherwise

experience mathematics? Or, more fully, are their ways of comprehending learning

outside of the metaphors of seeing and touching mathematical objects and mathe-

matical relationships? What else is inherent to mathematics not captured by our

ways of thinking about technology? (Appelbaum 2007).

I suppose we could say that the co-evolving humans and technologies are both

influencing each other, so that our notions of mathematics, technology, and learning

are all buttressing each other (Puech 2016). But there are also ways in which

mathematics education might benefit from challenges to our natural ways of

thinking. What if we assume that technology and learning are inseparable concepts?

The technology-learning nexus, if you will, collapses all distinctions between

technology and learning. What this means is learning is a technology; and

Learning and Technology? Technology and Learning? A Commentary 341

http://dx.doi.org/10.1007/978-3-319-51380-5_11
http://dx.doi.org/10.1007/978-3-319-51380-5_11


technologies are a form or a crystallization of or a promise of certain “learnings”.

Learning leads to acting with technologies to continue learning; technologies

provoke learning how to further use the technologies to further learn to yet further

use technologies. There is circularity to the overlapping and mutually defining

nexus of learning and/of/with/through/for technology. The critical point is that

there is no learner without the presence of some kind of technology, and no

technology without a learner using the technology. Technology-learning is a col-

lection of characteristics that are essential to mathematics education. We can

similarly state what might seem obvious but which is lost in its obviousness when

we try to come up with fancy research-based “results”: the learning-technology

nexus is at once both personal and social, in that it is apparent in private, intimate

and personal moments, both in solo explorations, and in experiences that are

emotional and raemotional, and also in group activities, such as those that take

place in classrooms and in small and large numbers of teachers, learners, and

audiences.

None of the researchers collected here have attempted the folly of trying to

isolate learning or technology outside of a culturally rich and institutionally defined

form of learning-technology. That way of approach is nothing more than a trap

where technology ironically becomes a form of taming learning, capturing learning

in the grip of technological constraints. We might want to proceed with caution, and

ask, “Who/what are we serving when we carry out research with technology?” Are

we merely serving a technology outside of ourselves when looking for reasons to

value the technology? This is occurring when we translate our values for mathe-

matics into our research and desperately search for them in the learning/technology

context that we have created. This is present when we introduce technologies as

prosthetic power enhancers in an otherwise pedagogically dead classroom. In

contrast, we are critically examining our learning-technology nexus when we

explore with the technology at hand what might be possible in terms of the values

that we hold for the mathematics that is being learned. Is the technology supporting

the learning that is supporting further use of the technology to support learning? Do

we have evidence of this circularity? When educators seek a pure idea of learning

and/or a pure idea of technology independent of time, place, culture, or institutional

context, I believe they misunderstand the nature of the learning-technology co-evo-

lution that characterizes humans who are learning mathematics and creating tech-

nologies for learning mathematics, and using things at hand as technologies to

learning mathematics, and in turn structuring learning to be grounded in

technologies.

It is important to clarify whether the learning-technology experience is technol-

ogy-driven or curriculum-driven (Bromley 1997). When confronted by a teaching/

research project, we can ask:

• How did this project come about?

• Why is this initiative taking place?

If an answer to one of these questions is to insert some cool technology into a

learning environment, then the project is technology-driven and is likely to lead to
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little significant change in learning; I would expect more of the same, as in digitized

forms of exercises that could easily have been accomplished through paper and

pencil worksheets, digital collection of data on student performance rather than

learning, or soon-outdated equipment purchased for a large sum of money. On the

other hand, if the responses to these questions involve discussion of forms of social

interaction tied to goals that educators have for learning, then there is great potential

that learning and technology are together carrying social values that are crucial to

educational transformation. In the projects described in Part II of this volume, we

have seven examples of learning-technology that are curriculum-driven rather than

technology-driven and therefore demonstrate powerful forms of social transforma-

tion: Bairral, Arzarello, and Assis (chapter “Domains of Manipulation in

Touchscreen Devices and Some Didactic, Cognitive and Epistemological Implica

tions for Improving Geometric Thinking”) create opportunities for the learner to be

active sculptures of geometric objects and their transformation using GeoGebra and

Geometric Constructor software; the secondary school students become active

strategists whose gestures touching the screen physically drag through multiple

cases of a possible construction. Ferrarello (chapter “Graphs in Primary School:

Playing with Technology”) establishes primary school students as explorers in a

mathematics laboratory, who exploit technology to efficiently gather observations

so that their comparisons can carefully test their own conjectures. Learners in the

contribution from Floris (chapter “Pocket Calculator as an Experimental Milieu:

Emblematic Tasks and Activities”) establish learning milieus through anticipating

actions that they then carry out, in the ongoing negotiation of the didactic contract

of the classroom. Whether expectations are confirmed or met with surprising

feedback from the technology, the important component of the learning-technology

nexus is the ongoing construction of the possibility for “adidacticity”, specifically,

something to learn as an inescapable characteristic of the learning milieu.

Gentile and Mattei (chapter “The Street Lamp Problem: Technologies and

Meaningful Situations in Class”) raise the question of situations posed by the

teacher in the classroom; the learners in this study represent the situation with

GoGebra, and in the process become what the teacher describes as.

. . .very interested and involved, working seriously on the task given, arguing and justifying
their solutions in an accurate way. I felt very involved in this activity; they worked with

interest and curiosity. . . (Gentile and Mattei, this volume, p. 208)

This in turn led the teacher to describe herself as transformed by the observations

of her students: “. . . this gave me a great satisfaction and an incentive to repeat in

the future this kind of experience.” In this case, designing a social learning context

in which technology is used to translate an open situation into a representation

changed the forms of participation and relationships among the teacher and the

learners. Similar changes in the adults are discussed in chapter “A Framework for

Failed Proving Processes in a Dynamic Geometry Environment” by Chartouny,

Osta, and Raad; once the teachers identify three stages of the proving process – the

construction and manipulation of the figure; the formulation of the conjecture; and

the proof itself – they become students of the learners, understanding the kinds of
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(perhaps faulty) reasoning that learners often employ, and how these kinds of

reasoning can be the result of the interaction with the technology that is meant to

help them learn. What we see here is a nuanced comprehension of learning with

technology and technology with learning, a relationship with learners that recog-

nizes the need for a nonlinear path toward a teacher’s objectives. What learners will

create as products of their learning is not always mathematically perfect; instead,

forms of proving that would be labeled failures by a seasoned mathematician are

evidence of learners doing just what they should be doing: learning.

Such changes in the teacher in response to the changed learning-technology

world that is created by the research project are echoed in chapters “Disclosing the

“Ræmotionality” of a Mathematics Teacher Using Technology in Her Classroom

Activity”, “Integrating Arithmetic and Algebra in a Collaborative Learning and

Computational Environment Using ACODESA” and “L-System Fractals as Geo

metric Patterns: A Case Study”: De Simone (chapter “Disclosing the

“Ræmotionality” of a Mathematics Teacher Using Technology in Her Classroom

Activity”) describes how a teacher thinks with potential integration of technology

about how to make her dreams for her students to be more possible. As she

experiments with GeoGebra and Java applets, she becomes increasingly creative

in the ways that she can make it possible for learners to use their imagination to

construct mathematical concepts; as students demonstrate that the dynamic soft-

ware does in fact support their imagination in such ways, the teacher relies more

and more on dynamic software to validate the students as constructors of mathe-

matical concepts. Hitt, Cortés, and Saboya (chapter “Integrating Arithmetic and

Algebra in a Collaborative Learning and Computational Environment Using

ACODESA”) place the learning-technology nexus in support of collaborative

learning, scientific debate and self-reflection, a pedagogical approach that has

come to be known as ACODESA; they noted, for example, how spontaneous

representations impacts on three different forms of social action – individual

work, teamwork and large group discussion. Finally, Alfieri (chapter “L-System

Fractals as Geometric Patterns: A Case Study”) turns her learners into special

members of a mathematical community who self-select to pursue further investi-

gations into interesting mathematics beyond the regular curriculum; as they pursue

mathematics with technology, and as they readily make use of technology because

they are learning, they become members of a new community of mathematics

learners that interacts with students in other schools, and adults who are interested

in what they can learn from these students.

What I find missing from this collection – and surely any small number of

studies cannot reach all relevant areas of research – is attention to how the learning-

technology nexus created differential curriculum-driven opportunities for different

learners. Who was best served by the various forms of learning-technology that

unfolded in these contexts? (Bowers 2001; Leigh 2002) Social class, ethnicity,

immigration status, or other important learner communities means different oppor-

tunities in the same learning-technology world that is established in a school or

classroom. What we find in these chapters is an assumed, normalized learner who

344 P. Appelbaum

http://dx.doi.org/10.1007/978-3-319-51380-5_12
http://dx.doi.org/10.1007/978-3-319-51380-5_12
http://dx.doi.org/10.1007/978-3-319-51380-5_12
http://dx.doi.org/10.1007/978-3-319-51380-5_13
http://dx.doi.org/10.1007/978-3-319-51380-5_13
http://dx.doi.org/10.1007/978-3-319-51380-5_14
http://dx.doi.org/10.1007/978-3-319-51380-5_14
http://dx.doi.org/10.1007/978-3-319-51380-5_12
http://dx.doi.org/10.1007/978-3-319-51380-5_12
http://dx.doi.org/10.1007/978-3-319-51380-5_12
http://dx.doi.org/10.1007/978-3-319-51380-5_13
http://dx.doi.org/10.1007/978-3-319-51380-5_13
http://dx.doi.org/10.1007/978-3-319-51380-5_13
http://dx.doi.org/10.1007/978-3-319-51380-5_14
http://dx.doi.org/10.1007/978-3-319-51380-5_14


interacts with a generic teacher. So I ask us to strive for further analysis in this

direction.

What the research in Part II shares nevertheless is the pursuit of complexification

worthy of mathematics education practice and theory, rather than an empty but

rational simplicity. Learning uses technology while technology uses learning in

each of these studies: I see this positive circularity in each of these chapters, and for

this reason alone I applaud my colleagues, and thank them for the chance to

contribute this commentary, and thus to share in their important work. Here in

these chapters are researchers strongly resisting the pull to conceive of technology

outside of humanity; here are researchers critically embedding themselves in the

learning-technology nexus, and reflecting on that process.
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e-Mathematics Engineering for Effective
Learning

Giovannina Albano

Abstract Education in digital age requires a strong focus on “engineering of

learning”, as an emergent field of study and design of effective innovative learning

experiences and environments. In this respect, the chapter addresses mathematics

education in e-learning settings according to a tetrahedron model, as extension of

the classical didactical triangle, to which adds a fourth vertex: the ‘author’ (A). The
introduction of the vertex Author is due to our view that full exploitation of

e-environment and its integration with results from research in mathematics edu-

cation requires properly designed didactical interventions, based on a scientific

approach, such as Didactic Engineering. Moreover, such exploitation should con-

sider the centrality of the student, which means that the vertex-positions of the

tetrahedron can be assumed also by the student along the learning process. We

discuss the didactic engineering work from the perspectives of the tetrahedron faces

and taking into account the dynamicity of the vertex-positions.

Keywords e-learning • Didactic engineering • Didactical tetrahedron •

Mathematics education

Introduction

This paper concerns the learning/teaching process in the context of e-learning.

Many definitions have been given to the term ‘e-learning’ and sometimes it has

been used as synonymous to ‘online learning’ or ‘distance learning’ or ‘web-based
learning’. Lately ‘e-learning’ has also been referred to ‘communication’ and ‘con-
nectivity’ issues. Thus, first of all, we want to make the boundaries of our context

precise. Then, we will draw our attention to the teaching/learning process which

occurs in a technology-enhanced environment consisting in an online teaching

platform added with facilities of the Web2.0 and (eventually) with online mathe-

matical software. From now on, we will refer to it as ‘e-environment’, and in

general, we will put the prefix ‘e-’ to a word meaning that such word refers to
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e-environment (for instance, ‘e-tool’ is a tool included in the e-environment). So, in

this paper, e-learning means teaching/learning process in an e-environment.

Looking at the experiences in e-learning applied to various domain, including

mathematics (Borba and Llinares 2012; Garcia Pe~nalvo 2008; Juan et al. 2012a, b),
we can individuate two main strands. One is guided by an exploration of the

teaching and learning opportunities offered by the e-learning platform, which has

characterized the early studies, where great attention has been devoted to resources

(namely learning objects) that exploited the interactive features of the e-tools. The

other one has drawn attention to learning activities that integrated the delivery of

some resources within a more complex structure of engagement of the students by

means of cooperative and collaborative features of the platforms such as forum and

wiki.

What we observe in any case is that the researchers have devoted great effort to

the design of the resources or learning experiences in a “Design Research” (Kelly

et al. 2008) view. This means that they move along a path consisting in planning a

set of resources or activities, experiment their potential in order to support learning

and analyse the data that can give rise to theories.

We suppose that such approach has been greatly affected by the focus on the

technologies rather than on the learning process. For some part, it is due to historical

and social constraints since e-tools came before than their didactic consideration

and conveyed certain – perhaps unconscious – traditionalistic view of teaching of

their high-tech designers (Chevallard and Ladage 2008):

Much to the contrary, a sound view of didactic engineering calls for the reverse: didactic

functions, not structures, must be considered first. (p. 168)

Thus we are firmly convinced that now we need a research methodology

allowing us to integrate results from the mathematics education research into

learning process in the new global environment empowered by technologies

(in their continual and fast change) and to validate the design. The use of a

methodology should yield robust teaching/learning proposals (also in terms of

strategies) that can be shared and reproduced in the teaching/learning community.

In this respect, we claim that didactic engineering could be a good research and

development tool.

The paper has been structured as follows. After a brief presentation of the

Didactic Engineering approach and its relation with the Design Research, we

discuss a tetrahedron model of the teaching/learning process in e-environment,

that add to the classical vertices a new one, the Author. Then we discuss how

each face of the tetrahedron is related to phases of the didactic engineering

approach and which the role of the Author is.
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Didactic Engineering and Design Research

In the recent years a substantial debate on how the two approaches of “Didactic

Engineering” (DE) and “Design Research” (DR) relates each another is going on

(Artigue 2015; Godino et al. 2013; Margolinas and Drijvers 2015).

Didactic Engineering (Artigue 1992, 1994, 2009) emerged in the France context

of mathematics education in the early eighties to indicate an approach to didactical

work in mathematics similar to the engineer’s work. This implies that mathematics

didacticians should act like engineers, who in order to realise a fixed (learning)

project rely on the (disciplinary and didactical) scientific knowledge of the domain,

accepting to be submitted to a scientific testing. At the same time they are forced to

manage more complex objects than those of science and to face problems not yet

tackled by science.

It is worthwhile to recall that Didactic Engineering has become a polysemic

notion, that can be development-oriented or research-oriented as pointed out by

Artigue (1994):

designating both productions for teaching derived or based on research and a specific

research methodology based on classroom experimentations. (p. 30)

Thus it is conceived as a practice of controlled theory-based intervention,

consisting in the design of teaching sequences, the setting up of didactical tools

and resources organised and structured in a period of time coherently to the aims of

reaching fixed learning objectives, their monitoring and evaluation. The results

allow to test theory-based hypotheses and to produce teaching resources scientifi-

cally validated.

It is also referred to as a research methodology of qualitative type, in which an

essential role is played by the “didactic realisations in classroom” as investigation

practises of the elaborate theoretical hypotheses.

At the beginning the base-theory for Didactic Engineering was the Theory of

Didactic Situations (TDS) (Brousseau 1997), which contributed to shape the struc-

ture of the design (methodology), consisting in the following phases: (1) preliminary

phase consisting in epistemological, cognitive and didactical analysis of the math-

ematical knowledge to be taught; (2) design and a priori analysis of the teaching/
learning situations; (3) implementation and experimentation; (4) a posteriori anal-
ysis and validation.

Comparing Didactic Engineering with Design Research, Godino et al. (2013)

argued that what mainly distinguishes them is that Didactic Engineering is

grounded on a theory (such as Theory of Didactic Situations) whilst Design

Research does not. In Didactic Engineering the underlying theory guides the a
priori analysis and the consequent design and the expected results, whilst in Design
Research the design is supported by various interpretive frameworks and theories

emerge from the data. This latter thing justifies the foreseen internal validation step

in Didactic Engineering, whilst Design Research does not. Anyway, Didactic

Engineering and Design Research face similar paradigmatic questions, concerning
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the improvement of learning in context by instructional design intertwined with

educational research. Godino and colleagues conclude that Didactic Engineering

can be seen an instantiation of Design Research. Changing the base-theory, they

envisage various Didactic Engineering differing in didactic design. Thus they

introduce a new notation, as reported in the following:

We introduce the notation DE (TSD) to indicate the dependence of the “Didactic engineer-

ing” from the Theory of Didactic Situations. This will help to express possible generaliza-

tions of didactic engineering changing the base-theory used to support the instructional

design. (p. 6)

So we can have DE (ATD), DE (SM), DE (IA) according respectively to the

Anthropological Theory of Didactic (Chevallard 1992, 2006), the Theory of Semi-

otic Mediation (Bartolini and Mariotti 2008), the Instrumental Approach (Drijvers

et al. 2010a; Drijvers and Trouche 2008; Trouche 2004), and so many others. We

also can have a DE based on a network of theories (Bikner-Ahsbahs 2010), that can

provide complementary insights and, hence, deepens analysis and understanding of

some didactical phenomena.

Considering a didactic engineering approach according to various based-theories

seems us a very interesting idea because it allows researchers to define a unified

methodology to construct a wide range of proposals for learning experiences with

two rewards in our view. On one hand, they are designed in the frame of a reference

theory, and tested and validated according to scientific criteria. On the other hand,

they do not assume a one-sided insight of learning, without referring to one learning

theory only, so keeping away from the original drawback of the use of e-learning

environments.

The Tetrahedron Model

Following Albano et al. (2013), we assume that the didactic system
(DS) concerning the teaching/learning process in e-environments can be modelled

in a systemic way by a tetrahedron (see Fig. 1). It includes the main classical

entities: some mathematical knowledge, that is Mathematics (M); someone who is

expected to learn M, that is the Student (S); someone who is supposed to officially

help S to learn M, that is the Tutor (T). A further character has been introduced, the

Author (A), consisting in a team who is in charge of planning, developing and

managing the didactic organization.
The addition of the new vertex A has created three new triangular faces, besides

the classical didactic triangle. The function of the tetrahedron is not explicative or

descriptive of educational experience, but mainly methodological: each vertex of

the system can be used as the observer’s position that looks at the inter-relationships
within the face generated by the other three vertices, though none of the elements

involved can be completely separated from the others.
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We want to underline that technology has brought the Student to have a central

role in the learning process and to look for a larger topos, not only restricted to

someone who learn, but enlarged as someone who can be engaged in other didactic

functions (Chevallard and Ladage 2008). This means, in our systemic view, that the

vertices of the tetrahedron are not static figures, but we consider them just as

position, that is as a system’s element (for deepening discussion on teacher’s
position, see chapter “The Professional Development of Mathematics Teachers:

Generality and Specificity” this volume), that can be played also by Student in some

situations along the learning process. Transforming the didactic triangle into a

didactic tetrahedron through the addition of the Author lets more evident the crucial

role of the students, since looking at the tetrahedron faces allows to image, design,

observe learning situations where students can play a position different from S. For

instance, a student can be in the position Author when she creates resources that

modify the milieu used to reach the knowledge M. Analogously, a student is in the

position Tutor when she is expected or required to officially support some other

students, that is she is no more in a symmetric relationship among peers but she

assumes an asymmetric role.

The introduction of the vertex Author is due to our view that full exploitation of

e-environment and its integration with results from research in mathematics edu-

cation require properly designed didactical interventions, based on a scientific

approach both in terms of didactical transposition (Chevallard 1989) and in terms

of didactic engineering. The vertex Author has a key role in the design and in the

validation of the teaching/learning resources and situations, with both contents and

activities empowered by technology features. Differing from the classical teaching,

the didactic engineering should take into account the chance for students to move in

other vertex-positions of the tetrahedron. This adds a dimension of dynamicity

where learning does not come out from the fruition of a ready-made product but it is

Fig. 1 The tetrahedron

model
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the outcome of a construction where students have chance to carry out didactic

functions, suitably supported, guided and supervised, impacting on the didactic

organization itself.

Whilst Author, although is a team including in herself various competencies,

from pedagogical, to disciplinary, to technological ones, can be thought as a

collective subject, that is a single entity, we can think at Student and at Tutor

both as a single entity and as a community. The first one is a community of “peers”

who are engaged in learning. The second one refers to all the persons dedicated to

facilitate student learning – in face-to-face or online settings, from the traditional

teacher and any other educational figure (coach, advisor, and so on). We refer to

them as singles or as community depending on the teaching strategy adopted, such

as individual learning versus group learning, or on the size of the learning group to

be supported which can require more than one tutor. Moreover, if Author and Tutor

are not the same person, they should anyway intensely interact to succeed in their

roles.

In our approach, technology is both outside and inside the teaching/learning

system, thus we represent it as a couple of spheres: one outside and one inside.

The external sphere refers to the immersion of humans in a technology-enriched

world. It contains all kind of e-tools (for a flavour, see the list presented in

Chevallard and Ladage 2008), which permeate our life in all its aspects and our

identity too (some years ago, I was astonished when a friend said to me: “you do not
exist if you do not exist on Facebook”). There is no doubt that nowadays we cannot
conceive to being human without being connected to and interacting with the global

virtual word created by the web, as noted in Borba (2012).

Although technology is everywhere and affects our life with respect to what we

are and what we do, we want to distinguish the intention of use of some technol-

ogies, related to the didactic system, represented by the tetrahedron.

Thus we introduce an internal sphere. It refers to the use of particular e-tools

with an explicit didactic intent, that means that they are exploited with the intention

to teach in a specific educational context (Chevallard 1989). It is worthwhile to note

that the e-tools have not been invented for educational purposes but, more probably,

for business, and then their meaningful didactic use is not granted, but it has to be

attained (Borba et al. 2013; Chevallard and Ladage 2008).

According to Arzarello et al. (2012), now we assist to a shift from visible to

invisible technologies, putting their add-value in their particular use with respect to

learning purposes.

This is why we do not consider technology as a new vertex in the model, as

others in literature do (Rezat and Sträßer 2012; Ruthven 2012; Tchoshanov 2013),

but as a sphere which is into the background.

Due to nature itself of Author, we can assume a certain use of means from the

external sphere in order to support group work. It is quite natural that their use

comes out spontaneously (for instance, think of the use of Dropbox or GoogleDocs

for constructing shared documents). Some kind of natural interactions within the

external sphere can occur inside the communities of Student and Tutor (for

instance, the use of Facebook group as a notice board in order to share and keep

354 G. Albano



up-to-date on organizational information about a course). According to the tetra-

hedron model, when interactions inside Student or between Student and Tutor are

guided by didactic strategies they will be frame in the internal sphere.

The tangent point of internal sphere with the tetrahedron addresses the add-value

that technologies can give to the relations among the actors of the face in the

learning process, which, according to Arzarello et al. (2012), is:

based on the methodology, or in their use as a tool to support well-defined teaching

strategies, focused on the learning process of students or teachers engaged in professional

training. (p. 3)

In this respect, we are firmly convinced that it is more and more appropriate the

vision of mathematics education as a ‘design science’ (Wittmann 1995), which

should combine and relate to one another the design of “artificial objects” – moving

from teaching units (ibid, p. 362) to e-activities when they make use of

e-environment – and empirical research. This science should produce proposals

for the classroom, re-usable in other situations, not only test them (Lesh and

Sriraman 2010) and this should hold for online classroom in e-environments

(Borba 2012).

An Overview of the Tetrahedron Vertices

In this section, we are going to define the new vertex and to specify some

characteristics of the other vertices that differ from the actors in the traditional

didactic system.

The Author is a collective subject with different professional skills, including

educational expert in relation to the knowledge domain, instructional design and

management, ICT and pedagogical/sociological expertise. This subject acts as

“scriptwriter” of didactical experiences mediated by technology.

The importance of teamwork inside the collective author is noted by Borba

(2013), which identify as weakness of Internet the low design and pedagogical

quality of online interactive mathematics contents. This can be avoided by the

simultaneous work of a variety of experts, such as mathematics educators and

human-computer designers, who can take into account and integrate both didactic

objectives and interface design principles. Also Schoenfeld (2009) hopes for a

synergy between educational researchers and educational designers. The richness

of figure Author allows to create a variegated scenario of pedagogical expectations

concerning knowledge, of professional or ideological beliefs, of implicit philoso-

phies that supply an enrichment of the e-environment and carry out robust and well-

engineered products to made available to the targeted learners. We consider that the

comparison, the discussion, the thoughts that can occur among the different experts

above, with assorted expertise and experiences, affect the decisions about resources

and methodologies to be implemented with respect to a fixed didactic goal, and

achieve in such way the construction of a rich and deep product.
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Besides Author, the didactic system should include someone who teaches. We

prefer to use the word “tutor” instead of “teacher” for making evident the change of

the role of the teacher in an e-environment. She is the person who supports student

learning and facilitates interaction between learners, and sometimes completely

disappears (Arzarello et al. 2012) in the so-called self-directed learning or learning

without teaching. In the framework of instrumental orchestration, we can say that

the tutor is also the one in charge of the didactical performance (Drijvers et al.

2010a):

A didactical performance involves the ad hoc decisions taken while teaching on how to

actually perform in the chosen didactic configuration and exploitation mode: what question

to pose now, how to do justice to (or to set aside) any particular student input, how to deal

with an unexpected aspect of the mathematical task or the technological tool, or other

emerging goals. (p. 215)

Conversely, the didactic system should include someone who learns: the Stu-

dent, who also refers to those involved in continuing education program. What

seems as important is the ‘active’ role she has in an e-environment. On the one

hand, we have the shift from the centrality of the teacher to the centrality of the

learner, which has in her hands the control of the learning process (Arzarello et al.

2012). On the other hand, learners change their role, becoming active in

constructing knowledge too (Jahnke et al. 2014).

Finally, all the previous figures move around the element that gives reason of the

didactic system, that is Mathematics Knowledge. Although Mathematics mainly

refers to the academic mathematical knowledge, resulting from the scientific

research, with its specific structural, methodological, historical and cultural char-

acteristics, we cannot ignore that its didactic transposition is no more under the

umbrella of a certain certification through official academic or school channels.

With the advent of Web2.0 and of the communication infrastructures growth, it has

become prerogative of anybody due to the availability of authoring and sharing

tools (Borba et al. 2013).

An Overview of the Relations Inside the Tetrahedron

As seen in Albano et al. (2013), despite the fact that the didactical tetrahedron

represents a whole, looking at each face allows us to consider the interactions of

three characteristics at once and to think of a range of configurations of the

teaching/learning process in e-environment.

The Author-Mathematics-Student face refers to a configuration where learning

comes out from the interactions of the learner with the mathematics knowledge,

which has been transposed in some digital resources by the Author or that she

herself can author. No support of any Tutor is planned. Thus this face may refer to a

configuration of self-directed learning.
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This requires the learner to have an attitude of personal responsibility of her

learning and a good level of the self-regulation competency. She is supposed to be

able to control her own process of acquisition, elaboration and exploitation of her

knowledge in relation to the learning goals, self-posed, to the awareness of her

knowings, to the attitude towards failure in the past and expectations for the future

(Schunk 1990; Zimmerman 1990). It is worthwhile to note that the lack of such

competency, in terms of bad management of personal knowings and negative

attitudes, seems the key of repeated unsuccessful behaviours (Zan 2000).

Looking at Author-Mathematics-Student does not mean that the whole learning

process we are dealing with is in the previous configuration. More generally, it can

also refer to the possibility for the learner of autonomously and freely moving, of

choosing, designing and managing her learning in the e-environment. Self-

regulation capability requires that Student should be free to construct dynamically

her own learning path. In this view, the role of the Author is not just who edits some

digital resources, but she becomes an arranger of technology-enhanced contexts

where the resources can foster the achievement of a precise purpose.

Besides, Student should be also free to construct her own resources, realizing her

own transposition and being herself part of the Author. Students do not restrict

themselves to receive and elaborate objects (such as in the case of the book), but

they can produce new ones from scratch or starting from those available. For

instance, students can rewrite learning objects, traditionally viewed as read-only,

by adding personal annotations (not only text-based) and share the so constructed

new objects with peers (Borba et al. 2013). Further examples can be found in the

frame of the narrative approach to mathematics learning, based on the educational

use of story problems (Zan 2011) and of digital storytelling (Robin 2008): students

are involved in the creation of digital story problems about real-life situations

whose solution needs to apply some mathematics, giving rise to complex interactive

resources (Gould and Schmidt 2010). The resources created by the students can be

validated by the tutor or not, before being shared, according to the settings of the

context in which they arise.

The Mathematics-Student-Tutor face refers to a learning configuration that

requires the Tutor’s interventions so that learning comes out by the interactions

among students, tutor and mathematics. Interactions can occur between tutor and

student or group of students, or among students, or among students and resources

and e-tools. The tutor’s mediation depends on the base-theory that has guided the

design of the learning activity, and in an individual or cooperative/collaborative

setting. Due to the availability of technological tools allowing online monitoring

and recording of the learner’s work, the tutor can support students’ interaction by

means of the Spot-and-show orchestration. She can access student work, identify

interesting pieces and deliberately use them to set up students’ interactions – for

instance, ask for explaining the reasoning or providing reactions or feedback on the

work (Drijvers et al. 2010a).

In any case, we can say that this face is characterized by the communication and

we can frame learning in the so called discoursive approach (Sfard 2001).
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The features of the new communication means and the various contexts in which

mathematical communication occur highlight the importance of some characteris-

tics of the mathematical discourse: not only multisemioticity, but also

multimodality and multivariety, which are crucial for developing competence in

mathematics (Albano and Ferrari 2013; Arzarello 2006; Duval 2006, Way 2014).

The Author-Mathematics-Tutor face refers to the relation of the author and the

tutor with mathematics, consisting in the didactic transposition, that is in the design

of the learning situations in the e-environment. Here the Author focuses her efforts

on the configuration and exploitation of suitable e-tools and on the analysis, the

design and the implementation of educational resources and activities (with or

without tutor). It is well known that face-to-face teaching methods cannot be simply

‘transferred’ in e-environment, but they need to be revised and modified in order to

integrate technology and pedagogy and take really advantage of the e-tools (Kahiigi

et al. 2008). Moreover, we should observe that even problems trivial in paper and

pencil environment can assume new light in e-environment, because of e-tools

constraints (Borba 2012).

Didactic transposition should also take into account the shift from text-based

communication to multimodal communication. Mathematical resources should

combine various semiotic systems (text, graphs and figures, symbols) but also

interactivity, animation, videos because it is what young people experience of in

their ordinary life and thus it is what they expect in learning context (Borba et al.

2013).

The interactions between the author and the tutor is very important since the

tutor can report her own feedback of usage of the didactical proposals. Such

feedbacks contribute to a continuous re-design in order to make the proposals

able to produce the desired learning. This means that the educational resources

and activities are not static objects but they evolve according to the practices’
feedback.

Finally, it is important to point out that the didactical proposals, related to certain

goals, should be as many and various as possible, according to various approaches

and methods, in order to support various students’ needs, profiles and preferences,

which in the constructivist perspective is viewed being the driver of mathematical

learning (Balacheff and Sutherland 1999).

The Author-Student-Tutor face mainly refers to the relations of Tutor with the

digital resources authored by Author on one hand and with Student on the other

hand. Here we can frame the documentational genesis (Gueudet and Trouche

2009): Tutor appropriates and reshapes resources initially made available by

Author and builds schemes of their utilization, for a given class of situations, across

a variety of contexts, giving rise to the so called document. Such product becomes a

new resource and it can be involved in a further process of documentational genesis,

producing new document. The tutor arranges the documents she generated.

Finally, we note that the relation of Author with Tutor and Student can allow to

collect students’ and tutors’ feedbacks about the resources initially authored by

Author and to adjust/refine them in profitable way.
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Didactic Engineering Work According to the Tetrahedron
Model

In this section, we analyse, according to the systemic view given by the tetrahedron

model, the phases of DE (TDS), previously listed, that are: (1) epistemological,

cognitive, didactical analysis of the mathematical knowledge to be taught,

(2) design and a priori analysis of the teaching/learning situations, (3) implemen-

tation and experimentation, (4) a posteriori analysis and validation.

In particular, we try to exploit the methodological function of the systemic view

given by the tetrahedron, looking at the didactic engineering work as we are

observing it from each vertex and thus in terms of the opposite face and of the

relations among the related elements. This means that in what follows, said X, Y

and Z any triplet of vertices of the tetrahedron, we are guided by the question:

assuming the perspective of the face X-Y-Z, what contribution can be given to the
didactic engineering work?

It is worthwhile to remark that the relations and processes inside the face can be

affected by the fact that the vertices are not static figures but are considered as

positions that can be assumed also by the students. Therefore the didactic engi-

neering work, which can be seen as linear (although back and forth paths can be

foreseen among the design and the validation steps), benefits from the systemic

tetrahedron model as, conversely to its origin, it is no more teacher’s prerogative
but it conveys the relations among various positions. Thinking at each of the

didactic engineering phases from the various perspectives given by the different

faces of the tetrahedron allows to actually put the student in the centre of the whole

teaching/learning process, as she can participate in such engineering work.

Author-Mathematics-Tutor: Preparing Mathematics
for Students

We consider this face as the most important for the development of teaching

products, as the relations among the vertices evoke a process of preparation of

mathematics for the students, meaning not only contents by also learning activities

that allow the students to reach their own mathematical knowing (referring to an

individual’s knowledge).
Looking at DE, the first two phases consists in a conceptual work that guides

hypotheses concerning student’s learning and consequently choices on the design.

This conceptual work is constantly referred along the whole engineering effort, in a

back and forth path as long as the learning situation is implemented and

experimented, in order to revise the choices made.

Generalizing to learning activities what Artigue (1994) says about the Didactic

Engineering applied to the teaching contents, the DE work starts with a preliminary

phase, which is charge of the Author. It consists in outlining the epistemology
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(ideas on knowledge and learning) of the “new” element of teaching/learning

practice to be designed, starting from examining what already exists and its

drawbacks.

Then a priori analysis along three dimensions should be carried out: the episte-
mological, related to the characteristics and the way of functioning of the mathe-

matical knowledge; cognitive, related to the Student targeted; didactical, related to

the specificity of the educational system where the teaching/learning process

occurs.

The face Author-Mathematics-Tutor seems to contribute mainly in the first

dimension, as it concerns mathematics per se. The Author, by means of the internal

competence as domain expert, can analyse the feature of the knowledge at stake,

going in more details on the specific subjects considered.

The interaction with the Tutor allows to give a certain contribute to the other

dimensions too. In fact, as the cognitive dimension takes into account the features

of the learner, the analysis can benefits from the teaching experience of the Tutor.

She can devise to consider the characteristics of a generic learner to whom the

knowledge at stake is foreseen to be taught. Analogously, the Tutor can contribute

to didactical analysis a certain configuration of the educational system, according to

her experience.

After the analysis is completed, the phase of design starts, guided by the out-

comes of the previous conceptual work. Here, the DE work involves a certain

number of choices, at two levels: macrodidactic or global one, affecting the whole

design; microdidactic or local one, guiding the organization of a specific session of

a learning activity.

According to Theory of Didactic Situations, the design should include the

definition of a milieu and of a learning situation, as the ideal model of the system

relations among Student, Tutor and the milieu, that we call Learning Situation
Model (LSM). The milieu was originally defined as the set of anything is acting on

the student or the student is acting on (Brousseau 1997). Its function appears

extremely important as student’s knowing comes out as personal answers to the

constraints of the milieu rather than to the teacher’s expectations. Therefore, it

consists in a set of resources to be used in order to grasp the knowledge to be learnt.

From the technological point of view, the definition of the milieu requires on one

hand the use of digital resource and on the other hand the configuration of the

e-tools to be used, at least in terms of the features of such tools needed to the

situation performs, producing such a way a particular instantiation of

e-environment.

It is worthwhile to note that the characteristics of the digital resources, shaping

mathematical contents, initially designed by Author, consists in their openness for

re-design can be designed by Tutor (actually assuming the Author position), both

individually and collectively (Pepin et al. 2014).

Generally speaking, we note two aspects of the e-tools. The first concerns the

fact that the choice of the e-tools that students are required to use is not neutral with

respect to envisaging the learning situations, as seen in Borba (2012). The second
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one affects the functioning of the e-tools inside the milieu: they can act both in

antagonistic and in cooperative way (Drijvers et al. 2010b).

Author-Student-Tutor: Refining Mathematics for Students

Looking at DE work from the Author-Student-Tutor, generally we can say that it

contributes wherever we refer to concrete cases and characteristics for each of the

positions, not just hypothetical categories or models.

Therefore, at level of the a priori analysis, this face contributes to the cognitive

and didactical dimensions. In fact, the Tutor and the Author can make more precise

the analysis along these dimensions considering specific characteristics of the

learners engaged and of the educational system in which the learners are framed

(that can depend on social or demographic issues).

The reference to real cases allows the Author to make actual choices of specific

e-tools (for instance, in case of a teaching platform, Moodle versus IWT). This

leads the Learning Situation Model to be more concrete and thus to go towards an

implementation of Learning Situation Model, that we call Learning Situation
Instantiation (LMI), which will be actually experimented.

Actually, the Tutor and the Author realize an instantiation of the design made in

Author-Mathematics-Tutor face, taking into account the target Student and the

context where the Learning Situation Instantiation takes place. Hence, some

choices previously outlined in the Learning Situation Model are made more precise

and the e-environment is definitely set up, choosing the actual e-tools to be used and

defining the modality of their use in order to obtain the features foreseen in the

design. Analogously for other elements of the milieu, generated for instance by the

didactical transposition: in order to set up the milieu, the Tutor can choose

resources, previously designed on Author-Mathematics-Tutor face, and she can

re-design them because of the customization to the needs of the Student. This way

she continues the design phase.

From the technological viewpoint, the e-environment has made ready for the

Learning Situation Instantiation, thus e-tools satisfying the Learning Situation

Model requirements are set and arranged as well as the way of using concretely

according to what defined in the Model.

Finally, we also note that, in DE view, this face realizes the back and forth

process of continuous comparison of what is expected in the design and what

actually occurs, allowing suitable reciprocal adjustments of Learning Situation

Model and Instantiation. In fact, the Author, getting in touch with the Tutor and

the Student, can collect feedbacks from both of them (also exploiting the techno-

logical empowerment) and refine the design as well as the implementation

according to what emerges from the data analysis.
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Author-Mathematics-Student: Mathematics Construction
Without Official Help

Retracing the DE work from the perspective of this face put emphasis on the

possible absence of the Tutor position in the learning process.

From the design point of view, it implies to devise, if the case, piece of the

learning situation, for which no support from the tutor is expected. Knowings come

from various kind of engagement of the Student with Mathematics: (a) Student can

interact with the milieu, suitably set up by the Author, and Mathematics knowing

comes out by the interaction; (b) Student can assume the Author position, authoring

herself mathematical resources, both starting from scratch and modifying and

personalizing resources already created by the Author; (c) Student can work

together with peers in cooperative and collaborative activities occurring in the

learning situation.

In all the previous cases, the absence of Tutor does not mean that Student does

not receive any help, but that it can come implicitly from the engagement in the

situation (i.e. the responses of the milieu, the feedback of peers, etc.).

Moving along the DE work, here we can observe the experimentation of the

above cases and thus collect the data for the a posteriori analysis: in fact, the Author

can benefits from direct or indirect observations (for instance, students’ products/
protocols or log files available in the e-environment) of what happens between

Student and Mathematics and can use these data for adjusting the design of the

learning situation.

Mathematics-Student-Tutor: Mathematics Construction
Officially Supported

Differing from the previous perspective, looking at DE work from this face

emphasizes the a-symmetric relation Student-Tutor with respect to knowledge

construction.

The design should take care of what concerns in particular the didactic part of the

learning situation, where Mathematics knowing comes out from the interaction

between the Students and the milieu, made viable by the Tutor. Thus, a troublesome

issue of this face is the didactic contract, consisting in specific behaviour of the

teacher expected from the learner and the behaviour of the learner expected from

the teacher (Brousseau 1997). In e-environment, it can be affected by more than one

variable. A key variable depends on the role of the Tutor, who can or cannot be the

same person in charge of the Student’s learning assessment (for instance, this is

certainly the case of distance online courses). In the latter case, the traditional

a-symmetric situation between teacher and learner is not so stressed and the

didactic contract between Tutor and Student is remarkable modified because it is

no more communicated by the assessment phase. Moreover, we highlight that the
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contemporary interaction of Student with the Tutor and with the digital resources of

the milieu, by which the Author shaped Mathematics, can bring to appear two

different didactic contracts, one between Student and the digital resources and one

between Student and Tutor, which can conflict each other (Cazes et al. 2006).

A further key issue in this face concerns the dealings between the Tutor and the

Student, at peer level too. In fact, we want to warn on a misconception that can arise

from the familiarity of the digital natives with the social networks. One can be led to

confuse their habit of continuous online social interactions with a natural disposal to

forms of collaborative learning. Although there can be found some cases of positive

correlation between collaborative affordances of e-environment and learning, some

other studies show the importance of deepening the issue of collaboration, even in

the phases of analysis and design (Borba et al. 2013).

Moving along the DE work, also in this case we can observe the experimentation

and gather data for the a posteriori analysis, also exploiting the direct involvement

of Tutor.

A Case Study

In this section we want to discuss a case study as an instantiation of the proposed

theory. We have used the DE approach according to the tetrahedron model in a

scholar experience that was piloted in Italy in blended courses at the Universities of

Salerno and of Piemonte Orientale (Albano and Ferrari 2008).

As already noted, the tetrahedron model gives a systemic view; consequently the

starting point of a teaching/learning process does not lie on a fixed face. In our case

study, the insight for the experience we are going to describe come in Mathematics-

Student-Tutor face of the tetrahedron. The position of Student was taken by the

first-year engineering students attending a trimester intensive module in mathemat-

ics which concerns topics from linear algebra and calculus. Being in the position of

Tutor, we should face the evidence of the Student belief that, especially in those

contexts where mathematics has seen as a “service domain”, instrumental approach

is enough and a more in-depth understanding was unnecessary, despite the failures

at the exams. As the assessment focused on conceptual understanding, the same

belief was exactly the reason why they failed. We decided to investigate more but,

asking the students why they failed, someone said “because of strange and unex-

pected questions”, referring to traditional examination questions which aim to

explore if the student has understood some theorem’s statement or proof. Examples

can be questions like the following: “what theorem guarantees the validity of this

passage?” or “what means this expression?” or “where did you use this hypothesis

in the context of the proof?” It was just the previous someone’s answer to launch the
DE work, whose outcome is the teaching/learning experience of our case study.

The initial underlying idea was to elaborate learning situations aiming to foster

the students to face topics in a more critical way and to change their attitude from

rote learning to critical learning.
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Therefore we start with the preliminary phase of DE. Remaining in the perspec-

tive of the Mathematics-Student-Tutor face and looking at their interaction, we

contribute, in the position of Tutor, to the didactical and cognitive dimensions of the

a priori analysis.
Concerning the first one, the analysis stresses the specificity of the Italian

University system, mainly transmission-based traditional lectures, attended by

more than one hundred of people, especially in Faculty such as Engineering. This

is true also for the exercises sessions, which remain transmission-based (the teacher

shows some solving techniques for typical exercises). In our case study, the course

consists in 90 h face-to-face lectures (60 devoted to theory and 30 to solving

procedures) and it deals with a large amount of mathematical concepts from basic

linear algebra and calculus II. No institutional space is devoted to practice some

problematic approach, such as posing questions, although the latter is needed for

being successful in assessment. The students are supposed to enter University being

endowed with such competency, but the analysis shows that it was true no more.

Then it is clear the impact on the exam results and on the students’ feeling of

“strange and unexpected questions”.

Concerning the second dimension, the analysis highlights the Student difficulties

during oral discussion of theorems’ statement and proof within the exam session,

whose roots can be found in what Paul (1990) well expresses:

What students often learn well – that school is a place to repeat back what the teacher or

textbook said and to follow the correct steps in the correct order to get the correct answer –

blocks them from thinking seriously about what they learn. (p. 808)

This is a transversal difficulty, not strictly specific of topics at stake, but related

to the way learning is approached by students whose many drawbacks conflict with

the undergraduate learning approach requiring to grasp complex knowledge going-

in-depth and critically thinking.

To complete the a priori analysis, we move on the Author-Mathematics-Tutor in

order to focus on the epistemological dimension. To this aim, we need to co-opt in

the Author position, besides ourselves, other colleagues experts in mathematics and

in its education, with especially regards to the subjects we are interested in, and also

to take into account the existing literature too. The analysis puts emphasis on some

features of the linear algebra and calculus at stake in the given course. For instance,

a higher abstraction and complexity of the mathematical objects in linear algebra

(the n-dimensional space), a huge usage of symbolic representations (letters instead

of numbers), the management of and the dealing with generic objects (reasoning on

the basis of the properties of the object and not of its instantiation), the need of

coordinating various semiotic representations (algebraic and geometric ones), and

so on.

Them we start the design of a new learning situation and the previous analysis

guides the didactic organization. We adopt to integrate the face-to-face lectures

with on-line time restricted activities to be performed throughout the course.

We aim to design a Learning Situation Model (LSM) that can simulate the oral

dissertation of a theorem and its proof during examination. As the analysis
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highlighted that the students lacked the practice of posing questions in order to

understand a topic, we decide, as pedagogical choice at global level (that is

concerning the whole design), to frame the situation in cooperative learning

(Dillenbourg et al. 1996), in particular in a role-play setting. The envisaged LSM

requires the student to play subsequently three roles: the teacher who makes

questions, teacher aiming to evaluate student’s learning concerning a given topic;

the student who gives answers to the teacher aiming to prove her understanding of

the topic; the teacher who assesses the student’s answers with respect to learning

outcomes. The pedagogical choice done suggest to look at this part of design in

Author-Mathematics-Student perspective, as no official help is foreseen. Thus, we

fine-tune the design fixing some further global choices. The LSM consists in three

consecutive tasks corresponding to the roles described above (from now on, we call

‘round’ an occurrence of all the three tasks). For each task the students are required
to produce resources to be used by peers at the next task: in the first, the student

make some questions as if she has to assess someone other’s learning outcomes; in

the second step, the student gives answers to the questions posed by a peer; in the

third step, the student checks the correctness of the outcomes (both question and

answer) of two peers. All the students play contemporarily the same role, i.e. all of

them performed individually the same task at the same time, preferably addressing

different topics. At the end, they go to the next task. Once a round finished, a new

one can start. The model devises that for each task the devolution is activated by

explicitly asking the student to act in the role at stake.

We also define the related global milieu, which consists in a teaching platform,

equipped with the following e-tools needed to implement the design: (i) a means

that allows implementing cooperative and time-restricted activities; (ii) a repository

for sharing resources; (iii) communication tools for interactions among participants.

We want to note that the local milieu, i.e. the resources needed during the activities,

is not made ready from the Author, but it is supposed to be constructed gradually

and for each task it consists in the products of the students themselves playing the

previous roles. In this respect, the student assumes the Author position.

Moving to the Mathematics-Student-Tutor face, we think if some official help

for the students could be devised. We decide that the Tutor did not intervene during

the tasks, leaving them in the context of peer-to-peer interactions, but she gives

comments, suggestions or corrections only at the end of the round. This way the

Student can benefit from the implicit help of peers playing the third role and form

the explicit Tutor’s help improving the products of next round, both in terms of the

Mathematics and of the methodology used.

At this point, the Learning Situation Model has been completed and we require

to move towards the Learning Situation Instantiation, in order to actual implement

the situation.

To this aim, in the perspective of the Author-Mathematics-Tutor face, we need

to make concrete the devised global milieu. Co-opting and exploiting technological

experts within the Author position, we choose the teaching platform and the e-tools

to be used. In our case study, we select the platform IWT, available at the

University of Salerno. The role-play has been implemented using at each step the
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IWT module ‘homework’ that allows the students to submit their work. Then the

Tutor, acting as technical support, is in charge of receiving the submissions in each

step and then randomly distributing them to the students as resources for the next

step. Further, a shared repository, with access restricted only to students involved in

the activities, has been set up in order to allow the Tutor, at the end of each round, to

make available the products of the students suitably annotated.

We note that, as the global milieu is affected by the technology at disposal, we

can have various implementation of the learning situation. In fact, the same

situation has been implemented at the University of Piemonte Orientale using the

platform Moodle and the ‘workshop’ module, which overcome the Tutor technical

support.

Let us consider now the local milieu that is the resources needed for the Learning

Situation Instantiation. According to model we defined, the setting of the local

milieu can be seen as an ongoing process in the Author-Mathematics-Student

perspective. In fact, as the first task do not foresee to deliver any resource specif-

ically designed, the student can freely surf among mathematical resources,

concerning the mathematics theorem she has to address, available inside or outside

the e-environment (learning objects in the platform, various resources on the web,

to her notes during face-to-face lectures etc.). On the contrary, the second and the

third tasks devises the delivery of a specific resource, consisting in a product

randomly chosen among the ones submitted by the students in the previous ses-

sions. Thus the Student contributed to set up the local milieu, assuming the Author

position, as she is required to author resources, completely from scratch in the first

session or starting from a peer-authored one of the other two sessions.

Once completed the implementation phase, we experiment the Learning Situa-

tion Instantiation. In order to do this, we refined some global and local choices,

listed below, taking into account the specificity of Student and of our didactic

context:

(a) the duration of each task and of a round of the learning situation: we fixed in

2 day the time needed to the student in order to perform each task; then one day

was foreseen to technically distribute the submitting products in order to begin

the next task; thus, each round lasted 9 days;

(b) the number of rounds to experiment along the blended course: according to the

duration of the face-to-face course and of each round, and taking into account

that the experimentation did not start at beginning of the course, we chose to

make three rounds;

(c) the mathematical contents to work on: we selected a list of 19 theorems,

11 from the linear algebra and 8 from calculus, consisting in the main theorems

whose understanding, in terms of statement and proof, was required to the

student in assessment phase;

(d) the partition of the previous list into three sub-lists, each of them to be used in

one round; we did not made this partition a priori, but the sub-lists were

determined according to the flow of the face-to-face lectures.
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Therefore the experimentation starts assigning to each student one of the theo-

rem from the first sub-list (for instance, Steinitz lemma). The task of the first

activity requires “Prepare a file containing four questions which you consider
useful to verify that a student has understood the claim and the proof of the Steinitz
lemma, as you are a teacher who wants to assess a student’s learning about such
topic.”. For the next task, each student receives one the previous output file and she
is required to “Answer to the questions contained in the attached file as they are the
questions posed by a teacher during an examination and you want to prove that you
grasp knowledge about the theorem at stake showing to know how to answer”. The
last task expects: “The attached file contains some questions and answers
concerning a given theorem. Correct as you are a teacher during an examination
who wants to assess both the questions and the answers with respect the given
theorem.”. For the a posteriori analysis and validation, we look at the students’
engagement from the Author-Matematics-Student face, and at the Tutor’s revision
after the round finished, from the perspective of Mathematics-Student-Tutor. We

conducted it using mainly qualitative methodology, examining at cognitive level

the protocols produced by the students and interviewing at affective level some of

them regarding the roles played (for more extensive reading, see Albano et al. 2007;

Albano and Pierri 2014). The analysis highlighted the add-value of the first task

both at cognitive and affective levels, with rich products, addressing thinking and

reasoning mathematically, and communication and representation, and leading

students to go-in-depth facing a topic.

The analysis also highlighted a drawback concerning the didactic contract

caused by technological constraints of the specific e-tool, homework, that need a

mandatory score to the learner’s product. This brought to refine the implementation

in order to focus on the formative assessment, avoiding the drawback.

Conclusions

In the last years, the emergence of coming back to the centrality of the methodology

with respect to the technology asks for the mathematics educators to be much more

‘design scientists’ in their use of e-environment for supporting learning.

The need of combine technology features with well-known theory in mathemat-

ics education strongly requires the design of learning situations based on a scientific

approach. We assume that a didactic engineering approach should be proper. In this

paper, we have looked at the didactic engineering work from the systemic perspec-

tive given by a didactic tetrahedron. This latter allows having a systemic view of the

learning situations to be designed and validated, taking into account new charac-

teristics of the learning process in a pervasive technology-enriched world.

The didactic tetrahedron makes evident a new figure, the Author, which wants to

draw attention to the necessary synergy among technological and educational

experts in order to balance and full exploit the benefits of tools and methodologies.
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Finally, we underline that the vertices of the tetrahedron refer no more only to

static figures but to “dynamic position”, as learners can play the role of Author

(creating resources) and of Tutor (coaching their peers) during their learning

process.
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Learning Paths and Teaching Bridges: The
Emergent Mathematics Classroom within
the Open System of a Globalised Virtual
Social Network

Andreas Moutsios-Rentzos, François Kalavasis, and Emmanouil Sofos

Abstract In this chapter, we adopt a systemic approach to the phenomenology of

the emergent ‘connected’ mathematics classroom, in order to investigate the views

of primary school teachers, principals and school advisors about mathematics and

social network sites (SNS) across and within two interrelated systems: the scientific

disciplines and the school unit (including the symbolic/normative level, pragmatic

representations of the school practices, and the personal desired/intentioned

actions). This inter-systemic, tri-focussed perspective allows the meaningful

re-approach of the emergent classroom and is operationalised with a questionnaire,

which constitutes a pragmatic diagnostic-hermeneutic-research tool informing the

decision-making of educators and policy makers.

Keywords System • Complexity • Social networking sites • Social networks •

Mathematics discipline • School mathematics

Mathematics and Mathematics Education in a Globalised
Social Network

Prelude

The current educational projects are influenced by two interacting factors: the

globalisation (a broader, relatively stable factor) and the economic crisis

(a recent, strong regulating factor). These two factors seem to temporally

coincide with the rise of the social networking websites. This is further
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complicated in countries like Greece, which consists of areas that are econom-

ically inefficient (islands, mountains etc.) for the implementation of traditional

educational means, thus putting the pressure on the educational system to

efficiently utilise the ‘distance’ learning technologies. In this study, we intro-

duce a systemic approach to the complex phenomenology of mathematics

education as experienced by the educational protagonists who act and interact

the emergent expanded mathematics classroom of a globalised social network.

Drawing upon a co-developed theoretical-methodological framework, we utilise

a comprehensive research tool comprised of a questionnaire, quantitative ana-

lyses and a hybrid diagrammatic-symbolic representation of the obtained

results, in order to investigate and to effectively communicate the complexity

of the co-existing multiple constructions about the complex phenomena as

perceived by the primary educational protagonists, including the teachers, the

school principals and the school advisors.

A Complex Globalised Social Network

The increased complexity of the school social network constitutes a challenge

for the educational protagonists. The school principals are required to function

within a transformed administrative, social and pedagogical space. The teachers

are expected through their teaching to pedagogically interact within multiple

coexisting realities related to social realities of varied roles and relationships

(including the students’ psychological and family realities). Within this complex

school reality (internal and external), the school advisors are required to

communicate and to support the implementation of the official educational

policy as described by the Ministry of Education. Hence, it is reasonable to

investigate the diverse views that the educational protagonists hold about the

role of the social networking sites in the school space-time. Through the study

of the development of this diversity, we argue that it becomes feasible to

provide valid and reliable means for identifying and tracing the transformations

of the complexity of the educational situation.

Mathematics seems to lie at the heart of these transformations. On the one hand,

mathematics as a discipline has been linked with the notion of universality and

through its applications is at the heart of various technological advances, including

the means for communicating, designing and constructing the structure and the

functions of the contemporary network reality. Branches of mathematics have been

applied to and/or have been developed for the virtual social networks. On the other

hand, mathematics as school course is at the crux of the contemporary curricula,

constituting a large part of the allocated school hours and, importantly, of the

evaluation of the educational outcomes of the school unit locally, nationally and

internationally. In both the research and the learning space, mathematics does not

function in ‘vacuum’, in isolation. On the contrary, the meaning and essence of

mathematics is crucially redefined within the space that is settled each time, through

the continuous interdisciplinary interactions and exchanges with technology and
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other disciplines. Hence, it is sensible to investigate the role of the social network-

ing sites in the school unit, focussing on mathematics with the purpose to identify

the interactions within such networks for a crucial for the educational system

course.

The social media are increasingly prominent in the modern societies, gathering

the interest of scientists of various disciplines (Christakis and Fowler 2009). A

social networking site is an online structure that allows the formation of social

networks within the reconceptualised virtual social space. The social networking

sites have been developed and have been utilised ‘outside’ the classroom and the

school unit, in the sense that although the educational protagonists (including

teachers, principals, students, parents) interact within such sites, these interactions

are in most cases not explicitly related with the class and outside the school control

(both interest and authority), thus constructing new learning space-time. Hence,

there appear to co-exist isolated learning paths, which are also incongruent with the

school main learning ‘highway’.

Bridging a Fragmented Complex Educational Reality

It is argued that this fragmented reality, which characterises the emergence of

the “connected” mathematics classroom, needs to be addressed through the

construction of appropriate teaching bridges. In line with this perspective,

mathematics teachers explore the educational possibilities of social media by

utilising virtual social networks of general purpose, such as Twitter and

Facebook (Borovoy 2013; Sheehy 2012) or of educational focus, such as the

MathForum (mathforum.org) or Learnist (Learni.st). Moreover, the Massive

Open Online Courses (MOOCs) appear to be a divisive topic (Anderson 2013;

Yardi 2012), stressing advantages (such as ease of access) and disadvantages

(such multifaceted validity and reliability issues). Furthermore, mathematics

educators have investigated the implementation of social media in mathematics

teaching and learning, including studies about Facebook and the MathForum

(Baya’a and Daher 2012; Renninger and Shumar 2002). In addition, a growing

body of research discusses the role of social networking sites in the broader

psychosocial development of young students (focussing on adolescents; Shapiro

and Margolin 2014), whilst the research on younger students seems to focus

mainly on cyberbullying (Monks et al. 2012).

The results of these recent studies have revealed the complexity of the network-

ing structures and the diversity in the ways that the teachers choose to utilise them

in the pedagogical practices. Pedagogical, epistemological and ontological issues

are at the crux of the problematic about the social networks, which may comple-

ment the existing structures and/or constitute apparently autonomous new

structures.

Nevertheless, existing research projects appear to concentrate only in partial

aspects of the phenomenon (especially with respect to younger students),
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projecting the existing complexity to an over-simplified space, thus conflating

the complex functions and relationships of the context, the environment within

which the educational experience occurs. Within such a simplified perspective,

the new structures may indeed appear to be autonomous. For example, many of

the learning difficulties about the links between the notions of area and perim-

eter that are observed in the traditional paper-and-pencil teaching environment

seem to be resolved through the use of ICT (for example, Dynamic Geometry

Environments, DGEs), since the software allows for the relatively easily

performed variations of lengths, thus allowing for their invariant relations

(area, perimeter) to be visible and observable. Nevertheless, the mathematics

in the traditional context and the mathematics in the dynamic graphic software

environment essentially constitute two mathematics worlds (cf Tall 2013). It is

argued that by addressing the learning problems in one mathematics world

through the means of the other mathematics world, the role of the transitions

between the two contexts and the two mathematics that functions in each

context is set at the crux of the didactical situation. This can be linked with

Douady’s (1984) jeu des cadres theory concerning the dialectic between the tool

and the object that occurs during the change of framework in mathematics

teaching (for example between the algebraic and the geometric framework).

According to Duval (2002), a framework is a set of concepts that may be

organised in a theoretic progression (such as a branch of mathematics), whilst

a register is a semiotic system that produces different types of representations

linked with different cognitive functions. However, the under consideration

situation is at the same time completely different and complex, since the

discussed changes are not just changes of register, involving deeper techno-

epistemological changes of framework. Following these, it is argued the

attempted teaching bridges should consider the existing complexity concentrat-

ing in linking the various levels of mathematics, frameworks and contexts that

coexist in the emerging learning paths.

However, the interactions of the protagonists, the environments within which

they happen (virtual or nor), the complex educational totality seem to redefine the

didactical relationship and the didactical contract (Brousseau 1997), thus rendering

important to use plural tense in the usually implicit narratives (in line with the

plurality of the experienced realities). Within the transformed network, the didac-

tical relationships are defined in a perceived intersection of usually incongruent

constructions about relationships of power, regulations, desires, and structures. It is

argued that by viewing the school unit as an open complex system (Bertalanffy

1968), this apparent contradiction of ‘intersected incongruences’ may be didacti-

cally resolved, allowing for the explicit valid mapping of the implicit complex

relationships and, crucially, of the meanings and of the narratives linked with the

diverse realities.

Consequently, in this study we consider the school unit as a complex open

system, to investigate mathematics education and social media in the expanded

school network as perceived by its educational protagonists (teachers, principals,

school advisors).
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The School Unit as an Open System: A Tri-focussed, Inter-
systemic Approach

We address these complex phenomena within the school unit by adopting a ‘soft’
systems theory perspective (Ibid.) to investigate the interacting and interrelating

views which inform teaching practices. A system is an integrated whole, serving a

specific goal with varying openness to its environment (Ibid.). The interrelation-

ships amongst the parts of a system alter their purpose and utility, providing the

system with ‘non-summativity’ (structurally and functionally superseding its parts

and their properties). Educators have discussed issues linked with the notions of

system and complexity (Bouvier et al. 2010; Chen and Stroup 1993; Davis and

Sumara 2006; Davis et al. 2008). Specifically, the discussion has included the

implementation of systemic ideas with respect to: mathematics learning and learn-

ing systems (Davis and Simmt 2003; Wittmann 2001), school improvement and

curriculum (Begg 2003; English 2008; Thornton et al. 2007), and the importance of

teaching the notions related with complex systems to students (Jacobson and

Wilensky 2006; Kalavasis et al. 2010).

The systemic perspective allows our focusing on the links amongst the system

components, thus facilitating a qualitative shift: from investigating views about

mathematics to investigating views about mathematics within the system of con-

sideration. Drawing upon a systemic perspective, Moutsios-Rentzos and Kalavasis

(2012, 2013) introduced a research framework to investigate the views of the

educational protagonists about mathematics. According to this theoretical and

methodological framework, the views about mathematics can be investigated

within two interrelated systems: a) the system of all disciplines, and b) the school
system. Within the system of all disciplines the views about mathematics are

investigated in comparison with the other disciplines, allowing the identification

of ‘special’ to mathematics characteristics, thus providing a relational perspective

about the epistemic views about mathematics. Regarding the school system, each of

the protagonists assumes at least three roles: What the protagonist is expected to do;

What the protagonist actually does; What the protagonist would choose to do. Thus,

the school system can be viewed through the lenses of three foci: (i) the symbolic/
normative (the perceived official regulations), (ii) the pragmatic representations
(the perceived current state of school practices), and (iii) the desired/intentioned
actions (the personal hypothetical actions, assuming the power to implement them).

We theorise that each of these foci constitutes a sub-system of views (cf ‘belief
systems’; Green 1971) as it is affected by the broader constructions to which each

focus is concentrated. For example, the pragmatic representations focus about

mathematics in the school unit is settled within the broader system of the pragmatic

representations that constitute the individual’s pragmatic representation construc-

tion, whilst the desired/intentioned actions focus is affected by the broader desired/

intentioned actions that an individual may hold.

The proposed framework is diagrammatically outlined in Fig. 1, where the

hexagons represent the two systems, the ellipses sub-systems of a system, the
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rhombi represent elements of a system and the left right arrows represent inter-

systemic and intra-systemic interactions.

In this project, we focus on the current Greek school reality, which is

characterised by major changes, due to the attempted transformation towards a

decentralised system, within which the school units would be pedagogically and

administratively semi-autonomous. Moreover, the varied knowledge and usage of

these networks increases the complexity of the school social reality within which

the school principals are required to investigate and undertake new roles of elevated

responsibility, while the teachers are required to act and interact in a reality with

observable variance about the meaning of the pedagogical roles and about the

nature of learning and the taught knowledge. Consequently, we attempt to map

the views of primary school teachers and principals about the links of mathematics

with globalisation and the virtual social networks.

Methods and Procedures

Setting the Scene: Teachers, Principals and School Advisors

In Greece the primary and secondary educational system consists of Dimotiko

(6–12 years old), Gymnasio (13–15 years old) and Lykeio (16–18 years old). In

this study we concentrate in the Dimotiko. In all six grades of Dimotiko the students

are taught mathematics 4 h per week. The same teacher teaches most of the courses

each year (except for music, arts, etc.) In each school a principal and a vice

principal are responsible for the pedagogical and administrative school functions.

Fig. 1 An inter-systemic, multi-focussed approach to views about mathematics: systems,

sub-systems, elements, interactions
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Usually the principals and vice principals are more experienced teachers who

usually obtain additional postgraduate degrees (pedagogical and/or administrative).

The schools of an educational district are within the responsibility of a school

advisor. The role of the school advisor is complex, including the scientific and

pedagogical guidance of both teachers and principals in line with the official

educational policy as described by the Ministry of Education, as well as the

evaluation of the educational outcomes of a school unit. Moreover, the school

advisors support, supervise and evaluate the implementation of educational inno-

vations and ICT in education, discern its weak points and suggest solutions.

Hence, for the purposes of this study we included in our sample teachers,

principals (and the vice principals) and school advisors, in order to more validly

capture the realities that interact within a school unit (Moutsios-Rentzos and

Kalavasis 2015): the micro level reality (the class; teachers), the meso level reality
(the school unit; principals and vice-principals), and the macro level reality (school
district; school advisors).

Sample

Overall, 169 teachers, principals (and vice-principals) and school advisors partic-

ipated in the study (N¼169). All the participants had a ‘Ptychio’ in Education

(a 4-year, bachelor-equivalent university degree) or a Ptychio-equivalent qualifica-

tion. Their demographics and their educational studies, training and experience are

outlined in Table 1.

The Instrument

The aforementioned approach has been operationalised through a four-part ques-

tionnaire in accordance with the proposed research framework (Moutsios-Rentzos

and Kalavasis 2012, 2013), as implemented in previous research projects

(Moutsios-Rentzos et al. Moutsios-Rentzos et al. 2012a, b). The first part included

8 closed items investigating views about mathematics within the system of all

disciplines with respect to:

• everyday life (5 items)

– usefulness (“. . .mathematics in the era of globalisation is more useful in

everyday life in comparison with other disciplines?”)

– importance (“. . .mathematics in the era of globalisation is more important in

everyday life in comparison with other disciplines?”)

– problem-solving (“. . .mathematics is more useful in our dealing with every-

day problems in comparison with other disciplines?”)
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– complex problem-solving (“. . .mathematics become more useful in everyday

life in comparison with other disciplines, as the complexity of the problems

we deal with increases?”)

– natural world ( “. . .mathematics has weaker relationship with the real world

in comparison with other disciplines?”)

• professional success (“. . .mathematics school success is more than other disci-

plines positively linked with professional success in the era of globalisation?”)

• teaching necessity (“. . .mathematics in the contemporary society require more

than other disciplines systematic teaching in order to be learned?”)

• logic (“. . .mathematics in the era of globalisation more than other disciplines

promotes the development of logical reasoning?”).

Each topic is expressed in way that explicitly asks the participants to provide an

answer that compares mathematics with the other disciplines. For example, “Do

you think that mathematics is more useful in comparison with other disciplines?”.

Moreover, the format of the participants’ answers are two-faceted: first, a ‘Yes/No’
dichotomy indicating their agreement or disagreement, followed by a 4-point Likert

scale to identify their degree of agreement or disagreement. In this way, we intend

to first obtain a positive or negative reaction and then the degree of this reaction

(which psychologically is not feasible with a simple Likert item). In Fig. 2, a sample

item of the first part of the questionnaire is presented.

Table 1 The participants of the study

School advisors Principals Teachers

Total 30a 17.8%b 31 18.3% 108 63.9%

Gender Female 16 57.1% 12 40.0% 81 79.4%

Male 12 42.9% 18 60.0% 21 20.6%

Age <¼33 1 4.0% 0 0.0% 39 38.2%

<¼45 2 8.0% 4 13.3% 35 34.3%

<¼57 22 88.0% 26 86.7% 28 27.5%

>57 0 0.0% 0 0.0% 0 0.0%

Postgraduate adminis-
trative diploma

20 100.0% 13 86.7% 7 20.6%

Postgraduate pedagogi-
cal diploma

23 100.0% 20 95.2% 35 71.4%

Master’s 26 100.0% 15 83.3% 24 47.1%

PhD 19 90.5% 3 30.0% 1 3.2%

Experience (in years)

Teaching 23(6), [4,31], 23 c 25(6), [10,35], 26 13(8), [0,28], 11

Administrative 6(5), [0,22], 4 6(4), [1,16], 5 0(1), [0,5], 0

Current 7(6), [2,30], 6 5(4), [1,20], 4 11(8), [0,27], 9
aFrequency
bValid percent
cM(SD), [min,max], Mdn
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The second part consists of 9 triplets of closed items realising our tri-focussed

approach: S/N (‘symbolic/normative’) – PR (‘pragmatic representations’) – D/IA
(‘desired/intentioned actions’). Two areas were investigated: didactics of mathe-
matics (four topics) and general didactics (five topics). Each topic of each area is

investigated through a triplet following a specific pattern. The introductory phrases

of the three items is differentiated in line with each of the three foci of our approach.

The rest of the three items of the triplet is common for each triplet indicating the

content the topic. Thus, all triplets consist of three items investigating the same

topic (the common to the triplet part of all items) from three perspectives (indicated

by the introductory part of the items). In Fig. 3, a sample triplet for a topic is

presented. Moreover, the response format is the same as in the first part of the

questionnaire (a ‘Yes/No’ dichotomy and a 4-point Likert scale).

The investigated topics addressed both didactics of mathematics and general

didactics (in parentheses the topic –the common part– of each triplet):

• didactics of mathematics (four topics-triplets)

– presentation (“. . .use of social networking sites with the purpose for the

teachers to provide a more comprehensive mathematics teaching”)

– understanding (“. . .use of social networking sites with the purpose for the

students to gain deeper understanding about mathematics”)

– goals (“. . .use of social networking sites because they are incompatible with

the goals of mathematics teaching”)

– democratic access (“. . .use of social networking sites because they disturb the
class balance and the democratic access in mathematics education”)

• general didactics (five topics-triplets)

– quality of teaching (“. . .social networking sites with the purpose to improve

the quality of teaching”)

Do you think that mathematics more than other disciplines promotes 
the development of logical reasoning?

Y 1 2 3 4
N 1 2 3 4

Fig. 2 A sample of the items included in first part the questionnaire (system of all disciplines)

According to your opinion, the official regulations demand the use 
of social networking sites with the purpose for the students to gain 
deeper understanding about mathematics?

Y 1 2 3 4

N 1 2 3 4
Do you think that in reality in schools social networking sites are 
used with the purpose for the students to gain deeper understanding 
about mathematics?

Y 1 2 3 4

N 1 2 3 4
As an educator and assuming you had the power, would you
promote the use of social networking sites with the purpose for the 
students to gain deeper understanding about mathematics?

Y 1 2 3 4

N 1 2 3 4

Fig. 3 A sample of the triplets of items included in the second part of the questionnaire (system of

school courses; underlined the introductory part of the triplet)
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– communication (“. . .use of social networking sites with the purpose to

improve the students’ communication”)

– coherence and cooperation (“. . .use of social networking sites because they

disturb the students’ coherence and cooperation”)

– control (“. . .use of social networking sites because they hinder the control of

the class”)

– professional development (“. . .use of social networking sites for the teachers’
professional development”)

In the third part of the questionnaire the participants are given the opportunity to

comment on the aforementioned issues through an open question.

The fourth and final part included questions about the participants’ back-

ground, investigating their age, education, working experience (teaching and

administrative) and professional development. In this part of the questionnaire,

the participants were asked about their knowledge and their use of social media,

as well as about their perceptions of the students’ use of social networking sites

(SNS).

Analyses

The purpose of this study is to trace the emergent mathematics classroom and to

underline the need for constructing teaching bridges, in order to attempt to support

equilibrium of the expanded classroom towards inclusivity of the diverse learning

paths of the students. In this chapter, we focus only on the quantitative part of the

questionnaire with the purpose to investigate the potential research, theoretical and,

crucially, pragmatic value of the introduced quantitative instrument in facilitating

these purposes.

The quantitative analyses were conducted with IBM SPSS Statistics 22. The

participants’ answers in each item were scored as follows: for each response, we

note ‘þ1’ or ‘–1’ respectively for a ‘Yes’ or ‘No’ and subsequently we calculate the
intensity for each participant’s answer on an item as the product of ‘þ1’ or ‘–1’
times the degree of agreement/disagreement as identified in the questionnaire (‘1’
to ‘4’). For example, if someone answered ‘Yes’ and ‘3’ on an item this resulted to

an intensity of ‘þ3’. Accordingly, ‘No’ and ‘2’ resulted in ‘–2’. The reported

analyses were conducted with the intensities of the participants’ answers. The

statistically significant Kolmogorov-Smirnov and Shapiro-Wilk tests, as well as

the visual inspection of the P-P plots suggested the non-normality of the collected

data. Consequently, for the comparisons of two groups the Mann-Whitney U tests

were employed. In order to identify statistically significant intra-population differ-

ences amongst the three foci (‘symbolic/normative’ – ‘pragmatic representations’ –
‘desired/intentioned actions’, Friedman’s ANOVAs were conducted, whilst for

inter-population (school advisors, principals, teachers) differences Kruskal-Wallis

tests and MANOVAs were conducted. Statistical significance was considered at

P < 0.05.
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Results

Knowledge and Use of Social Media

First, we briefly present the participants’ social media and internet knowledge and

habits (see Table 2). Of the proposed social networking sites (SNS) only five

appeared to be used by more than 10% of the participants with Facebook dominat-

ing their preferences; in descending order: Facebook (60.6%), LinkedIn (19.7%),

Academia (17.5%), Twitter (16.3%), Pinterest (10.1%). Thus, the rest of the

discussion will concentrate in these social networking sites.

It appears that Facebook is the most preferred SNS (60.6%). Although,

Facebook is strongly preferred by all three protagonists (school advisors 53.6%,

principals 56.7%, teachers 63.7%). it appears that only for the school advisors

LinkedIn (61.5%) is slightly preferred to Facebook (53.6%). Moreover, though the

percentages of the protagonists’ Facebook accounts are comparable, they differ in

their frequency of accessing them, with 42.9% of teachers accessing them everyday,

in contrast with 28.6% of the principals and with only 14.3% of the school advisors.

Table 2 The participants’ most preferred social networking sites (SNS)

School advisors Principals Teachers Total

Facebook 15a 53.6%b 17 56.7% 65 63.7% 60.6%

Usage Less frequently 9 64.3% 6 42.9% 16 25.4% 34.1%

3–4 times per week 3 21.4% 4 28.6% 20 31.7% 29.7%

Every day 2 14.3% 4 28.6% 27 42.9% 19.5%

LinkedIn 16 61.5% 2 10.0% 6 7.9% 19.7%

Usage Less frequently 1 6.7% 2 100.0% 4 57.1% 29.2%

3–4 times per week 2 13.3% 0 0.0% 2 28.6% 16.7%

Every day 12 80.0% 0 0.0% 1 14.3% 54.2%

Academia 8 36.4% 4 19.0% 9 11.7% 17.5%

Usage Less frequently 1 12.5% 2 66.7% 2 20.0% 23.8%

3–4 times per week 2 25.0% 0 0.0% 5 50.0% 33.3%

Every day 5 62.5% 1 33.3% 3 30.0% 42.9%

Twitter 7 30.4% 4 19.0% 9 11.4% 16.3%

Usage Less frequently 1 16.7% 2 50.0% 5 50.0% 40.0%

3–4 times per week 0 0.0% 1 25.0% 1 10.0% 10.0%

Every day 5 83.3% 1 25.0% 4 40.0% 50.0%

Pinterest 5 21.7% 2 9.5% 5 6.7% 10.1%

Usage Less frequently 2 40.0% 0 0.0% 2 33.3% 30.8%

3–4 times per week 1 20.0% 0 0.0% 3 50.0% 30.8%

Every day 2 40.0% 2 100.0% 1 16.7% 38.5%

SNS usage Personal 13 76.5% 17 63.0% 64 70.3% 69.6%

School 11 73.3% 9 40.9% 36 48.0% 50.0%
aFrequency
bValid percent
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The school advisors and principals have Facebook, but they don’t really use it. The
school advisors’ SNS of choice is LinkedIn, with more than 80% of the account

holders access it everyday. Furthermore, the second and third SNS of choice

(Academia & LinkedIn) appear to be mainly preferred by the school advisors and

the principals and not by the teachers. Finally, the principals and the teachers use

SNS mainly for personal purposes and considerably less for school purposes, in

contrast with the school advisors who seem to equally use SNS for personal and

school purposes. In Table 2, the participants’ use and usage frequency of SNS is

outlined.

Considering the participants’ perceived computer and internet expertise (see

Table 3), the protagonists appear to be relatively comfortable with these technol-

ogies with the school advisors and the principals appearing to be more certain about

their knowledge: 96.6% of the school advisors appear to think of themselves as

Table 3 The participants’ perceptions about computer and internet expertise

School advisor Principals Teachers

PC expertise Very low 0 0.0% 0 0.0% 3 2.8%

Low 1 3.4% 0 0.0% 3 2.8%

Moderate 0 0.0% 7 22.6% 33 30.8%

High 18 62.1% 18 58.1% 54 50.5%

Very

high

10 34.5% 6 19.4% 14 13.1%

Total a M¼ 4.28, Mdn¼ 4 M¼ 3.97, Mdn¼ 4 M¼ 3.68, Mdn¼ 4

Internet expertise Very low 0 0.0% 0 0.0% 4 3.8%

Low 1 3.6% 0 0.0% 4 3.8%

Moderate 1 3.6% 6 19.4% 28 26.9%

High 17 60.7% 20 64.5% 52 50.0%

Very

high

9 32.1% 5 16.1% 16 15.4%

Totala M¼ 4.21, Mdn¼ 4 M¼ 3.97, Mdn¼ 4 M¼ 3.69, Mdn¼ 4

Internet security Very low 0 0.0% 2 6.5% 4 3.8%

Low 2 7.1% 4 12.9% 22 21.2%

Moderate 9 32.1% 15 48.4% 49 47.1%

High 14 50.0% 10 32.3% 25 24.0%

Very

high

3 10.7% 0 0.0% 4 3.8%

Totala M¼ 3.64, Mdn¼ 4 M¼ 3.06, Mdn¼ 3 M¼ 3.03, Mdn¼ 3

Students’ SNS
usage

<10% 1 3.7% 6 19.4% 10 9.6%

1 out of 4 4 14.8% 6 19.4% 20 19.2%

Half 13 48.1% 8 25.8% 36 34.6%

3 out of 4 6 22.2% 10 32.3% 29 27.9%

>90% 3 11.1% 1 3.2% 9 8.7%

Totala M¼ 3.22, Mdn¼ 3 M¼ 2.81, Mdn¼ 3 M¼ 3.07, Mdn¼ 3
aValues may range from ‘1’ (very low) to “5 (very high)]
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experts in using the internet, followed by 77.5% of the principals and the 63.6% of

the teachers; 92.8% of the school advisors appear to think of themselves as experts

in using the internet, followed by 80.6% of the principals and the 65.4% of the

teachers. A notable difference concerns ‘internet security’, with 60.7% of the

School advisors appear to think of themselves as safe in the internet (‘high’ or
‘very high’), contrasting the considerably lower 32.3% of the principals and the

27.8% of the teachers.

Finally, we asked the protagonists about their representations with respect to the

students’ use of SNS in order to obtain a measure of the participants’ perceived
degree of the SNS permeability in the school reality. The results revealed that

similar percent of the protagonists (36.6% of the teachers, 38.8% of the principals

and 33.3% of the school advisors) appear to think that more than 25% of the

students have an SNS account. These perceptions appear to be in stark contrast

with recent research conducted by the Hellenic Police (presented in the 4th Con-

ference for Safe Internet Surfing, February 13, 2015) suggesting that 85.5% of the

primary school students have an SNS account (including Facebook 36.7%,

Instagram 29.8% and Twitter 9.2%). This contrast is further amplified considering

that 38.8% of the principals and 28% of the teachers think that less than 25% of the

students have an SNS account.

Mathematics as a Discipline Within the System of All
Disciplines

Regarding the system of disciplines, no statistically significant differences were

found with respect to either the participants’ gender or their educational role (school
advisor, principal, teacher). Thus, it is reasonable to discuss the sample as a whole.

In Table 4 the participants’ views about mathematics within the system of all

disciplines are outlined. Bearing in mind that the hypothetical range is [�4,þ4], we

focused on the scores of absolute value of mean more than 1 as an indication of a

relatively clear positive or negative perspective on a topic (noted in bold in

Table 4). It was revealed that the participants think that:

(a) considering everyday life, mathematics is more useful, important and helpful in

everyday problem-solving compared to the other disciplines, whilst mathemat-

ics is not considered to have weaker links with the natural world than the other

disciplines,

(b) learning mathematics needs more systematics teaching compared to the other

disciplines, and

(c) mathematics promotes the learners’ development of logical reasoning.

Hence, the epistemic views that the educational protagonists hold appear to

describe mathematics to be intertwined with everyday life, having direct applica-

tions to everyday life and promoting logic, whilst it needs systematic teaching in
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order to learned; we emphasise that these views are professed considering mathe-
matics in comparison to the other disciplines.

Mathematics as a Course Within the School System

In Table 5 the participants’ views about mathematics within the school system are

outlined focussed on the views that each protagonist holds (intra-role comparisons)

about the three foci considered in our framework (Symbolic/Normative, Pragmatic

Representations, Desired/Intentioned Actions). First, it is noted that all the intra-

role comparisons were found to be statistically significant, except for the topic

‘goals’ of the school advisors and the topic ‘control’ of the principals. We posit that

this supports our framework, as this statistically significant difference suggests that

the professed views on a topic indeed has at least one aspect that is different enough

than the other two.

Moreover, in order to gain deeper understanding about the observed phenom-

ena, the identified results were qualitatively recoded in line with the previous

section: # (‘negative’) when the mean value is less than �1, " (‘positive’)when it

is more than þ1, and ⬚ (‘neutral’) when it is between �1 and þ1. Each of the

protagonists appeared to perceive ‘symbolic/normative’ to be in the same direc-

tion or in one direction and ‘neutral’ with ‘pragmatic representation’. Considering
the ‘desired/intentioned actions’, protagonists’ constructions appeared to be on the

positive direction (regardless the positive or negative phrasing of the triplet) with

respect to the inclusion of the social media both in didactics of mathematics and

in general didactics. This is especially true for the school advisors who seem to

hold the strongest intention of including social networking sites in the everyday

teaching. Furthermore, it seems that the intra-role comparisons do not reveal

qualitative differences between the didactics of mathematics triplets with general

didactics triplets.

Table 4 Mathematics as a discipline within the system of all disciplines

School

Advisors Principals Teachers Whole

Ma Mdna M Mdn M Mdn M Mdn

Everyday life

Usefulness 1.14 2 1.70 3 1.10 2 1.21b 2

Importance 1.31 2 1.26 2 1.01 2 1.11 2

Problem-solving 0.50 2 1.47 2 0.92 2 0.94 2

Complex problem-solving 0.66 2 1.45 3 0.27 1 0.55 2

Natural world �1.47 �2 �1.84 �2 �1.82 �2 �1.76 �2

Professional success 0.10 0 1.50 2 0.26 1 0.45 2

Teaching necessity 1.20 2 1.06 2 1.74 3 1.52 2

Logic 2.03 3 1.77 3 2.17 3 2.07 3
aValues may range from ‘�4’ (maximum disagreement) to ‘þ4’ (maximum agreement)
bAbsolute value of mean score greater than 1 in bold
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The aforementioned findings and the inter-role reported trends in Table 5 may

also serve as an introduction to the inter-role statistical comparisons. It appears that

there the identified qualitative topics follow similar patterns for all the protagonists

for each topic-triplet. Nevertheless, bearing in mind the variety in the intensity of

the trends, it is crucial to conduct inter-role comparisons, in order to identify

whether statistically significant differences amongst the three roles-protagonists

exist or not. The results of the inter-role analyses suggested that the three pro-

tagonists appeared to statistically significantly differ in their constructions with

respect to only two topics: ‘understanding’ (didactics of mathematics) and ‘quality
of teaching’ (general didactics).

In order to gain deeper understanding of both the intra-role and the inter-role

findings, we introduce a mixed symbolic (numerical)-diagrammatical representa-

tion of the complexity of the views that the school advisors, the principals and the

teachers hold about social media within the school unit system in the topic ‘under-
standing’ and in the topic ‘quality of teaching’ (see Fig. 4).

It is posited that the proposed representation allows for the coexistence of inter-

role and intra-role comparisons, as well as for the combination of the wholistic
advantages of a diagrammatic representation (which are in line with the systemic

perspective of this study) with the analytic tools of a symbolic representation. For

example, for the ‘understanding’ topic, a wholistic view of the triangular space of

each protagonist is clearly skewed in comparison with the hypothetical ‘neutral’
towards the positive of the desired/intentioned actions axis. A closer look reveals

that the school advisors’ ‘triangle’ differs from the other two in that the symbolic/

normative vertex is on the negative part of the axes (‘within’ the neutral triangle).
Thus, it can be argued that all the protagonists are willing to incorporate SNS in the

teaching of mathematics for the purpose of improving the students’ understanding
and they hold neutral views about what actually happens in schools. Nevertheless,

the school advisors seem to hold stronger negative views about whether the official

regulations promote such practices, with the other protagonists holding a very weak

positive perception.

These results can be also analytically approached through the reported means

and the statistical tests included in the Fig. 4 (the numbers are obtained from

analyses reported in the respective ‘understanding’ and ‘quality of teaching’ in
Table 5). Thus, this information may be especially useful for policy makers who

need a tool to wholistically and analytically identify the perceived realities of the

protagonists of the educational system.

Consequently, the conducted analyses suggest that all the protagonists seem to

be willing to include the use of SNS in their teaching (mathematics and general).

Considering that their SNS experience is relatively small (mainly Facebook and

LinkedIn) and that both their pragmatic and their symbolic constructions are almost

neutral, it is posited that the protagonists experience the multifaceted didactical

potential for the SNS, but they don’t experience the pragmatic ways of realising

their use, nor do they experience a positive support from the official regulations.

The latter negative view is stronger in some cases for the school advisors, which is

especially interesting considering that the official regulations explicitly expect the

school advisors to support the implementation of new technologies in education.
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Discussion and Concluding Remarks

The aforementioned results revealed a complex educational reality that constitutes

the emergent mathematics classroom with respect to social networking sites (SNS).

First, in terms of SNS and broader internet experience and perception, the pro-

tagonists appear to be familiar with the ‘new’ technologies. They consider them-

selves relatively experienced with computers and internet. They use SNS for both

Fig. 4 Mathematics within the school unit system (both inter- and intra-role comparisons):

‘understanding’ (above) and ‘quality of teaching’ (below)
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school and personal purposes. Facebook appears to be the SNS that dominates their

SNS accounts. Nevertheless, in contrast with the teachers and the principals, the

school advisors seem to have Facebook accounts, but the accounts they actually use

are their LinkedIn and Academia accounts. Thus, considering the professional-

academic status of these SNS and the more personal-informal status of Facebook, is

may be inferred that there is a clear qualitative difference in the role of SNS for the

three protagonists: the school advisors see SNS as professional tool, whilst the

teachers and the principals consider them to belong more to the informal, presum-

ably indirectly linked with (or even disjointed from) the school reality. The

perceived connected reality concludes with the educators’ perceptions about the

students’ use of SNS. Their perceptions appear not to be in line with the reality

identified by relevant research: all three protagonists seem to considerably under-

estimate the infiltration of SNS in the students’ lives. This also has qualitative

aspects, as the educators appear not to have accounts in (or even to know about)

SNS that appear to be important for the students (such as Instagram, which is

reported to be a close second to Facebook choice for the young students). Conse-

quently, the educators seem to know about SNS, they use SNS for personal and

professional purposes (though the school advisors seem to prefer more ‘profes-
sional ‘SNS), but they don’t appear to perceive their reality as shared with their

students. Thus, it is posited that communicating this common (though not shared)

reality to all the mathematics classroom protagonists (including students, educators,

parents) is a crucial first step with a pragmatic reference, in order for the emergent

connected classroom to be perceived as such.

Considering the system of disciplines, it seems that mathematics is considered

by all three protagonists to hold a special place in comparison with other disci-

plines: both in everyday life (by perceived as being relatively more important, more

useful and not more disjointed from the natural world) and in reasoning

(by promoting logic to a greater degree). At the same time, these views coexist

with the perception that mathematics more than other disciplines requires system-

atic teaching in order to be learned. Thus, all three protagonists seem to share a

special with a pragmatic reference view of mathematics, which nevertheless may

require systematics teaching in order to become part of the learners’ reality. The
learning paths of mathematics appear to be special with pragmatic comparative

benefits, requiring appropriate teaching bridges to be walked.

In which ways (if any) the aforementioned SNS realities and epistemic views

about mathematics seem to be linked with SNS and mathematics as a school

course? We investigated the three protagonists’ views with respect to three foci

(symbolic/normative, pragmatic representations, desired/intentioned actions) and

to both didactics of mathematics and general didactics (in order to identify intra-

didactics differences). First, the results of the conducted analyses revealed that the

participants of the study are willing to incorporate SNS in the school teaching for

the didactical gains special to mathematics and broader didactical gains. This is

contrasted with the negative to neutral perception of a symbolic/normative and

pragmatic SNS reality. This contrast in almost all cases was found to be statistically

significant except for three topics: ‘democratic access’ (school advisors), ‘control’
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(principals), ‘coherence and cooperation’ (principals). In these cases, the desired/

intentioned actions were found to being line with the both the symbolic/normative

and the pragmatic representations. Bearing in mind the negative phrasing of these

triplets, it appears that in the abovementioned instances the participants’ view that

this topic is not relevant with the employment SNS in the school teaching (math-

ematics or general) in the sense that they don’t view that these aspects are one of the

reasons that SNS are not required to be employed, or that SNS are not actually

employed, or even that SNS would be employed.

Notwithstanding these exceptions, the general trend appears to be relatively

clear for all protagonists: positive stance towards to the hypothetical inclusion of

SNS in the school classroom (even more positive for the school advisors) and

negative to neutral constructions about the school reality and the official regulations

reality. The educators’ positive stance is in accordance with the students’ positive
stance as reported in a recent study with primary school students (Stamatis 2013).

On the other hand, the negative-neutral constructions about the official regulations

appear to be interesting especially for the school advisors since the official descrip-

tions about their responsibilities explicitly mention the support of educational

innovations and ICT. Could it be that SNS are not interpreted by the school advisors

as being within the official meaning space of “educational innovations and ICT”?

Or that broader normative/symbolic restrictions favouring the protection of the

students’ personal data may implicitly ‘override’ the identified constructions?

Moreover, the identified trends appeared to be similar about both the didactics of

mathematics and the general didactics. This indicates an inconsistency with the

aforementioned epistemic views about mathematics as being special in comparison

with other disciplines.

Following these, considering the discerned learning paths about mathematics as

a school course, it appears that the teaching bridges should concentrate in commu-

nicating amongst the school protagonists (including the educators and the students)

that, on the one hand, they hold similar perspective about SNS and, on the other,

that these perspectives are not in contrast with the existing official regulations.

Moreover, the teaching bridges should attempt to make inter-systemic links, in the

sense of utilising the comparative positive epistemic views about the pragmatic

everyday benefits of mathematics as a discipline and the necessity of its systematic

teaching, with the intentions of incorporating SNS in everyday teaching. Towards

this direction, the growing body of mathematics education research should be a

crucial element of these bridges, providing the scientific rationale and scientific

ways of including SNS in everyday teaching practices (compatible with the pro-

tection of personal data). It is posited that the emergent classroom and the diverse

learning paths exist in a technological-methodological-pedagogical environment

and the attempted teaching bridges should acknowledge this complexity.

In accordance with this discussion, the introduced instrument appears to consti-

tute a multidimensional valuable tool. It helps in identifying the learning paths

space and in efficiently and comprehensively communicating (through a hybrid

diagrammatic-symbolic representation) the constructions held by various protago-

nists. By superimposing the representations views spaces of the protagonists, we
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argue that the convergences and the divergences are becoming transparent to the

researcher, the educator, the policy maker. At the same time, the space that is

amenable to change as well as the engineering required in order for this change to

be accomplished may become clearer. For example, in Fig. 4, the stronger negative

symbolic/normative views of the school advisors may be the first engineering step:

the policy makers’ communicating to the school advisors that the SNS are within

the meaning space of the official regulations and that the mathematics educations

research suggests ways of accomplishing this. In this way, a domino positive effect

may result to a new equilibrium of the school system in which the emergent

mathematics classroom is connected, incorporating the tendency to be open to the

inclusivity of the emergent diverse learning paths.

In conclusion, the inter-systemic, tri-focussed approach adopted in this study

helped in more validly identifying the views and practices of the Greek teachers,

principals and school advisors. Though all three protagonists wish to incorporate

social media in their teaching, their views of the regulations and of the school

reality are not in line with their intended actions. Moreover, they appear to consider

that the students are not as engaged with such networks as the teachers think.

Though in this study we partially investigated the considered system and its

environment, we argue that this methodological choice enabled our collecting

quantitative data with a qualitative-like complexity, thus combining the pragmatic

advantages of a questionnaire with the validity benefits of a qualitative approach.

Moreover, the proposed research framework is paired with a representational tool

that allows the comprehensive and efficient communication of the results of the

conducted analyses. The proposed research framework draws upon the diverse

points of view as means for accessing the existing complexity, rather than as

obstacles for the understanding of the transformation of both school teaching

practices and mathematics education research. Diverse learning paths are viewed

as teaching bridges opportunities that further weave the collective web of knowl-

edge of the mathematics classroom, situated within the deep and fundamental

connections of mathematics with the open system of the globalised virtual social

networks.
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e-Collaborative Forums as Mediators When
Solving Algebraic Problems

M. Pilar Royo, César Coll, and Joaquin Giménez

Abstract In this chapter, we analyze Students when solving classic algebraic

problems in a collaborative way, by using electronic forums to see the power of

such a tool in a learning process. We used a task as an example to show the

interactions appearing when using electronic forums as mediators on the reflective

process of co-constructing algebraic ideas. It is found that the highest profile

students not only participate actively in the task but they introduce more mathe-

matical meaningful issues. Qualitative analysis shows that generalization methods

are close to which it is regularly presented in face-to-face classrooms but reflection

spontaneously emerges as a need for revealing the importance of exchanging the

representations.

Keywords E-forums • Algebra • Problems • Collaborative learning •

Co-construction

Introduction

According to Coll (2007) various studies show that the effective capacity of ICT to

transform the dynamics of work of teachers and students in schools and the

processes of teaching and learning in the classroom is, in general, far below the

transformer and innovative potential, usually attributed to them. In this chapter, we

assume that collaborative tools can act as powerful mediators to overcome numer-

ical traditional strategies for algebraic problem solving. New approaches to algebra

are related to the use of generalized properties by using technologies, but we

introduce a reflection about the cooperative interactive perspective.

Kieran and Filloy (1989) confirm the absence of algebraic methods as a common

denominator in the responses of the students to the resolution of verbal algebraic
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problems, and they point out the difficulties implicit in the syntactic algebraic

methods as a possible cause of it. This interpretation leads teachers to the use of

methods focused on the development of techniques in the teaching and learning of

algebra, paying scant relevance to the speech of the students. It seems difficult to

place in the foreground the interactive and reflective nature of mathematics educa-

tion, in which the importance is attached to the content that is learned, but also the

manner in which the students learn.

In such a framework, our main hypothesis is that the forum of conversation, as a

Computer-mediated Communication (CMC from now), can turn out to be a useful

instrument to solve, reflect and discuss problems jointly. This research assumes the

hypothesis that in computer-supported collaborative learning contexts, all partici-

pants are potential sources of educational influence (The challenge is for teachers to

create learning environments that help students to make the transition from basic to

high-order skills. In this new scenario, the focus is not on teachers but the process of

how the students learn. In such a framework, the use of ICT in first Secondary

Schools will entail the gradual disappearance of the limitations of space and time,

which will result in a transition toward a usual student-centered model based on

cooperative work.

Recent research focused to analyze the impact of information on the evolution of

activity across the forums, and the relationship with the value that participants

assigned to the forums and the usefulness of the forums in the learning process (Coll

et al. 2015). Online discussion forums are web-based communities that allow users

to share ideas, post problems, comment on posts by other users and obtain feedback.

Previous research experiences use forums to promote debate and thinking in

prospective teachers learning (Bairral and Giménez 2004; Bairral and Powell

2013), but less use is devoted to a common problem solving activity with young

students (Murillo and Marcos 2011). Though students are more and more confident

in their technical abilities for online communication, we know that their online

experiences do not generally require them to use dialogue as a way to explore,

expand, and drill down into problem solving issues significantly (Jonassen 2002).

In this chapter, our aim is to present how a group of eighteen students of Junior

High School (13–14 years old) interact when they solve a classic algebraic problem

in a collaborative ICT environment. By analyzing such a task, we explain some

benefits and possibilities of an online algebraic problem solving teaching issues,

focusing on the implications of forum conversations as a mediator for reflective

interactions. The activity leads to the development of generalization and symbolism

processes. The “listening” of the ideas and reasoning of the students allows the

planning of activities in order to promote individual learning and the learning of the

group. It also contributes to claim for making more observable and interactive the

space of the communication in the borders among inside and outside the classroom.

The condition of transformation agents assigned to the ICT is worth to be taken

into account for conceiving deliberate interventions to change the pedagogical

models, the practices in the classroom, and the curricular contents in educative

systems in order to lead the students towards a significant and satisfactory learning

(Rojano 2003, p. 138). We tried to show a real challenge to introduce dynamic
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communicative interaction of student/student and student /teacher. The teacher acts

as the designer and manager, allowing students to explore, to construct and to

express their learning.

Conversation and Productive Meanings

We assume that running online discussion forums enable the application of con-

structivist learning issues for problem solving (Jonassen 2002, p. 7) and we also

understand that a collaborative script is essentially a set of instructions regarding

how students should form groups, interact with one another, collaborate and use the

resources made available by the environment to tackle the learning tasks in a

collaborative way, then the key lies in the point of reference that is chosen when

formulating these instructions, such that they fulfill their purpose as effectively as

possible (Engel et al. 2013). In math class, “the individual construction of meanings

takes place in interaction with the culture of the class while at the same time

contributes to the constitution of this culture.” (Cobb and Bauersfeld 1995, p. 9,

cited in Sierpinska and Lerman 1996, p. 15).

The conversation is one of the most important means of communication in all

over the world. The writing allows the evolution from the natural language used by

the students to numerical and symbolic expressions corresponding to the mathe-

matical language. In this way, the mathematical learning connects with the emo-

tional perceptions and experiences of the partners. In our assumption, teachers have

to guide the pedagogical setting towards situations in which relevant aspects are

discussed, such as posing questions related to the critical analysis of contexts or the

necessity for the generation of new and useful information to promote attention

(Ainley and Luntley 2007).

On-line forums and blogs have also been recognized as fertile ground for

meaning product discussion in Mathematics Education. Some recent researches

analyze forum discourses with preservice teachers or in training teachers courses

(Bairral and Giménez 2004), and also collaborative problem solving activities with

future teachers (Bairral and Powell 2013). But a few researches focus on what kind

of behavior and strategies appear when young students solve algebraic problems in

an asynchronous way.

Generally speaking, the use of the Internet in a student-centered model has a

great deal of potential strengths: (1) computer networking facilitates the implemen-

tation of cooperative learning overcoming the relation human-media (Borba and

Vilareal 2005); (2) promotes articulated communication by compelling the students

them to state their needs in a concise and highly articulate way (Royo and Giménez

2008); (3) Asynchronous web-based forums give students time to reflect on issues

before they add their own contribution (Bairral and Powell 2013); (4) accommodate

the potential for e-tutors and e-learners to engage in continuing tutorials, rich in

dialogues and reflections, and generate processes of meaning construction and

knowledge advancement (Rowntree 1997); (5) gives specific opportunities for
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co-construction of learning (Royo 2012) In particular, using forums allows students

to become the center of their own learning (Jonassen 2002). In fact, the aim is to

facilitate the conversation between the students and between the students and the

professor; encourage the talk about mathematics, using the natural language to

express mathematical ideas, discovering progressively the usefulness of the appli-

cation and use of mathematical language. The oral conversation enjoys some

irreplaceable conditions in this educational level. Nevertheless, the electronic

forums allow increase the participation and communication of everybody, and

facilitates teacher guidance through reading and observing the thoughts and beliefs

of the students.

Participation in our analysis of reflective interactions should be considered as

something that improve or restrict mathematics development (Cobb et al. 1997,

p. 272). When analyzing interactions we want to understand if the media facilitate

mathematical discourse and scaffolding by providing direct instruction (Anderson

2004). We assume some previous research results about the use of electronic

forums with geometry problems (Murillo and Marcos 2011) that the use of the

forums of conversation in a digital environment, used to jointly investigate alge-

braic problem-solving strategies, create favorable conditions (a) so that the process

of problem solving promote reflection and communication of ideas among the

students; (b) for influencing changes affecting the teaching role and the relations

that are set out in the classroom; (c) individual growing and collective development

of objects and processes in the topic. Even e-activities based on group work must be

properly structured to avoid the free rider effect (Jonassen 2002), we decide to use

the forums in a completely free way, assuming that students know about using

collaborative problem solving from previous experiences.

For analyzing the educational influence of interactions on electronic environ-

ments we consider two dimensions: the academic task management and the man-

agement of the meanings. It is considered the construct called educational profile,

which relates quantitative contributions data by accessibility, participation and con-

nectivity criteria (Coll et al. 2013). We also assume that content analysis helps to

categorize students’ interventions in algebraic settings. Many cognitive results are not

in this paper, but fully described and justified in Royo (2012). It was also considered

that the inscriptions of individuals working online in a small-group or team provide

observers, who must interpret meanings constituted in the contributions, as evidences

of individual and collective thinking (Bairral and Powell 2013).

The Role of Designing Processes

The task presented in this paper, belongs to a part of a wider research in which

several problem solving tasks were conducted, analyzed and redesigned through the

application of a Design-Based Research methodology (Gravemeijer 2002; Royo

2012) applied in order to improve the procedures for teaching and learning algebra.

For the design of the learning environment (Murillo and Marcos 2011), we used the
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Moodle-platform provided by the School. This paper analyzes just a simple prob-

lem, and correspondent conversation forums on the virtual environment Moodle,

which was new, both for teacher and students at that moment (see Fig. 1). The

experiment presented in this paper was developed during 2 months, the year 2008/

09 and repeated in 2010 and 2011.

In order to see an example of the forums, we focus on the classical following

problem: “Given n dots, how many segments do we need to unite them in pairs?”
We choose this problem, because is the first one in the global project, and means a

classic in the work of generalization [in the resolution, we expect students arrive to

understand the meaning of n*(n�1)/2]. Wiki spaces were also used to introduce

more final reflections, not analyzed here.

Such a problem allows a wide variety of representations and the development of

inductive processes, starting with particular cases. Oral conversation occurred in

the classroom at the same time that they did contributions to the forums. In addition

to using computers, students had paper and other material written or manipulative

aids as instruments of work to look for strategies for resolution of the problems. The

use of the forums in situation of non-attendance and outside the assigned hours

(from home, library...) was optional.

The participants communicated individually among themselves simulating to be

at home in a computer room, and combining it with group of four discussions in the

regular face-to-face classroom. At the end of the intervention period in forums,

students carried out a written test and answered a survey for the evaluation of the

use of electronic conversation forums. The collected data for our study is consti-

tuted by registered dialogues on the forum, and also audiovisual records of some

moments of the session; direct records of the diaries of the students in the Moodle

platform; record direct from the journal of the teacher in the Moodle platform.

We have analyzed the dialogues of the forums by applying descriptive methods

to its development during the sessions, including aspects of activities that have had

impact on them. We think that it should lead the mathematical reasoning through

observation of individual cases, guess, check and argumentation, since thus

Fig. 1 Presentation page (left) and contributions of the forum (right)
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prepares the task of orientation of the process of generalization, one of the main

ways of introduction of the algebra. To follow our aims, student’s interactions had
been analyzed by using educational profile using e-accessibility and e- connectivity

categories. Content analysis is also presented next by identifying algebraic contri-

butions in the task, and quantifying the use of problem solving strategies in terms of

applying and answering, grounding, or interpreting other’s contributions.

The Interactional Situation

To see the results of our first structural interaction analysis of contributions within

the DBR process, we selected and adapted a set of e-communication indicators

(following Coll et al. 2009).

Expected profile considers the following categories: (a) accessibility, by com-

puting individual average of entries being >1 (MDIE) and individual entries �1/n

(IIE); (b) participation by observing individual contributions in front of readings

being �0,5 (IIRCL) and individual contributions in the total being � 1/n (IIC) ;

(c) connectivity by seeing number of messages received out of the whole �1/n

(IIMR), and number of messages received over sent being almost 1 (IIR). In the

Table 1, we see the results of couples or individuals found to each of the column

categories just above explained.

We also separate in four parts according how many criteria are satisfied. It’s also
considered collective accessibility being everyday average of entries >n; tax of

contributions being�0,5 not written in the table. The teacher is also included in the

first group.

We found similar tables for all the different tasks to confirm that the profile of

interactions is not always the same.

About the Content

To describe methodologically the type and amount of contributions, we used three

different categories: (S) social, (D) dynamics posing questions, and

(E) explanations. For the mathematical strategies used, we considered the following

categories (according Mason et al. 1985): (V) Students verbally explicit relation-

ships between the data of the problem. (PA) Arithmetic procedures are used to

express relationships between the data of the problem. (LlS) Symbolic language is

used to express relationships. (RP) Records a pattern or regularity, preferably using

symbolic language in which formula appears in accordance with symbolic expres-

sions, including ways to iterative and recursive procedures. The category (PVF) is

used when students prove the validity of the formulas used. Such categories are

used in Table 1, and also when they appear during the dialogues.
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In Table 2, we present part of the data research table in this task of n dots we

analyze here. It is possible to see the categories according the type of strategies

above explained and codified as we see in the dialogue. We also see the contribu-

tions not related to algebra but including possible clarification issues (a); and

related to algebra over a colleague contribution (b).

We have classified the content contributions into groups of students depending

on whether its focus is the algebraic content or the relationship with the other

participants (see Table 1, above), and we see that it changes according tasks (Royo

2012). We found that in the electronic forums, students passed through the access/

motivation and online socialization stages to the information algebraic exchange

stage in a few days during the analyzed forum as we can see next when describing

the interactions. An interaction scheme shows three main nodes for this task, but a

lot of common interventions (explained in detail in Royo 2012, p. 212). The profile

A means the highest level of interaction, and F is the lowest.

After doing all codifications of students’ writings, when some strategies and

categories appeared, some similar tables were constructed to identify what happens

in each task.

Finally, to see the influence of educational profile on the final results, we

observe how the students in highest profiles evolve in some algebraic meanings.

Analyzing the results from all the tables associated to the different tasks and final

test, we observed that the categories corresponding to the higher level of algebraic

content are related to the contributions of higher educative profile students. Just

the Student 16 is different, perhaps his comments are not enough understood by

the colleagues.

Table 1 Profile and interaction characteristics found in the problem analyzed

N Dot problem (individual indicators)

Participants Access Participation Connectivity

Students þ
Teacher

MDIE

(>1?)

IIE

(�1/n)

IIRCL

(� 0,5)

IIC

(�1/n)

IIMR

(�1/n)

IIR

(�1)

St 1_E14 20 0,23 0,17 0,21 0,26 0,83

St 6_St 9 6 0,07 0,24 0,09 0,13 1,00

St 8 12,6 0,15 0,11 0,09 0,12 0,90

Teacher 5,57 0,07 0,21 0,07 0,13 1,25

Profile A satisfying all the criteria with expected indicators (highest profile)

St 5 8 0,09 0,11 0,05 0,08 1,00

Profile B satisfying five criteria

St 11 5,71 0,07 0,20 0,07 0,01 0,13

Profile C satisfying four criteria

St 2 5,86 0,07 0,12 0,04 0,01 0,20

St 12 1,71 0,02 0,33 0,03 0,05 1,00

St 15 4,86 0,06 0,09 0,03 0,03 0,67

St 16 6,43 0,08 0,13 0,05 0,01 0,17

Profile D satisfying three criteria
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Qualitative Findings

Next, we describe some dialogues of this task, to see how the dialogues introduce

problem solving issues among interactions and how they were codified and asso-

ciated to each contributor. In such an explanation, we focus on how the students use

formal language for describing the solution.

In their first interventions, the students showed that teacher guidance was still

desirable.

Student 1 Pili, which number is n???

Student 2 We can unite nothing because we don’t know how many dots we have.

Teacher Well, maybe we can start with a few dots. . . How many dots you want

to start? (AssumeV)

The second part of the Forum starts from a contribution in which St 6 and St

9 vary referential perspective to propose a new strategy to find the sum of n

consecutive natural numbers (PA). The teacher proposal offered some security

when attempting to begin to draw diagrams with some groups of dots. Therefore,

she decided to make a new proposal:

Teacher You have been drawing dots. You have tried with 2 dots, with 8 dots. . .
Is it possible that you make a table with the results?

Then, many students follow the suggestion, and ordered the data in a table (PA).

Others simply accept. This action and segments facilitated the passage from the

particularization to the generalization, a process that each student understands as a

compulsory proposal. As usually in face-to-face classrooms, the development of

tables gave rise to the emergence of recursion strategies.

Dots Segments

1 0

2 1

3 3

4 6

5 10

6 15

Table 2 Part of classification of content contributions in the task, according to different students

and profiles

Problem “n dots” Type contributions

Total a bParticipants Profile S D V PA E LIS RP PVF

St 1_St 14 A 4 1 9 1 4 1 24 7 17

St 2 C 2 1 1 1 5 1 4

St 3 F 1 2 1 4 1 3

St 4 E 6 3 1 10 1 9

St 5 B 2 2 1 1 6 2 4

Teacher A 2 1 5 8 1 7

Total group 34 28 1 6 26 9 9 3 115 28 87
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Student 3 says that “I have found this: the difference between 1 and 2 is one.

Between 2 and 3, it is 2. Between 3 and 4, it is 3. And so on. . . a is the number of

segments a ¼ n – 1 þ a of previous number.” (PA)

This kind of contributions gave rise to the expression of diverse ideas, request for

clarification and comments. It is interesting to observe the last expression of the written

contribution above (“a¼ n� 1þ a, of the previous number”), which are not valued as

wrong but as a step in the use of algebraic language (LIS). The teacher-researcher

wrote in her research diary some comments on content analysis, using different

categories: “They have decreased the contributions posedquestions (D). They have

increasedthe socialcontributions (S) and explanations(E). In termsof strategies, they

appear for the first time contributions of registration pattern (RP) and evidenceof the

validity of formulas (PAV). Communication of cognitive elements appearing in some

interventions mixed with emotional and affective elements. As an example, St.13

participates for the first time, after having refused initially to use the Forum. The

teacher had been talking with him individually after the first session”.

Finally, the students also commented in their written forum reports that they

thought the forum allowing active processing, mediated contribution, and a better

understanding and control of the problem solving process. In order to facilitate the

communication of these expressions, the teacher suggested an oral discussion and

the use of the whiteboard to represent the situation jointly developed (see Fig. 2).

At the end of the oral discussion, in the forums, new representations appeared:

The input to the forum continued. The students kept their communication by

requesting and offering explanationsand help, or exchanging their findings:

Student 6 [to Student 7] Is it possible that I understand a thing that you don’t? Ø
Ø“The question is to catch any number, which will be “n”, then you

must split between 2 multiply by the result of n minus 1. (LISþ RP)

Student 8 Albert is right. I checked it out. The formula is n:2 (n�1) (LISþRP)

From here, a discussion arose about the equivalence between the

expressions “(n�1), n:2” and “nþ(n�1)/2 * n”.

Student 4 We can do both things and it goes well. (Example of agreement)

Some students proposed the use of known resources:

Student 9 We can take the geoboard and go testing with dots and segments http://

nlvm.usu.edu/en/nav/frames_asid_279_g_4_t_3.html?

open¼activities&hidepanel¼true&from¼vlibrary.html (non cognitive

comment)

Some other students sought convincing explanations to the formula. Although

this explanation had already been found a week earlier, the attribution and appro-

priation of meaning has to be performed individually, and each student needs to

perform an individual process:

Student 10 Why the formula works: It is because each dot matches with another

one, but not with itself. So, you have to subtract 1 from the starting

number: �(n�1). The result is divided by 2 because the dots are listed

only once. (RP)
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Meanwhile, new representations emerged:

Student 11 Me and [Alumn.12] have discovered: When n¼ 5 dots: (5�1) þ
(5�2) þ (5�3) þ (5�4) ¼ 4 þ3 þ2 þ 1¼ 10 segments (we are

still investigating)

This latest contribution led to the introduction of manipulative material

(polycubes) to encourage representations (see Figs. 3 and 4) and oral discussion

about them:

Teacher Which relationship do you see in 1þ2þ3þ4þ5 in this new context

(polycubes)?

[Students It’s the same].

[Teacher Can you find a formula for it?

[Students Yes, It is the sum of the “squares”] (PA)

Fig. 2 From the particular

cases to the generalization

Fig. 3 Representing

1þ2þ3 as a drawing

Fig. 4 Representing

1þ2þ3þ4 as a rectangle

and as a half of a square

using manipulative material
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After the work with material and some discussion, the students returned to the

forum. New representations and relationships appeared, as we can observe by

Student 13 comment.

Student 13 Another strategy: “5 dots and n¼4: 1þ2þ3þ4 ¼ (1þ4) þ (2þ3)¼
5þ5¼ 10, and that’s equal to: (1 þ4) • 4/2¼ 5 •2¼ 10 (1þn) �n/2”
(LIS)

Interactions and Technological Tools

The value of technological tools such as virtual learning environments is not to

replace the role of the teacher, but enhance the distributed teaching presence,

creating a context that promotes the understanding and development of growing

significant algebraic knowledge. In our study we introduced a theoretical tool

called “educational profile influence” that served to explain how evolve the

interactions in each task as it is in the example. Content categories (as we see in

our example in Table 2) also were helpful to analyze if the interactions are

focused on certain aspects of problem solving activity. Such tools provide the

possibility to understand how the interactions relate the educational profile with

algebraic content issues and strategies. The use of different kind of semiotic tools

is also evident. The students need to relate sentences in which not only regular

language is used, but manipulative materials, and algebraic reasoning. For relat-

ing a generalization mode, they seem to need such multisemiotic tools (Albano

and Ferrari 2013).

If we look not only the example, but the global amount of results and problems,

we observe that electronic forums act as agents of change that affected the teaching

role and in the relationships and interactions established in the classroom. In

particular, highest profile students correspond to the highest problem solving

contributions. We also found that in almost all the tasks, electronic forums enable

individual and collective construction of objects and processes in the learning of

algebra (Royo 2012), and improve generalization attitudes, similar to face-to-face

conversations. Interlocution interactions yield different outcomes and influence the

development of mathematical ideas and reasoning in diverse ways. Its use allows:

(a) to facilitate guided construction of objects and processes in the learning of

algebra (as generalized properties or inquiry methods), encouraging ideas partially

developed and without rushing off to get results; (b) to promote the cognitive and

linguistic capacities of the students, encouraging them to reflect on what they learn

and to express what they know; (c) to develop the communication of mathematical

ideas. (d) to develop an increasing use of formal language from problematic

situations. (e) to stimulate the ability to share and compare ideas; (f) to stimulate

joint construction of meanings; (f) to set the thread around which other activities are

developed that also become part of the teaching and learning process. Some of these

results are consistent to which were considered in other geometrical problem

solving e-studies (Murillo and Marcos 2011).
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It can be expected that all students participate in forums significantly, although

as with all educational action/profile, some cases require guidance or teaching

intervention to adjust the conditions of participation. In didactic programming it

may be convenient to include participation in forums such as evaluation activity.

The use of the forums in the joint resolution of algebraic problems facilitated

reflection during time, access to different points of view or contributions, review of

what you try to communicate, raise questions and request or offer help or

clarification.

Qualitative analysis shows that generalization methods are close to which it’s
regularly presented in face-to-face classrooms and spontaneously emerges a need

for revealing the importance of exchanging the representations not always usual in

face-to-face classrooms. These features have also been evaluated positively by the

students and the teacher. In addition, the students read messages from other

participants even when they have not spoken with contributions. At the end of the

forum, it is important to provide a new step to be seen to be appreciated transfer

programming made.

Final Reflections

Cognitive and content analysis was not fully explained in this paper, but we

observed that almost all students have participated in the forums in a significant

way introducing algebraic contributions (Royo 2012). Although it is not usual, if

any student is not involved in a forum with interventions, you would expect that

their participation consist of reading the contributions of others. When it doesn’t,
there are external causes that should be considered (absence. . .). Or maybe there are

grounds which require teacher intervention. We have seen that at the start of the

forums the largest number of contributions raise questions or request clarification,

but later on, there are more and more algebraic features present during the

conversation.

Interactional data corroborate the findings of authors who point out that these

instruments allow reflection during the time necessary, giving opportunities to have

access to different points of view or contributions of the members of the group, or

review what you try to communicate before sending it. They combine features of

spoken and written discourse which can facilitate collective learning (Murillo and

Marcos 2011).

Comparing the results presented here with the global research study, we have

seen that with 13–14-years old students, the use of electronic forums has been

compatible and effective when combined with face-to-face classroom methods.

This leads to question the asynchronous use that is usually given to these tools. It

makes emerging features of the electronic speeches while synchronous (DES) and

asynchronous (DEA) which are combined in a peculiar way offering features that

should be considered: If treated properly in the school context, they allow
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overcoming some difficult or limiting aspects of one and other speeches when

performed separately, as it was observed in other school subjects.

According to global data for all the problems during the broader study (Royo

2012), the number of contributions with a focus on the algebraic content is

significantly less than the contributions with a focus on the relationship with

other participants. However, the ratio varies significantly depending on the problem

that it was discussed in the Forum. We found enough evidences to tell that the

interlocutions observed support the reflective development of the participants’
mathematical ideas and reasoning (Bairral and Powell 2013) sharing multiple

unexpected representations as manipulatives (not related to web environment, and

usually presented inside the task). Because of lack of space, we don’t explain here

the results of the achieved scaffolding process built in the environment.

The results indicated that individual information had a significant impact on

participation in subsequent forums. This study also present an example contributing

to describe some values of using technological resources for analyzing the role of

interactions in teaching practice for teacher training preparation of future Second-

ary Mathematics teachers allows promoting linguistic capabilities of the students

and improving communication of mathematical ideas. Such benefits are strongly

linked to mathematics features such as multisemioticity and multivariety that are

well supported by technological tools when suitably didactically planned (Albano

and Ferrari 2013).
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Bairral, M., & Giménez, J. (2004). Diversity of geometric practices in virtual discussion groups. In

M. J. Hoines & A. B. Fuglestad (Eds.), Proceedings of PME 28 (Vol. 1, p. 281). Bergen: PME.

Bairral, M., & Powell, A. (2013). Interlocution among problem solvers collaborating online:

A case study with prospective teachers. Pro-Posições, 24(1), 1–16.
Borba, M., & Vilareal, M. E. (2005). Humans-with-media and the reorganization of mathematical

thinking: Information and communication technologies, modeling, visualization and experi-
mentation. Dordrecht: Kluwer.

Cobb, P., & Bauersfeld, H. (Eds.). (1995). The emergence of mathematical meaning – Interaction
in classroom cultures. Hillsdale: Lawrence Erlbaum.

Cobb, P., Boufi, A., McClain, K., & Whitenack, J. (1997). Reflective discourse and collective

reflection. Journal for Research in Mathematics Education, 28(3), 258–277.

e-Collaborative Forums as Mediators When Solving Algebraic Problems 407



Coll, C. (2007, November 19–23). TIC y pr�acticas educativas: realidades y expectativas. Confer-
ence presented in the XXII Monographic Education Week, Santillana Foundation, Madrid.

Coll, C., Engel, A., & Bustos, A. (2009). Distributed teaching presence and participants’ activity
profiles: A theoretical approach to the structural analysis of asynchronous learning networks.

European Journal of Education, 44(4), 521–538.
Coll, C., Bustos, A., Engel, A., de Gispert, I., & Rochera, M. J. (2013). Distributed educational

influence and computer-supported collaborative learning. Digital Educational Review, 24,
23–42.

Coll, C., Engel, A., & Bustos, A. (2015). Enhancing participation and learning in an online forum

by providing information on educational influence. Infancia y Aprendizaje, 38(2), 368–401.
Engel, A., Coll, C., & Bustos, A. (2013). Distributed teaching presence and communicative

patterns in asynchronous learning: Name versus reply networks. Computers & Education,
60(1), 184–196.

Gravemeijer, K. (2002). Emergent modeling as the basis for an instructional sequence on data

analysis. In B. Phillips (Ed.), Proceedings of ICOTS-6 [CD-ROM]. Swinburne: Hawthorn.
Jonassen, D. (2002). Engaging and supporting problem solving in online learning. Quarterly

Review on Distance Education, 3(1), 1–13.
Kieran, C., & Filloy, E. (1989). El aprendizaje del álgebra escolar desde una perspectiva
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Part IV

Communication and Information:
B. Information’s Tools, to Inform Oneself

and to Inform Others



Problems Promoting the Devolution
of the Process of Mathematisation: An
Example in Number Theory and a Realistic
Fiction

Gilles Aldon, Viviane Durand-Guerrier, and Benoit Ray

Abstract Modelling is a complex and difficult process when studying phenomena

from real-life situations. However, it is an important part of the work of mathema-

ticians that needs to be addressed in the teaching of mathematics. We have studied

two different types of problems, the first within mathematics and the second in the

form of “realistic fictions”, that is to say, a problem inserted into a fictional context

allowing a modelling process. We hypothesize that the solving of both of these

types of problem requires constructing meta-mathematical skills as well as using

mathematical knowledge. In both cases, we stress the different roles of technology

as a medium of communication and in providing a dynamic environment.

Keywords Problem solving • Modelling • Realistic fictions • Dynamic

Introduction

For many years, two French research teams (DREAM2 and Resco3) have been

working together in Lyon and Montpellier on the introduction of research problems

in the math class. This work draws on the overall work developed around “open

problems” in teaching and learning that have been studied for at least 30 years in

Lyon (Aldon et al. 2010; Arsac et al. 1988; Arsac and Mante 2007) and also on

research developed around the experimental dimension of mathematics (Dias and

Durand-Guerrier 2005). The collaborative dimension based on exchanges between
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classes has been developed in Montpellier, where classes work on a problem posed

in a non-mathematical form and exchange questions, ideas, procedures and conjec-

tures via a platform. Following numerous didactic works conducted on problem

solving, both in France and abroad, among them Polya (1945); Peix and Tisseron

(1998) and Schoenfeld (1994), the French Board of Education highly recommended

including problem solving in the mathematical learning process, as the heart of

mathematical activity. Problems arising from other disciplinary areas or from

everyday life are promoted in order to help students make sense of the mathematics

under study. In this context, and taking note of the difficulty for teachers to

implement such situations in the classroom, we have developed didactic situations

(Brousseau 1998) and have offered training to support teachers in setting up

classroom problem-solving activities (Aldon and Durand-Guerrier 2009). One of

the challenges we want to face is to provide a real work of modelling, that is to say,

the devolution of the choice of mathematical tools that can be used in the process of

problem solving. This modelling work can be “horizontal”, that is to say within

mathematics where students have the choice and the responsibility of the mathe-

matical knowledge they want to use, or “vertical” when the first phase of modelling

comes from the mathematisation of a non-mathematical situation. In both cases we

hypothesized that students would work not only on heuristics but also on the

mathematical knowledge relevant to the mathematical situations. Two different

situations were studied: firstly, situations where questioning is internal to mathe-

matics (Gardes 2013) and secondly, situations stated in a non-mathematical form,

leaving the responsibility of modelling to students prior to the phase of resolution.

In this chapter, we will discuss this mathematisation process in two situations: the

first one comes from the EXPRIME cd (Aldon et al. 2010) whereas the second one

is an example of realistic fiction that has been developed within the framework of

collaborative research (Ray 2013). In both cases, the experimental part of mathe-

matics plays an important role in the construction of mathematical knowledge, and

technology is used in different perspectives: as a tool facilitating experience and

allowing patterns to be discovered and also as a means of communication and

exchange. The aim of this chapter is to demonstrate how various aspects of ICT can

facilitate the mediation of problems in the teaching and learning of mathematics.

More precisely, in the first example we will show how new representations of

mathematical objects using technology can provide different ways of experimen-

tation; while in the second example, we will stress the communication properties of

technology both in the devolution of didactic situations and in the emergence of

communities around the process of collaborative problem solving.

The Experimental Dimension of Mathematics

As Polya (1945) noticed:

412 G. Aldon et al.



Studying the methods of solving problems, we perceive another face of mathematics. Yes,

mathematics has two faces; it is the rigorous science of Euclid, but it is also something else.

Mathematics presented in the Euclidean way appears as a systematic, deductive science;

but mathematics in the making appears to be an experimental, inductive science. (p. VII)

The experimental face of mathematics that Polya quoted must be clarified. The

notion of experiment can be viewed both in the field of philosophy of sciences and

the philosophy of knowledge. The subjectivity of sense perception is an obstacle to

the interpretation of experiments in all sciences and particularly in mathematics,

due to the fact that experiments are carried out on representations of mathematical

objects and not on the objects themselves. The two examples shown in Figs. 1 and 2

Fig. 1 (a–d) A puzzle from http://irem-fpb.univ-lyon1.fr/feuillesprobleme/feuille4/enonces/

Deuxcarres/indexcarres.html (accessed 27 Dec 2015)

Fig. 2 Proof of a Pythagorean theorem
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illustrate this. In the first example, the puzzle is not rigorously completed in Fig. 1c,

d but visual perception does not enable us to see the holes. The pieces are moved

freely and the animation does not give any clues to solving the apparent paradox. In

the second example, the animation becomes clear proof of the Pythagorean theorem

if, and only if, it is possible to link the visual perception to the mathematical

properties of objects, say rotations and their property of conservation of distance

and area and the algebraic identity (a þ b)2 ¼ a2 þ b2 þ 2ab.

Without going into an exhaustive description of the role of experience in

science, the links between theory and experience have always led to consider the

relationship between sensitivity and theoretical formalization in a particular lan-

guage. Kuhn (1962) argues that each theory carries the interpretations of the terms it

uses so that the same experience and results may lead to different interpretations

according to the underlying theoretical assumptions:

My remarks on incommensurability and its consequences for scientists debating the choice

between successive theories, In Sections X and XIII have argued that the parties to such

debates inevitably see differently certain of the experimental or observational situations to

which both have recourse. Since the vocabularies in which they discuss such situations

consist, however, predominantly of the same terms, they must be attaching some of those

terms to nature differently, and their communication is inevitably only partial. As a result,

the superiority of one theory to another is something that cannot be proved in the debate.

(Ibid., p. 198)

Observation and manipulation by linking the action (the relationship to the

perceptible world) and reflection (the relationship with the theoretical world) are

a foundation of experience that need to be transposed both towards mathematics

and teaching and learning of mathematics. Thus the mathematical objects, objects

of experience, can be perceived dialectically in a perceptible view by direct

manipulation of some of their representations and in a theoretical view by their

relationships within abstract structures. Therefore the manipulation of mathemati-

cal objects depends on an appropriation of systems of signs to make the objects

familiar, that is to say controllable in their relationship to the underlying theories. In

that sense, technology brings new representations and therefore new possibilities of

experience but also new difficulties to connect with other representations of the

same object.

Starting from these epistemological considerations, the aim of our work is to

study the possible links between doing maths and have learners do maths in a

didactic perspective as well as showing the role of technology in this process. The

next sections will present two different examples that illustrate these considerations

and show the place of technology in the process of problem solving.

Principles of the Collaborative Resolution of Problems

Over the last 15 years, the Resco team in Montpellier (Resco 2014) has been

developing an innovative frame for developing collaborative research involving a
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network of volunteer teachers who engage their students in a problem-solving

session running over 5 weeks. Some teachers are involved through an

interdepartmental teacher training session; others join the research on their own,

generally after having taken part in a previous training session. In this frame,

technology plays a role of communication and information by providing a virtual

space for exchanging and sharing.

In the first 2 weeks, a game of questions and answers between two or three classes

aims to enlighten the necessity of making choices in order to engage in a mathemat-

ical exploration of the problem, a point which is generally hidden in modelling

activities in class. The questions and answers are exchanged via the platform. This

corresponds to the horizontal mathematisation1 (Herskowitz et al. 1996):

... that has to do with establishing a relation between non-mathematical situations and

mathematical ideas (metaphorically, this is like building a bridge between the two). (p. 117)

The Resco team then works on this material in order to provide a ‘prompt2‘
which is sent to students by one of the team members who is a university lecturer.

This prompt takes into consideration the a priori analysis of the group and the

questions and answers that have been posted on the platform; it makes explicit the

choices that will allow a mathematical investigation of a common problem. The

students then engage in this mathematical exploration (corresponding more or less

to a vertical mathematisation3) for 2 weeks and send their ideas, procedures,

arguments, proof, and a complete or partial solution to the other two groups. The

last week is devoted to a synthesis taking into consideration the various contribu-

tions and the mathematical and didactical analyses produced by the team.

The specific organization of this collaborative session and our desire to engage

students in a process of mathematisation entails various constraints on the choice of

the problem, which led us to propose a specific kind of problem that we have called

“realistic fictions”. We present below the various aspects of this innovation using

the example presented during the academic year 2009–2010.

An Example of Elementary Number Theory

This example has been developed in Aldon et al. (2010). The mathematical

situation is the following: “Find all whole numbers which are the sum of two or

more consecutive positive integers.” (n.p.).

1The importance of mathematisation was enlightened by Freudenthal (1973); the distinction

between horizontal and vertical mathematisation was first introduced by Treffers (1978), see

Menon (2013).
2We call ‘prompt’ a letter sent by the university lecturer to students in order to redirect their

researches.
3The vertical mathematisation is an activity in which mathematical elements are put together,

structured, organized, developed etc. into other elements, generally in a more formal or abstract

form than the original (Herskowitz et al. 1996, p. 117).
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An objective of the work is to identify the mathematical knowledge that may be

called upon at different class levels where students, using their own knowledge,

enter into a mathematical research situation. The interaction between this knowl-

edge, the results of experiences, in the sense given in the previous section, and the

relationship to the theory allows the construction of new knowledge. In the follow-

ing paragraph we analyse both the mathematical and the didactical situations in the

light of the use of technology. This situation has been experimented repeatedly but

the examples shown in this chapter come from two experiments: the first in two

classes of 14–15 year-old students (Grade 9) in a secondary school in the suburb of

Lyon and the second in a class of 16–17 year-old students (Grade 11) in a scientific

class at a high school in Lyon.

The Mathematical Situation

A numerical experience that can be conducted using a pencil and paper or a

calculator leads to conjecture that all positive numbers except the power of 2 can

be reached. It could be of interest to program this research using programming

language. For example, using Python, the following functions give the results

shown in Table 1.

Table 1 Programming the experiments

def sum(a,n):

r¼a

for i in range(n-1):

r¼rþiþaþ1

return r

The function sum computes the sum of n consecutive integers

beginning with a.

Example: sum(2,5) returns 20

2 þ 3 þ 4 þ 5 þ 6 ¼ 20

def test(p):

for i in range(1,p/2

þ2):

for k in range(2,p/2

þ2):

if p¼¼sum(i,k):

return i,k

return ‘false’

The function test searches an additive decomposition with consecu-

tive integers of the input number p. It returns false when it does find

such a decomposition.

for i in range(2100):

print i,test(i)

2 false

3 (1, 2) ! 3 ¼ 1 þ 2

4 false

5 (2, 2) ! 5 ¼ 2 þ 3

6 (1, 3) ! 6 ¼ 1 þ 2 þ3

7 (3, 2) ! 7 ¼ 3 þ 4

8 false

9 (2, 3) ! 9 ¼ 2 þ 3 þ 4

...
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It is interesting to note that this computing allows us to conjecture the results (the

program returns “false” in front of the power of 2), but does not give us any clues on

how to reach mathematical proof because the algorithm is the translation in a

particular language (here Python) of the mathematical wording of the problem.

The technological tool allows us to compute more quickly than by hand, but does

not bring us any further advantages. This approach is very fruitful in finding the

conjecture but insufficient to prove it. Mathematisation of the problem goes through

the choice of other tools. An algebraic resolution seeking to build an explicit

formula of the sum of two consecutive integers, three consecutive integers, etc.

leads to experimentally finding the pattern of these sums and reciprocally to proving

that all numbers of this form are reached. For example, with two consecutive

numbers, all odd numbers are reached:

nþ nþ 1ð Þ ¼ 2nþ 1 is odd

if p is odd, it exists a unique n such that p¼ 2nþ 1¼ nþ (nþ 1).

With three consecutive whole numbers, all multiples of 3 are reached:

n� 1þ nþ nþ 1ð Þ ¼ 3n

Conversely, if n is a multiple of 3, then n¼ 3p¼ ( p� 1)þ pþ ( pþ 1)

Becoming involved in this strategy leads us to identify sub-problems, to pose the

problem of formal proof, including the converse, but also to observe patterns and

invariants. The mathematical knowledge used is multiple: the algebraisation of the

problem, the decomposition of integers, the concept of multiple and divisor and

their characterization with algebraic formulae. This knowledge, which is generated

by the interaction between experience and interpretation of the results to theory, is

sufficient to build proof of the conjecture, as long as the Gauss formula of the sum

of the first positive integers is known.

This mathematical proof can be given taking into account the sum of the n first

positive integers:

Sn ¼ 1þ . . .þ n ¼ n nþ 1ð Þ=2 ð1Þ

Let N be a natural number, we search a and b such that:

N ¼ Saþb�1 � Sa�1 ð2Þ

That is to say:

2N ¼ aþ bð Þ2 � a� b� a2 þ a ¼ b 2aþ b� 1ð Þ ð3Þ

We can consider the parity of b.

If b is even: 2a þ b � 1 is odd

If b is odd: 2a þ b � 1 is even
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Thus the two numbers b and 2a þ b � 1 do not have the same parity and as their

product is even (2N ), N has an odd prime factor and cannot be a power of 2.

Conversely, 2N is the product of an odd number i and an even number p and

2N ¼ b 2aþ b� 1ð Þ ð4Þ
if i < p then b ¼ i and p ¼ 2aþ b� 1 that is to say a ¼ p� bþ 1ð Þ=2 ð5Þ
if i > p then b ¼ p and i ¼ 2aþ b� 1 that is to say a ¼ i� bþ 1ð Þ=2 ð6Þ

The conjecture is proven and this proof provides us with a practical process to

determine a and b such that N¼ aþ (aþ 1)þ (aþ 2)þ . . .þ (aþ b� 1).

For example, 20¼ 2þ 3þ 4þ 5þ 6

40 ¼ 5� 8 and 5 < 8 then b ¼ 5 and a ¼ 2

It is of interest to note that we are not stating that the solution found with this

method is unique and other problems could emerge from this one when trying to

find the number of additive decompositions of a number. We will discuss later how

technology can help to pose this new problem, extending the field of research in the

elementary theory of numbers.

The Didactical Situation

Using problems to teach mathematics requires paying special attention to the

situation, i.e. the milieu to which the students will be confronted. The Didactic

Situations of Problem Solving are situations in the sense of Brousseau (1997), but

they are situations that do not involve specific knowledge and thus stand out from

the “fundamental situations” of the Theory of Didactical Situations. They are also

connected to “Problem Solving” in that the enrolment of students leads them to

discover a small part of mathematics and to use and develop heuristics and meta-

mathematical skills; but these situations are built on the idea of construction of

knowledge. Consequently, the experimental dimension, as described above, is also

an essential component of these situations. The links between the mathematical

objects involved in the mathematical situation are built through the experiences and

the reflections on the results of the experience using concrete artefacts or natural-

ized mathematical objects that are present in the milieu of the situation. In partic-

ular, available technological tools are part of this milieu and give students an

opportunity to experiment in a different way to what they could do using a pencil

and paper. Technology brings a new approach and even if it does not lead to

mathematical proof, it allows a better understanding of mathematical situations

by providing the opportunity of rephrasing the problem in another system of signs,

as shown in Table 1.

In the case of the given problem, it is interesting to note that in the different

experiments, the students’ research led to different results and conjectures.
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Nevertheless, the analysis of the problem is robust enough to highlight some

mathematical knowledge, allowing an institutionalization of knowledge linked to

the aims of the curriculum, as shown in Fig. 3 with a facsimile of the Grade 11

students’ poster and the original poster of Grade 9 students. Even if the results of the
Grade 9 students are less developed, we can see the same strategy, i.e. the study of

the properties of the sum of two, three, . . ., consecutive integers.
In this problem, and due to the fact that technology does not give us any clues to

the mathematical proof, students use technology as an external tool facilitating

computation. It generates debate between students as shown in the short dialogue

where G (a girl) is using her calculator to compute the powers of 2 and B (a boy) is

doing the calculation from memory:

G (using her calculator): 2 to the power 5 is... 32... Yes, 2 to the power 7 is 128

B: 256, 512, 1024, 2048...

G: How can you compute so quickly?

B: Well, I do times 2

G: Ah, yes, not bad!

In this case, using the calculator hides the recursive definition of the power of

2. In that small excerpt G is using the possibilities of her calculator making

reference to the iterative definition of the power: an¼ a� a� . . .� a (n times)

while B is using the recursive definition of the power: an¼ an� 1� a.
An in-depth analysis of the possibilities given by the spreadsheet shows that it is

not only possible to establish the conjecture as long as the Gauss formula is known

(Fig. 4) but also to find all decompositions of an integer into the sum of consecutive

integers. For example, the number 90 has 5 decompositions:

90 ¼ 2þ3þ...þ13 ¼ 6þ7þ...14 ¼ 16þ17þ...þ20 ¼ 21þ22þ23þ24 ¼
29þ30þ31, which is exactly the number of odd divisors of 90 different from

1. The solution given by the proof is here 90 ¼ 21 þ 22 þ 23 þ 24.

Fig. 3 Poster of Grade 11 students (left) and Grade 9 students (right)
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In this case the spreadsheet, and more generally technology, appears as a means

of development in the resolution of the problem as well as allowing an application

of the algebraic formula in a different context: from S¼ a(2nþ a� 1)/2 where a is

the initial number of the sum and n the number of terms to “¼$A4*(2*C$1þ
$A4–1)/2” which is the translation in the language of the spreadsheet.

It appears that using technology to research a problem depends on different

factors, coming from the mathematical situation itself as well as the didactical

situation. In the case of the problem, exploration of the situation using technology

quickly provides conjectures but takes the mathematical proof away. It is only by

alternating between the use of technology and the mathematical theory that clues

leading to proof can be found. In this case, technology is an exploratory tool that

enables the problem to be extended, bringing new questions that add to the richness

of the mathematical situation.

On the other hand, the didactical situation, by offering a milieu, can either

promote the use of technology, or not. It is the responsibility of the teacher to

include technology in the material milieu but also to institutionalize its use in

relation to the related mathematical content.

An Example of a Session of Collaborative Resolution of a Problem

In this section we present the collaborative resolution of a problem innovation using

an example from the 2009–2010 session. We describe and exemplify: first the main

features of what we have called “realistic fiction” and second the different phases of

the session. In both cases, we motivate our choices by taking into account our aims

and the specific constraints induced by the organization of the session, both being

closely intertwined.

Fig. 4 The first line gives the starting point of the sum, the first column gives the number of terms
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An Example of a Realistic Fiction: The Artist’s Problem

A realistic fiction is a contextualized problem with the following characteristics:

(a) The situation should appear a priori as a non-mathematical one; i.e. the math-

ematics that could be involved are not immediately visible for a novice.

(b) The context of the situation is fictional, but realistic, that means that it could be

interpreted in reference to ordinary life.

(c) In order to be able to engage in a mathematical investigation on this situation, it

is necessary to first engage in a process of horizontal mathematisation.

(d) The horizontal mathematisation can lead to various mathematical problems,

depending on the choices that have been made.

We illustrate these characteristics with the example of the Artist’s Problem that

was proposed to 38 middle and high school classes in the 2009–2010 academic

year. This problem was elaborated as a realistic contextualization of the following

classical problem (Fig. 5).

In order to reach a satisfactory realistic fiction in accordance with the above

criteria, several contexts were considered and discussed in the Resco team (puzzle,

logo, video game etc.). Finally, we retained the idea of the realization of a

contemporaneous work of art (Fig. 6).

Characteristics a, b and c of a realistic fiction are satisfied: the situation appears a
priori as a non-mathematical one; the context is fictional but realistic;

mathematisation of the problem is likely to provide a general answer to the artist.

This third characteristic is an illustration of the predictive role of mathematics that

permits an anticipation of results of actions not yet done.

Concerning the 4th characteristic, we hypothesised that the various possible

choices for mathematizing the problem will favour rich exchanges during the two

sessions devoted to the game of “questions and answers”. This was confirmed by

the data collected in the classes (see next section).

Placing n distinct points on the circumference of a circle. How many parts do we 
determine within this circle by drawing all possible strings through pairs of these 
points?

Fig. 5 Text of the underlying mathematical problem

A contemporaneous artist is willing to create a work on a round support, by 
planting nails around the circumference and pulling strings between the nails. He 
proposed painting each zone in a different colour. How many colours will he 
need?

Fig. 6 The artist’s problem
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The problem of the artist leads to the underlying problem of the number of areas
in a disk whenever the following choices are made: the support is a disk; the size of

the other objects is not taken into consideration (nails are modelled by points;

stretched strings are modelled by straight lines); nails are points on the circumfer-

ence of the disk; each nail is linked to all the other nails: an area is a surface defined

by cords and/or the side of the disk, and not crossed by others cords (i.e. there is no

other zone inside): the number of colours is exactly the number of zones. Once

these choices are made, several different problems remain, according to the choices

made concerning the position of the nails (regular or not, allowing multiple

intersection points or not) (Fig. 7).

The Game of Questions and Answers

During this phase, students use a platform to communicate with their peers. The

platform is a private part of a site with free access. This ensures the confidentiality

of the exchanges: the research of some classes could be parasitized by the publica-

tion of student work on the same subject. At the middle school (Grades 6 to 9), most

of the questions sent to the other classes at the end of the first session concerned

(in decreasing order of occurrence) the size of the involved objects, their position,

their number and their shape (sometimes with aesthetic considerations), as in the

following example (Fig. 8).

At this level, the process of vertical mathematisation is not yet engaged, contrary

to what could be observed at a more advanced level, as in the following example

(Fig. 9): the number of nails is kept as a relevant variable of the problem and the

size of the objects as a non-relevant one.

A detailed analysis of the students’ exchanges is provided in Ray (2013), which

concludes that the devolution of horizontal mathematisation occurred in the classes

during the two first sessions: students’ discussion on the way of representing the

Fig. 7 Influence of the position of the nails
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different objects implicitly denotes elements for the elaboration of “candidate-

models”. In order to engage the students in a common mathematical problem, it

is necessary to set some essential choices. For this purpose, a prompt signed by a

researcher is sent to all the students via their teachers.

The Prompt Sent to Students

The platform is also at this stage of the process a tool allowing the communication

between actors. For the team the fact that all discussions are available on the

platform is very useful for understanding the questions that the problem pose, the

main ideas developed during the discussions, and so on. Apart the text of the

problem, the prompt is the only scientific contribution from outside the students’
community; it is elaborated taking into account the exchanges during the first two

sessions of the questions and answers game. Indeed, it aims to enhance the research

process and as a consequence, it must be understood by the students as setting in a

non-artificial manner some aspects of the problem that they raised in their ques-

tions. For this problem, at every school level, students, sometimes after long

debates, agree with nearly the same choices for mathematizing the objects. The

prompt (Fig. 10) consisted in validating these choices and stating that the expected

answer was on the maximal number of colours.

This prompt provides answers to the most frequent questions and to those that

require a joint decision:

– The first point allows discussion on questions like “Do different tones of a same

colour make up different colours?”; indeed, a lack of response might interfere

with the result of the research,

What is the size of the support? What is the area of the circle? Of its 
diameter? Is it a disk? What is it made of?
What is the size of the nails? How many nails are there? How much 
space between the nails?
How many strings are there? How are the strings arranged? Are the 
strings stretched? Do several strings leave from a single nail?

•

•

•

Fig. 8 Questions from a middle school class (Grade 9) (We translate from French.)

The number of nails is a variable; we wish to study its influence on the 
problem.
It is not necessary to know the dimensions of the support: indeed, we 
seek to know the number of zones and not the size of each area.
By increasing the area of the support, we increase the size of areas but 
the number of zones remains unchanged. In this problem, the dimensions 
of the support have no influence on the required number.

•

•

•

Fig. 9 Answers of a high school class (Grade 12)
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– The second point confirms that the nails are not necessarily arranged in a regular

manner and that the multiple intersection points are avoided (otherwise there is

no functional relationship between the number of nails and the number of

colours),

– The third point eliminates the possibilities of various work supports mentioned

by the students: spherical, hemispherical, cylindrical, rings, etc.,

– The last point consolidates most students in their choices of mathematisation of

the problem.

Based on the students’ exchanges, and respecting the choices made by the

majority, the prompt engages students with the same mathematical problem, with-

out inducing any particular method of resolution.

Realistic Fictions and Collaborative Problem-Solving Innovation:

Additional Constraints

The contextualization of the realistic fiction should guarantee that the students do

not immediately identify the underlying mathematical problem: it must offer the

possibility of conducting a real horizontal mathematisation pondering the dialecti-

cal relationship between real objects and mathematical objects. In other words, we

distinguish “contextualization” and “dressing”. The artist’s problem is not a simple

dressing of the initial problem: the rich set of questions and answers discussed

earlier and the different possible mathematisation choices prove it.

One of the principles of collaborative problem solving is to propose the same

problem to students early in the middle school up to the end of high school.

Moreover, as part of a research of several hours over 5 weeks, the mathematical

problem itself must be sufficiently consistent.

To elaborate the Artist’s Problem, the Resco Group relied on the work of the

research group EXPRIME (IREM Lyon - INRP) on the underlying mathematical

problem (i.e. the number of areas in a disk): the many experiments conducted in

middle and high schools had showed its relevance to all levels of education and the

We wish to give a precise answer to the Artist in order to help him to make 
choices for the realisation of his work of art.
So we intend to provide a mathematical treatment of the Artist’s problem
For this purpose, I propose that you take into consideration that: 
1. The number of colours is the number of zones 
2. We are seeking a general solution, that is to say we're looking for the maximum 

number of zones according to the number of nails
3. The support of the work of art is a disk and the nails are distributed over its 

circumference.
4. The support size is sufficient so that one can disregard the size of the nails and 

the thickness of the threads. Therefore, the nails are assimilated to points, and 
the stretched threads to straight lines.

Fig. 10 Excerpt from the promptrelance (the full text in French is in Annex 2)
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richness of exploration and resolution strategies; it contains interesting

sub-problems and each student can engage in research. This makes it a good

candidate for elaborating a realistic fiction: indeed, it guarantees the possibility to

have consistent work not only for horizontal mathematisation, but also for vertical

mathematisation after the prompt.

The Role of the Platform in Resco

The role of the Internet platform is crucial in the collaborative research innovation,

far beyond the technological aspects. Three main aspects show the importance of

technology as a medium of information and communication:

– First, it is the support for the exchanges in the classes’ network and has an impact

on the devolution, the didactical contract and the milieu (Brousseau 1997, 1998;

Brousseau and Warfield 2014); in that sense, technology plays a role of facili-

tator in the introduction of the problem within the classes and forces students to

discuss directly with their peers. Therefore, the problem is no longer the

teacher’s problem but becomes internal to the students’ community.

– Second, it becomes a tool for facilitating communication within students and

teachers communities and allows the appearance of communities of practice

(Wenger 1998): for students with a common goal in solving the problem and for

teachers with a mathematics teaching goal through problem solving.

– Third, it provides the research team with data for elaborating the prompt and also

for analysing the process of communication by providing a record of the

students’ exchanges.

In this experiment, the properties of communication, sharing and providing

information facilitate the teaching organization within each class as well as between

classes.

A Support for Exchange Between Classes

The classes involved in a collaborative problem-solving session work separately for

five sessions, but share with the two other classes of their team, sending and

receiving documents (texts, figures, diagrams, spreadsheet files or dynamic geom-

etry files) via their teachers who are responsible for the technical aspect of the

exchanges via the platform. The teacher does not moderate the exchanges (ques-

tions, answers, resolution procedures, protocols, partial results correct or not), so

that students are responsible for what they send during the session. It is only at the

last step that the teacher, together with the students, comments on what has been

done, what has been proved, what remains as conjecture, which mathematical

notions had been involved and reworked during the session.
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The chosen methods of communication make it essential to produce a structured

written document: writing a summary of the work before each post on the platform

allows to clarify and refine ideas which expressed orally might sometimes only

remain in a draft form. Also, it highlights for students the need for rigour required

by argumentative writing and provides an opportunity to use and sometimes to

develop relevant alternative representations when the text becomes insufficient to

express ideas or to conduct reasoning.

Impact on the Devolution, the Didactical Contract
and the Milieu

During the collaborative research session, students are invited to correspond with

other classes; they decide by themselves which content will be sent to the two other

classes; the teacher’s role in the first two phases is mostly to organize the small

groups work and the collective summary and to post it on the platform. Thus, in the

first phase, the students ask questions to their peers and not to their teacher, and in

the second phase they answer questions from other students: we assume that it is a

factor promoting the devolution of the horizontal mathematisation of the problem.

Moreover, in the following phases, the teacher does not control the correctness nor

the validity of the statements and reasoning sent to the two other classes via the

platform. We assume that this contributes to modifying the didactical contract,

letting students take the responsibility of their assertions, conjectures or proof

(Brousseau and Warfield 2014). This claim is supported by classroom observations

over more than 10 years showing that the documents are often very strongly

discussed before being sent.

Thus, the platform can be seen as part of the didactical milieu that plays an

important role in the didactical contract (Brousseau 1997, 1998): letting students

take the responsibility of the scientific content of their posts and consequently

improve their involvement in the research.

A Crucial Role for the Resco Team

By collecting the questions and answers posted on the platform during the two first

sessions devoted to horizontal mathematisation of the problem, the members of the

Resco team have access in real time to the reflections of the classes engaged in the

session. It plays an irreplaceable role in the elaboration of the prompt which, as we

have seen, explicitly takes the students’ work into account.

Furthermore, the platform helps the Resco team regulating the organization of

the classes: groups of two or three classes may have to be reconfigured (temporary

participation problem, incompatibility levels, dropping out, etc.).
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Last but not least, the platform is also a record of the students’ work: the

exchanges reflect the ambition of the collaborative research innovation; they are

stored in a sustainable manner and can be used for academic research or for teacher

training, as well for inter-departmental teachers taking classes in the session, and

also for prospective teachers following a Masters degree program.

The Communities of Practice

A collaborative problem solving session can involve up to more than 70 classes

mainly from the Montpellier area, but also from other areas in France and other

countries (i.e. Morocco, Canada). The platform appears as the unifying link of three

communities of practice: the students, the teachers and the Resco team, who

manages the entire process (Sauter et al. 2008).

The Resco Team

The Resco team is a research group from the IREM de Montpellier who has been

working throughout the whole year, every year since 2000 on the various tasks

required by the collaborative research innovation: development and a priori anal-
ysis of the annual problem, development and animation of the inter-departmental

teacher training which is associated with each annual session, management and

regulation of the exchanges on the platform, elaboration of the prompt, a posteriori
analysis, assessment of the mathematical notions worked out during the session,

design of resources relying on the data posted on the platform, and on all the

documents elaborated during the session by the team.

The Teachers

The inter-departmental teacher-training course associated with the session allows

teachers who are not yet promoting research problems in their class to make a first

attempt with a classical research problem (i.e. open problems, Arsac and Mante

2007) before engaging their classes in the collaborative research session. Following

this first experience, some teachers regularly renew their engagement. Furthermore,

the presentation of the innovation in various national and international conferences,

the publication of papers in various journals, and the public part of the platform

attract teachers from all over France and abroad. Thus, the community of teachers

involved in Resco is increasing steadily, contributing to the dissemination of

innovative practices recommended by official standards in France and in many

other countries.
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The Students

Student motivation can be enhanced when the teacher shows them the platform.

Indeed, we hypothesize that students who are placed in a position of researchers

(exchanging questions, answers, conjecture, reasoning or proof) have a more

objective view of the community they belong to.

Conclusion

The two types of situation we have presented correspond to two complementary

approaches of the game played in the confrontation of a problem of mathematics or

a problem that can becomes a mathematics problem through modelling. In both

cases, the choice of the problems and the organization of student work are carefully

controlled to allow the devolution of the mathematisation process. The experiments

conducted with both the problems of EXPRIME and the realistic fictions developed

by Resco show that the relation of students to mathematical knowledge is evolving

to be closer to what is recommended by the institution on problem solving, in line

with the results from international research. It is of interest to note that in both cases

technology plays an important role but in different ways: providing a dynamic

environment in the first example, enabling the addition of representations of

mathematical objects on which it is possible to experiment, and providing a

communication tool facilitating the devolution of a situation, as well as the emer-

gence of communities of practice. To extend this work, research questions still

arise, such as: what does it mean exactly to place students in the position of a

researcher? How would extending our results on the characteristics of didactical
milieu favouring authentic mathematical work compare to other didactical organi-

zations, in particular in cases where technology tools are included in the milieu of

the situation? Do these research problems, which develop a genuine form of

acquisition of mathematical knowledge, foster students’ improvement in other

aspects of mathematical activity? How do students transfer the skills and knowl-

edge developed in such types of situations to other frameworks?
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AClassroomActivity toWork with Real Data
and Diverse Strategies in Order to Build
Models with the Help of the Computer

Marta Ginovart

Abstract Dealing with pseudo-mechanistic models, which are continuous and

empirical models where the parameters involved have a meaning according to the

context where they are applied, has an added value. The aim of this study was to

design a set of tasks to be performed with the help of the computer and implement

them in the classroom in order to investigate a real data set with empirical models

and pseudo-mechanistic models. A framework showing different strategies to

tackle these data, and how they generate a variety of plausible responses to the

problem, was configured. The sequence and structure of these tasks jointly with the

help of appropriate computer resources, according to the students’ perceptions,

enhanced the understanding of the construction and use of these models.

Keywords Population growth • Real data • Empirical model • Pseudo-mechanistic

model • Sigmoid functions

Introduction

In the twenty-first century, computation is more than an assistant support of

scientific activity. It is actually changing the fundamental way that science is

practiced and also how this it is being learnt and taught (Shiflet and Shiflet 2014).

Computation allows us to obtain and analyze big data, consider and solve

problems inaccessible until now, build sophisticated models, visualize phenomena,

and conduct experiments which would be difficult or impossible in laboratories,

among other options. Teaching and learning mathematics in any context should

promote the development of thinking and the possibility of an appropriate use of the

technology available nowadays. Processes such as developing curiosity, critical

thinking, reasoning, as well as developing modes of verification, refutation and

deduction should be found in the activities proposed to our students in classroom,

and for some of these processes the help of a computer can be very valuable. In this

context, for instance, the analysis of real data and the building of different kinds of
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models for these data would be a good opportunity to train students in those

processes. In the teaching of applied mathematics, it would be desirable to design

and develop profitable strategies to tackle observed data and models that require

thinking at multiple levels of abstraction or understanding. The potential of the

software present in the majority of computers in our schools and universities cannot

remain unexplored and unexploited when activities related to quantitative model-

ling and numerical methods are carried out in the classroom. The computer must be

seen as a convenient work “companion” and an attractive resource, and never as an

obstacle to learning mathematics. In this line, teachers need to have (or develop)

suitable knowledge and competences in digital technologies and how to use them in

convenient activities, otherwise their teaching will not be so effective (Bennison

and Goos 2010; Prado and Lobo da Costa 2015).

It is widely accepted that mathematical thinking arises and develops in a complex

interplay of languages and representations. There is a relatively new term or idea that

is “Computational Thinking” (Papert 1996;Wing 2006), that although its definition is

still under discussion, it appears to focus on computer science concepts in relation to

processes of problem solving such as: pattern recognition, pattern generation, abstrac-

tion (composition, de-composition, generalization and specialization), modelling,

algorithm design (sequence, iteration and selection), data analysis, and visualization

(Caspersen and Nowack 2014). Thus, it is also accepted that “Computational Think-

ing” can be envisaged as a fundamental skill for everyone, and in particular, very

attractive for anyone involved in teaching and learning mathematics.

In the context of the Millennium Mathematics Project (http://mmp.maths.org/)

can be found the NRICH website (http://nrich.maths.org/) containing a list with

some characteristics that make a task “rich”, highlighting the fact that it is the way

in which the task is planned and used in the classroom that makes it “rich”. Some of

those characteristics can be common to the way in which “Computational Think-

ing” can be practiced.

In the field of mathematical biology, the ability to design classroom activities

that encompass quantitative modelling with mathematical concepts and tools to

deal with biosystems is much appreciated (de Vries et al. 2006). In addition, these

activities can justify and give room for the introduction and workout of comple-

mentary computational methods (Ginovart 2014). Mechanistic (or heuristic)

models are those whose development comes from the understanding of the under-

lying biochemical or biological processes governing population phenomena and

their parameters have biological meaning. Meanwhile, empirical models are math-

ematical functions simply describing observations of the phenomenon. Taking into

account that the majority of the models with more tradition in the mathematical

curriculum to represent temporal evolutions of populations are continuous models

in the class of empirical models, it has added value to deal with these models but

those in which the parameters involved are claimed to have a biological meaning.

These types of models are called pseudo-mechanistic models (Buchanan et al.

1997; Perez-Rodriguez 2014; Zwietering et al. 1990). It is a challenge to link

mathematical tools and concepts with biological ideas, and also a chance to use

the help that computers can provide in these modeling processes.
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The aim of this study was to design a set of “rich” tasks to be performed with the

help of the computer and implement them in the classroom in order to investigate a

real data set (a temporal evolution of a microbial population grown in a specific

environment) to deal with different kinds of models. One of the main purposes in

the designing of this set of tasks was to configure a computing framework showing

different strategies for dealing with the data and software and also, how each of

these approaches could generate a variety of plausible responses to the problem in

hand. With all this, the specific objectives of this study were:

(a) To know which prior knowledge of the students could be used in order to build

models describing the growth of populations and which accessible computer

resources, already familiar to the students, could be used to perform the analysis

of a real data set in this particular context.

(b) To design and implement in the classroom a set of tasks grouped into different

modules to be developed in several computing environments, using spread-

sheets, mathematical programs or statistical software, with procedures or

actions that enable the analysis of a real data set in order to obtain both

empirical models and pseudo-mechanistic models for the representation of

this data.

(c) To collect and analyze the students’ perceptions in order to discover whether

the sequence and structure of these tasks enhanced the students’ understanding
of the construction and use of growth models in a situation of interest in their

academic background.

Material and Methods

The participants in this study were a group of 50, third-year students of a Bachelor’s

degree in the field of Biosystems Engineering at the Universitat Politècnica de

Catalunya - BarcelonaTech (UPC) (Spain). The designed activities were carried out

in the context of the compulsory subject “Programming and problem solving in

engineering” in the sixth semester of the third year of this degree. The prior

coursework for these students (during the first and second years) was related to

the following compulsory subjects: Mathematics I and II, Physics I and II, Chem-

istry I and II, General Biology, Microbiology and Statistics, among others. In

particular, the students had nearly completed 12 ECTS (European Credit Transfer

System) in mathematics, with linear algebra, differential and integral calculus with

one variable, ordinary differential equations, and a brief introduction to calculus of

several variables and numerical methods. The previous preparation guarantees a

solid knowledge of some biosystems (microbial systems, in particular) and basic

mathematical concepts and tools.

Table 1 shows the data to be analyzed and used to build empirical models and

pseudo-mechanistic models. A set of 17 observations corresponding to the size of a

population, number of microbes, grown in a liquid medium of 1 mL with an initial
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quantity of sugar and no further addition of nutrient during a period of 48 h (a batch

culture) is the data to be analyzed.

The collection of sequential tasks given to the students to meet the description of

this data was managed through the virtual campus Atenea, the support platform for

teaching and learning utilized by the university. Each student had a computer with

access to spreadsheets (e.g. Excel and Open Office), mathematical programs

(e.g. Maple) and statistical software (e.g. Minitab and R) used in the previous

subjects of Mathematics I, Mathematics II and Statistics, and with a free connexion

to Internet. The technological support and the computational tools were not chosen

specifically for this activity, but were tools that had been used before by the students

in other subjects. Therefore, these computational resources had already participated

in previous learning processes, and consequently, they could not be in themselves

obstacles for the correct performance of the tasks. A basic knowledge of these

resources is theoretically guaranteed, and at this juncture, they must serve as a

means to deal with the activities. They are used to help in the development of

curiosity (with prompt explorations) and to facilitate the application of critical

thinking (testing results), as well as to practice modes of verification, refutation

and deduction based on graphical outputs, numerical results and algebraic

manipulations.

The activities were designed to be carried out individually as it is desirable that

during these lab sessions the computer and the student were two elements inter-

connected or linked to produce outputs. The practice and the ability required for the

achievement of these final outputs needed to be trained. The computational level of

this group of students was very far from being homogenous. There was a great

variety in the level of skills among the students (maybe due to their previous

Table 1 The experimental

data to be analyzed
Time (h) Number of microbes

0 145349

3 146217

6 139333

9 143620

12 168557

15 287768

18 972270

21 2996236

24 4444266

27 5953756

30 7245644

33 7614686

36 8187928

39 10214427

42 11842517

45 13650985

48 12837014
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activities or their personal preferences) and therefore, the rhythm in the execution

of the tasks proposed is expected to be different. On the other hand, previous

experience in this type of computational activity (Ginovart 2014) showed that if

students work in a team or in pairs, it is easy to “watch” rather than “do”. In the case

of students working alone, for those who are not sufficiently computer literate, an

extra effort must be made. One of the purposes added to the objectives previously

mentioned is to guarantee that each one of the students tackles their own tasks with

an active and personal use of the computational resources. However, in lab sessions

and with small groups of students, comments, suggestions and interactions with the

teacher were always held whenever required or considered convenient. Also,

intercommunications peer side-by-side are permitted as long as each one performs

their own activity on their own computer.

Students’ responses regarding the distinct methodologies applied sequentially

for the analysis and modelling of the population data were collected via commented

spreadsheets, outputs of mathematical or statistical software, open-ended question-

naires, and face-to face dialogues during the development of the sessions in the

computer lab. The students’ perceptions regarding the set of tasks conducted were

explicitly asked for and collected at the end of the activity. All the material required

was prepared during four sessions of two hours each in the computer lab, plus

possible extra dedication at home if necessary.

At the beginning of the opening session, before reading the first part of the guide

to the activity, some preliminary questions were answered as an initial assignment,

so that the students had the possibility to reflect on what they had studied and

learned up till then, as well as what to apply to solve the problem in hand. These

preliminary questions were as follows:

“Taking into account the set of observed data in Table 1,

• Which strategies or methodologies that you already know can be used to analyze these

data?

• Which types of functions or models can be adjusted?

• Which computer resources can be used for this purpose?”

The Outline of the Set of Tasks to Be Performed with the Help
of the Computer

The activity was divided into a set of tasks grouped in seven Parts (A, B, . . ., G)
with a reflection at the end (Part H), facilitating the organization of the work to be

performed by the students. The different parts designed to investigate, describe and

model the microbial growth reported in Table 1 are presented below, in a format

that reflects the documentation delivered to the students.
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Part A: An Exploratory Analysis of the Data

In this part you will have to perform an exploratory analysis of the data and decide

the best way to represent it, carrying out, if necessary, nonlinear transformations of

the data. To begin the activity you can work directly with a spreadsheet, or, if you

believe it convenient, you can also work with any statistical package.

Part B: Polynomial Functions and Empirical Models

In this part you will have to deal with polynomial functions to describe or fit the

data highlighting some advantages and disadvantages of this type of approach.

What information can you extract from the value of the parameters involved in this

type of empirical model (the coefficients of the polynomial)?

Part C: Linear Functions and a Very Simple Pseudo-mechanistic Model

In this part you will have to identify the three principal phases in the temporal

evolution of the population and to use straight lines to describe each of these phases.

The succession of phases of the temporal evolution that represent this set of data

can be distinguished because they are characterized by variations of the growth rate

of the population: first the lag phase with growth rate null, second the exponential

phase with a constant rate, and third the stationary phase with no clear growth. To

complete this part of the activity you are required to read the paper of Buchanan and

coauthors (1997), where the three-phase linear model is presented, in order to

illustrate how your own work performed matches with a part of the content of

this scientific paper. At the same time this highlights the role that a simple pseudo-

mechanistic model has in the microbial application context.

From now on, use the data obtained by applying the logarithmic transformation

in base 10. You will work with LOG10(Nt), where Nt is the number of microor-

ganisms corresponding to the observation in time t. Represent graphically this

transformed data set. What do you observe? Build the corresponding graph of the

variation in growth for this population, i.e. at each time instant t represents LOG10
(Nt)-LOG10(Nt�1). With this plot of variations, can you identify different phases or

stages for this temporal evolution? Use linear functions or straight lines to describe

the three principal phases: lag phase, exponential phase and stationary phase. Can

you assign biological meaning to the parameters involved in this mathematical

description? Which meanings?
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Part D: The Discrete Logistic Model and Its Step-by-Step Construction

In this part you will have to build, step-by-step, the discrete logistic model by means

of a set of calculations and linear estimations with the transformed data, and

compare the built model with the observed data with a simulation on a spreadsheet

in a simple way.

Given that the number of microbes are now expressed in logarithmic units in

base 10, define theMt variable to simplify the notation asMt¼LOG10(Nt) (or as the

original value Nt) with which you will work for the construction of a discrete

logistic model. A good start for the construction of this type of model is to focus

attention on the equation “Future value - Present value ¼ Change”. In terms of the

new variable this equation can be written as:

ΔMt ¼ Mtþ1 �Mt ð1Þ

The purpose of carrying out an iterative process, step-by-step and from an initial

value M0, is to find an approach to this ΔMt that can reproduce experimental data

reasonably well. Therefore, the question is how to intuit some approximations for

these observed changes. Check the graphs of the observations and variations in

growth that you have already built. You can guess that there is an exponential

growth at the beginning of evolution (fast-growing, using the available nutrient and

space), but as we approach a value K (maximum capacity that the system can

support, the final size of the population with the nutrient consumed or the space

occupied) this growth decreases or slows down, and finally, the growth essentially

stops. With this idea in mind you can test this expression:

ΔMt ¼ Mtþ1 �Mt ¼ rMt K�Mtð Þ ð2Þ

To explore how to find the values of r and K, draw a scatterplot, placing Mt

+1�Mt on the vertical axis and Mt (K�Mt) on the horizontal axis, and use a linear

regression without intercept for these observed points to find out the value of r (the

slope of the line of best fit). Try with different values for the constant K, and see

which values are obtained for r, and choose the best values to build the following

expression (a discrete logistic model):

Mtþ1 ¼ Mt þ rMt K�Mtð Þ ð3Þ

Graph the observed values and the simulated values in the same plot. What can

you say? How can you appreciate the goodness of fit of the different models

obtained with the different values of r and K tested before? What do you think

you should do to find the best possible model of this type?
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Part E: Sigmoid Functions and the Continuous Logistic Model

In this part you will deal with the family of continuous mathematical models known

as sigmoid functions, that is, functions with an “S” shape (Fig. 1). The continuous

logistic model is one of them and is well-known in many academic contexts.

Reparameterizations of these models, that is, modified models with different but

equivalent expressions in their formulations, can be performed.

The model called logistic assumes that the growth rate is proportional to both the

population itself and the quantity lacking to reach the sustainable maximum

population. It is possible to write this model like an ordinary differential equation,

as follows:

dN

dt
¼ rN 1� N

K

� �
ð4Þ

where r is defined as the intrinsic growth rate and K is the carrying capacity which is

the maximum value that N can achieve. For N � K, N
K is close to 0, and therefore

1� N
K

� �
is close to 1, which makes dN

dt ffi rN and thus, the growth rate is given by the

Malthus model (exponential model), whereas when N tends to K, N
K ffi 1 and

therefore 1� N
K

� �
is very small, so then dN

dt ffi 0.

Firstly, rewrite Eq. 3 in the formMtþ1 ¼ a Mt 1� Mt

b

� �
, identifying the relation-

ships of a and b with r and K, in order to note that the equation found for the

previous discrete model corresponds to the pattern of the equation for the contin-

uous model (Eq. 5), so both are known by the name of logistic models, discrete or

Fig. 1 Generic growth curve with the identification of parameters with biological significance:

maximum specific growth rate (μm), lag time (λ), and final value that can be achieved (Max)
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continuous. Solve this ordinary differential equation (Eq. 5) and verify that there are

different ways to write the solution in terms of the initial population, r and K. Plot
diverse solutions to this equation by setting different values for the initial popula-

tion and the parameters r and K. What is the effect of these parameters on the shape

of the curves drawn?

Return now to the raw data in Table 1 (it is also possible to use the transformed

data) to fit a logistic function using Solver, a useful complement to be found in the

spreadsheet Excel for optimization problems. Work with the column of time (hours)

and the experimental data (number of microbes) and build a new column with the

data generated by a logistic function with preliminary or initial values for the

parameters involved in its expression to start. Fitting this function to the experi-

mental data means getting the best possible values for the parameters involved,

i.e. those that would minimize the error or discrepancy between data observed and

values predicted by this logistic function. In the spreadsheet add a new column with

the absolute value of the difference between observed and predicted pairs of values

for each sample time, and calculate the sum of all these discrepancies. In a range of

cells on the spreadsheet set down the values of the parameters that will be collected

by the logistic function, and which will be changing until the achievement of a

combination of values that minimize the sum of the discrepancies (according to the

iterative algorithms implemented in this Solver software). The approximation for

the experimental data can be investigated with a graphical representation combin-

ing observed values and predicted values. Prior to using Solver, what do you get

when trying various parameter settings? Using Solver, what are the values obtained

for the set of parameters involved? How do you assess this fitting?

Part F: The Reparameterized Gompertz Function to Generate a Pseudo-

mechanistic Model

In this part you will have to deal with another sigmoid function called Gompertz

and obtain the reparameterized or modified Gompertz model which is to be applied

in this context of growth models. The identification of the meaning of the param-

eters involved in its definition is convenient and necessary for its

reparameterization, allowing you to obtain parameters with a clearer biological

meaning, and thus, achieving a pseudo-mechanistic model utilized in the field of

predictive microbiology. The papers of Buchanan et al. (1997) and Zwietering et al.

(1990) inform you on the use of different models to describe microbial population

growing in batch cultures.

There are other sigmoid functions distinct from the logistic functions. For

example, the solution of the following ordinary differential equation:
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x0 tð Þ ¼ dx

dt
¼ r � x tð Þ � Ln

K

x tð Þ
� �� �

ð5Þ

is the Gompertz function, and it includes the same parameters as those appearing in

the logistic equation (the intrinsic growth rate r and the carrying capacity K). It aims

to describe the same kind of temporal evolution with “S” shape, when x(t) is close to
K, the ratio K/x(t) is close to 1, so that the natural logarithm is close to 0. Find the

solution to this ordinary differential equation (Eq. 6) and check that this solution

can be expressed as follows:

x tð Þ ¼ A � exp �exp B� C � tð Þð Þ ¼ Ae�eB�C�t ð6Þ

where A, B and C are the parameters of the Gompertz function. Graph this function

for different sets of values A, B and C to justify that it can also be used to describe

the growth of the population at hand. From now on, work with the natural logarithm

of the relative size of the population, i.e. consider the new variable y(t), a transfor-
mation of N(t) where N0 is the size of initial population, as follows:

y tð Þ ¼ Ln
N tð Þ
N0

� �
ð7Þ

which means that you can manage a generic curve of the type represented in

Fig. 1. The three principal phases of the microbial growth can be described by three

significant parameters:

(i) μm, the maximum specific growth rate which is defined as the tangent at the

inflection point of the curve.

(ii) λ, the lag time which is defined as the value of the intersection of this tangent

with the horizontal axis.

(iii) Max, the asymptote determined by the maximum value that the variable can

reach.

Rewrite the Gompertz function replacing the parameters A, B, and C given in

Eq. 7, which have no biological meaning, with the parameters μm, λ, and Max which

have biological meaning. Outline and implement in your report the steps to take in

order to obtain the reparameterized Gompertz function.

Part G: The Options of a Relatively New Free Software to Deal

with Growth Models

In this part you will have to explore the options that a free software environment for

statistical computing and graphics R has, and in particular, to deal with the

packages developed specially to manage experimental data of growth curves

(https://www.r-project.org/about.html).
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R includes an integrated collection of intermediate tools for statistical data

analysis, and a well-developed, simple and effective programming language

among others. In recent years, packages in R for dealing with biological modeling

have been developed, particularly for use in primary growth models in microbial

context, for instance, “nlsMicrobio”1. These models describe the evolution of the

decimal logarithm of the microbial count (LOG10N ) as a function of the time (t).
Among the different models there is the three-phase linear model proposed by

Buchanan et al. (1997) and the modified Gompertz model introduced by Gibson

et al. (1988) and reparameterized by Zwietering et al. (1990). Review the docu-

mentation that you will find in the virtual campus Atenea that will facilitate the use

of the R software and the “nlsMicrobio” package to fit the experimental data with

the two models already known to you: the Buchanan model and the reparameterized

or modified Gompertz model. What outputs are provided by this R package when it

runs with the experimental data? What additional information does R provide?

Compare the results of the three-phase linear model you got with the spreadsheet

in Part C with the results provided by R with the Buchanan model option. If you use

the output of R which gives you the punctual estimation of the parameters and their

confidence intervals, what can you say about this? In relation to R’s outputs from
the reparameterized or modified Gompertz model, what can you say? Compare the

two expressions for this model, one obtained from Part F and the other given by the

“nlsMicrobio” package, can you say that they are the same function. From your

perspective, what are the advantages of this modeling with R with respect to the

different approaches developed in previous tasks? Is there any disadvantage? If so,

what?

Part H: A Final Reflection to Organize the Central Ideas

If you have to analyze another set of real growth data,

• Now, what would your answers be to the preliminary questions posted before the

start of this activity?

• What would your priority be in the set of tasks to carry out the modelling of the

new data set?

Results and Discussion

Students’ responses regarding the analyses of the data and the various growth

models were prepared individually and collected by means of file texts, giving

answers to the questions posed, spreadsheets with comments, and outputs of

1http://cran.r-project.org/web/packages/nlsMicrobio/nlsMicrobio.pdf
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mathematical and statistical programs inserted in an explicative text. In addition,

interviews and personal communication during sessions in the computer lab made it

possible to collect further evidence on the development of the activity in the

classroom. The extension and diversity of the results obtained by the students

were remarkable. The majority of the results involved in the designed tasks is

presented in this section, accompanied by some computer screenshots to

illustrate them.

At first, the answers to the preliminary questions before beginning the activity

were rather disappointing and poor. The majority of these responses were about the

use of a spreadsheet to achieve a graphical representation, but no references to the

use of mathematical programs like Maple or statistical programs like R were made,

although these programs had been used in previous mathematical and statistical

subjects during the two preceding years. Undoubtedly, it was also evident that no

relationships or links between the prior knowledge of microbiology and different

phases of the population growth were made or identified, in spite of the fact that

these phases can be linked to numerical derivatives of the data by means of growth

rates. The possibility of connecting the two disciplines involved in the modelling

process, microbiology and mathematics, did not appear in those initial students’
answers. Only approximately 10% of the students mentioned the fact that the

transformation of the data by means of the logarithm function could be helpful in

this microbial context, due to the magnitude of the numbers and the rate of growth

in population. It was really discouraging to see the lack of association with other

subjects in the students’ answers. Maybe, this is not really surprising in teaching in

general, taking into account that subjects and teachers have their own specific areas

of knowledge, and on very few occasions do they allow interference or collabora-

tion in sharing activities that involve diverse fields simultaneously.

Regarding the tasks performed in Part A, the students completed an exploratory

analysis of the data. They verified that neither linear nor exponential growth was

observed for this population. They decided the best way to represent the data was by

taking into account the nature of these observations and identifying the way to

present data in a microbiology field. The graphical representation of the original

data at different scales and through some nonlinear transformations were options

examined by the students, mainly logarithm transformations with different bases

were one of the strategies most tested by students on the spreadsheet. At the

beginning of the temporal evolution the original data had values of about 105,

and values of around 107 were reached at the end of the evolution, so the magnitude

of the range to be represented was considerable (Fig. 2). The increases (in absolute

values) from one time to another showed very different magnitudes depending on

the sample (Fig. 2). At this point, the students appreciated why, in the context of

microbial communities with huge numbers of individuals, the populations are

usually expressed in base-10 logarithmic units.

They also appreciated the “options” that a spreadsheet like Excel has in order to

modify and alter graphical representations, as well as the easy way to manipulate

the appearance of the plots.
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In Part B, the fittings with polynomials of diverse degrees to describe the original

data were examined and discussed by students, focusing the discussion on the

advantages of this empirical modelling and emphasizing some of the disadvantages.

Although statistical software could have been used to deal with these fittings, all

students used the “trendline options” of Excel to obtain the plots with the original

data and the graphical representation of the fitted polynomials with their

corresponding equations and R2 values (Fig. 3).

In particular, the concept of the model or what a model should be, together with

its purpose was debated, and the conclusion in this part was that this type of model

(polynomial functions) did not exemplify it very well. Although the goodness of fit

assessed by the value of the coefficient of determination was really notable in all

cases (with R2 higher than 0.9), the fitted polynomials showed negative values in

the range of time used to describe the population growth, and their coefficients had

no meaning and they changed from one polynomial to another without any sense.

Students realized what it was like to work with these empirical models and their

limitations in a real application context, and applauded the option of the pseudo-

mechanistic models. The coefficients of these fitted polynomials showed no

Fig. 2 Temporal evolution of the base10 logarithm of the number of microbes (upper plot) and
the corresponding variations observed in each of the time samples (lower plot). Vertical lines
indicate approximately the five consecutive phases with changes in the population growth rate
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opportunity to incorporate any of the ideas behind the microbial growth phenom-

enon studied: a population located in a new environment with nutrient and using the

energy resources found in it, thus enabling the reproduction of individuals and the

corresponding increase in size of the population, and the uptake of nutrient from the

environment without its replacement, leading to an unfavorable situation, in which

it is no longer possible for the population to continue to grow. The inability of these

empirical models to explain and represent the biological phenomenon made it

evident that they were not appropriate and these mathematical expressions had

lost all sense in the modelling of this phenomenon.

In Part C of the activity, the use of the logarithm transformation on the number of

microbes observed over time conjointly with the increases observed in each sam-

pled time allowed students to identify various growth phases occurring during the

temporal evolution of the population (Fig. 2). The students identified those phases

connecting the knowledge acquired previously in microbiological subjects (Monod

1949), and interpreting and linking mathematical concepts on numerical

derivatives.

In microbial populations developing in a batch (closed) culture, a succession of

phases characterized by changes in the growth rate can be identified as Fig. 2

shows: (i) adaptation period or “lag phase” with zero growth rate, (ii) acceleration

phase with increasing growth rate, (iii) exponential phase or “log phase” with

positive growth rate, which remains constant and keeps maximum value,

(iv) retardation phase with diminishing growth rate, and (v) stationary phase with

growth rate (approximately) zero

A first approach for the construction of a simple model, able to pick up the main

features or major trends in this type of growth goes through: (i) the consideration or

Fig. 3 The observed data of Table 1 (points) and the three fitted polynomials (continuous lines)
with the output options provided by the spreadsheet Excel taken from students’ work
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recognition of only the three principal phases of the growth, that is, lag, exponential

and stationary phases, and (ii) the use of linear functions for its formulation. The

students studied this approach with the spreadsheet using linear regressions to

describe each of these three phases which were characterized by significant varia-

tions in growth: first, the lag phase with zero growth rate, after that the exponential

phase with approximately constant growth rate, and finally stationary phase with no

growth, as Fig. 4 shows.

Again, handling data with Excel was quite intuitive and simple, and because of

its grid nature, the organization and preparation of the data for those pieces of linear

functions required was made in an easy and direct way. This facilitated the

repetition of successive linear regressions with more or less data, entering and

removing points, and comparing results until a convenient one was achieved

(Fig. 4).

Reading the companion document of Buchanan et al. (1997) to which the

students had access, illustrated and revealed that this piecewise linear model built

by the students was in tune with one of the possible solutions that researchers

accepted in the environment of predictive microbiology.

The three-phase linear model was the first pseudo-mechanistic model obtained,

as in its formulation, parameters with biological meaning were recognized imme-

diately (Fig. 4), such as the logarithm of the initial population and the final

population (the first and third straight lines), the duration of the lag phase (inter-

section of the first straight line with the second), the maximum growth rate (slope of

the second line), and the start of the stationary phase (intersection of the second

straight line with the third). They realized that the achievement of the parameter

estimations obtained from these calculations was slightly conditioned by the

Fig. 4 Screenshot of a spreadsheet with the implementation of the tasks leading to the attainment

of a piecewise linear function from data of the Table 1, a simple pseudo-mechanistic model known

as the three-phase linear fitting model taken from students’ work
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selection of the observed points in the regression equations, somewhat subjective

for few points, but leading to acceptable responses in all cases. Students were able

to recognize their own work on a spreadsheet (Fig. 4) as a simple pseudo-mecha-

nistic modelling choice but very well placed in a broader context of interest in

biotechnology and predictive microbiology.

Students tested that when a natural process exhibits a progression from small

beginnings that accelerates and approaches a climax over time, a sigmoid function,

a mathematical function having an “S” shape as shown in Fig. 1, can be used for its

description. In relation to the use of the logistic function in parts D and E, two

screenshots (Figs. 5 and 6) illustrate the work performed by students on the

spreadsheet Excel. Both the step-by-step construction of the discrete logistic func-

tion through a set of calculations and linear fittings of the data handled supporting

the idea of a discrete simulation (Fig. 5), and the fitting of the continuous logistic

function with the Solver option (Fig. 6), enable the introduction of the ideas and

concepts that underlie the construction of a logistic model.

Special attention was paid to the conditions that generate or delimit the logistic

model and how these influenced its adequacy to the problem in hand. It was found

that the discrete logistic function was reasonably adequate in order to represent the

raw data (Fig. 5). Regarding the use of continuous logistic function, it was observed

that for the data transformed by the logarithm it was not possible to reach a good

fitting, whereas when Solver worked with the raw data the fitting achieved was

considerably better (Fig. 6).

The use of another function of the sigmoid family different from the logistic one,

the Gompertz function, jointly with the implementation of the tasks for the assign-

ment of biological meaning to the parameters involved in this new function (Part F)

was one of the main stimulating parts of the activity for diverse reasons. The study

of the first derivative and second derivative of the Gompertz function (Eq. 7)

allowed students to identify the role played by the parameters involved in its

expression, which, followed by a suitable guided reassignment of parameters

(Part F), enabled students to obtain a new expression for this function. An expres-

sion with parameters that had a biological meaning linked to the context of

microbial population growth was, therefore, a pseudo-mechanistic model. Hence,

the pseudo-mechanistic modified Gompertz model was achieved by the students.

Maple computation engine combines high-performance numerical computations

with symbolic capabilities, which offer many advantages for mathematical educa-

tion. It allows you to use symbolic parameters, eliminate the need to manipulate

algebraic expressions by hand, avoiding mistakes and ensuring correct calculations.

It allows you to differentiate functions, evaluate expressions, solve equations, and

expand, factor or simplify expressions, among other actions. The screenshots of the

sequence of the steps performed by the students with the mathematical software

Maple to solve this reparameterization are presented as follows:
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Fig. 5 Screenshot of an Excel spreadsheet with the implementation of the tasks leading to the

adjusted data and simulated data with a discrete logistic model taken from students’ work

Fig. 6 Screenshot of a spreadsheet with the implementation of the tasks leading to the continuous

logistic fitting model with the Solver option of Excel taken from students’ work

A Classroom Activity to Work with Real Data and Diverse Strategies in Order. . . 447



> 

> 

> 

> 

> 

> 

> 

448 M. Ginovart



> 

> 

> 

> 

> 

> 

> 

A Classroom Activity to Work with Real Data and Diverse Strategies in Order. . . 449



> 

> 

Now, considering that y tð Þ ¼ Ln N tð Þ
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which is a formulation of the pseudo-mechanistic model for the population growth

with the Gompertz function.

Part G proposed the use of R and one of its packages (“nlsMicrobio”) dealing

with growth models. The modified Gompertz model was used with the set of data

(Table 1) according to the instruction detailed in this package. Some of the results

achieved with R are shown in Fig. 7. It is a graphical representation of the fitting

data with the modified Gompertz function and the punctual estimations of the

parameters involved in its formulation with some statistical complements, which

were commented on by students (connecting with their prior knowledge of statis-

tics). In order to recognize the formula of R’s output as the formula obtained by the

students in the previous task, a change of base for the logarithmic transformation

must be made (Ln(x)¼ LOG10(x) Ln(10)). Once more students were applying prior

knowledge acquired in previous mathematical subjects.

Although the students needed to be guided by a sample of the program to be

executed in order to resolve this task, the capabilities and potential of this free

programing environment were recognized and widely praised. They agreed that the

use of R was justified for the grand statistical options, in general, and the specificity

of their packages (very convenient for certain problems). Nevertheless, for the

majority of the students the skills required to deal with this software were perceived

as too advanced and scarcely accessible in the near future without help.

Regarding the students’ learning both in mathematics and biology, it is impor-

tant to highlight the relevance of this co-disciplinary approach, where the tasks
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enhance the mathematical knowledge of the students and in parallel strengthen their

biological skills. The competence of the students was rather varied, consequently

some of them needed more dedication than others to achieve the same tasks. For

instance, at the beginning of the activity, more than 50% of the students did not

have clear ideas about the parameters describing the different growth phases of a

closed bacterial culture in liquid medium. However, by the end of the activity, and

because, simultaneously, they had been using “microbial definitions” in terms of

growth processes and “mathematical definitions” with graphical representations of

functions characterized by a set of parameters, all the students had consolidated

those concepts. The idea of the first derivative was involved in the definition of the

growth phases and in the transitions from one to another, and the second derivative

was involved in the maximum specific growth rate definition. The use of asymp-

totes and the notion of limit had a clear role in the temporal evolution of this

bacterial population. It is undoubtable that the creation of mathematical-biological

models requires cooperation between biologists and mathematicians, or at least,

mathematicians interested in biology or biologists with interest in mathematics.

Fig. 7 Screenshot of a part of the output produced by the “nlsMicrobio” package of R when the

reparameterized or modified Gompertz model is fitted to the data of Table 1
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Although the design of the tasks was really prepared to force the students to use

biological reflections in the assessments of the mathematical models, not all

students were able to understand this at first. Some of them needed additional

indications to finish those reflections successfully, but others captured rapidly the

reasons for the sequence of the tasks and the mathematical-biological ideas behind

them. The majority of students finished the activity with a very good perception of

the different models explored, accompanied with critical reflections on them

(mainly provoked by the questions formulated regarding their advantages and

disadvantages). Successful interdisciplinary teaching requires new materials and

approaches, and the technology available nowadays provides excellent opportuni-

ties for elaborating attractive proposals.

The Perceptions of the Students of This Activity

The final reflection proposed (Part H) in order to revise and organize the principal

ideas of the whole activity provided very positive answers from the students. All the

students responded that after this activity their ideas of how to perform the

modelling of observed growth data had significantly improved due to the various

approaches practiced. They recognized that they knew the majority of the contents

from other subjects, but never before then had they had the opportunity to put them

together and connect them with a real application of interest for their studies. The

most common answers were in the sense that now they had an example of reference

with options and alternatives, and that they were aware that the different modelling

methodologies were illustrative of plausible approaches depending on the answers

they wanted to achieve. Thus, the priority in the set of tasks for the description of

experimental data should be associated with the research questions formulated at

the beginning of the study. At the same time, the help provided by computer

resources made the exploration and testing of diverse alternatives much easier

and quicker. They expressed the conviction that without the help of a computer

and its resources nothing, or very few and simple achievements, could have been

accomplished in this context. They were aware of the power of the technology to

deal with the resolution of these tasks, and its indisputable role for their consecu-

tion. At the same time, they confirmed that many diverse computational resources

available in personal computers were unknown to them and unexplored in the way

carried out during this activity. Probably, till that moment, the use of computational

support had been framed in a more specific and limited context. They recognized

that the use they had had of these computational tools or programs in previous

subjects was not enough to tackle this modelling activity with autonomy. They

agreed that the detailed guide to the development of the activity was essential for

the achievement of the final results.
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The following are some of the students’ comments, which are illustrative of the

whole set of responses, when answering the question: “Please, indicate any positive

aspect of the activity performed”:

• Tracking the activity in parts I think is good and helps you to get a pretty solid

idea of the different ways to build a model from the same data and compare these

models.

• One of the positive aspects of the activity is the use of software tools for

processing data, being the Solver option in the Excel spreadsheet and

“nlsMicrobio” package in the R project the two new or unknown computer

resources much appreciated.

• The previous analysis of the data that has been done with spreadsheets helped me

a lot. I think the section corresponding to the use of R is a higher level because

you have to understand the program and run it properly. You should also have a

very clear idea of what you are analyzing and what you want to achieve, because

R gives you more information (graphs and tables) than what is absolutely

necessary for the analysis or which for me is not completely understandable.

• It is important to learn to manage helpful data processing programs, and this

practice gives us an idea of how to do this. Plot some functions using Maple and

compare the differences between Excel Solver and the R program has helped me

to better understand the data analysis and modelling.

• On my part, the application of different ways of analyzing the same data, trying

to discover which is the best fit for the data, testing what happened when

increasing or decreasing the parameters of functions, was a good idea. So, the

whole process of going slowly and answering the questions has helped me learn

a way to try using some experimental data, and also the fact that you can apply

many models and some of them will adjust better or worse. Nevertheless, it is

really important to try to understand the situation and not just end up having

results or numerical values of certain parameters, for example. If you have not

made the effort to think about the data, may not be able to interpret these results

correctly.

• One positive aspect of this activity could be the use of mathematical programs

such as Maple, because it is a very useful when solving differential equations,

representing data, drawing graphs of functions, and manipulating expressions.

• It helps you understand that in order to solve the problem with the data available

you can choose different methods. My opinion is that the practice has been very

good. The fact that it is structured in straightforward steps makes it possible to

follow without getting lost, while improving learning. At the same time it

encourages an explanation in steps. It teaches us that every experiment fits a

certain model and goes through a series of steps to obtain the best result.

• I learned various methods to address a situation that may recur in my studies

such as the growth of microorganisms, and also the fact that what I did can be

extrapolated to other populations.

• I found it very positive to understand the fundamentals of a solid growth model

used in the R program.
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Regarding the question: “Please, indicate any negative or improvable aspects of

the activity performed”, about 60% of students asked for a preliminary training

session in the following way: “I think it would be necessary to have some expla-

nations or recall of the computer resources used in previous years” or “I think prior

oral explanations would have been helpful to refresh some mathematical concepts

and programming”. Although they recognized that these programs were used in

previous subjects, they felt they did not have enough confidence and ability when

managing the programs. This was somewhat surprising due to the generalized use

of computer resources in several subjects during their academic training. Conse-

quently, this fact may be contextualized as the evidence that these students needed

reinforcement in an autonomous but non-guided use of these computer resources.

The potential of the programs available in most computers, or those freely

available from the Internet, should not remain unexplored and untapped when

exercises related to quantitative models and numerical methods are performed in

the classroom. This kind of training activity can be very beneficial and should be

incremented in classroom nowadays taking into account the level of technological

development of our world.

Only very few students (no more than six or seven) suggested as an improvement

or extension of this activity the possibility of building other types of models that

they remembered from specific sessions carried out in a previous mathematical

subject, the computational models called individual-based models or agent-based

models (Ginovart 2014). They recalled the ideas presented and practiced in the

introduction to these computational models, in which the individuals, in this case

microbes, that make up the system (population growing in a specific environment)

are treated as autonomous and discrete entities (Railsback and Grimm 2012;

Wilensky and Rand 2015). These students remembered well those sessions where

they discovered the individual-based models (Ginovart 2014) with the help pro-

vided by the multi-agent programmable modelling environment called NetLogo, a

free tool accessible on the Web (Wilensky 1999). As soon as the students had been

trained in the use of this programmable modelling environment, they would be able

to pass from the level of being users of simulators already prepared in this platform

to the level of developing and implementing their own simple models, constructing

their own microbial simulators, discrete and stochastic models of microbial

populations (Ginovart et al. 2002; Hellweger and Bucci 2009). The use of this

new modelling methodology would be an innovative approach in academia in this

context, and thanks to being able to use a platform as well prepared as NetLogo.

This type of task would be attainable and feasible for the near future. An approach

where NetLogo could be used would encourage scientific (and mathematical)

thinking across disciplines and would be an attractive initiative for teaching and

learning with technology (see, for instance, Gammack 2015 or Levy and Wilensky

2011).

Innovative practices in modelling education research and teaching, pedagogical

issues involved in these actions, research into (or evaluation of) this teaching

practices, assessments in schools and universities of modelling tasks, and applica-

bility of the modelling at different levels of schooling and in tertiary education are
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topics that require the attention of the mathematical community (Stillman et al.

2015). In relation to the influence of the technology in the mathematical education

(Aldon 2015; Hitt 2015) and, in particular, of the computer in mathematical

modelling, it is evident that further studies and more experience must be accumu-

lated and analyzed for the emergence of new forms of activity in classrooms.

Modelling activities can be reorganized, adjusted or extended according to the

software available nowadays more easily than in previous years, since the benefits

offered by computers are every day more versatile and powerful.

Conclusion

An amusing context for exploring mathematical ideas and developing mathematical

skills is biology, where an assortment of models can be used in order to analyze and

understand phenomena and to design and construct instruments that make a virtual

“experimentation” possible, improving in an iterative way our representation of

reality. With the help of the computer resources found in any academic framework,

the set of results that the students have obtained, analyzed and discussed during the

development of the activity designed, in connection with prior knowledge of

mathematics and biology, were: (i) Mathematical transformations performed on

the observed data and their graphical representations, (ii) Definitions and manipu-

lations of mathematical functions to construct and formulate diverse models, (iii)

Calculations or estimations of parameters involved in various types of models, and

(iv) Identification and assignment of biological meaning to model parameters. The

students perceived a significant learning scenario for the real world, with modeling

methodologies used in the field of predictive microbiology and biotechnological

applications connected to their Bachelor’s degree.

The activity is made up of a set of tasks that after their implementation in the

classroom can be classified as a set of “rich” tasks taking into account that:

(a) Students were placed at an interesting starting point with initial intriguing

findings providing opportunities for the initial success and possibilities to go

on encouraging students to develop their confidence, independence and

freelance work.

(b) The students had the opportunity to reflect on issues and ideas presented

previously in other subjects but, up to then, they had not been worked on

together, establishing connections and relationships verified in the modeling

context and deepening their comprehension.

(c) The actions executed stimulated creativity and imaginative applications of

mathematical and biological knowledge that students already possessed in

order to build new models, starting with initial and not complicated approxi-

mations and relatively simple models to go deeper into the mathematical

understanding of more sophisticated models, where the help of the computer

and its resources were revealed as necessary and indispensable.
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It was rather surprising to find that although the computer resources used (the

spreadsheet Excel, the mathematical program Maple and the statistical software R)

were known to the students and used in former compulsory subjects, some initial

difficulties in their use were discovered, and consequently the activity strengthened

and expanded their digital skills. The ability to use computers undoubtedly helps

students with their education in general, and in particular, in mathematical applied

contexts like this one. The computer resources cannot in any way be overlooked or

undervalued if you want to tackle problems in a real context (and not in an artificial

or imaginary context prepared with “nice” or “simple” values or results). The use of

computer resources made it possible to: (i) repeat calculations as many times as

necessary, (ii) try multiple choices of values to see what would happen, (iii) check

the achieved results regardless of whether they were right or not in the first election

or completion, and (iv) visualize and correct mistakes, boost confidence in individ-

ual work. The opportunity of quick repeating or, automatically undoing and redo-

ing, if not done accurately the first time, allowed students to gain assurance in the

whole process of modeling. It was, in some ways, a learning and training activity

where they were able to perform “virtual” experiments with mathematical functions

and models. These computer-aided tasks allowed students to enhance their biolog-

ical and mathematical knowledge.

The fact that the students had the opportunity to inspect the problem from

several perspectives using a variety of resources was positively highlighted.

These perspectives led to different solutions, but all meaningful and acceptable in

the context of the study, which was much appreciated by them (and even surprising

to some). In academia, and perhaps due to the necessity of assessing the answers of

the students as correct or incorrect “in the day to day”, there is an excess of issues

that lead to only one correct solution, and students are better trained to get "the

correct answer” than to get "plausible and right answers”.

The use of the computer and its resources were justified and integrated effi-

ciently during the entire activity, training and improving the digital literacy of the

students, that is, the general ability to use computers to tackle real problems. The

modelling process, in general, provides a way that connects the academic world to

the real world, where students can apply mathematical contents in order to solve

problems in a variety of situations. It is evident that the incursion of advanced

computer resources facilitates new ways of doing, thinking about, and applying

mathematics to other scientific subjects. The workflow configured in these sets of

tasks could be readapted successfully to study other phenomena or processes, and

some of the tasks could be used at other academic levels apart from tertiary

education.
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Communication Inside and Outside
the Classroom: A Commentary

Corinne Hahn

Abstract There is no doubt that technology facilitates access to information and

induces new modes of communication. No doubt also that we should go beyond the

technical aspects of the tool and explore how it can change classroom practice,

pedagogical activities and the role of actors. This is what the five chapters in this

Section explore.

Keywords Communication • Classroom practice • Pedagogical activities

There is no doubt that technology facilitates access to information and induces new

modes of communication. No doubt also that we should go beyond the technical

aspects of the tool and explore how it can change classroom practice, pedagogical

activities and the role of actors. This is what the five chapters in this Section

explore. Their work was conducted in very different contexts: primary education

in Greece (Moutsios-Rentzos, Kalavasis, and Sofos), junior highschool in France

(Aldon, Durand-Guerrier, and Ray) and Spain (Royo, Coll, and Giménez), higher

education in Italy (Albano) and Spain (Ginovart).

Most authors focus their work on the meso dimension by describing innovative

activities in the classroom based on technology. Their work draws on different

forms of didactic engineering (Godino et al. 2013), forms that are often combined.

They each offer a personal and innovative reading of the question of activity in the

classroom. Brousseau’s theory of didactic situations is at the heart of work of

Albano and Aldon, Durand-Guerrier, and Ray, combined with issues related to

problem solving or to design-based research based on Realistic Mathematics

Education. Ginovart combines problem solving with computational thinking,

while Royo, Call, and Giménez, adopt a design approach as they analyse the effects

of a learning environment over several cycles of experimentation and redesign of

the task proposed to students.

If the meso approach is predominant, one chapter (Moutsios-Rentzos, Kalavasis,

and Sofos) is positioned at the overall level of the education system of a country,
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Greece. Their systemic approach leads these authors to adopt a quantitative meth-

odology based on data collection by questionnaire, in order to investigate the views

of primary school teachers and principals about mathematics, globalisation and

social networks. The authors of the other chapters study the effects of their

pedagogical device, conducting a systematic analysis of observed interactions

(Royo, Coll, and Giménez), students’ perceptions (Ginovart) or protocols

implemented by students (Albano and Aldon, Durand-Guerrier, and Ray).

Beyond this brief comparative overview, I would like in this commentary to

focus on three interrelated issues that emerged from my personal reading of the five

chapters.

Questioning the Notion of Problem

Fabre (1997) explains that today any pedagogy proposes to confront students with

tasks that can be grouped under the general heading of “problem”. Indeed this word

refers to three distinct but complementary semantic registers: project, obstacle and

saliency. The concentration on problems, of course particularly strong in mathe-

matics (Gellert and Hahn 2015), falls into two very different epistemological

traditions. On one hand it relies to the Cartesian tradition, which focuses on solving

problems, and, on the other hand, to a constructivist epistemology that takes into

account the domains of the problems. The second epistemology emphasizes the

construction of problems and not just their resolution. The use of technology should

facilitate this construction, not only by opening up access to information but also by

facilitating collaborative work and changing the nature of interactions in class-

rooms (Royo, Coll, and Giménez). It therefore suggests a different type of activities

based on problems: activities that will integrate the change of roles and the change

of frameworks. It does not mean only changing frameworks within mathematics

(Douady 1986) but also to help students to cross boundaries between contexts and

practices. Albano formalizes this issue of change of role by proposing to replace the

didactic triangle by a tetrahedron. The teacher’s role would be split into two

complementary roles: author and tutor. The three roles of tutor, writer and student

are thought of as both individual and collective. Indeed, the construction of the

problem requires different expertise – educational, disciplinary, technological – and

participation can take many forms. Students are encouraged to also adopt the author

and tutor roles. It means that peer tutoring is favored but also that the student is

involved in the construction of the problem. I am convinced that this is a crucial

issue. Technology enriches the problem and the questioning, as highlighted by

Aldon, Durand-Guerrier, and Ray, Royo, Coll, and Giménez, and Ginovart, and

allows a collective construction of the problem (Royo, Coll, and Giménez).

According to Fabre (1997), we should adopt a pedagogy that leads students to

pose and build the problem themselves. Technology can help as it facilitates

communication inside and outside of classrooms: these tools support questioning

and thus students are able to co-construct questions and solutions. This is a common
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feature in the studies presented by Albano, Aldon, Durand-Guerrier, and Ray,

Royo, Coll, and Giménez, and Ginovart. Albano led the students to collaboratively

produce questions, then answers (to questions asked by other students), and to

evaluate responses (provided by others). She observes that the phase where students

produce questions, thus moving them to an author position, was the richest. It is a

way for them to access problematizing in a context that is purely mathematical.

Questioning the Motion of Knowledge

Fabre claims that knowledge has three dimensions: historical, systematic and

practical. Knowledge is part of a history, a culture, it is integrated into a structured

body and it also has a use value. For example, “Thales theorem refers to an

engineering method for measuring the pyramids, to its formalization in Euclid

system and to its involvement in issues that have nothing to do with the measure-

ment of inaccessible objects” (Fabre 2011, p. 126). Fabre adds that it is essential to

organize a circular relationship between the three dimensions of knowledge. How

can technology support this?

The authors of this part of the book show that, beyond the technical contribution,

the tool� platform (Albano, Ginovart, Aldon, Durand-Guerrier, and Ray) or forum

(Royo, Coll, and Giménez) – plays a mediating role. Royo, Coll, and Giménez

shows that the use of the forum has an influence on the development of mathemat-

ical ideas. Many works on technology consider the cultural and the practical

dimensions but seem sometimes to forget the systematic dimension. I think a

great strength of the experiments described in these chapters is that the authors

never lose sight of this dimension. Albano presents the results of a device whose

purpose is to facilitate understanding algebra and calculus theorems. Ginovart

studies the implementation of increasingly complex modelling methods based on

different types of function (polynomial, logistic, sigmoid). Royo, Coll, and

Giménez and Aldon, Durand-Guerrier, and Ray explore how students are driven

to use algebra. They explain that technology allows them to build conjectures but

not to prove the result obtained by calculating: the student is therefore led to use

algebra.

According to a situated perspective, the construction of knowledge is due to the

integration in a community of practice and the construction of the learner’s identity.
Boaler (2002) explains that to truly integrate disciplinary knowledge, students must

develop a special relationship with the discipline and to project themselves as

learners of it. Only then, can they implement the school’s knowledge in other

environments. What will be the effect of technological devices on the learners’
identity dynamics? How does the change of role facilitate the construction of

disciplinary knowledge? This change of role is present in all devices that are

described: The student takes on the teacher’s role through the two dimensions of

tutor and author (Albano), or a researcher’s role (Aldon, Durand-Guerrier, and

Ray), or the role of a prospective professional (Ginovart). Ginovart’s experiment
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shows that students do not spontaneously use tools learned with different school

subjects (e.g., Excel, Maple, R) when they solve a problem in Biology. And yet to

become a competent biologist, students need to combine their knowledge from

different classes. The observations made by the authors seem to indicate in each

case that these role changes have had a positive effect on construction of

knowledge.

Questioning the Notion of Activity and Device

Communication takes place through devices leading the students to engage in

activities to which technology can give specific forms. For example, by enabling

collaborative work through a specific platform (Aldon, Durand-Guerrier, and Ray)

or the use of forums (Royo, Coll, and Giménez). Because it achieves calculations

faster and easier, technology facilitates problem solving but can sometimes make

access to theory harder – as observed by Aldon and colleagues. For this reason, their

device alternates the use of technology with periods of immersion in mathematical

theory.

In a socio-cultural framework, building of knowledge and identity happens

through participation in an activity. The French tradition, centred on the individual,

distinguishes between activity –that which is required�, and task –that which is

actually performed by the individual. Boudjaoui and Leclercq, drawing on Rabardel

and Pastre (2005), see a device as an artifact that users turn into an instrument by

putting part of themselves into it (Boudjaoui and Leclercq 2014, p. 26). It is

obviously interesting to study affordances (Gibson 1977), and situations where

learners behave as anticipated. But it is also often interesting to study cases of

catachresis (Clot 1997), situations where learners turn away from the intended use.

This should offer an opportunity to open a window onto how students give meaning

to the activity and therefore, if one refers to Deleuze (1969), mobilize the three

dimensions of sense making: “signification” (“the subject’s relation to his actions”),
“manifestation” (“relation to the concept”) and reference (“relation to the world”).

In fact, we have little information on possible catachresis which often led the

authors to redefine their activities at successive stages of the design approach.

Beyond their innovative aspect which is likely to facilitate student motivation,

the devices described by the authors also aim to develop intrinsic motivation related

to students’ personal questioning. This intrinsic motivation is too often undervalued

as compared to the extrinsic motivation linked to the tool (Fabre 2011). On the

contrary, this part of the book demonstrates how mathematical knowledge can

emerge from problems in carefully designed activities using technology. This can

be achieved by students taking on the role of the author of assessment questions

(Albano), having to prove a result obtained through a technological tool (Aldon,

Durand-Guerrier, and Ray), interacting via a forum (Royo, Coll, and Giménez), or

using different tools related to various forms of expertise (Ginovart).
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In an environment that frees itself of the classroom walls through technology,

new relationships between knowledge, problem and activity have to be considered.

This question seems to me at the heart of the papers presented in this section. The

Moutsios-Rentzos, Kalavasis, and Sofos study in Greece suggests that teachers,

principals and school advisors are ready to use educational innovations based on

ICT. The results of the experiments analyzed by Royo, Coll, and Giménez, Aldon,

Durand-Guerrier, and Ray, Ginovart, and Albano show positive effects on learning

and engagement in mathematical tasks. Nevertheless, we need to analyze the effects

of these devices in the longer term. What are the effects on students’ behavior and
the learning of mathematics in more traditional activities? What are the effects on

the implementation of mathematical knowledge in out-of-school life? On students’
career choices? These kinds of longitudinal studies are more complex to implement

but important for those who want to measure the effects of these innovations at the

micro, meso and also macro levels.
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Part V

Technology and Teachers’ Professional
Development



A Study on Statistical Technological

and Pedagogical Content Knowledge

on an Innovative Course on Quantitative

Research Methods

Ana Serradó Bayés, Maria Meletiou-Mavrotheris, and Efi Paparistodemou

Abstract This chapter is part of a main study, which aimed to (a) analyse the

affordances of a Quantitative Research Methods course towards developing stu-

dents’ Statistical Technological and Pedagogical Content Knowledge (STPACK),

and (b) apply the STPACK model to investigate its effects in graduate Educational

Studies. In particular, the chapter provides an example of raising teachers’ aware-
ness of statistical content and pedagogy about models and modelling through

exploiting the model building affordances provided by a technological learning

environment like TinkerPlots2® (Konold and Miller 2011). The model was applied

in a Quantitative Educational Research Methods course with nineteen (n¼19)

Cypriot participants with different academic backgrounds.

Keywords Statistics • Technology • Pedagogical content knowledge •

Quantitative educational research methods

Introduction

Educational research is a systematic process of inquiry and exploration of issues

and problems in the field of education, with an aim of finding possible solutions.

Thus, a Quantitative Research Methods Course targeting pre-service and/or

in-service teachers should not only aim at providing participants with the knowl-

edge and skills required to conduct quantitative research. Rather, such a course
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ought to acquaint teachers with the whole complexity of experimental research

methodology, with the aim of encouraging the development of a “teacher as a

researcher” mindset. However, students attending the course tend to experience

negative attitudes due to the unfamiliarity and difficulty of statistical concepts and

content, and the difficulties in linking theory with practice (Murtonen and Lehtinen

2003).

Considering the difficulties of concepts and content in Statistics learning, we

have to distinguish between descriptive and inferential statistics. Descriptive sta-

tistics, which is devoted to the organization, summarization, and presentation of

data, seems to be understandable by most students taking introductory courses. In

contrast, inferential statistics is intended to reach conclusions that extend beyond

the immediate data. This extension to the data analysis that promotes the transition

from descriptive to inferential statistics is a known area of difficulties (e.g. Rubin

et al. 2006).

With the aim of facilitating this transition, and metaphorically constructing a

bridge between descriptive and inferential statistics, researchers, curriculum

designers and tertiary teachers have begun to consider why and how modelling

can help students to reason about formal and informal statistical inference. Some of

the opportunities that models and modelling can provide to teaching statistics have

been explored by researchers, including the following: (a) providing the basis for

introducing estimation and hypothesis testing (Garfield and Ben-Zvi 2008);

(b) fostering students’ statistical thinking (Wild and Pfannkuch 1999);

(c) steering probability learning (Batanero et al. 2005); (d) providing a choice of

whether to access real world data (Graham 2006); (e) using technological tools to

integrate exploratory data analysis approaches and probabilistic models through

simulations and visualization (Eichler and Vogel 2014); and (f) developing new

learning theories and proposed learning progressions to inform future standards and

curriculum efforts in mathematics and science education (Lee 2013).

With all these opportunities in mind, and the adoption of a continuous improve-

ment iterative model to progress on giving a more global view of statistical solving

process as an organizer of the whole curriculum (Serradó et al. 2013), we aimed in

this study to gain insights on how to analyse the needs of a Quantitative Research

Methods course that promotes the development of teachers’ Statistical Technolog-
ical and Pedagogical Content Knowledge (STPACK) (Serradó et al. 2014). Fur-

thermore, we examined how to innovate the design of the course, by putting models

and modelling at the core of the curriculum.

The study, adopted an informal, data-driven approach to statistical inference

using the dynamic statistic software TinkerPlots2® (Konold and Miller 2005) as an

investigative tool. It sought to answer the following questions:

• How do teachers develop their awareness of statistical content and pedagogy

about models and modelling through the model building affordances provided

by a technological learning environment, like TinkerPlots2®?

• How does the modelling process integrate the elements of the STPACK in a

Quantitative Research Methods course?
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The pedagogical framework guiding this course is the Statistical Technological

Pedagogical Content Knowledge (STPACK) (Serradó et al. 2014), a model for

statistics teachers’ professional development built based on the Technological

Pedagogical Content Knowledge (TPACK) (Mishra and Koelher 2006), and

Technological-Pedagogical Statistical Knowledge (TPSK) (Lee and Hollebrands

2011).

In this chapter, firstly we theoretically analyse the elements that highlight the

need to integrate STPACK from a modelling perspective. Secondly, we apply

STPACK to analyse the design of Model-Eliciting Activities (MEAs), with the

aim of distinguishing the different processes of probabilistic modelling, contrasted

with mathematical modelling processes, uses of technology, and students’ pro-

ductions about their interactions and reflections with the Dynamic Data Exploration

software TinkerPlots2®. Thirdly, we discuss how these model-eliciting activities

promote the development of different elements of STPACK. And finally, we

conclude by describing how we envision the model-eliciting activities being

designed in a Quantitative Research Methods course in Educational Studies, in

order to promote integrated learning of models and modelling.

Models and Modelling: Mathematical, Statistical or

Stochastic Pedagogical Content Knowledge

Statistics can be conceived as a process different from mathematics for dealing with

variability in data. At the same time, stochastics can be regarded as a sub-domain of

mathematics comprising probability and statistics. The first conception perceives

probability as a domain of mathematics that enriches the subject, becoming an

essential tool in applied mathematics and mathematics modelling (Franklin et al.

2005). Meanwhile, in a stochastic approach probability has not only the role of a

“servant” of statistics, but also is the mathematical branch that models

nondeterministic relationships, random phenomena, and decisions under uncer-

tainty (Burril and Biehler 2011).

Using the language of models and modelling, as summarized by Blum (2015),

this epistemological distinction can be categorized as “descriptive models” and

“normative models” (Blum 2015). We think that this distinction does not suffice,

and that we should also consider “relational models”. Their purpose should be the

relation or connection between different models in the intra-mathematical or extra-

mathematical field.

Furthermore, we consider that the differences between mathematics, statistics

and stochastics are highly complex, and can only be understood through the lenses

of the specific differences between: determinism versus non-determinism, certainty

versus uncertainty, objectivism versus subjectivism, etc. It is not our aim to present

a dualistic vision of both fields of knowledge; it is to have a praxeologic conception

of human action that considers the specificity and generality that highlight the
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opportunities that models and modelling provide for understanding and clarifying

this complexity. However, the understanding of these complexities could help the

clarification of the Statistical or Stochastic Pedagogical Content Knowledge.

In the field of mathematics, Blum (2015) summarises the analysis done by

different researchers about the categories and items describing the Pedagogical

Content Knowledge (PCK) for modelling, and highlights the existence of four

dimensions: (1) a theoretical dimension, (2) a task dimension, (3) an instructional

dimension, and (4) a diagnostic dimension. We consider that these four dimensions

are not adequate to describe the needs of the Statistical Pedagogical Content

Knowledge (SPCK) for modelling. Primarily, because we think that it is also

necessary to clarify how the different perceptions about the nature of statistics

and probability configure different pedagogical views of the descriptive, normative

or relational models. Secondly, we contemplate the need to integrate the techno-

logical pedagogical and content knowledge of models and modelling.

We are going to begin the analysis of the differences between the mathematical,

statistical and stochastic pedagogical content knowledge through the identification

of the theoretical dimension of the modelling cycles. Different schemas for the

modelling cycles, each with specific strengths and weaknesses depending on their

purposes, have been described in the mathematical literature of modelling (Blum

2015). Among them, we distinguish the seven-step-process of Blum and Leiss

(2007): (1) constructing, (2) simplifying/structuring, (3) mathematizing, (4) work-

ing mathematically, (5) interpreting, (6) validating, and (7) exposing.

Different claims can be made from a statistical and stochastic point of view to

point out the weakness of this scheme. On one hand, the transition from observa-

tional to theoretical concepts of probability, as stated by Von Mises (1964) “cannot
be completely mathematized. It is not a logical conclusion but rather a choice,
which, one believes, will stand up in the face of new observations” (p. 45).

Moreover, these theoretical concepts can be analysed from different approaches:

classical, frequentist and subjectivist.

On the other hand, Blum and Leiss’s (2007) seven steps can be considered as

formal expressions of the investigative cycle. We believe that working only from an

investigative perspective is not adequate for developing mathematical, statistical

and probabilistic thinking. Besides, these investigative processes should grow at the

same compass of the interrogative cycle (Wild and Pfannkuch 1999), helping to

develop the process of hypothesis generation. The maturation of the different

perspectives on teaching statistics and probability has had repercussions on the

conception of the modelling process.
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Knowledge for Teaching and Learning Statistics
and Probabilistic Modelling

The first attempts to integrate the interrogative and investigative cycle were made

by Engel (2002) when describing a five-step process for introducing future second-

ary teachers to applied mathematics and modelling: (1) introduction of a “real-

world” problem involving some data analysis activity to experience the dynamics

of the phenomena; (2) building of a simulation model in a technological environ-

ment; (3) generation and analysis of data, including simulation-based inferences;

(4) critical evolution of conclusions and reflection on the impact of our assump-

tions; and (5) mathematical analysis based on probability and mathematical

statistics.

Additionally, Chaput et al. (2011) describe three stages in the modelling process

from a teaching perspective: (1) pseudo-concrete model (putting empirical obser-

vations into a working model); (2) mathematization and formalization (translating

working hypotheses into model hypotheses to design probability model); and

(3) validation and interpretation in context (checking fit of a probability model

to data).

If instead of analysing the modelling process from the teaching perspective, we

consider the learner and his/her learning process, which is dependent upon the level

of the learner, we can distinguish between data-driven and theory-driven

approaches. In data-driven approaches, students experience models for which

there is no theoretical probability model or the presumed theoretical model is

inadequate. The introduction to modelling is done through measurement activities

that help learners to reflect on the variability of the data, getting a sense of the

measurement distribution, and appreciating the types of measurement errors. This,

in turn, can lead them to construct the model observed measurement as an initial

theoretical view of the real world system for their probability model, fit the

probability model to the data, check whether the model is an adequate model of

the real world or not, and then adjust the model until obtaining a working model that

adequately reflects the actual data distribution (Konold and Kazak 2008).

Meanwhile, in a theory-driven approach, both the problem and “data” are given,

from which students are able to recognise the underlying theoretical model, pro-

posed by the teacher. Students use the model based on its “goodness of fit” to

predict future outcomes in the real world system, although it is not built or tested a

priori. In this case, students work within the enclosed world of the model, asking

questions about the model, looking at the consequences of the model, and using the

model to choose between different actions to improve a situation (Borovcnik and

Kapadia 2011).

Attending to students’ learning, Pfannkuch and Zledins (2014) argue that inde-

pendent experiences using data-driven or theory-driven approaches are not enough.

Students need to also appreciate the circularity between theory-driven and data-

driven probability modelling (Pfannkuch and Zledins 2014), and understand that
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modelling is an iterative cycle, which leads to more insights in a step-by-step

manner (Borovcnik and Kapadia 2011).

Again arise the complexity of establishing the limits between reality, model of

reality, and theory. And in this case, probability serves to model reality and impose

a specific structure upon it.

Pedagogical Epistemic Components of Probabilistic Modelling
Approaches

Restricting now the complexity of models and modelling to the transfer between the

empirical world (of data) and the theoretical world (of probabilities), Eichler and

Vogel (2014) illustrate three modelling perspectives regarding the classical,

frequentist and subjectivist approach to probability. The modelling structure with

regard to the classical approach is conceived as a unidirectional way between the

theoretical world, where the theoretical model is built, and the empirical world,

where the model is validated. The modelling structure with regard to the frequentist
approach is bidirectional. Beginning in the empirical world, where the analysis of

the available empirical data and the detection of patterns occur, then building a

theoretical model base, and finally returning to the empirical world to validate the

model. For the modelling structure with regard to the subjectivist approach,
iterative cycles of getting information in the empirical world and re-building a

theoretical model are suggested. The three modelling structures begin with the

definition and structuring of the problem at hand.

Considering the different situations that could be regarded concerning

approaches of probability measurement and the different roles played by data

during the modelling process, Eichler and Vogel (2014) differentiate three kinds

of problem situations: (a) virtual problem situations which contain all necessary

information and represent a stochastic concept; (b) virtual real world problem
situations which demand analysing a situation’s context that is more “authentic”

and provide a “narrative anchor”; and (c) real world problem situations that include
the aim to reproduce real societal problems.

The differentiation of problem solving is a key for deciding the kind of model-

ling to be done in coherence with the probabilistic approach. In this case, the

problem and the probabilistic approach selected are conceived as the lens through

which to structure the modelling process from reality. Furthermore, different

epistemological perspectives confront reality and mathematical objects, and con-

ceive the problems as a lens through which to view reality (Serradó and Gellert

2015). For example, when Borovcnik and Kapadia (2011) argue that a problem

posed to students has to be clear-cut, with no ambiguities involved –neither about

the context nor about the questions, they are emphasising the role that virtual

problem situations in mathematical reality have in a theory-driven approach to

modelling. Meanwhile, data-driven approaches tend to work in either virtual real
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world problem situations or real world problem situations. Furthermore, the struc-

turing of sequences of different kinds of problems organized as tasks with or

without a common context, allow exploring the relationship between both

approaches (Konold and Kazak 2008).

Nonetheless, determining desired characteristics of the tasks to promote math-

ematical, statistical and probabilistic modelling still remains an open question for

research. In the field of mathematics, there are many rich teaching/learning envi-

ronments aimed at modelling (Blum 2015), including Lesh’s Model Eliciting

Activities (MEAs) (Lesh and Doerr 2003). In the current study, several MEAs

were used in our Quantitative Research Methods course, with the goal of develop-

ing a conceptual tool that goes beyond being useful for some specific purpose in a

given situation, to being reusable in other similar situations. In MEAs, difficulties

can arise when students are asked to make symbolic descriptions of meaningful

situations (Lesh and Doerr 2003). In general, students can face difficulties when

advancing between the different steps of the modelling process (Blum 2015). In the

case of the field of Statistics and Probability, the difficulties that can emerge during

the teaching and learning process have been largely investigated (see for example

Batanero et al. 2005; Ben-Zvi et al. 2015; Borovcnik and Kapadia 2014; Serradó

2015a; Watson 2005).

Pedagogic Cognitive Component: Obstacles on a Probabilistic
Modelling Process

In this section, we classify these difficulties using the language of obstacles,

introduced by Brousseau (1997), who identified three types of obstacles: epistemo-

logical, didactical and ontogenic. We consider those obstacles, which can theoret-

ically emerge in a probabilistic modelling process (Serradó 2015b).

The epistemological obstacles are usually identified from a historical analysis,

since they coincide with difficulties that arose in the development of the subject

(Brousseau 1997). We can distinguish four epistemological obstacles in a

frequentist approach: (a) considering probability as the expected value instead of

the theoretical value; (b) conceptualizing the convergence on probability when

establishing the Law(s) of Large Numbers; (c) considering individual events

instead of an aggregate view of data to conceptualize the probability distribution;

and (d) failing to distinguish between experimental value, modelled value and

theoretical value of the probability of an outcome.

The didactical obstacles are related to the way a topic is taught (Brousseau

1997). In this chapter, we consider those didactical obstacles that arise from the

selection of models during the teaching and learning process. Those obstacles are:

(a) confusion of a model with reality, instead of considering models as an approx-

imation of reality; (b) failure to recognize that the purpose of the model is to analyse

its “goodness” in relation to its accuracy in representing the real world; (c) failure to
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recognize that the purpose of the model is to predict future outcomes in the given

world system; and (d) lack of circularity between the theory-driven and the data-

driven probability modelling approach.

The ontogenic obstacles are related to learners’ cognitive development due to

lack of prior knowledge, observation conditions, and developmental limitations:

(a) lack of prior knowledge can lead to biases, misconceptions and fallacies related

to the consideration of a frequentist probabilistic approach; (b) obstacles related to

observation conditions, can appear when students have to construct complex

models of compound experiments based upon simpler ones, and the credence of

deterministic behaviour of the events; (c) inadequate developmental maturation of

cognitive structures thinking; and (d) inadequate and encompassed maturation

of three knowledge structures: distribution, sampling, and variability.

In a data-driven approach, this encompassed maturation causes students to over-

rely on sample representativeness, believing that a random sample has to be

representative of the population, and that it is not randomness but some other

mechanisms that have caused sampling variability. Meanwhile, in the theory-driven

approach for modelling, ontogenic obstacles can emerge if students do not encom-

pass and integrate three notions: (a) variability of results when repeating an

experiment; (b) stability of frequencies of observed outcomes; and (c) relation

between the value of the limit of frequencies, the distribution of possible outcomes

and the theoretical value of the probability.

Models and Modelling: Use of Technological Tools

The affordances of technological tools have improved the situation, helping to

surpass some of the aforementioned obstacles. As pointed out by Blum (2015), a

lot of case studies show that digital technologies can be used as powerful tools for

modelling activities, and for extending the modelling cycle by adding a third world:

the technological world (Greefrath et al. 2011). Furthermore, existing research

shows that effective teacher preparation is an important factor for successful

integration and sustainability of ICT in education (BECTA 2004; Davis et al.

2009; Hennessy et al. 2007). In the case of models and modelling, the integration

of the two approaches, data-driven and theory-driven, allows using technology for

different purposes: accessing meaningful data, exploring data, and conducting data

simulations.

Accessing Meaningful Data

Chance et al. (2007) and Gould (2010) describe the benefits afforded by techno-

logical tools for teaching statistics when accessing large, messy, real world data.

These tools give students the opportunity to engage in the first steps of the

474 A.S. Bayés et al.



modelling process when adopting a data-driven approach within the real context,

and to appreciate that the purpose behind using statistics is to make sense of

questions that arise from context. In quantitative approaches, these practices should

include developing good searching habits, learning what types of search engines to

use for certain purposes, and which websites and organizations are posting trust-

worthy data and information. Also, to improve the capacity to process complex

multivariate data, presented in different formats (table, graph on website, within a

PDF file, downloaded as XLS, CVS, TXT, etc.), and often aggregated in many

different ways that make it more or less useful (Lee 2013). In fact, this quantitative

reasoning consisting in the practice of finding, trusting and processing data into a

form can add meaning to developing hands-on tasks. Nevertheless, meaningful

hand-on tasks should lead to a habit of question posing and the promotion of

exploratory data analysis.

Exploratory Data Analysis

Technologies such as Fathom®, TinkerPlots2® and Probability Explorer® allow the

dynamic control over data – meaning that as data changes, representations of that

data dynamically update. These technological tools are used as amplifiers, giving an
opportunity to focus on conceptual understanding and time to engage in exploratory

data analysis. They are also used as reorganisers, helping to reorganise and change
a statistical conception of students or teachers (Lee and Hollebrands 2011). Several

researchers have been exploiting the affordances provided by these tools for

promoting learners’ ability to reason about data-based inferences, with highly

encouraging results in primary, secondary and tertiary education (e.g. Meletiou-

Mavrotheris et al. 2015). Furthermore, working with dynamic visual representa-

tions of data can help students to develop mental models of possible relationships

between multiple variables (Nicholson et al. 2010).

Working with a variety of digital tools, modelling practices involve sense

making of real world phenomena and defining attributes of the phenomena that

can be measured in some way. Once a model is designed, digital environments

afford the collection of data from the model that can be used to test the model by

comparing model-generated data to real-world data. That can be considered a

particular aim of simulation.

Simulating Data

Eichler and Vogel (2014) identify three different roles of simulation as a tool:

(a) explore a model that supports learners’ prediction of future frequencies on such

a well-known model to the estimation of a frequentist probability based on relative

frequencies concerning a (large) data sample; (b) develop an unknown model
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approximately producing computer-based virtual data that could support students

by assuring them of their theoretical considerations before, during and after the

modelling process; and (c) represent data generation that might facilitate the

comprehension of a problem’s structure concerning a subjectivist approach, and

build adequate mental models of the problem domain.

The flexibility of many simulation tools allows the learner to: (a) using algo-

rithms and models to input the properties of a theoretical distribution that would

control the pseudorandom number generation; (b) controlling parameters such as

sample size; and (c) displaying graphs generated in real time (Lee and Hollebrands

2011). However, sole knowledge of the uses and flexibilities of digital tools does

not suffice for facilitating teachers’ professional development on Quantitative

Research Methods.

Statistical Technological Pedagogical Content Knowledge

for Models and Modelling

Summing up, we consider the existence of three approaches (descriptive, normative

and relational), which model the relationships between the mathematical, statisti-

cal, stochastic, and probabilistic content knowledge. From a pedagogical point of

view, we maintain the need of encompassing the statistical investigative process,

identified in a “grosso modo” with the modelling process, and the interrogative

cycle, which should help to develop the process of hypothesis generation. We

understand this process as a process of maturation of the thinking of the learner.

From the point of view of the learner, students can experience data-driven and

theory-driven approaches to modelling or the circularity between them. The com-

plexity of this circularity can be understood through the analysis of the transfer

between the empirical world (data) and the theoretical world (probabilities), where

we can find three modelling approaches: classical, frequentist and subjectivist. In

the three approaches, data plays different roles during the modelling process, that

allow us to identify three levels of problem situations: virtual problem situations,

virtual real world problem situations, or real world problem situations.

We think that MEAs, based on these three kinds of situations, can promote

mathematical, statistical and probabilistic modelling environments. We do

acknowledge the fact that when students get involved in solving such MEAs,

epistemological, didactical and ontogenic obstacles might emerge. Nevertheless,

the affordances of appropriate technological tools can help to surpass some of these

obstacles. Those technological tools are used in data-driven and theory-driven

modelling approaches to access meaningful data, explore data, and conduct data

simulations. From a cognitive point of view, such technological tools may act as

amplifiers or reorganisers of the teachers’ and students’ conceptions. The following
figure (see Fig. 1) summarises the possible uses of the technological affordances
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when transferring from the empirical and theoretical world, considering the differ-

ent roles that data plays in the modelling process.

In coherence with previous proposals of Lee and Hollebrands (2011) and

Serradó et al. (2014), and in order to help teachers develop their STPACK and

improve their knowledge and skills in applied research methods, we have designed

the MEAs used in the current study with three levels of questions. Firstly, we

included in the MEAs questions that engage teachers in statistical thinking as doers

of statistics, using technology as a tool. Secondly, we also encompassed questions

that provide teachers with opportunities to reflect on the uses of the technological

tools to improve their own learning. And, finally we included questions that require

teachers to consider the pedagogical issues related to the modelling process.

The case study that we present in this chapter aims to provide an example of how

to integrally develop teachers’ understandings of statistical content, technology,

and pedagogy. In particular, the course aims to prepare teachers to scaffold and

extend students’ reasoning about models and modelling. Furthermore, it aims to

improve their understanding of the similarities and/or differences between mathe-

matical modelling and statistical modelling through the model building affordances

provided by a technological learning environment like TinkerPlots2®.

In this section, we present an integrated analysis of the affordances that tech-

nology could provide in a course devoted to building expertise in quantitative

educational research methods that has models and modelling at its core. In partic-

ular, we conceive STPACK as expertise knowledge of the ways to facilitate

students’ learning of different statistical concepts through appropriate pedagogy

and technology. In this chapter, we extend the previously developed Statistical

Fig. 1 The four world modelling processes
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Technological Pedagogical and Content Knowledge (STPACK) items, published in

Serradó et al. (2014):

STPACK1: Understanding of students’ learning (reasoning and thinking) of statis-

tical ideas through the use of ICT tools for models and modelling, and reasoning

on the difficulties and obstacles (epistemological, didactical and ontogenic) in a

modelling process.

STPACK2: A critical stance towards the use and evaluation of MEAs curricula

materials for teaching and learning models and modelling with technology.

STPACK3: Conceptions of how technological tools and representations support

models and modelling: providing access to meaningful data, acting as amplifiers

and reorganisers in an exploratory data analysis, and enabling data simulations.

STPACK4: Instructional strategies for developing models and modelling process,

distinguishing their purpose: relational, normative and descriptive; classical,

frequentist and subjective approaches; and pseudo-models, data-driven and

theory-driven approaches.

STPACK5: Distinguishing the role of problems in the modelling process: virtual

problem situations, virtual real world problem situations and real world problem

situations.

STPACK6: Design and development of complete learning scenarios based on

models and modelling using ICT tools.

Methodology

The teaching experiment adopted a non-conventional approach to the teaching of

the Quantitative Research Methods course, which put models and modelling at the

core of the curriculum. In designing the teaching experiment, we ensured that our

intervention covered the set curriculum included in the course syllabus. However,

we expanded the curriculum by including, throughout the semester, activities that

aimed at raising students’ awareness of models and modelling, and of their useful-

ness in research settings involving statistical investigations.

The study presented here had three objectives: (a) extending the previous

Statistical Technological Pedagogical and Content Knowledge framework

(STPACK) to integrate models and modelling in Inferential Statistical Reasoning

in a Quantitative Research Methods course in Educational Studies; (b) applying this

theoretical framework to a case study of the STPACK curricular dimensions for

models and modelling to the analysis of two MEAs activities; and (c) analysing

students’ productions about their interactions and reflections with the Dynamic

Data Exploration software TinkerPlots2®.
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Case Study on the Model Eliciting Activities

This case study consisted of a content analysis of the STPACK curricular dimen-

sions of models and modelling related to two selected model-eliciting activities:

“Helper or Hinderer” and “How many tickets to sell?” The activities were carefully

designed to support but, at the same time, also explore students’ evolving under-

standings of fundamental ideas related to statistical inference in context, as they

engage in models and modelling for simulating data and evaluating their research

claims and hypotheses.

The “Helper or Hinderer” MEA is based on an actual research study reported in a

November 2007 issue of Nature (Hamlin et al. 2007), in which researchers inves-

tigated whether infants take into account an individual’s actions towards others in
evaluating that individual as appealing or aversive. Sixteen (n¼16) 10-months-old

infants were shown a “climber” character that could not make it up a hill in two

tries. Then they were alternately shown two scenarios for the climber’s next try: a
scenario where the climber was pushed to the top of the hill by another character

(“helper”), and a scenario where the climber was pushed back down the hill by

another character (“hinderer”). This was repeated several times. Then the infant

was presented with both characters and was asked to pick one to play with. The

researchers found that 14 of the 16 infants participating in the study chose the helper

over the hinderer. This research was converted into a MEA (http://www.tc.umn.

edu/~catalst/materials.php), connecting chance models and simulation in the

CATALST project, and was adapted by Meletiou-Mavrotheris and Appiou-

Nikiforou (2015) using model and modelling to support reasoning about statistical

inference.

Meanwhile, the “How many tickets to sell?” MEA is based on the following

fictitious scenario: “Air Zland has found that on average 2.9% of the passengers
that have booked tickets on its main domestic routes fail to show up for departure. It
responds by overbooking flights. The Airbus A320, used on these routes, has
171 seats. How many extra tickets can Air Zland sell without upsetting passengers
who do show up at the terminal too often?” This MEA was initially designed to

promote practice in the use of the Poisson distribution as an approximation to the

Binomial Distribution (http://www.umass.edu/wsp/resources/poisson/proble-ms.

html). Then, the problem was adapted (http://new.cen-susatschool.org.nz/

resource/using-tinkerplots-for-probability-modelling/) with the aim of connecting

experimental and theoretical approaches to probability. And, finally the scenario

was readapted to analyse how technology was used (Meletiou-Mavrotheris et al.

2015).

Each of the two MEAs, composed of the word problem and a number of

didactical questions to work with, was codified four times. Firstly, identifying

and codifying the different actions of the modelling process. Secondly, identifying

in which world each action was performed: real, virtual real, empirical, theoretical

or technological world. Thirdly, for those actions in the technological world,

categorizing the purpose of the use of technology: access to meaningful data,
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exploratory analysis, visualization and simulation. And, finally for each purpose of

the technology established, determining the flexibility in using it.

Case Study on Uses of Dynamic Data Exploration Software
TinkerPlots2®

The teaching experiment took place in a Quantitative Research Methods course

targeting graduate students enrolled in an M.A. in Educational Studies program

offered at European University Cyprus. The course content and structure was such

that it encouraged “statistical enculturation”. Statistical thinking was presented as a

synthesis of statistical knowledge, context knowledge, and the information in the

data in order to produce implications and insights, and to test and refine conjectures.

Probability was not presented as a modelling tool. Probability distributions were

presented as models based on some assumptions which, when changed, might lead

to changes in the distributions. The emphasis was not on teaching their formal

properties, but on helping students understand why and where one could use these

probability distributions to model a certain phenomenon, and in what ways this is

useful. In this process of statistical enculturation, the use of the software

Tinkerplots2® was instrumental in the individual evolution of students’ use and

reasoning about the exploration and simulation affordances. Giving each student

the challenge to use any of the Tinkerplots2® affordances when engaged in the

open-ended MEAs activities.

The course began on the first week of October 2014 and was completed at the

end of January 2015. The second author was the course instructor. There were

nineteen (n¼19) students enrolled in the course. Participants were either pre-service

or in-service teachers, who were characterized by diversity in a number of param-

eters including age, and professional and academic background, summarized the

table (see Table 1).

Their age ranged from 23 to 42. Some had an academic background in primary

education, while the rest were secondary school teachers in different domains

(languages, humanities, natural sciences, physical sciences etc.). Students also

had a varied background in statistics. Most of the older participants (aged over

30) had very limited exposure to statistics prior to the course and had never formally

studied the subject, while the younger ones had typically completed a statistics

course while at college. However, even those students who had formally studied

statistics in the past had attended traditional lecture-based statistics courses that

made minimal use of technology. Thus, upon entering the course, almost all of the

students had very weak statistical reasoning and a tendency to focus on the

procedural aspects of statistics.

The case study used classroom observation, videotaping, interviews of selected

students, and student work samples to investigate learners’ interactions with

TinkerPlots2®, and to document the different ways in which students’ engagement
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with data modelling activities influenced their understanding of key ideas related to

inferential statistics. The collected data were transcribed (interviews and

videotaped episodes), coded, and analysed to guide the investigation on the impact

of the intervention on participants’ learning. For the purpose of analysis, we did not
use an analytical framework with predetermined categories. What we instead did

was to identify, through careful reviewing of the transcripts, student work samples,

and other data collected during the course, recurring themes or patterns in the data.

Based on this process, the collected data was eventually codified to identify the

following narratives about the uses of the Dynamical Software TinkerPlots2®:

access to meaningful data, data exploration, visualization and simulation, and

metacognitive use of technology as an amplifier or a reorganiser of statistical

knowledge.

To increase the reliability of the findings, the activities were analyzed and

categorized by all three researchers. Inter-rater discrepancies were resolved through

discussion.

Results

In this section, we present the results corresponding to the modelling processes and

their relation to the four world interaction of both case studies related to the “Helper

and hinderer” and “How many tickets to sell?” Model Eliciting Activities (MEAs).

Four World Modelling Cycle

The content analysis about the case study on the MEAs has allowed identifying a

four world modelling cycle, with differences between each task. The “Helper or
hinderer” MEA processes related to the four worlds are summarised in the figure

(see Fig. 2), and the processes related to the modelling cycle are described below.

Table 1 Sample

characteristics
Gender

Male 26% (n¼5)

Female 74% (n¼14)

Age

Under 30 58% (n¼11)

30–40 26% (n¼5)

Over 40 16% (n¼3)

Professional Status

Pre-service teacher 53% (n¼10)

In-service teacher 47% (n¼9)

A Study on Statistical Technological and Pedagogical Content Knowledge 481



1. Introduce the “virtual real world” through a detailed reading of the word

problem and ask students to make conjectures about the answer to the research

question.

2. Put empirical observations into a working model through reflection on the

evidence of rejecting the suggested theoretical chance model.

3. Do a mathematization of the null model by identifying all the parameters

needed that are fully described in the activity.

4. Build a simulation model in the TinkerPlot2 technological environment based

on the theoretical analysis.

5. Conduct mathematical analysis of the modelled distribution displayed to draw

conclusions experimentally and theoretically.

6. Check whether the model is adequate or not with different large numbers of

simulated outcomes using TinkerPlots2®.

7. Predict future outcomes in the virtual world system to answer the question

posed in the word problem.

8. Mathematize the probabilistic model through making assumptions about the

distribution.

9. Generate the theoretical probabilistic value using Tinkerplot2.

10. Compare the probability theoretical value with the sampling experimental

value modelled, using the results obtained in the technological world.

The “How many tickets to sell?” MEA processes are summarised in the figure

(see Fig. 3), and described below:

1. Reason on the real virtual world through a detailed reading of the word problem

and on the real world system through drawing upon students’ real world

knowledge and experiences regarding airlines’ practices in overbooking flights.
2. Build a pseudo-concrete model (putting empirical observations into a working

model).

Fig. 2 Four world modelling cycle of “Helper or hinderer” MEAs
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3. Build a simulation model in Tinkerplot2 through reasoning on some open

questions about the parameters to analyse.

4. Readjust the model (without expression of the conditions for the new

parameters).

5. Run the model with those new parameters readjusted.

6. Describe the sampling distribution and analyse how it fits to the generated data.

7. Predict future outcomes into the “virtual world system” to answer the question

posed in the word problem.

8. Reason in the “real world system” to describe the consequences of this

decision.

9. Recognise the underlying theoretical model.

10. Design the probability model recognised in the theoretical world.

11. Generate the probabilistic theoretical value using Tinkerplot2.

12. Compare the probabilistic distribution with the sampling modelled distribution.

13. Reaffirm the predictions in the “virtual real world” system.

On the description of the modelling cycle, we have presented different uses of

TinkerPlot2, which we will next describe in more depth.

Uses of TinkerPlot2® in the Modelling Process

Both activities proposed have been categorized as “virtual real world” problems,

because they have all the needed information to solve the problem and students do

not need to access or organize meaningful real data. Consequently, to obtain data

students have to generate it using TinkerPlots2® as a simulation tool. We can find

differences in this simulation process, due to the proposed modelling cycle

established in each MEA.

Fig. 3 The four world modelling cycle for “How many tickets to sell?” MEA
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In the “Helper or hinderer” activity, three uses of the technological tool are

suggested. Firstly, building a simulation model in the TinkerPlot2® technological

environment under the null model based on the theoretical analysis (see Fig. 4).

As a result of the interaction with technology, students in our study reasoned:

“Results vary but 14 or more infants out of 16 selecting the “helper” character
almost never occurs. Thus, it seems that infants really have a preference and are not
just picking a toy at random”. Their reasoning leads us to think that they have used
the simulation tool to explore the theoretical well-known null model to the estima-

tion of the frequentist probability based on relative frequencies of a data sample.

They also have reckoned upon the flexibility of the technological tool to display

different graphs in real time.

Secondly, acknowledging the need to repeat the experiment a very large number

of trials, students chose the “Collect Statistics” feature of TinkerPlots2® to keep

track of the number of students picking the “Helper” toy each time. Students were

able to test whether the model is adequate or not with repeated, large samples of

simulated outcomes. In the figure (see Fig. 5) for example, we see the distribution of

sample statistics drawn by a group of students who repeated the experiment 2000

times.

Students were able to develop an unknown model producing computer-based

virtual data that could support their theoretical considerations after the modelling

process. As expressed by these students: “a number as high as 14 or higher is very
rare since almost all numbers in the graph are smaller than 14” or “the distribution
of the collected statistics is normal and its center is close to 8 which is the mean
expected value if we assume no real preference among infants.”

Next, students were asked to generate the theoretical probabilistic value. They

used the properties of the binomial distribution to determine the theoretical prob-

ability of at least 14 out of 16 infants randomly choosing the “helper” toy under the

chance model. Finally, students were asked to compare the theoretical probabilistic

value with the experimental modelled value. Although no extra comparison

between the sampling modelled distribution and the theoretical one was asked,

that would help to fit the goodness of the model.

In the “How many tickets to sell? MEA, three different uses of the technological

tool were made. Firstly, students were asked to build a simulation model in

Fig. 4 Outcomes of single sample simulations, under the null model, of the “Helper or Hinderer”

MEA
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TinkerPlot2. Students ran TinkerPlot2 to obtain different cases in order to under-

stand if they were working with a chance model, considering also the null model

(see Fig. 6).

We consider that the purpose of using the technological tool was to represent

data generation that might facilitate the comprehension of the problem’s structure
and building an adequate chance mental model of the problem domain (“the data
changed each time, as there is the concept of chance”).

Secondly, students were asked to readjust the data through repeating the exper-

iment a large number of times and to draw the resulting distribution of sample

statistics. This was done for the scenario in which AirZland sold five extra tickets

(see Fig. 7) and four extra tickets (see Fig. 8).

In this case, students used the simulation tool to develop an unknown model

approximately producing computer-based virtual data. The comparison of both

histograms led them to develop their theoretical considerations during and after

the modelling process: “Although the possibility of 5 passengers not showing up
has the highest chance, when looking at 176 seats there is a 43% of chance of some
passengers not getting a seat [. . .]. On the other hand, when booking 175 tickets
rather than 176, the chance of having passengers who are unable to get a seat due
to overbooking is reduced from 43% to 21%”. Students were able to analyse the

flexibility of the simulation tool when controlling the sample size and the number of

tickets.

Thirdly, students were then asked to generate the theoretical probabilistic value.

They used the properties of the binomial distribution to determine the theoretical

probability for 176 seats. Finally, students were asked to compare the theoretical

probabilistic value with the experimental modelled value. Although they were not

explicitly requested to make any additional comparison between the sampling

modelled distribution and the theoretical one, doing so would help them in testing

the goodness of the model. Furthermore, students were able to analyse the flexibil-

ity of TinkerPlots2® to input the properties of a theoretical distribution (Meletiou-

Mavrotheris et al. 2015).

Fig. 5 Histogram of sample statistics for the “Helper or hinderer” MEA- A measures collection of

2000 samples
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Fig. 6 Outcomes of single sample simulations, under the null model, of the “How many tickets to

sell?” MEA

Fig. 7 Outcomes of 1000 simulations for the 176 of “How may tickets to sell?” MEA

Fig. 8 Outcomes of 1000 simulations for 175 tickets of the “How many tickets to sell?” MEA
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Metacognitive Use of the Technology: Amplifier
and Reorganiser

We can observe differences in the use of technology between the “Helper or

Hinderer” and the “How many tickets to sell?” MEAs. The “Helper or Hinderer”

MEA proposal for interaction with technology acted basically as an amplifier,

providing students with the opportunity to focus on conceptual understanding and

time to engage in exploratory analysis due to the data generated through simulation.

Participants improved their conceptual understanding of the null model (“Based on
our analysis, there is strong evidence against the null model”) or the normal

distribution (“the distribution of the collected statistics is normal and its centre is
close to 8 which is the mean expected value if we assume no real preference among
infants). However, they argued about the possibilities of becoming a reorganiser of

the statistical conception for the researchers of the real world experiment: “The
experiments showed that infants are not making their selection based on chance,
but tend to choose a helper toy. The reasons for this tendency warrant further
investigation by researchers”.

Meanwhile, the “How many tickets to sell?” MEA proposal for interaction with

the technology acted both as an amplifier and a reorganiser of knowledge. As in the

case of the “Helper or hinderer” MEA, the “How many tickets to sell?” MEA

provided students with the opportunity to focus on conceptual understanding. The

simulations helped them “to understand these theoretical probabilities”, and the

sample distributions: “It [the software] simulated more that 3000 flights in few
minutes, so we got a lot of data and we understood how the distributions works”.
The flexibility of TinkerPlot2 in generating different graphs proved particularly

helpful: “I saw how graphs work. I had direct access to data and I could make
changes and see how these changes influenced the whole graphs. That made things
clear”.

The software also acted as a reorganiser of knowledge, contributing to the

change of some students’ statistical conceptions. For example, Tinkerplots2®

helped improve students’ conceptions about randomness (“It was useful for me
because I understood how a random procedure with large numbers can work. This
is very important for understanding randomness”), or conceptions about why to use
a particular theory (“The software helped me to understand generally how a
distribution works in theory. Working with TinkerPlots for simulating and
analysing our data, was when I understood why we used the particular theory”).

Of particular interest is the case of one student (n¼1) who used TinkerPlots2®

only to understand the existence of a chance model, and then to reorganise his

understanding of the problem (I worked with TinkerPlots only for making graphs. I
didn’t use it for anything else. I understood the distribution, so I didn’t need to do
anything for solving the problem). So, we can say that he did not complete all the

modelling cycle. His modelling cycle comprised of processes 1, 2, 3, 4, 9, 10 of

Fig. 2.
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Nevertheless, there were four students (n¼4) who argued that they did not use

the TinkerPlot2 affordances. One of the teams reasoned that they did not use the

technology, because they recognised the problem as a traditional word problem on

statistical inference (“The software did not help us at all. We realised at a first
glance that we had a binomial distribution. Here we had ‘arrivals” and ‘no-
arrivals’ and independence¼0,029. So, we used the formulas and we solved the
problem”). When inquired about their traditional conceptions of solving a statisti-

cal inferential problem, one of the team members answered: “I believe that the
important thing is to understand the distribution and use the right formula. In that
case, it wasn’t useful for us to run the data in the software, as the result was found
directly by using the formula”. Our interpretation of this is that the student was

identifying solving the problem with an incomplete theory-driven modelling

approach, corresponding to processes 1, 9 and 13 of the modelling cycle of Fig. 3.

Trying to understand why these four students did not complete all four worlds of

the modelling cycle, leads to a consideration of their prior Statistical Content

Knowledge, which we are going to discuss in the next section.

Discussion and Implications

The discussion is organised based on an analysis of how the use of the TinkerPlots2
® technological tool, and its affordances for metacognition gave our study partic-

ipants with insights for improving their STPACK.We have opted for an isomorphic

approach to designing a professional learning environment, in which pre-service

and in-service teachers taking the Quantitative Research Methods course were

asked to apply the same knowledge, strategies and competences that they should

require for their students (Serradó et al. 2014). We believe that this isomorphic

approach has given participants the opportunity to understand students’ learning
(reasoning and thinking) of statistical ideas through the use of ICT tools for models
and modelling, and reasoning on the difficulties and obstacles in the modelling
process (STPACK1).

We can interpret that the development of the two MEAS, in general, and

participants’ engagement in responding to reflective questions in particular

(e.g. “Compare your answer with those of other students in your class and reason
why you have different answers” or “To what extend has TinkerPlots helped you
(or not) to construct the theoretical probabilistic distribution?”), allowed partici-

pants to become aware of the amplification and reorganiser role of technology.

Participants have used TinkerPlot2 as an amplifier to focus on conceptual

understanding when engaging in exploratory data analysis of simulated data,

which has contributed towards changing their statistical conceptions about random-

ness, and about the rationale behind use of a particular theory. We agree with Lee

and Hollebrands (2011) regarding the possibilities of technological devices in

general, and TinkerPlots2® in particular, to act as amplifiers and reorganisers of

knowledge in an exploratory data analysis setting. But, we consider that these
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possibilities have to be extended to the opportunity that simulation process and

tools give to explore a model that supports learner estimation. We conclude that this

use of technology has given teachers the chance to develop conceptions of how
technological tools and representations support models and modelling in explor-
atory data analysis, and reason about the role of simulations as an amplifier and
reorganiser tool (STPACK3).

We consider that those students that do not go through the four world modelling

cycle (reducing the cycle to the processes 1, 9 and 13 of the Fig. 3) tend to have a

deterministic traditional view of solving statistical problems and a constricted

vision of the theory-driven modelling approach (Borovcnik and Kapadia 2011).

In the problem solving process, students have identified a unique possible distribu-

tion of outcomes that will provide the theoretical value of the probability. On this

identification, we consider that has emerged an ontogenic obstacle due to a non-

encompassed integration of the notions of distribution and probability. We concur

with Borovcnik and Kapadia (2011), when affirming that a deterministic view of

the problem solving is an obstacle that constricts the vision of what a theory-driven

modelling approach actually means. And, according to Serradó et al. (2014), a

didactical obstacle have emerged when the students had not recognised that the

purpose of the model is to analyse its “goodness” in relation to its accuracy in

representing the real world.

A didactical interpretation of the causes of these ontogenic and didactical

obstacles can be discussed through a careful analysis of the four world modelling

cycle (see Fig. 2 and 3). In each MEA, the word problem provides all the needed

information to solve the problem, and the clues to understand that it is a null model.

In some sense, although the MEAs are designed to promote the circularity between

the virtual, experimental, theoretical and technological worlds, this circularity can

be avoided if the aim of modelling is incorrectly understood as a statistical solving

problem process.

On this lifting from the virtual world to the theoretical world, and finally the

return to the virtual world, two didactical obstacles can emerge. From a procedural

point of view, a didactical obstacle can emerge due to the lack of circularity

between the theory-driven and data-driven probability modelling approach. Mean-

while, if we consider a contextual point of view, another didactical obstacle can

emerge due to the selection of only virtual world problems and the exploration of

only experimental data obtained from the TinkerPlots2® simulation tool –confusing

a model with reality instead of considering a model as an approximation of reality.

However, if we consider a positive treatment of the obstacles as a didactical tool

for professional development, we can improve the Model-Eliciting Activities (Lesh

and Doerr 2003) through including reflective questions such as the following:

Considering the difficulties that you have encountered during the realization of

the MEA, which obstacles do you think students can have? Responding to such

questions could give pre-service and in-service teachers the opportunity to develop

a critical stance towards the use and evaluation of MEAs as curricular materials for
teaching and learning models and modelling with technology (STPACK2).
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The MEAs proposed during the course, and particularly those analysed in this

chapter, are “virtual real world problem situations”. Although both have been

categorised as “virtual real world problem situations”, they are categorized as

virtual for different reasons. We consider the “Helper or hinderer” MEA virtual

because it has used real research data (Greefrath et al. 2011) to construct the word

problem (Garfield et al. 2010). Meanwhile, the “How many tickets to sell?” MEA

can be categorized as a virtual real world problem, because processes 1 and

8 facilitate the connection between the virtual real and the real world.

Despite the attempt to connect the virtual real world and the real world, there are

no proposals for a bidirectional connection. This lack of bidirectionality can

constrict teachers’ development in two respects. On the one hand, teachers do not

have the opportunity to work with real world problems and to understand the

differences between the virtual problem situations, the virtual real world problem

situations, and the real world problem situations. Although both MEA have pro-

vided students with the possibility to reflect on the role that problems have in the

modelling process, they did not completely get the opportunity of distinguishing the
role that each kind of problem (virtual, real virtual or real) has in the modelling
process (STPACK5).

On the other hand, the fact that the proposed activities are virtual real world

problems restricts the possibility of accessing meaningful real world data and

conducting exploratory data analysis, to completely develop a data-driven model-

ling cycle. In this case, constricting the conceptions of how technological tools and
representations support models and modelling through accessing meaningful data
and developing an exploratory data analysis (STPCK3).

Each MEA has excluded different processes, considered crucial in a data-driven

modelling cycle (Konold and Kazak 2008): measurement activities, appreciation of

the types of measurement errors, and fitting of the probability model to the data.

Neither the students who went through the complete modelling cycle of Figs. 1 or 2,

nor the students that skipped some processes applying an incomplete theory-driven

modelling approach, fitted the probability model to the data. We consider that this

omission could become an obstacle to truly developing the data-driven or theory-

driven model cycle. But, we can surpass this obstacle by changing the word

“compare” by “fit” in Fig. 2 process 10 and Fig. 3 process 12. This change, as

proposed by Pfannkuch and Zledins (2014), can improve the analysis of the

“goodness” of the model.

Furthermore, Pfannkuch and Zledins (2014) suggest improving the modelling

process through providing circularity between the data-driven and the theory-driven

modelling approach. As it can be seen in Figs. 2 and 3, each MEA provides some

kind of circularity between the data-driven and the theory-driven approach, how-

ever differences between them can be observed. The “Helper or hinderer” MEA

begins the circularity through a theoretical analysis and the use of simulation tools

to explore the theoretical well-known null model through an estimation of the

frequentist probability based on relative frequencies of sample data. By contrast,

the “How many tickets to sell?” MEA begins the circularity through using the

simulating tool to develop an unknown model producing computer-based virtual
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data. Then representation of the generated data could facilitate the comprehension

of the underlying structure. And, finally students could identify the theoretical

model in hand. The integration of both activities in the course provided students

with the possibility of becoming familiarized with the three goals of the simulation

in a probabilistic modelling process (Eichler and Vogel 2014).

Eichler and Vogel (2014) proposed a two-world modelling cycle, with less or

more complexity, between the empirical and theoretical world. They also reasoned

about the opportunities that this two-world model gives to teachers’ professional
development and the need of integrating the technological knowledge with peda-

gogical content knowledge. We consider that this two-world modelling cycle is

restricted, because it does not integrate technology. Meanwhile, the three-world

modelling cycle proposed by Greefrath et al. (2011) that integrates the technology

world, does not integrate the theoretical world. And, we consider it crucial to

integrate the theoretical world, because probabilistic theoretical models can be

obtained not only from the experimental-frequentist approach but also from other

approaches (e.g. classical or subjective). This controversial view of probability

aims at carefully considering the mathematization process in a probabilistic model-

ling approach, which can be quite different from those proposed by classical

mathematical modelling approaches (Blum 2015). Thus, we consider that both

the two-world, and the three-world modelling cycle have serious limitations.

Rather, we propose the adoption of a four-world modelling cycle, which integrates

the real, experimental, theoretical and technological worlds.

Furthermore, we consider that promoting students’ participation in different

MEAs integrating the four-world model, as the ones developed in the Quantitative

Research Method course presented here, can provide learners with the instructional
strategies for developing models and modelling processes and distinguishing
between their purposes (STPACK5). The integration of STPACK5 is constricted

by the fact that the model eliciting activities presented are situated in a virtual real

world instead of the real world. To improve this situation, we propose, from a

cultural and sociological perspective, to incorporate MEAs that provide students

with an open question on the educational context to completely develop the four-

world modelling process.

Conclusion

To sum up, we have theoretically analysed the differences between mathematical,

statistical and stochastical models in relation to the processes in the modelling

cycle, and the interactions with the real, empirical, theoretical and technological

world. Our case study of a Quantitative Research Methods course in

M.A. Education Studies, has led us to the conclusion that the development of

probabilistic modelling in such a context needs to integrate the four worlds,

providing circularity between them.
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This circularity can help teachers participating in the course to surpass some

didactical and ontogenic obstacles, and to develop the required knowledge about

models and the modelling process. Tackling these obstacles means improving the

two model-eliciting activities analysed and presented in this chapter. We suggest

improving the construction of the activities to promote the analysis of the “good-

ness” of the model and introducing other reflective questions related to obstacles in

the modelling process.

We believe that reflective questions could help pre-service and in-service

teachers participating in a quantitative educational research methods course

develop and integrate their Statistical Technological Pedagogical and Content

Knowledge. But, the development of STPACK is still constricted by the fact that

all the MEAs are proposed in the virtual real world. To improve this situation, we

propose the incorporation of MEAs that pose open questions related to an educa-

tional context, and require learners to experience the whole four-world modelling

process. Such opportunities can help pre-service and in-service teachers develop

their STPACK, building the processes and attitudes of a “teacher as a researcher”.
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The Professional Development
of Mathematics Teachers: Generality
and Specificity

Maria Polo

Abstract The aim of this work is to present a study concerning primary and

secondary in-service teacher professional development in the perspective of carry-

ing out some innovations related to usual practice. The first results show that one

major difference among the teachers groups involved is represented by the volun-

tary nature as well as by the training duration; the latter would permit the over-

coming of a natural resistance to the change. We claim, as a base of our work, the

need and the pertinence of a debate on the necessity of comparative studies

concerning the teacher’s position according to the results of the pedagogical,

psychological and sociological research on the role of the teacher.

Keywords Professional development • In-service mathematics teachers •

Disciplinary didactic • Pedagogy • ICT

The Professional Development of the Teacher: Preliminary
Questions and Problems

The professional development of the teacher, in particular of in-service mathemat-

ics teachers, has always been a need in human societies. Nowadays, it takes on a

new challenge since it has to face the complex globalization processes. Defining the

knowledge and competence that are to be considered for mathematics teachers

professional development is one of the core issues both for researchers in mathe-

matics education and for Institutions involved in teacher education. The reflection

on knowledge and methods is essential also with reference to the professional

development systems. In institutional teacher education systems, issues on methods

are often relegated to the fields of pedagogy, psychology and sociology, while

debate on content and knowledge to be taught is often tackled marginally or without

connections with the results of researches in the field of disciplinary didactics. The

dialectic needed between the different research fields (for example between
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disciplinary didactics and pedagogy) and the distinction between knowing, knowl-

edge and competence are still open issues.

In this work, we begin from the assumption that, in order to deal with methods

and contents of teacher training, some didactic-disciplinary peculiarities

concerning teacher’s knowledge are to be claimed. We will show the results of a

study on some primary and secondary school in-service teacher training programs1.

De facto, in-service teacher professional development, like all contexts of educa-

tion, is subject to deep changes because of the present rapid evolution of modes and

means of communication. For example, at the institutional level of the Italian

Ministry, in-service training and innovation diffusion are carried out by e-Learning

with a blended system, not just for mathematics teachers but for all disciplines.

Distance interaction is, therefore, added to the previous usual conditions of training

systems.

Another open issue in different research fields is trying to identify which

conditions and specific aspects of mathematics teacher training change according

to the conditions of training practices and how they influence professional devel-

opment itself. In this respect, Clark-Wilson et al. (2014) face the issue of teacher

initial and in-service training in relation to the use of technologies in mathematics

teaching and learning. They highlight the existence of shared theories, such as

instrumental orchestration, instrumental distance and double instrumental genesis,

which, in our opinion too, are patrimony of the international research community of

mathematics education. Their work, however, confirms the difficulty in retracing a

complete overview of the practices that the teacher applies when using digital

technologies in the classroom.

With reference to training systems, a recent study by Arzarello et al. (2014)

proposed a model for teacher development called Meta-Didactical Transposition.

This model complements the one by and Bass (2003), Ball, Hill and Bass (2005),

Ball, Thames and Phelps (2008) adding to it the approach of the anthropological

theory by Chevallard (1999). Moreover, Arzarello et al. (2014) address some

features of the influence of institutional aspects connected to the new training

systems both in presence and at distance. In our study we deal with these aspects

only marginally (and we do not examine the role played by specific tools and

methods on the professional development of the teacher). We focus our attention on

teacher training content. Already at the end of the 80s, Shulman faced this issue

and, when characterizing teaching professional knowledge, he identified, among

the others, the “General pedagogical knowledge, with special reference to those

broad principles and strategies of classroom management and organization that

appear to transcend subject matter” (Shulman 1987, p. 8). In our work we discuss

the distinction between general knowledge and specific knowledge of the teacher,

1In the scope of the activities of the “Centre of Research and Experimentation in Mathematics

Education” (Centro di Ricerca e Sperimentazione dell’Educazione Matematica - CRSEM http://

cli.sc.unica.it/crsem/) established in 1980 at the Department of Mathematics and Information

Technology of the University of Cagliari.
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which is already evident in the above mentioned definition given by Shulman.

Therefore, we ask ourselves: why does pedagogic knowledge, such as the class-

room organization and management, only apparently go beyond the scope of the

discipline? What specifically distinguishes the classroom organization and man-

agement if the teacher involved is the mathematics or languages or science teacher?

The themes of the above questions have been investigated in recent research.

The 15th ICMI study on teacher education (Even and Ball 2009) and the four

volumes of the International Handbook of Mathematics Teacher Education (Wood

2008) concern research on teacher education and teacher professional development.

They focus on identifying the knowledge that is necessary for teaching mathemat-

ics. Our work agrees with this research asserting that this kind of knowledge

consists of three main components, interrelated to each other: knowledge about

mathematics content, general pedagogical knowledge, and mathematical-didactical

knowledge.

Purpose and Theoretical Approaches of This Study

The study of the relationship between school training and education, teacher

professional development and research is one of the core issues to satisfy the

expectations that globalization imposes. This is important not only in the field of

Mathematics Didactics, but more broadly in the scope of the construction and

development of citizens’ knowledge and skills. Through the study of a case in

professional development of in-service mathematics teachers, the purpose of this

survey is to raise the issue of the specific or generic character of content and

methods in the systems of teacher professional development.

A study realized in the pedagogic-psychologic field identified the reflection

process as one of the fundamental aspects for teachers’ professional development.

This is the ALACT model (Korthagen 2001; Korthagen and Vasalos 2005),

describing five phases in the reflection process: phase 1 (Action) is a teacher’s
experience (for example, a discipline problem in a teacher’s classroom); phase

2 (Looking back to the action) is the turn back or boomerang phase; phase

3 (Awareness of essential aspects) is becoming conscious of the essential aspects;

phase 4 (Creating alternative methods of action) is the creation of alternative action

methods; phase 5 (Trial of alternative method) is a test.

We will come back to this issue by comparing our results with those reported in

Korthagen (2001) and Korthagen and Vasalos (2005) that mainly refer to

pre-service teachers. Our study is realized in the field of Mathematics Education

but it analyses the case of in-service teacher professional development. We will

recall and develop the results of a work presented at the CIEAEM65 meeting, in the

light of some studies now analysed on mathematics teachers’ development.

Our starting point is the idea that different issues concerning teacher professional

development cannot be examined without a preliminary reference to a shared

paradigm definition of teacher work. The teacher is considered as an element of
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the didactic system. Identifying specific contents and methods for mathematics

teacher education, therefore, requires having already detected both specific or

generic forms of competence and knowledge related to the teacher’s position2.
Specific competence and knowledge should characterize mathematics teaching

while generic competence and knowledge should, on the contrary, characterize

any disciplinary teaching in a formal learning context. Our position is based on

the description of the teacher’s position as an element of the didactic system and on

some studies concerning the analysis of the teacher practice (Assude et al. 2007; Lai

and Polo 2012; Polo 2002, 2008; Polo et al. 2008; Robert 2007; Sensevy et al.

2000).

Learning is a social process of negotiation of meanings within a classroom

environment (Cobb 1997; Polo et al. 2008; Vygotskij 1990), and to understand

this process it is necessary to understand the global character of the social-dialogue

interactions that are typical of the teaching/learning process. The Theory of Didac-

tic Situations (Brousseau 1986) and the Theory of Didactical Transposition

(Chevallard 1985) together provide one of the possible models of description of

this process: they assert the need and possibility to study the mutual relationships

that characterize the didactic system Teacher-Student-Knowing-Learning Environ-
ment3. According to the Theory of Situations, the Didactic Contract regulates the

interaction between devolution and institutionalization processes. The evolution of

teaching and learning is determined by a continuous alternation of didactic contract

breach and renegotiation. When analysing activities in the classroom by means of

this model, one has to consider that different types of didactic situations coexist and

evolve according to the different kinds of knowing that intervene in a specific

activity. To analyse how, in the different activities carried out in the classroom, the

teacher can influence the development of the “cultural history of the classroom”

(Radford and Demers 2006) and the learning environment (but also be influenced

by the environment itself), it is necessary to define the different kinds of knowledge

that the teacher applies and uses (even unconsciously) in the different phases of the

teaching/learning process.

Teaching Education: Generality and Specificity

Recent developments led to the definition of mathematical knowledge for teaching

(MKT). Ball et al. (2005) defined MKT as “the mathematical knowledge, skills,

habits of mind, and sensibilities that are entailed by the actual work of teaching”. In

2We distinguish between the teacher’s and student’s position to indicate the system’s element and

not the institutional roles. In the analysis of teaching practices (also in relation to multimedia

learning environments) who undertakes the teacher’s position can be a peer, a tutor or a specific

practice, also in ITC or e-learning. With regards to this, read the chapter by Albano G. (2017) in

this volume.
3“Milieu” in the terminology introduced by Brousseau (1986).
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particular, they have highlighted “the daily tasks in which teachers engage, and the

responsibilities they have to teach mathematics, both inside and outside the class-

room”. Ball et al. (2008) state that:

It is rooted in attention to the demands of practice to consider what mathematics arises in

the work that teachers do. Our work tests these ideas by developing instruments to measure

this knowledge, by using the results to inform our understanding of a map of teacher content

knowledge, and by tying this knowledge to its use in practice. That there is a domain of

content knowledge unique to the work of teaching is a hypothesis that has already

developed. However, the notion of specialized content knowledge is in need of further

work in order to understand the most important dimensions of teachers’ professional

knowledge. Doing so with care promises to have significant implications for understanding

teaching and for improving the content preparation of teachers. (p. 405)

We agree with the fact that a notion of specialized content knowledge is needed.
Moreover, recalling the model by Ball et al. (2008), we state that it is possible to

identify a specific knowledge of the teacher which is different from the Pedagogical

Content Knowledge (PCK), but also from the Subject Matter Knowledge (SMK).

We refer here to the Didactical Content Knowledge (DCK), which is the didactic-

disciplinary knowledge. This kind of knowledge is strictly connected to the content

of the learned object and it is at the base of the teacher’s decisions before, during
and after classroom activities.

We highlighted (Polo 2008) a possible distinction in the nature of decisions on

which the teacher’s choices, actions and activities are based within and outside the

classroom. Pedagogic or psychological decisions concern the personal relationship

of the teacher with students: these decisions, and the knowledge connected to them,

have a generic character since they concern teaching and learning at school in

general. Didactic decisions, on the contrary, concern the teacher’s relationship with
mathematics and mathematics activities at school. They are connected to knowing

and therefore have a specific character: they concern mathematics teaching in

particular and the specific knowledge that characterizes mathematics teachers.

We agree with Chevallard (1999), who maintains that the classic approach of

Mathematics Education has ignored some general aspects of the organization in a

specific type of didactic system. If choices are made (consciously or unconsciously)

at level of a general organization, problems in the study of a specific mathematic

organization remain misplaced. In our experience as well, we have observed that

aspects considered as related to general choices are often neglected in the scope of

mathematics education.

Our work integrates itself in this line of studies and analysis in mathematics

didactics, which examines the aspects connected to mathematics and didactics

organization. However, we assume that comparative and integrated studies are

needed as well to identify the specificity and generality of the teacher’s competence

and knowledge. In our opinion, it is indeed fundamental to distinguish between

didactic variables and pedagogic-relational variables; this is necessary if we want to

deeply understand the specificity and generality that can characterize the develop-

ment of the teacher’s professional knowledge.
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In several fields of research and in some debates within training Institutions,

detecting an efficient teaching method appears to be a goal. Some of the same

surveys, however, assert that using a specific teaching method does not necessarily

lead to effective learning. The use of the same method (frontal lessons, didactic

materials, group discussion) by several teachers may actually lead to different

results in students’ learning. This was also confirmed by some surveys that have

examined teachers using the same class method but with different teaching styles,

thanks to which they present didactic activities with different personal practices.

These results allow us to state that a specific methodology affects students’ moti-

vational, operational and relational behaviours more than the teacher’s specific

knowledge and competence. This statement is confirmed by several studies (Lai

2003; Lai and Polo 2002) realized within local and national projects focused on

dropouts. In one of these cases, we could observe this phenomenon also in activities

concerning not only Mathematics teaching/learning but also other disciplines, such

as Italian language.

As an example, we report here the case of one of the activities of Italian language

teaching, aimed at introducing the content “compound words”. Students, divided

into groups, worked according to the task assigned by the teacher for the construc-

tion of “meaningful words starting from the term sea”. The working atmosphere

among students was positive and collaborative and the teacher had the role of an

observer. In one of the groups, students wrote pertinent sentences instead of

compound words: calm sea, blue sea, etc. On the contrary, the teacher expected

terms like seaquake, sea storm, sea landing4. While moving around the groups, the

teacher (who decided not to help the students on the correct answers) did not notice

the difficulties of the students and did not intervene with relevant questions that

could have restarted the ‘devolution’ (in Brousseau’s sense). During the collective

discussion therefore, the teacher was obliged to give the correct answer, due to the

wrong intervention of the students. In this case, the relational dynamics were

positive, but the fact that the teacher did not foresee this kind of event did not

allow him/her to intervene in a relevant way with respect to the new knowledge to

be learnt.

The possibility to identify and distinguish didactic and pedagogic knowledge

concerning the teacher’s position is important. In this respect, the above example

shows how a classroom activity defined by the teacher as “well managed” (because

students have actively taken part in the working groups) could turn out to be not

consistent with the mathematical and didactic organization and therefore some-

times could also be ineffective for learning.

On the contrary, a suitable mathematical and didactic organization (based on an

a priori in-depth analysis of knowledge at stake) allows the teacher to better manage

his/her own pedagogic and didactic decisions. We define the first decisions as

general since they concern the pedagogic and psychological relationship regulating

4These examples are more pertinent in Italian since in this language these words are a single term

(maremoto, mareggiata, ammaraggio).
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the communication between teachers and students. The second kind of decisions is

defined as specific, because they are related to the mathematical and didactic

organization, therefore regulating the didactic relationship between teachers and

students.

Training Content and Methods

In the training experiences for in-service teachers that we have realized, the lack or

shortage of training on a specific area of mathematics content often remains latent.

Teachers highlight the need for training in specific mathematics content only if that

content was not part of the initial education5. In this sense, the case of ICT

introduction is emblematic. When studying these aspects, Assude and Loisy

(2008) distinguish between the technical, didactic and pedagogic nature of

teachers’ competences. This is in accord with our distinction and separation

between the knowledge concerning the personal relationship of a teacher with a

student (pedagogic nature of the teacher’s competences) and the knowledge

concerning the didactic relationship. This didactic relationship is generated and

structured by a specific discipline. The teacher’s technical competence has to be

considered if the objective of teacher training is the use of ICT.

With reference to the identification of the teacher’s knowledge in this field,

Ruthven (2014) examines the three following frameworks for analysing relevant

expertise on the part of the teacher, and explores commonalities, complementarities

and contrasts between them: the Technological, Pedagogical and Content Knowl-

edge (TPACK – see Fig. 1), the Instrumental Orchestration and the Structuring

Features of Classroom Practice. In particular, Ruthven (2014), referring to TPACK,

asserts that:

These problems [that arise in the course of teaching a particular topic] raise considerations

both of content and pedagogy, and solutions to them are typically not reducible to the logic

of either knowledge domain alone. Moreover, while solutions to such teaching problems

may become crystallised as stable professional knowledge, they may equally be subject to

continuing adaptation and refinement, and they will vary between teachers and across

teaching settings. Finally, for reasons both of ecological adaptation and cognitive economy,

such knowledge is typically organised around prototypical teaching situations. For these

reasons, the subsequent development of this line of work has been criticised for an

unproductive focus on a logical demarcation of types of teacher knowledge rather than

on its functional organization. (p. 374)

In our study, we focus our attention on the teacher’s knowledge concerning the

different functional organisations of the teaching/learning process. To this purpose,

we have used and adapted the results by Comiti et al. (1995), which proposed a

classification of the teacher’s knowledge in connection to the different levels of

5In the group G1 of teachers under training who worked with us, the same phenomenon appeared

in the case of training on astronomy contents, which were not part of their background.
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didactic situations. The model was analysed in a case study on networking of

theories by Artigue et al. (2014). We recall this model since it describes and allows

predicting the teacher’s knowledge in the different phases of his/her work inside

and outside the classroom.

In the following table (see Fig. 2) by Comiti et al. (1995), by Pi we indicate the

teacher’s position with reference to the different didactic situations Si, while by Mi

we mean the conditions referring to the learning environment concerning the

“knowledge” which is the teaching/learning object6.

The model developed by Comiti et al. (1995), reused by Lai and Polo (2002),

Artigue et al. (2002), and then modified by Margolinas (2004) allows us to describe

Fig. 1 Diagram metaphor

for the TPACK model as

shown at http://tpack.org

M3 P3 S3

M2 P2 S2

M1 P1 S1

M0 P0 S0

M-1 P-1 S-1

Fig. 2 Different levels of

didactic situations

6Knowing concerning students in Ei position completes the model, presented by Comiti

et al. (1995).
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and interpret didactic practices in terms of student’s intervention (or non-interven-

tion) resonance with the teacher’s project (which is what the teacher established as
his/her teaching objective with reference to a specific knowledge).

By resonance we mean the student’s intervention that the teacher gathers and

recalls totally, or that he/she gathers and recalls only partially or that he/she does

not gather at all.

In the classroom activity (levels S0 and S�1), the teacher’s project meets the

“student’s project” or clashes with it. By student’s project we mean the set of

behaviours that students implement according to the compliance/non-compliance

of a specific activity with their expectations in that specific moment of the class-

room life.

Creating a model in terms of teacher’s knowledge, as follows, highlights the

different levels of knowing that are simultaneously present in planning and man-

aging the didactic activities in the classroom. The different levels alternate with

each other as in a circular sequence and in different forms according to the teacher’s
reflection on practice. We indicate by Ki the knowing of the teacher in Pi position

and concerning the corresponding Si situation.

At Level of Noosphere7 (S3)

K3: This is a kind of knowing that implies a teaching project (for example:

knowledge, beliefs, representations of a discipline, of the learning and teaching

processes, etc.). This knowing concerns the general choices and the explanation for

these choices according to the lesson sequence that was elaborated or has to be

elaborated for a certain subject.

At Level of Activities or Sequence of Activities Construction (S2)

K2: This is a kind of knowledge concerning the teaching/learning situation on a

specific subject, classified in a sequence and related to past or present situations of

that subject teaching in a definite class or school specialization.

At Planning Level of Activities Management Prevision (S1)

K1: The teacher is in a position where he/she takes decisions (providing or not

providing a certain definition, an example, an answer, asking or not asking a

7The term noosphere is used here in the sense of Chevallard (1985). In this context it indicates,

more precisely, a teacher’s certainties on a cultural, epistemological and institutional level

on a certain mathematics subject.
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question, etc.) on which to lay the foundations of the institutionalization process of

certain knowledge.

K1 knowledge is a kind of global knowledge concerning common knowing and

difficulties of students in a particular class, in a specific period of the school year

related to a specific subject or to other subjects connected to it. It concerns the

prevision of possible modes of activities’ fulfilment and the different variables that

can influence this process, the evaluation of their role and the effects that they can

have on the learning progression as well as on the following activities to be

carried out.

At Level of Activities Realization and Management (S0)

This level and the following correspond to the phases of work or reflection for

students.

K0 knowing concerns the interpretation and/or representation of students’ diffi-
culties and of their causes or of their raw answers, concerning the knowledge at

stake in the activity.

At Level of A-didactic Situations8 (S�1)

In the a-didactic situation, position P�1 does not correspond to “teacher’s silence or
absence”, but to a suspension of the conclusion for what concerns the knowledge to

be learned. A teacher’s knowing allows him/her to intervene or not with reference

to other knowledge involved in a given activity that, compared to this kind of

knowledge, does not have the character of a-didactic situation. Not all activities and

phases of a didactic course on a given subject have the character of a-didactic

situation with reference to the knowledge at stake. K�1 knowing concerns: inter-

pretation of (and decision making on) specific questions students may ask and the

related answers concerning the knowledge which is object of the activities (or other

kinds of knowledge) but also interpretation of the possible causes of students’

behaviours; mastery of the decisions taken, the questions asked and the answers

given during the activities of the whole didactic course. This level concerns the

micro-decisions taken on the ground, in a conscious or less conscious way during

the class activities, but also the following consideration of the activities’ results.
This non-hierarchical kind of knowledge that focuses on a specific knowing,

operates at different levels and moments in the teaching/learning process. During

our experience of in-service teacher training, we have tried to develop the different

kinds of knowledge by means of different didactic organizations of this training. In

the different didactic organisations we have developed, over time, teachers’ K1

knowledge concerning S1 to S3 levels.

8In Brousseau’s sense.
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As to the methodology used by trainers during our training activities, we have

mainly implemented the accompanying method (Assude and Grugeon 2003). In

other words, we have planned and tested some classroom activities during which

the trainer was an active support in some phases of the work with pupils (levels S0
and S1). In some cases, in the different contexts of training (in particular with

teachers who were already expert experimenters) we have applied the method that

recalls the characteristics of action research. In this case we have worked with

teachers in reflecting on and analysing the activities chosen and proposed by the

trainer. In the case of more long term training devices we have worked at the

construction of activities and, in particular, at the a priori analysis of the possible

classroom implementations and we reflected on the results of the implemented

activities (in this case we had involved all levels from S3 to S1).

Case Study: In-service Training

Teachers’ in-service training in Italy has recently been managed at an institutional

level by an agency (INDIRE9) that implemented distance training projects managed

at regional level through activities carried out in person or on an interactive

platform, synchronous or deferred. For mathematics, the national project of

in-service training (m@t.abel) for teachers of primary and secondary school –

mainly from the sixth to the tenth year of school – works in this direction. At

present, INDIRE, as a support for the reform realization, makes available for

teachers resources and documents10 that are the result of important inter-institu-

tional work that has transposed for training some results of research in Mathematics

Didactics. The training system is managed at the local level by the Regional School

Office (USR), which is a regional ministerial institution. As the USR proposed, for

the m@t.abel project teachers were trained at the national level and then have

afterwards taken on the role of tutors. Each tutor manages a network of schools

where teachers give their support voluntarily to study all available documents, since

they are precious resources and drafts for experimental activities to be implemented

in the classroom during the school year.

Thanks to the experience of tutors and teachers taking part in these professional

development activities we could observe a certain level of criticality in the imple-

mentation of these kinds of activities, both nationally and locally. Teachers mainly

highlight the difficulties to manage the interactions between activities in presence

and at distance, but also the lack of institutional acknowledgment for teachers

contributing as participants. This limits the large-scale diffusion of this training

experience among mathematics teachers.

9http://www.indire.it/
10http://risorsedocentipon.indire.it/offerta_formativa/f/index.php?action¼home&area_t¼f&

d_ambiente¼7
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Since 2006, the m@t.abel project, both in its methodology and its content, is

well in line with the latest themes stressed by the current educational research in the

international framework. M@t.abel puts into practice, in the territory, the creation

and, possibly, the consolidation of several communities of practice introduced by

Lave and Wenger (1998). Since 2009, the project provided for a systemic monitor-

ing by INDIRE (A. A. 2009b). In 2012, the m@t.abel project was integrated in the

PON training projects for teachers. These projects were part of the activities

organized by the National Operational Program 2007–2013, which aimed at train-

ing in-service teachers in primary and secondary school. Actions concerned com-

petence updates with reference to Italian language, Mathematics, Foreign

Languages and Science didactics. As specified in the guidelines11 English version:

(. . .) the m@t.abel PON project broadens and intensifies the training in the “national” m@t.

abel, and it follows that the training system is similar (. . .). It should be specified, however,
that the training is structured over a wider time span that covers most of the school year

(October-May); consequently the Technical-scientific Committee has developed a more

detailed script of [various phases] the course.

1. Initial in-person training

• the training starts with a 4 h in-person meeting in which the training,

objectives, conceptual nodes and methodology are presented;

• 6 in-person meetings in which the didactic paths are analyzed and the course

members choose four activities, one for each thematic Nucleus, to experiment

in the classroom with the students;

• the last in-person meeting, 4 h long, provides a general reflection on the

training and in-class experimentation.

2. Online training

• analysis of materials;

• participation in online activities arranged by the Tutor (e.g. synchronous

laboratories);

• independent activities.

3. In-class experimentation

(. . .)
4. Independent study

• thinking about and analyzing the training;

• writing a logbook entry for each activity experimented.

(. . .) The project is deeply marked by the use of technologies, both in terms of

teaching in the classroom and virtual teaching. (pp. 14–43)

11http://mediarepository.indire.it/iko/uploads/allegati/M7PWITOE.pdf (A.A. 2012)
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In this project teachers have to describe, in logbooks, the main conceptual points

of the activity, its phases and the implemented methodology, the reactions and

difficulties of students, their reflections on the trends and the final evaluation both of

students and the activity. The results of logbooks analysis (that is the direct opinion

of trained teachers) has shown that the impact on common practices of innovation

and change does not reach 40%:

In about one fourth of logbooks (25.29%) teachers declare they have modified their didactic

planning and behaviour towards the discipline with regards to the working unit carried out

in the classroom. This does not happen for 26.56% of the experimented didactic units in

which a significant impact on the usual teaching practice is not observed. In about half of

the logbooks (48,15%), on the contrary, teachers‘ answers were evaluated – in a codifica-

tion phase – as non-defined since they were missing (9.45%) or not clearly definable since:

– they underline the strengthening of teaching methodologies usually implemented and

this does not represent, therefore, a significant change due to the experimented activities

(13,28%)

– they underline the usefulness that the proposed working unit has for students but they do

not explain the didactic planning implemented (25.42%). (A. A. 2010, p. 36)

The PON 2007–2013 Monitoring Report12 is based on dimensions structured in

fields and related criteria (of Adequacy – Effectiveness – Efficiency – Satisfaction –

Accessibility). We quote, for illustrative purpose, those related to ICT but we refer

to the original document for the details of results.

STRUCTURE AND EFFECTIVENESS OF THE TRAINING

– Effectiveness of the blended model

– Effectiveness of the single phases and usefulness of the instruments according to

the reflection capacity of the trained teacher

– Usefulness of the training materials (for the teacher) and of the didactic materials

(for students)

– (. . .)
– Composition of the virtual classrooms (. . .)

ENVIRONMENT FOR DIGITAL COLLABORATION

– Participation in the online activities

– Use regularity, usefulness, instruments usability

– Possible difficulties

We summarise here after the Monitoring Report results concerning the above

mentioned dimensions:

(. . .) the alternation between in-presence and at distance didactics met the needs

of the majority of the subjects interviewed since, according to 56.7% of them, the

time articulation of the two macro-phases of the training was adequate. (. . .)
Experimentation in the classroom is (. . .) the aspect that better motivated trainees.

12http://formazionedocentipon.indire.it/wp-content/uploads/2014/12/GDA_R1-Report-INDIRE-

rev.-10.07.2014_lm_def.pdf.
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Among the seven instrumental supports provided in the platform (Calendar and

News, Forum, written Chat, materials sharing, synchronous Laboratory, Blog/Wiki,

email to the working group) the best used are “Calendar and News” (39.2% of

people interviewed assert they have always used them) and the area of materials

sharing. (. . .) On the contrary, a negative result is registered by the blog/wiki:

41.8% of interviewed people state they have never used it, while 18.8% of the

subjects declare they have used it rarely. According to 85.4% of trainees (. . .), the
most useful instrument in the online platform is the area of materials sharing.

In relation to the informatics technologies approach, finally, we can add that

from the monitoring data we can deduce the existence of a rather diffused tendency

to use the traditional means of communication through the computer: e-mails,

messages in the forum, file exchanges are basic operations useful to improve

interpersonal communication, making it faster. (. . .) Although we can talk about

inclination to collaboration and exchange, a school where concepts like user

generated content, collective intelligence and distributed knowledge seems to be

still far away. (Free translation pp. 14–68)

In the current national panorama of in-service teachers, PON is the only initia-

tive of the Ministry. Other opportunities for training of teachers of mathematics and

other disciplines13 can be achieved also as an initiative of a single school or of a

network of schools, teachers’ associations or other institutions but they have an

episodic and local character.

The Contexts of the Case Study on In-service Training

To try to identify general and specific characteristics of teachers’ professional

training, in our survey we have compared two groups of teachers:

G1 teachers from primary school to the second year of college voluntarily

occupied in training activities, carried out in presence and aiming at

innovating the mathematics official curriculum;

G2 teachers from primary school to the second year of college occupied in

activities of institutional training often imposed at collegial level and

managed in presence and/or at distance on the interactive platform.

The first group is composed of 56 teachers from primary school, among which

34 are occupied in a 4-day course without classroom experimentation activities.

The activities concerned innovative courses making use of software such as

GeoGebra. The other teachers participated in a training course with monthly

meetings and carried out experimental work in the classroom during the school

years from 2010 to 2012.

13http://www.indire.it/progetto/formazione-disciplinare-docenti-pon/
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The second group is composed of about 90 teachers, 10 of whom were occupied

in e-learning activities on the platform. The activity was carried out in 4 meetings in

the school year 2008/2009. In the years 2010/2012, to support the four meetings, we

have experimented with an interaction on the platform and the classroom work

monitoring. Also in this group are ICT instruments that are sometimes part of the

didactic organisation of experimental activities and have had interdisciplinary

character. In these cases, the mathematics teacher has interacted with the IT

teacher.

In the experiences with both groups, teachers were involved in an individual or

group work aiming at the construction, analysis, experimentation of and reflection

on at least one activity implemented in the classroom. The results that we describe

in the following paragraph are based on the analysis of memorandums from the

training meetings, interviews and end-of-course questionnaires.

An Experience of Integration Activity in Usual Practice

This training course had the objective to establish a practice community able to

interact also in the platform: this objective, however, was not realized. As in the

case of some results of the PON projects, if there is no need, teachers prefer

experience exchanges and in-presence discussions. The platform was used as

repository and documents exchange. Communication, including at the organization

level, was carried out by e-mail through a mailing list managed by the project

supervisor. During the two years of training, two initiatives of trained teachers

turned out to be very important: they aimed at inserting experimental activities into

their usual practice.

In the first initiative, coordinated by the teacher who was the representative for

promotion of the Institute and for Orientation/re-Orientation, the school introduc-

tion to pupils of the previous level was organized by means of permanent labora-

tories where students (as peer tutors) have taken part directly involving students of

the secondary school.

The second initiative was significant for the inter-disciplinary character by

means of IT14: the activity started from one of the queries on triangle construction

with manipulable materials used in experimental activities (its objective is discov-

ering the triangular irregularity). The students have created an Excel file that was,

afterwards, perfected to be used by a generic user as a didactic game during an

educational event. The students themselves managed the exhibit inviting visitors to

play with the game they had realized (Fig. 3).

14I thank G. Deiana, M.G. Sciabica, I. Arthemalle (who have developed the activities) and teacher

S. Deplano (trainer during the Course).
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An Experience with the Teachers from Primary School

We will report here a synthesis of the in-presence development activities on inter-

disciplinary paths on mathematics-astronomy realized with a group of teachers

from primary school. This experience was realized with five teachers during two

school years and under the scientific responsibility and project management of

S. Lai, in the scope of the CRSEM training and research activities. In this training,

the researcher/trainer worked with teachers by using a methodology of research-

action and accompaniment in the experimental phases with students (Lai and Polo

2012).

Teachers learned about both astronomy content, with an experimental approach,

and how to realize a priori analysis in the classroom. In the phases of a priori

analysis, achieved with the trainer and in collaboration with the other teachers

(or personally by each teacher for his/her own classroom), some guidelines were

used with reference to the different kinds of knowledge to be developed according

to the various aspects and tasks of conception, planning, prevision, management

and analysis of the experimental activity (respectively levels P3, P2, P0 and P�1 of

the model on the teacher’s position).
Some aspects of the training process are expressed by the experience of one of

the teachers of the first group15, who describes her experience and some work

phases as follows. In his/her report, this teacher clearly describes both the method-

ology and content of the training and, in particular, he/she highlights the importance

of the assigned task “from the teacher’s point of view”.

I took part in a training course on astronomy and mathematics for a fourth class of primary

school.

– from the teacher’s point of view, since he/she is involved both in the contents connected
to astronomy (with the need to propose ideas and show her knowing about the studied

and simulated phenomenon, with the trainer’s guide in the observation phases to be

implemented in the class) and in the didactical transposition of the knowledge (a-priori

analysis, activity preparation, management of the activity and reflection on the congru-

ence between previsions and effective implementation, analysis of the possible causes

of unexpected events, conscious or unconscious changes in the activities management in

comparison with the planning phase previsions).

Table 1 shows this teacher’s remarks in the planning phase (at levels P2 and P1)

of activities implemented with students. In this phase, the teacher explains his/her

own actions, the specific mathematic or astronomy knowledge at stake in the

didactic activity to be implemented, and the tasks and actions of the students at

level of the prevision, realization and management of the activities in the

classroom.

15I thank M. Alberti, who accepted to describe here training experience also personally during the

presentation of this work during the CIEAEM65. A synthesis of the activities realized in the third,

fourth and fifth classes of the primary school can be found on the CRSEM website.
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In the last phase of the course, training is structured in a reflection on the

activities implementation in the classroom compared to previsions and on a debate

with trainers who, according to the case, have managed or only observed the

experimental activities. This last training phase mainly focuses on the reflection

on unexpected events and on how the teacher faced them, on the level of con-

sciousness with which choices were made in the classroom.

Results Discussion

First Results of the Case Study on In-service Training

If we consider the different conditions of the two groups of teachers trained

(at distance/in presence and voluntary/institutional choice) there are not significant

differences concerning the opinions that teachers expressed in the questionnaire and

during the debates. The importance of homology and accompaniment training

strategies (Assude and Grugeon 2003), as well as the debates with colleagues and

trainers, are considered as strong points in the training experience. The lack of

recognition of the training course at institutional level, moreover, was highlighted

as a negative point of training in both groups of teachers.

The results confirm those expressed by the opinions of teachers involved in the

m@t.abel national project, as stated in the summary document of the Project (A. A.

2009a, b) and in the PON 2007�2013 Monitoring Report.

The lack of initial education on specific knowledge is often latent as it is a

training need for teachers: this need is not explained or expressed except as the

kinds of knowledge that are not formally requested in the university training

curriculum (like astronomy for teachers in primary school). Also the summary

document of the National Project confirms that this difficulty remains latent. This

document (A. A. 2009a) shows that teachers mainly chose experimental activities

Table 1 Length of the shadow in relation to the height of the Sun (Expected time: 2 h)

Teacher’s actions Knowledge at stake Actions / tasks of the student

The teacher proposes to measure

the shadow of a pupil at 9.00 am

and at 12.00pm on the same day.

In the classroom, he/she asks:

"Look at the marked shadows,

what can you see?"

Length of the shadows

(change).

Direction of the

shadows.

Students trace the cut-out over

and observe the different length

of the shadow at 9.00am and

12:00pm.

The teacher asks the pupils to

make assumptions on the different

length of the shadows at different

times:

"How is it that the child’s shadow
changes length according to the

time?" (work in pairs)

Length of the shadow

in relation to the height

of the sun

and to the horizon

(in astronomy: the plan

materialized by the

vertical plumb line).

Some students will say that the

shadow is shorter at 12.00 pm

because the sun is in a higher

position than at 9.00am.
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concerning “familiar” notions or knowledge and on which they have deeper

knowing.

In the time range of one school year, the majority of trained teachers � both in

the National Project m@a.abel and in the G2 group nearly all teachers in institu-

tional training - underline the fact that it is not possible or it is very difficult to add

experimental activities in the real curriculum. Therefore these activities are juxta-

posed to common lessons. In the case of teachers of G1 group on voluntary training,
a change was generated only after three or more training years and not for all

teachers. All teachers who took part in innovative experiences, in particular those

employing an inquiry-based learning, show that difficulties in time management of

these activities is one of the main reasons of change resistance. At the same time, a

nearly general consensus confirms the efficiency of this innovation, as we can

observe in the following experience of one of the teachers of the first group:

in my opinion... to discover the interest in constructing and manipulating objects with the

purpose of mastering and becoming aware of the mathematical conclusions involved not

only students but also teachers. And, moreover, the experience attracted also students who

appear not to be gifted for mathematics.

In our study we have analysed the changes in the teachers’ behaviours in the two
groups G1 and G2 with regards to the professional competence in planning activ-

ities, to the prevision of results but also to the concept of mathematics and of the

student’s role. The most significant differences depended on the voluntary or

non-voluntary character of training and on its time duration. In other words, in

our experience non-imposed participation in training and experimentation activities

as well as training duration (at least two school years) turned out to be the most

pertinent and efficient conditions or variables for change implementation and

professional development. In our sample of 56 teachers in group G1, only 12 of

them modified their usual practices. For all the others, including members of group

G2, the innovative practice turns out to be an interesting but occasional modifica-

tion of their usual working practice so far. In particular, training duration, which is

connected to the times and experimental modalities of the development practices,

would allow overcoming the natural resistance (Artigue 2012) to change of trained

teachers. These modalities would actually allow a significant change in the rela-

tionship teachers have with mathematics, learning and teaching.

Efficient Practices for Teachers’ Professional Development

Answering questions connected specifically or generally to mathematics teaching

in order to create efficient training practices also means having answers to questions

like the following: how can we translate in terms of teacher’s action – in particular

mathematics teachers (for example in terms of technique, technology or theory

according to the ATD, Chevallard 1999) – the role of reflective teacher and

learning facilitator that some pedagogical studies propose? What would be specific

The Professional Development of Mathematics Teachers 513



about mathematics teaching, or language teaching, to be a reflective teacher and

learning facilitator?

At present, there is no general consensus about which could be the training

practices that better fit purposes like these or similar others. Arzarello at al. (2014),

whose main subject was the research on training, defined in terms of ADT

(Chevallard 1999) a teachers training model, Here is an extract of the authors’
position:

The complexity arising from the intertwining of the processes involved during a teacher

education program has led us to introduce a descriptive and interpretative model, which

considers some of the main variables in teacher education (the community of teachers, the

researchers, the role of the institutions), and accounts for their mutual relationships and

evolution over time. We call the overall resulting process Meta-didactical Transposition.
We offer the model as a tool for studying the complexity of teacher education as a research

problem that involves a transposition from the practice of research to that of teaching. the

model’s potential with respect to current research in the field. [. . .] Meta-didactical Trans-

position consists of a dynamic process through which, thanks to the dialectical interactions

between two communities, both the didactic praxeologies of the community of researchers

and of the teachers’ community change within the institutional environment in which the

two communities reside. This dialectical interaction leads to the development of a shared

praxeology, which represents the core of our model. One of the main results of the

dialectical interaction is the teachers’ development of both a new awareness (on the cultural

level) and new competences (on the methodological-didactical level, i.e. that of teaching

practice), (...). Therefore, the term “meta-didactical” refers to the fact that important issues

related to the didactical transposition of knowledge are faced at a meta-level. [. . .]
(Arzarello et al. 2014, pp. 348�355).

The results by Arzarello refer in their work to in-service teachers. But also the

ALACT model, that derives from initial teacher training, underlines the importance

of the teacher’s awareness and the need for reflection in this respect. The ALACT

model shows on which contents reflection can focus: Environment, Behaviour,

Competence, Convictions, Professional Identity, and Mission; and the conclusions

of these authors are as follows:

Recent studies in positive psychology support the beneficial effects of the view of human

growth underlying the core reflection approach. (. . .) ultimately teachers can learn to

activate the process of core reflection during their teaching, and in this way to make contact

with the core qualities which are of importance at that particular moment.

Good teaching, in our view, is characterized by a proper balance between the various levels

(. . .). Finally, directing attention to core reflection during their professional preparation can
help prospective teachers to become more aware of the core qualities of their pupils, so that

they will be better able to guide these children in their learning, and help them mobilize

their core qualities, in school and in their future lives. (Korthagen and Vasalos 2005,

pp. 67�68)

The two studies analysed express from different points of view their own

description of appropriate professional development but it is not clear if and how

this could or should have a specific character for the professional development of

mathematics teachers. The question concerning generality/specificity of teachers’
training remains an open issue, the answer to which the studies and theoretical
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references considered here certainly do not represent a complete overview of

existing studies. But for the moment, our study has come to the same conclusions.

We have elaborated and implemented a descriptive model of the teacher’s position
that lays the foundations for the construction of training courses but which appears

unable to identify the specificity in mathematics teaching.

In our research we have used and modified a model introduced in Comiti et al.

(1995) by transposing the different kinds of knowledge that characterize the

teacher’s position in content, instruments and support of the experimental training

practices.

We have worked to develop the different kinds of knowledge related to five

different conditions of the teacher’s position, that we have transposed into tasks

assigned to teachers during training meetings, synthetically summarized below.

Trained teachers received from their trainers (or prepared by themselves) the

planning of the activities to be implemented according to some guidelines that

involved tasks from P3 to P1 before classroom implementation. During the activity

implementation in the classroom (positions P0 and P�1) the teacher and the trainer

also had observation functions. After the activity implementation, during a reflec-

tive discussion between teachers and their trainers (P�2), they analysed the events

which occurred in the classroom comparing them with the a priori forecasts

(position P1). For each position we sum up the guidelines that describe the task

that was assigned to teachers during their training.

Position P3. Epistemological Aspects of S16 Knowledge Transposition

Importance of S knowledge in mathematics and in its relations with other disci-

plines. Analysis/study of historical aspects of S knowledge development. Analysis/

study of S knowledge positioning in the school programs. Analysis/study/position-

ing of S knowledge in the teacher’s yearly (or cyclical) program. Definition of the

educational objectives or of the general didactic objectives.

Position P2. Didactic Course Planning

Objective of the course (organization of units or modules divided into several

lessons and/or activities). To characterize the type of situation with reference to

(at least) one S knowledge, by using different categories: Approach to S (phase/s of

devolution of S knowledge – phase/s of conclusion with respect to S), Institution-

alization of S, Support/Recovery, Examination/Evaluation of S.

To describe the scenario of planned activities: teacher’s tasks with respect to

S and to other Si concerning the same scenario (situation conditions-variables).

Analysis of answers and possible strategies. Student’s tasks with respect to S and

16S stands for a given knowledge.
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other Si pertinent to the scenario. Questions/answers by student expected/unex-

pected by teacher with respect to the planned scenario.

Position P1. Prevision of the course implementation (with reference to the

scenario of one or more lessons/activities described in details at point P2). To

establish how the teacher intervenes/does not intervenes on the base of expected/

unexpected answers: teacher’s behaviours (with reference to his/her own project) in
the interaction with students’ answers.

Position P0. Course implementation in the classroom (with reference to the

scenario of one or more lessons/activities described in details at point P2). Imple-

mentation of the practices to control the activities management – course imple-

mentation monitoring. To manage during the activities implementation or to

analyse the “resonance” of the student’s intervention with respect to the teacher’s
previsions.

Position P�1. A-didactic Situation with Respect to at Least One S

Knowledge and to Decision Making or Ongoing Reflections

We considered position P�1 as Comiti et al. (1995) did in the original model: �1
indicates the a-didactic situation in the sense shown by Brousseau (1986). More-

over we prefer this denotation (and not P4, for example) because in position P�1

there can be an implicit and unconscious level both for the teacher and the student.

The model can be graphically represented as in the following pentagonal shape

(see Fig. 4) to explain how these positions do not have a hierarchic or sequential

character but an essentially systemic-relational character.

At the end of our work we would like to talk about the possibility to recall from

the model by Comiti et al. (1995) also a level that characterizes P�2 position and

according to which the pattern would take the following hexagonal shape (Fig. 5),

where we indicated the mutual possible relations between the different Pi positions

as considered theoretically existing.

P�2 position is typical of a reflective teacher in different phases from the practice

on-going in the classroom or from activities planning. This level describes the

teacher’s position, situation and knowledge concerning the a-posteriori reflection

on the implemented activity or on a past experience.

P3

P1

P2P-1

P0

Fig. 4 Model 1 of

teacher’s position
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We have tried to summarize in this model the specific features of the knowledge

and decision making practices that characterize the mathematics teacher’s position
from the point of view of Mathematics Didactics in terms of Systemic Theory.

Differently from what we could expect, if we exclude the specific character of

“mathematics” knowledge, none of the positions seems characteristic of mathemat-

ics teaching but rather general. The issue concerning generality/specificity of

teachers’ training remains an open issue, to answer to which the studies and

theoretical references considered here certainly do not represent a complete over-

view. But for the moment, our study has come to the same conclusions. Compar-

ative studies to observe the two dynamics of interaction between Teacher – Student
– Environment are needed: the didactic-relational one, in which knowledge is

involved, and the pedagogic-relational one, which identifies and interprets

(if they exist) the specific decision making practices of mathematics teaching and

analyses of if and how these interpretations agree with studies in other scopes of

research.

To show this need to distinguish between didactic knowledge and relational-

pedagogic knowledge for teaching we used and adapted the model by Ball et al.

(2008) (Fig. 6). In the central column we inserted the teacher’s knowledge which
is specific to the didactic relationship, defining it as DCK. In this scope we

consider KCS and KCT, that Ball’s model included in the field of PDK. The

three columns could be integrated with the model used by Ruthven (2014) (see

Fig. 1) of Technological, Pedagogical and Content Knowledge (TPACK) when

using Technology in Mathematics Education. We also inserted KDTC, which is

the knowledge referred to the process of didactic transposition and that charac-

terizes Pi teacher-position and according to which the pattern would take the

hexagonal shape (see Fig. 5).

We are planning to carry out a new research in the future to better define, in

relation to the different contexts and to the accompaniment period in the experi-

mental phase, the specific character of mathematics teacher training, compared to

the more general aspects of professional training of teachers of any subject. A

comparison between training contexts for teachers of any subject is therefore

needed.

P2 P1

P0

P-1P-2

P3

Fig. 5 Model 2 of

teacher’s position
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Conclusions

If we accept that competence, which is object of both pre-service and in-service

training for teachers, cannot be reduced to a juxtaposition of knowledge in peda-

gogy and psychology with knowledge in a specific discipline, this means that

specific knowledge and competence for mathematics teacher training still need to

be studied and this requires a comparative study of different research sectors.

As far as the connections between pre-service and in-service training are

concerned, in the CIEAEM65 work group, participants agreed on the need to

overcome the episodic nature of in-service training not only at local but also at

national and transnational levels. The group also underlined the need to have an

institutional integration between pre-service and in-service training for teachers:

this integration, indeed, is not accomplished in any of the countries of teachers

participating in the work group.

We finally want to add an element to the practices established in all countries for

pre-service training: the presence or absence of a final evaluation of the trained

subject. This is actually not specific to mathematics teacher training but, in our

opinion, it is a fundamental variable to identify and better understand general

content and practices for teacher training. In the case of pre-service training, indeed,

at institutional level an evaluation is established: a teacher is not only a trainer or

tutor but has the institutional task to define the success or not of the trained subject;

this fundamental variable gives a character of didactic system to the actors

involved, who meet all the characteristics of the Teacher-Student position. In the

second case of in-service teachers, normally, the trainer does not evaluate the

trainee: the evaluation of the training course is organized differently and this deeply

changes the nature of the on-going didactic system. This particular variable

Fig. 6 Adaptation of the model by Ball et al. (2008)
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reinforces the need for an efficient shaping of the teacher’s position in relation to

the possible characters of generality and specificity induced by teaching one

discipline rather than another.

At present we observe a lack of integration of the different theoretical models

used to describe the teacher’s position and obtained as a result of the research in

Mathematics Didactics. Moreover, we also observe a lack of theoretical interaction

between the field of Mathematics and those of general Didactics, Pedagogy and

Psychology. In our opinion, these deficiencies compromise the possibility (but also

the need and relevance) of a definition of the generic and specific characters of

knowledge and competences that are useful to define an efficient and up-to-date

professional development for teachers.
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Mathématique. Grenoble: La Pensée Sauvage.
Lai, S., & Polo, M. (2012). Construction d’une culture scientifique pour tous: Engagement de
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Integration of Digital Technologies

in Mathematics Teacher Education: The

Reconstruction Process of Previous

Trigonometrical Knowledge

Nielce Meneguelo Lobo da Costa, Maria Elisa Esteves Lopes Galv~ao,
and Maria Elisabette Brisola Brito Prado

Abstract This chapter presents an analysis of two case studies of use of technology

in prospective and inservice teachers’ education. Both cases derive from researches

supervised by the authors. The purpose of this chapter is both to discuss and analyze

the process of teachers’ education focused on the integration of technological

resources, and to understand how the reconstruction of previous trigonometric

concepts occurs within groups of teachers. In addition, Mishra and Khoeler on

the integrative perspective of the Technological Pedagogical Content Knowledge

(TPACK) together with the Rabardel instrumentation theory and Imbernón’s
researches on teachers’ education set the theoretical framework. Data were col-

lected through questionnaires, digital files, and audio and video recordings. The

interpretative analysis pointed out some circumstances that emphasized the recon-

struction of previous professional knowledge and highlighted the differences,

similarities, challenges and opportunities related to initial and continued education.

Keywords Technological resources • Periodic functions • Dynamic geometric

software • TPACK

Introduction

The debate on the use of digital technology within the context of education together

with the urgency for promoting changes in Mathematics teaching has been a

recurring talk in our country. We understand that in this process of changes, the

teacher plays an essential role. However, what draws to our attention is the

complexity of concerns involving the process of teachers’ education in a way to

support them in promoting such changes. Presently, to integrate any innovation

resulting from the advancement in Science and Technology to school practices is a
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great challenge to teachers’ education, both in the initial as well as in the continuing
education.

Most universities in Brazil have simplified their Mathematics curricula for

undergraduate courses. Furthermore, some surveys e.g. Almeida and Valente

(2011), Maltempi (2008), Prado and Lobo da Costa (2015), have found that the

outcome of such initial education only qualifies a teacher to just reproduce Math-

ematics teachings aimed at procedures and techniques for solving mathematics

exercises. The teacher, while in his/her initial education, has few opportunities to

gather knowledge on the pedagogical use of information technology. Even if the

prospective teacher is someone included in the digital culture, to know how to use

such technology is not enough to sufficiently integrate it into teaching practices.

This context has impaired the development of both content knowledge and Math-

ematics teaching. Such fact directly impacts on the teacher’s practice, jeopardizing
the quality of Mathematics teaching at Basic Education level.

Brazilian Government programs such as the “Institutional Scholarship for

Teaching Initiation Program – PIBID”,1 the “Degree Consolidation Program –

PRODOCENCIA,2 the “Observatory of Education – OBEDUC3 aim at supporting

preservice and inservice teachers. Other initiatives developed by either public or

private school systems also offer continuing education programs both to address the

shortcomings of initial training and to promote broadening and deepening Basic

Education teachers’ knowledge. Continuing education, according to Imbernón

(2009, 2010), may enable life-long learning, so essential to Education profes-

sionals. This education process should take into account the characteristics of the

technological society as well as Science advancements, which will demand from

any and every professional their engagement in permanent learning.

The teacher education faces new challenges posed by digital technologies within

the school context. Within the scope of initial education, the pedagogic use of

digital technologies is still limited where Mathematics is concerned; in general,

such component appears more often in specific technology courses. For inservice

teachers, the groundwork for the actual practical use of technological resources has

been gained through continuing education. Projects4 for implementing the use of

computers, laptops and tablets in Basic Level Schools have been developed and

extended in partnership with researchers from various universities around the

country. Alongside with the implementation process, continuing education pro-

grams were launched with the intent of integrating information technology to

school practices. Thus, continuing education for the pedagogic use of digital

technology has also become a matter of research. Some methodological innovations

in the educator’s practice with the use of technology resources were noticed.

1More details on http://www.capes.gov.br/educacao-basica/capespibid
2More details on: http://www.capes.gov.br/educacao-basica/prodocencia
3More details on http://www.capes.gov.br/educacao-basica/observatorio-da-educacao
4Projects such as: EDUCOM, PRONINFE, PROINFO INTEGRADO, UCA, PROUCA, Educaç~ao
Digital.
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However, these occur at random and most of the times detached from curricular

contents. Research such as Prado and Valente (2003) reveal that the reconstruction

of practices promoted by continuing education is a complex task. The difficulty is

mainly associated with the integration of the use of resources into the specific

contents of each field of knowledge. In addition to learning how to operate the

technology, the teacher has to understand the pedagogic implications of teaching

and learning by way of a new format. To that, the educator will have to renew

his/her knowledge reasoning and representation.

Concerning the Mathematics educator, the use of a variety of digital technology

resources is the subject of debate in many continuing education programs that

explore specific education software such as: Cabri géomètre, Winplot, Geogebra,

and others. However, the process for appropriating the pedagogic use of specific

software focused on Mathematics teaching and learning requires the reconstruction

of previous integrated knowledge, under the TPACK perspective advocated by

Mishra and Koehler (2006) and by Koehler and Mishra (2009).

Focusing on the integration of digital technology into the teaching and learning

processes, this chapter analyses two researches (Master’s and Doctoral’s Degrees)
supervised by the Authors. The first approaches the prospective teacher education

and the latter the continuing education integrated to the Education Observatory

Program (Programa Observatório da Educaç~ao).5 Both deal with trigonometric

functions and explore aspects and resources from dynamic geometry software

(GDS). Miashiro (2013) works in the context of prospective mathematics teachers’
education, and Poloni (2015) in a continuing education project. In addition, they

present situations favoring the instrumental genesis, as understood by Rabardel

(1995), and development of TPACK as understood by Mishra and Koehler (2006).

The two episodes consider the use of technology under an integrating perspective of

knowledge in order to understand how the reconstruction of previously understood

trigonometrical concepts occurs both in preservice and continuous teachers’
education.

Theoretical Foundation

The evolution of digital technology has instigated researchers from different fields

of knowledge to realize its potential regarding the processes of teaching and

learning. This understanding is critical to guide teachers’ education proposals,

since discoveries in several studies show the teacher’s difficulty in making peda-

gogical use of computing resources integrated into curricula (Almeida and Valente

2011; Bittar 2010; Borba and Penteado 2001; Prado 2005). Said difficulty can be

5This funding Program is an initiative of the Brazilian Government which purpose is to improve

the teaching and learning processes in public schools around the country, and is developed in

partnership with certain universities.
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understood by taking into consideration that both future and acting teachers’
references from pedagogical practices have been built without the presence of

digital technologies in their trajectory of training and/or professional experience.

On the other hand, the pedagogical use of digital technology demands different

skills that are necessary for the mathematics teacher to “reason with”, “to create”

and “to teach with” technology. Teach, not just place it in the classroom, but

integrating it properly and exploring what it brings to Mathematics teaching and

learning (Lobo da Costa and Prado 2015).

The digital technology usage for teaching Mathematics must provide the student

with skills on how to build concepts and to that it is necessary to give him/her

conditions to formulate hypotheses, test and externalize conjectures that support the

structure of thinking, the resolution of problems and the understanding of concepts.

The provision of this kind of support takes for grant the teacher knowledge of the

specific characteristics of each selected digital technology, whether software,

simulators, learning objects, programming languages, and others that need to be

linked to a particular field of Mathematics. For a mathematics teacher there is

certainly a need to know, for each field of Mathematics, the possibilities and

limitations of any available educational software. To explore the educational

potential of a computer software it is necessary to know its structure in order to

create activities and develop teaching strategies that can lead the student to expe-

rience founding ideas of Mathematics and rich situations for learning. These are

situations that favor the construction of knowledge by the student.

Therefore, to practice basic mathematics education by integrating digital tech-

nologies into the curriculum it is necessary for the teacher to build a new type of

knowledge generated by the integration of three different subject areas: mathemat-

ics, technological and pedagogical, as we find in Mishra and Koehler (2006) and by

Koehler and Mishra (2009) model of the TPACK.

The TPACK (Technological Pedagogical Content Knowledge) includes the

teacher understanding of how to represent concepts using technologies; pedagog-

ically address the use of technological resources to teach, and constructively

promote the student learning on the curricular concepts – in this case, Mathematics

concepts. It is such integration of technological, pedagogical and content knowl-

edge that enables the use of digital technology as a new form of representation of

thinking.

In Fig. 1, the Technological Content Knowledge (TCK) refers to the interplay

meaning between technology and content, the actual mathematical content at

matter. Technology, even though having limited types of representations, intro-

duces new possibilities of varied performances, as well as greater conversion

flexibility between them. Therefore, it is necessary that teachers know how to

explore different possibilities of representing certain mathematical concepts by

means of technological resources. The Technological Pedagogical Knowledge

(TPK) refers to the knowledge over the pedagogical implications involving the

teaching and learning education process by means of technology. The Pedagogical

Content Knowledge (PCK) refers to the knowledge over the strategies that might be

more appropriate for teaching and promoting students’ understanding of the
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content. It is by the intersection of these three domains that the TPACK knowledge

is originated. It is the knowledge that needs to be built and mobilized by the teacher

to teach Mathematics by means of technology.

Researches indicate that knowledge building goes through processes of appro-

priation. Rabardel (1995) proposes the instrumentation theory, which translates the

idea that a computer artifact becomes an instrument to an individual through the

instrumentalization and instrumentation processes. To the author, an artifact is

understood as any item, either material or symbolic, effected for a firm purpose.

A device changes into an instrument for an individual insofar it is used and

manipulated by this individual during his/her activities.

The process of building an instrument from the individual’s actions over the

artifact is progressive. When starting to use the artifact, the person builds his/her

own schemes of usage and, from that his/her own mental schemes start to enhance.

Therefore, an instrument includes the artifact enhanced by the schemes of usage

developed by the individual. This progressive over-time process of activity by

which the artifact is transformed into an instrument for the individual own use

and for a determined purpose, is called Instrumental Genesis.

The instrumentalization and the instrumentation are two dimensions that

co-participate in the instrumental genesis process. The instrumentalization process

refers to the adjustment of the instrument by the individual for specific usage. The

individual, through his/her knowledge and mode of work, acts towards the artifact

gathering awareness of its possibilities and limitations, thus using it in a more

particular way. The instrumentation is the process by which the artifact’s potenti-
alities and restrictions control de action, i.e., it is how the instrument shapes the

strategies and knowledge of the individual.

Fig. 1 TPACK – Intersection of knowledge (Source: Adapted from Koehler and Mishra 2009,

p. 63)
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The instrumental genesis building process is complex; it demands time and

depends on the characteristics (potentialities and limitations) of the artifact as

well as the individual’s mode of work and knowledge. It is from the

instrumentalization and instrumentation processes that the individual makes use

of the artifact, developing mental schemes in order to change the artifact into an

instrument for a purpose (Trouche 2007), see Fig. 2.

One of the aspects of the TPACK construction process is that it relies on the

ownership and instrumentation of the technological resource, which should make

easier the reconstruction of teachers’ pedagogic practice. Therefore, we believe it is
essential to promote the instrumentalization and instrumentation of teachers’ pro-
cesses within the education progressions, as per Rabardel (1995), in order to

support the integration of the Technological Pedagogical Content Knowledge

(TPACK). When considering the teacher, this process of instrumental genesis is

part of the construction of the TPACK, since in it, other types of knowledge besides

the technological, is mobilized and amalgamated, as shown in Fig. 1.

A double instrumental genesis is required for mathematics teachers to teach with

technology (Tapan 2006), which includes the Technique Instrumentation- building
tools for mathematical tasks and the Didactic Instrumentation – building tools to

teach Mathematics for the development of professional knowledge for teaching.

The researches discussed here are based on Mishra and Koehler (2006) studies

on the integration of Technological Pedagogical Content Knowledge (TPACK).

Rabardel’s Instrumentation Theory regarding the construction of this knowledge

and Tapan’s (2006) considerations were also taken in, since it was assumed by the

authors in this analysis that the understanding of the instrumental genesis process

can guide the development of the strategies for teachers’ education, supporting
teachers while building up the TPACK.

Fig. 2 Instrumental genesis

as a combination of two

processes (Source: Adapted

from Trouche 2007, p. 22)
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The Research

This study was conducted under a qualitative methodology taking into consider-

ation teachers’ preservice and continuing education. Both processes have focused

on the use of digital technology for teaching trigonometry, specifically with the use

of the Dynamic Geometry Software (DGS). One group was formed by prospective

teachers (second year of Mathematics Degree) and the other by teachers working in

Basic Education (teaching 11–18 year students). Data were collected through

questionnaires, teachers’ activities protocols, digital files, meetings and audio and

video recordings.

The preservice education process was conducted by Miashiro (2013) and

consisted of nine meetings of 3 h each, with the participation of nine prospective

teachers in the second year of Mathematics degree, in order to verify the contribu-

tions of a teaching strategy based on a combination of an experimental context with

a computational context, for the construction of mathematical content knowledge,

focusing on Trigonometry. Brazilian Government recommendations from the

National Curriculum Parameters (Brasil 1998); data and analyses from related

Brazilian researches, and content approaches found in many textbooks are regarded

as subsidies for the activities plan. A diagnostic activity to investigate future

teachers’ content knowledge about trigonometric ratios and applications of these

reasons was also held.

From these analyses, the education process activities were planned in order to

consider possibilities to act on the transition from trigonometric ratios to trigono-

metric functions. Static resources such as paper and pencil or physical material

were used. Dynamic resources were also exploited to enable future teachers to

interact with trigonometric ratios, trigonometric circles and trigonometric func-

tions, and realize characteristics such as periodicity of trigonometric functions. This

choice is aimed at giving the participants the opportunity to be acquainted and

debate on the pedagogical possibilities of the many available resources, either in the

form of artifacts or instruments. The construction of models by means of technol-

ogy leads to a “dual-mode artifact,” as in Maschietto and Sourty-Lavergne

(Maschietto and Soury-Lavergne 2013), that is, a digital model combined with a

physical artifact. This construction may lead to a deeper understanding of the

physical item as well as of the advantages and limitations of the technological

resource and adjustments needed. The activities mobilized resources in an inte-

grated manner for the reconstruction of content knowledge and as pedagogical

alternatives to be used in the classroom, for the construction of the Technological

Pedagogical Content Knowledge (TPACK) with regard to such contents.

The continuing education process documented by Poloni (2015) is aimed at

exploring and discussing resources for teaching trigonometry in high school, in

order to support the expansion of teachers’ professional knowledge. The inservice
education process assembled seven teachers, the research subjects, who participated

in the “Trigonometry Topics” course of ten meetings of 3 h each. The teaching

resources used throughout the continuous education process were both analogical
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and digital. A Dynamic Geometry Software (DGS), the GeoGebra software, was

used to discuss with teachers the learning possibilities through investigation. Earlier

in this education process a diagnosis was made to identify the teachers profile, their

knowledge on Trigonometry beyond their computer skills and their teaching prac-

tice. We emphasize that these teachers teach trigonometry to their students, though

none of them use Dynamic Geometry Software for teaching.

Episodes, linkage and relationship established between them are as follows.

Episode 1 – Exploring the Concept of Periodic Function

At the beginning of the preservice education process a diagnosis was performed to

identify the content knowledge of future teachers on the trigonometrical concepts in

relation to, for example, the trigonometrical relationships in the right triangle, the

radian angle measures, and the understanding of the trigonometric circle, besides

various aspects related to the definition and periodicity of trigonometric functions.

The decision to start discussing the trigonometry in the right triangle was based on

this diagnosis, which revealed the need to discuss the trigonometric ratios and their

applications with the future teachers.

As the prospective teachers are referenced to the mathematical content devel-

oped in high school, exploitation of these contents was first made with the use of

specific resources as a preparation to a later introduction of digital resources.

Preliminarily, two meetings were held for the use of Dynamic Geometry Software

aimed at familiarizing future teachers with the resources available.

Subsequently to identifying potential difficulties, the education process was

reorganized through the development of proposals for activities and discussions

over the trigonometrical concepts involved. The construction of the main concepts

of trigonometry was reviewed and discussed using concrete materials named

Objects of Experimental Environment as shown in Fig. 3, the use of which was

taken in parallel with activities through the Dynamic Geometry Software (DGS).

The similarity of the triangles in Fig. 3 was employed to conduct the study of the

trigonometric ratios using the software, as shown in Figs. 4 and 5 for comparison

with the corresponding record on paper and pencil.

The discussion of the content through dissimilar resources made possible the

broadening of the future teachers’ experience, helping them realize that a concept

can be approached using various resources and that diversity can enhance the

learning environment and contribute to a better understanding of the content

knowledge as well as of the pedagogical possibilities for the use of these resources.

The discs in Fig. 3 were used to introduce the radian angle measure, meaning the

ratios between the measures of the arcs and the radius of the circles. This was

followed by an investigative proposal on these measurements using the software, as

shown in Fig. 6. They were asked to compare the ratios in the experimental and

digital cases to introduce the angle measure in radians.
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The discussion on the radian angle measure was driven by the participants’
difficulties identified in the diagnosis as well as the problems in their practice found

by the researcher, through textbooks that adopt the same notation x to represent the
variation of the angle in the trigonometric function sinx to mark the abscissa in the

Cartesian system associated with the trigonometric circle, as noted in Fig. 7.

Fig. 3 Objects of experimental environment (Source: Miashiro 2013, pp. 88–89)

Fig. 4 File built to explore the sin A (Source: Miashiro 2013, p. 103)

Fig. 5 Transcript of a prospective teacher to solve activity (Source: Miashiro 2013, p. 102)
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During the training process the prospective teachers’ attention was drawn to the

issue of terminology. Teacher must choose very well the symbols to be used to

prevent misunderstandings such as using the same letter (x) to represent different

meanings. At this point it seems important to draw the attention of the future teacher

to the pedagogical aspects that must be considered in the teaching process.

A sketch graph of a periodic function can be used to address a context based on

the real world. A model was developed during the education process to simulate the

motion of a Ferris wheel, adapted from the book “Functions Modelling Change: a

preparation for calculus” (Connally et al. 1998). The model suggested the Ferris

Fig. 6 Introduction to radian angle measures (Source: Adapted from Miashiro 2013, p. 111)

Fig. 7 Functions in

trigonometric circle

(Source: Xavier and Barreto

2008, p. 309)
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wheel located in London. The Ferris wheel built with the Dynamic Geometry

Software was prepared to allow the measurement of the height of a point on the

circle at intervals of 5 min, and to display on the left side of the figure, above the

altimeter word, a measure in centimeters in the range of 1–9 cm. The point on the

circle representing the position of a passenger could be moved with the “hand” tool

(see Fig. 8).

The collected data was organized as a table, producing a sketch of the graph of

the function describing the variation of heights, following a guided discussion on

the periodicity related to the Ferris wheel motion (Figs. 9 and 10).

The work refers to a real situation and the construction of its model, in which two

conversions of registers of semiotic representations occurred, according to Duval

(2006); it was possible to accompany, in many of the future teachers, the process of

instrumental genesis, especially when they proposed didactic adaptations to the

activity, as seen in the paragraph below.

After these investigations with objects and paper and pencil constructions, it was

clear that the prospective teachers expanded their specific content knowledge and

also experienced situations that have led them to ponder over varied possibilities of

approaching this content in their future classroom teaching. They may take these

experiences as a reference in their future classroom. From the trigonometric circle

explorations with the DGS they began their instrumentalization process and the

continued exploitation of periodicity using the Ferris wheel model. In this case, an

attempt to assist with the instrumental genesis takes place in the initial education

context. It is important to notice that this model allows for the investigation of the

behavior of a periodic function, in which time is the independent variable. One of

the difficulties encountered at introducing the sine function is connected with the

fact that, in this case, the new variable is the measure of the angle in radians. The

exploration of the trigonometric circle below was used for the work in this

transition.

For the introduction of the sine function one of the experimental environment

objects (called “trigonometric circle”) was taken up, so that the participants could

work in the construction of the sine function using the vertical projections with the

Altimetro Elevador

A8,06 cm

Fig. 8 Ferris wheel

constructed in the software

(Source: Miashiro 2013,

p. 121)
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aid of a light (Fig. 11) plus the information previously retrieved on calculations

related to sine values, cosine and tangent in right triangles whose acute angles

measure 30� or 45�.
The function graph was drafted from the set of the table (Fig. 12).

As a result, the exploitation started to occur in the DGS environment; similar

discussions guided the activity using the software for the set of a table of values for

the sine function and its corresponding graphic representation (Fig. 13).

The work was completed with the construction of a model for the sine function

with the use of software resources (see Fig. 14). The familiarization of the partic-

ipants with the software was supported by Baldin and Villagra (2002), where a

chapter is dedicated to the use of Cabri for the study of Trigonometry. Mishiaro

worked with resources of measurements transfer and the possibility of measuring

the angle in radian for the proposal of the sine function graph construction. During

the construction, the difficulties faced and the resources used were discussed step-

by-step with the participants. Afterwards, a complete file enabled everybody to

work with the same digital model.

Considering the performance of students in the final evaluation, we concluded

that the contributions of activities for reconstruction of the participants’ knowledge
were important as they all managed to build the sine table. Two of these students

Fig. 9 Manuscript of a prospective teacher to solve activity (Source: Miashiro 2013, p. 123)

Fig. 10 Transcript of a prospective teacher to solve activity (Source: Miashiro 2013, p. 123)
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Fig. 11 The trigonometric

circle artifact and the

orthogonal projection of a

point on the vertical axis

(Source: Miashiro 2013,

p. 90)

Fig. 12 Notes by a prospective teacher for construction of a graph (Source: Miashiro 2013,

p. 132)

Construção do gráfico da função seno.

- Construir a figura 3 com o Cabri, colocar as coordenadas no ponto localizado na
extremidade do arco x (apagar a abscissa), e com o “ponteiro” arrastar esse ponto
de 30° em 30°, para preencher a tabela com os respectivos valores desta função.

(0,50)

A

Fig. 13 Study of the sine function in the software (Source: Miashiro 2013, p. 131)
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demonstrated to master the concepts discussed in the sequence of activities, build-

ing the function graph sine to perfection.

Among the contributions from this teaching strategy for learning the concepts

existing in the transition from the trigonometric ratios to the trigonometric func-

tions, subject of the interventions, it is highlighted:

• The perception of trigonometric ratios has emerged due to the similarity between

right triangles.

• Learning from the calculation of the measures in radians.

• The rediscovery of the number π.
• The ability to build a table and a graph from the context of a periodic function as

yet unidentified.

• The understanding of the construction of a table and graph of the sine function.

The dynamic software and the resources for measurement and tracking led to

strengthening the understanding of ratios, the angle in radian measurement and the

discussions on the transfers of discrete/continuous and time/variation of the angle in

radians occurring when constructing trigonometric functions graphs from tables

and modelling a real example. Experiencing resources of a varied nature used in an

integral format was very enriching to those prospective teachers coming to univer-

sity with little knowledge of Trigonometry. The use of technology was encouraging

and soon allied with the process of understanding knowledge.

In fact, the education process contributes to the reconstruction of previous

content knowledge and pedagogical alternatives to classroom teaching with the

aid of experimental objects and software activities, bringing a new approach to

Technological Content Knowledge regarding trigonometrical concepts. In this

mathematical knowledge building process it was important the diversity of

resources used to broaden the scope of possibilities for teaching. Particularly in

relation to technological resources, these determined the integration with the

mathematical content from the perspective of Technological Content Knowledge

(TCK).

(1-0,26)

1

Fig. 14 Study of the sine function with the software (Source: Miashiro 2013, p. 134)
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Episode 2 – Continuing Education: From Circle
to Trigonometric Functions

We will highlight some characteristics of the process of continuing education and

detail an episode on the exploitation of trigonometric functions.

The course “Trigonometry Topics” began with the application of a diagnostic

questionnaire, from which we identified teachers’ expectations to discuss trigo-

nometry in trigonometric circle and the specific high school leads such as trigo-

nometry in right triangle. The calculation of inaccessible distances, which is

commonly used in classroom to rescue what students know about trigonometry in

right triangle, was chosen as the starting point to address trigonometry in the circle.

Thus, a course of ten meetings was held, focused on the subjects: (1) Construction

of a sine and cosine table and of a radian angle measure table with paper and pencil

as well as with the GeoGebra DGS; (2) Arc or angle measures domino game and

catch-lot game for measuring conversions from degrees to radians; (3) Construction

of a trigonometric circle with compass and the DGS; (4) Construction of a trigo-

nometric circle with the DGS displaying the sine and the cosine in the Cartesian

axis and a trigonometric circle displaying symmetrical arcs; (5) DGS programming

for the construction of trigonometric functions; (6) GeoGebra investigative activity;

(7) Trigonometric functions bingo game; (8) Planning classroom activities;

(9) Group discussion on the prepared activities, and (10) Evaluation of the program.

Each meeting was planned from the feedback from the previous one.

The episode at matter in this text involves the meetings that addressed topics (3),

(4) and (5). Initially the inservice teachers developed a diagnosis activity from topic

(3) in order to inform the trainers about the aspects of their practice, investigating

trigonometrical and pedagogical content knowledge. The responses supported the

preparation of the activities to be developed in the coming meetings of the program

(Fig. 15).

It was followed by an activity to build the trigonometric circle in paper and

pencil using a ruler and compass. The subjects positioned in the trigonometric circle

notable arcs such as π
6
, π
4
, π
3
, π
2
and their symmetrical arcs. The figures above show

some of the material produced by the research subjects.

The teachers’ strategies to build the circle were explained in the following

dialog:

Teacher RG: I will make it with a compass, tracing the perpendicular . . . I love
doing these things.

Trainer: How can you be sure that these lines you drew are perpendicular?

Teacher RG: I will make the bisector with the compass. [time to trace the

bisector] See? And now I will draw bisectors to get the angles

45�, 90�, 135� and so on until 360� that coincides with angle 0�.

Analyzing this dialogue, we find that Teacher RGmobilized content knowledge

and demonstrated ability to make the necessary constructions, guided by the known
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properties of geometric figures. To do this he used a ruler and a compass as

instruments to represent his content knowledge in plane geometry.

Thereafter, the teachers repeated the construction of the arcs corresponding to
π
6
, π
4
, π
3
, π
2
, and their symmetrical arcs, this time using the DGS GeoGebra. These

activities intended to identify the technological content knowledge of inservice

teachers (Mishra and Koehler 2006).

The screen in the software with the arcs and trigonometric circle construction in

the four quarters is shown below (Fig. 16).

We noticed that the above construction requires mathematical and technological

knowledge in order to draw perpendicular lines, parallel lines, segments and the

actual trigonometric circle. Teachers needed to determine the position of the arcs

type π
2
, 3π

2
, π
4
, 7π

4
, π
6
, 5π

6
, etc.

Teacher RG carried out the conversion from degrees to radians and then located

the arcs in the circle; teacher CP, who was sitting close, showed her strategy for the

arcs:

Teacher RG: I can’t believe it! What for do I have to memorize 4π
3
?

Teacher CP: No RG! Look! I divided the circle into eight parts. Here is π
4
, here

is 2π
4
which is also π

2
when simplified. Then comes 3π

4
and 4π

4
or π

when simplified.

Teacher RG: Ah! OK. This is also possible with others arcs, following the

same reasoning. It goes faster!

Teacher CL: It’s easier. How great!

Teacher MC: It is also possible to think in degrees in the same way.

[CL teachers, RG and CP began to tell the arcs in radians.]

The analysis of this dialogue, combined with the analysis of the recordings of the

meetings, shows signs of expansion of mathematical content knowledge for

Fig. 15 Location of arcs in two screen of participating teachers (Source: Poloni 2015, p. 196)
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Teacher RG and Teacher CL; both of them, when interacting with Teacher CP,

made explicit a new line of thinking among them.

When the inservice teachers finished the arcs constructions, the trainers

discussed the DGS construction strategies with the whole group.

One of the reports follows:

Teacher CL: [CL teachers, RG and CP began to tell the arcs in radians.]I did

like the compass activity. I designed the unit circle and the axis

and got 90�, 180�, 270� and 360� angles, then I traced the

bisectors and got arcs of 45�, 135�, 225� and 315�. After that I
took the radius and found the 60�, 120�, 240� angles and then I did
the family of these bisectors to find the arcs of the 30� family.

From this dialogue, the broadening of technological content knowledge is clear,

because the teachers used their knowledge of geometric constructions in the context

of paper and pencil in order to choose and use the DGS tools properly.

In the discussion on ways to conduct this activity when applied to students,

Professor MC stated:

Fig. 16 Arcs located on the screen (Source: Poloni 2015, p. 274)
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Teacher MC: I would ask my students to build the trigonometric circle in the

GeoGebra with radius 1. I would explain the concepts of radius,

diameter and center of the circle. Then I would tell them to score

arc 90� and draw the bisector, they mark arc 45� ...
Teacher RG: They never know what the bisector is ... would have to explain

again

Teacher MC: Another concept to review: bisector ... but coming back ... with

the radius measure they would do arc 60 and again, by bisecting,
they would do arc 30. Then go on to just do the triangles and, by

symmetry, move to other quarters.

We notice by this dialogue that MC and RG teachers mobilized their techno-

logical pedagogical content knowledge when referring to what is needed to plan in

order to develop the activity in their classrooms and what is necessary to teach their

students, from the Mathematics point of view and with the technological tools

available in the software.

Some teachers using DGS tools for these constructions revealed lack of techno-

logical content knowledge (Mishra and Koehler 2006), even knowing the geometry

involved, as shown in the dialogue below.

Teacher CP: I want to bisect the 90�, where do I have to click?

Trainer explains where CP should click.

Teacher RA: The bisect I can do, but how do I divide the circumference by

using the radius as the opening?

Trainer explains the compass tool.

Teacher RA: Ah! Got it. It’s easy, isn’t it? It’s like on the paper... the same

reasoning.

The dialog above shows the moment when Teacher RA realizes the similarity

between the reasoning made in the construction with ruler and compass and the one

to be done with the DGS software. It was then realized that the teacher was

reasoning over the software tools showing his/her instrumentation process.

At the meeting in which item (4) of the course was developed, the teachers used

the DGS GeoGebra to construct the trigonometric circle and the segments

corresponding to the sine and cosine to a generic arc, as can be seen in the figure

below (Fig. 17).

As we understand it, this experience helped teachers to review their forms of

exploring together with their students the sine and cosine on the trigonometric

circle, particularly for trigonometric projections in the vertical and horizontal axis

concerning the fundamental relations of trigonometry.
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While building the projections of a generic arc on the axis to have sine and

cosine placed in, dialogues such as the following highlighted the difficulties of

using the artifact, revealing who was in the process of instrumentalization:

Teacher MC: The projection is always perpendicular ... I’ll have to use

perpendicular lines to make this construction.

Teacher RA: I know how to do it with the compass... but here, I don’t. . .
Teacher RO: Neither do I.

We noticed that to develop this new activity other parts of the artifact would

need to be triggered, which requires the individual construction of new mental

schemes, as underlined by Trouche (2007).

These difficulties were gradually overcome during the meetings, explaining the

continuous and progressive process of instrumentation of the subjects, in

Rabardel’s view.
The next activity addressed the construction of a trigonometric circle displaying

the symmetries of arcs. This activity was chosen after identifying that teachers

always used the formulas (180 - α) (α - 180) and (360 - α) to effect the reduction of
arcs to the first quarter.

We discussed the sine and the cosine values as shown on the screen. Based on the

constructions performed with the software, it was possible to show that the sine of

symmetrical arcs in relation to the vertical axis are equal in magnitude, and likewise

for the cosine. The following figure (Fig. 18) shows a sample file built in this

activity.

The aim of the activity was to support the broadening of technological content

knowledge as understood by Mishra and Koehler (2006) through the

instrumentalization of the subjects in dealing with the DGS.

As regards to sine and cosine values of arcs not located in the first quarter, the

dialogue below took place:

Fig. 17 Segments

corresponding to the sine

and cosine of a generic arc

in the circle (Source: Poloni

2015, p. 204)
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Trainer: And why is cos(135�) negative?
Teacher RA: No way! A distance cannot be negative!

Trainer: We tell the students that cos(135�) ¼ �cos(45�).
Teacher RA: But it is here. .. because of the side.

[Teacher RA showed the segment on the x axis that is to the left of the origin.]

We noticed that Teacher RA pointed at the figure constructed in GeoGebra for

the cos135� segment to give his answer, demonstrating technological knowledge.

In the discussion we figured out the sine and cosine values. The dialogues were

as follows:

Trainer: Why the sine of this arc in the first quarter has the same value as

the sine of this second quarter arc?

Teacher RG: Because they have the same length in the axis of the sinus.

Teacher RO: “The projection is the same, so they have the same measure.”

Trainer: And the sign? We say that the cos(135�) is equal to – cos(45�),
why?

Teacher RG: It is the same triangle that is turning.

These statements showed that the construction and operation supported by the

figure in the GeoGebra, may favor the establishment of conclusions about the sine

and cosine values of the arcs at matter.

The next dialog also supports this finding.

Trainer: Can the visualization of the sine and cosine of symmetrical arcs in

the trigonometric circle through the GeoGebra lead the student to

understanding that sin(30�) ¼ sin(150�), for example?

Trainer: And to reduce the first quarter? π�x, x�π and 2π�x, how is it?

You have to know it by heart? [Laughs].

Fig. 18 Arcs in the

trigonometric circle

(Source: Adapted from

Poloni 2015, p 155)
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Teacher RG: No. You can see this construction. It is impossible not to see

it. And I always told students to memorize it ...

This dialogue shows the perception of Teacher RG that the use of this technol-

ogy can assist students in the construction of knowledge. When he said “No.
[referring to not having to memorize the formulas] You can see this construction.
It is impossible not to see it”we noticed that he made a connection between what he

experienced and understood and what it will happen to his students. Then he said:

“And I always told students to memorize it. . .”, hence we understood that there was
an awareness of his own teaching practice.

We consider that there was, in this case, an expansion of the pedagogical content

knowledge. We understand that the discussion on the symmetries that may be found

in the circle led teachers to reflect on how to explore them with the students,

eliminating the need to memorize arcs reduction formulas to the first quarter.

Ending the above discussions, we proposed topic (5) to the teachers, referring to

a construction activity of the function y¼ sin x in the DGS GeoGebra environment,

followed by the analysis of the characteristics of this function, such as being limited

(image from �1 to 1) and with periodicity 2π. Conversions of registers (Duval

2006) were presented (algebraic to graphic), and the teachers built usage schemes

and began to realize what kind of strategy was possible to be developed in the

software, i.e., the way to model the situation under study in the software.

The f(x) ¼ sin(x) graph can be built in the Geogebra Algebra window using

“Input” y ¼ sin(x), and so the graph is plotted on the screen (see Fig. 19). However,
one of the inservice teachers said they would like to trace the trigonometric circle to

show the projection of the arc on the vertical axis and plot the graph (see Fig. 20). In

this way, when moving a point P in the circle, it was possible to “see” the

corresponding point moving in the graph.

To build the function graph, as required by this teacher during the meeting, a

strategy was found: to associate each value x on the arc in the circle to its respective
sin(x) value. Geogebra does not come with the resource of arc measure transfer to a

segment building. Such resource can be found in the Cabri and was used in the

previous episode for the construction of the sine function graph.

We emphasize that this is a difficult task that demands understanding the concept

of angle measure in radians. Moreover, it is necessary to represent this concept

taking into consideration the limitations and specificities of the software resources.

It has to do, therefore, with the Technological Content Knowledge (TCK).

For this reason, it was necessary to lead the teacher to conclude that any point of

the graph of this function is as follows: P¼ (α, sin(α)), where α is the measure of the

arc. This means that knowing these features of the software requires mathematical

and technological knowledge. We highlight that in the trigonometric circle the

notation P (cos(x), sin(x)) was adopted.
The inservice teachers need to know the syntax of programming and how to

represent a generic point of this function in that syntax.
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We noticed in this episode, a moment in which it was possible for the trainer see

the development of the instrumental genesis teachers, as well as the possibilities

and limitations of the software that conditioned the actions of the participants.

After the generalization of the coordinates of the point of function f(x) ¼ sin(x),
the construction of graphics for f(x) ¼ cos(x) using the software was immediate.

Figure 21 shows Teacher RG computer screen with the circle and the functions y
¼ sin(x) and y ¼ cos(x) appearing together in the same period 2π.

After developing these activities and learning how to express the coordinates of

a generic point of the graph, the teachers began to investigate how to generalize

points of other trigonometric functions. This situation occurred especially because

teachers looked at each other’s computers screens (for example, Teacher RG screen

with the functions y ¼ sin(x) and y ¼ cos(x)). The following figure (Fig. 22)

displays graphs built by Teachers RO and Teacher CI with programming and

trace tools.

To the extent that the inservice teachers were experiencing the programming

activity of these new functions features, we noticed that they began to feel the

empowerment that occurs by the act of “teaching the computer” as per Papert’s
constructionism (Papert 1980).

Fig. 19 Screen with the function graph y ¼ sin(x)

Fig. 20 Trigonometric circle and a period of the function f(α) ¼ sin(α) built with the trace tool
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Fig. 21 Screen with a period of functions f(x) ¼ sin(x) and g(x) ¼ cos(x) (Source: Poloni 2015,
p. 158)

Fig. 22 Screen with graphs of trigonometric functions built by programming and Trace tool

(Source: Poloni 2015, p. 157)
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In the current situation the inservice teachers had two possible strategies to build

the trigonometric functions: to use the algebra window and enter the algebraic

expression of functions (varying parameters a and b, obtaining the graphs of these

functions with real domain, or to use programming to connect the trigonometrical

circle, although limited to an investigation of the function to the domain 2π.
Once the graphs were constructed, the strategy used in the DGS was discussed

with the whole group (programming and tracing); it was possible to obtain graphs of

a period if the functions were f(x) ¼ sin(x) and g(x) ¼ cos(x). Again, the DGS

features conditioned the actions.

In addition, the participants were able to construct graphs of trigonometric

functions involving sine such as f(x) ¼ a + b sin(x). From these constructions it

was possible to vary the values of the parameters a and b and to identify the changes
in the graphs of functions, articulating an algebraic expression for each function

with the corresponding graph. The periodicity analysis and processing, for example,

changing function y ¼ sin(x) for the family of type y ¼ a + b sin(wx + c) with a,
b and c being any real number, and w a real positive number, ended up the

discussions for this meeting.

This activity enabled them to start programming with the GeoGebra software

and to engage in discussions with their students over the variations of parameters in

sine and cosine functions, including the impact caused by these on the graph of each

function.

The activities highlighted the expansion of technological and pedagogical con-

tent knowledge of the teachers (Mishra and Koehler 2006). Particularly, in this

research documented by Poloni (2015), the GeoGebra software was used to discuss,

with teachers, the learning possibilities through investigation.

In interviews with the participants, we noticed, for example, that teacher RG

held the DGS efficient both concerning the teaching process and the learning of

trigonometry. In his words:

Trainer 1: What has changed in the education process in your professional

practice?

Teacher RG: Every training process adds something [...] The Trigonometry

made me revisit many concepts ... [...]it made me take a fresh

look into the content, and I really did it.

Trainer 1: What is this new look?

Teacher RG: It’s a new understanding ... a deeper view of the content. This

improves the classes. [...] [...]

From Professor RG’s statements, we gather that the education process helped

him to improve his trigonometry knowledge driving him into a deeper understand-

ing of this content, which, in his case, will impact his classes positively.

To conclude this analysis, we pointed out the results recommending a continuing

education on the Trigonometry subject, supported by the use of technological

resources for teaching Mathematics. This can help the broadening of teachers’
professional knowledge. Activities involving technology usage for teaching
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aroused discussions that unleashed ideas about classroom practices, mediations

made by trainers, and their own mathematical content.

The following aspects of training favored the expansion of teachers’ professional
knowledge: the non-traditional design training; the professional attitude of

inservice teachers; the mathematical content of interest to inservice teachers; the

trainers’ mediation and intention to take discussions beyond mediations and

resources for teaching, through the education process. The research revealed that

this kind of continuing education can be a variation when considering high school

teachers’ needs to teach trigonometry.

Conclusion

This study presents an analysis of two episodes from Miashiro and Poloni’s
research, involving the use of technology under an integrative perspective of

knowledge in order to understand how the reconstruction of trigonometric concepts

occurs both in preservice and continuous teachers’ education.
We point out that, although the scope of continuing education is quite different

from that of initial education, there have been employed, in both education pro-

cesses, a varied range of possible resources for investigating the basic concepts of

trigonometry. It was done so in order to improve the subjects’ content knowledge,
in addition to supplementing their pedagogical practices, that is, improving their

pedagogical technological knowledge.

In both episodes it was clear that each participant had the opportunity to develop

a process of technological appropriation through instrumentalization and instru-

mentation. We observed that the participants experienced new learning situations.

These experiences involved mathematical content (trigonometry), a component

usually dealt with by the participant teachers in their daily work in the classroom.

Furthermore, in both programs, the trainer’s strategy to provide other techno-

logical resources (ruler, compass, paper pencil, wooden models, etc.) was quite

adequate, as such resources were closer to their previous learning experiences. This

worked as a starting point so that they could comfortably explore possible forms of

knowledge representation and then move on to new discoveries using the software

features (DGS).

In this aspect, the possession of Technological Content Knowledge (TCK) had

developed quite similarly for both preservice and inservice teachers. However, the

integration of the Pedagogical Content Knowledge (PCK) that consolidates the

model TPACK worked differently in the initial and in the continuing trainings. In

this research the development of this kind of knowledge, such as the TPACK, could

be observed only with the inservice teachers. In this case, we realized that to

preservice teachers the learning process was mainly focused on the mathematical

content and on the technological knowledge. To inservice teachers otherwise, the

learning process was focused on how to use technology in their Mathematics

classes.
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For this reason, this study prompted us to think how to enable the preservice

teachers’ education to prepare future teachers to build knowledge under the TPACK
perspective. We think that one possibility would be to develop new strategies that

should lead preservice learning to also focus on the pedagogical aspects, i.e., how to

teach Mathematics to their future students using technology.

To this, we highlight the studies of some researchers, for example, Llinares

(2008), who tried using real-situation videos in classroom with the objective of

practicing and using them as objects of analysis and discussions, including making

theoretical contributions to future Mathematics teachers’ education. This teachers’
education strategy that seeks to approximate real situations to classroom practices

meets the guidelines of programs promoted by the Brazilian Ministry of Education,

such as the aforementioned PIBID, PRODOCENCIA and Obeduc, that aim to

improve the initial and continuing teachers’ education as well as students’ basic
education.

We have indeed understood that teachers’ education – initial and continuing, has
encouraged the learning under an integrative perspective of knowledge: mathemat-

ical content, technology and pedagogical aspects – combined with practice. It

would indeed contribute to the reconstruction of knowledge and professional

development. Concerning this teachers’ education approach, once geared towards

professional development, the teacher will see the extreme need to take a proactive

stance to learn and also be included in the technological and scientific advance-

ments that bring new demands and implications to education, getting ready to a

professional future in the twenty-first Century.

Acknowledgments The researches referenced herein have been partially sponsored by the

Education Observatory Program (Programa Observat�orio da Educaç~ao), OBEDUC, Project
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Educaç~ao Matem�atica, 8(16), 99–120.
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formaç~ao docente. Revista de Ensino de Ciências e Matem�atica, 10(1), 59–67.
Maschietto, M., & Soury-Lavergne, S. (2013). Designing a duo of material and digital artifacts:

The pascaline and Cabri Elem e-books in primary school mathematics. ZDM – The Interna-
tional Journal on Mathematics Education, 45(7), 959–971.

Miashiro, P. M. (2013). The transition of ratios for trigonometric functions. Unpublished M.Ed.

thesis, Universidade Bandeirante de S~ao Paulo.

Mishra, P., & Koehler, M. (2006). Technological pedagogical content knowledge: A framework

for teacher knowledge. Teachers College Record, 108(6), 1017–1054.
Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York: Basic.
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Prado, M. E. B. B., & Lobo da Costa, N. M. (2015). Educational laptop computers integrated into

mathematics classrooms educational. In U. Gellert, J. Giménez Rodrı́guez, C. Hahn, &
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Formative Assessment and Technology:
Reflections Developed Through
the Collaboration Between Teachers
and Researchers

Gilles Aldon, Annalisa Cusi, Francesca Morselli, Monica Panero,

and Cristina Sabena

Abstract In this work, we present the analysis of the ways in which formative

assessment processes can be developed, by the teacher and the students, thanks to

the support given by technology. The analysis is carried out focusing on two case

studies developed in France and Italy within the European Project FaSMEd, with

two main aims: (1) highlighting how the different functionalities of technology

could support formative assessment strategies at the teacher’s, the students’ and the
peers’ levels; and (2) characterising the dynamics that intervene within programs

involving a strict collaboration between teachers and researchers. Through the

analysis of the two case studies we discuss, on one side, the effectiveness of the

adopted theoretical tools, and, on the other side, the contribution, in terms of

professional development, of the collaborative work developed within the project.

Keywords Formative assessment • Meta didactical transposition • Feedback •

Design based research • Information and communication technology

Introduction

In this chapter we analyse the role played by technology in supporting the formative

assessment (FA) process, referring to some examples from the case studies devel-

oped in France and Italy within the European Project FaSMEd (Improving progress
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for lower achievers through Formative Assessment in Science and Mathematics

Education).

The FaSMEd project aims at investigating the role of technologically enhanced

FA methods in raising the attainment levels of low-achieving students. It relies on

the hypothesis that a technological environment can potentially support both the

students and the teachers in getting information about students’ achievement in

real-time. Indeed, since connectivity and feedback are enhanced, students can use

data from technology for informing their learning trajectories, and teachers have the

possibility of collecting data from students, making more timely formative inter-

pretations and informing their future teaching.

In line with this hypothesis, the project investigates: (a) students’ use of FA data

to inform their learning trajectories; (b) teachers’ ways of processing FA data from

students using a range of technologies; (c) teachers’ ways of using these data to

inform their future teaching; and (d) the role played by technology, as a learning

tool, in enabling the teachers to become more informed about student

understanding.

The research is based on successive cycles of design, observation, analysis and

redesign of classroom sequences (Swan 2014) in order to produce and feed into the

toolkit, a set of curriculum materials and methods for pedagogical intervention

aimed at supporting the development of practice.

The teachers engaged in the project are involved in the different phases of

design, implementation, analysis and subsequent redesign and adaptation of the

toolkit. Besides FA, technology and low-achievers, the FaSMEd project addresses

also the issue of teacher professional development, as a consequence of the collab-

oration between teachers and researchers.

Some studies highlighted the considerable amount of time for teachers to change

their beliefs about teaching and learning, classroom culture and the teacher’s role
(Foshayla and Bellman 2012) and their ways of being so that FA with technology

becomes an integral part of their practice (Feldman and Capobianco 2008).

Our hypothesis (FaSMEd DOW, p. 8 PART B1) is that, to enable teachers to

incorporate elements of the new pedagogical model into their everyday teaching, it

is important to give them the opportunity to engage in a process of development

where they can reflect on and contrast their experience in using this approach. The

teachers are therefore engaged as practitioner researchers since they undertake

inquiry-based practice, strictly collaborate with researchers, and engage seriously

with reflective developmental practice.

Considering the double concern of the project this chapter aims at (1) highlight-

ing how the different functionalities of technology could support formative assess-

ment strategies at the teacher’s, the students’ and the peers’ levels; and

(2) characterising the dynamics that intervene within programs involving a strict

collaboration between teachers and researchers. We present the theoretical

1FaSMEd: Improving progress for lower achievers through Formative Assessment in Science and

Mathematics Education. Annex I, Description of Work.
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framework, which is constituted by two main poles: one frames the role of tech-

nology in supporting FA, and the other provides tools to analyse the dynamics

within a teachers-researchers collaboration. Then we will present two case studies,

from teaching experiments carried out in France (Lyon) and in Italy (Torino). The

presentation of the case studies will include methodological aspects as well as data

analysis from the classroom. We will conclude proposing some reflections arisen

from the comparison of our case studies.

Theoretical Framework

FA and the Role of Technology

In the FaSMEd Project, FA is intended as a method of teaching where.

[. . .] evidence about student achievement is elicited, interpreted, and used by teachers,

learners, or their peers, to make decisions about the next steps in instruction that are likely

to be better, or better founded, than the decisions they would have taken in the absence of

the evidence that was elicited (Black and Wiliam 2009, p. 7).

Such learning evidences can be collected, interpreted and exploited in different

moments of the learning process and with different purposes. In particular, Wiliam

and Thompson (2007, adapted from Ramaprasad 1983) focus on three central

processes in learning and teaching: (a) Establishing where learners are in their

learning; (b) Establishing where learners are going; (c) Establishing how to get

there.

Different agents are involved in these three processes: the teacher, the learners

and their peers. Black andWiliam (2009) conceptualise FA as consisting of five key

strategies, that could be activated by agents:

1. Clarifying and sharing learning intentions and criteria for success;

2. Engineering effective classroom discussions and other learning tasks that elicit

evidence of student understanding;

3. Providing feedback that moves learners forward;

4. Activating students as instructional resources for one another;

5. Activating students as the owners of their own learning.

Effective feedback from the different involved agents plays a central role in

FA. According to Hattie and Temperley (2007), there are four major levels, and the

level at which feedback is produced influences its effectiveness. They distinguish

between:

1. feedback about the task, which includes feedback about how well a task is being

accomplished or performed;

2. feedback about the processing of the task, which concerns the processes under-

lying tasks or relating and extending tasks;
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3. feedback about self-regulation, which addresses the way students monitor,

direct, and regulate actions toward the learning goal;

4. feedback about the self as a person, which expresses positive (and sometimes

negative) evaluations and affect about the student.

Recently, research has started to investigate the different ways in which tech-

nology could support FA. Quellmalz and colleagues (2012), for example, stresses

that technology enables the assessment of those aspects of cognition and perfor-

mance that are complex and dynamic, through rich and authentic contexts, inter-

active and dynamic responses, individualized feedback and coaching, and

diagnostic progress reporting.

Referring specifically to connected classroom technologies,2 further aspects are
pointed out as features that make them effective tools for FA:

1. they may enable the teachers to monitor students’ incremental progress and keep

them oriented on the path to deep conceptual understanding, providing appro-

priate remediation to address student needs (Irving 2006; Shirley et al. 2011);

2. they may support positive students’ thinking habits, such as arguing for their

point of view (Roschelle et al. 2007), creating immersive learning environments

that highlight problem-solving processes (Looney 2010) and giving powerful

clues to what students are doing, thinking, and understanding (Roschelle et al.

2004);

3. they may enable most or all of the students contribute to the activities and work

toward the classroom performance, taking a more active role in the discussions

(Roschelle and Pea 2002; Shirley et al. 2011);

4. they may provide students with immediate private feedback, encouraging them

to reflect and monitor their own progress (Looney 2010; Roschelle et al. 2007);

5. they may enable to carry out a multi-level analyses of patterns of interactions

and outcomes thanks to their potential to instrument the learning space to collect

the content of students’ interaction over longer timespans and over multiple sets

of classroom participants (Roschelle and Pea 2002).

Together with the other researchers involved in the FaSMEd project, we started

developing a three-dimensional framework3 that extends Black and Wiliam’s
(2009) model to include the use of technology in FA processes. The new model

takes into account three main dimensions:

• the five FA key-strategies,

• the three main agents (teacher, student, peers/group),

2“Connected classroom technology” refers to a networked system of personal computers or

handheld devices specifically designed to be used in a classroom for interactive teaching and

learning (Irving 2006).
3The framework was initially developed during a meeting in Essen (Germany) in July 2015 by

some of the FaSMEd partners from Italy, United Kingdom, and Germany. It was also presented at

ECER 2015, in Budapest, during the symposium “Formative Assessment in Science and Mathe-

matics Education”.
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• the functionalities through which technology can support the three agents in

developing the FA strategies. Within the third dimension (functionalities of

technology), that we have introduced, we distinguish three main categories,

according to the different uses of technology for FA within the FaSMEd project:

– Sending and displaying: when technology is used to support communication

among the agents of FA processes and to activate fruitful discussions. For

example: sending questions and answers, sending messages, sending files,

displaying and sharing screens to the whole class or to specific students,

sharing students’ worksheets.
– Processing and analysing: includes all the functionalities that support the

processing and the analysis of the data collected during the lessons, such as

the statistics of students’ answers to polls or questionnaires, the feedbacks

given directly by the technology to the students, the tracking of students’
learning paths.

– Providing an interactive environment: those functionalities of technology

that enable to create a shared interactive environment within which students

can work individually or collaboratively on a task or a learning environment

where mathematical/scientific contents could be explored.

The following chart outlines the FaSMEd three-dimensional framework, where

the three dimensions described above are represented along the axes of a three-

dimensional Cartesian reference (see Fig. 1).

In the analysis of our examples, we will use this three-dimensional framework to

describe and characterize the use of the technology to support FA in classrooms. In

the discussion of each example we will also use other theoretical references

introduced in this section (i.e. the levels of feedback) to go into detail in the

analysis.

Meta-Didactical Transposition

In tune with the model of design-based research (Shavelson et al. 2003) we take into

account the existing state of teachers’ pedagogical knowledge relatively to forma-

tive assessment and use of technology and the evolution of this knowledge as a

result of the collaboration between teachers and researchers. In order to analyse the

complex dynamics involved in these processes, we refer to the model of the Meta-

Didactical Transposition (MDT) developed by Arzarello and colleagues (2014).

The MDT model is based on the Anthropological Theory of the Didactic (ATD,

Chevallard 1985, 1999) in which every human activity within an institution can be

described by a praxeology. A praxeology consists of the praxis, the “how to”, the
techniques allowing to solve tasks that can be classified into types of tasks, and the

logos, that is to say the discourses on these techniques bringing their justification in
reference to a certain theory. A praxeology is therefore the given quadruplet type of

task, techniques, justification of the techniques and theory developed within

Formative Assessment and Technology 555



specific institutions. In line with this perspective, the MDT-model considers teacher

education as a human activity that takes place in an (or several) institution(s).

During the work with teachers, the research team develops tasks and techniques

in order to solve these tasks at a didactical level but also builds justifications of

these techniques at a teaching level of reflection. These praxeologies are built at a

meta-level justifying the term of meta-didactical praxeologies. But they are also

built and discussed for applications in the classroom that is to say at the didactical

level. In this way, two dialectics are generated. A first dialectic is developed at a

didactical level in the classroom between students, teacher and knowledge. A

second dialectic is developed at a meta-didactical level in the interaction between

teachers and researchers relatively to the interpretation of the first dialectic.

Typically the second (meta-didactical) dialectic arises from a contrast/comparison between

the researchers’ praxeologies and the teachers’ praxeologies and the first dialectic engen-

ders the second one as an outcome of a suitable meta-didactical trajectory, which is

designed by the researchers. It is through this double dialectic that teachers’ and researchers
develop a shared praxeology. (Aldon et al. 2013, p.104)

In the FaSMEd project, the general discussion about FA at a meta-level, for

example using the three-dimensional model, nurtures the construction of activities

for the classroom and their implementation in the classrooms give feedback that

makes the model evolve and participate to the teachers’ professional development.

During the FaSMEd experimental phases (task design, aposteriori reflections, etc.),
ideally researchers share research results and innovative inputs, while teachers

mainly offer their professional knowledge and the pragmatic justifications of

Fig. 1 Chart of the FaSMEd three-dimensional framework: (A) Clarifying and sharing learning

intentions and criteria for success; (B) Engineering effective classroom discussions and other

learning tasks that elicit evidence of student understanding; (C) Providing feedback that moves

learners forward; (D) Activating students as instructional resources for one another; (E) Activating
students as the owners of their own learning
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these practices. In this way, during the MDT process, the researchers’ praxeologies
encounter the teachers’ ones, and it may happen that components of praxeologies

that were external to a certain community become gradually internal, within a

praxeology shared by the two communities. This process, called internalisation, can

be iterated in a cyclic way.

Case Studies

FaSMEd in France: One Example and Its Analysis

Amongst all studies done in the context of FaSMEd in France, we choose to

highlight one particular sequence in a grade 9 class where all students are equipped

with tablets that are connected within a network.

Our methodological choice consists in giving to teachers the responsibility for

designing lessons. We ask them to fill in a grid concerning important points to

reflect upon before and after an observed lesson. We collect this information in

order to contextualise what is happening in the classroom when we are about to visit

it. While observing lessons, we collect videos, pictures, audios, teacher’s report and
notes. We also have intermediary discussions and meetings with the teacher, and

final interviews with the teacher and with the students. The object of our analysis

are the dynamics within the FaSMEd three-dimensional model (see above), which

represent the agents’ different uses of the technology for enhancing the process of

formative assessment.

In order to account for the mathematical knowledge and competences at stake,

we refer to the Theory of Didactic Situation (TDS, Brousseau and Balacheff 1998).
Starting from Brousseau’s didactic triangle to interpret the mutual relationships

between teacher, student and knowledge, we consider its tridimensionalisation.

Indeed, with the introduction of the technological dimension in the classroom,

this triangle becomes a didactic tetrahedron, where technology represents a new

vertex establishing relationships with the other didactic actors of the mathematical

situation and getting a part of the milieu that teachers and students have to cope

with. In the tetrahedron, the edges connect the vertices in order to describe and to

analyse the mutual relationships between the four actors of the didactic situation:

student, teacher, knowledge, technology. A face of the tetrahedron represents

instead a point of view on the situation taking into account the relationships of

three of the four actors. On the contrary, in the FaSMEd three-dimensional model,

the axes correspond to agents, FA strategies and functionalities of technology.

Thus, the relationships agents-technology or agents-knowledge can be found within

the three-dimensional model, when for example an agent uses technology or

mobilises knowledge in a particular moment of the FA process. For example, in

Fig. 2, we can analyse the mathematical situation in which the teacher is using

technology for processing and analysing data from the classroom, in order to
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provide feedback to students. We are interested in the evolution of the didactic

situation described by the tetrahedrons within the cuboids.

In this grade 9th class and for networking tablets, the teacher (Thomas) uses the

NetSupport School software that allows classroom monitoring, management,

orchestration and collaboration. In addition, Thomas decides to use MapleTA that

is an online testing and assessment system designed especially for courses involv-

ing mathematics. The classroom is also equipped with an IWB. From a didactical

point of view, the use of such technologies for formative assessment in his class-

room is completely new for the teacher. These aspects of professional development

will be further analysed below under the lens of the Meta-Didactical Transposition.

The case study leans on a sequence about linear functions, where the following

competences are to be acquired, according to the different representations of

functions.

(a) Calculating and detecting images.

(b) Calculating and detecting inverse images.

(c) Recognising a linear function.

(d) Shifting from the graphical frame to the algebraic frame and vice versa.

Thomas decides to create a sequence of questionnaires around these four com-

petences, using MapleTA. Following a typical Thomas’ teaching sequence with

MapleTA, we propose to analyse three specific episodes taken from our observa-

tions and referred to the third quiz proposed by Thomas to the students during this

learning sequence about linear functions. The first moment concerns a student

taking the quiz and the teacher declaring his potential use of the class’ results. In
the second episode, the teacher comments the quiz results of a student and, during

the third excerpt, the teacher comments the whole set of the class’ results.

First Episode

Mor is working on Question 3 concerning the competence (a): calculating and

detecting images (see Fig. 3). Formulated in the graphical register of representation,

the question is: “The curve below represents a linear function. The image of 9 is -2.

True/False.”

Mor is a low-achiever, with high difficulties in mathematics. Since he is working

alone on the mathematical task, he is activated as the owner of his own learning (E).

Fig. 2 The didactic

situation within a particular

cuboid of the FaSMEd

three-dimensional model

558 G. Aldon et al.



He is reading the task given by the teacher on MapleTA. Therefore, the technology

is used with the functionality of ‘sending and displaying’. The student faces the

didactic situation devolved by the teacher, represented by the tetrahedron in Fig. 4.

After a while, Mor copies the question, leaves MapleTA, and pastes the question

on the interactive environment of his tablet (OneNote) in order to work on the given

graphical representation using his previous experience on similar exercises. On his

screen, indeed, we can see a previously solved exercise that is very similar to the

new one (Fig. 5a). Mor starts using the same graphical technique (Fig. 5b),

mobilising his knowledge as a reflexive student. He has transformed the didactic

situation into an a-didactic situation represented by the face Student-Knowledge-

Technology of the tetrahedron, where he acts on a reacting milieu.
Confronted to the milieu, composed of the task, the technology and the previous

knowledge, Mor reflects on the mathematical situation mobilising his knowledge

and finally submits his answer, sending it back to the teacher through the MapleTA.

At the student’s level, there is a shift between different functionalities of technology
(Fig. 6), and the devolution of the mathematical situation by the teacher is at the

base of this dynamics.

The back and forth between the two cuboids in Fig. 6, related to the different

functionalities of technology, is the starting point of a more extended dynamics:

• towards other FA strategies;

• towards the peers and the teacher;

• towards other functionalities of technology.

Moving on to the teacher’s level, he is collecting the students’ answers and will

use MapleTA for ‘processing and analysing’ such data. To this purpose, during the

lesson, the teacher declares his potential FA strategies depending on the students’
responses.

Thomas (to Ant, an other student): I don’t know if I’m going to take it into account or not.

The idea is that I would like to mark it. If I realise that it doesn’t work. . . I don’t know. . .
I’m going to see what’s going on. . . At least I’ll know that you don’t succeed here. You can
skip it if you don’t know what to do.

The students’ results are feedback for the teacher, who will process and analyse

these data. Depending on the students’ performances, he may adapt his teaching, for

Fig. 3 Mor is reading

Question 3 on his tablet on

the platform MapleTA
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example by choosing the FA strategy of providing feedback to students (Fig. 7).

Through his words, Thomas gives to Ant a ‘feedback about the task’, by saying “At
least I’ll know that you don’t succeed here”.

Second Episode

Teacher’s feedback can be made on the spot, like in the second transcription that we

propose to analyse. Rom has completed his quiz, submitted his answers and got a

‘feedback about the task’ from MapleTA: “good answer” or “wrong answer”. Then

he calls Thomas in order to have further explanations.

Thomas: The first one is right, the second one is false, the third one is right, and the fourth

one is false. Finally, I consider that you were right on the two that are easier to explain and

you got false on the two that require more mathematical work. That’s normal. I consider

your result as normal.

Both the teacher and the student benefit from the feedback in this episode. The

student gets a ‘feedback about the processing of the task’ and also on his global

performance according to the teacher’s norm. The teacher, who analyses this quiz

result on the spot and considers it as normal, gets information about the student’s
achievement.

Fig. 4 The student is

activated as owner of his

own learning in the process

of sending and displaying

started with MapleTA by

the teacher

Fig. 5 (a, b) Mor working on OneNote
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Third Episode

Teacher’s feedback can be made after reflection and this is the case of the third

transcription. When all students have completed the quiz, Thomas leads the cor-

rection of the questions with the whole classroom using NetSupport School. The

lesson after, he proposes a global lecture of the class’ results at the three quiz and
analyses the whole set of answers stored by MapleTA, by showing them at the IWB

and commenting them with the students. In this way, he provides feedback for the

whole class on the attained mathematical competences.

Thomas: [Here are your results] on several trials. What we can see is that in calculating

images you reached 0.778. What does it mean? [. . .] about 8 successful students over

10, here. There we had 6 over 10, then 8 over 10. So we are good in calculating images. [. . .]
I’m not going further. However, we’ll come back on determining the expression of a linear

function. 0.1, you see 0.1, 0.3, and here we went down at 0.2. [. . .] I would like to get to

realise if I succeed in teaching you two or three things last time, so we are going to work

again on these two questions. Open Maple TA, and answer the two questions of the day.

Let’s go.

Thomas analyses the class’ results and he clarifies the learning intentions and
criteria for success. He has worked again with the students on the required

competences during the correction phase, and now he wants to test again the

competences revealed as not achieved by the analysis of the results, namely

competences (b) and (d). Thus, he engineers other learning tasks on MapleTA.

Two new questions are properly prepared and sent to students as a result of this

dynamics (Fig. 8). From Thomas’ words, we can observe that, as he expected in the

Fig. 6 Dynamics within the three-dimensional model at the student’s level between the function-
alities “Sending and Displaying” and “Providing an interactive environment” are the starting point

of other dynamics
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first episode, he has adapted his teaching depending on students’ progressive

achievement.

More generally, relatively to FA strategies, Thomas orchestrates the different

functionalities of technology in direction of individual students, of the whole

classroom or even of himself. Indeed, moving from ‘processing and analysing’
data to ‘sending and displaying’ results or new learning tasks allows him to choose

the most powerful FA strategy according to students’mastering of the competences

at stake.

FaSMEd in Italy: One Example and Its Analysis

In Italy the FaSMEd Project involves 19 teachers from three different clusters of

schools located in the North-West of Italy. 12 of them work in primary school

(grades 4–5) and the other 7 in lower secondary school (grades 6–7). All the

teachers work on the same mathematical topic: functions and their different repre-

sentations (symbolic representation, tables, graphs).

Fig. 7 Dynamics between the individual students and the teacher are the driving force of the

dynamics at the teacher’s level between the functionalities “Sending and Displaying” and

“Processing and Analysing” for providing feedback to students
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We believe that low achievement is linked not only to a lack of basic compe-

tences, but also to metacognitive factors. For this reason, during class activities, it is

important to make students: (a) develop ongoing reflections on the teaching-

learning processes; (b) make their thinking visible (Collins et al. 1989) and share

it with the teacher and the classmates.

Starting from these assumptions, we chose to exploit IDM-TClass, a connected
classroom technology, because it enables both to share the students’ ongoing and

final productions, and to collect their opinions during and after the activities.

Specifically, it allows the teacher to: (a) show, to one or more students, the teacher’s
screen and also other students’ screens; (b) distribute documents to students and

collect documents from the students’ tablets; (c) create different kinds of tests and
have a real-time visualization of the correct and the wrong answers; (d) create

instant polls and immediately show their results to the whole class.

Each school has been provided with tablets for the students (who work in pairs),

computers for the teachers and, where the interactive whiteboard was not available,

a data projector to display students’ written productions. The students’ tablets are
connected with the teachers’ laptop through the IDM-TClass software. IDM-TClass

was integrated within a set of activities coming from different sources. Among

them, the ArAl Units, which are models of sequences of didactic paths developed

within the project “ArAl – Arithmetic pathways towards favouring pre-algebraic

thinking” (Cusi et al. 2011).

For each lesson carried out in the classes, we have prepared a set of different

worksheets, aimed at:

Fig. 8 Dynamics at the teacher’s level to provide feedback to the whole class
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• supporting the students in the verbalisation and the representation of the rela-

tions introduced within the lesson;

• enabling the students to compare and discuss their answers;

• making the students reflect at both the cognitive and metacognitive level.

In this paragraph we are going to analyse an excerpt from a class discussion,

which was chosen because of the richness in the levels of feedbacks provided and in

the FA strategies that are activated. The discussion refers to the following

worksheet (Fig. 9).

We remark that this is not the first worksheet on this problem. During the

previous lesson, students were asked to discuss and compare Nicola, Battista and

Paolo’s statements and to interpret a symbolic expression (7� n¼ k) proposed by a

fictive student from another class with reference to the problem.

During the lesson reported in this example, 5th grade students are asked to

answer the question through a poll. The exploited functionality of the technology

is ‘processing and analysing’, because the technological tool collects all the stu-

dents’ answers and processes them, displaying an analytical as well as a synthetic

overview (bar chart) to the teacher. We (the teacher and the researchers) decided

not to provide an immediate correction.

When all the students answer the question, the teacher (Monica) shares with

them her screen, where the bar chart and the list of students’ answers are displayed
(Fig. 10).

The worksheet is also projected on the interactive whiteboard, next to the poll.

Fig. 9 The worksheet provided to students
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Monica observes that the 33% of the students chose the answer 7:h ¼ p, while
the 66% of the students chose the answer k:7 ¼ n. Monica reads the list of the

couples of students and the corresponding answer.

Monica chooses not to tell to the students what the right answer is, and asks to

the different pairs to explain why they chose a specific answer. The class discusses

on the possible strategies that could be used to identify the correct expression, in

case the only reading of Battista’s observation is not enough. The students are

invited to check if the number of tips and the height of every incision verify the two

expressions. Some students are asked to substitute, in the two expressions, the

different values connected to each incision (4,28; 3,21; 2,14; 1,7). One of them

observes that she discarded expression A because the result of the division 7:28 is

not 4.

Alice, softly, says that 7:7 ¼ 1. Monica asks her to explain what she means. We

report the related excerpt:

1. Monica (to Alice): “What were you saying?”

2. Alice: “I was saying that, for example, the figure, the one on the bottom right, is 7 cm, so 7:7 is
1, therefore the result is not a decimal number, while with the others (the other figures) it is” (the
result is a decimal number).

Monica focuses on Alice’s observation and states that the chosen expression should represent all
the incisions, not only the first one. Lisa and Nicolò ask if they can change their mind.

9. Monica: “Have you changed your mind? That is, Lisa, you chose answer A, but now you have

changed your mind. Why?”

10. Lisa: “Ahem . . . 7 is only that figure. While, if you divide the height by 7, you mean all the

figures.”

Another student declares that, although h in Italy always stands for the height, in the expression
“7:h¼p” h does not refer to the height.

14. Monica: “It does not refer to the height. Is it right, Lisa?”

15. Nicolò (raising his hand): “Monica, because h refers only to one (height), while k. . .”

(continued)

Fig. 10 The teacher’s screen shared with the students
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16. Lisa: “Both (the letters) . . . (Nicolò is speaking). . .no, wait! (to Nicolò)”

17. Monica: “One at a time”

18. Lisa: “Both the letters are always the height, but h is only for one (height) . . . only for this one
(Lisa goes near the interactive whiteboard to indicate the incision 7 cm height), while k is valid

for all (the incisions).”

19. Monica: “k is valid for every incision. (Stefano is raising his hand) Stefano?”

20. Stefano: “The first expression . . . No, I mean: the second expression is more correct than the

first. Battista says . . . where is it? (Stefano is trying to find Battista’s statement) ‘It is evident that
dividing by 7’. It is ‘Dividing by 7’, not ‘dividing the height’. . . that is . . .

21. Monica: “Dividing 7 by ...the height”

Dialogue between Monica and Amalia, who observes that Lisa’s interpretation of the two
expressions is right and declares that, after having listened what Lisa and Nicolò said, she
realised that the expression could be interpreted in different ways. Nicolò asks to intervene.

36. Nicolò: “Monica, in the first statement (he is referring to the first expression) 7 is divided by
the height. Instead, in the second (expression) the height is divided by 7!”

37. Monica: “Very good! So . . .Many times, I realised that many times it is not the same thing. It

is necessary to pay attention. It is necessary to think very carefully to what is written.

Exchanging, inverting the numbers is not the same thing.”

Monica comments on the usefulness of this kind of activity, stressing on the reflections developed
by the students during this discussion.

39. Amalia: “Last time, you (Monica) asked us if this thing, this kind of work, was useful. In my

opinion, many (students) have changed their mind because they said ‘Look, now, thanks to these
explanations and to all of these . . . thanks to all of these explanations, I understood what I have to
do.”

40. Monica: “Lisa, was this activity really useful for you?”

41. Lisa: “Yes”

42. Monica: “Why?”

43. Lisa: “Ahem, because I have never done this kind of work that . . . together . . . even if I made

a mistake, because I chose A, the fact that the others chose B and explained their motivations

‘oppenned’ my mind, it opened my mind.”

44. Monica: “ ‘It oppenned your mind’, it is ok!”

45. Nicolò: “Monica, it made us understand that first you have to reason, then you can choose.”

The process ‘establishing where the learners are in their learning’ is central in
this lesson: the discussion is planned in order to support the students in making the

motivations of their choices explicit. This enables to highlight erroneous ways of

reasoning and incomplete explanations, but also to highlight the evolution of

students’ reasoning, together with the way in which it is influenced by the other

students’ interventions.
Our analysis of this excerpt will focus on Nicolò and Lisa, two low-achievers.

We may say that Lisa and Nicolò are activated as owners of their own learning
during the discussion: they ask to correct their initial answers, effectively motivat-

ing their new choice (from line 10). The teacher’s conduction of the discussion

fosters the activation of this strategy by the two students: she is another fundamen-

tal agent within this process. The following diagram (Fig. 11) represents the two

cuboids that could be, therefore, highlighted within the FaSMEd three-dimensional

model at the teacher’s level and at the students’ level.
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There are also evidences of the activation of students as instructional resources
for one another. Lisa (lines 10 and 18), for example, refers to Alice’s intervention
(line 2) and elaborates it to start developing her own argumentation. Also Nicolò

(line 36) refers to Stefano’s intervention (line 20) and elaborates it. Again, we must

stress that the teacher is another fundamental agent in this process, because her

conduction of the discussion fosters the activation of this strategy at the peers’ level.
The following diagram (Fig. 12) represents the two cuboids that could be

highlighted within the FaSMEd three-dimensional model at the teacher’s level

and at the peers’ level.
Another process that is central in this lesson is ‘establishing what needs to be

done to get them there’: the teacher intervenes to highlight the most effective ways

of reading symbolic expressions and of identifying the one that better represents the

involved relations, providing also guidance on how to read the tasks and the texts of

the problems (line 37). During the discussion, some interventions are also focused

on the positive effects of students’ deep involvement in the activities.

It is possible to highlight feedback related to three of the four levels proposed by

Hattie and Temperley (2007).

Students’ explanations of the reasoning on which their choice was based repre-

sent an example of ‘feedback about the task’, which is given among peers, because
of the different levels of effectiveness of these explanations. For example, Stefano’s
intervention (line 20), which highlights that the expression 7:h¼p does not repre-

sent Battista’s sentence because, in the expression, 7 is divided by the height and

Sending and Displaying

Processing and Analysing

Interactive Environment

Student

Peers

Teacher

A B C D E

Agent/s

FA Strategies (Black & Wiliam)

Functionalities of the technology

Fig. 11 The activation of the FA strategy “Activating students as owners of their own learning”,

at the students’ and teacher’s levels, through the “Processing and Analysing” functionality
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not vice-versa, represents a feedback for Nicolò, who refers to Stefano’s statement,

clarifying it in an effective way (line 36).

Monica’s meta-level intervention in line 37 aims at sharing criteria to correctly

identify the expressions that better represent specific relations among quantities: it

can be interpreted as ‘feedback about the processing of the task’. This is also an

example of the teacher’s exploitation of feedback from the students, because

Nicolò’s statement (line 36) provides Monica the opportunity to discuss the impor-

tance of a careful interpretation of symbolic expressions (line 37). Another example

of this kind of feedback is Alice’s intervention (line 2), which introduces the special
case of the 7 cm figure, enabling Lisa to understand her mistake and ask to change

her answer, proposing motivations (line 10, line 18) that clearly refer to Alice’s
observation.

The interventions that refer to the importance of listening to each other and of

actively participating to class discussions (line 39, line 43, line 45) could be

interpreted as ‘feedback about self-regulation’. Amalia’s statement (line 39), in

fact, provides Monica with the opportunity to discuss on the support given by the

discussion with the classmates, asking to Lisa if the activity was useful for her (line

40). It also represents a feedback for Lisa, who proposes a meaningful reflection on

the positive effects of the discussion in supporting her understanding of the problem

(line 43).

We can therefore highlight, again, two cuboids, within the FaSMEd three-

dimensional model (Fig. 13), related to the “Providing feedback that moves learners

forward” FA strategy at the teacher’s level and at the peers’ level).
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Interactive Environment
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Functionlities of the technology

Fig. 12 The activation of the FA strategy “Activating students as instructional resources for one

another”, at the peers’ and teacher’s levels, through the “Processing and Analysing” functionality
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As already stressed, starting from the poll, Monica has planned a rich discussion,

that enabled the activation of different FA strategies by the different participants.

This observation enables to highlight another cuboid within the FaSMEd three-

dimensional model (Fig. 14), referring to the FA strategy “Engineering effective

classroom discussions and other learning tasks that elicit evidence of student

understanding”.

The technology plays an important role in supporting the agents involved in

these processes, in particular in providing feedback to each other. First of all, the

software elaboration of the data and the graphical representation of the results of the

poll give the teacher the chance to ask for the interpretation of these results and to

plan the order of students’ interventions during the discussion (Monica decides to

start the discussion involving firstly those who have given the wrong answer).

The teacher’s choice of not providing students with an immediate automatic

correction of their answers may represent a support for students at different levels:

(a) it enables to focus on the explanations of the answers, more than on the

identification of the correct answer; (b) it pushes the students to motivate their

answers; (c) at affective level, the lack of a written evaluation ensures that the

students do not feel worried when they comment upon their choices.

Finally the time given to students to choose their answer (in this case, all students

answered before the allowed time of 6 min) enables them to reflect, in pairs, on the

motivations on which their choice is based. The moment that precedes the answer to

the poll is, therefore, preparatory to the subsequent discussion.
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Fig. 13 The activation of the FA strategy “Providing feedback that moves learners forward”, at

the peers’ and teacher’s levels, through the “Processing and Analysing” functionality
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The effective role played by the chosen functionality of the technology could be

also highlighted if we refer to the FaSMEd three-dimensional model to develop a

global analysis of the example. The representation of all the cuboids highlighted

looking at micro-episodes within our example (Fig. 15), indeed, points out the

active involvement of the three agents and the activation of a wide range of FA

strategies, drawing attention to the complex dynamics activated through the support

of the ‘Processing and Analysing’ functionality of the technology.

FA with Technology and Professional Development

The framework of the MDT, where the interactions between teachers and

researchers allow interpretation, at a meta-didactical level, what happened at a

didactical level, completes the analysis and illustrates the contribution of the

collaborative work both in the design of lessons and for professional development.

In the next sections, we present the point of view of teachers through the lens of the

MDT model.
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Fig. 14 The activation, by the teacher, of the FA strategy ‘Engineering effective classroom

discussions and other learning tasks that elicit evidence of student understanding’, through the

‘Processing and Analysing’ functionality
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FA and PD Within the FaSMEd Project in France

One of the main concepts of the MDT is the internalisation phenomenon, which has

been transversal in the collaborative work between teachers and researchers

throughout the project. Particularly, the concept of FA, as collecting data, analysing

them, providing feedback to students and therefore adapting teaching according to

students’ achievement, could be seen as an external component for teachers at the

beginning of the project. It has become internal in the observed teachers’ practices
through the use of technology. Also the use of technology can be considered as an

external component becoming internal as a consequence of the role played by the

institutional dimension of the project. The process of internalisation leans on the

double dialectic where the meta-level consists in conceptualising the FA process,

while the didactic level consists in implementing this concept in the classroom

practices. In order to illustrate the double dialectic, we will refer to the interviews

done with Thomas as well as excerpts of the logbook he filled in all year long.

After Thomas’ lessons on linear functions, we interviewed him starting from an

analysis of what happened in the classroom and going to more general questions

about the way he considers his teaching.

Researcher: “We were in the classroom yesterday when you asked the four fundamental

questions relatively to the linear functions [. . .] then you interpreted the results, you

showed which questions were well-done or not so well-done and you proposed again

some questions...”

Thomas: “Where I simplified didactic variables.”

Researcher: “Yes and it’s very interesting because...”
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Fig. 15 The use of the FaSMEd three-dimensional model for a global analysis of the example
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Thomas: “To come back to the mathematical notion.”

Researcher: “Yes, to the notion, without the trouble of calculating the sum of fractions and

other things...”

[. . .]
Thomas: “On the third quiz we saw the students’ results decreasing that was due to two

things: the difficulty of calculation with negative numbers and fractions, but also

because I made a bad parametrization of the second quiz and the students could do

several trials, which makes statistics increase [. . .] this progress was not reliable.

Instead, the results of today will give a good representation of the evolution of students’
knowledge.”

In this excerpt, Thomas remains on the didactic level and analyses the difficul-

ties his students encountered when they took the quiz. He justifies his didactic

choices and explains why he eliminates troubles coming from calculation difficul-

ties. In front of each type of task, he takes into account the techniques that students

have to know and gives the justification of these choices, completing his praxeology

at a didactical level. However, during the interview, interacting with researchers,

Thomas moves on to a meta-didactical level when he speaks of the evolution of his

FA practices with technology:

Researcher: “You see an evolution but also you see that some students do not succeed yet.

Do you plan to do something and how do you plan to continue relatively to this, to the

results that you see in the classroom?”

Thomas: “To do something... From the beginning of the experimentation, it’s much easier

with NetSupport. Globally, to give a simple answer... When I use NetSupport, I can

intervene individually. . . I intervene directly with some students and I explain again

[. . .] I deal with difficulties, perhaps not of all, but I treat answers individually and now
when I use Maple TA, I don’t personalize. . . depending on the statistical results that I

get, I decide to give a feedback to the whole class or not.”

Thomas has built a technique within a meta-didactical praxeology including

technology as a tool allowing to personalize or to redirect his teaching. His

reflections at a meta-didactical level are transposed into the logos of his didactical
praxeologies, becoming the FA principles that justify his FA strategies. This is an

example of a dialectic developed at a meta-didactical level that feeds into the

dialectic at a didactical level within the MDT process. Thomas justifies his didac-

tical praxeologies, by including the fundamental principles of FA.

Thomas also points out the role of the institutions in his FA practices showing

that the global institution of the school does not give time to support low achievers

but in the local institution of the classroom, he organizes some special work

sessions with students. The particularity is that Thomas leaves to students the

responsibility for participating in these supplementary lessons, which contributes

to the engagement of students in their own learning. Students’ results in the process
of FA may influence their decision to participate.

Moreover, as we can read in the teacher’s logbook, when he speaks about his

praxeologies, he notices some changes that have become stable regarding FA.

After several experiments, my uses are stable and centred on formative assessment as well

as the modification of the students’ status of writing.
Formative assessment: use of NetSupport School and MapleTA.
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Valorisation and exploitation of students’ writing (storing data with NetSupport School
and processing with the whole class thanks to the IWB)

The use of software specifically related to mathematics (DGS, Spreadsheets, . . .) is now
regular.

We can interpret Thomas’ words as emblematic of an advanced state of the

internalisation process concerning the component of FA. Technology emerges as a

strong institutional component of his practices that entails teaching modifications

relatively to FA. We can detect signs of a shared praxeology in the vocabulary used

by Thomas to describe his teaching practices. This shared praxeology as well as the

concepts of FA and the functionalities of technology that are stressed by Thomas

can be considered as a first result of the whole MDT process. In a general meeting at

the end of the year with other teachers involved in the project, Thomas declares: “I

had the pleasure of discovering formative assessment. [. . .] I will never go back”.

FA and PD Within the FaSMEd Project in Italy

The teachers collaborating with the Italian team are interviewed after each lesson

carried out within the FaSMEd Project. They are asked to reflect on the lesson

focusing on:

(a) the most effective/most problematic moments during the lesson;

(b) the most striking students’ interventions, in relation to the given feedback;

(c) the effectiveness of the support given by the technology in relation to FA;

(d) the support given by the technology to low-achievers.

In this paragraph, we will analyse the reflections carried out by Monica during

her interview on the lesson documented in the previous section. We focus, in

particular, on Monica’s praxeology related to the task of developing FA in her

class. The aim is to highlight the evolution of her praxeologies during the FaSMEd

Project, occurred in the interaction with the researchers’ team.

During the interview, Monica focuses on two main aspects: (1) the surprising

effective participation of Lisa and Nicolò during the discussion; (2) the function-

alities of the technology that better support the students and, in particular,

low-achievers.

As regards point (1), Monica stresses that she is really surprised by Lisa and

Nicolò’s interventions during the discussion:

Monica: “The ones that surprised me more are Lisa and Nicolò. In particular Nicolò,

because Lisa is a more logical girl, and if she is focused when doing mathematics, she

produces more [than him]. On the contrary, Nicolò faces great difficulties in understanding,

even to understand the text of a task. He is the typical student with great difficulties in

understanding. The fact that today he managed to tell those things has been a surprise.”

In Monica’s opinion, Nicolò and Lisa were able to autonomously explain the

decision of changing their answers thanks to the discussion activated starting from
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the screen sharing, where students’ answers were displayed. She identified it as one
of the most effective moments during the lesson.

As regards point (2), Monica stresses that:

Monica: “. . .the fact of using this technology and getting the image on the screen allows

you, in the meantime, to keep it always present – and when you work in paper and pencil

environment, you don’t have it, or you get it only on the spot. Then, when the students write
and try to answer, many times they make mistakes, they scribble, and so their paper is not

clean anymore. Having the possibility, with the tablets, also to delete and get all the screen

clean again, so to be able to start again, in my opinion, creates also a mental order not

possible in paper and pencil, where, when you write, you cannot delete anymore, you get

tired and you lose your focus a lot.

. . .the possibility of showing the solutions on the screen, the rapidity in being able to see
things: they send you their solutions and you can show them to the others. And seeing is not

the same as only listening to. In a lesson with paper and pencil worksheets you can listen to

all answers and report them on the blackboard, but it takes more time. It takes too much

time and the children get lost.”

On one side, Monica focused on a functionality of the technology that can be

included in the ‘sending and displaying’ category: in fact, she stresses again that the
‘displaying of the screens’ is efficient because it enables the students to see, on the

interactive whiteboard, the other students’ productions, reflecting on them without

having to imagine and/or memorise them. On the other side, she focused on another

component of the technology: the tablets. She specifically focused on the possibil-

ity, given by tablets, of deleting mistakes. In Monica’s opinion it supports, in

particular, those students (like Lisa and Nicolò, for example) who tend to be not

concentrated.

Monica is part of a group of teachers that are involved also in another long-term

regional project, called AVIMES,4 aimed at fostering FA in school. Monica and her

colleagues are used to collecting students’ written productions during class discus-

sions to share and discuss them with the class. A vision of FA in line with our

perspective was, therefore, an internal component of Monica’s praxeology also

before her participation to FaSMEd. This information enables us to characterize

Monica’s initial praxeology when she started her experience within the FaSMEd

Project: (a) the didactical techniques used by Monica to develop FA in her classes

include the sharing of students’ productions and collective discussions to make the

students compare their works and reflect on them; (b) the theories/justifications of

the techniques developed in AVIMES. Digital technologies are external compo-

nents to this praxeology.

In her interview, Monica compared her way of working during the AVIMES

lessons with the new way of working with the support of the digital technology. She

stressed the rapidity in which the technology enables collecting, displaying and

sharing the students’ answers and the consequent saving of time:

4AVIMES (http://www.avimes.it/who%20are%20we.htm) is a Regional Project focused on

research, innovation and professional development in the field of school self-evaluation.
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Monica: “The fact of having always in real time, on the screen, the various solutions. . .We,

with AVIMES, were used to working in this way: collecting the students’ solutions,

transcribing what they say and what you say. . . but it takes a longer time, because you

collect them [through the audio-recording], write them down, and then report them. This is

a loss of time. With the technology, you can get immediately all projected on the screen and

the students’ attention and concentration keeps longer.”

When asked if she would change something in the lesson, Monica introduced

also a reflection on her way of working with this technology. Monica, as many other

colleagues, who declare to have faced some difficulties because they were not used

to digital technologies during their lessons, seems recognising the effectiveness of

the use of a connected classroom technology in fostering FA in her class:

Monica: “No, currently I would not change anything. I’m a little getting used to this. Maybe

I could get better results as I were more able to use the computer; if I were quicker I could

do something more. Being more able in getting, opening, and closing files, maybe also the

students’ attention would be greater. A great part depends also on the teacher carrying out

the lesson: results do not depend only on technology, but also on me, and maybe before the

end of the project I can do something more.”

We can therefore highlight an evolution of Monica’s praxeology: digital tech-
nology, which was external, is slowly becoming an internal component. In fact,

Monica recognizes the role it plays, integrated with the other techniques that were

already part of her praxeology, in supporting FA in her classes. This evolution is

still in progress. The evolution of the logos components of the praxeology, does not

go at the same pace as the evolution of the technique. In fact, we can notice that

Monica does not explicitly refer to the theoretical frame that support the approach

developed within FaSMEd. The appropriation of this frame will require further

discussion with the teachers and activities specifically devoted to a real sharing of

the theoretical basis of this work.

Conclusion

This paper had a twofold aim: (1) highlighting how the different functionalities of

technology could enable the enactment of FA strategies at the teacher’s, the

students’ and the peers’ levels; and (2) characterising the dynamics that intervene

within programs involving a strict collaboration between teachers and researchers.

Concerning the first aim, the analysis of the selected episodes shows clearly the

contribution of technology as a medium facilitating the different FA strategies but

also the dynamics between these strategies. In particular, the Italian case study

points out how the FA strategies and the different levels of feedback emerge in the

classroom interactions. The French example highlighted different moments in a

sequence, providing a dynamic view of the FA process. The FaSMEd three-

dimensional framework enabled us to describe and to analyse the FA lessons

from both static and dynamic perspective, considering both the teacher and the
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student viewpoints. And particularly this model points out the role of technology as

a facilitator of the whole process.

Our analysis has highlighted the interrelations between the different functional-

ities of technology and the FA strategies. The possibility given by technology to

store data and the ease to come back to these data is an important functionality that

teachers can use to enhance their teaching strategies. As recognised also by the

teachers in the interviews, technology is not at the base of FA, but appears as an

essential tool to improve the effects of FA for students and for teachers as well. For

example, it is possible to clarify learning intentions and criteria for success also
without technology but technology supports the teacher in making these intentions

explicit and to share them with the students, at both individual and class level.

Concerning students, the strategies of activating students as the owners of their own
learning and activating students as instructional resources for one another appear
as the core of FA, since they enable the active involvement of all the agents

(teacher, students, peer/group) within the FA process.

Moreover, the analysis enabled to highlight interrelations between different FA

strategies: for instance, engineering effective classroom discussions and other
learning tasks that elicit evidence of student understanding is facilitated by giving

the opportunity of providing feedback that moves learners forward on the spot as

well as after reflection.

As regards the second aim, the teachers-researchers teams engaged in a process

of design-based research benefit of a professional development based on the

collaborative work. The Meta-Didactical Transposition framework can show the

evolution of beliefs about FA with technology and contribute to the understanding

of the meta-level of reflection necessary for a daily use of FA strategies in the

classroom. The double dialectic and the internalization of components had a direct

impact on the involved teachers but more generally their analysis give information

that can be useful for in-training sessions.

The importance of teachers as guides in FA lessons with technology has essential

consequences on their practices in terms of professional development. When we

began the project, most of the involved teachers stated that FA was present in their

practices. However, most of the time, FA was not developed over time and

appeared occasionally in the classroom more as a reassuring method than as a

teaching strategy. Considering technology as a tool enabling to enhance teaching

strategies including FA is surely an important issue of the next years, regarding

teachers’ professional development.
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matiques 1970–1990. Grenoble: La Pensée Sauvage.
Chevallard, Y. (1985). Transposition didactique: Du savoir savant au savoir enseigné. Grenoble:
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Teaching Intriguing Geometric Loci
with DGS

Daniela Ferrarello, Maria Flavia Mammana, Mario Pennisi,

and Eugenia Taranto

Abstract In this chapter we present an experimental activity conducted with eight

teachers in several high-schools in the South of Italy. The activity deals with the

study of some geometric loci and is based on the use of a Dynamic Geometry

System (DGS) on the one hand and on properties of geometric transformations on

the other hand. Here we explain the motivations at the base of our activity and show

the contents, the modalities of building up the activity and the results of the teaching

experiment.

Keywords Geometric loci • Geometric transformations • TPACK • DGS •

Teachers and students’ laboratory

Introduction

The concept of locus is usually introduced in school studying the perpendicular

bisector of a segment, the circumference first and the other conics afterwards. It

remains a quite hard topic to understand for students (Pech 2012), and teachers

quite often do not go into the details of it. The idea of our activity is to present new

geometric loci so to deepen the concept and to be sure that students internalize it

correctly. We carried out this activity with 210 students in several high schools in

Sicily (grade 10-11-12) and eight teachers that have collaborated with the

researchers (the authors and two more high school teachers). The whole activity

is centred on the concept of geometric locus: several loci are introduced and some

properties are explored and proved. In particular, we based the activity on the use of

a DGS (Geogebra) on the one hand and some properties of the geometric trans-

formations on the other. The software helps students in the “investigation” process,

the geometrical transformations in the proving part.
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The chapter is divided into four parts: in the first the theoretical framework is

presented, the TPACK (Technological, Pedagogical and Content Knowledge)

model; the second describes the contents of our activity; the third is related to the

teaching experiment; the fourth shows the results of the experimentation.

Theoretical Framework

Koehler and Mishra (2008) highlight, in the TPACK framework, the interplay of

the three components, Technological, Pedagogical and Content Knowledge, in the

learning and teaching process (Fig. 1). “Good teaching is not simply adding

technology to the existing teaching and content domain. Rather, the introduction

of technology causes the representation of new concepts and requires the develop-

ment of sensitivity to the dynamic and transactional relationship between all three

components suggested by the TPACK framework” (Koehler and Mishra 2005,

p. 134). The interplay of the three components results into the seven sets described

in (Koehler and Mishra 2009), namely: Technological Knowledge, Pedagogical

Knowledge, Content Knowledge, Technological Pedagogical Knowledge,

Fig. 1 TPACK image (from http://tpack.org/)
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Technological Content Knowledge, Pedagogical Content Knowledge, Technolog-

ical Pedagogical Content Knowledge.

The activity we present fits this framework, conjugated as it follows:

As for the Technological Knowledge (TK) we use the DGS to discover, conjec-

ture and verify properties. First of all, many loci involved in the activity are quite

difficult to be drawn in the blackboard, despite the teacher can be precise. Instead,

by using technology, students have well-drawn figures and they have the possibility

to discover a property by observing pictures in which the property really holds

(at least with a very small approximation).

Second, the use of the “Dragging” mode in the DGS is very useful to understand

that the discovered property not only holds for that particular picture you draw but it

holds for all the pictures with the same features, so, by dragging, students are able to

generalize and they conjecture the observed property.

Third, the software raises up the students from the effort of calculations, giving

them the opportunity to reflect more deeply on the concept: to verify a property

students do not get lost in calculations that are immediately made, instead.

Finally, technology for students is fun and they can’t wait to use it, so a part of

the good role of technology is given by the enthusiasm that students lavish in facing

a not so easy task.

The proof, instead, is made by paper and pencil: students are guided by

worksheets that give them a space and a time to think over the “why” that property

holds, in such a way the topic is mastered.

As for the Pedagogical Knowledge (PK) we refer to the Zone of Proximal

Development (ZPD) of Vygotskij, Learning by doing of Dewey and Enactivism,

all within a “mathematics laboratory,” (Anichini et al. 2004). The laboratorial

activity enables students to “get their hands dirty” (Dewey 1916), as Dewey pro-

poses in his pedagogical activism, because the learner should be an active character

in the learning process, interacting with the object to be known, by doing. Doing is

not just a mere and blind practice, but students need to use mind together with

hands. Body and mind, manipulating and thinking, are one, as the Embodiment
theory claims (Johnson 1989; Johnson and Lakoff 1999). Learning by doing is

completed with Learning by thinking that in our activity is fostered by the argu-

mentation and proof activity, and by the discussion with classmates and teacher.

Finally it is important also Learning by loving, i.e. to be emotionally involved in the

task, in such a way learners study “not for duty, but for beauty”. Students face new

problems to work on. The problem, according to Vygotskij’s theory, should be

suitable for the ZPD (Vygotskij 1986), i.e. the right problem to be handled is the one

that is not solvable by a single student, but solvable with the guide and assistance of

more skilful peers (or teacher). The ZPD is enlarged whenever a problem is solved

by collaboration and it becomes the new actual developmental level (ibid.). In such

a way the individual competence of a single student has an increase. In the process

of solving problems together with classmates, students are the principal actors

(Rossi 2011), according to Enactivism principles: the subject of the action is not

the teacher, (that is an actor, like the student, but also a director) but the student

who actively takes part of the teaching/learning process “here and now”. By using
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the DGS and peer confronting, supported by the careful presence of the teacher,

students discover, understand and master a new mathematical concept.

As for the Content Knowledge (CK) we refer to some recent studies (Ferrarello

et al. 2014b) that deals with the study of some geometric loci, detailed in the

“Contents” section. The choice of the topics aims to the concept of geometric locus,

by means of an elegant approach tied to a frequent use of geometric transformations

that simplify many proofs (Ferrarello et al. ibid). Since this paper is a bit general,
the research team provided notes for teachers, who do not know them. These notes

accompany them in the construction of educational material.

The TPACK’s authors underline that these three discussed components intersect

each other, generating TCK, PTK and PCK (see Fig. 1). Explanations of how these

areas have been orchestrated in our work can be read in the following:

“Teachers need to master more than the subject matter they teach; they must also

have a deep understanding of the manner in which the subject matter can be

changed by the application of particular technologies” (Koehler and Mishra 2009,

p. 65). We declined TCK intersection by means of a specific training of teachers on

the DGS. We did not only explain how the artefact works, but also we made them

aware of “how” the artefact can be used in the teaching practice to be effective. The

PTK intersection is implemented in our activity by the way we use the Vygotskijan

idea of the semiotic mediation (Vygotskij 1986): the concepts we aimed at were not

immediate, but they need the mediation of an artefact to be completely understood.

The digital artefact (the DGS) becomes tool whenever it participates to the “con-

struction of mathematical meaning”. In fact the DGS not only draws the locus, and

constructs it into the screen but, what is more important, it plays an important role in

constructing the “locus idea” in the students’ minds.

Our PCK intersection perfectly fits in Shulmann (1987) theory of pedagogy and

content. Shulmann provocatory starting from “He who can, does. He who cannot,

teaches”, finally aims to teachers that are not “those who can” or “those who

cannot”, but rather “those who understand”, i.e. those who are able to effectively

integrate pedagogy and contents. To make teachers “those who understand” it is

important to give them the opportunity to build the teaching material, instead of

receiving a ready package to be blindly applied in every environment. In such a way

“the teacher interprets the subject matter, finds multiple ways to represent it, and

adapts and tailors the instructional materials” (Koehler and Mishra 2009, p. 64).

Contents

The activity is inspired by a recent work (Ferrarello et al. 2014b) and deals with the

study of some geometric loci.

We present here some of the contents of the activity. Precisely, we recall some

preliminary concepts, some basic definition and properties that are used in the

activity, give the general definition of the proposed problem and present all the
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properties studied with the students (Table 1). Then we enter the details of some

cases (n=1, n=2, a and n=3, a) whose worksheets prepared for the students are

presented in the following.

Preliminary Concepts: Homothetic Transformations

Let us fix a point O of the plane and a real non zero number k. We call homothetic
transformation, or central dilatation, with centre O and ratio k the transformation

of the plane that leaves O fixed, and associates a point A with A0, such that OA
0

OA ¼ �
�k
�
�

and A0 belonging to the semi-line OA if k>0, or on the semi-line opposite to OA if

k<0. When k = 1 the transformation is the identity, when k = � 1 is the central

symmetry centred at O.

A homothetic transformation is a bijection from the plane to itself. It maps

straight lines into straight lines and segments into segments. Moreover, in a

homothetic transformation with ratio k, the ratio of two correspondent segments

is constant and is equal to |k|.
In a homothetic transformation the midpoints of correspondent segments are

correspondent, correspondent straight lines are parallel, in particular every straight

line passing through O is fixed, then its correspondent is itself.

A homothetic transformation with centre O and ratio k maps a circle with centre

C and radius r into the circle with centre C0 and radius |k| r, being C0 the corre-

spondent of C.

Preliminary Concepts: Nine-Point Circle of a Triangle

Consider a triangle ABC and let H and O be its orthocentre and circumcentre,

respectively. Let A0B0C0 be the medial triangle of ABC, where A0, B0, C0 are the

midpoints of the sides BC, AC, AB, respectively. Let A*B*C* be the orthic
triangle of ABC, where A*, B*, C* are the feet of the altitudes trough A, B, C,

respectively. Let A00, B00, C00 be the Euler points of ABC, i.e. the midpoints of the

segments AH, BH, CH, respectively (Fig. 2).

Theorem of Poncelet (1821). The nine points A0, B0, C0, A*, B*, C*, A00, B00, C00 lie on
a circle.

This circle is called nine-point circle or circle of Feuerbach of ABC. Its centre N,
called nine-point centre or point of Feuerbach, is the midpoint of OH and its radius

is half of the circumradius of ABC.
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Preliminary Concepts: Centroid of a Quadrilateral

Consider a convex quadrilateral ABCD and let M1, M2, M3, M4 be the midpoints of

the sides AB, BC, CD, AD, respectively.

Varignon theorem (1731). The quadrilateral M1M2M3M4 is a parallelogram.

The quadrilateral M1M2M3M4 is called Varignon parallelogram of ABCD. The

segments M1M3 and M2M4 are called bimedians of ABCD and their common point

G is called centroid of ABCD. Note that the bimedians are the diagonals of the

Varignon parallelogram. It follow that the centroid G bisects the bimedians.

Preliminary Concepts: Anticentre of a Cyclic Quadrilateral

Given a convex quadrilateral ABCD, the line through the midpoint of a side and

perpendicular to his opposite side is called maltitude. There are four maltitudes of a

quadrilateral.

In general the maltitudes of a quadrilateral are not concurrent in a point. It is

possible to prove that quadrilaterals whose maltitudes are concurrent in a point are
all and only the cyclic quadrilaterals, i.e. quadrilaterals that are inscribable in a

circle.

The point H of concurrency of the maltitudes in a cyclic quadrilateral is called

anticentre.
It is possible to prove that in a cyclic quadrilateral the anticentre is the symmetric

point of the circumcentre with respect to the centroid (Fig. 3).

Fig. 2 Nine-point circle
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The notion of maltitude can be extended to concave or crossed quadrilaterals.

The notion of anticentre can be extended to crossed cyclic quadrilaterals. Note that

a concave quadrilateral cannot be cyclic.

Geometric Loci

A geometric locus of the plane is the set λ of all and only points P of the plane that

satisfies a given property (classical examples are the circle, the perpendicular

bisector of a segment). There are loci that are described by a point L that is function

of a point P that moves, for example, over a line, or a circle (or more in general, a

conic).

General problem:

Let γ be a circle with centre O and radius r; fix n points on γ, with n = 1, 2, 3 and

consider a generic point P of γ; we define a point L that depends on P and study

the locus λ described by L when P moves on γ.

In the following table we report all the cases we examined.

We report here the details of cases n = 1, n = 2, a and n = 3, a. An extended

version of all the details can be found in (Taranto 2014).

Fig. 3 Anticentre,

circumcentre and centroid

of ABCD
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Table 1 Contents

n = 1
Let A be a fixed point of γ and P a generic point

of γ. Let L be the midpoint of the segment

AP. The locus λ described by L when P moves

on γ is a circle with radius r/2 and centre the

midpoint of AO.

n = 2, a
Let A and B be two distinct points of γ, P be a

generic point of γ. When P moves on γ, the
locus λ described by the centroid L of ABP is

the circle with radius r/3 and centre the point

C of the segment OM such that CM=1/3OM,

where M is the midpoint of AB.

n = 2, b
Let A and B be two distinct points of γ, P be a

generic point of γ. When P moves on γ, the
locus λ described by the orthocentre L of ABP

is the symmetric circle of γ with respect to AB.

n = 2, c
Let A and B be two distinct points of γ, P be a

generic point of γ. When P moves on γ, the
locus λ described by the incentre L of ABP is

formed by two arcs of the circles through A, B

and with centres the common points to γ and to
the perpendicular bisector of AB.

n = 2, d
Let A and B be two distinct points of γ, P be a

generic point of γ. When P moves on γ, the
locus λ described by the circumcentre L of

ABP is one point, the centre O of γ.

n = 3, a
Let A, B and C be three distinct points of γ.
Let P be a generic point of γ. When P moves

on γ, the locus λ described by the anticentre L

of ABCP is the nine-point circle of the triangle

ABC.

n =3, b
Let A, B and C be three distinct points of γ. Let
P be a generic point of γ. When P moves on γ,
the locus λ described by the centroid L of

ABCP is the nine-point circle of the medial

triangle of ABC.

Some more loci, Example 1

Let A and P be points of γ. The locus λ
described by the orthocentre L of the triangle

AOP, when P moves on γ, is a cubic with a

node in O (Strophoid).

(continued)
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Case n=1

Fix a point A on γ and consider a generic point P of γ. Let L be the midpoint of AP

(Fig. 4).

The locus λ described by L is the circle with radius r/2 and with centre at the
midpoint C of AO.

Table 1 (continued)

Some more loci, Example 2

Let A and P be points of γ, t the tangent line to γ
in P and L the foot of the perpendicular to

t from A. The locus λ described by L when P

moves on γ is a bicircular quartic with one cusp
in A (Cardioid).

Some more loci, Example 3

Let AB be a diameter of γ. Let r be a perpen-
dicular line to AB. Let P a point of γ and R the

common point to the lines AP and r. Let L the

midpoint of PR. The locus λ described by L

when P moves on γ depends on r, but it is in
general a cubic.

Fig. 4 Case n=1
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Proof Since L is the midpoint of AP, the points P and L are related as it follows:

AL ¼ 1
2
AP. Then the homothetic transformation with centre A and ratio 1/2 trans-

forms P in L. When P moves on γ L describes λ, then the homothetic transformation

transforms γ in λ. Therefore λ is a circle with radius r/2. Moreover, the homothetic

transformation transforms the centre O of γ into the centre C of λ, then C is the

midpoint of AO.

Case n=2

Fix two distinct points A and B on γ. Let P be a generic point of γ and L a point that,

in the four following cases, indicates: a) the centroid, b) the orthocentre, c) the

incentre, d) the circumcentre of the triangle ABP. In each of these cases we consider

the locus λ described by L when P moves on γ.
We detail here only case n = 2, a.

(a) The locus λ described by the centroid of the triangle ABP is the circle with

radius r/3 and with centre the point C of the segment OM such thatCM ¼ 1
3
OM,

where M is the midpoint of AB.

Proof Since L is the centroid of the triangle ABP and PM is a median, L is the point

of the segment PM such that LM ¼ 1
3
PM (Fig. 5).

Fig. 5 Case n=2, centroid
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It follows that the homothetic transformation with centre M and ratio 1/3 trans-

forms γ in λ. Then the property easily holds.

Case n=3

Fix three distinct points A, B, C of γ. Let P be a generic point of γ and let L be a

point that, in the two cases discussed below, indicates: a) the anticentre, b) the

centroid of the quadrilateral ABCP (note that the quadrilateral can be convex or

twisted). In each of these two cases we consider the locus λ generated by L when P

moves on γ.
We detail here only case n = 3, a.

(a) The locus λ described by the anticentre L of the quadrilateral ABCP is the nine-
point circle of the triangle ABC.

Proof Let us consider a generic point P of γ and let L be the anticentre of the

quadrilateral ABCP. Let T be the midpoint of the segment joining P with H,

orthocentre of the triangle ABC (Fig. 6).

Let R and N be the midpoints of AP and CP, respectively. In the triangle AHP

the segment RT is parallel to AH, because it joins the midpoints of the sides AP and

PH, so it is perpendicular to BC. It follows that the line RT is the maltitude of the

quadrilateral ABCP with respect to the side BC. In a similar way, if we consider the

triangle CHP, we prove that NT is the maltitude of ABCP with respect to the side

AB. Then, T is the common point to two maltitudes of ABCP and it is, then, the

anticentre L. Therefore L is the midpoint of HP.

Fig. 6 Case n=3,
anticentre, 1
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It follows that the homothetic transformation with centre H and ratio 1/2 trans-

forms γ into λ, then λ is a circle whose radius is an half of the radius of γ.
Furthermore, since the centre O of γ and the centre C0 of λ are correspondent in

the homothetic transformation, C0 is the midpoint of OH. It follows that C0 is the
nine-point centre of the triangle ABC and λ is the nine-point circle of ABC (Fig. 7).

Teaching Experiment: Research Context and Methodology

The activity focuses on the concept of geometric locus. This concept is a transversal

concept that recurs not only temporally repeatedly in the school career of a student,

but that pervades all areas of mathematics, from the Euclidean geometry to the

analysis, from algebra to physics. We consider very important that the concept of

locus is properly understood by the students, not only because of its cross-cutting,

but also because it is an example of methodological rigor, typically mathematical,

good to establish the reasoning about the properties of mathematical objects.

The properties of definition of a locus is not a concept to be easily internalized:

students are not always aware that they need to demonstrate not only that all points

that verify a certain property belong to the locus, but also that the only points of the

locus meet the property.

The idea of our activity is to present new geometric loci so to deepen the concept

and to be sure that students internalize it correctly.

The experimentation involved seven secondary high schools in Sicily (5 scien-

tific oriented high schools, a foreign language high schools and a human science

Fig. 7 Case n=3,
anticentre, 2
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high school) for a total of 210 high-school students (grade 10-11-12) and eight

teachers that have collaborated with the researchers (the authors of the paper

together with two more high school teachers).

The activity was carried out by using the method, widely experienced by the

authors – for example in (Ferrarello et al. 2014a) – of a double laboratory (Ferrarello

et al. 2013): in the first laboratory (teachers lab) teachers design teaching materials

and in the second one (students lab) students benefit the produced material. This is in

accordance with the “Learning by doing” of Dewey, and the Vygotskijan practical

intelligence perspective, which supports the creation of mathematical concepts

through a mediated relationship, through the use of artefacts. The activity is based

on the idea that “the best way for students to learn is to touch and build . . . [and] for
teachers the best way to learn to teach is to experience first-hand, touch and build on

their own teaching materials” (Ferrarello et al. 2013, p. 469).

The activity refers to (Ferrarello et al. 2014b) has been simplified and rewritten

for the teachers taking part in the activity, by the researchers in the form of “notes

for teachers”. These notes accompany them in the construction of educational

material (11 worksheets, numbered and to use following this ascending order),

built up together with the research team and the teachers.

Those who were exposed in the content section as preliminary concepts

(homothetic transformations, nine-point circle of a triangle, centroid of a quadri-

lateral, anticentre of a cyclic quadrilateral), were topics that the teachers involved in

the experiment have explained to their student before starting the activity with the

worksheets.

Clearly prerequisites for the activities are the notions of Euclidean geometry to

the circumference, in particular the notion of congruence, parallelism, incidence,

alternate angles and corresponding criteria of congruence of triangles. The inter-

mediate objectives are: to know a simple locus (perpendicular bisector of a seg-

ment, circle), speculate on the nature of a locus, become familiar with the software

Geogebra, show that the points of the locus described meet the property enunciated.

General objectives are therefore acquiring the concept of locus and demonstrate

that a figure is a locus.

During the experimentation we have asked to the teachers to fill a personal

logbooks, in which they described the development of the activity in class,

reporting the management for the whole task, the behaviour of students and the

results, both on the motivational point of view (attitude, interest, engagement) and

on the cognitive point of view (learning development).

Tutors have occasionally participated in the sessions in the classes, not with the

aim of controlling the actions of their colleagues, but rather to make the students

aware that the carried out activity is part of a larger project that involves both

schools and the university.

At the end of the activity teachers’ logbooks and students’ worksheets were

collected, together with a questionnaire that was given to teachers and a question-

naire given to students (see Results section).
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Teachers’ Laboratory

Teachers met with the research team eight times, once a week, for 2.5 h per time, in

autumn. The constructions of the classroom worksheets are the heart of the

teachers’ lab. Eleven worksheets were written, according to the various cases

described in Table 1, plus an initial worksheet on preliminary knowledge. Each

one is divided into two parts: the first part guides discovery’s activities with the use
of the software; the second part guides the proofs (see some examples in the

following section).

The researchers planned a preliminary worksheet for the teachers. The

worksheets have usually two columns: in the left column an action is indicated,

in the right column the action is explicitly made (Ferrarello and Mammana 2012).

In such a way students are perfectly aware of what they are doing. Some parts of the

worksheet presents construction of figures, exploration, and the student has to

follow the instruction and verify the properties; other parts of the worksheet have

to be filled by students, for example he/she has to write the conjecture or the proof

of the theorem. In preparing the worksheets, particular attention was given to the

ZPD related to the individual competence, with the aim of collocate the teaching

experiment in that zone and to organize good hints and the metacognitive reflection.

The teachers, guided and supported by researchers, build other worksheets com-

paring each other’s ideas and practicing “first-hand” how to run a laboratory. In this

way the teachers acquire skills useful for the conduction of the students lab, which

has different protagonists (students), but the same methods of the Teachers lab.

Common factor to the two laboratories is the modus operandi of the mathematics

laboratory (Chiappini 2007) in a collaborative learning environment, since working

with peers, with an experienced guide (tutor and teacher respectively) facilitates the

socialized learning in the ZPD in a positive atmosphere, as advocated in the theory

of Vygotskij.

The choice of writing the worksheets with teachers is due to several fact: above

all because, “The integration of technology in mathematics education is not a

panacea that reduces the importance of the teacher. Rather, the teacher has to

orchestrate learning. [. . .] To be able to do so, a process of professional develop-

ment is required” (Drijvers 2012, p. 148). Furthermore, the possibility of using an

artefact like the DGS lets the learners discover the properties independently.

Nowadays the educational software is widespread, but not always the teachers

know how to use them from an educational point of view (Do�gan 2011). So, it is

very useful to make teachers able to effectively manage such tools, in order to

disseminate good practices of teaching (and learning). This is how we orchestrated

TCK, PTK and PCK as already described.
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Students’ Laboratory

The experimentation with the students was carried out in spring. The worksheets

built up in the teachers’ laboratory gave the student the opportunity to fully use the

“explore-discover-test-conjecture-proof” model. In this way the student is not a

passive listener of a lecture, but an active subject in the first-hand experience of

discovery.

The students’ work is based on the use of a DGS (Geogebra) for the discovery of

properties and the use of the geometric transformation for their proof. In this way

we provide examples of applications of geometric transformations: this topic is

often mistreated and relegated to a separate chapter, while it often simplifies

demonstrations otherwise very long and hard to understand. Proofs made in this

way allowing students to reason in a simple way, without getting lost in the

calculations and focusing on the concepts.

We specify here that in our experience the software Geogebra acted as mediator

between the student and the knowledge, facilitating the understanding of the

concepts because of the possibilities offered by the manipulative function of

dragging. The ability to dynamically change the represented objects and examine

them from different points of view, has allowed the development of the activities of

guided discovery would also has increased student motivation.

Students, as mentioned, work on their own and together: they work on their own

because each student has a worksheet to be elaborated and they also work together,

comparing ideas and insights, and having at their disposal a space (the worksheet

and the working environment of the software) and a time, suitable to their own

learning. So each one builds his/her own knowledge according to his/her need of

time and space, in an inclusive education perspective, which fosters both “less

achievers” students in motivation (see paragraph on the results) and “more

achievers” students in deepening the concepts. Students work independently, but

they are never left completely alone: the teacher supports, encourages, helps them,

according to the Enactivism principles. Moreover, at the end of each worksheet, the

teacher, by means of a final discussion with all the students, remarks the obtained

results, giving strength and clarity to the concepts just discovered, so that they are

clear to all. This allows students to check the accuracy and richness of the proposed

solutions, their consistency and the reliability and their level of adopted generali-

zation. This phase leads to the construction of meanings that go beyond those

directly involved in the solution of the task, to enable students to know new aspects

of mathematical culture, enhancing in particular, a gradual but systematic approach

to theoretical thinking. In the mathematics discussion teacher has a leading role:

he/she influences the discussion in a decisive way, with proper and effective

interventions, because he/she has in mind both general and specific targets of the

activity.

In the final discussion the students reflect together or alone on the difficulties

they encountered, about what they did to overcome them, on the hints that have

been decisive and what was misleading, thus developing the metacognitive
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awareness, which allows them to assimilate new skills and knowledge to add to

those they already hold in the long-term memory.

In this context, it is very important to pose problems that are watching mathe-

matics, school and world with a critical sense, to become a citizen who uses

mathematics as an aware person.

Students’ Worksheets

It follows here some of the worksheets produced with the teachers, the case n=1,
one of the cases n=2 and one of the cases n=3.

Each worksheet consists of two parts: an explorative part (Part I), where students

discover the property, and a proof part (Part II) where students are leaded to the

demonstration of the property they have just found. Eleven worksheets have been

produced. Gradually they became more difficult because they are less guided

(Table 2).

Worksheet 2 – Part I

Case n = 1

It is given a circle γ with a fixd point on it.

With the help of Geogebra, let’s discover the geometric locus of the mid points of the chords of
a circle coming out from a fixed point of it.

Construction and
exploration

With Circle with centre and radius, construct a circle with centre O

and radius as you like.

Name this circle γ as it follows: right click on the circle with the mouse,

select Rename, click on the small square with the letter α, then on γ and
in the end on OK.
With Point on Object construct two points on γ and name them A and P.

With Segment construct the segment AP.

Construct the Midpoint or Centre of AP and call it L.

Right click on L, a mask will appear, click on Trace On, then Move P
on γ.

When P moves, the chords out of A moves and the midpoint of each chord

leaves its trace on the plane.

The set of the «traced» points seems a circle.

Use Edit/Undo to erase the trace.

Construct now the locus described by L when P moves on γ, with Locus
and by clicking on L first and on P afterwards. Call λ this figure.

The obtained figure seems again a circle with diameter

. . .. . .. . .. . .. . .. . .. . .. . .. . . and with centre .............................. . .

(continued)
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Worksheet 2 – Part I

Case n = 1

Verify Grafically verify your considerations on the circle you have found, by

using, for example, Circle with Centre through Point or Circle with
Centre and Radius.

Conjecture You can then conjecture that, Given a circle γ with centre O and a
point A on it, the locus of the midpoints of the chords of γ throught A is
. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .

Worksheet 2 – Part II

Case n = 1

Proof

Prove the proposition you have conjectured in Worksheet II – Part I.

Let γ be a circle with centre O and radius r, and let A a fixed point of γ.
The locus of the midpoints of the chords of γ throught A is the circle λwith radius r0 = (1/2)r
and with centre the midpoint O0 of AO.
Proof.

Since L is the midpoint of AP, then the following holds for the points P and L: AL = (1/2)AP.

Then, the homothetic transformation with centre A and ratio 1/2 maps P into L and then γ in
. . .. . ...
Moreover. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .-
. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . ...

Since the circle λ is the correspondent of the circle γ through an homothetic transformation, λ contains
all and only the midpoints of the chords of γ through A.

Worksheet 3 – Part I

Case n = 2 – centroid

It is given a circle γ with two fixd points on it, A and B. Given a third point P on the circle, with

the help of Geogebra, let’s discover the geometric locus described by the centroid of the
triangle ABP when P moves on the circle.

Construction 1. With Circle with Centre and Radius draw a circle with centre O and radius

r (any number) and call it γ.
2. With Point on Object construct three points on γ and name them A, B and P.

3. With Polygon construct the triangle ABP.

4. Construct theMidpoint or Centre of AB and name it M, and the midpoint of

another triangle edge.

5. With Segment construct the two medians, one of which is PM and the other

is the one through the midpoint you have constructed.

6. With Intersect construct the centroid of the triangle and call it L.

With Show/Hide Object select the two medians and then go to Move.

Explore and
verify

1. Right click on L, a mask appears. Click on Trace on, thenMove P on γ. The
centroid leaves its trace that looks like a circle.

Use Edit/Undo to erase the trace.

(continued)
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Worksheet 3 – Part I

Case n = 2 – centroid

2. Construct now the locus described by L when P moves on γ, with Locus and
by clicking on L first and on P afterwards. Call λ this figure.

3. Graphically verify that λ is a circle by constructing, with Point on Object,
two more points on λ, different from L, and the the Circle through 3 Points.

4. With Midpoint or centre construct the centre of λ and call it O0.
5. With Segment construct the radius a of the circle γ and the radius b of λ.
6. Open the Spreadsheet and by right-clicking on the two radius select

Register on the Spreadsheet to import the values of a and b. Then calculate
the ratio a/b.

Repeat the same procedure described in points 5. and 6. to evaluate the ratio

between the measures of the segments OM and O0M.

Conjecture You can then conjecture that: the locus described by the centroid of the
triangle ABP, incribed in γ, when P moves on γ, is a circle with radius
r0=(. . ../. . ..) r and with centre the point O0 on the segment OM such that
. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .

Worksheet 3 – Part II

Case n = 2 – centroid

Proof (optional)

Prove the proposition you have conjectured in Worksheet 3 – Part I.

Let γ be a circle with centre O and radius r, and let A and B two fixed points of γ.
Let M be the midpoint of AB.

The locus described by the centroid of the triangle ABP, when P moves on γ, is a circle λ with
radius r0= (1/3)r and with centre the point O0 on the segment OM such that O0M = (1/3)OM.

Proof.

Let us prove that, if L is the centroid of the triangle ABP, then L lies on the circle λ.
Since L is the centroid of the triangle ABP and PM is one of its medians, L is the point on the

segment PM such that LM= (1/3)PM. Therefore, in the homothetic transformation with centre M

and ratio 1/3, L is the correspondent of P and the circle . . .. . . is the correspondent of the circle γ.
Moreover the correspondent of O is O0 such that O0M= . . ... OM and the radius of λ is r0 = . . .. . ..
Since the circle . . ... is the correspondent of the circle . . .. by an homothetic transformation, . . ...
contains all and only the centroids of the triangles ABP.

Worksheet 7 – Part I

Case n = 3 - anticentre

It is given a circle with three fixd points on it, A, B and C. Given a fourth point P on the circle,

with the help of Geogebra, let’s discover the geometric locus described by the anticentre of
the quadrilateral ABCP when P moves on the circle.

(continued)
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Worksheet 7 – Part I

Case n = 3 - anticentre

Construction and
exploration

1. Construct a Circle with Centre and Radius (radius any number) and

call it γ.
2. Construct a convex Polygon ABCP inscribed in γ.
3. Construct the malititudes of ABCP through the Midpoint or Centre

M1 of PC and through the Midpoint or Centre M2 of AB.

4. Construct the anticentre of ABCP and call it L.

5. Show/Hide Objects that you used to construct L.

6. Right click on L, click on Trace on, then Move P on γ. The centroid
leaves its trace that looks like a . . .. . .. . .. . .. . .. . .. . .. . .. . .. . .

7. Use Edit/Undo to erase the trace.

8. Construct now the Locus described by L when P moves on γ. Call λ
this locus. Select the dotted style for it.

9. Construct the triangle ABC, the Midpoint or centre of its edges and
its Feuerbach circle.

What do you observe ? . . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . ...

Conjecture You can then conjecture that: given a circle γ with centre O and radius

r, the locus described by the anticentre of the polygon ABCP, incribed
in γ, when P moves on γ, is . . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . ...

Explore Construct a Circle with Centre and Radius.
With Polygon construct a quadrilateral ABCD inscribed in the circle,

and construct the triangles ABC, BCD, CDA, DAB.

Construct the Midpoint or Centre of the edges of the triangles and the

nine-point circle of each triangle.

What do you observe ? . . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . ..
Since each nine-point circle contains . . .. . .. . .. . .. . ... . .. . .. . .. . . of the
quadrilateral ABCD, then the common point of the four circles coin-

cides with . . .. . .. . .. . .. . ... . .. . .. . .. . . of the quadrilateral ABCD

Conjecture You can then conjecture that : in a cyclic quadrilateral . . .. . .. . ... . .

Worksheet 7 – Part II

Case n = 3 – anticentre

Proof (optional)

Prove the proposition you have conjectured in Worksheet 7- Part I.

Let γ be a circle with centre O and radius r, and let A, B and C three fixed points of γ.
The locus described by the anticentre of the quadrilateral ABCP, when P moves on γ, is the
nine-point circle of the triangle ABC.
Proof.

(continued)
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Worksheet 7 – Part II

Case n = 3 – anticentre

We have to prove that the anticentre L of the quadrilateral ABCP lies on the nine-point circle of

the triangle ABC.

Let M1 and M2 be the midpoints of AP and PC, respectively.

Consider the triangle ABC and its othocentre H, intersection point of the altitudes AA0 0 and CC0 0.
Let M be the midpoint of PH.

Consider the triangle PHA and its line M2M that joins the midpoints of two of its edges. It is

. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . ... . .... to the third edge AH and then to the altitude AA0 0 of ABC.
It follows that M2M is . . .. . .. . .. . .. . .. . .. . ... . .. . .. . . to BC, it is then a

. . .. . .. . .. . .... . .. . .. . .... . .. . .. . . of ABCP.
Consider the triangle PHC and the line M1M that joins the midpoints of two of its edges, it is

. . .. . .. . .. . .. . .. . .. . ......... to the third edge CH and then to the altitude CC0 0 of ABC.
Therefore M1M is . . .. . ... . .. . .. . .. . .. . .. . .. . .. . . to AB, it is then a

. . .. . .. . .. . .. . .. . .. . .. . ... . .. . .. . .. . . of ABCP.
The point M, point of intersection of the lines M1M and M2M coincides then with

. . .. . .. . .. . .. . ... . .. . .. . .. . .. . .. . .. . .. . .. of the quadrilateral ABCP.
Consider the homothetic transformation with centre H and ratio h = 1/2. In this homothetic

transformation to the correspondent of the point P is . . .. . . and the correspondent to the point O is

. . .. . .. . .. . .. . .. . .. . .. . .. . .... . .. . .. . .. . .. of HO. Call this last point O0.
The correspondent of the circle γ with centre O passing through P is the circle with centre O0

passing through L.

Since the centre O0 of λ is the midpoint of the segment joining the circumcentre and the

orthocentre of the triangle ABC and since the radius r0 of λ is r0 = (1/2) r, then λ is

. . .. . .. . .. . .. . ... . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . . of the triangle ABC.
Therefore lies on . . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .of the triangle
ABC.

It follows that when P describes γ L describes λ.
Since the circle . . .... is the correspondent of the circle . . .. . .. through an homothetic transfor-

mation, λ contains all and only the anticentres of the quadrilaterals ABCP.

Results

As already mentioned, at the end of the experimentation, teachers’ logbooks and
students’ worksheets were collected; moreover a questionnaire was administered to

students and teachers, to assess the level of liking of the proposal and if the targets

have been achieved.

The teachers’ questionnaire consisted of ten open questions, asking them to

highlight remarks on the effectiveness of the teaching proposal, on the mood

created in class during the activity, and some other questions about the possibility

to share such a methodology with colleagues or to participate to similar activities.

The students’ questionnaire, aimed at verifying if the goals of the activity were

achieved and evaluate the satisfaction level, consists of two three sections:

– Overall assessment of the course;

– Self-assessment of skills that the student believes to have developed during the

course;

– Personal comments.

598 D. Ferrarello et al.



In the first section there were nine closed questions, structured using ordinal

scales, with these answers: Definitely not, More no than yes, More yes than no,

Definitely yes.

In the second section there were six closed questions, structured by ordinal

scales at intervals whose parameters answers vary from a minimum of 1 to a

maximum of 4 points.

In the third section there are seven open questions.

In the following we report some considerations arising from logbooks, teachers

questionnaires and students questionnaires (sentences of the teachers or of the

students are written with italic font).

As a general remark, the activity was appreciated both by teachers and students.

In particular, teachers underlined the importance to create and write the class

worksheets together with a team of teachers from University (the tutors), because

“not only we focus on the targets to be reached, but also we did not overlook the

Table 2 Students questionnaire

Overall assessment of the course

Definitely

not

More no

than yes

More

yes than

no

Definitely

yes

Was the topic of the activity interesting? 2% 17% 51% 30%

Was the activity difficult? 7% 42% 36% 15%

Was your school knowledge enough to attend

the activity?

0% 6% 54% 40%

Were the activity worksheets clear? 2% 10% 38% 50%

Was interesting and surprising studying loci? 4% 19% 47% 30%

Were the teachers clear? 0% 4% 34% 62%

After this course has your motivation to study

mathematics increased?

6% 32% 40% 22%

Was your participation in the course active? 1% 4% 40% 55%

Was it worth to participate in the activity? 2% 16% 37% 45%

Self-assessment of skills that the student
feels to have developed during the course:

1(min)-4(max)

1 2 3 4

Commitment 4% 6% 59% 31%

Desire to explore the topics 3% 32% 45% 20%

Availability for teamwork 1% 9% 32% 58%

Ability to speak in public 10% 28% 47% 15%

Ability to think about things 0% 15% 64% 21%

Integration in group 0% 9% 26% 65%

What would you like your math teacher would give more attention to?

Practical and applicative aspects 56%

Theoretical aspects 10%

History 3%

Relationship with other subjects 31%
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difficulties pupils could meet in learning”; moreover, during our meetings teachers

not only mastered the use of Geogebra, but they also comprehended “the methods
and techniques to offer the activity to students and to get in such a way the best
results”. Then teachers understood the interplay of “what” (CK), “how” (PK) and

“by what” (TK) of the TPACK framework.

In particular, teachers learnt how to effective integrate technology in a peda-

gogical context, experiencing “first hand” the PTK intersection of TPACK.

All the teachers unanimously stated that it is desirable to integrate DGS in

everyday teaching, because “not only it is able to make immediately visualize the
geometric locus, but also it is a valid help to verify the results obtained in
analytical way”, perceiving the role of practical intelligence and semiotic medi-

ation of tools.

The same is strengthened by their students, that said, for instance “the use of
Geogebra is useful to better understand studied topics, because by the construction
you get the definition. Step by step construction of geometric loci through Geogebra
surely helped to facilitate the understanding of the concept of locus” and

“Geogebra is a very interesting program because it let me to verify with my eyes
all the properties I just studied in the books”, highlighting the connection between

Technology and Content (TCK).

When the student claims that by the construction with the DGS he/she gets the

definition, it is clear, from the reserachers’ point of view, that the artefact was

effectively used to build a mathematical meaning, so it was a tool.

As for the use of class worksheets, it came to light that “the activity worksheets
were a valid support: each student, with the help of the worksheet, succeeded to
work peacefully and in autonomy” being “teacher of him/her self”. Students really
were main actors in the construction of knowledge, as hoped for Enactivism

principles. All the teachers highlighted enthusiasm in his/her own pupils, that

“faced the task with a certain level of autonomy, sometimes giving some original
contribution: [. . .] the enthusiasm is due to feeling of the activity as cool and easy,
almost a geometric game. A game of construction e visual verify, free by the
struggle of computations”.

Moreover a collaborative way of working seems to be effective in students’
learning. They stated that “among us (classmates) there was a collaborative
climate, that let us carry out the assigned task in the best way, we learned several
topics in a easy way, collaborating in group” (in a social learning mode, as the one

hoped for Vygotskij).

Working in the Laboratory of Mathematics, all students tested their knowledge,

used artefacts and tools, made explorations, formulated conjectures, acquired

concepts and skills: “mathematics does not belong to another planet and it is not
just for someone who has some special skills, but it is accessible to all”. Some

teachers pointed out that “the activity allowed us to stimulate the interest of those
pupils more fragile and less inclined to discipline, being personally committed to
work, those students had fun discovering and building geometry through
Geogebra”.
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On the other hand the teacher was always ready, if necessary, to correct their

conjectures with appropriate suggestions; to ask questions to make them guess

something could be useful and/or necessary to discover something else; to encour-

age them to continue; to praise them for any significant obtained result, in the

Vygotskijan perspective (ZPD and positive mood).

Students had no problems in approaching the proposed loci. Some of them even

considered easy to apply the encountered properties and to use them. We should

underline that worksheets are sometimes too guided for some students, but we took

this choice, so that all students would feel equally involved.

Finally, students knew that they were participating to an experimental activity

and that the teacher will not evaluate them. This allowed also fearful or less

achievers students to feel involved, the wrong answers were not evaluated nega-

tively, indeed those answers served as a basis to trigger collective discussions to

clarify the problem: the error is seen as a resource, rather than as something to be

condemned, according to the Enactivism’s perspective.
The following general overview concludes the analysis of the student question-

naire, with regard to the first and the second part. An overview of the questionnaire

is given in the end.

For most of the pupils involved in the activity (81%) the topics are interesting

(Fig. 8), also confirmed by 95% that said they had actively participated to it (Fig. 9).

Almost all the students had found the activity is not too demanding, but they

worked hard into it (Fig. 10). Students appreciated working in groups, in fact 90%

of the statistical units is favourable to the work group (Fig. 11), and the interaction

established between the members of each group (Fig. 12) were positively judged by

more than half of the sample (91%).

Definitely not

F
re

qu
en

ci
es

More no than yes More yes than no

Was the topic of the activity interesting?

Definitely yes
0%

40%

50%

60%
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Fig. 8 Question 1
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It is interesting to report the claims made by some students who confessed their

disaffection to mathematics, “I hate math, for me it’s boring because I do not
understand it. But I liked this experience with the computer because math seemed to
me more interesting.”

In any case, the 82% of students admits that it was is worth to participate to the

activity (Fig. 13); moreover some students said that such an activity allowed them

to see the math from another point of view; they would like to repeat a similar

experience and hope the same for the students of lower classes “because maybe
everyone could like more mathematics, if you start on the right foot.”
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Fig. 11 Question 4

Fig. 12 Question 5
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Technology and Teachers’ Professional
Development: A Commentary

Gail E. FitzSimons

Abstract In this Commentary I reflect on the work done by the authors of five

chapters in relation to technology-related professional development for mathemat-

ics teachers across a range of educational levels, undertaken in a variety of

contextual settings, and drawing on a wealth of theoretical frameworks to support

a diversity of practical approaches to implementation involving teachers, current

and prospective, their students, and researchers in ongoing knowledge building and

theory development. My reflections will be refracted through the three other major

themes of this book which intersect in professional development: (a) technology as

a tool for teaching and learning mathematics, (b) communication inside and outside

the classroom, and (c) information tools, to inform oneself and to inform others.

Keywords Technology • Professional Development • Research • Practice • Theory

Development

Introduction

In my experience professional development is generally considered as a non-formal

educational activity for practising teachers, ranging from single sessions lasting a

few hours to regular sessions over a fixed period of time. The pedagogical style

usually takes the form of those with more expertise leading those with less

expertise, and sessions are comprised of some form of theory accompanied by

participant activity involving hands-on experience with the physical and/or virtual

materials, concluding with some kind of discussion and reflection. The complexity

and sophistication of the five accounts given in this section of the book illustrates

just how far professional development in mathematics education has come. As

amply demonstrated by the authors in this section of the book, there is value in

drawing upon multiple theories to enrich the professional development experience

for teachers and researchers alike.
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The introduction of generic tools such as calculators (four-function, scientific),

spreadsheets, and statistical packages used in statistical quality control (e.g.,

Minitab™) into mathematics classrooms posed the problem of how to optimise

their use for pedagogical purposes. Such tools, which carry the propensity to

substitute for routine human operations, ideally saving time and reducing mathe-

matical errors, also evoked (and continue to do so) widespread community fears

concerning their impact on mathematics education. These technologies are also

able to support manipulative and transformative actions, reducing the cognitive

load of demanding and time consuming calculations. In the past, much professional

development was directed to demonstration of the mechanics of technique, and

showing how to optimise new pedagogical possibilities through helping in actions

directed towards sense making and extending the kinds of tasks that could be

offered to students, including more complex investigations. In the mathematics

education sphere, people began to design research-based tools and software with a

specific pedagogic emphasis designed to enrich concept development, greatly

extending the potential repertoire of classroom teachers at all academic levels. At

the same time a range of technologies supporting communicative actions between

people have vastly enriched options for individual, peer, and group interactions

within the classroom and beyond, as well as information sharing at a meta level for

educational and administrative purposes. These developments have been accompa-

nied by a range of theorisations intended to understand their impact on existing

mathematics curricula and assessment and, more importantly, to improve teaching

and learning outcomes in mathematics through refinement of these theories, as a

consequence of case studies or other kinds of formal and informal classroom

observation. Any radical change to established teaching practices, whether man-

dated or not, should ideally be supported by some kind of professional education for

the teachers concerned – and also public education for important stakeholders such

as parents. Formal or non-formal courses organised by a university or as university

partnerships with groups of teachers or schools are elaborated on in all chapters in

this section of the book. This book, taken as a whole, encompasses four major

aspects of the growing importance of technology in mathematics education: (a) as a

pedagogical tool, (b) as a means of communication, (c) as a means of information

sharing about teaching and learning, and (d) professional development. Because the

first three overlap and intersect with professional development in various ways I

believe that it could be useful to rehearse them here.

Reflections Through the Lens of the Book Proposal

In this section I will paraphrase the contents of each of the four aspects identified

above, and briefly outline their connections with professional development as

reflected in the chapters included in the text.
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Technology, a Tool for Teaching and Learning Mathematics
(Also Pedagogy)

The proliferation of digital tools and resources, together with new and emerging

related theoretical models for mathematics education, means that classroom

teachers at all levels have the right to professional education which enriches their

teaching repertoire in theoretically well founded ways. For many, the use of new

technologies can pose problems in relation to their self-confidence with both the

techniques of operating the tools themselves, and the organisation their pedagogic

actions and classroom management to accommodate these resources. In addition,

any negative personal beliefs and attitudes by teachers towards technological

change in mathematics education may also be related to genuinely held fears

such as the de-skilling of students, and these also need to be addressed. In order

to ameliorate these concerns, such teachers could benefit from the opportunity to

learn the techniques in supportive environments, whether at organised training

sessions or at their own or local schools in small communities of practice. Along

with technique, teachers also need support, initially at least, in locating, collecting,

introducing and orchestrating tasks, refining them to meet their own students’
particular needs, and perhaps even extending or initiating new technology-

enhanced or technology-driven tasks and explorations. Importantly, the focus

needs to be on the educative potential of the tasks rather than an exposé of the

“amazing things” that technological tools can do. This means that task design has to

be research-based, building on well founded theories of mathematics education,

while recognising that mathematics-related digital technologies are an important

part of the distributed mathematical knowledge available through a suite of avail-

able resources supporting learning, communication, and information sharing.

Communication Inside and Outside the Classroom (Between
Students, Teachers, Researchers)

In the digital era especially, the importance of communication, within and beyond

the mathematics classroom, for students, teachers, and researchers cannot be

underestimated. The rapid evolution of technological resources readily available

for individual and mass communication and information sharing has opened up

many more possibilities in the field of mathematics education, transforming both

teaching and research. It has long been accepted that tools, technological and

otherwise, can shape the goals and activity of the user, whether they are aware of

this or not. Communication technologies in particular impose their own ways of

being used, by implicit as well as explicit means – albeit with unpredictable

consequences, for example the world wide web and social media. Teachers at all

levels of mathematics education have the right to professional support in making

efficient use of available communication resources to use with and for their students
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in the classroom and beyond. At the same time, researchers and teachers also need

to find effective and efficient ways to communicate and to share information about

pedagogic activities which are the subject of their collaborative research. Through a

variety of communication media teachers and researchers are now able to share the

kind of professional relationship and interaction on curriculum, assessment, and

pedagogy not previously possible. Related to this is the possibility of teachers

documenting and sharing resources with each other and researchers via technolog-

ical networks, as discussed below.

Information Tools, to Inform Oneself and to Inform Others
(Through Connected Networks)

Mathematics education has to take into account new ways of learning through

connected networks as well as new ways of teaching with an extensive documen-

tation of teachers’ and students’ work, made available to other teachers and to

researchers. Clearly there are problems facing the education professional sphere in

enabling information to flow in different directions. The question was posed: How

can researchers appropriate for themselves knowledge about teachers’ experiences
and, in turn, how can teachers appropriate for themselves knowledge about research

results? The process of formal networking arrangements to support such documen-

tation as described here appears to be distinct from the formal provision of

professional development. In this sense connected networks offer a viable alterna-

tive, or even supplement, to organised professional development as another way to

support teachers and researchers to share valuable information, particularly where

there could be problems of distance, time, and money which may prevent personal

participation in regular professional development programs.

Technology and Teachers’ Professional Education
and Development

The organisation and funding of formal initial and continuing education of teachers

at all levels is politically contested, depending on the values placed on economic,

social, and cultural priorities. Mathematics teacher education in particular carries,

among other things, community expectations of developing a technologically

literate and mathematically competent citizenry, especially among the workforce.

The political injunctions, often insistent, of introducing technology into classrooms

have to face the realities of teachers’ current technological knowledge, beliefs, and
attitudes, any or all of which may not be in accord with official expectations for a

variety of reasons. (This is aside from any issues of who will fund the hardware,

software, licences, and professional development – and how much.) Underlying
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political and community attention are widespread concerns (in Anglophone coun-

tries at least) about the quality of teachers’ mathematical knowledge at all educa-

tional levels (e.g., Fried and Dreyfus 2014; Ruthven 2011). In addition, a working

knowledge of at least basic statistical ideas is essential to participation in contem-

porary society by people from all walks of life (see, e.g., FitzSimons 1998, 2001,

2015; Kent et al. 2011), including teachers from across disciplines and levels,

starting from primary school education. The widespread use and abuse of data

and misconceptions about probabilistic events can have serious personal, social,

community, and industrial consequences if decision makers at all levels are not well

informed. Three of the five chapters in this section address issues around the

development of competence and confidence in the mathematical and/or statistical

knowledge of teachers, integral with their use of technology in mathematics

teaching. A fourth chapter focuses instead on developing teacher awareness of

formative assessment as part of teachers’ pedagogical repertoires; also the potential
benefits from technology-based information sharing among researchers, teachers,

as well as timely feedback to students. The teachers engaged in all projects were

involved variously in the different phases of design, implementation, and analysis.

Two of these four chapters involved prospective and practising teachers in formal

university courses designed for initial and continuing education, respectively, while

the other two were classroom-focused investigations each conducted over a period

of time. A fifth chapter addresses the question of the actual provision of formal

mathematics teacher education and non-formal professional development, and

whether they might be better informed by a coherent theoretical framework

which took into account specific mathematics-didactics knowledge. Each chapter

illustrates in its own way a respectful partnership and collaboration between

teachers and researchers.

Bellamy (1996) offers three principles for design of educational environments

involving technology which I believe are relevant to the chapters included in this

commentary from the perspective of professional development and professional

education:

1. Authentic activities

2. Construction of artefacts and sharing with the community

3. Collaboration between learners and with experts.

The implications here are that, first, activities should be seen as culturally

relevant to the particular learners – both the teachers undertaking professional

development, and the students (current and potential) of those teachers. Second,

professional development activities should lead to the construction of artefacts (real

or virtual) and sharing with community of teachers and researchers. For school

students the goal may be, initially at least, to construct meanings for particular

mathematical concepts, but may shift ultimately to using those concepts, along with

technological skills, to work towards solving culturally meaningful problems at

school, at work, or elsewhere. Finally, collaboration between learners and with

experts can take place on two levels: the professional development level, where

teachers collaborate with academics to improve pedagogic practice or to produce
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teacher support materials in relation to technology; and at the school level, where

students work collaboratively with each other (locally or globally) and the teacher

as expert.

Reflections on the Chapters

Each of the five chapters has something different and something interesting to say.

In this section I am particularly interested in the processes adopted by the authors in

order that other prospective researchers in this area might build on their theoretical

frameworks and general research methods in the manner recommended by

Bellamy’s (1996) three principles, along with the mutual respect expected between

professionals from different disciplinary backgrounds as they collaborate to work

towards a common goal (FitzSimons 2014).

The most common theoretical framework, utilised in the chapters directly

attending to developing teachers’ mathematical or statistical knowledge, is that of

Mishra and Koehler (2006), refined in Koehler and Mishra (2008, 2009), on the

integrative perspective of the Technological Pedagogical Content Knowledge
(TPACK). Rabardel’s (1995) theory of instrumentation and subsequent develop-

ments regarding Instrumental Genesis and Instrumental Orchestration (e.g.,

Drijvers 2012; Tapan 2006; Trouche 2007) have also played critical influential

roles. Authors of chapters “Integration of Digital Technologies in Mathematics

Teacher Education: The Reconstruction Processes of Previous Trigonometrical

Knowledge” and “Teaching Intriguing Geometric Loci with DGS” have devoted

considerable space to explicating the theoretical aspects of TPACK which is a

taxonomy based on the work of Schulman and others to identify the component

parts of a complex model involving technological, pedagogical, and content knowl-

edge for teaching; their various intersections; and also the interconnected model as

a whole. Thomas and Palmer (2014) claimed that earlier work by Thomas and

Hong, contemporaneous with but independent of the TPACK framework also

offered a useful version, called Pedagogical Technology Knowledge (PTK). This

model was described as (a) being specifically focused on the discipline of mathe-

matics and mathematical knowledge for teaching, (b) integrating the theoretical

base of Instrumental Genesis with a strong emphasis on the epistemic value of

technology to produce mathematical objects of interest, and (c) the personal

orientations of the teacher in relation to technology. In particular, they stress the

critical importance of teacher confidence in using technology, and this is clearly an

intended outcome of the chapters in this section, and technology related profes-

sional development in general. The chapters have all included considerable

amounts of data to allow for readers’ own interpretations.

The first four chapters discussed in this part of commentary reflect a sequence

which I consider reflects an increasing development of theoretical aspects. How-

ever, this by no means reflects on the quality of any chapter since it is the overall

professional development program set in its own particular context that matters
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most. The first project is a case study in the traditional sense of professional

development, involving university researchers, practising teachers, and their stu-

dents, with the aim of broadening and extending students’ mathematical horizons,

along with their teachers’ pedagogical repertoires in relation to technology. This

chapter and the following one both use the freely available dynamic geometry

software (DGS) GeoGebra.

Teaching Intriguing Geometric Loci with DGS by Ferrarello,
Mammana, Pennisi, and Taranto

This research involved eight practising teachers in high schools in Sicily in a

teaching experiment to study geometric loci. Besides the TPACK framework, the

researchers’ work was also framed theoretically by the Zone of Proximal Develop-
ment (ZPD) as well as Dewey’s learning by doing, and Enactivism where the

student takes a central role in the teaching and learning process in a dynamic

interaction with their environment. The principles of ZPD were adhered to when

the students were able to complete the tasks through collaboration; learning by

doing involved both mind and body, complemented by learning by thinking and

learning through being emotionally involved in the tasks, in accordance with

Enactivism. The researchers used the method called a double laboratory which

comprised a teachers’ laboratory, where the materials were designed in collabora-

tion with the researchers, and a students’ laboratory, where the students trialled the

materials produced. Teachers were asked to complete logbooks on a regular basis,

and students were given worksheets to complete, followed by a class discussion at

the end of each session. Both teachers and students completed a final questionnaire.

Technology as a tool for teaching and learning allowed the students to have well

drawn figures and, through this, the possibility of discovering a real property. The

use of the “Dragging” mode in the DGS enabled students to generalize and to make

conjectures about the observed property. It also released students from arduous

calculations in order to verify properties. On the other hand, students were asked to

prepare proofs using paper and pencil, and guided by worksheets in order to give

them the space and time to reason about a property. The technology enhanced

environment allowed the students to communicate with one another within the

classroom using screen images as well as through written and discussion modes,

taking the students into real as well as virtual worlds. The worksheets prepared by

the teachers in collaboration with the researchers have the potential to be shared

through communication networks, although this was not specifically mentioned.

The results of this project showed that the teachers learned how to integrate

technology into their regular teaching and valued doing so. The students, having

been actors in the construction of their own mathematical knowledge were enthu-

siastic, and enjoyed the collaborative work, guided by supportive teachers. Just as

the chapter “Teaching Intriguing Geometric Loci with DGS” took teachers and
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students on a mathematical journey into the world of loci made possible by DGS,

the chapter “Integration of Digital Technologies in Mathematics Teacher Educa

tion: The Reconstruction Processes of Previous Trigonometrical Knowledge”

offered pre-service and in-service mathematics teachers the possibility of seeing

school mathematical concepts of trigonometry in new ways, deepening mathemat-

ical knowledge as well as developing their pedagogical and technological confi-

dence and skills.

Integration of Digital Technologies in Mathematics Teacher
Education: The Reconstruction Process of Previous
Trigonometrical Knowledge by Lobo Da Costa, Esteves Lopes
Galv~ao, and Brisola Brito Prado

This research offered two case studies and an analysis of the use of DGS technol-

ogy; one in a group of prospective teachers (2nd year of a Mathematics degree), and

the other a group of in-service secondary level teachers undertaking a continuing

education course at a university in Brazil. The focus of the chapter was the

integration of digital technology into the teaching and learning processes, and

how the reconstruction of previous trigonometric concepts occurred within the

two groups. Both case studies explored aspects of trigonometric functions using

GeoGebra, as well as familiar physical artefacts, once again incorporating both real

and virtual worlds. The preservice teachers explored the concept of periodic

function using concrete mathematical objects as well as an orthogonal projection

of light onto a trigonometric circle to visualise and to measure, in parallel with their

activities with the DGS. The in-service teachers constructed trigonometric func-

tions integrating the DGS with mathematical artefacts and games, as well as

programming the software, leading to deepen their knowledge of trigonometry.

The theoretical framework included TPACK, as well as instrumental genesis, as

understood by Rabardel (1995) and Trouche (2007). In addition, a double instru-
mental genesis was required for teachers to work with technology (Tapan 2006),

including Technique Instrumentation, building tools for mathematical tasks, and

Didactic Instrumentation, building tools to teach mathematics for the professional

development of teachers. In both groups each participant had the opportunity to

develop a process of technological appropriation through instrumentation and

instrumentalisation. The main difference between the two groups was found to be

that the Pedagogical Content Knowledge (PCK) component of TPACK was only

observed with the practising, in-service teachers who were focused on how to use

technology with their classes, since none had previously used DGS in their teach-

ing; whereas the preservice teachers focused mainly on the (Mathematical) Content

Knowledge (CK) and the Technological Knowledge (TK) components, leading the

authors to conclude that more attention should be given to pedagogical aspects for

this group. Whereas the first two chapters used the TPACK theoretical framework
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as a major basis for designing professional development for current and future

teachers in relation to mathematical content of geometry and trigonometry, the

authors of the chapter “A Study on Statistical Technological and Pedagogical

Content Knowledge on an Innovative Course on Quantitative Research Methods”

move from deterministic modelling to focus on probabilistic modelling.

Knowledge on an Innovative Course on Quantitative Research
Methods by Serrad�o Bayés, Meletiou-Mavrotheris,
and Paparistodemou

This chapter offers a significant theoretical development as the authors both

challenge and extend the TPACK model, as well as existing research on mathe-

matical modelling, specifically in relation to statistics, and for this reason I attend to

it in more detail. The study reported in this chapter drew on a larger study of a

graduate Quantitative Research Methods course intended to develop Statistical
Technological and Pedagogical Content Knowledge (STPACK), for a group of

Cypriot teachers with diverse academic backgrounds.

First, the researchers extend the epistemological distinction between descriptive
and normative models to include relational models connecting what they term

intra-mathematical and extra-mathematical fields, asserting that three approaches,

rather than two, are needed to model the relationships between the mathematical,

statistical (including stochastic and probabilistic) content knowledge. From my

own perspective as a teacher-researcher with adult, vocational, and workplace

mathematics education interests, statistics education pragmatically linking both

intra- and extra-mathematical fields has always been a critical facet, no matter

what the educational level of the students (see, e.g., FitzSimons 1998, 2001, 2015).

Investigating aspects of the realities of people’s working and civic (i.e., extra-

mathematical) lives not only serves to protect them from being disadvantaged at

home or at work through ignorance, but also provides a sense of reality that is often

missing from most mathematical questions feigning reality commonly found in

school.

Second, from a pedagogical point of view, the authors maintain the need to

extend the statistical and probabilistic investigative modelling processes to also

encompass the interrogative cycle which they claim should help to develop the

process of hypothesis generation, as part of a long-term process of maturation of the

thinking of the learner. Here, learners are being offered an extended level of

engagement, from working on a given problem to actually creating their own

hypotheses about what might have led to that problematic situation. Hypothetical

thought is an essential, albeit mostly unremarked, part of workplace activity,

seeking to improve or ameliorate a situation which could ultimately have serious

or high-stakes consequences (FitzSimons 2014). Recognition of this important

feature brings with it an increased complexity to the teaching-learning process.
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Third, in moving toward the interrogative cycle, the authors switch perspectives

from teacher to student. Although students could experience both data-driven

approaches where they construct a working theoretical model to reflect the data,

and theory-driven approaches to modelling where they recognise a model they have

been taught and working within this enclosed world, they also need to appreciate

the circularity between these two, understanding modelling as an iterative cycle.

The authors continue that the complexity of this circularity can be understood

through the analysis of the transfer between the empirical world (data) and the

theoretical world (probabilities). This leads them to identify three modelling

approaches: (a) classical (unidirectional, from theory to practice to validate the

model), (b) frequentist (bidirectional, from data to theory and back to validate the

model), and (c) subjectivist (following iterative cycles of empirical data collection

and theoretical model building). The teacher’s choice of modelling approach also

has consequences for which kinds of problem situation are most appropriate,

consistent with the roles played by data in each kind of problem situation, namely,

virtual theoretically-driven, virtual real world, and actual real world problem

situations.

Finally, in order to identify how technology can assist teachers in the challenging

situations faced in finding or designing and creating tasks appropriate to reflect the

aims and approaches that promote the desirable kinds of modelling, the authors add

a fourth, technological, world to address three purposes: accessing meaningful data,

exploratory data analysis, and data simulation. To assist the reader, they offer a

visual summary integrating all of the complexities discussed above. The authors

conclude their theoretical section with a framework for STPACK, addressing

teachers’ expertise and knowledge of ways of facilitating students’ learning of

different statistical concepts.

The conclusions drawn in this chapter from the two reported case studies,

focused on Model Eliciting Activities (MEAs) and uses of Dynamic Data Explor-

atory software, supported the need for circularity between the four worlds, but also

recommended the inclusion of reflective questions for teachers related to the

didactical and other obstacles faced by teachers and learners in the modelling

process. Finally, the authors noted the need for more opportunities for teachers to

experience the whole four-world modelling process, specifically in order to develop

their attitudes and skills as researchers.

The chapter A Study on Statistical Technological and Pedagogical Content

Knowledge on an Innovative Course on Quantitative Research Methods has taken

the reader very deeply into the epistemological and pedagogical complexities of

extending mathematical modelling into the statistical realm, and the authors are to

be commended for their critical appraisal of existing research and their attention to

detail. Clearly there is much more to be done in developing more comprehensive

statistical knowledge among the population as a whole, including teachers from all

disciplines – not just mathematics – and from all sectors including professional and

vocational. However, from my own experience of teaching statistics to adults

young and old in high level vocational laboratory technician courses as well

workplace basic skills courses, the pedagogical importance of concrete hands-on
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experience – at least in the early stages – cannot be overlooked. It is invaluable to

have students actually physically experience random behaviour (e.g., tossing coins,

rolling dice), observing, counting, measuring, and collecting their own data relevant

to the distribution in question and also relevant to their own real world lives at work

and elsewhere. These real world, embodied kinds of activity offer students a

meaningful point of reference to anchor the abstractions that follow in the complex

theoretical and virtual worlds made available by technology. They also demonstrate

that statistical methods of data aggregation, while useful to work with, can result in

a loss of detail about individual outcomes or observations. In the education sphere,

for example, aggregation of student test results at the state level is likely to ignore

the very diverse contextual settings (social, cultural, economic, etc.) of particular

cohorts of students, potentially leading to incorrect or over-generalisations by

policy makers and the media.

Teachers from all academic backgrounds who are comfortable with statistics can

provide role models for their students, especially when they exhibit the qualities of

researchers themselves in working with quantifiable forms of uncertainty. The

fourth chapter details a project where teachers work on a meta-level of collabora-

tion with academics, acting as researchers in a pedagogical sense, learning more

about their students and how they learn, along with seeking to continuously

improve their own pedagogical repertoires. Like the chapter A Study on Statistical

Technological and Pedagogical Content Knowledge on an Innovative Course on

Quantitative Research Methods, it also details substantial theoretical developments.

Formative Assessment and Technology: Reflections Developed
through the Collaboration Between Teachers and Researchers
by Aldon, Cusi, Morselli, Panero, and Sabena

In this chapter, drawn from a large-scale study involving researchers and teachers in

France and Italy, the focus has shifted from using technology to support student

learning of mathematical concepts per se to technology-supported ways of using

formative assessment (FA) to inform both students and their teachers about student

understanding and learning trajectories. The project investigates both the effective-

ness of the adopted theoretical tools in terms of enhancing connectivity and

feedback, and also, in terms of professional development, the contribution made

by the collaborative work between teachers and researchers within the project. An

important outcome of the project was that it enabled the production of a set of

curriculum materials and methods for pedagogical intervention aimed at supporting

the development of teachers’ practice. Based on a cyclical process, the teachers

engaged in the project were involved in the different phases of design, implemen-

tation, analysis, and subsequent redesign and adaptation of the toolkit.

The project was supported by a comprehensive and complex dynamic model

based on a combination of several relevant theoretical foundations. First, a three-

dimensional framework was established consisting of five FA strategies, three main
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agents (teacher, student, peers/group), and three different functionalities through

which technology could support each of the three agents in developing their FA

strategies. Second, a meta level framework called the Meta-Didactical Transposi-
tion (MDT) was established based on Chevallard’s Anthropological Theory of the
Didactic (ATD) which asserts that every human activity within an institution can be

described by a praxeology which comprises the task, techniques, justification of the

techniques and theory developed within specific institutions: Teacher education is

considered to be one such activity.

In this study, praxeologies were developed at two levels. Working with teachers,

the research team developed a set of tasks, techniques, and justifications at a

teaching level of reflection – a meta-didactical level. Their implementation in the

classroom at the didactical level generated a first dialectic between students,

teachers, and the knowledge. The interaction between teachers and researchers at

the meta-didactical level in relation to interpretations of the classroom implemen-

tation, and the comparisons between researchers’ and teachers’ praxeologies, gen-
erated a second dialectic. It is through this second process that both groups come to

develop a shared praxeology, on an iterative basis, enabling the professional

learning and development of both teachers and researchers.

At the heart of the model in this chapter is mathematical knowledge and

competence, and the authors turn to Brousseau’s Theory of Didactic Situation
(TDS). They build on Brousseau’s didactic triangle to interpret the mutual relation-

ships between teacher, student, and knowledge, and add a fourth vertex to accom-

modate the interaction of technology with all three existing relationships, implying

a three-dimension didactic tetrahedron which sits within the first 3-D cuboid

framework. In addition, each of the faces of the tetrahedron offers a representation

of the relationship between three of the four actors. The authors use this complex

model in order to study the evolution of didactical situations in a comprehensive

way, through analysing the situation in the classroom as a whole and, through

processing and analysing actual classroom data, to enable specific feedback to each

student made possible by the technology, statically and dynamically improving the

effects of formative assessment for students and teachers alike. In fact, the class-

room technology of Maple TA with an IWB, in France, and IDM-TClass (inte-

grated with a selection of activities) in Italy, had a role to play in facilitating the

whole process: It supported the students through efficient FA feedback, and the

teachers through providing information on individual students as well as the group

as a whole. An important feature of technology was that it enabled teachers to store

the data and return to it as necessary, to enhance teaching strategies. Students were

constructed as owners of their own learning as well as instructional resources for

others. Technology also supported the researchers in their endeavours as well as

facilitating communication and collaboration between teachers and researchers to

benefit both groups in the ultimate form of shared praxeologies. The authors

observed that although the double dialectic and internalisation of the components

of praxeology directly impacted the teachers, they did not develop FA as a teaching

strategy as hoped. They concluded that more professional development would be

needed to normalise FA as a regular component of the teaching process.
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The Professional Development of Mathematics Teachers:
Generality and Specificity by Polo

This chapter takes a reflective position to address the education and professional

development of pre-service and in-service mathematics teachers primarily from the

perspective that a dialectic is needed between specific disciplinary didactics and

general issues of pedagogy. Specific forms of competence and knowledge should

characterize mathematics teaching in particular while generic forms competence

and knowledge should characterize any disciplinary teaching in a formal learning

context. The author recognises that the conditions and specific aspects of mathe-

matics teacher education change according to the conditions of training practices

and asserts that it is important to understand how they influence professional

development itself, both in relation to these two forms of competence as well as

the position of the teacher within the overall didactic system and its dynamic

interrelationships. This issue is made more pertinent with the rapid evolution of

modes and means of communication made possible by technology influencing the

conditions of professional development for in-service teachers (and also pre-service

teachers – see Borba and Villarreal 2005) through the inclusion of distance educa-

tion and blended modes of education.

Building on the work of Ball et al. (2008), among others, the author identifies

three main interrelated components necessary for teaching mathematics: knowl-

edge about mathematics content, general pedagogical knowledge, and

mathematical-didactical knowledge, asserting that a notion of specialized content
knowledge is also needed. Distinct from general Pedagogical Content Knowledge

(PCK), and Subject Matter Knowledge (SMK), is Didactical Content Knowledge

(DCK), specific didactic-disciplinary knowledge. DCK is strictly connected to the

content of the learned object and it is at the base of the teacher’s decisions before,
during and after classroom activities. Because it is related to the mathematical and

didactic organization, it regulates the didactic relationship between teachers and

students. In the chapter’s Fig. 6, the author represents in a detailed form the various

interrelationships between DCK, SMK, and PCK, and their component parts. The

chapter concludes with a call for integrated theoretical models to inform both

pre-service and in-service mathematics teacher education in order to improve on

current models, especially in the non-formal provision of the latter.

Conclusion

The five chapters that are the subject of this commentary have much to offer

teachers and researchers alike, and I commend each team for its innovative work

on behalf of the students concerned and, hopefully, students of the future. Some-

thing that concerned me recently when I was a CIEAEM Working Group

co-animater was hearing a group of teachers lamenting the fact that when their

Technology and Teachers’ Professional Development: A Commentary 619



government mandated changes to mathematics education there was no professional

development other than what enthusiastic local teachers were able to offer on a

voluntary basis. Although chapters in Part II of the book address communication

and information sharing, there still seems to be a need for professional development

for teachers that is different from formal online or face-to-face courses or informa-

tion sharing through connected networks. One possible suggestion is based on the

work begun by Ball et al. (2015) on a proof-of-concept virtual learning environ-

ment. This form of professional development uses technology as a medium to

enable teachers to access and replay the material at their own convenience.

Although at this stage the costs of time and money are considerable, in future it

may be possible to integrate all four themes of this book with a view to access and

equity in the study and improvement of mathematics teaching – to paraphrase the

aim of CIEAEM – in relation to technology.

Acknowledgments I wish to acknowledgement the work of Lisa Bj€orklund Boistrup for her

insightful comments on an earlier draft of this commentary.
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Conclusion

It is obviously impossible to conclude when the subject of a book concerns such an

upgradeable theme. Each day new technological potentialities come into existence.

It is interesting to think that in the past 30 years we have seen the apparition and the

disappearance of cassette tapes, floppy disks, CD-ROM to quote only the mass

memory that we have used daily in our work or in our spare time. The last CIEAEM

conferences have shown very interesting and convergent studies about the poten-

tialities of software and their added values for the teaching and learning of math-

ematics: geometry, algebra, calculus, modeling,... In the same time, the new role

and the new necessary skills of teachers have been highlighted as well as the

opportunities to catch mathematical objects through different and intertwined

representations. But what exactly change? Information, resources, documents are

available, knowledge is everywhere, within reach of a click, answers to school

questions are, most of the time, available on the web and reachable through research

engines. Students in their everyday life dispose of these tools and use them widely

and freely; most of the time, for their everyday life, they don’t need to know

because they know where the knowledge is available; or more precisely, they

believe that they don’t need to know because they believe that the available

knowledge is understandable.

Regarding mathematics education, the main issue is more to understand how

future mathematics education will evolve than looking at micro use of a particular

technology that will not be present in the next years. The great ideas that cross the

years have been built on transversal concepts that take into account the potential-

ities of technology more than local possibilities. DGS revolutionizes the teaching

and learning of geometry because they offer open playground to visualize mathe-

matical concepts in a dynamic environment. This idea of dynamic environment can

be then reused in other mathematical topics and gives the opportunity to explore
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algebra, calculus, statistics, and so on independently of a particular software.

Therefore, the idea can be reused in several ways allowing to display to students

an enriched environment in which mathematical objects live. Teaching and learning

mathematics, but also doing mathematics have been deeply transformed by this

original and fantastic idea.

On another hand, the technology presented as Information and Communication

Technology offers potentialities disrupting fundamentally the approach of the

communication and the sharing of information. In that way, teaching mathematics

as well as learning mathematics cannot be the same that they was some years ago.

Knowledge is available easily, without filters, to each student and far before coming

into the classroom; resources are available for teachers on every topic. What does it

transform in term of mathematics education? How is it possible to transform into

attractive feature what is considered as a competitor or an adversary in the field of

maths education?

This book takes into account these fundamental ideas and the different authors

through their communication during CIEAEM conferences and the discussion that

occur, give a picture of the actual landscape of mathematical education in the

technological era.

Sixto Romero shows in his comments chapter of the section “Technology, a tool

for teaching mathematics” that the role of the teacher should perform works in

almost unexplored domains and with the help of technology, produce creative

activities enriching students’ mathematical skills.

Peter Appelbaum in the comments chapter of the section “Technology, a tool for

learning mathematics” brings out the different boundaries that are and that appear

when using technology. The country of mathematics education enlarges itself and

grows back the boundaries in a new land that has to be explored. And the different

chapters of this section are as many tentative that explain and analyze this explo-

ration with different point of views, including in the word technology all that makes

education efficient in a given world and a given society: language, knowledge,

mathematics, “low technology” as well as “high technology” participate jointly to

the complexity and the enhancing of mathematical education.

Corinne Hahn through her comments of the section “Communication and Infor-

mation” emphasized the part played by technology in mathematical education and

particularly about problem solving that appears in the different chapters of this

section as an important feature of mathematics education. And finally, the impor-

tant question of the knowledge at stake arises and she synthesizes the important

contribution of technology in term of students’ autonomy in front of the knowledge

construction. The final questions of her contribution could be employed as a

research program that brings our community in the next years; particularly the

issues of mathematics education out of school.

Gail E. FitzSimons comments the section related to the professional develop-

ment of teachers in the digital era which is surely one important issue of mathe-

matical education in the next years. She shows that in the different chapters of the

section, the different theoretical frameworks converge to offer teachers training

based on authentic activities, construction of artefacts and collaboration between
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learners and experts. Each of the contribution stresses the importance in teachers

training to offer opportunities to become confident with technology that is surely a

fundamental outcome of the different chapters.

The questions that have been at the origin of this book and that are presented in

the introduction are not obviously closed but the authors, by their contributions

have given elements of answers that push away the boundaries of mathematical

education with technology. In the next years, we’ll need to offer in the CIEAEM

conferences the next steps taking into account the different actors of maths educa-

tion research.
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Assude, T., & Grugeon, B. (2003). Enjeux et développements d’ingénieries de formation des
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la journée en hommage �a Régine Douady (pp. 83–105). Paris: Université Paris 7 Denis Diderot.
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Hitt, F., & González-Martı́n, A. S. (2015). Covariation between variables in a modelling process:

The ACODESA (collaborative learning, scientific debate and self-reflexion) method. Educa-
tional Studies in Mathematics, 88(2), 201–219.

Hitt, F., & Kieran, C. (2009). Constructing knowledge via a peer interaction in a CAS environment

with tasks designed from a Task-Technique-Theory perspective. International Journal of
Computers for Mathematical Learning, 14, 121–152.

Hitt, F., Cortés, C., & Saboya, M. (2015). Integrating arithmetic and algebra in a collaborative

learning and computational environment using ACODESA. In G. Aldon, F. Hitt, L. Bazzini, &

U. Gellert (Eds.), Mathematics and technology: A CIEAEM sourcebook. Cham: Springer.

Hitt, F., Saboya, M., & Cortés, C. (2017). Rupture or continuity: The arithmetico-algebraic

thinking as an alternative in a modelling process in a paper and pencil and technology

environnement. Educational Studies in Mathematics, 94(1), 97–116.
H€olzl, R. (2001). Using dynamic geometry software to add contrast to geometric situations: A case

study. International Journal of Computers for Mathematical Learning, 6(1), 63–86.
Hostetter, A. B., & Alibali, M. W. (2008). Visible embodiment: Gestures as simulated action.

Psychonomic Bulletin & Review, 15(3), 495–514.
Hoyles, C. (1988). Girls and computers. London: University of London.

Hoyles, C. (1998). A culture of proving in school mathematics? In D. Tinsley & D. Johnson (Eds.),

Information and communications technologies in school mathematics (pp. 169–182). London:
Chapman & Hall.

Iijima, Y. (2012). GC/HTML5: Dynamic geometry software which can be used with Ipad and PC:
Feature of software and some lessons with it. Paper presented at ICME-12, Seoul, 8–15 July

2012.

References 643
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Lagrange, J. B. (2000). L’intégration d’instruments informatiques dans l’enseignement: Une

approche par les techniques. Educational Studies in Mathematics, 43(1), 1–30.
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L’étude d’un cas d’observation de classes ordinaires. CD supplementary to Actes de la XIéme
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Morin, E. (2006). Introduç~ao ao pensamento complexo. Porto Alegre: Sulina.

Moutsios-Rentzos, A., & Kalavasis, F. (2012). The interrelationships of mathematics and the

school unit as viewed by prospective and in-service school principals: A systems theory

approach. Quaderni di Ricerca in Didattica (Mathematics), 22(1), 288–292.
Moutsios-Rentzos, A., & Kalavasis, F. (2013). Σχoλείo, κρίση και συγκριτική τoπoθ’ετηση των
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educaç~ao em suas múltiplas dimensões (pp. 163–177). Rio de Janeiro: ANPEd Nacional.

Nardi, B. A. (1997). Activity theory and human-computer interaction. In B. A. Nardi (Ed.),

Context and consciousness: Activity theory and human-computer interaction (pp. 4–8).

London: MIT Press.

References 649

http://www.indicazioninazionali.it/documenti_Indicazioni_nazionali/indica
http://hubmiur.pubblica.istruzione.it/web/istruzione/prot7734_12
http://webeduc.mec.gov.br/midiaseducacao/material/gestao/ges_basico/etapa_1/p2.html
http://webeduc.mec.gov.br/midiaseducacao/material/gestao/ges_basico/etapa_1/p2.html


National Council of Teachers of Mathematics. (1989). Curriculum and evaluation standards for
school mathematics. Reston: NCTM.

National Council of Teachers of Mathematics. (2000). Principles and standards for school
mathematics. Reston: NCTM.

NCTM. (2008). The role of technology in the teaching and learning of mathematics. A position of

the NCTM. http://www.nctm.org/about/content.aspx?id¼14233. Accessed 28 Oct 2014.

NCTM. (2011a). Technology in teaching and learning mathematics. A position of the NCTM.

http://www.nctm.org/about/content.aspx?id¼31734. Accessed 28 Oct 2014.

NCTM. (2011b). Technology in teaching and learning mathematics: A position of the NCTM.

http:// www.nctm.org/about/content.aspx?id¼31734. Accessed 30 July 2015.

Nicholson, J., Ridgway, J., & McCusker, S. (2010). Luring non-quantitative majors into advanced

statistical reasoning (and luring statistics educators into real statistics). In C. Reading (Ed.),

Data and context in statistics education: Towards an evidence-based society. Proceedings of
the Eight International Conference on Teaching Statistics, Voorburg International Statistical

Institute, Ljubljana, Slovenia. Online: http://icots.info/8/cd/home.html

Niss, M. (1989). Aims and scope of applications and modelling in mathematics curricula. In

W. Blum, J. Berry, R. Biehler, I. Huntley, G. Kaiser-Messmer, & L. Profke (Eds.), Applications
and modelling in learning and teaching mathematics (pp. 22–31). Chichester: Horwood

Publishing.

OECD. (2003). The PISA (2003) assessment framework: Mathematics, reading, science and
problem solving knowledge and skills. Paris: OECD.

OECD. (2004). Problem solving for tomorrow’s world (pp. 27–29). Paris: First measures of cross-

circular competencies from PISA 2003.

Oldknow, A. (2008). ICT bringing mathematics to life and life to mathematics. In W.-C. Yang,

M. Majewski, T. de Alwis, & K. Khairiree (Eds.), Electronic proceedings of the 13th Asian
technology conference in mathematics (n.p.). Bangkok: Suan Sunandha Rajabhat University.

Olivero, F. (2002). The proving process within a dynamic geometry environment. Unpublished
PhD thesis, University of Bristol.
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Poloni, M. I. (2015). Formaç~ao continuada do professor de matem�atica: Problematizaç~ao e
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superior. El problema de Dobogókó. Modelling in Science Education and Learning, 1, 11–23.
Romero, S., & Romero, J. (2015). ¿Por una ense~nanza problematizada y modelizada de las
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παιδαγωγικoύ πρoβληματισμoύ για την πoιó τητα της επικoινωνίας στην άμεση και
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Brussels: De Boeck & Larcier.

Trouche, L., & Drijvers, P. (2010). Handheld technology for mathematics education, flashback to

the future. ZDM-The International Journal on Mathematics Education, 42(7), 667–681.
Turner, V. (1982). From ritual to theatre: The seriousness of human play. New York: Performance

Art Journal.

UMI. (2001). La Matematica per il cittadino: Attivit�a didattiche e prove di verifica per un nuovo
curricolo di matematica. Scuola Primaria e Scuola Secondaria di primo grado. Lucca: Liceo
Vallisneri.

656 References



UMI. (2003). La Matematica per il cittadino: Attivit�a didattiche e prove di verifica per un nuovo
curricolo di matematica. Ciclo Secondario. Lucca: Liceo Vallisneri.

Van den Heuvel-Panhuizen, M., & Drijvers, P. (2014). Realistic mathematics education. In

S. Lerman (Ed.), Encyclopedia of mathematics education (pp. 521–525). Dordrecht: Springer.

Varela, F.-J., Thompson, E., & Rosch, E. (1991). The embodied mind: Cognitive science and
human experience. Cambridge: MIT Press.

Vergnaud, G. (1988). Long terme et court terme dans l’apprentissage de l’algèbre. In C. Laborde
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