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Introduction

Fernando Hitt

Abstract Technology and its use in mathematics education has been the subject of
study for many decades. In the past some researchers wondered how to transform a
constructivist theory that could include technological resources, e.g., “Constructiv-
ism in the computer age” (Forman and Putfall 1988); the development of this
theoretical framework and new theoretical frameworks attempt to better explain
the phenomena of learning and teaching in a technological environment (Artigue
2000, 2002a, b; Baron et al. 2007). The effort of teachers and researchers is
enormous, and the influence on the educational environment with respect to tech-
nological resources is not as pleased as they expect it. And this despite the fact that
speeches of education administrators, educational reforms and programs of study
and teacher associations (see, e.g. NCTM 2008, 2011), make a special emphasis on
the importance of using technology in the learning and teaching of mathematical
concepts.

Keywords Mathematics and technology ¢ E-learning < Task-design
Representations ¢ Paper-and-pencil

Technology and its use in mathematics education has been the subject of study for
many decades. In the past some researchers wondered how to transform a construc-
tivist theory that could include technological resources, e.g., “Constructivism in the
computer age” (Forman and Putfall 1988); the development of this theoretical
framework and new theoretical frameworks attempt to better explain the phenom-
ena of learning and teaching in a technological environment (Artigue 2000, 2002a,
b; Baron et al. 2007). The effort of teachers and researchers is enormous, and the
influence on the educational environment with respect to technological resources is
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2 F. Hitt

Under this perspective, the mathematics teacher, who wants to use technology in
the mathematics classroom in a reasoned way, must take into account a lot of
variables that allow him/her to reach a broad view of the problems of teaching and
learning mathematics in technological environments. If we take the famous phrase
of Euclid (Il century BC) formulated by King Ptolemy: “There is no real way to
learn geometry,” we could apply here: “There is no real way to know how to use
technology in the mathematics classroom”. The choice of which technology to use
in the mathematics classroom and why, should take into account different variables
for a reasoned choice. The variables involved can be of different types, cognitive
(to answer the why), economic (f.e., use of free computer packages or commercial),
social (f.e., promote individual learning, including e-learning and/or collaborative
learning or both) or institutional (f.e., linked to the curriculum). The technology is
present in our daily lives, therefore it is important to reflect on what we could do in
the mathematics classroom to support teaching and learning of mathematics in
technological environments.

The CIEAEM (International Commission for the Study and Improvement of
Teaching Mathematics) aware of those problems above mentioned promoted
reflexion about the use of technology in the mathematics classroom in their last
three congress CIEAEM 65, 66, and 67. As a product of selecting important articles
presented at those meetings, the editorial committee present this volume, covering
different properties related to the use of technology in mathematics education:

» astools allowing a new kind of dynamic representation and giving opportunities
to teachers to emphasize particular knowledge construction, as elements of the
learning environment of students, offering an opportunity to comprehend math-
ematical concepts in a dynamic way,

* but also as tools allowing a new way of communication between the different
actors, and facilitating dealing with information and information processing.

The first part of the book deals with the role of technology in the teaching and
learning of mathematics while the second part treats of information and communi-
cation properties of technology.

Technology, a Tool for Teaching and Learning Mathematics

With the development of theories such as “Instrumental genesis” (Rabardel 1995),
acquisition of resources for teaching (Gueudet and Trouche 2010) etc., are given
new theoretical elements that allow us to better tackle this phenomenon related to
the lack of influence in the educational environment. One aspect that has been noted
by researchers is the lack of mathematical tasks on technological environment that
mathematics teachers could use in the mathematical classroom (Aldon 2009, 2010,
2011; Artigue 2000, 2002a, b; Hitt 2007; Hitt 2011; Hitt and Kieran 2009).
Precisely related to this point, both in the academic community, and in CIEAEM
(65, 66 and 67) congresses, we have seen the growing concern of teachers and
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researchers in relation to the “task design” that includes the technological variable
as an important element in the teaching and learning mathematics, not neglecting
the use of paper and pencil. In that context, the issue of the use of paper and pencil
and it’s replacement (or it’s complement) by touchscreen technologies is addressed
and research has to answer questions about new gestures and their relationships
with the construction of knowledge through personal representations; those repre-
sentations are crucial in the mathematical modelling process. Even if in the past
socio-constructivist and sociocultural theoretical approaches were constructed, in
this era, research related to those approaches in a technological milieu is presented
in the CIEAEM community; as you can find in this volume.

In relation about what has been said, a key question would be, how the proposed
mathematical task in a technological environment influences the acquisition of
knowledge? What elements are important to retain in the design of mathematical
tasks in computing environments? How to construct a task depending of the milieu?
The editors of this volume, aware of the importance of this problem have been
proposed as the first part of the book the theme Technology, a tool for teaching and
learning mathematics. We initiate the book with the following aspect.

Teaching Mathematics

In relation with the theme “teaching with mathematics” we present four chapters.
The first chapter is related to the concept of space and with the development of the
child, the acquisition of this concept. In this chapter special attention is made by the
author (Sabena) to relate her research with tasks used in textbooks and the Italian
National Curriculum. The bee robot used by Sabena reminded us the turtle used by
Papert but the playground is no more the screen of a computer but the local space of
children. Sabena, taking a Vigotskian perspective, analyses authors that in the past
were aware about the development of space like Piaget and Inhelder. And, under
this Vigotskian perspective, Sabena highlights several important notions, as antic-
ipation and control that children developed in her teaching experiment. In chapter
“Mediation of technological resources in lessons on polyhedra: analysis of two
teaching actions”, the authors Lobo da Costa, Pimentel and Mendonga, pay atten-
tion to teachers’ actions mediated by technological resources. Their subject is
related to three-dimensional geometry, specifically with polyhedral-prisms. They
show the problems where two different teachers have to control the activity of the
children in class and want to reach the objective they already had fixed. They
conclude about the mediators of technological resources that should be paid
attention like the reality of the classroom, students’ interest, the number of students
per class, the knowledge of the students, the need to cope with the prescribed
curriculum and available time. Authors of chapter “Task design in a paper and
pencil and technological environment to promote inclusive learning: An example
with polygonal numbers”, Hitt, Saboya, and Cortés, address an issue that seems
very important in this computer age; the authors stress the importance of task-
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design related to the use of technology and related to a sociocultural approach to
promote learning (method ACODESA of teaching). Under this perspective,
a problem situation seems more adequate to promote learning under this perspec-
tive. Then, under this approach, the authors propose a careful task-design, which
is different to that of an exercise or a problem. Then, in this chapter, authors
present their theoretical and methodological approach and in chapter “Integrating
arithmetic and algebra in a collaborative learning and computational environment
using ACODESA”, they show the results of their experimentation in secondary
education, following the method ACODESA of teaching. In chapter “ICT and
liminal performative space for Hyperbolic Geometry’s teaching”, Kotarinou and
Stathopoulou are showing Instructional Computer Technology together with
‘Drama in Education’ (DiE), drama taken as a milieu to develop a mathematical
understanding of non-Euclidean geometries. The authors conclude that an approach
to non-Euclidean geometry is difficult for the students, because they are confronted
with contradictory statements emerging from different axiomatic systems. The role
of the combination of ICT and DiE played a major role to cop with this difficulty. In
conclusion of this theme the Sixto Romero’s chapter: Improving the teaching of
mathematics with the use of technology: A commentary gives a global vision of this
first and important part of the book.

Learning Mathematics

Related to the second part of the same theme about Technology, a tool for teaching
and learning mathematics, the eight following chapters are related to the section:
learning mathematics. The first chapter of this section is chapter “Domains of manip
ulation in touchscreen devices and some didactic, cognitive and epistemological
implications for improving geometric thinking” and the authors, Bairral, Arzarello,
and Assis, are addressing an important issue related to technology in this century, that
is to say, touchscreen devices. The mathematical content related to this chapter is
geometry. The gestures we made when solving a mathematical task using a
touchscreen device is analysed by these authors, from a didactic, cognitive and
epistemological perspective. The authors of this chapter show that the process leading
to the solution of a mathematical task differs in a pencil and paper approach from that
about a touchscreen device. They stress two intertwined domains of manipulation as
the results of their experimentation, the constructive domain and the relational domain
directly related to geometrical thinking. In chapter “Graphs in primary school: Playing
with technology”, Ferrarelo shows how introduce elements of Graph theory in
primary school, presenting the mathematical activities in an enjoyable milieu. Tech-
nology permits this enjoyable approach in teaching and learning. This approach needs
a careful task-design to be effective with the aim of the teacher. Under this perspec-
tive, Ferrarelo is addressing important aspects of mathematics activity in primary
school, that is creativity and independence. In chapter “Pocket calculators as an
experimental milieu: Emblematic tasks and activities”, we have an important
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approach to the use of calculators. The author (Floris) is showing interesting activities
to use in primary and secondary level and also in teachers training. Taking into
account Brousseau’s notion of ‘milieu’, Floris shows aspects of the process of
instrumentation and instrumentalisation when using a calculator. He also shows
how mathematical expectations are modified when using technology. Chapter “The
street lamp problem: Technologies and meaningful situations in class” is related to
experimentation with teachers and students, using an open-ended problem “The street
lamp problem”. The authors of this chapter, Gentile and Mattei, analyse the perfor-
mance of students of a lower secondary school when manipulating materials as paper
and pencil, pictures and flashlights before using a DGS software. They conclude about
the importance of using DGS to represent a generic situation and they study the
situation changes. The activity in this technological milieu permits the conjecture and
process of validation. They postulate that both, paper and pencil and technology are
important in the process of learning mathematics. The Meta-Didactical Transposition
(MDT) offers a framework allowing to express the relationships of researchers and
teachers working at different levels of a same educational project; this viewpoint
brings to the chapter a meta analysis of the geometrical activity in term of teacher
training. In chapter “A framework for failed proving processes in a Dynamic Geom
etry Environment”, also in a Dynamic Geometric Environment, Chartouny, Osta and
Raad, analysed students’ performances related to an open geometry problem. They are
interested about students’ arguments when proving: Deductive justifications by struc-
tural thought experiment, and failed proving process. This last led them to divide their
analysis in several stages, the analysis of Failed construction, Failed conjecture, and
Failed proof. The authors claim that focusing on those stages can help teachers and
researchers to anticipate and to undertake analysis of students’ errors to better teach
and better understand the students’ knowledge construction. In chapter “Disclosing
the “reemotionality” of a mathematics teacher using technology in her classroom
activity” we have a completely different approach to analyse how technology influ-
ences teachers’ cognition and affect, De Simone analyses a teacher activity from this
perspective. The teacher uses a DGS (GeoGebra) and an applet (Virtual scale) in a 9th
grade class about linear equations. De Simone shows how technology affects the
epistemic emotionality, the teleological emotionality and the communicative emo-
tionality of the teacher. Authors of chapter “Integrating arithmetic and algebra in a
collaborative learning and computational environment using ACODESA”, Hitt,
Cortés and Saboya, address an important topic related to the articulation of arithmetic
and algebra in a technological milieu. In their experimentation, the authors utilise the
ACODESA method of teaching, showing with detail what means to learn in a
sociocultural approach, and how to promote a mathematical activity related to pre-
diction, argumentation, conjecture and validation in a technological environment, to
construct a cognitive structure were arithmetical thinking is a support to control the
algebraic activity. This eleven chapter is related to the third chapter where the authors
presented their theoretical approach about Activity theory in its Sth generation and
their methodological approach about task-design and that of teaching. In chapter
“L-system fractals as geometric patterns: A case study”, Alfieri takes into consider-
ation Artigue’s (2013) crucial questions about learning mathematics in a technological
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environment. The author shows us how to promote geometric knowledge using
technology and relating this knowledge with real life taking into account L-system
fractals. Under this approach, students conjectured and modelled shapes of real world.
To finalize this section we have the commentary chapter written by Appelbaum, who
discusses the content of the section, posing general questions and answering trough the
results given by different authors. The questions Appelbaum analyse are: can we tame
technology? Can learning with technology help us to better comprehend technologies,
and how to classify, categorize, exploit, and control them? Learning with/out/for
technology?

Communication and Information

Communication Inside and Outside the Classroom

New paradigms of this century have highlighted the importance of communication
both inside and outside the classroom, whether researchers or teachers follow a
constructivist, socio-constructivist or sociocultural paradigm, communication is an
essential part of their research program (Aldon et al. 2009). Technology plays an
important role in this communication, and simultaneously imposes its way of being
used. In the past, this communication outside the classroom was not fully efficient
because we did not have mobile resources as we currently have. Then, the use of
digital whiteboards, platforms as Moodle, tablets and smartphones has transformed
the way we communicate both inside and outside the mathematics classroom. How
to make an efficient use of these resources in the classroom and beyond? Under
these ideas the CIEAEM committee has proposed this theme in their congress.

In relation with this theme, the three next chapters look deeper into the commu-
nication potentiality of technology. The first of them is chapter “e-mathematics
engineering for effective learning” written by Albano. She addresses the problem of
learning mathematics in a technological environment, taking into account the
methodology of Didactic Engineering, she is extending the classical didactical
triangle (Student, Mathematics and Tutor for each vertex) to a tetrahedron where
the added vertex represents the author. She shows the need of a fourth vertex if we
are immersed in an e-learning environment, and as a consequence, she proposes a
Didactical tetrahedron as model, expanding in a way this methodological approach
when immersed in a technological environment. Chapter “Learning paths and
teaching bridges: The emergent mathematics classroom within the open system
of a globalised virtual social network™ is written by Moutsios-Rentzos, Kalavasis,
and Sofos, they investigate the views of primary teachers, principals and school
advisors with respect to social networking sites (SNS). Using a questionnaire in
their study, they analyse what kind of preferences and teachers, principals and
advisors related to the teaching in primary school, privilege uses of networking
sites. They answer the question: in which ways (if any) the aforementioned SNS
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realities and epistemic views about mathematics seem to be linked with SNS and
mathematics as a school course? The authors answer this question analysing data
from three points of view: symbolic/normative, pragmatic representations, desired/
intentioned actions and from a mathematics didactics and general didactics per-
spective. In chapter “e-collaborative forums as mediators when solving algebraic
problems”, Royo, Coll, and Giménez, investigate an e-collaborative learning
related to algebraic problem solving. They follow students’ interventions when
solving algebraic problems in a forum, permitting the students to express their
points of view and letting them to reflect before answering to a question. The
authors think this approach permit the students to have more confidence and deep
reflection because the students have more responsibility when proposing or answer-
ing to the whole group.

Information’s Tools, to Inform Oneself and to Inform Others

Another important aspect detected by the editors of this volume, is on how teachers
appropriate themselves the information to teach courses and to communicate with
their colleagues. The issue of the documentation of teachers in the digital era has to
be addressed as well as the documentation of students. Technology modifies the
way information is transmitted and mathematical education has to take into account
the new ways of learning through connected networks as well as new ways of
teaching with an extensive documentation (Aldon 2010; Gueudet and Trouche
2009; Trouche and Drijvers 2010). The tools to learn and inform others are
important in the process of teaching. The problems facing the educational environ-
ment for information to flow in both directions are huge. How the researchers can
appropriate themselves about the teachers’ experiences and in turn, how the
teachers can appropriate themselves about research results. Bilateral information
represents one of the biggest problems to solve in the educational environment.

In relation with this theme, we have two chapters. Aldon, Durand-Guerrier, and
Ray wrote the chapter “Problems promoting the devolution of the process of
mathematisation: An example in number theory and a realistic fiction”. The authors
address the big problem of learning about modelling. They studied this topic related
to modelling phenomena from both mathematical and real-life situations, and
modelling a phenomenon in a fictional context in a technological environment.
Using Brousseau’s theoretical approach in a collaborative milieu, the authors gave,
in the mathematical classroom, a particular importance to the devolution of the
problem. The experimentation of these authors is immersed in collaborative
research among researchers, teachers and students. Addressing the problem of
learning about modelling, authors explain also how the project is developed in
this collaborative research approach. In chapter “A classroom activity to work with
real data and diverse strategies in order to build models with the help of the
computer”, Ginovart, uses mathematical models that depending on the parameters
these models can be applied to different contexts. The task-design was implemented
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to elaborate the tasks related to real data that should by analysed using technolog-
ical devices. This permitted the students to recalculate as necessary to better model
the phenomenon in question, this search of a better model promoted visualization
processes in the students. Finally, related to this theme, Hahn analysed five chap-
ters. Highlighting the importance of questioning the notion of problem, the notion
of knowledge, the notion of activity and device, in her chapter, she made a global
analysis of the five previous chapters, emphasising the differences of approaches
and theirs particularities.

Technology and Teachers’ Professional Development

The last session, but not the least, takes an interest in teachers training in the digital
era. Teacher education is a political issue that policy makers have to take into
consideration in the cultural and social context of the society. The injunctions, often
insistent, of introducing technology in the classroom have to face the reality of
teachers’ technological knowledge and the necessity of teachers’ training (Clark-
Wilson et al. 2014). It is well known that we can divide the teachers into three
populations, those that completely reject the use of technology, those who believe
that problems of teaching and learning mathematics are solved immediately with
technology, and those who believe that they must make a rational use of techno-
logical resources in order to have a real impact on teaching and learning mathe-
matics. How to convince the mathematics teacher about the importance of the use
of technological resources? How to convince the enthusiastic teacher who must
make a rational use of technology? What problems of teaching and learning will
have to confront future mathematics teachers in the use of technological resources?

Related to this theme we have five chapters, chapter “A study on statistical
technological and pedagogical content knowledge on an innovative course on quan
titative research methods” written by Serradd, Meletiou-Mavrotheris, and
Paparistodemou. Their study is double, first, it is related to the affordance a Quan-
titative Research Methods course to develop students’ Statistical Technological and
Pedagogical Content Knowledge (STPACK), and second, to investigate the effects of
the STPACK model in graduate education studies. The packages used in their
experimentation are Fathom, TinkerPlots, and Probability Explorer. That software
allowed them to design activities to use them as amplifiers and reorganisers from a
statistical perspective. In chapter “The professional development of mathematics
teachers: Generality and specificity”, Polo stresses the professional development of
mathematics teachers from a general and a specific point of view. Two groups of
teachers were analysed from a pedagogical, psychological and sociological role as a
teacher. Polo’s concerns is that there is a lack of integration of the different theoretical
models used to describe the role of the teacher and a poor relation between prospec-
tive teachers and teachers in service. In chapter “Integration of digital technologies in
mathematics teacher education: The reconstruction processes of previous trigonomet
rical knowledge”, Lobo da Costa, Esteves, and Brisola studied the integration of
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digital technologies in the classroom with two case studies, one with prospective
teachers and the other with a teacher in service. Their theoretical approach is related
also with TPACK and they added the Rabardel’s perspective about the instrumenta-
tion theory. The results show that non-traditional design training can help to develop
the professional knowledge in prospective teachers and in-service teachers. In chapter
“Formative assessment and technology: Reflections developed through the collabora
tion between teachers and researchers”, Aldon, Cusi, Morselli, Panero, and Sabena,
addresses the problem of formative assessment in relation to a European project
FaSMEd. This project is immersed in a collaborative research between teachers and
researchers. Their study uses a three-dimensional framework where one of the axis is
related to « functionalities of the technology ». Their results show how different
functionalities of technology enable the development of formative assessment strat-
egies and more important a characterisation of the dynamics that intervene in a
collaborative research study, where the researchers learn from the teachers’ practices
and the teacher learn from the theoretical approach of the researchers. In chapter
“Teaching intriguing geometric loci with DGS”, Ferrarelo, Mammana, Pennisi, and
Taranto, stress a teaching experiment developed in several high schools in the South
of Italy. Their theoretical approach is based on the TPACK framework, using DGS
software. Some of the results show the importance of high school teachers to work
with university professors in a collaborative task-design perspective. Teachers think
that the software GeoGebra is useful to better understand mathematical topics. The
technological approach attracted attention and interest of the students, and that
motivated them to participate actively in the experiment. Finally to close this
theme, FitzSimons wrote a chaper from an integrative perspective taking into account
the five previous chapters related to the theme, and taking into consideration the
whole structure of the book, arriving to the conclusion that: the five chapters that are
the subject of this commentary have much to offer teachers and researchers alike, and
she commends each team for its innovative work on behalf of the students concerned
and, hopefully, students of the future.

Finally, Aldon presents a global conclusion related to all the chapters, giving
special attention to what the commentators had stressed in their analysis.
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Early Child Spatial Development: A
Teaching Experiment with Programmable
Robots

Cristina Sabena

Abstract This contribution addresses young children development of spatial com-
petences, and investigates the didactic potentialities offered by a programmable
robot. The theoretical framework addresses the delicate relationship between space
as lived in everyday experience versus space as a mathematical notion, and takes a
multimodal perspective on mathematics teaching and learning. An experimental
study has been conducted in kindergarten school. The qualitative data analysis of
video-recordings constitutes the background against which children spatial devel-
opment is discussed.

Keywords Multimodality ¢ Kindergarthen mathematics ¢ Spatial thinking
Programmable robots

Introduction

Attention on early years mathematics is emerging in recent times in research, as
witnessed by the new Thematic Working Group in CERME, (http://www.cerme8.
metu.edu.tr/wgpapers/wgl3_papers.html), and the ICMI Study 23 Conference
(http://www.umac.mo/fed/ICMI23/). As in the latter case, the focus of attention is
placed in particular on the development of whole numbers competences, which are
fundamental steps for children mathematics education. Less attention is given to
other competences, such as the spatial ones.

Spatial competences develop through a complex process, requiring long-time
experiences in meaningful contexts. Kindergarten and the first year of primary
school are the proper places for these experiences, constituting the base on which
the learning of geometry can be grounded, first as modeling of spatial properties,
and then as theoretical elaboration specific on the mathematics field. However,
especially when starting primary school, spatial competences are often overlooked
(at least in Italy, but this may not be an isolated case), being the major efforts put on
numbers.
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This chapter focuses on children development of spatial competences, and
explores the didactic potentialities offered by programmable robots. Cognitive
aspects will be on the foreground, and in particular the delicate relationship
between space as lived in everyday experience versus space as a mathematical
notion will be addressed. On the background of psychological results on spatial
conceptualisation in children, and taking a multimodal perspective on mathematics
teaching and learning, an experimental study has been conducted in kindergarten
school. The study was based on the teaching experiment methodology and explored
the didactic potentialities offered by a programmable robot with a bee-shape, with
respect to children development of spatial competences. In the following, after a
theoretical discussion on young children spatial thinking development, the meth-
odology of the teaching experiment will be described, and a case study data analysis
will be provided, from video-recordings and collected written materials of the
classroom activities in a kindergarten school.

The Development of Spatial Thinking in Early Years

The complexity of children spatial conceptualization processes has been pointed
out by research in psychology and education for several years. Great differences in
different theorizing in the field prevent researchers from reducing these processes to
simple and linear models of learning, based on rigid pre-determined steps.
Concerning spatial relationships, we can consider three different fields of experi-
ences, which correspond to three different kinds of space, requiring each specific
perceptive and exploration modalities (Bartolini Bussi 2008):

e The body space, that is the internal reference frame relative to the awareness of
body movements, its parts, and to the construction of the body schema;

e Specific external spaces, including different kinds of living spaces (the house,
the town, the school.. . .) and different representative spaces (the sheet of paper,
squared papers, the computer screen, . . .);

e Abstract spaces, that are the geometrical models developed within mathematics
science in its history.

The first two kinds of spaces refer to actual spaces in real world, the latter one
belongs to the world of mathematics. Such a categorization must not be thought as a
sort of hierarchical scale, or as a developmental sequence. On the contrary,
according to Lurcat (1980): “it appears difficult to imagine a development in
which the body schema is constructed before, to allow then the knowledge of
external world” (p. 30, translation by the author). As a matter of fact, several studies
agree in recognizing a fundamental role to the experiences that the child makes both
in his/her family and in specific educational settings, and suggest to go beyond
linear models, which position abstract space at the end of a developmental process
(in the stage of formal operations, in the Piagetian case). A discussion in this
direction may be found in Lurcat (1980), and in Donaldson (2010).
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Recent strands in cognitive sciences place perception and everyday experiences
with the body as grounding pillars for more abstract knowledge conceptualization,
included the mathematical knowledge. In particular, the embodied cognition per-
spective (Lakoff and Nunez 2000) proposes a model for the “embodied mind”, as a
radical criticism of the dualism between the mind and the body of classical
cognitivist approaches.

If mathematics is no longer a purely “matter of head”, it becomes of paramount
importance to carry out mathematical activities in suitable contexts in which
children can interact with different kinds of space and spatial thinking. Concerning
the external space, we can distinguish further between macro-spaces and micro-
spaces (Bartolini Bussi 2008):

e macro-spaces are those in which the subject is embedded (the subject being part
of the macro-space); their exploration is carried out through movement, and their
perception is only local and partial, requiring usually to coordinate different
points of views;

e micro-spaces are external to the subject; their exploration is carried out through
manipulation, and their perception is global.

A park is an example of macro-space, whereas a sheet of paper and a book page
are examples of micro-space. As an intermediate category, called meso-space, we
can consider the big posters often used in classroom for group-work: children can
enter into them, but also look at them at distance. The essential aspects in this
distinction are the different modalities of perception and exploration: the school
garden, for instance, can be an example of macro-space—when the child is playing
within it—or of micro-space, when the child is observing it from a window above.

The body space and the external spaces share fundamental differences with
respect to abstract spaces: as a matter of fact, they can be perceived and explored,
and are featured by fundamental directions (vertical and horizontal) and by typical
objects (e.g. adoor in a room, a fridge in a kitchen). On the contrary, abstract spaces
(like the geometrical ones) are isotropous and homogeneous, i.e. do not have any
privileged directions, nor special points. These features may be sources for diffi-
culties for students, when facing tasks with figures in non-prototypical positions, as
in the assessing item reported in Fig. 1 from Italian National test INVALSI
20122013, grade 5): Four isosceles triangles are cut from a paper sheet, with
the same base and different heights. In each case, the height of the triangle is the
double of the previous one. In triangle A the height measures 2 cm. Which is the
total length of the paper sheet?

Among the advantages of introducing reference systems like the Cartesian one in
the geometrical space, we find the introduction of privileged points (in particular,
the origin point) and special directions (those parallel to the axis).

In mathematics, reference systems are objective or absolute, in the sense that
they do not depend of the position of the subject using them. Objective references
are the product of the historical-cultural development of society and have to be
introduced by the teacher starting from the subjective references (which depend on
our position in the external space).
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D16. Da un cartoncino sono stati ritagliati 4 triangoli isosceli con la stessa base,
ma altezze differenti. L'altezza di ogni triangolo & il doppio dell’altezza del
triangolo precedente. L'altezza del triangolo A misura 2 cm.
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Fig.1 Non prototypical positions in an Italian National Assessment item (INVALSI 2012-2013),
grade 5

According to Lurgat (1980), our subjective references depend heavily not only to
external objects (e.g. a door in a room), but also on our ways to project our body
schema into objects. Subjective reference systems can be egocentric, if the descrip-
tion is provided according to the subject position (e.g. “to my left”) or allocentric,
when the reference is made with respect to another object or person (e.g. “to the left
of the house”). Egocentric systems are the first to develop in children, but not the
only ones. While Piaget and Inhelder (1956) claimed that children until 8-9 years of
age are incapable of decentralize with imagination and so of correctly using
allocentric references, following studies have refuted this conclusion, and proved
that also children aged 3 are able to decentralize, if faced with problems compre-
hensible to them (for a discussion, see Donaldson 2010). Being able to coordinate
egocentric and allocentric perspectives constitutes an important competence for
spatial and geometrical development, and in Italian curriculum is placed as a goal
for Primary school (MIUR 2012). An example of task requiring this competence is
reported in Fig. 2, again from the Italian National Assessment test. Two children are
looking at an object from different positions and the students are asked what the girl
is seeing, thus activating an allocentric perspective:

On the base of this discussion of results from psychology, we can ground the
hypothesis that the reality faced by young children (and indeed, by all of us) is full
of cognitively-different spatial contexts, which require different related specific
competences. In order to reach this goal, Lurgat (1980) underlines the importance
of choosing carefully the requests to the child in the spatial activity:

...not all spatial behaviours necessarily imply a knowledge on space. In order to have
knowledge, a suitable activity is necessary: for instance, going in a place, locating objects,
positioning in the space of places and objects [. . .]. As in other psychical fields, it does not
exist an age for the development, which can be considered independent from the concrete
conditions of existence (p. 16, translation by the author).

An educational implication of this perspective is that in order to develop the
necessary different spatial competences, children need to be involved since their
early childhood in dedicated activities with dedicated task design. For instance, in



Early Child Spatial Development: A Teaching Experiment with Programmable Robots 17

Fig. 2 Allocentric D10. Carlo e Luisa giocano uno di fronte all’altre.
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order to foster the passage from ego-based to allocentric references and lay the
foundations of objective reference systems, activities on the change of points of
view, such as the realization of maps of familiar places, can be proposed already at
the kindergarten.

Along with meaningful experiences in different spaces, languages constitute a
second fundamental set of sources of knowledge, including verbal and non-verbal
means of communications.

The key role of verbalization not only as a communicative means but also for
thinking processes has widely been discussed in Vygotskian studies (e.g. Vygotsky
1934), and stressed by Lurcat (1980) concerning spatial development:

It seems hard to separate, in the appropriation of the environment realized by the young
child, these two sources of knowledge, the one practice, the other verbal, since both
converge early in the first months of life (pp. 15-16, translation by the author).

For mathematics, we know the importance of symbols and graphical represen-
tations of various kinds—in particular for geometry, of geometrical figures and
Cartesian plane systems. Each of these representations situates in a specific way in
the external space of the child: usually, school lessons heavily exploit
bi-dimensional micro-spaces, such as the blackboard, the book sheet, or more
recently the computer/tablet screen. The passage from experience and perception
in the tri-dimensional (macro-) space to these representation spaces is a very
complex process, so far little studied in literature. Also at primary school, this
passage is often taken for granted and in many cases written representations are
used but not problematized.
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In such a passage, on the one hand the use of artefacts can be exploited as
didactic resources in the development of children spatial competences, and on the
other hand gestures and embodied means of expression may play an important role
in synergy with verbal language, according to a multimodal perspective (Arzarello
et al. 2009; Bazzini et al. 2010; Sabena et al. 2012). The role of artefacts will be
discussed in the next section.

The role of embodied resources such as gestures, gazes, and body postures in
thinking processes (and of course in communicative ones) has been pointed out in
psychological literature with cognitive and linguistic focus (McNeill 1992, 2005).
The study of gestures and embodied resources in synergy with verbal language has
gained a certain attention also in mathematics education, in an increasing variety of
contexts, such as: students solving problems (Radford 2010), students and teachers
interacting (Arzarello et al. 2009; Bazzini et al. 2010; Bazzini and Sabena 2015),
the teacher’s lectures (Pozzer-Ardenghi and Roth 2010), considering not only the
semantic but also the logical aspects of mathematical thinking (Arzarello and
Sabena 2014). For what concerns spatial tasks, iconic and pointing gestures come
to the fore: iconic gestures are those ones which resembling the semantic content
they refer to, and pointing gestures are usually performed with the index forefinger
and have the function of indicating something in the actual context.

The Teaching Experiment: Methodology

On the base of the outlined theoretical frame, an experimental study has been
planned and carried out in a kindergarten school in Northern Italy, with the goal
of studying the didactical possibilities for children spatial conceptualization offered
by programmable robot toys.

The study is based on the teaching-experiment methodology. The activities have
been organized around a programmable robot' with a bee-shape (Fig. 3a), a
technological artefact new to the children. The robot is a kind of tri-dimensional
and touchable version of the well-known Logo turtle by Papert (1984), and its
movement can be programmed through buttons placed on the upper part (Fig. 3b):
they are four arrows for onward and backward steps, right and left turns, and a pause
of one second. The robot bee can move on a plane with 15 cm-long steps (the same
measure of its length). Steps are marked by a quick stop, which creates a silent
pause with respect to the noise of the movement, and by the lightening of its eyes
(see Fig. 4b). Pushing the green button “GO”, the robot executes the previously
programmed sequence. A specific button (“clear”) allows the user to clear the
memory from past commands.

"Bartolini Bussi and Baccaglini-Frank (2015) carried out a study with the same artefact in primary
school, about the introduction of the definition of rectangle.
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Fig. 3 (a, b) The programmable robot used in the teaching-experiment

Fig. 4 (a, b) Initial exploration of the artefact in the meso-space

The teaching-experiments involved four classrooms of 5 years old children, and
was carried out with the collaboration of the four teachers, four Master students in
Primary school education, and the author. Being inserted in the usual school
activities, the experiments had didactic as well as research goals.

From a didactic point of view, the activities had the general goals of promoting
competences related to spatial thinking, but also problem-solving. These compe-
tences were linked to the use of a new artefact, in the context of exploring it through
a playful environment. Concerning spatial thinking, the passage from egocentric to
allocentric reference systems is particularly involved, in particular when the robot
is not oriented parallel to and with the same orientation as the children. On the other
hand, the activity of programming in advance the movements of the robot, and
checking afterwards the consequences of the choices, by means of observing the
obtained movement, offers a suitable context for stimulating and developing antic-
ipation and control processes, which are at the base of successful problem-solving
(Martignone and Sabena 2014).

The didactic dimension intertwines with the research one. The study had mainly
an explorative character of the potentialities and the limits of the artefact-based
activities with respect to the identified didactical goals. Such an analysis needs to
consider the specific activities proposed to children, and the role of the teacher in
their management.
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The key-role of the teacher in using with success artefacts in the mathematics
teaching and learning has been pointed out and stressed by Bartolini Bussi and
Mariotti (2008):

The role of the teacher is crucial, in fact the evolution of signs, principally related to the
activity with artefacts, towards mathematics signs, is not expected to be neither spontane-
ous nor simple, and for this reason seems to require the guidance of the teacher (ibid.,
p. 755).

Adopting a Vygotskian perspective, Bartolini Bussi and Mariotti elaborate the
Theory of Semiotic Mediation, according to which the fundamental elements of
didactical activities involving artefacts are the signs that emerge when using the
artefact, and above all the role of cultural mediator accomplished by the teacher
when using the artefact as a tool of semiotic mediation: this expression refers to the
fact that when using an artefact (for accomplishing a certain task) new meanings
emerge. These meanings are linked to the use of the artefacts but can be general and
can evolve under the guidance of the teacher:

Any artefact will be referred to as a tool of semiotic mediation as long as it is (or it is
conceived to be) intentionally used by the teacher to mediate a mathematical content
through a design didactical intervention (ibid., p. 754).

An important didactic feature of this theory is the “mathematical discussion”
(Bartolini Bussi 1998), in which the whole classroom is collectively engaged in
discussing the personal meanings emerged from an activity, relating them—with
the essential guidance of the teacher—to the mathematical signs.

The teaching experiment with the robot has been planned sharing the same
Vygotskian view, assigning great relevance to the peer as well as teacher-students
interaction, and focusing on the evolution of signs developed during the technol-
ogy-based activities. Due to the young age, the specific mathematical contents have
been limited, and the discussions have regarded more general competences, at the
base of spatial and logical thinking.

The activities have been video-recorded and the obtained videos have been
analysed in detail. Furthermore, children written drawings related to the activities
have been collected and analysed.

The Teaching Experiment: Analysis

Children were organized in groups of about 10-12, with one or two bee-robots at
disposal. For each group, the activities developed along 5-6 one-hour meetings,’
for a period of about 1 month. Most of activities involved the whole group, with the

?In Ttaly, usually we use the term “lesson” starting from Primary school, were formal education
begins (also with textbooks, notebooks, and so on). In kindergarten, activities unfold in a less
formal way.
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Fig. 5 Egocentric perspective kept during the comparison of steps lengths

coordination of the teacher, and only in some cases individual work was required
(e.g. to produce a drawing).

The first meeting was always dedicated to the introduction of the new artefact.
The initial exploration of the robot has been carried out letting the children play
with the robot. In some groups, the activity was organized around a table, while in
others children were sitting in a circle on the floor (see Fig. 4a): the resulting
delimitation of space produced a sort of meso-space, since the children could
globally perceive it with their sight, but also enter into it and explore it with
their body.

One of the games played in this context was “sending the bee to my friend
(name)”. In this game, each child had to name a friend, and to program the bee so to
be able to send it where stated. We observed that when programming, every child
always started positioning herself/himself behind the robot (as in Fig. 4b). It is the
most natural choice, since it keeps the cognitive burden low: in this way, in fact, the
reference system introduced by the robot (allocentric system) is coincident with the
child one (egocentric system). We kept therefore this choice in those activities
focusing on more specific aspects of the artefact, such as estimating the length of
the steps, compared with those of the teacher or of the children (see Fig. 5).

Other games required the imitation with one own body of some movements
made by the robot, with or without verbal description. The imitation is simple if the
child is oriented in the same way of the bee-robot (for instance, if the child is
following the robot), because grounded on the ego-based reference system. When
the robot is oriented differently with respect to the child, the task increases in
difficulty, because it requires reproducing, during one’s own movement, an external
point of view. In other terms, it requires coordinating the egocentric system not only
with an allocentric one, but with a mobile allocentric one: it is a coordination
constantly in need of control and adjustments. In our experiences, verbalization has
constituted an important supporting tool: when accompanying the bee-robot move-
ment with a verbal description (such as ‘onwards, onwards, onwards, turn right’),
the task was more easily faced by children. However, verbal indications were of
little help for children with difficulties in knowing right from left (a problem for
which the bee-robot could not offer any support).
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Fig. 6 ‘The bee-game’: Ego-centric perspective to program the movement

With each group of children, at least a couple of meetings were dedicated to an
activity on a poster showing a path to be travelled by the robot. The paths were all
structured with lengths multiple of 15 cm (the exact dimension of the robot, and of
its steps) and with right angle turns, so to be viable by the robot in an exact number
of steps and rotations. These choices were meant to ask the children to program
rotations, which were never activated in the explorative phase, avoiding problems
provoked by non-perpendicular turnings—impossible to program with the bee-
robot.

An example is the ‘Bee game”® (Fig. 6), a sort of Snake and ladders game. The
game setting facilitated the introduction of the rule of ‘moving the bee only through
its buttons’ (and not pushing or rotating it with the hands, as the children were
tempted to do...). In our intentions, the race setting would have also fostered the
need of programming as many segments of the path as possible, in order to reach a
farther place. For instance, if the first roll of the dice gives ‘3, the children have to
program the sequence ‘two onwards, turn left, one onward’. However, in our
experiments the children did not fulfil this expectation. Indeed, in all groups
children preferred to program one segment at a time: in the given example,
programming two steps onwards, observing the robot movement, then program-
ming one turn leftwards, observing the turn, and then programming the final two
steps. Figure 6b shows a child while programming this last segment: again, the
ego-based perspective is taken by the child in order to carry out the task.

Probably we missed the occasion of challenging the children, by introducing an
additional rule, such as ‘programming the robot sitting always in the black arrow
place’. This request would have forced the children to coordinate their egocentric
perspective with the moving perspective of the robot (allocentric for the children).

The activities were alternated with collective discussions, which constituted
occasions for reflection on what happened. Discussion organized before to carry
out new activities are of particular interest. In a group, a guided discussion

*In Italian the popular game Snake and ladders is called ‘Gioco dell’oca’ (‘The goose game”).
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Fig. 7 (a—c) The setting of the activity “Let’s help the bee to reach the flower”

introduced the activity on the path. The bee-robot was not on the scene (Fig. 7a): the
discussion constituted a moment of reflection for the children, during which the
development of the spatial competences is realized by observing and describing the
present scene, but also recalling past experiences with the artefact, and anticipating
potential actions through imagination. We are going to analyse in greater details
what happened.

The teacher guides the discussion with the goal of making the children to
observe that the path is not linear. As a matter of fact, in the previous activity
children moved the robot using only the “onward arrow”, without turns. The
general goal of the activity is to make the students program more complex
sequences involving turns, such as ‘forward-forward-turn left-forward’.

1. Teacher: Today we explore this (looking at the poster). What comes to your
mind looking at this?

. Stefano: It is a road

. Viviana: A flower and a house

. Teacher: And whose is the house?

. All the children: The bees!

. Teacher: And how is it this road? Is it straight?

. All children: Noooo!

. Stefano: It has some curves (with his hand he is traveling the road, Fig. 7b)

0O kW



24 C. Sabena

Fig. 8 (a—d) Fabio’s gestures accompany the introduction of the terms « straight » and « turn ». In
pictures b—d also the body rotation can be observed

9. Cristina: It makes like this and like this (she travels the road with her hands, as
Stefano is doing)
10. Other children do not make any verbal comment, but touch the entire path with
their hands (Fig. 7c).

The teacher’s questions have the goal to help the children becoming aware of the
characteristic of the road along which they will make the bee travel. Though not
explicit, they play an important role with respect to the anticipatory thinking needed
to program the robot. The children immediately answer to the question with very
poor descriptions, made of the list of the elements of the poster, without relating
them each other. They describe the road with deictic terms (“like this”) that contain
little information without the co-timed gesture. In order to push them to provide
more suitable verbal descriptions, the teacher closes her eyes and asks them to
better explain:

1. Teacher: And then? Let’s do like this: I close my eyes and you tell me how is the
road, because I do not know it...Is there a starting point? And an arrival?
Explain to me.

2. Fabio: The start is in the house and maybe over there (pointing gestures) where

there is the flower, it is the arrival.

. Teacher: But in this way I would not be able to arrive: you must explain well.

4. Fabio: You must go straight (pointing gesture, Fig. 8a), then turn (moving and
turning his body, Fig. 8b, ¢, and making a turning gesture with right hand,
Fig. 8d), go still a bit straight, then turn again, go straight and you are arrived at
the flower.

W

1. Teacher: But I don’t know where to turn, how can I understand which part to
turn. . .
2. The children continue to explain mainly with deictic terms such as “here”,
“there”, accompanied by gestures.
. Teacher: No, no, if you had to explain it only with words?
4. Chiara: Left and right

W
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5. Teacher: Left and right, or towards. . .So, explain me better, you can do it: not
like “I make some curves”, but how many, I go straight and how far, or right-
wards, or towards the benches, towards the door. ..

The first description provided in describing the poster referred to static elements:
the house, the flower, and the road (lines 2-6). Soon after (from line 9), when
pushed to better describe the path, a dynamic perspective is brought to the fore:
children use dynamic pointing gestures (also materially touching the poster) and
then words referring to the motion along the path (e.g. Fabio in line 13).

The teacher suggests some reference points, such as the starting and the arrival
points (line 10), and insists on asking the children to provide a clear explanation
(“explain well”). In line 13 Fabio introduces two verbs that characterize the
movement of the robot: going straight, and turning. The introduction of these two
terms is accompanied by two specific gestures: a deictic gesture made with the
extended index (Fig. 8a), and a dynamic gesture, combined with the full-body
rotation (Fig. 8b—d). The body movement and the hand gesture are the only semiotic
resources that express the information about the direction of the rotation (left-
wards). The teacher insists constantly about more accurate verbal descriptions,
making this goal explicit to the children (line 15), and giving some indication on
what aspects to mention: quantifying (line 17: “I go straight and how far”),
subjective (“rightwards”), and objective references (“towards the benches, towards
the door”). Analysing the following part of the video, we can see that children will
seize only the subjective references, whereas for the quantification they will go by
trial and error with the bee-robot.

The first path is run with the bee-robot programmed only with straight short
traits, so the teacher asks to make more elaborate programs. But before asking to
program the entire path, she sets an intermediate goal, consisting in programming
until the third square, indicated with e deictic gesture on the poster (Fig. 9).

Fig. 9 The teacher
indicates an intermediate
goal to reach
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Fig. 10 (a, b) Fabio’s gestures during his verbal instructions

The first attempts fails. Fabio then wants to give instructions to his mates, and
the teacher pushes him to state precisely what he is saying:

. Teacher: Think at which arrows you have to push.

. Fabio: So, you have to push once the arrow, right

. Teacher: To go forward, straight, backwards. . .how?

. Fabio: Forward. Then you must do the. . .left. . .here (he indicates the direction
to the left of the robot, Fig. 10a), then you must do again

. Anna: Straight

6. Fabio: Straight and. . .and then we arrive here (indicates on the path the third

square, that is the arrival point stated by the teacher).

AW N =

9,1

The teacher asks to Fabio to repeat his proposal, so that all children can listen to
it, before to check with the robot. Fabio would like to act directly on the robot, but
the teacher insists that he gives the instructions from his place: the child accom-
panies then the verbal instructions with deictic gestures (Fig. 10b), and his mates
follow them. We observe that Fabio is placed on the side with respect to the path
direction: his egocentric reference system is therefore not aligned with that of the
robot. Looking at the video we can clearly see that the child meets difficulties in
accomplishing this task: to overcome them, he speaks slowly, and tries to incline his
body so to position himself in the same direction as the robot (this can only be
guessed by Fig. 10b, but is clearly visible in the video). The problem of program-
ming many steps consecutively, when rotations are included, seems therefore
strictly linked to the problem of coordinating different reference systems. The
specific requests of giving instruction to others, while remaining far from the
robot and in a different position, allowed Fabio to face the difficulties of the task,
and to overcome them successfully, activating and developing his spatial compe-
tences, intertwined with the anticipatory thinking. As we can see from Chiara’s
intervention (line 22), also other children participated to Fabio’s endeavour, either
listening carefully, or pushing the robot buttons, or suggesting words, or checking
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in their mind his instructions: through the social interactive context, the request
made by the teacher to an individual child, becomes a resource for making all
children facing the complex task, each according to their actual capacities and
specific attitudes.

Conclusion

Through teaching experiments in kindergarten, some potentialities and limits of
robot-based activities for the development of spatial conceptualization were inves-
tigated. They were intertwined with anticipation and control competences, crucial
to problem-solving in different fields.

Programming tasks, in fact, require children to imagine the consequences of
their own actions, and allow later them to verify their correctness (in our case,
through the observation of the robot actual motion). Anticipatory processes, that are
cognitive processes carried out while imagining the consequences of our actions in
a hypothetical future, are of paramount importance in problem-solving activities
(Martignone and Sabena 2014). Their counterpart is control processes, which can
be activated when checking if the actual robot motion does correspond to the
programmed sequence of steps. In the light of our experimentation, we can affirm
that robotic artefacts can offer great potentialities for the activation of these kinds of
processes, but such activation requires an acute attention that in 5-years-old chil-
dren is still in its initial development. Many children, in fact, showed great
difficulty in keeping in mind even a small sequence of commands, and this
difficulty made impossible to them to activate suitably control strategies.

For what concerns spatial conceptualization, robotic activities carried out in the
material world can foster in children the intertwining and coordination between
different reference systems. As discussed in the first part of the chapter, the
coordination between different reference systems and points of view is necessary
in order to face geometry problems.

A first remark regards the activations of different reference systems. In our
observations, in order to face the proposed tasks, children always spontaneously
took the egocentric perspective. Of course, to make sense of what their mates or the
teacher were doing with the artefact, children were often in the need of coordinating
their ego-based perspective with the allocentric one assumed by the robot. How-
ever, our findings suggest that specific constraints have to be set up on the task in
order to ‘force’ children to actively work with allocentric perspective: for instance,
have the children to imitate the movement of the robot when is not parallel to them,
or to program it from a certain fixed position.

Both ego- and allo-centric perspectives are subjective reference systems, used in
the space of reality. As discussed above, geometrical space requires the use of
objective references. In the proposed activities, we did not focus on the passage
from subjective to objective references. Some hints have been made by the teachers
(as the one documented in the analysed episode), but with no success. Our



28 C. Sabena

b c

[

Fig. 11 (a—c) The grid used during the activities with the bee-robot and two drawings made
afterwards by children

impression is that specific activities need to be designed in order to reach this goal,
possibly in later age.

A second remark concerns two different spatial conceptualizations that emerged
during the artefact-based activities: a static and global one, and a dynamic and
paths-based one. The two perspectives do not constitute a dichotomy. For instance,
in line 8 in the excerpt above Stefano is blending both of them: his words are
referring to a global feature, and the gestures expressing dynamic ones (Fig. 7b). In
the overall experimentations, gestures have often offered a window into the chil-
dren’s conceptualization of space, and new spatial terms have often been used the
first time accompanied by corresponding gestures (as Fabio in line 13).

Evidence of how the experience with the robot paths has influenced the chil-
dren’s conceptualization of space can be seen also in several children drawings.
Figure 11(b, c) reports the drawings made by two children, who had had the robot
moving on a grid made by straight lines (Fig. 11a). In the children’s drawings, the
grid looses its global features and becomes a sequence of steps.

The paths-based perspective has been certainly fostered by the use of the bee-robot,
and future research is needed to investigate its role in early spatial thinking. Studies in
cognitive science within the embodied mind approach have shown that motion
constitutes the source domain of many concepts, and that also static objects are
often conceptualized in terms of motion* (Lakoff and Nuiez 2000). Starting with
motion activities seems thus promising for children spatial development.

The last remark concerns the crucial role of the specific requests made to the
children. For instance, we encountered a great “resistance” from children to pro-
gram sequences of steps that could include one or more turning: they preferred to
divide the path in straight parts, and program each of them separately. Rotations in
particular were never spontaneously linked to following onward steps. Probably
programming an entire long sequence requires cognitive capacities still under
construction by the children, but maybe the main difficulty lies in the fact that the
goal of reaching a certain place through a single program sequence had not any
understandable ‘sense’ for the children (Donaldson 2010). We could observe that
even when this goal was proposed within a competitive setting (like a team

4Talmy (2000) has called ‘fictive motion’ the cognitive mechanism underlying the description of a
static object (e.g. a path, in our example) in motion terms (e.g. ‘it starts. . .it goes. ..”).
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Fig. 12 Written signs
representing the
programmed sequence of
steps

competition), the children did not undertake it. As a matter of fact, programming a
certain artefact using less time as possible can be a goal for adults, which are often
under time pressure. In the case of children, pleasure was given in using the robot as
long as possible, because they liked it. In our task design, we initially
underestimated this essential dimension, and not a few times the goals that we
had chosen for the activities were completely neglected by the children.

The mediation of the teacher has therefore been necessary to introduce the
possibility itself of articulated programs, and to make their benefits explicit to the
children. The teacher mediation in the activities was accomplished through natural
language, as well as embodied resources such as gestures, as in the analysed
episode, but also through the introduction of written signs to register the commands
given or to be given to the robot (see an example in Fig. 12).

The different resources (words, gestures, written signs) intertwined in complex
interpretative processes of the programming code used by the robot, represented by
the arrows buttons (Fig. 4b), and its actual movement. The introduction of written
signs has not been here discussed, and requires further examinations. It has a
limited scope for kindergarten level, but it constitutes an interesting didactic path
for primary school, since it regards the delicate passage from experiences in macro-
space of reality to the use of micro-space of representation, the fundamental
background of much geometric activity.
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Mediation of Technological Resources
in Lessons on Polyhedra: Analysis of Two
Teaching Actions

Nielce Meneguelo Lobo da Costa, Maria Celia Pimentel de Carvalho,
and Tania Maria Mendongca Campos

Abstract This chapter aims at discussing the mediation of technological resources
done in geometry classes, in particular, for the teaching of polyhedral-prisms and
pyramids — in primary school. The focus is to understand teaching actions and the
use of technological resources by observing two teachers on geometry classes and
analyzing results from this “in loco” survey. Zeichner’s ideas about teacher’s
reflective practice and the view of Serrazina about the teacher as a manager of
curriculum defined the theoretical framework. The methodology was qualitative,
grounded in the complexity theory. We observed two different teachers’ actions and
the mediation of available resources in order to help students’ participation and the
development of the classes.

Keywords Teaching practice « Technological resoucers ¢ Geometry classes ¢
Primary school « Mediation

Introduction

Mathematics provides the students with the possibility of dealing with everyday
situations, criticizing, developing creativity and skills such as communication,
reasoning, phenomena interpretation and solving routine problems among others,
leading those students to reason according to their existing and/or intuitive
knowledge.

The study of Mathematics in elementary education intends to develop some
students’ skills, such as communicating, thinking in a variety of ways, interpreta-
tion phenomena, solving daily problems, among other activities that make them
reason through their existing knowledge and intuition or make them try to construct
new knowledge. This way the students get mobilized in different situations of
learning.

N.M. Lobo da Costa (0<) « M.C.P. de Carvalho « T.M.M. Campos
University Anhanguera of Sao Paulo (UNIAN-SP), Sao Paulo, Brazil
e-mail: nielce.lobo@gmail.com; mariaceliap@ gmail.com; taniammcampos@hotmail.com

© Springer International Publishing AG 2017 31
G. Aldon et al. (eds.), Mathematics and Technology, Advances in Mathematics
Education, DOI 10.1007/978-3-319-51380-5_3


mailto:nielce.lobo@gmail.com
mailto:mariaceliap@gmail.com
mailto:taniammcampos@hotmail.com

32 N.M. Lobo da Costa et al.

In order to assist students to develop these skills, the teacher needs to propose
interesting and challenging teaching situations. The technological resources
selected by the teacher to do this, may help the students to establish the connection
between the classroom, the society and daily life. This will leading them to perceive
mathematics as a tool for thought and for facing challenging situations. The
students will become agent of social change. The use of technological resources
is central in the composition of teacher’s pedagogical practices and another critical
issue is how to do the mediation of the chosen resources.

According to Ma (1999), in order to improve the mathematical knowledge of the
students, one should begin by improving the teachers’ own knowledge of the
subject, that is, elementary school mathematics. Such knowledge regards the
teachers’ initial education and continuing education programs. The act of thinking
would help update their practice in the classroom, both in planning and in relation to
their peers.

Therefore, we started thinking about the matter: What is the current state of
integration of technological resources regarding teaching and learning geometry
in elementary schools? With this question in mind we start to research what really
happens in two class related to the use of technological resources by primary
teachers.

We regard as technological resources, every material that a teacher may choose
to use in class in order to help students mobilize their existing knowledge as well as
to assimilate and integrate new knowledge. We consider as technological resources,
materials like chalk, chalkboard, ruler etc. We follow Moran (2007) which defines
technological resources as the means, the support and the tools that teachers use in
the classroom. We agree that writing with chalk on the blackboard is a communi-
cation technology and good organization makes writing and learning easier. They
also mention that the teacher’s way of looking, making gestures and speaking, may
generate good or bad results in the action, knowledge acquisition. So, they may help
develop the students’ learning process.

In this chapter, mediation of technological resources in geometry classes will be
analyzed from the action of two primary teachers in the same school, notably the
5th grade. This text is an enlarged version of Carvalho et al. (2013).

The Research

The investigation that supports this chapter aimed at investigating the pedagogical
practice of teaching in elementary schools, particularly at the use of technological
resources and the mediation of these resources. We have observed two different
teacher’s actions and the mediation of available resources in order to help students’
participation and the development of the classes. The focus of this chapter is to
understand teaching actions and the use of technological resources by observing
these two teachers in geometry classes, and to analyze results from this “in loco”
survey.
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The research theoretical basis stems from the following: Zeichner’s (1993)
reflective teacher and Serrazina’s (1998) view on teachers and their relationship
with curricular development. Serrazina considers reflection as an important com-
ponent of the teachers’ professional development, since it will enable them to
enhance their theoretical and methodological knowledge, thus constantly deepen-
ing their reflections.

Zeichner (1993) also shares the idea of reflection for professional development.
He believes that teachers act according to their personal theories, so in order to
understand their teaching practices, it is necessary to analyze the situation in which
teachers do their work. The author goes on to say that when the teacher does not
reflect on his or her teaching practices, they are doomed to follow the same
procedure class after class, while applying a curriculum they have not chosen.

The research methodology was qualitative grounded in the principles of the
Morin’s (2006) complexity theory, assumed by Moraes and Valente (2008) as a
way to do qualitative research.

For them search, from the perspective of complexity, is to assume the interpre-
tative character and epistemological dimension that asserts that knowledge is not
copying of reality, but rather a result of the action that considers the individual
cognitive structures. Also within this classification, consider the methodological
dimension of research the predominance of qualitative methods, whereas the
dialogue with the quantitative methods, if there are theoretical and methodological
compatibility for both. The strategy is the action method open adaptive and
evolutionary knowledge, contemplating not only the process but the product as
well. The search procedures adopted in this respect are flexible and revisable in
every stage of the investigation. Uncertainty is always present in the pursuit of
scientific truth. This means that Moraes and Valente (2008), claim that the entire
“objectivity is always an objectivity in parentheses, since the observer, whether
consciously or not, is always included in the system that distinguishes” (p. 8),
participating in the reality to be investigated. These authors still summarize it by
saying that the researcher faces:

a relational, indeterminate, non-linear, diffuse and unpredictable dynamic reality. This
multidimensional reality is possessed of a complex nature, consisting of different levels:
a macro physical, a microphysical and a virtual one. Thus, the complexity pervades the
different levels of reality. It is also a constitutive factor of life that allows this common
tessitura and the existence of different life nourishing streams of life and are nurturers of
their relational, interdependent and self-organizing processes. (p. 21)

The validity is directly linked to the accuracy of the results requiring the
rationale of the essential concepts, the definition of data to be collected, the
processes and tools used for the collection of such data, organization, analysis
and interpretation of data, the tools used and how the data are analyzed. In this
sense, it is worth emphasizing the non-neutrality of the observer researcher, since
he is the filter and the reading of reality that is personal and not neutral.

The investigation was done in two phases: documentation and field research in
an elementary public school in Sao Paulo city by observing two 5th grade teachers
in action in 16 lessons with children aged between 9 and 10 and some of the school
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1. Lesson procedures (classroom learning environment, what is said, how it is said).
Order and work habits revealed.
2. Interactions with the students
The role of an elementary school teacher
v' Proposing questions, showing models to be followed, negotiating/imposing
criteria, supervising activities, providing information/resources, clearing doubts.
The role of elementary school students
v' Proposing questions, being mere executers/spectators, participating in decisions,
proposing initiatives, managing their own activities and others.
v’ Student-student interaction in the classroom regarding the job at hand.
3. Development form of the mathematical content
The teacher explains significance criteria
v For the proposed learning tasks
v For the proposed situation
Evaluation carried out at the observed situation
4. References regarding innovation — technology resources

Fig. 1 Class observation protocol (Source: Private collection, Adapted from Hernandez et al.
2000)

meetings. We collected the data, in the phase of field research, by a questionnaire,
semi-structured interviews with the two teachers, classrooms audio records, video,
images, and a researcher field book.

The analysis was carried out from three main points: mathematical content, the
practice and the technology used during the classes. The categories analyzed were
the class routines, the interactions with the students, how the math contents were
developed and the technology used (see Fig. 1). The observation protocol based on
Hernandez et al. (2000) guided us to compose those categories. We selected the
following analysis aspects: lesson procedures (class routine, surface organization
and work habits), interactions with the students (the role of the teacher, the role of
the students, student-student interaction), how the students behave concerning the
task, clear significance and evaluation criteria.

The Research Subject

The characterization of the research subjects Teacher Piera and Teacher Ana
(fictitious names) was done from the semi-structured interview and from the initial
questionnaire:

¢ Teacher Piera is a pedagogue and a specialist in educational psychology. She has
been teaching primary school for 34 years and prefers to teach fifth graders. She
considers the use of technological resources essential to the education process,
she is interested in learning using technological resources, but she has not used
educational software aimed at teaching math in her classes. For her the techno-
logical resources that can foster learning are ludic activities, games, dynamic,
calculators, concrete material, music, drama, etc.
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e Teacher Ana is a pedagogue and has been teaching primary school for 17 years.
She also prefers to work with fifth graders. She does not use mathematical
software in her classes, but uses other digital features such as calculators and
DVDs besides the non-digital resources as books, golden bead material, solid
geometric shapes, etc.

We observe that both teachers are experienced in teaching and they have good
academic background. Both prefers to teach fifth grade students because they affirm
it is easier to control the classes, and that the students are more obedient and
complying. Both teachers declared that they used different technological resources
to teach mathematics, but they did not use software to teach geometry at the time of
the survey.

Mediation of Technological Resources: The Episodes

In this chapter, we chose to discuss episodes of classroom situations, in which both
teachers approached the same geometry content. In them we were able to observe
the actions of both observed teachers and here we focused the discussion on
different mediations and classroom management styles.

The following reported episodes are related to Teacher Piera’s fourth observed
math lesson and to teacher’s third observed math lesson.

The observed classes established the same objectives as the competences and
abilities to be developed by the students and indicated the use of the same techno-
logical resources. (See Fig. 2)

We started discussing the episode of Teacher Piera’s mediation, related to the
situation she developed with her students, described below.

Piera’s Mediation to Explore Prisms

The lesson focusing on prisms started with the teacher asking the students to open
the Student’s book to page p. 28 (see Fig. 3).

Content: Space and form: prisms

Skills: Recognizing similarities and differences between polyhedral (such as
prisms, pyramids and others). Identify relationships between the number of
elements (such as faces, vertices and edges of a polyhedron).

Resources: Student’s book (p. 28 and 29), chalk, blackboards, notebooks,
pencils, erasers, scissors, cardboard, a set of prisms in wood or cardboard, scrap.

Fig. 2 Content, skills and resources (Source: Carvalho, p. 93)
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Fig. 3 Student’s book (Sao Paulo, 2010) (Source: Carvalho, p. 97)

It took a few minutes for students to calm down in their seats. The teacher asked
the students to listen while she read the student’s book.
Teacher Piera read:

— Page 28, prisms and their denominations, you noticed . . .

She interrupted her reading to remember what happened in the previous
lesson:

— Do you remember that in the last class we saw the boxes that Patricia, the little
girl built? So the first box she built, we built one too, didn’t we?

A student corrected her:
— Two boxes.
And the teacher objected vehemently:

— ONE!!! This lilac one, which she built. From the rectangular box she made
another, but we just built the lilac one. We put together a little box, okay? Now,
today we are going to study prisms.

Teacher Piera read the first sentence of the book and prompted the students,
stopping in the middle of a sentence:

— Prisms are geometric figures that have the faces 7?
And asked the students, in a more emphatic way:

— What are faces again, people?
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Fig. 4 Blackboard with
prisms (Source: Carvalho .
2012, p. 95)

Triangular base prism
% Pentagon base prism

\ Hexagon base prism
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Some students answered:

— The sides.

— That’s it! Look, remember that we saw them? A prism is any geometric figure
that has rectangular faces, okay? It’s a rectangle, some are bigger, others are
smaller.

It is worth mentioning that the teacher meant the lateral faces although she did
not say that. She drew a triangular based prism, a pentagonal base and another of
hexagonal base on the blackboard (see Fig. 4).

She explained the concept then:

— We saw, the other day, what Patricia did; she built a little box that had a base. . .
So, she interrupted the explanation and asked:

— What is it, when you have three sides?
Some students said:

— A triangle.

— A triangle, right? A triangular base and sides of the box are ...

— Rectangular. Some students responded.

— We’ve seen a box like that, but before that, we saw that other one. When you
have five sides, what is that?

— A PENTAGON, the students said.

— Look at the base, the two bases are pentagons, because the faces are rectangular,
so they are thin.

And she continued:

— Well ... and then?
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Now she interrupted to comment with a student:
— You will know how to do all of this, and you will make beautiful boxes.
The teacher continued:

— Prisms are different; they are called according to the shape of their bases. For
example, this one is a triangular based prism, why?

Some students shouted the answer at the same time and the teacher replied:

— The bases, eh, there are three bases, so they are triangular. This one is a prism of
what type of base?

A student replied:
— A pentagon.
The teacher continued:

— Pentagonal because the base has 5 ...?
— SIIIIDES! students groaned with boredom.

The teacher said:

— And when you have 5 sides, it is a...?
— Pentagooooon, again they groaned.

Teacher Piera started to talk with the students about the concept of the base of a
prism with three, four, five and six edges, which had been seen in the previous class.
She asked the students about these concepts, and the students responded in unison.

Then she wrote, under each picture drawn on the blackboard, the answers to be
copied by students in their book.

A student criticized the design of a prism the teacher had made on the black-
board, and she said to him:

— Igor, you know better than I do?
She continued:
— T ask you to come here to the blackboard and draw it for us.

And the student went to the board and nailed it. After he has finished drawing,
the teacher said that he was too bold to defy her.

We believe that, at this point, one possibility would be for the teacher to have
validated the student’s boldness pointing out that he had the courage to apply her
skills.

The teacher returned to the chalkboard to conceptualize the figures she had
drawn. Students responded to questions she asked. She used the same procedure to
explain the concept of triangular and pentagonal prisms as she did to explain the
hexagonal prism.
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So, she asked the students what was the concept of prism by saying:
— Why, again, do you call it Prism?

A student replied:
— Because the bases are rectangular.

And the teacher explained:

— The sides, the faces are rectangular, only the bases are the ones that form
different figures, the two bases, now the sides, the faces are rectangles.

It is worth mentioning that by saying “faces” the teacher is referring to the sides
and when she says “sides” she uses language that can cause confusion, but those
terms are familiar to the students once they have been used when studying two-
dimensional figures.

The teacher asked if everyone had already filled the answers in their books and
went on to explain the exercise number 2. She explained the exercise in Fig. 5, by
writing it on the blackboard.

Piera guided the students and drew on the blackboard showing how faces should
be placed on the paper or on the blackboard, in order to represent the 3-dimentional
figure (see Fig. 6).

In reality, the teacher used the cavalier perspective for the cube'. Geometric
concepts to develop the cavalier perspective are supposed to assist in visualizing
and in solving problems. However, it has not been possible to identify if she knows
rudiments of perspective and if she uses it consciously.

Teacher Piera said to the class:

— What we are doing here [on the board] are 3-dimensional drawings, isn’t it
“chic”?

Continuing the dialogue, the teacher asked the students to give examples of
rectangular boxes they knew. And they said:

— Box and loaf of bread.

"You can set the cavalier perspective as an oblique cylindrical projection on a plane parallel to one
of the main faces of the object. Most representations of geometric figures in the books are in
cavalier perspective. In cavalier perspective, there are the following properties: (1) figures and
segments parallel to the plane of projection (paper plane) are represented in true greatness;
congruent figures, situated in different planes, but parallel to the plane of the paper, have congruent
representations-this is contrary to the vision, but according to the reality of the objects; (2) per-
pendicular threads to the plane of the paper are represented by oblique segments (if adopted,
making angles of 30° to the bottom edge of the paper), and has reduced its length (if adopted, the
reduction of 50); (3) parallel to each other and straight segments are represented by straight
parallel segments and each other (it is a cylindrical projection); (4) keep the midpoints of the
segments and the centroid of figures; (5) as Convention, trace the lines that are visible to the
observer and trace the invisible lines. Fonte: http://www.apm.pt/apm/geometria/inoveg/egtextl.
html


http://www.apm.pt/apm/geometria/inoveg/egtext1.html
http://www.apm.pt/apm/geometria/inoveg/egtext1.html
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2. Alguns prismas tém nomes especificos, como cubo e paralelepipedo.
Faga um desenho representando-os.

Proposal of item 2: some prisms have specific names as cube and rectangular box.
Make a drawing representing them.
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Fig. 5 Student’s book — Personal answer (Source: Sao Paulo 2010, p. 28)

Fig. 6 Cube and
rectangular box on the
blackboard (Source
Carvalho 2012, p. 100)

After this conversation, the students drew a cube on their student’s book (see
Fig. 7).
She continued showing a worksheet with the printed figure saying:

— Now we are going to try to make a cube. Don’t ruin your paper because we do
not have any more to spare. What we are going to do first is: paint the figure, then
after painting you’re going to cut on those outer black lines, after cutting it...,

— Hey, guys, if this is not done, it is impossible to form a solid.

After the guidelines given by the teacher, some students tried to reverse the
instructions, for example, first cutting before painting, which the teacher did not
allow. It was possible to notice that, at this time of the lesson, the students were
involved in the task. Although the students were sitting as if they were working in
pairs, each one had his or her own material (Fig. 8).

In Fig. 9 we can see worksheets being painted, cut and pasted by the students.

The teacher was talking informally around the classroom watching the students,
while they built the solids. She asked what prism was being built and all in unison
they responded that it was a cube.

While the students worked on the solid’s plan, Piera copied the constant table on
p- 29 of the student’s book in order to explain it later.
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Fig. 7 On the left, the
drawing of a cube made by a
student (Source: Carvalho
2012, p. 99)

Fig. 8 2D planning of a
cube (Source: Carvalho
2012, p. 100)

Teacher Piera picked up a cube she had made and, taking into account, one by
one of the items, which the table requested, she filled the number of sides, number
of bases, and total number of faces. The students participated responding orally
while they calculated their scores and added numbers in their own assembled cubes.
The students counted the items of the other figures in the book.

Then she read exercises 2 and 3 on p. 29 of the book and explained the concept of
vertex, “where any two lines meet”.

We emphasize in the Student’s book, that item 2 shown in the figure above,
proposes a discussion among the students about the information collected on item
1 table (see Fig. 10) and students should write the conclusion they have reached.

However, the teacher chose not to discuss that item. That is, it was not discussed
among the students nor did the teacher make any reference to it at the time. She told
the students to go straight to item 3.

So, the students answered item 3 based on the figure of a prism (see Fig. 11).

Item 3 proposes the following questions, concerning the figure on the left “How
many vertices are there in this prism?” and about the figure on the right “How many
edges are there?”
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Fig. 9 Students working on painting, cutting and assembling the cube (Source: Carvalho 2012,
pp. 101-102)

Contando o nimero de faces (Prism | [Number| [Number| |Toul
3 5 of faces | |of bases| [numberof
e am prisma L
1. Obsenando as representagoes dos prsmas da pagina antenor, preencha Triangular base [ ] [ I [ ]
a tabela abaso prism
= total
L7 T Pentagon base | | | [ | [ J
m
Hexagon base | | ] [ | |
prism
[Cube ] [ | [ | | |
[Parallelepiped] | ] ] [ J

Counting the number of faces of a prism
1. Observing the representations of the prisms on the previous page fill in the table below:

Fig. 10 Table from the Student’s book copied on the blackboard (Source: Sao Paulo 2010, p. 29)
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2. Discuta com seu grupo as relagdes entre 0s nimeros que aparecem nessa

tabela e escrevam suas conclusdes.

3. Além das faces, um prisma também tem vértices e arestas.

L ———p

——aGETTA

- SRR S

Quantos vértices )
2 E quantas arestas?
tem esse pnsmar

Fig. 11 Exercises from the Student’s book, page 29 (Source: Carvalho 2012, p. 104)

Teacher Piera went on drawing the prism on the blackboard and showing where
the vertices and the edges were, and suggested that the students touch them in order
to feel their forms with their hands. She asked them to show in their production,
where the side of the prism was. She asked where the base was, and answered it
herself: “they are the two edges.”

The teacher asked:

— Where’s the edge?
A student replied:

— It is this line here, showing it in the prism.
The teacher continued by explaining:

— And the vertex, which is the meeting point of the two lines. Every time two lines
meet, there is a line here and here is another one, this is a vertex. See how easy it
is to learn geometry?

After the explanations, she explored in exercise 3, the blue figure, for students to
fill out the answer (see Fig. 11).

We have analyzed that when conducting this activity, Teacher Piera’s mediation
strategy was to avoid the discussion and lead the students to finish the activity since
class time was running out. The teacher assigned the homework for the next day and
considered the class was over.

Figure 12 shows that the end of the class could have been considered a time of
evaluation of the dossier, which was not observed by the teacher.
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Fig. 12 Students drawing prisms on the blackboard after class (Source: Carvalho 2012, p. 105)

As soon as the bell rang to announce the end of the class, some students literally
ran to the blackboard and began to draw geometric figures, showing evidence of
their interest, which was not explored by the teacher; and making evident the need
for more discussions on the activities (see Fig. 12).

After the lesson, we talked to Teacher Piera and conducted the following
interview, about this lesson and the students’ development:

Researcher: Teacher Piera, do you think your students get more involved in
this kind of activity?

Teacher Piera: Yes, we get a little crazy, but they participate and easily
understand, you see? Now I am thinking that the school should
also provide some geometric solids, to show to the students, some
bigger ones, so that they could handle and touch.

Researcher: Do you teachers bring the solids?

Teacher Piera:  Yes, the school does not have them, but I think it’s a question of
asking, because when we ask, they buy them, that is when they
have the money, but they buy them. For the next budget, if |
remember correctly we have asked. The school used to have
several solids, they were kept in a bag, in class students formed
groups and each student could have and handle at least one
geometric solid of each type.

From Teacher Piera’s answers, we can interpret that she considers the type of
activity developed in this class as appropriate to promote more active participation
on part of the students and, also, to foster learning. However she analyzes that such
an activity is more difficult to mediate (“we get a little crazy”), since students are
working in groups with more autonomy. That hinders the focus of discussions. In
addition, we observed that the teacher declared the lack of school’s necessary
technological resources, which hinders the development of the activity in class.
However, she assumes that this may be due to a failure of the school’s own teachers,
who do not request such resources at a time when the school has funds to purchase
school supplies. This highlights the need for more coordination between teachers
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and pedagogical coordinator, in order to provide the technological resources that
will be used in class.

Also from her answers, we can observe that, in spite of years of practice, the
teacher doesn’t feel safe and cannot deal very well with situations in which students
bring their previous knowledge. As she said to herself, that kind of lesson she gave
gets students involved, but drives her a little crazy and she blames the entity for not
providing materials that will help the class to be more dynamic. She made it clear
that she prefers to conduct the classes according to the school’s established
curriculum.

We have noticed that the teacher’s role was to drive students’ development of
concepts and rationale for which answers were given. Apparently the students
managed their own activity, because the teacher was not always available to
check all their tasks in all their notebooks. We have highlighted the action of
some students of running to the blackboard when the lesson ended. They felt at
ease to show each other their ability to make drawings of prisms.

We can validate what Nacarato (2011) calls the questioning process, which is a
tool that aids the formation of autonomous individuals, who will act critically and
reflectively, with competence to propose changes when necessary, i.e. have the
ability to change the environment in which they live.

The established skills in this class have been developed, with emphasis on
materials such as chalks, blackboards, notebooks, pencils and erasers. At the end
of the class, the students used scissors, bond paper with 2D geometric shapes.

Ana’s Mediation to Explore Prisms

Ana’s lesson was the third observed lesson in the research. She began by asking
students to open the Students’ book top. 25, and worked the content of operations
involving natural numbers, additive field, multiplicative field and situations involv-
ing composition.

In the second part of the lesson the content of space and form was developed —
polyhedral — prisms.

The teacher read the textbook then went on to work the content of p. 26 and 27 as
shown in Fig. 13.

In the Student’s book there is space for students to create their reply. Teacher
went on to discuss p. 26 and, after reading the statement, she asked the students:

— What is your idea of three-dimensional [things]?
A student answered:

— It’s the third dimension.
The teacher repeated her question:

— And what does it mean? Have you ever heard about a 3D movie? Have you seen
it? So, what is 3D?
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As eaixas de presente de Patricia

Veja algumas das caias de presente que Patricia confecciona, que tém formas
grométncas tndimensionars.

VX 4

Em cada uma delas, hi diferentes formas geométncas bidimenuonis
No sdlido tridemensional da caia:

® hilis, hd faces retangulares e quadradas,

¥ laranja, hi faces retangulares ¢ tiangulares.

® anul, hi faces retangulares ¢ hemagonais (de 6 lados).

1.0 as cabase p nas formas gy . responda:

a) na caba lilks, quantas faces 130 retangulares € Guantas 130 quadradas?

b) Laranja, quantas f: ! TN € quantas

€) na caia arul, quantas faces

g € quantas 30

2. Patricia fe algumas caics de presente parecidas com cainas de sapatos.
Desenhe uma com esse formato:

3. Desenhe uma caix com outra forma geométrica, que s pareca com
algurma caiaa que vock manipulo:

As cabas que vock analisou thm forma de prisma. Nas piginas seguintes,

VAmMCS aprender mak sobre exsa forma geomdtrica.

Fig. 13 Student’s book (Source: Sao Paulo 2010, pp. 26-27)

Another student tried to answer with a question:

— Is it the three-dimensional?
The teacher asked:
— And what is ‘three-dimensional’?

A third student answered:

— Does it have to do with 3D glasses?

Teacher said:

— It has 3 what? — Three dimensions, three measurements.

The intention of the lesson was to help develop the skill of recognizing similar-
ities and differences among polyhedrons, such as prisms, pyramids and others. To
build the concept of 3D — three dimensions, teacher brought back the concept of
2D — two dimensions, by drawing and explaining how to represent the third

dimension like Fig. 14.

Next, the teacher invited the students to look up the definition of those concepts in
the dictionary and then, she drew a cube on the blackboard saying that it had three
measurements: height, width and depth. She went on to ask the students to count the
sides while she showed them on the blackboard. She explained to the students that
they were seeing the representation of the cube on the blackboard in two dimensions.
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Fig. 14 Tridimensional
figure represented in 2D
(Source: Private collection)

largura

She reinforced the idea of the difference between a two-dimensional and a three-
dimensional figure, pointing out that the first had two measurements and the latter,
three, in her own words. Ana related ‘two’ to “bi” (Greek radical for ‘twice’), as in
‘twice champions’ and “tri” (Greek radical for ‘three times’) to ‘three times’ as in
‘three times champion’.

Teacher explained that any side of an object that is drawn in three-dimensional
shape can be seen. With the drawing of the cube she had made she said, “this figure
has three dimensions: length, width and height.” She asked the students to tell her
which sides they were, and at the same time she showed them on the blackboard.
She explained that it is possible to see only the height and the length and then drew a
square on the board, while saying:

— I drew a die. How many dimensions are there?
Some students answered in unison:
— Threeeeeeeee!!!!

Teacher Ana asked where the three dimensions were and explained that what
they saw on the blackboard was just a representation of two dimensions. She
demonstrated that if represented by a drawing, which she called width, now
completed a three-dimensional figure.

Then she related this explanation to activities done in previous lessons, in which
two-dimensional figures were studied, in this case, polygons such as Pentagon,
Hexagon, among others.

The teacher finished off with a drawing on the board saying:

— You can see that all figures have three measurements; all of them have height,
width and depth. In each of them, there are different three-dimensional geomet-
ric shapes. The different two-dimensional geometric shape measurements are
height and width. If you look at them in front view, they have two dimensions
and when looking sideways, they have three dimensions (sic).
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Fig. 15 An example:
shoebox (Source: Carvalho
2012, p. 145)

Teacher Ana read the written explanation on p. 26 and asked the students to do
the exercises on that page and the following one after reading the statement aloud
for them. She demanded that they “work in silence” and waited for a few minutes.

At this point, a student interrupted the teacher, announcing that he had already
done the exercise and showed it to her. She said vehemently:

— Wait ... you are not supposed to do it now. If you did, you keep your mouth shut
and let the others hear the explanation!

A student asked for an explanation about the third exercise on p. 27, in which a
design of a geometric figure similar to what was seen during class was proposed.
When replying, teacher picked up the shoebox (Fig. 15) and asked students to
imagine another way of drawing a rectangular box. While students worked, the
teacher walked around their desks, watching the results.

After the end of the period given for students to solve the exercises, she corrected
the exercises on page 26 on the blackboard, with oral participation of the students.

Teacher orally discussed what kinds of polyhedral there are and asked students if
any of them would know now how to define what is a three-dimensional figure.

The students responded in a beat:

— An object that has height, width and length.

Then teacher drew a checkered cube on the blackboard and asked the students to
identify its dimensions. She explored, always orally, the figures from the same page
of the book, then she directed the students to work individually and do exercise 1 on
that page and also two other exercises on the next page, concerning polyhedral.

On the blackboard, she provided the answers to (a), (b), (c), of exercise 1 p. 26,
with oral participation of students and their imagination, once they used the figures
that are in the book. Because of that, some of the faces of the figures represented
could not be seen and, sometimes, the children identified incorrect dimensions. At
the end, she announced that on the following week, the students would crop and
make their own solids, which actually happened, as you can see in Figs. 18 and 19.

She resumed the exercise correction on p. 27 and read the instructions on item
2. She proposed that the students do the exercise, whose response should be
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4. Preencha a tabela abaixo com o nimero de arestas, faces e vértices de
cada forma geométrica:

vértices

arestas

faces

e
bmm——
-

Fig. 16 Student’s book (Source: Sao Paulo 2010, p. 45)

personal, but teacher herself immediately showed on the blackboard how to make
the drawing and drew the suggested box on the board.

She declared that she was not a designer, so they should have no expectation of a
good drawing and went on from desk to desk to check if students had copied the
rectangular box or the cube.

Then she handed flyers with multiplication calculation exercises for homework.
She showed how these calculations were to be made, giving as an example, one of
items of the flyer on the blackboard (Fig. 16).

In order to analyze the categories that showed up in this class were the ecology of
the room that remained the same from the previous class, meaning, students’ desks
were arranged in rows. In her performing role as a teacher, she kept the students’
attention focused on her that is, she led their reasoning, suggesting that they
imagine other forms of solid, and asked them not to say out loud what they’ve
imagined or thought. Actually, class management has been routinely like this: the
teacher tries to work with the whole class with a few highlights of interventions
from individual students.

As for the technological resources, the teacher made the dictionary available for
students to look up the definition of three-dimensional shapes. It was a positive
action, because she was able to show the importance of the use of such a resource.

In the fourth period observed, she worked the contents of transactions involving
natural numbers — multiplicity field. Space and shape-polyhedral-geometric figures,
were developed in the second part of the class with the following report. She
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Fig. 17 Video related to i -
geometric figures of the =
buildings of Sao Paulo city :
(Source: Carvalho 2012,

p. 149)

addressed the concept of prism again and its different faces, the concept of edge and
vertex, studied in the previous lesson, to resolve the item 4 of p. 45.

The proposal of item 4: fill the table with the number of edges, faces and vertex
of each geometric shape: teacher drew the prisms of that exercise on the blackboard
and went on, along with the students, filling in the table, they in their book and she
on the blackboard.

She moved on to correcting item 5 on p. 46-multiplication by two-digit numbers.
She put the math problem on the board and did the calculation with the students.
She proceeded in the same way to check items 6 and 7 of the same page. In order to
resolve item 6 she justified for students that they were not very familiar with
division calculations yet, but those were going to start showing up more frequently,
so she would teach them little by little how to proceed.

Following that, some examples of geometric figures were seen in a video that is
part of the school’s support material. The students were able to identify them by
associating them to some buildings in the city of Sao Paulo (Fig. 17).

After showing the video, teacher explored the content of p. 48 and 49, showing
the figures with the marked buildings forming prisms. She identified FIESP
(SP) building is not a pyramid as it is commonly called, because the side faces
are quadrilaterals and not triangles.

After that, the students did the exercises in their Student’s book (see Fig. 18).

After showing the video the teacher suggested that the students study for the
June test and for that they should be identifying all geometric shapes that are part of
everyday life.

After the class we talked to the teacher about the use of the computer lab. This
dialogue can be read below:

Researcher: Teacher, what is the sequence of these planned activities?

Teacher Ana: With these activities, we’re working the concept of three
dimensions, next lesson I will give the measurement of the edges,
then I can ask the students how to calculate the perimeter of a face,
and also the area. In each class I will teach them something new.

Researcher: May I ask something about the computer lab? I know that there are
specific classes for the students in the computer lab with an IT
(Information Technology) teacher. And what about the other
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Fig. 18 Exercises
corresponding to the video
assisted by student (Source:
Carvalho 2012, p. 150)

teachers? Is there some kind of incentive from the principal or the
pedagogical coordinator so that teachers can, use digital
technology to teach mathematics or science for example?

Teacher Ana: Yes, there is. ['m currently developing a project with my students
in Portuguese Language about water and I want to let them search
the internet after they finish the activity proposal for the IT teacher
in the lab class.

Researcher: Then is it possible to develop classes in a computer lab?

Teacher Ana: Yes, but last year the IT teacher complained that she couldn’t let
everyone go online to a specific website at the same time, because
that was overloading the system, and it caused it to get too slow.
There are assistants who help the IT teacher and I think they could
give a hand to the students who finish the lab activity, so that they
can do some kind of inquiry for me.

Researcher: Oh, Yes!

Teacher Ana:  Tomorrow, when I get home, I'm going to prepare this lesson.
According to the principal, we, can use the computer lab, however
when we use it, we are responsible for the equipment. So we prefer
to be in the computer lab with the IT teacher, because in reality the
work should be done together, right? So, I know there are barriers
that we will face in the course. It’s hard because there is a part of
the book that asks for technological resources and we have to have
this feature available at school. I'm going to talk to the
pedagogical coordinator and ask for help. Maybe if the
assistants could give me some support in the laboratory, we
could effectively with the students.

Researcher: Oh, I see!

Teacher Ana: If the students do something wrong in the computer lab, I will
Jjustify to the Director that the equipment is there to be used by the
students. My fear is that a student may make some stupid mistake
and then we are held responsible for it, right?
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We emphasize that neither Teacher Piera, nor Teacher Ana do any work in the
computer lab. The time that students are given for this practice is guided by the IT
teacher advisor. Either way, teachers could request the lab in other schedules, but
they don’t for the reasons explained above.

The analysis of the data in teacher’s class departing from the defined categories
reveals the usual organization routine and habits, namely desks arranged in rows as
in all other classes observed. The students’ action development was focused on
teacher’s action, that is, students performed the task proposal when she so guided.

TV and video were used as technological resources in class. After watching
them, the students did the corresponding exercises in Students book, managing their
own tasks.

In her role as a teacher, Teacher offered information and resource models to
suggest that the students investigate other buildings around town; she related it to
the content of a similar situation in the previous lesson, clarified and explained a
content sense concepts criteria studied in this class. The evaluation happened
through the questions and answers during class.

On the fifth class each student received a sheet on which a planned figure was
printed. The teacher distributed among the students several models of Polyhedra
(cubes, two types of pyramids, prisms of triangular and hexagonal base), each
planned on a page. Students were told to paint the sides of the figure, and cut
them, then paste the tabs to assemble and complete the polyhedron.

After assembling solids teacher kept all the productions in the classroom cabinet,
as evidenced by the photo in Fig. 19.

At the end of this class, teacher did not make any comments on operation of
solids. She did not wrap up the subject, either. Probably because there was no time
for it. However, considering the categories established for analysis, it was found
that the routine in this class was different from previous ones. Class proceeded
dynamically, the interaction teacher/students and students/students was one of

Fig. 19 Teacher and students during explanation of exercise (Source: Private collection)
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Fig. 20 Solid built and stored in the classroom cabinet and a student showing your prism (Source:
Private collection)

sharing during task execution proposal. The students were able to participate in
making decisions; they initiated and ran the activity itself. Various technological
resources were used, and none of them was innovative or digital. There was no
formal assessment of the established competences (Fig. 20).

Conclusion

Analyzing the episode observed, i.e. the lesson in Piera’s class and looking into the
categories for analysis, we can say that class management of the school class was
made to centralize the students’ attention on the figure of the teacher. Teacher ruled
the class, seeking dialogue with the students and getting them to understand the
content, making use of questions and answers. The order and work habits were the
routine, which led the students to have a passive role since they merely copied the
blackboard and accompanied explanations.

Analyzing the mediation of technological resources in the classroom done by
Teacher Piera we identify her difficulty in bringing students to manifest or expose
their knowledge and show their doubts, unless it was done at her command. The
students should only respond if their teacher asked a question, that is, during all her
time in class. We infer that this may be a reflection of her fear of losing control of
the class and of dispersing the students’ attention. Another question that may have
influenced this attitude was the need to develop the curriculum planned for that
school year due to time, which she considered scarce.

Considering the way in which technological resources were used in Teacher
Piera’s class, we commented to her, that she should lead the class so that the
students could freely explore the solids. However, that would require rearranging
class time, and dropping the established routine, which could cause her to lose
control of the class. We observed in the classroom, where the technological
resources were offered to teach polyhedra, the exploitation of solids by the students
was controlled by the teacher, taking place under her command.

However, analysis of mediation showed that in Teacher’s Ana class activities
happened with participation of students, who were encouraged to express their
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ideas, explaining what they knew about the subject matter and could devote joyfully
to the painting activity, cutting, gluing and assembling solids. Though, Teacher Ana
also sought to centralize and direct the discussions and keep the students’ attention
under her control at times. Teacher Ana deals better than Teacher Piera with the
time for class issue and considers it enough to fulfill the curriculum. However,
manipulation and collective discussion on the geometric characteristics of the
polyhedra could not be exploited by the Teacher Ana because the class time ran out.

We realize that using the school laboratory seemed difficult for both teachers,
because there weren’t monitors or somebody to support them. This situation
discouraged them from going to the lab with only the students. Teacher Ana
could use videos in the classroom as a technological resource and Piera couldn’t.

We observed that Teacher Piera did not feel confident using these features, since
she would have to rearrange her lesson plan, which would require more time and
she was afraid of losing control of the class.

We emphasize that, for teachers to better manage their time, according Serrazina
and Oliveira (2005), they must be responsible for the activities they will propose to
their students, i.e. they must take ownership of the curriculum and believe in the
activities they will propose. Activities imposed by the pedagogical teams or by the
central organs of Education are not always well received by teachers. In both
classes, we could observe a verbatim reproduction of what is stated in the Students’
book, in order to meet the expected curriculum and official statements to the State
of Sao Paulo.

We highlight that logically our intention was not to compare the mediations,
especially since they are also linked to personal characteristics of the teachers.
However, from the analysis of the mediation of technological resources that
teachers used, we can conclude that features, such as the reality of the classroom,
students’ interest, the number of students per class, the previous knowledge gap
among students, the need for compliance with the prescribed curriculum and the
available time will interfere in mediation.
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Task Design in a Paper and Pencil

and Technological Environment to Promote
Inclusive Learning: An Example

with Polygonal Numbers

Fernando Hitt, Mireille Saboya, and Carlos Cortés

Abstract This paper discusses mathematical task design in a collaborative envi-
ronment (the ACODESA teaching method), where activities with both paper and
pencil and technology play a central role in learning mathematics. The use of
problem situations under a sociocultural framework in the mathematics classroom
requires careful mathematical task design to develop mathematical abilities in the
classroom, promote diversified thinking, and achieve balance between pencil and
paper and technological activities within an activity theory framework. While the
task design approach examined in this paper is general, it is exemplified through
mathematics teaching tasks appropriate for secondary school entry level.

Keywords Task design * Paper and pencil « Technology « ACODESA ¢ Socio-
cognitive conflict

Introduction

The literature on mathematics education regarding problem solving is evolving. As
mentioned in chapter “Integrating arithmetic and algebra in a collaborative learning
and computational environment using ACODESA”, Brownell (1942) makes dis-
tinctions among the concepts of exercise, problem and puzzle, thus focusing on
issues related to primary school level. This led to a new trend linked to the solving
of arithmetic word problems and gave birth to, among others, the current problem
solving approach. Thus, a new paradigm linked to problem solving emerged, where
the distinction between exercise and problem was, and is, preponderant. However,
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this distinction is not so simple, in that, depending on the problem, either conver-
gent thinking (using closed type problems) or divergent thinking (problems with
multiple solutions or open problems) could be generated. The latter approach can be
related to the Theory of Didactic Situations (TDS) (Brousseau 1997) and even the
emergence of the notion of the epistemological obstacle (Brousseau 1983). The
design of mathematical tasks under this paradigm took a unique approach. How to
detect an epistemological obstacle in pupils’ activity? How to encourage pupils to
overcome a certain kind of epistemological obstacle? What kind of activity is
needed to promote the overcoming of such an obstacle?

Gradually, design problems became more and more important in research on
mathematics education. For example, in his notion of conceptual field, Vergnaud
(1990) notes that a concept is developed through a set of problems, a set of
operators, and a system of signs. Thus, the type of problems that are proposed in
the classroom will determine to some extent the mathematical concept pupils are
constructing. In the mid 1980s (as seen in Mason et al. 1982; Schoenfeld 1985) the
trend for problem solving took on great force, with, for example, research on
problem solving (see Kilpatrick 1985) generating such curriculums as Standards
in the USA (NCTM 2000). According to Kilpatrik (ibid.), “A problem is generally
defined as a situation in which a goal is to be attained and a direct route to the goal is
blocked” (p. 2).

A different approach to the foregoing is promoted by the Freudenthal School,
which promoted the resolution of problems in context, where, under this approach,
the study of mathematical modelling process is essential in a strand known as
“Realistic mathematics.” Gravemeijer and Doorman (1999) describe the character-
istics of the current Freudenthal School. Realistic mathematics is likely to have
strongly influenced the notion of problem situation, in which the solution is not
necessarily unique. Indeed, realistic mathematics promoted other kinds of curricula
linked more closely to the notion of problem situation. The ensuing discussion leads
to the question as to whether an exercise, a problem and a problem situation are.

Exercise, Problem or Problem Situation

Advances in mathematics education brought about the need to carefully identify the
definition of an exercise, a problem or problem situation. A definition depends on
the theoretical framework that has been selected. Given the interest here in defini-
tions linked to mathematics learning environments when using both paper and
pencil and technology, this paper seeks to associate these definitions with the
notions of non-institutional and institutional representation in order to then link
this to Leontiev (1978) and Engestrom’s (1999) activity theory.

Exercise If reading a mathematical statement immediately suggests a procedure to
follow, it can be said that the task is an exercise.
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Problem 1If reading a mathematical statement does not induce the reader to imme-
diately think of a procedure to follow, and requires them to transform the statement
and/or use institutional representations and/or produce non-institutional represen-
tations to understand and make progress in the proposed task, it can be said that it is
a problem.

Problem Situation 1If the reading of a mathematical statement as in the case of a
problem, neither provides a procedure to follow, but in this case, a model must be
built (possibly not unique), needed to interpret the phenomenon linked to the
statement, then it can be said that this is a problem situation.

This distinction enables the identification of the differences among mathemat-
ical tasks that should be considered when designing an activity for the mathematics
classroom. The followers of problem solving were more interested in the resolution
of problems, as defined above. A different perspective was provided by Lesh and
Doerr (2003), Blum et al. (2007), and Lesh and Zawojewski (2007), among others,
which dealt with problem solving and modelling, and presented an approached to
realistic mathematics and what is meant by the term problem situation.

Indeed, from the perspective of this study, the three types of tasks mentioned
above are required for the organisation of mathematical activities in the classroom.
The difficulty arises in the organisation of those types of tasks that is needed in
order to follow a fixed syllabus. A possible way to overcome this problem may be
for the teacher to use the proposition outlined in Simon (1995) and Simon and Tzur
(2004) as related to a Hypothetical Trajectory of Learning, which is discussed in the
subsequent sections.

One of the first problems to overcome is the fact that the expert (in this case the
mathematics teacher) has already constructed different types of thinking (arith-
metic, algebraic, geometric) that allow her/him to transform their representations
effectively. The beginner (the pupil) has not necessarily built these official repre-
sentations, and, even if they have, the difficulty arises when they are required to
handle them efficiently (as a competence). Generally, learning theories based on the
concept of representation focus on the efficient use of institutional representations
in the construction of knowledge (as is the case, for example, in Duval’s 1995 work
which focuses on the notion of register). In the context of our approach, non-
institutional and institutional representations are of great importance to the con-
struction of knowledge; also a collaborative learning process is of great significance
in a socio-cultural environment, to the refinement of the evolution of the
non-institutional representations in which they are promoted to the level of formal
representation.

Institutional Representation Representation found in textbooks, websites, software
use, or those used by mathematics teachers.

Non-institutional Representation Representation that emerges spontaneously dur-
ing the resolution of a non-routine mathematical task as a result of a functional
representation that has been generated by the action of understanding or solving
a task.
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Functional and Spontaneous Representation A functional representation is a men-
tal representation linked to an activity. From reading the statement of the task, a
need and purpose emerge, which, in terms of Leontiev (1978), mediate the activity
undertaken by the individual as a whole. A mental representation is constructed and
linked to other concepts, providing the spontaneous representation as a product.
The manipulation of objects or artefacts mediates the generation of mental pro-
cesses which become increasingly complex, as do their external productions.

Leontiev’s work (1978) on activity theory is immersed in a sociocultural per-
spective on learning. Leontiev was interested in the subject and object relationship,
while it is in the work of Engestrom (1999) where the variable community was
explained in the model (see the next section related to ACODESA"Y).

Socio-cognitive Conflict In the past, many researchers, such as Piaget, Inhelder,
Brunner and others, were interested in the notion of cognitive conflict. In Bruner’s
theoretical framework (1966), cognitive conflict occurred when the individual was
aware of a mismatch between the enactive, iconic or symbolic representation
related to the activity. This study takes Varela et al. (1991) definition of enactive:
Cognition is not the representation of a pregiven world by a pregiven mind but is rather the

enactment of a world and a mind on the basis of a history of the variety of actions that a
being in the world performs (p. 9)

In the context of this study, the term iconic could refer to a drawing related to the
situation, or a symbol as an institutional representation, with the teacher (expert)
easily noticing mismatches between different modes of representation. However,
this study is interested in the processes of communication pupils use to point out a
mismatch between the spontaneous representations they produce, thus creating a
socio-cognitive conflict.

Method of Teaching ACODESA (Collaborative Learning,
Scientific-Debate, Self-Reflection)

Looking within a sociocultural framework, in order to organise mathematical work
in the classroom and create a form of socio-mathematical norms, it is important to
follow a specific educational model. This study is interested in individual work
immersed in a collaborative learning structure for the consolidation of knowledge.
Our experience has shown us that these aims are not easy to achieve in the
mathematics classroom. Thus, the authors designed a teaching model known as
ACODESA which is related to an approach involving collaborative learning,
scientific debate and self-reflection (see Hitt 2007, 2013; Hitt and Gonzalez-Martin

"Acronym which comes from the French abbreviation of Apprentissage collaboratif, Débat
scientifique, Autoréflexion.
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2015) and which includes several steps to be implemented in the mathematics
classroom when solving a mathematical task. It is described below in more depth:

1. Individual work. Production of spontaneous non-necessary institutional repre-
sentations related to the task, with prediction processes encouraged.

The design of mathematics classroom situations should follow a structured plan
for the use of both paper and pencil and technology. The activity starts when
reading the statement of the situation. This mental activity, as mediated by paper
and pencil, produces the spontaneous representations linked to the activity of
understanding and searching for a goal, even if this is not a well-defined or easy
process. Reference to the use of paper and pencil is made in a broad sense”. Thus,
the use of paper and pencil is intended to be a mediator between pupils’ mental
representations (i.e. functional representations) as linked to the situation and the
activity of understanding, and thus promotes the production of spontaneous repre-
sentations linked to actions that are not necessarily institutional (Hitt 2013; Hitt and
Gonzalez-Martin 2015). This first stage provides the pupil with preliminary ideas
that she/he discusses with other members of her/his team. Following an approach
where activity and communication go hand in hand (activity theory) creates a link
between activities, motives, actions, objectives and operations in the context of
Leontiev’s work in this area. This stage and that described below are crucial to the
production of spontaneous representations and to the commencement of the process
of their evolution.

2. Teamwork on the same task. Process of prediction, argumentation and valida-
tion. Pupils refine their representations in response to their results.

Teamwork helps to refine both the initial ideas and the ability to follow a path
towards the resolution of the problem situation. The functional representations that
gave rise to spontaneous representations in the individual phase initiate a new
process of refinement, which takes into account both the manipulation of physical
objects and communication with others. This process is linked to argumentation
(persuasion in many cases), prediction and validation, and both testing and taking a
position. It is at this stage where cultural norms come into play directly, with
teamwork and organisation crucial for the distribution of partial tasks. The question
then arises as to how many people are to be allocated to each team. For example,
Sela and Zaslavsky (2007) show the difference between teams of two and four
people, stressing the fact that, in a two-person team, participation is more balanced,
while, with four people, there is an immediate tendency that one of them may take a
leadership role with the others becoming followers. As such, teams of two or three
people are suggested. It is necessary for the team members to determine who

>Touchscreens are used more and more in schools (see the chapter on this matter in Bairral et al.,
this volume). The paper and pencil component can be converted to the use of an electronic
notebook in the production of (not exclusively) institutional representations. Currently, there are
some electronic devices, such as notebooks, that can be connected to an iPad for simultaneous use
with other applications.
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Fig. 1 ACODESA and the Engestrom model as adapted to the aims of this study

manipulates physical objects (and how they are manipulated), who uses the com-
puter (e.g., see Hoyles 1988), who notes the progress of the team, and who comes
forward to present the achievements of the team for plenary discussion. In fact, it is
here that both activity theory and Engestrom’s (1999) model are very important (see
Fig. 1). At this stage, the teacher’s role is to guide rather than provide their opinion
on how the teams performed.

3. Debate (could become scientific debate). This is related to a process of argu-
mentation and validation and the refinement of representations. According to
Legrand (2001), the teacher’s role is crucial at this stage for the promotion of
scientific debate. In general, if the design of the task is related to a problem
situation or an open problem, different results from the teams will be presented
for discussion. In general, teams will have a natural tendency to protect their
results, with the teacher required to regulate the discussion (socio-cultural
norms) and decrease the persuasion and argumentation that can lead to predic-
tion and validation. Again, spontaneous representations that have surely under-
gone a process of refinement first through working in small teams can be refined
in large group discussion.

4. Self-reflection (individual work — the reconstruction of what has been carried out
in the classroom).

Given that the literature has shown, in the classroom, consensus to be ephemeral
(Thompson 2002; Hitt and Gonzalez-Martin 2015; Hitt et al. 2015), this study
included a stage involving a reconstruction process activity. The teacher must
collect everything produced during the previous stage and provide a new copy of
the task. Karsenty (2003) demonstrates that after a certain period of time, adults
forget the mathematics they have learned. The question as to how to build stable
knowledge is one that led to this stage being implemented here and also to the
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importance attached here to individual reconstruction. It is at this stage that the
notion of historicity has a strength action; where the pupil has been influenced by a
socio-cultural process of learning and is prone to a sociocultural construction of
knowledge. This stage also requires reconstruction related to achievements in terms
of individual work, teamwork and plenary discussion designed to strengthen
knowledge.

5. Process of institutionalisation. The teaching undertaken by the teacher takes the
pupils’ results into account and uses the official representations.

In a sociocultural knowledge construction process, where the pupil is an active
actor in that environment (activity theory), a mathematical concept is not produced
through a dogmatic presentation by the teacher. Institutionalisation occurs at the
end of those preliminary stages, where the teacher takes pupils’ productions into
account while refining the concept and, if necessary, providing both the institutional
position and its official representations.

ACODESA takes Engestrom’s model into consideration in the organization of
pupils’ classroom activities by placing special attention on the artefacts they use.

Task Design

As seen in previous sections, task design is not a new feature in mathematics
education. For example, when conducting a teaching experiment, it is important
to build a hypothetical model to guide the researcher in the teaching process. More
precisely, as described above, both Simon (1995) and Simon and Tzur (2004)
proposed the Hypothetical Learning Trajectory (THA) method, which allows the
teacher to organise and design mathematical activities for use in the mathematics
classroom.

Interested in the learning of mathematics in a sociocultural environment and
given the technology involved, researchers in this study considered, for example,
the following elements, as described by Arcavi and Hadas (2000, pp. 25-27), as
being of fundamental importance to a design based on a Dynamic Geometrical
System (DGS):

1. Visualization. “Visualization generally refers to the ability to represent, trans-
form, generate, communicate, document, and reflect on visual information”.

2. Experimentation. Besides visualization, playing in dynamic environments
enables students to learn to experiment.

3. Surprise. It is unlikely that students will fruitfully direct their own experimen-
tation from the outset. Curriculum activities, such as problem situations, should
be designed in such a way that the kinds of questions students are asked can
make a significant contribution to the depth and intensity of a learning
experience.
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4. Feedback. Surprises of the kind described above arise from a disparity between
an explicit expectation of a certain action and the outcome of that action. The
feedback is provided by the environment itself, in that it reacts as requested.

5. Need for proof and proving. Dreyfus and Hadas (1996) discuss and exemplify
how one can capitalize on such student surprises in order to instil and nurture the
need for justification and proof.

An analysis of the above characteristics reveals that the DGS is an important
element. Under this view, Duval’s 2002 approach to Arcavi and Hadas’ mathemat-
ical visualisation process is very pertinent, since it relates to the discrimination of
visual variables on a register as possibly associated with corresponding elements on
another register.

The problem with these approaches is that spontaneous representations in the
resolution of problem situations are not fully considered in these contexts. These
spontaneous representations generally do not belong to a register. This study is
interested in the unofficial representations that pupils produce in a paper and pencil
environment (Hitt 2013; Hitt and Gonzalez-Martin 2015) and the evolution toward
institutional representations (e.g., those on a computer screen) through a process of
communication with others and the use of technology.

As the notion of learning with which this study is concerned is linked to
collaborative work, other perspectives must also be considered, such as those of
Prusak et al. (2013), who, with respect to the creation of tasks to promote produc-
tive argument, suggest the following:

1. The creation of collaborative situations,
2. The design of activities that trigger socio-cognitiveconflicts,
3. The provision of tools for checking hypotheses.

Indeed, for the perspective of this study, Arcavi and Hadas, as well as Duval and
Prusak et al., can be taken into account in both paper and pencil and technological
approaches (Hitt and Kieran 2009; Hitt et al. chapter “Integrating arithmetic and
algebra in a collaborative learning and computational environment using
ACODESA”) formulated using ACODESA.

In this context, visualisation refers to the ability to represent, transform, and find
significant visual variables that may be associated with other elements from another
separate representation through a process of communication with others. This thus
promotes an evolution where the mathematical activity in question is “seen” and
creates an improved approach to the resolution process.

Healy and Sutherland (1990), on one side, and both Hitt (1994) and Hitt et al.
(in this volume), on the other, illustrate how pupils or pre-service teachers “see” the
task of constructing a process for the generalisation of polygonal numbers differ-
ently. For example, both Hitt (1994) and Hitt et al. (chapter “Integrating arithmetic
and algebra in a collaborative learning and computational environment using
ACODESA”) found different approaches, such as that related to changing the
number of elements on the diagonal in order to obtain the next triangular number
(Fig. 2), or that focusing on the number of elements on the base or on one side of the
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triangular arrangement. Both Healy and Sutherland (Idem) and Hitt (1994) used a
triangular arrangement, specifically with an equilateral triangle, while this study
used an isosceles triangle rectangle. This arrangement generated the conjecture (see
chapter “Integrating arithmetic and algebra in a collaborative learning and compu
tational environment using ACODESA”) relating to calculating any triangular
number using the formula for calculating the area of a triangle (base * height/2).
Pupil conjecture thus created a socio-cognitive conflict, as pupils pointed out that
calculating T6 and T8 (triangular numbers 6 and 8) visually did not obtain the same
result.

The expert (the mathematics teacher) “sees” triangular numbers institutionally
in order to complete a rectangular array, as seen in Fig. 3. The visual triangular
number is duplicated and a transformation performed, thus obtaining a similar
arrangement that is able to show a rectangular arrangement (Fig. 3), thus revealing
the conclusion that:

Pupils’ visual processes do not necessarily agree with the ways in which teachers
visualise. The teacher uses official representations that enable her/him to be effi-
cient in handling the institutional representations. They, as experts, are able to
articulate representations that have developed ways to “see” into the passage,
distinguish from one representation to another. Thus, the expert is able to
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immediately identify the important visual variables (as described by Duval) to be
transformed and/or converted into another representation.

The question thus arises in terms of how to develop this expertise by our pupils.
The purpose of this study was to create socio-cultural norms in the mathematics
classroom through the design of activities that promote a learning process based on
the manipulation of physical objects, the production of representations, and the
processing of devices for the efficient use of such representations in order that
pupils are able to solve problems and problem situations. Furthermore, the aim was
to ensure that:

1. individually, the pupil begins, as a result of the preparatory work undertaken in
relation to the mathematical activity, to attack the same activity from a socio-
cultural perspective using teamwork.

2. by comparing their results with other pupils (in teams of two or three), the pupil
possibly creates socio-cognitive conflicts involving productive arguments, with
action and communication linked through objectives that they have to follow.

3. the plenary discussion furthers productive arguments, as well as anticipatory
processes, the promotion of reconciliation among representations, validation
processes, the production of counter-examples and the ability to check hypoth-
eses. Once again, action and communication go together.

4. self-reflection promotes the strengthening of knowledge in order to stabilize it,
with historicity (that which was undertaken collaboratively as an essential
element of the process of reconstruction) a main component of reconstruction.

5. the process of institutionalisation enables the review of that which has been
undertaken by pupils in order to promote the official representations and com-
munication that will further advance their mathematical knowledge.

Considering these characteristics, the design of the activities used in this study
begins with a presentation page (the front page). General pupil information is
obtained in order to identify their work on an individual basis, as well as their
results from the teamwork activity. It can be useful to include, on this page,
instructions for the use of different colour inks when working either individually
or with others in order to identify any development or evolution.

During the first stage, the mathematical task begins with the promotion of
diversified thinking and, therefore, requires an open problem or problem situation.
The statement outlining the activity will promote the production of functional
representations that will trigger the production of spontaneous representations.
This study proposes a block of five questions which allows pupils to individually
create their own strategies (for a full outline of the experiment, see chapter
“Integrating arithmetic and algebra in a collaborative learning and computational
environment using ACODESA™). The task design depends on the use of artifacts in
the construction of knowledge. For example, in Hitt and Gonzalez-Martin (ibid.),
pupils used a rope, flexible wire and a rule, as well as paper and pencil, when
attacking the mathematical task. Another example, as seen in Hitt and Kieran
(Idem), sees the first stage designed to generate a strategy for a paper and pencil
environment. This was then confronted with a second stage that featured the pupils’
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own algebraic productions as well as those provided by a CAS calculator, thus
requiring them to reconcile their own productions with those produced technolog-
ically, as well as requiring team discussion. A third stage is related to the promotion
of a specific conjecture and the need to convince others, with proof not taught at this
educational level.

This study aimed to explore this approach with pupils who are beginning
secondary school and, as such, are yet to be introduced to algebra, with the design
intended to promote the construction of the concept of a variable through a process
of collaborative learning under a sociocultural approach (see chapters “Integrating
arithmetic and algebra in a collaborative learning and computational environment
using ACODESA” and “Problems Promoting the Devolution of the Process of
Mathematisation: An Example in Number Theory and a Realistic Fiction”). In
fact, researchers in this study considered it necessary to construct an algebraic-
geometric-arithmetic thinking before developing an “exclusively” algebraic think-
ing detached from arithmetic itself. As such, the design of this experiment took into
account Healy and Sutherland’s (1990) work, who followed an Excel-based
approach to polygonal numbers as well as Hitt’s (1994) paper and pencil model
which also used an applet that exclusively generated the value of any polygonal
number. This experimentation also was implemented with a Mexican population in
order to generate a comparison with the type of strategies used by those pupils who
have already taken an algebra course (see chapter “Integrating arithmetic and
algebra in a collaborative learning and computational environment using
ACODESA?” for details).

A first block was thus designed to promote visualisation, abstraction and gener-
alisation processes from a perspective that seeks to create diversified thinking (see
Fig. 4).

Triangular Triangular
n u
mber 4
Triangular Triangular number 3 nu. :
1 nNumber2 ® ™
number ° e :..
] (1] [ 1 1] eosee
1 3 6 10

1) Look carefully at these numbers. What is the fifth triangular number? Make a
representation. Explain how you proceeded.

2) In your opinion, how are the triangular numbers constructed? What do you
observe?

3) What is the 11™ triangular number? Explain how you find it.

4) You have to write a SHORT email to a friend describing how to calculate the
triangular number 83. Describe what you would write. YOU DO NOT HAVE
TO DO THE CALCULATIONS!

5) How do you calculate any triangular number (we still want a SHORT message
here).

Fig. 4 First task design block for the generation of diversified thinking and spontaneous
representations
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Develops the same ideas as in the previous section but using Excel (or CAS).
Here we ask you to find:

A B C D E F G
1 Nombres polygonaux
2 Position 1 2 3 4 5
3 Triangulaire 1
4
5

What would you do to discover the 6™, 7", and 8" triangular number?

Is it possible to calculate the triangular number 30, triangular 83, and triangular
120?

How do you do this?

What are the limitations and possibilities of this approach?

Provide the operations to be performed in order to undertake this calculation with
any polygonal number.

Fig. 5 Second part of the task

It is expected that spontaneous representations and personal strategies make
their appearance during this first stage. Based on the same questions, it is expected
that pupils will work in teams before engaging in plenary discussion.

In the example considered here, teamwork is required in the second block of
questions. The aim is to promote in pupils the ability to generate the iteration
processes related to a spreadsheet environment (Excel or CAS), similar to that
obtained in Healy and Sutherland (1990).

As we can see in the two blocks of questions (see Fig. 5), the pupils generate
different types of strategies. It is intended that pupils acquire a broad vision of how
to address a problem situation and the various products linked to different strategies
in order to promote different kinds of representations.

A comparison was sought between the strategies used in Healy and Sutherland
(Excel and secondary school pupils) and Hitt (1994), which involved a group of
secondary and primary teachers using Excel, and another group of teachers using
paper and pencil and an applet. Generally, there are several kinds of generalisations
used to calculate a triangular number:

e trig. An = na before + position (Healy and Sutherland 1990),
e Trin) =142+ 3+ ...+ n (Hitt 1994),

It is noteworthy that the task generates the production of different types of
representations, with the type depending on the technological environment. This is
the case with pupil production in this new approach to the construction of polygonal
numbers (see chapter “Integrating arithmetic and algebra in a collaborative learning
and computational environment using ACODESA”).

In the third block of the task, interest focused on the use of an applet that gives
pupils the opportunity to immediately verify their generalisation strategies, or to
request a polygonal number, etc. Thus pupils are able to receive immediate
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Fig. 6 Examples of the use of the POLY applet with polygonal numbers

a) Here are the five first triangular numbers.

Nombre triangulaire s .

. -
- .- - “- s e
- . e .. se e e 2 swess

1 3 M 10 15

Find a formula to calculate the numerical value of any triangular number. You can
use the POLY applet to find the formula.
APPROACH (OPERATIONS, DRAWINGS...)
Write the rule or formula you found:
Using your rule or formula, calculate the following triangular numbers.
Position Corresponding value

Triangular 10
Triangular 20

With the formula, can you calculate the triangular number 120?
Triangular 120 =

Fig. 7 Third block of questions and use of the POLY applet

feedback on the veracity of their conjecture using the applet. The applet (see Cortés
and Hitt 2012) is to be used precisely in this 3rd block.

The applet is able to request the first four polygonal numbers selected (triangu-
lar, square, pentagonal, etc.) and is also able to request a “large polygonal number”
(see Fig. 6). Paper and pencil work with the use of the applet allows pupils to check
their guesses. If the pupil’s conjecture does not agree with the result given by the
applet, the pupil must return to their team and review the process that led to the
construction of their conjecture, which, thus, fosters productive communication
among pupils.

Pupils are asked to use the Poly applet for the proceeding set of questions in
which the arrangement of the triangular numbers was changed, using an equilateral
triangle (which corresponds to the institutional representations that pupils usually
encounter in textbooks) (Fig. 7).
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Here there are the first four triangular numbers

6

1) What is the 11™ triangular number? Explain how you found it.

2) Write a SHORT email to a friend describing how to calculate the triangular
numbers 30, 83 and 120. Describe what you would write. YOU DO NOT
HAVE TO DO THE CALCULATIONS!

3) How do you calculate any triangular number (we still want a SHORT message

4) The following configuration of a triangular number can be found in some

10

Triangular Name

1

3

10

Does your strategy always enable you to calculate any triangular number?

Fig. 8 Task designed for the self-reflection stage (reconstruction activity)

From a psychological point of view, the framing of the triangular numbers,
which does not leave enough space after the first 5 examples, promotes a tendency
to abandon the drawings (see Hitt 1994), while the presentation of the activity
promotes the generalisation process.

Building on strategies produced by Hitt (idem) has lead to the following output (it is
important to stress that this study is carried out with primary and secondary school
teachers and focuses on pupil performance, with chapter “Integrating arithmetic and
algebra in a collaborative learning and computational environment using ACODESA”
discussing secondary school pupils):

o f(x) =2 (Hitt 1994)

A summary questionnaire, which does not include the use of technology, is used
for the self-reflection stage. Pupils are expected to be able to rebuild their repre-
sentations, as well as any algebraic expressions that they have produced, thus
enabling them to calculate any triangular number (Fig. 8).

As stated above, the reconstruction stage is very important. Research results
(Karsenty 2003; Thompson 2002; Hitt and Gonzalez-Martin 2015) show the fra-
gility of knowledge and the importance of implementing, in the mathematics
classroom, activities that can strengthen the construction of such knowledge.

In the case of pupils who are beginning to study algebra, validation can be
restricted, while, in the case of the use of the task with pre-university students
and/or future teachers, one can request demonstrations using mathematical induc-
tion processes. For example, the applet does not work when using large numbers.
Furthermore, working with both the official representations of the polygonal
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Table 1 Generalisation for calculating any n polygonal number of p sides

Calculation of polygonal n Expression for generalisation
T, = et T(3 — sides), = "1
Co=n’ C(4 — sides), = n* =M=M
, = 2= P(5 — sides), = "=V
H,=n’+n(n—1) H6fsides)n=W=W
E, =" E(7 — sides), = "%
Polygonal(p — sides), = —"«1’72)?@74))

numbers and the construction of algebraic expressions associated with those num-
bers, another block of questions could be added. These would request a further and
higher generalisation process (see Table 1), which would be built as a single
algebraic expression that enables any polygonal number to be calculated.

Conclusion

This paper proposes task design elements to be developed in the mathematics
classroom under a sociocultural approach. While some authors point out the
importance of creating sociocognitive conflicts in the mathematics classroom,
they suggest an organisational schema for performing an activity, with, for exam-
ple, Prusak et al. (2013) proposing the following for a 75-min class:

For the first 15-20 minutes, the instructor facilitated a whole class discussion to create a
shared understanding of the activity; then, for approximately 5 minutes, each student
engaged in the task individually; during the following 45 minutes, students worked in
dyads or triads, solving tasks collaboratively and writing a common justification on a
worksheet; for the final 5-10 minutes, there was a plenary, where the instructor led a
whole class discussion to summarise. (p. 270)

In contrast to the methodological approach outlined above, the methodological
approach advocated here takes into account the fundamental point that consensus is
ephemeral and, as such, it is therefore necessary to consider a knowledge recon-
struction stage (referred to as self-reflection in this methodology) in order to
strengthen and stabilize knowledge (Karsenty 2003; Thompson 2002; Hitt and
Gonzalez-Martin 2015).

This task design is more related to problem situations that generate diversified
thinking and, as a possible consequence, socio-cognitive conflicts in a process of
action and communication. To overcome a socio-cognitive conflict, the authors of
this study suggest the promotion of signification processes, as described by Radford
(2003), in the mathematical classroom (see chapter “Integrating arithmetic and
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algebra in a collaborative learning and computational environment using
ACODESA” on this issue). Consequently, some of our problem situations may
take more than one session of a course. In fact, the task design in Hitt and Gonzalez-
Martin (ibid.) aimed to create a chain of activities that encompassed the concept of
covariation between variables, function in context, and mathematical modelling,
over the course of 13 class sessions.

Practice has shown that, as a method such as ACODESA is not easy to imple-
ment in the mathematics classroom, it is very important that, working together,
researchers and teachers can create learning situations such as those suggested in
this chapter for the mathematics teacher. Generally, it is not possible to fully present
in research articles the complete activity implemented in an experiment, due to a
lack of space. The problem situations dealt with here usually occupy several pages
permitting regulate, in some extent, pupils’ productions and promoting their
evolution.
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ICT and Liminal Performative Space
for Hyperbolic Geometry’s Teaching

Panagiota Kotarinou and Charoula Stathopoulou

Abstract The use of technology tools creates new situations and new dynamics in
Geometry’s teaching in the classroom, enhancing the ways of its understanding. In
this chapter, the experience of using ICT together with ‘Drama in Education’ (DiE)
in a teaching experiment, regarding the axiomatic definition of Hyperbolic Geom-
etry through Poincaré’s Disk, in a class of 11th grade students is described. The use
of ‘Drama in Education’ techniques created a space appropriate to transform
traditional classroom practices. In this space, a liminal space, students became
more active and involved in (re)negotiating different discourses, their own learning
processes and conceptions of Hyperbolic Geometry while interactive Java software
allowed them to explore a non Euclidean Space. The use of ethnographic research
techniques (i.e. participant observation and interviewing) helped us to gather
empirical evidence concerning students’ experiences. Moreover, our research
revealed considerable evidence that it was Drama techniques which motivated
students and offered them fuller participation in the teaching process, while ICT
helped them visualize the Poincaré’s Disk and through it understand key elements
of Hyperbolic Geometry.

Keywords Interactive java » Liminal performative space « Hyperbolic geometry ¢
Poincaré model

Introduction

The awareness that mathematics appear as a difficult school subject dictates, inter
alia, the revision of teaching in order to enhance students’ interest and their active
participation in class. As pointed out by Mayer (2005), one of the biggest problems
in learning in the school context is to motivate students to fully commit themselves
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to the learning process, without this becoming a boomerang in the long term,
causing them resentment from the school experience (Kohn 1993; Appelbaum
and Clark 2001).

We consider the integration, into the same scene where the teaching of mathe-
matics occurs, of all available resources and techniques, as an enrichment of
teaching mathematics and simultaneously challenge the perception of students
about the nature of mathematics. In such a context, the students face the challenge
of seeing mathematics as a continuous spectrum that penetrates various aspects of
life both now and in the future, touching both individual and social needs. Talking
specifically about geometry, and in particular about the teaching of Geometry,
“structure of traditional geometry has never been a convincing didactical success. . .
to my opinion it failed because its deductivity could not be reinvented by the learner
but only imposed” (Freudenthal 1971, pp. 417-418).

In recent years, alternative approaches in geometry teaching have been studied.
The use of new technologies (Jones 2011; Laborde et al. 2006; Oldknow 2008), the
study of the applications of geometry in various sectors (Fletcher 1971), the use of
the History of Geometry applications with appropriate material from historical
sources, as well as the use of the arts, have created new educational situations,
involving students actively in the process of teaching / learning.

This chapter presents a project focused on axiomatic foundation of hyperbolic
geometry, designed by the two authors and implemented by the first one in a
classroom of 11th grade students. This interdisciplinary project was implemented
with the use of new technologies and “Drama in Education” techniques, which we
claim that created an in-between/liminal space where new practices, new discourses
and new tools emerged, while new technologies helped students’ visualization and
hence understanding of geometrical concepts we dealt. The challenge of the
uniqueness of Euclidean space for the interpretation of the world was an additional
provocation which students were asked to handle in this new context.

Subsequently, we will briefly present the importance of the teaching of Hyper-
bolic geometry in school and the role of new technologies for its teaching and we
will describe the liminal space created by Drama techniques. We will close with the
presentation of the design and implementation of the research, concluding with the
discussion of results.

Teaching Hyperbolic Geometry Through ICT

The discovery of non-Euclidean Geometries is a rupture in the history and evolution
of mathematics, through the separation of reality from mathematical space and
through the conscious realization that mathematical structures, in their role as
models, are the new mediating artifacts to explore space (Hegedus and Moreno-
Armella 2011). As characteristically Hegedus and Moreno state “With Euclidean
ontology a mirror was placed between the world and mathematics. Non Euclidean
Geometry broke the mirror” (ibid, p. 379).
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The teaching of Geometry at school imposes, as an absolute and undeniable
truth, that Euclidean geometry is the model, which interprets and represents our
space (Thomaidis 1992). The teaching of non-Euclidean geometries would help
students recognize that there are several other geometries and spaces, other than the
Euclidean ones, and to realize that mathematics is not an absolute truth (Kazim
1988, cited in Thomaidis et al. 1989). Directing students to investigate properties of
other geometries, in order to see how the basic axioms and definitions lead to quite
different —and often contrary— results, helps students to gain an appreciation of the
Euclidean geometry as one of the many axiomatic systems (NCTM 1989, cited in
Gray and Sarhangi n.d.). Comparisons between similar geometrical concepts in the
various axiomatic systems contribute to a better understanding of these concepts
(Lénart 2004, 2007).

The Hyperbolic Geometry has been chosen for introducing students to non-
Euclidean geometries, because it is the “closest” in the Euclidean geometry para-
digm, including changes in only one of its postulate; the famous fifth postulate
(Dwyer and Pfeifer 1999). Offering a “world” in which all shapes are altered,
Hyperbolic Geometry can help students reflect on the definitions of geometric
objects and thus to understand the typical definitions of shapes (Austin et al. 1993).

Towards the end of the nineteenth century Poincaré attempted to remedy the
visualisation problem by creating three models for hyperbolic geometry, while he
was investigating different aspects of analysis. One of his most famous and
commonly used is the Disc model, which employs the interior of a unit circle for
hyperbolic space. The Disc model is particularly interesting since it forms the basis
for a series of pictures by Escher, entitled ‘Circle Limits’ (Stevenson 2000). With a
Euclidean model of Hyperbolic Geometry, Poincaré replaced the infinite plane with
a finite circular disk where the circumference of the disc represents hyperbolic
infinity. In the Disc model hyperbolic lines are shown as either Euclidean ‘straight’
lines (the diameters of the circle) or the arcs of circles orthogonal to the circum-
ference of the disc. Inside our hyperbolic ‘world’ the other shapes are defined in the
usual manner. The angles are measured in the Euclidean manner, from the angle
between the tangent lines of the curves at the vertex of the angle, while the
definition of the distance is not the Euclidean one (Davis 1993).

» Poincaré’s Disk, like every model, helps us prove the consistency of Hyperbolic
geometry as an axiomatic system. In Poincaré’s Disk the five postulates of
Hyperbolic geometry (with the first four the same of Euclidean ones) are verified
and for this reason the Disc constitutes a model of this geometry. It shows
therefore that Hyperbolic geometry is consistent, to the extent that Euclidean
one is (Davis 1993).

» This model, from teaching perspective, enables us through visualization, to teach
students Hyperbolic geometry as a consistent axiomatic system and help them
distinguish some of the unusual theorems and properties of this geometry.

¢ Another model for Hyperbolic geometry is ‘Cold Plate Universe’ (Gray 1989,
apud Stevenson and Noss 1998) which can be obtained by projecting the positive
branch of a two-sheet hyperboloid from a point beneath the viewing plane. In the
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flat model of ‘Cold Plate universe’ the whole of hyperbolic space is represented,
as in Poincaré’s Disk, as the interior of a unit Euclidean circle, with the
circumference of the circle representing ‘infinity’. In ‘Cold Plate universe’ the
temperature decreases as one moves radially towards the circumference of the
circle. Consequently a metal ruler used to mark out distances along the arcs of
circles would contract as it is moved out from the centre and the ‘unit length’
would decrease. At the same time the magnitudes to be measured would also
contract and the measurement results would remain the same, while the magni-
tudes could not coincide even if they are equal. However, living in this surface
one would be unaware of the variation in length and the change in distance
measure would only become apparent, if one could compare the rule with that in
a ‘constant temperature’ Euclidean world (Stevenson and Noss 1998, p. 234). In
this model distance measure, which varies with position, is a key perceptual
feature and is also contrary to our usual perception of distance measures in
Euclidean Geometry and our experience of everyday life (Stevenson 1999). In
Hyperbolic Geometry then the concept of equality as congruence is changed and
the model of ‘temperature’ helps us in teaching, to address the fact that in
Poincaré’s Disk while the angle measure is preserved, equal shapes do not
necessarily coincide.

As Hilbert proved in 1901, it is impossible to embed an infinite simply connected
surface of constant negative curvature isometrically into Euclidean 3-space. As a
sequence unlike the situation in Spherical geometry, we cannot embed the whole
hyperbolic plane into Euclidean 3-space and thus to visualize Hyperbolic
Geometry, we have to resort to a model (Series 2010).

Gutiérrez (1996, apud Christou et al. 2007) considers ‘visualization’ in mathe-
matics as the kind of reasoning activity based on the use of visual or spatial
elements, either mental or physical, performed to solve problems or prove
properties. Visualization helps us extract useful information from complex or
often voluminous data sets, through the use of interactive graphics and imaging
(Kaufman 1994). Computer-based learning environments commonly comprise
symbolic as well as static and dynamic pictorial representations, frequently
combined with the possibility of modifying them interactively (Christou et al.
2007). The real power of computer graphics lies in its ability to accurately
represent objects for which physical models are difficult or impossible to
build, combined with its ability to allow the user to interact with simulated
worlds. Interactive computer graphics can provide new insights into the objects
of pure geometry, providing intuitively useful images, and, in some cases,
unexpected results (Hanson et al. 1994, p. 74).

The teaching of Hyperbolic Geometry is usually implemented through models
such as the hemisphere model (Lénart 2004) or the Poincaré’s Disk (Dwyer and
Pfeifer 1999; Krauss and Okolika 1977). As a teaching means for understanding
the Poincaré’s Disk, the use of new technologies is recommended through
relevant software, as Geometer’s Sketchpad (Dwyer and Pfeifer 1999; Gray
and Sarhangi n.d.) or Interactive Java software ‘“NonEuclid” (Austin et al.
1993), as well as haptic tools, as the trasparent hemisphere (Lénart 2004) and
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the paintings of the famous Dutch painter Maurits Cornelis Escher (Menguini
1989, apud Furinghetti and Somaglia 1998).

 In this paper, a teaching experiment about axiomatic foundation of Hyperbolic
geometry and its basic notions is presented, which was held through its model of
Poincaré’s Disk and Gray’s (1989) model “Cold Plate Universe”. In our teaching
experiment we used ‘Drama in Education’ conventions to motivate and actively
engage all of the students, with the students having to create ‘Radio broadcasts’
concerning “Platterland”; a land with Poincaré’s Disk shape. In order for the
students to conceive Poincaré’s Disk and thus key elements of Hyperbolic
geometry and to be able to present them through “Radio broadcasts”, we
exploited the Java applet by Joel Castellanos, Joe Dan Austin and Ervan Darnell
and the book Flatterland by Ian Stewart (2002), as well as the Escher paintings
Circle Limit I, II, III.

“Drama in Education” and Liminal Space

Drama in Education, according to O’ Neil and Lambert (1990, p. 11), is a mode of
learning, in which, through the pupils’ active identification with imagined roles and
situations, they can learn to explore issues, events and relationships. It is a perfor-
mative art form with pedagogical character that has as a basic aim the pupils’
understanding about human behaviour, themselves and the world they live in
(Idem, p. 13). It is also a dynamic and creative methodological tool for the various
curricular subject areas through collective actions and lived experiences, putting
children in the position of the actor (experience), spectator (judgement), author
(meaning) and director (form). DiE combines: Form and Content, Action and
Reflection, Logic and Imagination, Thinking and Feeling, Body and Spirit. In
Drama, participants create a story, an imaginary world, they perform roles, explore
an issue or face problems and decide, act and reflect upon their actions (Avdi and
Chadzigeorgiou 2007). Drama in Education enables participants, either during the
drama itself or after the drama in a discussion, to look at reality through fantasy, to
see below the surface of actions to their meaning (Wagner 1999, p. 1).

The key elements and techniques of DiE derived from the world of traditional
theatre, and like any art it is highly disciplined (Wagner 1999). Way (1967), first
attempted the separation of Drama from the theatre, considering that:

Theatre is largely concerned with communication between actors and a audience; Drama is
largely concerned with experience by the participants, irrespective of any function of
communication to the audience. . .Theatre is undoubtedly achievable with a few - a very
small minority, but there is not a child born anywhere in the world, in any physical or
intellectual circumstances or conditions, who cannot do Drama. (p. 3)

DiE is an activity focusing rather on the process than on the outcome-the
theatrical performance. In DiE there is no distinction between actor and audience;
the learner is both participant and observer, playing a role while interacting with
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others in role (Andersen 2004, p. 282). The success of a DiE activity is assessed by
the ideas, expressions, skills, abilities, imagination and creativity that it causes,
rather than pupils’ theatrical skills or the aesthetic effect, as in a professional
theatrical production.

Drama in Education is not limited to experience, but goes to the awareness of
this experience and in this way learning is achieved. Heathcote (1984) notes that:

I have struggled to perfect techniques which allow my classes...to be able both to
experience and reflect upon their experience at the same time: simultaneously to understand
their journey while being both the cause and the medium of the work. (p. 127)

In Educational Drama, a series of conventions that freeze or delay the action are
used, in order for the students to analyse, interpret and understand it. In Drama,
students think about their ideas when they are ‘in role’ and can better understand the
process of thinking, once they leave the role (Andersen 2002). The time for
observation and discussion following each activity helps children to distance
themselves, to elaborate and understand what preceded it, to judge situations, to
evaluate the behaviours and attitudes of others, but also to be self-assessed.

In DiE, the teacher and the students participate in-role to create stories and
scenes, through which students can experience the curriculum in an emotionally
rich context. The aim for the students is to pay attention and care in an “as if”” world,
a world that they feel it as real, even if they know that it is not (see also chapter
“Problems Promoting the Devolution of the Process of Mathematisation: An Exam
ple in Number Theory and a Realistic Fiction” of this book). When students
experience a role in this imaginary world, they build faith and feelings for the
characters, the situations and conflicts of this imaginary world. Through this belief
and through this participation and involvement in Drama, students gain interest in
the knowledge of the curriculum.

Liminality and Drama in Education The concept of liminal space in perfor-
mance studies comes from the field of social anthropology (Arnold Van Gennep)
and was introduced by Victor Turner (1982), who came to performance theory from
anthropology. Richard Schechner (2002, cited in Gerofsky 2006, p. 7), a key
performance theorist with a background in both anthropology and theatre, develops
the idea of liminal cultural space as a quality of the actual physical spaces where
performances are enacted. Limen is a threshold, the boundary line between two
places or (metaphorically) two states of being. As limen in the bottom part of a
doorway, which is not a separate place but connects two other places the ‘inside’
and ‘outside’, the empty space in ritual and aesthetic performances, becomes
actually and conceptually a passageway, a threshold in which action remains, to
use Turner’s phrase, “betwixt and between”. The space expands and becomes a
living space which does not necessarily follow the rules and conventions of
everyday life. An empty theatre space is liminal, open to all kinds of possibilities
— that space by means of performing could become anywhere. Performers can
explore personas that are not their quotidian selves and actors can convincingly
play in role, because the story space of the stage lies in the expanded limen between
truth and falsehood (Gerofsky 2012, p. 244). In performance, this liminal space is
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expanded and opened up and becomes a space which allows for exploration of the
contradictions, paradoxes, transitions and transformations that take place as we pass
boundaries (Gerofsky 2015). As Gerofsky declares (2006),

A classroom can be a liminal space — a space of possibility, a passageway, an expanded
marginal space with room for play. Classrooms are designed to allow for flexible spatial
arrangements; if we are willing to work in the space of the culturally liminal, a classroom
can be as mutable as a theatre space. (p. 7)

In a performative place these liminal spaces are open to an emotional, physical
and intellectual involvement of students, which may lead them to a deeper under-
standing and appreciation of mathematics (Gerofsky 2015).

In this paper we claim that Drama in Education techniques in the Mathematics
class can create a new liminal space, as described by Gerofsky (2006), a passage
way between worlds, where boundaries are blurry. A passage way between learning
and play, between different disciplines, as mathematics and art, between “teacher as
knower” and “student as listener”, between performers and audience between body
and mind, between imaginary and real.

Within this space, where the verb “learn” —linked to school practice— and the
verb “play” —linked with non classroom-context— coexist, the use of new technol-
ogies is faced as a play by students. In this place, through a constructive dialogue,
conditions and prerequisites are created for greater and more effective participation
of students in the learning process, as it seems from the results of the project which
follows.

The Research: Participants, Setting and Methods

* Empirical data for the research presented in this paper, arose from our endeav-
ours towards exploring the dynamics of Drama in Education Techniques in
teaching Geometry in high upper school.

¢ The research was carried out in a group of 26 eleventh grade students in an urban
elementary school in the greater area of Athens, and took place in one
academic year.

e The use of ethnographic research techniques (i.e. participant observation and
interviewing) helped us to gather empirical evidence concerning students’ expe-
riences and mathematics achievement and retention of knowledge. All students’
presentations were videotaped and analysed regarding the proper use of math-
ematical notions in their dialogues.

e In terms of the research methods used, we designed and implemented an
interdisciplinary didactical intervention, based on a teaching experiment meth-
odology (Chronaki 2008). The teaching experiment (25 teaching periods) —titled
“Is our world Euclidean?”— is focused on a detailed design of the teaching of the
axiomatizing of Euclidean and Non-Euclidean geometries as well as the history
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of Euclid’s fifth postulate. The present paper describes the part which refers to
the axiomatic foundation of Hyperbolic Geometry.

The Teaching Experiment

The teaching experiment was carried out, by the researcher in teaching role (first
author in this paper), in 6 teaching periods, in Geometry, Literature and Greek
Language classes. The teaching aims were to enable students: (a) perceive the
axiomatic foundation of Hyperbolic geometry, (b) perceive the role of the postu-
lates in an axiomatic system, (c) redefine Euclidean geometry by comparing the
similarities and differences of Hyperbolic geometry with the Euclidean one,
(d) perceive the role of a model in mathematics and (e) challenge students’
stereotypical images about Geometry.

Specifically, the following stages were encountered as entries to the teaching
intervention;

e as introduction to the topic, a lecture enhanced with digital projection was
provided by the teacher/researcher,

¢ subsequently, the students were asked to work in teams, using appropriate
bibliographical resources such as digital material and literary books, for them
to acquire suitable knowledge regarding their presentations,

e asumming up activity by the teacher/researcher ensued where there was ample
chance to discuss ideas at the public space,

« the teams prepared their presentations with drama conventions,

 after rehearsing, students performed their presentations,

» aconcluding and reflective session followed.

Briefly the activities of this project included:

e Three digital presentations, concerning: (a) historical data, key concepts of
Hyperbolic Geometry and elements of the Poincaré’s Disk, (b) works of the
painter Escher and (c) basic theorems of Hyperbolic geometry.

e Activities in IT lab using the Interactive Java software “NonEuclid” by
Castellanos et al.

¢ Study of the chapter “Platterland” from Ian Stewart book “Flatterland”.

« Radio broadcasts concerning “Hyperbolic” geometry and its Poincaré’s Disk.

A more detailed description of these activities follows.

During the Literature class (3 h), a digital presentation with historical data, key
concepts and theorems of Hyperbolic geometry, elements of the Poincaré Disc,
model of this geometry was conducted by the researcher. In Poincaré’s Disk, the
notions of a point, straight line, segment, angle, triangle and parallel lines were
defined. For the students to perceive that distances are not maintained unchanged
with position, we used the model “Cold Plate universe” (Gray 1989, apud
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Stevenson and Noss 1998). Finally through the Poincaré’s Disk we presented the
axiomatic foundation of Hyperbolic geometry and we explained the postulate that
replaced the 5th Parallel Postulate. A discussion with students followed about the
notion of an axiomatic system, about its consistency, the independence of the
axioms, and the meaning of a model of an axiomatic system.

Subsequently, students in groups studied excerpts from the chapter
“Platterland” from Ian Stewart book “Flatterland” concerning Poincaré’s Disk
of Hyperbolic geometry, in order to prepare a radio broadcast with the same name
issue. The chapter of Ian Stewart’s book, in which the protagonists visit
“Platterland” (a land with the shape of Poincare disk) addresses the following
mathematical concepts: (a) parallel lines in Poincaré’s Disk, (b) the infinite
distance of the centre of the circular disc to its circumference, (c) the distance
between two points (with the apparent shrinkage of shapes as they approach the
circumference), (d) the straight lines as the arcs of circles orthogonal to the
circumference of the disc, (e) the independence of Euclide’s Sth postulate.
Suitable shapes illustrate basic properties that characterize the disk, such as that
the shortest path between two points on the disc is not the segment of the
Euclidean straight line, but the Poincaré straight line, that parallel lines are not
equidistant, with the distance between parallel lines approaching to zero (the
equidistant line of a Poincaré straight line, it is not a straight line) and that from
a point not on a straight line an infinite number of straight lines passes through it
and do not intersect it.

In Geometry class (1 h), the students used ICT (Interactive Java software
“NonEuclid” by J. Castellanos et al.) for visualizing the Poincaré’s Disk, the axioms
and basic concepts of this non-Euclidean geometry. “NonEuclid” creates an inter-
active environment for ruler and compass constructions in the Poincaré’s Disk and
thus enables the user to explore non-Euclidean geometry. For these reasons
‘NonEuclid” is a tool in the teaching of the axiomatic foundation of Hyperbolic
geometry.

The 23 students that were present worked on computers with worksheets, in
groups of two (seven groups) or of three (three groups) and explored the Poincaré’s
Disk by drawing points, lines, segments, angles and perpendicular to a given
straight line (see Fig. 1). They also measured segments and angles and wrote
their comments about the construction of cycles, line segments of equal length
and of the measurement of the sides and angles of a triangle. Finally the axiomatic
foundation of Hyperbolic geometry was held through the model.

Before students prepare their texts for “Radio broadcasts”, a short summing up
activity (1 h) was held, during which, Escher work from the unit Circle Limit
Exploration was presented. In these paintings, Poincaré straight lines were identi-
fied and the equality of shapes was discussed through the repeated patterns of
Escher work (see Fig. 2). Then in Modern Greek Language class (2 h), students’
teams prepared, wrote and presented their own texts for the radio broadcasts
concerning Hyperbolic geometry and its Poincaré’s Disk.
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Fig. 1 Working on
computers

Fig. 2 Hyperbolic
geometry through Escher
work

Fig. 3 Radio broadcasts

The six radio broadcasts that were presented, were in the form of a radio show in
which, a radio producer discusses with invited scientists or with some residents of
Platterland, or makes quiz and receive phone calls from the audience. The radio
broadcasts were presented from behind a screen so that the students not be seen by

the audience (see Fig. 3).
After students’ presentations time was dedicated for reflection (see Fig. 4).
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Fig. 4 Time for
reflection. . .

Results

The Learning of Mathematical Notions

Students’ performance (and comprehension through performance) of the mathe-
matical concepts was evaluated through analysis of the worksheets, via relevant
questions in specifically organized interviews and through analysis of the enacted
dialogues in students’ radio broadcasts.

Analysis of Worksheets All the students’ teams had to execute, according to the
worksheet, various commands of the software, in order to draw basic shapes in
Poincaré’s Disk and visualize through them the axioms and some basic theorems of
Hyperbolic geometry. In the beginning, they had to draw from the command
“construction”, straight lines, line segments, angles, the midpoint of a segment
the bisector of an angle, the perpendicular to a straight line. Students executed
easily all these commands, expressing surprise with the differences they observed
between the geometric figures in Poincaré’s Disk and the corresponding figures in
Euclidean geometry.

Students after learning, through corresponding commands, to measure distance
and angles, they had to do five different activities: (a) Draw several circles (b) Draw
segment at specific length (c) Measure different rays of a circle and (d) Draw triangles
and measure their sides and angles and then write what they observe. This task could
only be done through the use of this software, through which students were able to
design these schemes, work extremely difficult, if not impossible with conventional
means as pencil and paper. In the above questions, five of the ten teams gave answers
in four ones, three groups in three and two in only two questions.

Regarding students’ understanding the Poincaré’s Disk of Hyperbolic geometry,
the analysis of the worksheets of the teams showed that the students understood the
basic notions of the model, with the majority of them responding properly to most
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Fig. 5 Drawing circles in
Poincaré’s Disk

questions relating the circle (the centre and its rays), the apparent shrinking of
segments of specific length and the sum of the angles of a triangle. Some students
indeed provided additional interpretations of certain phenomena, which they had
read in the book Flatterland and we had discussed in a previous class period.

Thereafter we present in detail the students’ answers to the various questions.
During the construction of different circles (first question) all of the ten groups
observed that something different with circles in Poincaré’s Disk occurred. They
observed that the centre was not where one would expect to be and that it didn’t
coincide with the centre of the Euclidean circle (see Fig. 5). They write about it as
following: “the centre of the circle is not the same with the circle of Euclidean
geometry”, “the centre is not as in a usual circle”. Two of the teams tried addition-
ally to justify it “the centres are more distant (from the Euclidean centre) as we
move to the circumference of the Disk. This happens because along the circumfer-
ence, it is cooled and it shrinks”, “Each circle has not the same centre as the circle in
Euclidean geometry. This is because as we move away from the centre, we are
seemingly changing, but not the distance from the centre, of the points of the
circle”. A single group responds in a different way “when the centre of the circle
is located approximately in the centre of the circular disk, the rays appear symmet-
rical, but while it is removed from the centre of the circular disk, the radius look
different.”

In the second question “Draw segments at specific length, and write your
comments”, all groups answered correctly. One of the groups observed the curvi-
linear shape of the segment, while the rest of the teams noted that the segments,
although of the same length, seemed unequal. Some of their answers, are written in
more formal mathematical language and some not: “We drew line segments of the
same length and we noticed that the line segment seems smaller near the circum-
ference, in contrast to the segment that is near the centre of the circle. They have the
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same length but the unit length decreases”, “the closer to the centre, the segments
appear bigger”, “as you go out, leaving the centre, you shrink.”

In the third question, students were asked to draw a circle and measure various
rays. All of the eight teams who responded have the same answer, writing that the
rays are equal even if they seem unequal (see Fig. 6). “Although the rays have the

CLINY3

same length, they look different, and not equal to each other”, “they are equal, even
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Fig. 6 The rays are equal MEASURE DISTANCE
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though the centre is not the centre of the circle in Euclidean Geometry”, “all the
rays are of equal length, although they seem unequal.”

Finally, the students were asked to draw a triangle, to measure its sides and angles
and write their comments (fourth question). Five of the groups made the measure-
ment of the sum of the angles of the triangle and found it to be less than 180 degrees
(see Fig. 7), while the other teams did not have time to answer this question.

We asked the teams that they had managed to answer all the questions, to try to
draw a rectangle and a square according to the Euclidean definitions of these
shapes. The students tried to construct a rectangle but they constantly failed. At
first, the students plotted a segment of Poincaré’s Disk, as the base of the rectangle.
Then they designed, on the same side of the base, two equal segments, perpendic-
ular to it and they joined their edges, or they designed two straight lines e, and e,
perpendicular to the base and a third straight line e; perpendicular to e, and
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Fig. 8 Trying to draw a MEASURE ANGLE
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intersecting e, (see Fig. 8). Both drawings, in Euclidean geometry lead to a
quadrilateral, though in Hyperbolic the former leads to a shape having two right
angles and each of the other two angles less than a right angle and the latter to a
quadrilateral with three right angles and the fourth less than a right angle. The finding
that there is no rectangular in the hyperbolic world stunned them. From our obser-
vation during students’ work, we realized that their effort to construct in the model, a
straight line, a circle and a rectangle helped them to renegotiate and understand the
relevant concepts of Euclidean geometry. Also their rectangle construction effort and
the finding that the sum of the angles of a triangle is less than 180 degrees made them
understand the role of the Euclidean geometry 5th axiom.

Analysis of Dialogues in Radio Broadcasts Following the analysis of the six
radio broadcasts texts that students prepared about Hyperbolic Geometry, we
observe that two teams did a full description of the Poincaré’s Disk, while the
remaining teams referred to only a few concepts, those that they considered
important or had been impressed by. In three radio broadcasts students referred to
Platterland’s shape which had the shape of Poincaré’s Disk: “I was impressed that in
“Platterland” there are only two dimensions and that while from far away the
country it seems to have a certain extent, when actually reaching there, you realize
that it is infinite” and also defined straight lines (four teams): ‘Defining in this
model as straight lines the arcs of circles orthogonal to the circumference of the
disc, imagine a circle and curves inside it’. In one broadcast the particular shape of
the circle is emphasized: “In Hyperbolic geometry the centre of the circle tends to
its circumference, yet its radii again are equal” and also that parallel lines are not
equidistant (two teams): “The distance between parallel lines is not constant”.
Finally in all broadcasts students talk about the apparent decrease in the length of
a segment and to justify this phenomenon they use the model “Cold plate”,
“because the objects shrink, depending on the temperature. In the periphery the
temperature is zero degrees Celsius and as they go towards there they shrink” while
in two, they talk about the alternative 5th postulate: “From a point not on a straight



ICT and Liminal Performative Space for Hyperbolic Geometry’s Teaching 89

line an infinite number of parallels lines passes through it”. Closing the analysis, we
want to add, that two groups in their radio shows, although they referred to
Hyperbolic geometry, they gave information about Poincaré’s Disk, identifying
Hyperbolic geometry with its model.

We will quote as an example, an excerpt from the radio show “Weird and True”,
in which the students chose as a framework a fictional interview of a reporter with a
Mathematician Guest and a resident of Platterland, a country with the shape and
properties of the Poincaré’s Disk.

The Radio host ~ Good morning our dear listeners. Today we will analyse in our
show, a really special topic, that of the Hyperbolic geometry.
I am pleased to announce that we will host a resident of the long
distance Platterland and a Mathematician, with a PhD in
Non-Euclidean geometries. With the help also of our good
colleague we will introduce you to this unknown to us
Geometry. Let’s listen to what they have to say.

The reporter I was impressed by the fact that in Platterland there are only two
dimensions and that although from away the land appears to a
certain extent, actually arriving there, you realize that it is

infinite.
Mathematician  In Euclidean geometry what we call a straight line, in their own
Guest world we perceive it as an arc that intersects the circumference

at right angles. It is noteworthy that Platterland is a circular disc,
without its circumference and the points are defined only within
it...

The Radio host  Indeed, all this is very interesting. Let us listen now, the
experiences of our guest, who is a resident of Platterland.

The resident The objects of Platterland as they remove to infinity, they shrink,
although this can not be perceived by a person moving in
Platterland, because as the object shrinks, at the same time the
meter shrinks too. So in every measurement we have the same
result.

The Radio host  Thank you. Now, we say goodbye to all of you and we renew our
appointment, next week.

Analysis of the Interviews Two months after the activities sixteen students were
asked questions about Hyperbolic geometry (in 16 semi-structured interviews) for
the retention of knowledge from the use of the specific tools to be examined. From
their responses it seemed that students were so impressed by the Poincaré’s Disk
that they identified it with hyperbolic space. The majority of students responded
that they were impressed by the shape of the lines in Poincaré’s Disk (11 replies)
“First of all, curves were considered as straight lines. For those who were in
hyperbolic world it seemed like a normal straight line, it was just a matter of how
you see things. Do you see them from outside or inside? It’s completely different
what we call in Euclidean geometry a straight line and what we call in Hyperbolic
geometry straight’, and the apparent change of segments of the same length
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(six replies): “As the objects of Platterland remove to infinity, they shrink, although
this can not be perceived by a person moving in Platterland, because as the object
shrinks, at the same time the meter shrinks too. So in every measurement we have
the same result”. Three students mentioned with surprise the sum of the angles of a
triangle in Poincaré disc: “In Euclidean it is 180°, in Hyperbolic it is more than
180°”, and the non existence of the square: “Especially this finding about the
square; we will never forget that there is no square”, while some students highlight
the importance of the fifth postulate: “Changing the Sth postulate, essentially
changes the whole theory of geometry”.

Summing up, from the analysis of all the aforementioned data, we can conclude
that the students understood the basic concepts of Hyperbolic geometry through
Poincaré’s Disk, and it was ICT which played an important role in this, by
contributing to the visualization of the model.

Mathematics as a Creation Under Constant Negotiation

Students were actively involved with the new and strange to them non Euclidean
geometry,

Sofia  The fact that I saw other geometries, basically because I like those weird
things, intrigued me; i.e. to see a geometry which I have not seen before, in
which the line segment was a curve. I had never seen something like this
before. Or to tell me that this circle is infinite, it has infinite points, it is
immense. This piqued my interest more and to tell the truth, I started then
searching about it at home and on the internet and I liked it more. I put the
book of geometry aside, I do not want to see it again in my life and I sat and
read something what I had not understood.

Thus the teaching of Hyperbolic geometry provoked students’ perception about
mathematics as a science of the absolute truth. Their involvement in this procedure
helped students perceive Mathematics as corrigible and as a creation under constant
negotiation, modifying thus their epistemological beliefs about mathematics and
provoked the dominant belief that Euclidean geometry is the only model which
interprets and represents our real world, shaking thereby other certainties.

Stefanos  Certainly the plasticity of mathematics emerged and the way
mathematics are created and changed depends on the needs of the
mathematician, of the scientist and of the human being generally. It is
clear that mathematics is a complex notion, which is not restricted to
only one way of understanding reality. . .

Angela  Finally there are and alternative views and we cannot say which is
absolutely right and which not.
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The Role of ICT and Drama in Education in the Project

Our research aim of the teaching experiment was exploring the dynamics of Drama
in Education Techniques in teaching Geometry in high upper school. The entire
teaching experiment included a number of activities that would give students the
appropriate knowledge for their presentations. We wanted the students through our
lectures, the work in teams, the study of the relevant bibliography, the study of
extracts from a book of “mathematical literature” and the use of new technologies
to understand the concepts and presenting them with various techniques of Drama
in Education.

Students’ Experiences Both from the responses we got in the semi-structured
interviews with the pupils, and from the observation during the whole process, it
seemed that the pupils were motivated within these expanded contexts, and that
they became cooperative through their engagement in new teaching practices.
Students referred positively to the whole project and highlighted its multimodality.
The following quotes are indicative:

Peter It was interesting, it was nice that we used in teaching many different
methods and tools, which prevented anybody to be bored. It was a row of
different things, it was theatre, it was a normal presentation by the
teacher, it was computers, even a radio broadcast. I think it is very
interesting; it just needs its time.

Giolena You know something, we had no problem, I personally had no problem
that you would tell us, “today we will do a radio show or we will go to
computers”. I just liked that you would come to do a different lesson,
instead of sitting on chairs and get bored.

Angeliki emphasizes the variety of teaching means in the project, which enabled
her to express herself by the one which suited more to her identity.

Angeliki  AsThave told you before, in Geometry class I was feeling boredom. But
in the project, even if it was a sketch, ok the sketch was not my best,
because you saw that I cannot talk, I have a problem, I knew that we
would read something new and then in computers it was very nice,
because although it was geometry we would learn something
interesting.

The enthusiasm and the interest of the students during the teaching experiment
were observed by their teachers -observers also in the teaching experiment- and the
researcher herself.

Maria M. (Greek I saw them (the students) enchanted. Because they were
Language teacher) creating.

Kostas K. (Greek I was enchanted by the fact that I saw the children to be so
Literature teacher) much interested.
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The researcher, from the observation and the video recording of students during
their work in groups and during preparing their presentations, she saw that the
students seemed full of vitality, talking to each other, explaining to each other,
teasing each other, laughing, having fun and in general developing important
communication.

Drama in Education Techniques From all these activities of the teaching exper-
iment, we wanted to identify those which most attracted students’ interest and
motivated them to work. So, in the interviews, we addressed the following question
to the students: “What was the most significant and interesting activity for you, in
the project?”

All the 15 students that were asked in the interviews, answered that the sketches
were for them the most important activity, what they liked most and were the
motivation for their active participation in the teaching experiment.

Chris I believe that the presentations were the most interesting part.

Tzina This was pretty nice, because when you just write it will not be very
different, because who will see it. But when you do a sketch is more
interesting, more beautiful. . .

Antonis the presentation for me, sparkled my interest. I think, it missed me
something like this, in Geometry class.

When we asked the students to present their thoughts, during the final discussion
reflecting the whole project, seven students also stressed that it was the happenings
with DiE techniques that impressed them the most, without justifying always their
opinion.

Mina For me, from all this, it was the sketches that I liked more.

Some of them stated that they liked the DiE techniques while they were not
interested in the subject of Mathematics.

Effie ... for me, mathematics is not the best subject, but I believe that in this way
the lesson became more interesting.

In the researcher’s question in the interviews: “In the project you could have
stopped after having participated in all other activities, till the writing the dialogues
of the sketches, but without performing them. Would it be the same for you?”
students’ answers highlight that what differentiated the “project” were the activities
with DiE techniques.

Sofia  If we just studied or just wrote, we would have been bored to death and
even more.

Nicky [without the presentations] I do not think that anyone would be interested.

Vicky It was completely different than just writing stuff, from comprehending
something yourself and trying to pass it to others. It was very nice.
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Even Angeliki, the student who found difficulties in expression through theatre
techniques, replied that she was negative in non-performing.

Angeliki they were interesting, although I couldn’t.

We believe that this students’ choice is due to the liminal space created by the
DiE techniques, a space with blurry boundaries between learning and play, between
mathematics and art, between performers and audience, between imaginary and
real, between body and mind. This liminal space, which was a combination of
lesson and fun, in which students learned and enjoyed through playing, it supported,
according to students, the learning process.

Virgianna It was a combination of lesson and entertainment. .. In the project,
except that we cooperate, you can learn things without realizing
it. I was getting knowledge in such a way, it was as entertainment. It
was a perfect way for one to have a good time and get knowledge.

Petros recognizes the teaching in this context as a game or fun.

Petros  All this dramatic, theatrical thing is like a game. Maybe this entertaining
form is missing.

Students, in the final reflection of the whole experiment, emphasized the feeling
of well-being which they felt during the project. The phrase “we had a good time,”
was something that was repeated continuously.

Zoe It was certainly something different. We combined Mathematics with other
subjects of the curriculum, as the Greek Language, we cooperated, we had a
good time.

Many students in the interviews repeat: “we had a good time” too.

Christos In the project, we are in groups, we had a good time, everyone
participated.

John It was a different experience. It was something new. We had a
good time.

In our question “What would a visitor have seen in our class during your
activities?” the students gave us an image of a class full of joy and energy,
highlighting that the whole process was beneficial not only at a cognitive but at
an affective level as well.

Giolena I think that an observer would see (in the class), that we had understood
what we had learned from you, and that he would see more joy,
teamwork, and not so much boredom.
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The teaching context with DiE techniques gave opportunity to students for fun,
humour, jokes and laughter contributing to students” well-being.

Vicky I liked all this, the way we did all this, with the theatre and the
cooperation and that we laughed and that the time passed too quickly,
i.e. I was looking at the clock and I was saying, “well how did the time
pass?” and I wanted more.

Nikoleta Initially it was more interesting than a common lesson, we laughed.

The students’ well-being in the teaching experiment, helped them get involved
in the learning process, in contrast with the typical class which usually caused them
boredom.

Gina It was very nice, it was something special and I agree with those who
previously said that the hour of mathematics that we made these sketches, it
was fine, because the time passes better and you learn more things, because
when it is a boring lesson you do not learn so many things or you do other
things, but when things are like this you get more.

The Role of ICT By observing students as they worked with computers and as
they completed their worksheets, we conclude the active participation of students in
the activity with computers. Students constantly played with the shapes, trying to
understand the new and strange to them geometry, with its different fifth postulate
and the different basic theorems. The students had heard about all these topics in the
teacher’s presentation and they had read in the book Flatterland, about the pro-
tagonists’ experiences from their visit in Platterland. All these, took a form through
the NonEuclid software. The interactivity of the software allowed them to design
their own basic shapes and, through the design of many of such schemes, to
discover that equality is not identical with congruence and that there are no squares
and rectangles as defined in Euclidean geometry. Their exclamations and conver-
sations were indicative for that finding.

In our teaching experiment we wanted to explore further, through interviews, the
views of students themselves about their experience with the activity on the
computers. From their replies, we see a positive approach to the use of applet
NonEuclid in the teaching of Hyperbolic geometry.

Giolena Perfect. I m not good at all with computers, I see a PC and I am afraid
that the keyboard will fly away, but this thing regarding Geometry, the
shapes that we were drawing lines, was top fun. I’'m even considering
downloading it and sit alone and play with it.

Mina Fine, it was related with the technology, we are a technology savvy
generation.
Sofia Through the sketches and the use of computers we learned more things

than in a classical Geometry lesson.
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Only one student, Angela, showed her preference for the activity with com-
puters, having informed us that her wish was to study computer science and that she
didn’t like being exposed through theatrical techniques.

Aggeliki  Iliked this very much, it was my favourite among all we did. Especially
regarding Hyperbolic geometry and all in the plane of Platterland, it
was very interesting. With computers Mathematics can become more
creative.

We asked them then, if computers helped them understand the Poincaré’s Disk
and in this way they facilitated the creation of radio show.

Aggeliki  Yes, because I got it. When the time came to say the text, I got what it
was all about, therefore it was easier to do so, even though I didn’t
remember what the exact script was. If I didn’t understand the text,
I would have to memorize the text, whereas now that I understood what
the text was talking about I could change things around.

Aggeliki who had stated that it had difficulties with geometry due to the shapes “It’s
the shapes, I can not manage with so many lines”, in this activity with the computers,
she dealt and understood many different shapes, “Perhaps”, as she added, “because it
was something different and new. In geometry we do the same things, so many years
now, while with computers it was different, I had not seen this things before”.

Mina believes that new technologies helped her understand the text of
Platterland, expressing at the same time the complaint that this does not happen
in their daily lesson of geometry.

Mina But that was only about Platterland, in our daily lesson about Euclidean
geometry, we didn’t do nothing.

Finally we had two responses from students, which stated that the computers did
not help them in understanding the concepts.

Gina ... most of the things, I understood them by the story, not by the
computers.

Tatiana The computers, I had forgotten them. They left me nothing. It was
interesting that we did, I had never done something like this before, but
I’'m more with the arts.

Concluding Remarks

In this chapter, we presented an example of creating a specific space in geometry
class —a space formed by a mediating tool different than those used in traditional
teaching of geometry. It seemed that this space, a liminal space, inspired students to
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actively engage in the learning process and acquire complex mathematical con-
cepts, such as that of the foundation of an axiomatic system. Students experienced
how hyperbolic geometry is axiomatically founded and how basic axioms and
definitions can lead to different and sometimes contradictory results regarding
Euclidean geometry. The students’ contact with a non-Euclidean geometry was
an opportunity for them to renegotiate the basic concepts of Euclidean geometry —
as a geometry and not as “the” Geometry—and gain a deeper and more holistic
understanding of geometry. Their contact with this geometry enabled them to
appreciate the liberation of geometry as a science that tries to describe the spatial
properties of the world we live in and contributed to the creation of an image of
Geometry as an interesting curriculum subject.

We believe that the most important factor of what it was achieved, was the
multimodality of teaching, the utilization at the same time in mathematics class-
room, both of new technologies and of DiE techniques. The analysis of our research
data suggests that ICT and DiE helped for the mathematical knowledge to be
developed in a class of high school students who were involved actively and
effectively. More specifically, ICTs have helped students visualize the Poincaré’s
Disk and through it understand key elements of Hyperbolic geometry, while Drama
offered students the motivation for a dynamic learning through the rich experience
that involves body, feelings and senses. In this liminal space, created by DiE
techniques, with the blurry borders —classroom/non-classroom—, our students in a
collaborative framework addressed mathematical concepts —geometric concepts—,
wrote texts and they performed them, pretending roles, experiencing mathematics
in terms of aesthetics, humour and emotions.

This space, as it was open to an emotional, physical and intellectual engagement
of students, inspired students’ greater participation in mathematical thinking and
expression and led them to a deeper understanding and appreciation of mathemat-
ics. In this space the use of interactive tools, as java applet, for the exploration of
non Euclidean spaces showed us clearly how ICTs can allow students to experience
worlds that otherwise would not be accessible.
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Improving the Teaching of Mathematics
with the Use of Technology: A Commentary

Sixto Romero

Abstract Current trends in mathematics education have emphasized the impor-
tance of using technology as a means by which students can work in other “pencil
and paper” environments and can draw conclusions that will benefit them in the
learning process. The non-use of new technologies may prevent the achieving more
ambitious goals. The aim of the four chapters presented by Sabena, Lobo da Costa
and co-authors, Hitt and co-authors and, Kotarinou and Stathopoulou is to show
how the use of technology can help in the teaching and learning of mathematics,
provided that process is well directed by the teacher.

Keywords Algorithm < Learning and teaching ¢ Mathematical model -
Mathematical task « Spatial competence ¢ Sociocultural context » Technology

Introduction

In chapter “Early Child Spatial Development: A Teaching Experiment with Pro
grammable Robots”, Sabena presents the development of spatial skills in young
children inspecting the educational capabilities provided by programmable robots.
In chapter “Mediation of Technological Resources in Lessons on Polyhedra: Anal
ysis of Two Teaching Actions”, Lobo da Costa, Pimentel and Mendonga, through
the mediation of technology resources prepared in geometry class, allow a greater
understanding of the shares in the T/L a process through reflective practice teacher
as a fundamental agent management framework that needs the reported activity.
Hitt, Saboya and Cortés, in chapter “Task Design in a Paper and Pencil and
Technological Environment to Promote Inclusive Learning: An Example with
Polygonal Numbers” analyzing the design of mathematical tasks in a collaborative
environment (the teaching method ACODESA) propose a methodology in which
individual and social approaches are envisaged in the construction of mathematical
knowledge. Finally Kotarinou and Stathopoulou present the axiomatic definition of
Hyperbolic geometry through the Poincare model as an introduction to
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Non-Euclidean geometry developed abstractly from the set of knowledge that
emerged in the study of Euclid’s fifth postulate.

Comments on Chapter “Early Child Spatial Development: A
Teaching Experiment with Programmable Robots”

As a first comment on the contribution of Sabena, it is necessary to reflect on the
concept of space. It appears as a fundamental skill that accompanies the develop-
ment of cognitive skills throughout the growth of children. In every stage of
development, it is essential to know who we are and what our role in life is. It is
important to note that when we lose consciousness the first thing we ask is: “Where
am [?” because knowing who we are, where we are, at what stage of our existence
we are, are the three basic issues allowing the contextualization of our own
existence notions.

Even if it seems logical and natural for adults to evolve in space, the question of
the development of the concept of space is an important issue for the learning
process in the first stage of the life (Romero 2000).

For Piaget, acquiring the spatial notion is intrinsically linked to the acquisition of
knowledge, and it is through this knowledge that the child’s development begins at
an early age. “The existence of multiple perspectives relating to various individuals
is therefore already involved in the child’s effort to represent space to himself.
Moreover, to represent to himself space or objects in space is necessarily to
reconcile in a single act the different possible perspectives on reality and no longer
to be satisfied to adopt them successively” (Piaget 1954).

The notion of space (Parzysz 1991) can only be understood in terms of the
construction of objects, and would need to begin by describing this to understand
the first: only the degree of objectification that the child attributes to things informs
us about the degree of externality according to the space. This cognitive beginning
is enriched as the child grows and learns about space. For Craig (1995): “...
knowledge of spatial relationships is achieved during the preschool period. This
is logical because it is the age at which learning concepts like: inside, outside, near,
far, up, down, above and below ...” (p. 394).

Piaget dedicated two volumes to study the development of spatial knowledge,
based on performing a large quality of different experiments. In 1947, in collabo-
ration with Inhelder he writes “The representation of space in the child”, and deals
with how ontogenetic development arises in topological relationships, projective
and Euclidian. In his second work, in 1948, with Inhelder and Szeminska (“Spon-
taneous geometry in the child”), he studies the genesis of Euclidean geometry, that
is, the conservation of length measurement, as well as surface and volume.

Based on the psychological work of Piaget, Inhelder, Lucart and Vygotsky, as
well as on the didactical approach of Arzarello, among others, Sabena supports the
hypothesis that the reality in early childhood is full of different spatial cognitive
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aspects and requires different specific skills that must necessarily be related. She
focuses on the development of spatial competences of children, and explores the
educational potential offered by programmable robots. Cognitive aspects are in the
first plane and in particular the delicate relationship between space (Hershkowitz
et al. 1996) and everyday experience versus space as a mathematical notion.

Analyzing Sabena’s experiment, it occurs that mathematics teaching with tech-
nology has to deal with a set of scientific and technical knowledge. Throughout the
last century it gained increasing importance in everyday life as well as in the
development of modern society. Teacher training in mathematics education
requires relatively specific attention to the acquisition of knowledge. In general,
educational programs with different materials (providing structured information to
students by simulating phenomena) offer an environment more or less sensitive to
the circumstances of the students’ work, and especially, more or less rich in
possibilities for interaction among young children; but all of these share essential
characteristics:

¢ They use the material as a support in which students perform the activities.

¢ They are interactive, immediately responding to the students’ actions and per-
mitting dialogue and exchange of information between the material used and the
child.

e They can identify the children’s work and adapt to their rhythm and activities.

They are easy to use because a minimum of knowledge is required to perform the
tasks (De La Fuente 2010). Thus, the author of this chapter emphasizes that high-
tech gadgets surround today’s young people and hardly attracted by simple mech-
anisms. Robots represent a technological element of great attraction to be very close
to the type of devices that they use daily. Robotics is a branch of the scientific and
technological knowledge that studies the design and construction of machines
capable of performing repetitive tasks, where high precision is needed, dangerous
work for human beings or unrealizable tasks without intervention of a machine. In
the work of Sabena (“Early Child Spatial Development: a Teaching Experiment
with Programmable Robots”) the spatial development of skills shown by exploring
the educational potential through programmable robots, places value on how the
experience with a robot has influenced the children conceptualization of the concept
of space.

Comments on Chapter “Mediation of Technological
Resources in Lessons on Polyhedra: Analysis of Two
Teaching Actions”

The theoretical framework of Lobo da Costa, Pimentel and Mendoncga’s work is
based on Zeichner and Serrazina’s ideas. It is a very attractive example in which the
mediation of technological resources used in geometry classes is studied;
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Fig. 1 Relation between
the different actors in a -

process of teaching

particularly for dealing with three dimensional solids like polyhedral, prisms and
pyramids, in elementary school.

As a reflection and following the scheme of the previous chapter, it is necessary
to indicate that the presence of technology in education is no longer a novelty but a
reality (De Lange et al. 1993). The contexts of the teaching-learning have changed
their single appearance in the classroom, at least materially. The main issues are the
new mathematics education processes and the way to involve all the agents (Fig. 1).

Having high expectations of the technological means, giving it potential for the
treatment of information, should not prevent assessment and reflection on the
ability to transform information. The objects are not simply the media or technol-
ogy (NCTM 2000). The objects of evaluation and reflection are the active agents
involved, and the contexts of teaching and learning we designed and put into
practice and, ultimately the use of technological resources for the generation of
knowledge. The ending aim is always education.

Research presented by Lobo da Costa, Pimentel and Mendonga analyses the role
of technological resources in the geometry classroom, specifically that which is
based on the concept of polyhedral. The mathematical content, practice and tech-
nology used during the experience are presented in detail. The categories analyzed
were the class routines, interactions with students in order to see how the mathe-
matical content was developed and the technology used.

They emphasize that, according to Serrazina and Oliveira (2005), teachers, in
order to manage better their time should be responsible for the activities, contents
and class organization proposed to students. Activities imposed by the teaching
staff or by the central bodies of education are not always well received by teachers.
A literal reproduction of what is stated in the recommendation to students in order
to meet the curriculum planned and imposed by academic authorities is mainly
observed in both groups of this experimental study, with few time spent in manip-
ulations and collective discussions.

It is important that the authors of the study do not compare mediations, since
they are linked to confirm the personal characteristics in the way in which techno-
logical resources were used. However, from the analysis of the incidence and
mediation of technology resources that teachers use, they conclude that the main
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features are: the reality of the classroom, the student interest, the number of students
per class, the breach in prior knowledge of the students, the need for compliance
with the prescribed plan of studies and the time available; and these will be
considered as factors that interfere in the mediation.

The presented experience, as Volkert (2008) points out, shows the intrinsic
difficulties of solid geometry impeding the introduction of systematic teaching.
Solid geometry is much more complicated than its homologue on a plane. Also, the
problem of intuition and evidence is far more complex and problematic in Solid
geometry. So the history of Euler’s theorem is a very good illustration of this theme.
These difficulties can be taken together with others like for instance, in secondary,
spatial geometry is relegated and in some cases completely absent.

We can emphasize that in the chapter developed by Lobo da Costa, Pimentel and
Mendonga the use of physical objects, models and figures is the main tool for
teachers to help students understand the geometric concepts, hence the ability to
display (or spatial imagination) is imperative to learn geometry. The display is very
useful in any area of mathematics and especially in the field of geometry. The
teaching of elementary geometry has always been based on intensive use of objects,
figures, diagrams, charts, etc. to help understand the concepts, properties, relation-
ships or formulas studied. Thus, as indicated by Hershkowitz et al. (1996), geom-
etry appears to students as the science that studies the physical space and the
convenience of using graphical representations to help the understanding of geo-
metric concepts extends beyond elementary Euclidean geometry as developed by
Kotarinou and Stathopoulou in chapter “ICT and Liminal Performative Space for
Hyperbolic Geometry’s Teaching”.

As a personal opinion based on the experience I have accumulated since 1975,
by collaborative work with teachers from different levels of education, the almost
complete unanimity among mathematics teachers that adequate display capability
is an essential tool for geometrical learning that is rarely accompanied by a
reflection on the learning processes of visualization. This is not an innate ability
that can be let develop spontaneously, but a model is necessary, as the display is a
complex activity in which several elements are necessary to be understood and
learnt in order to be used.

Comments on Chapter “Task Design in a Paper and Pencil
and Technological Environment to Promote Inclusive
Learning: An Example with Polygonal Numbers”

The third chapter started by making a first reflection on problem solving as a way to
mathematical modeling. The research in Mathematics Education has focused its
attention for some time on designing activities based on mathematical modeling of
real situations, with the conviction of obtaining greater assurance in profit by our
students of mathematics learning, and therefore teaching. One of the most complex
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problems that education faces in different educational levels where the teaching of
mathematics is concerned relates the way of articulating the contents with other
areas of knowledge and even with mathematics in itself.

For our students, most content organized into topics are disconnected from the
real world and science applications, as a consequence this means that they do not
conceive the utility of mathematics in their training. In recent years, research in
Mathematics Education realizes that one of the striking issues is the design of
activities based on the modeling of real situations. In many countries and in
different conditions, its inclusion in the curriculum has allowed the development
of diverse types of cognitive capabilities, metacognitive and crosscutting to help
understanding the role of mathematics in today’s society (Aravena and Caamano
2007; Blomhoj 2004; Keitel 1993). Therefore, today’s society must provide the role
to deal with problem solving, make estimates, and take decisions, and face a
mathematization of culture and the surrounding environment. That is, modelling
mathematics is tending to promote understanding (Niss 1989) of the concepts and
methods, thus allowing a more comprehensive overview of mathematics.

Over the course of history, mathematics has occupied a prominent place in
school curricula. It has achieved this prominence, not because of the importance
in itself but for cultural and social reasons.

We collect the idea of Jean Pierre Kahane, French mathematician and professor
emeritus at the University Paris Sud Orsay, a former student of the Ecole Normale
Superieure, and member of the Academie des Sciences (mathematics section) since
1998 when he asserts:

the reflection on the teaching of mathematics is done from all angles, from all status: it can
be from the daily work in the classroom, difficulties of teachers and students of all
educational levels. It can be done through a detailed examination, test study; or extra-
curricular activities, the gymkhanas, rallies, competitions, olympics, ultimately all mani-
festations of animation and diffusion of mathematics; or the role and evolution of the
mathematical sciences in the whole of science and society. (Gras et al. 2003, p. 5)

As in France, in many countries, teachers grouped or not in Societies of
Teachers, Editors of publications in Mathematics Education have taken initiatives
in order to make proposals and initiatives in the field of Problem Solving and
Mathematical Modelling (Romero and Romero 2015) to improve the binomial
teaching/learning of mathematics. Problem solving has a long tradition in mathe-
matics. George Polya considered Euclid’s Elements as a collection of problems
(a sequence of statements and solutions). Together with Gabor Szego, he produced
under the title of Exercise Analysis, a collection graduate of problems.

The authors, Hitt, Saboya and Cortés, utilize problematic situations in the
sociocultural context of mathematics class that requires careful design to develop
skills in the classroom, promote diversified thinking and achieve a balance between
the pencil, paper and technological activities referred to in the theoretical frame-
work of the activity (Balacheff 2000). The ACODESA methodology presented in
the chapter differs in five main phases (Individual work, Teamwork on the same
task, Debate, Auto-reflection and Process of institutionalization), and the design of
the activities under this perspective and with the use of technology is not a trivial
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M 2 ACODESA method  ACODESA-METHOODOLOGY
of teaching, seeing the

individual in a social /\

context of learning

task in the mathematics classroom. A comprehensive work to develop the activity
and the details that need to be provided to present a complete vision of the activity
need a significant space that is not always available in a research context. Deficient
communications in all aspects involved in the development of problem solving
activities makes it more difficult for teachers to follow those activities.

In the design of tasks, they are taking into account Arcavi and Hadas (2000)
suggestions; based on a Dynamic Geometric System that stands out for the elements
of visualization, experimentation, surprise, evaluation, need testing and demonstra-
tion, as key elements of the analysis detailed. Also, the prospect of collaborative
work (Prusak et al. 2013) allows for the design and creation of tasks (Kieran et al.
2015), suggesting problematic situations that enrich the visualization of the prob-
lem (Fig. 2).

The authors present very appropriate examples. The use of the concept of
triangular number as one that may be in the form of an equilateral triangle with
other figurative numbers were studied by Pythagoras and the Pythagoreans, who
considered sacred 10 written in a triangular shape, and they called Tetraktys.

The dynamism presents examples, related to:

¢ Visualizing information through a numerical approach.

» Find a generic pattern.

o Affirm that generally the tasks of connecting the different representations of a
concept, is not considered by many teachers as fundamental in the construction
of mathematical knowledge and, in particular teachers minimize the task of the
conversion among representations.

Hitt et al., proposed that the task of the conversion, among representations,
would enable the development of mathematical visualization processes. This visu-
alization has to do with mental processes and transformation productions on paper,
on the blackboard or on the computer, generated from a reading of mathematical
statements or graphics, promoting the interaction between representations for a
better understanding of mathematical concepts involved.

In conclusion, the tasks and the methodology proposed by the authors of this
chapter “Task Design in a Paper and Pencil and Technological Environment to
Promote Inclusive Learning: An Example with Polygonal Numbers” inculcate in
students the learning of mathematisation, defined as problem solving that triggers a
process of:
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Identification of relevant mathematical concepts and then progressively simplify reality in
order to transform the problem into one susceptible to locate an a mathematical solution ...
by finding regularities and patterns, [...] It need to use various competencies for
mathematisation task. (OECD 2004, pp. 27, 28 and 29)

Comments on Chapter “ICT and Liminal Performative
Space for Hyperbolic Geometry’s Teaching”

A teaching experiment about axiomatic foundation of Hyperbolic geometry and its
basic notions, using ‘Drama in Education’ conventions to motivate and actively
engage all of the students, is presented in this chapter “ICT and Liminal Performa
tive Space for Hyperbolic Geometry’s Teaching”. The fundamental purpose of the
work presented by Kotarinou and Stathopoulou, using, as a case study, the intro-
duction of Hyperbolic geometry through the Poincaré model, is to show that the
creation of new problematic situations with the use of technology allows more
dynamic teaching of geometry in the classroom, improving understanding.

It is interesting to know the theoretical framework in which the activity is
presented by the authors. There are many comparisons between Euclidean geom-
etry and Hyperbolic. For example, it could well be that Hyperbolic geometry was
actually true in our world cosmological scale. However, the proportionality con-
stant between the deficit angle and a triangle area should be extraordinarily small in
this case, and Euclidean geometry would be an excellent approximation to this
geometry for any ordinary scale. In the Poincaré model H?, all the hyperbolic space
is represented in a disc of the radius, r = 1. The edge of the disc represents the
infinite. Within the disk all the postulates of Euclid are satisfied except the 5th (the
parallel postulate):

. It can draw a straight line through two points.

. It can prolong a straight line indefinitely from a finite straight line.

. You can draw a circle with given center and known radius.

. All right angles are equal.

. If two lines are drawn which intersect a third in such a way that the sum of the
inner angles on one side is less than two right angles, then the two lines
inevitably must intersect each other on that side if extended far enough.

[ O R S

In H? the sum of the internal angles of a triangle is lower than 180. More
surprisingly, two lines with different directions may be parallel. Poincaré model
to visualize these aspects of Hyperbolic geometry, but being all the space within a
disk, the lines are righteous actually are perceived as curves (hence they are called
“Geodesic”). And the metric that allows us to measure distances within the
Poincaré disk is not Euclidean. These ideas can be shown and manipulated in a
relatively easy way with the use of appropriate software. The time spent by students
working with computers is really very important for the visualization, recognition
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Hyperbolic tessellation {3,4} generated in C = Hyperbolic rotation and translation with Mo-
and WPF bius transformations

Fig. 3 Transformations in Poincaré’s disk (https://rastergraphics.wordpress.com/2012/06/27/
geometria-hiperbolica-disco-de-poncare/)

and exploration of a non-Euclidean geometry, a geometry that is not in our daily life
(Fig. 3).

Kotarinou and Stathopoulou point out that students who carried out the experi-
ence came to understand the principles of Hyperbolic geometry through the
Poincaré model with the analysis of worksheets. The experiment shows that most
participants adequately responded to most of the issues of the circle (the center and
its rays), the apparent decline in segments of specific length and the sum of the
angles of a triangle. Some students gave further explanation of certain phenomena
especially those who had read the book Flatterland, discussed in a previous class
period, but not accessible to many. Therefore, it is important to note that the
implementation of Hyperbolic geometry in the Poincaré model are useful for the
following concepts:

« The hyperbolic space H? is a disk of radius, r = 1, centered at the origin in the
Euclidean plane R2, called Poincaré disk.

« The points in the hyperbolic space H? are points in the Euclidean plane that are
within the Poincaré disk.

« The lines passing through two points in H? are Euclidean circles passing through
two points on disk and are orthogonal to the Poincaré disc.

» The lines passing through the origin (i.e., the center of the Poincaré disk) are
circles of radius r = oo, they are Euclidean lines.

e The angles are Euclidean, the measure of angle formed between two geodesics
(hyperbolic lines) is the angle between the tangents of the circles at the point
where they are intercepting.

¢ The inversion of a point on the circle is an isometry (preserves angles and
distances) and is interpreted as the reflection of a point in a hyperbolic line.

It should be noted as very positive the use of ICT (interactive Java) by students to
display the model of Poincaré (axioms and basic concepts of non-Euclidean
geometry), thus creating an interactive environment, ultimately providing a new
tool in teaching the axiomatic basis of hyperbolic geometry. The working group of
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students with worksheets, exploring the Poincaré’s model has enabled them to draw
points, lines, segments, angles and lines perpendicular to a given line. Thus writing
the comments on the construction of cycles, line segments of equal length and
measuring sides and angles of a triangle has allowed students to understand the
axiomatic basis of Hyperbolic geometry in an enjoyable manner, creating a relaxed
environment and satisfaction in students. This chapter presented by Kotarinou and
Stathopoulou is interesting because the experience presented deals with a new
practice leading to new paradigms and new tools with new technologies that have
helped the process of students’ visualization and therefore the understanding of the
geometric concepts presented (Gutiérrez 2006).

Conclusion

First, it can be concluded from the above Chapters of Sabena, Lobo da Costa et al.,
Hitt et al., and Kotarinou and Stathopoulou, that if the conception of the role of the
teacher is close to traditional transmitter and organizer of knowledge and practical
activities, where visualization is rarely used in the classroom, the assessment will be
related to working methods explained in class, impeding autonomy of the students.

Enquiries from Presmeg (1997) identifying various types of mental imagery is
used by students to solve mathematical problems. The most commonly used in
geometry are:

— Concrete images (pictures in the mind): figurative mental images of real objects.

— Kinetic images: mental images associated with muscle activity as a movement of
a hand, head, etc. For example, when a student, describing a figure with parallel
segments, places the hands stretched parallel and moves them up and down.

— Dynamic images: mental images in which the displayed image (or any of its
elements) is a moving object. Unlike the kinetic images, these images do not
provoke physical movement, but are only displayed in the mind.

For his part, Bishop (1989) describes two processes taking place when using
images:

— Interpretation of figurative information: the process that takes place when trying
to read, understand and interpret an image to extract information from it.

— Visual information processing: the process that takes place when converting
non-visual information in images, or transforming an image already formed into
another image.

The experience at different levels of education (Blomhoj 2004) shows that the
treatment of theoretical aspects can be a tool for the practice of teaching problem
solving as a path to mathematical modeling. The role played by teachers and
researchers in mathematics education should perform interesting work in many
mathematical domains such as, for instance, problem solving, almost unexplored in
the Primary and/or Secondary school (Romero and Castro 2008), which can
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produce in an original and creative way, activities enriching the process of teaching.
Many of these domains can be planned so that they can become powerful generators
of important skills, not only mathematics but crosscutting, number theory, graph
theory and optimization theory chaos, topology, data processing, coding theory and
cryptography, fractals mathematical models, or competences presented by Sabena,
Hitt et al., Lobo da Costa et al., and Kotarinou and Stathopoulou.

As a final comment related to learning objectives, it is necessary:

— To analyze, to delve into the research methods in mathematics: particularization,
finding general laws, building models, generalization, using analogies, conjec-
tures and demonstrations, among others.

— To use mathematical models for the mathematization of reality and problem
solving (Romero et al. 2015); experiencing their validity and usefulness, criti-
cizing limitations, improving them and communicating findings and
conclusions.

Moreover, when asked to bring the issue to the classroom, we must be explicit
regarding the educational goals we are demanding:

(a) To practice problem solving as the most genuine activity in any specific field of
mathematics, where the technology can be an impressive and a fantastic aid.

(b) To bring the students to approach mathematical knowledge, prioritize and solve
challenges, search for explanatory models, inquiry and discovery.

(c) To tackle the aspects of the creation process and/or detection in mathematics we
must focus on bringing into the classroom in order to achieve the educational
goals we have set ourselves (Watanabe and Mcgaw 2004).

What the teacher says in class is not unimportant, but what students think is a thousand
times more important. The ideas must be born in the minds of the students and the teacher
should act only as a midwife. This principle is based on let the students discover by
themselves as much as feasible under the given circumstance. (Unknown, http://
lovelypokharacity.blogspot.com.es)
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Technology, a Tool for Teaching and
Learning Mathematics: B. Learning



Domains of Manipulation in Touchscreen
Devices and Some Didactic, Cognitive,
and Epistemological Implications

for Improving Geometric Thinking

Marcelo Bairral, Ferdinando Arzarello, and Alexandre Assis

Abstract In this chapter, we discuss the results of a research project which
investigates aspects of students’ cognitions during the process of solving tasks
dealing with a Dynamic Geometric Environment with touchscreen (DGEwT). In
this chapter, we discuss data from two teaching experiments carried out with
Brazilian and Italian high school students dealing with GeoGebraTouch (GT) and
a Geometric Constructer (GC) software. With the focus on strategies used by
students to solve the proposed tasks, we suggest two domains: Constructive and
relational. Furthermore, we suggest the drag-approach as an important form of
manipulation to improve geometrical thinking. Finally, we present a selected
variety of representative examples of didactic, cognitive, and epistemological
implications for learning and researching with the use of DGEwT.

Keywords Mobile devices « Manipulation on screen ¢ Sketchometry ¢ GeoGebra
App * Geometric Constructer

Introduction

The significance of the gesture in supporting mathematical reasoning in a techno-
logical context is an emerging field of research in mathematics education, partic-
ularly in the interaction with touchscreen learning devices. As a past improvement,
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we have had a first shift from paper-and-pencil to dynamic geometry environments
which include drag-and-drop activities (e.g. Cabri Géometre, Sketchpad, etc.).
Today, we experience a further shift and continuous improvements with the tran-
sition to multi-touch environments (e.g. Geometric Constructor, SketchPad
Explorer, or Sketchometry) that allow a variety of simultaneous finger actions.

The emergence of multi-touch devices provides new insights as well as chal-
lenges in mathematics learning and instruction. For instance, simulating rotation
and other kinds of rotating movements on screen are made possible by means of
touchscreen devices (Bairral et al. 2015a). Due to the fact that students and teachers
become increasingly familiar with multi-touch technology and manipulation, we
believe that looking for types of manipulation can provide new epistemological
insights in regard to the geometrical conceptualizing through the application of
touchscreen devices.

We recognize the touchscreen manipulation as a human action: embodied and
multimodal. It can also reveal the mathematical thinking of learners while working
on tasks with multi-touch devices. In this chapter, we illustrate some strategies used
by students who applied rotation actions in order to solve tasks on GeoGebraTouch,
or by students who dealt with the Geometric Constructor software to solve a
Varignon Theorem task.

Interaction, Motion and Geometric Learning with DGEwT

With the focus on the user, there are differences between handling a usual PC —
where dragging is produced with the help of a mouse — and making use of the touch
screen of a tablet — where they can use their fingers in order to move figures.
Additionally, it makes a difference whether users can use more than one finger — as
in multi-touch environments — or only one finger. In this section, we reflect on how
we dealt with these singularities theoretically.

Interaction on Touchscreen Devices

To click the mouse or to touch a screen are increasingly common routines of our
daily lives. Each form of such handling implies different sensory perceptions; (the)
sensitivity differs whether one uses a wired or wireless mouse, touches the screen of
an ATM or that of a cell phone.

With the focus on their usage, environment mobile touchscreen user interfaces
employ a specialized interaction model. The interaction of current mobile
touchscreens, for example, is based on the computer’s recognition and tracking of
the location of the user’s input on the display.

Adopting an embodied cognition perspective in our research, we highlight
reciprocal connections between touchscreen manipulation and cognition. Contrary
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Fig. 1 Student’s
construction and
embodiment reflection on
GC

to what happens by in clicking, manipulating touchscreen interfaces implies a
continuity of action, such as the spatiality of the screen, the simultaneity as well
as the combination of movement, and — depending on the resource device — the
response speed of the device. The following picture depicts one student’s gestures
who tried to explain one of the properties of the isosceles trapezoid (Bairral and
Arzarello 2015) (Fig. 1).

The student uses his hands to represent the two sides that are not parallel.
Although the picture does not show manipulation on screen, it describes specific
configurations and actions of the fingers performing an action (Sinclair and Pimm
2014) with the construction made.

When we manipulate the screens of our devices by means of touchscreen
technology, we perform a set of movements. These movements are not necessarily
gestures such as signs or expressions of joy, silence, or doubt. Some of the
manipulations that we perform induce specific mathematical cognition, for example
when we want to enlarge or reduce the size of a picture with the help of an image
editor (e.g. Paintbrush), or by means of touchscreen manipulation.

On such occasions, we either pull the image diagonally, upwards, or downwards;
or we click on one of its vertices, so both dimensions — width and height — are
reduced or enlarged proportionately. In case that we do not perform this type of
movement, i.e. if we manipulate only one dimension, the result will be a deformed
image.

Nevertheless, although all these manipulations are based on the same mathe-
matical concept (the method of the diagonal as a way to generate similar figures),
they are not necessarily of the same value with respect to cognition (the action of
enlarging without deforming), epistemology (the simultaneous changing of differ-
ent elements of the shape, e.g. points, sides, angles, areas, etc.), or space (work and
manipulating area on the screen).

In order to guide our analysis of this process of embodiment expression, we can
find support in Damasio (2010) for whom “also the most stable aspects of bodily
function are represented in the brain, in the form of maps, thus contributing with
images for the mind” (p. 39). Damasio further states that “Complex brains like ours
naturally create explicit maps of the structures that make up the body, with a greater
or lesser degree of detail. Inevitably, the brain also maps the functional states that
are naturally taken up by these corporal components” (Idem, p. 119).
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Fig. 2 (a) Illustration of an enlargement in a drawing program; (b) Distortion in a drawing
program; (c) Enlargement through sliding on the screen (Bairral and Arzarello 2015)

We could argue that the brain mapped the fact that the touchscreen device is
going to enlarge the figure or that a soft and quick lateral touch will make the screen
slide to one side. The size of the screen, or the user’s familiarity with it, can have an
impact on the ways of manipulation. This is the spatial dimension, i.e. the screen
handling and interaction area (Tang et al. 2010).

In case of the widening of an image by means of clicks, the shape illustrated in
Fig. 2 (a and b) involves the actions of selecting, clicking and dragging on a point.
When we touch the screen with only one hand (Figs. 2c and 3a), or both hands
(Fig. 3b), on the screen, we map a specific area on the screen. Even in case that
manipulation is done in order to see specific, punctual details of an object on the
screen, the movement of this second action involves a simultaneous manipulation
of dots.

Still, in regard to the enlarging of an image, although the simultaneous manip-
ulation with two fingers (Fig. 3a) is the most usual, the second enlarging strategy
(Fig. 3b) also follows the cognitive orientation structure of moving in a diagonal
direction.

In the same way that simultaneous touchscreen manipulation of points on the
screen brings about implications of an epistemological order, it also makes our
cognitive structures more complex, for example through the simultaneous move-
ment of various elements (e.g. angles, sides, area, etc.) in a figure. These move-
ments will depend on the performance — the response speed — of each device
(Bairral et al. 2015a, b, ¢).

Ways of Manipulation on Screen

Most current tabletop interaction techniques rely on a three state model: contact-
down, contact-move, and contact-up — more akin to mouse dragging (Tang et al.
2010). In other words, interaction occurs in response to two dimensions of the input
action (Yook 2009; Park 2011). This enables some basic or active finger actions for
input such as tap, double tap, long tap (hold), drag, flick, and multi-touch (rotate).
They are summarized in Table 1.
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Fig. 3 (a, b) Sliding on the screen to enlarge with two fingers (Source: Google picture)

Table 1 Yook framework quoted by Park (2011, p. 23)

Action | Type Motion

Basic Refers to tap and hold which are the basic ways of interacting | Tap Closed
with a touch interface (single)

Tap
(double)
Hold
(single)
Hold
(multi)
Active® | It is a combination of the basic action and the performed finger | Drag Open
action, which includes drag, flick, free, or rotate Flick

Free
Rotate

#According to Yook’s (2009) framework the four active actions can be associated to multi hold
manipulation

Manipulation — as a basic action — refers to a designated closed motion that
occurs in response to the user’s input, e.g. scale, flip, move, or push. Open motion
occurs in relation to the user’s input by reflecting the spatial and temporal quality of
the finger action. In relation to geometrical thinking that we observed on students
who were dealing with DGEwT, we named the basic action as constructive domain
and the active action as relational.

After interpreting and using Yook’s (2009) framework, which identifies each
type of touchscreen in relation to geometrical thinking throughout the proposed
tasks, we provide a scheme that includes another alternative to the drag approach
and three further options for the rotating action (Fig. 4).

Due to the nature of the geometrical proposal, we identified that touches of the
relational domain were predominant, while touches such as drag free, flick, or rotate
occurred only a few times.

Regarding the usage of single or multi touch fingers, we observed (Arzarello
et al. 2014; Assis 2016) that students manipulated the figures using mainly one or
two fingers only (Tang et al. 2010). Due to the fact that they occasionally worked in
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Fig. 4 Ways of manipulation on DGEwT (Arzarello et al. 2013)

pairs, it occurred that students also shared fingers (e.g. they used one finger each) or
hands to manipulate a figure. This especially occurred when the shape had multiple
geometric objects or constructions.

The dominant approach was dragging. The usage of rotating appeared a few
times; those appearances differed in a way that allowed us to distinguish three
different ways of rotating which are illustrated in the scheme below. For example,
we observed students doing rotation into some shape. We are of the opinion that
looking for different types of manipulation provides new epistemological insights
on the geometrical conceptualization within the use of touchscreen devices.

Even though we are not only looking for alternative kinds of touch that represent
mathematical concepts (e.g. rotation), we agree with Boncoddo et al. (2013) that a
particular way of manipulation may serve as an important function of grounding
mathematical ideas in bodily form which may communicate spatial and relational
concepts. Specifically for geometrical thinking — inspired by Hostetter and Alibali
(2008) — we consider it important to stress that in touchscreen devices manipula-
tions are based on visuospatial images: linguistic factors influence gestures, and
ways of touchscreen manipulation can be regarded as intentional communications.

Performing Rotation on Touchscreen Devices

Although rotating appeared only a few times, these appearances allow us to
distinguish three different kinds of rotation while working with a Geometric
Constructer (GC) multi-touch device (Arzarello et al. 2013, 2014): rotation using
one finger; rotation using two fingers, but one of the two fingers is fixed: and
rotation with two fingers, with both in movement, as it is illustrated in the schemes
below (Fig. 5).

"To see this kind of motion, please download the video: https://youtu.be/qC-G96NssJk


https://youtu.be/qC-G96NssJk
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Fig. 5 Ways of rotation on GC or on GeoGebraTouch

Table 2 Examples of students’ rotating on GC

Rotation types using
GC Example Geometric process

Student constructs and moves
the selected point with the index
finger

Rotation using one
finger

Rotation using two
fingers, but one of the
two fingers is fixed

Student keeps index finger fixed
and moves the middle finger to
observe what happens

Rotation with two fin-
gers (both in
movement)

Student selects two points and
rotates the shape

Arzarello et al. (2014, p. 46)

In the above table (Table 2), we illustrate each kind of rotation by relating them
to the geometric process that was applied in order to solve the task with the help of
the Geometric Construct software.

Although the first two types seem equal on mathematical terms, we are of the
opinion that — cognitively — they can provide different insights in regard to the use
of the fingers. In order to grasp the fingers actions conceptually, we need to
determine the centre of rotation individually in each point that we are about to
rotate. With the use of two fingers, this cannot not be done beforehand.
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Following this idea, this kind of finger movement results in new concepts in
regard to the way we deal with rotation. Following the same idea, we agree with
Sinclair and Pimm (2014) that this type of manipulation — two fingers in movement
— involves contact with a screen and perform an action. Due to the fact that mobile
touchscreen devices provide a wider range of freedom with respect to manipulation,
we conclude that this particular kind of rotation may serve as an important function
in order to ground mathematical ideas in bodily form. It may also reveal spatial as
well as relational concepts (Boncoddo et al. 2013) in the field of plane
transformations.

To investigate on manipulation on screen, especially if it is the case that students
use more than two fingers, may be an interesting and challenging issue in future
mathematics education research with touchscreen mobile devices. As we argued
before, due to the nature of the software GC (multi-touch) as well as due to the
geometrical task on the Varignon Theorem that was proposed beforehand, we
observed that rotation manipulation occurred a few times (Arzarello et al. 2014).
To solve the task, students did not apply the rotation action or other related plane
transformation concepts.

Finally, on a theoretical basis, it seems important to highlight that the process of
performing an action (Sinclair and Pimm 2014) by applying a concept such as
constructing or other kinds of geometric strategies within DGEwT led us to assume
that:

¢ OQur brain has the ability to adjust to its environment; the touches on screen
broaden the formerly established concepts of our brain (Damasio 2010).

¢ Human actions, as well as geometric concepts, are multimodal; what distin-
guishes them is that geometric concepts are also multimodal in their realization —
the transition from virtual to actual. Indeed, by this transition due to which they
become objects of thought and consciousness, geometric concepts are provided
with certain features. These have to be put into practice by means of sensuous,
multimodal, and material activities (Radford 2014, p. 354).

¢ In geometrical reasoning, there is a profound symbiosis of symbolic, analytical
constraints, and figural properties. It is important to consider three categories of
mental entities when referring to geometrical figures: the definition, the image —
based on the perceptive-sensorial experience, e.g. the image of a drawing — and
the figural concept (Fischbein 1993). Figural concepts do not evolve naturally in
a way that they represent their ideal model. Consequently, one of the main tasks
of mathematics education in the domain of geometry is to create types of
didactical environments which systematically provoke a close cooperation
between these two aspects up to the point where they fuse into unitary mental
objects (Fischbein 1993, pp. 160-161).

¢ The interaction with a figure on screen can be differentiated according to the
altering options by which subjects perceive them. Arzarello et al. (2012) point
out two main cognitive and epistemic modalities according to which the figures
on the screen were perceived and treated accordingly. A modality is ascending —
from the environment to the subject — when the user explores the situation — such
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as a figure on the screen — open-mindedly in order to see whether the situation
itself has the potential to reveal something that is of interest to the user. The
situation is descending — from the subject to the environment — when the user
explores the situation with a conjecture in mind. In the first case, the applied
actions have an explorative nature, i.e. to see if something happens; in the second
case, they have a checking nature, i.e. to see if the conjecture is corroborated or
refuted.

¢ In the transitional process from an inductive to a deductive approach, the drag-
approach screen manipulation should be seen as a cognitive tool to empower
learners to make assumptions and verify argumentations during the process of
solving the task (Arzarello et al. 2014).

Teaching Experiments with DGEwT

In this section, we summarise the results from two teaching experiments (TE) that
we conducted in Brazil (Rio de Janeiro)” and in Italy (Torino) with High School
students working with two touchscreen devices: GeoGebraTouch (GwT) and Geo-
metric Constructer (GC) (Table 3).

The analytical process that is presented as TE 1 and TE 2 was mainly based on
the videodata.® We are of the opinion that the analysis should consider the interac-
tion with touchscreen devices as paths of interaction rather than points of interac-
tions. In most cases, it would be mathematically inappropriate to reduce the data of
an entire process to a single point. In each session, optionally on their own or in
pairs, the students worked on proposed activities.

TE 1: High School Students Dealing with GeoGebraTouch

This TE was conducted with High School students of 15-17 years of age at the
Instituto de Educagdo Rangel Pestana (Nova Iguacgu, Rio de Janeiro, Brazil). None
of them have had previous experiences with a dynamic geometry environment
(DGE) or scholarly induced knowledge on plane transformations. In each session,
the students worked on assigned activities with GeoGebraTouch which is described
in Table 4.

Each session lasted two hours; in each lesson the students were asked to
complete three activities similar to the one illustrated above. We observed all of

In Brazil we are working with prospective mathematics teachers as well as with Sketchometry
devices. We decided not to discuss data from their TE in this chapter.

3In recent analyses we used SCR PRO (Assis 2016) as a strategy to review some details that
emerged from the video analysis.
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TE 1

TE 2

Age

15-17 years old

16-17 years old

Amount of hours of
research session

8 h, 4 sessions

6 h, 3 sessions

Device GwT GC
Touch feature Single touch Multi-touch
Name of the Institution | Instituto de Educacao Rangel Pestana | Liceo Volta

Previous experience
with software

All of them had no previous experi-
ence with DGE

All of them had previous
experience with Cabri

Sources for data

Written answers for each task

Written answers for each

collection Videotape task
Sheet of icon Videotape
Software Recorder Pro (SCR PRO)
for tracking touches on screen

Geometric content Rotation and plan transformation Quadrilaterals

Proposed and analyzed
task in this chapter

Star

Varignon Theorem

Table 4 GeoGebra touchscreen features

Software Interface Device features

GeoGebra Fau= > Runs and allows save con-
Bl . .

touch structions off-line

Version used on the analyzed
task in this paper: 4.3

Single touch only

the students’ manipulations on the screen and identified their kinds of actions
(e.g. tap, hold, drag, flick, free, and rotate). Our analysis of this teaching experiment
focuses on the student’s strategies to solve the tasks, e.g. the application of rotation
or other plane transformation concepts.

Besides alternative kinds of rotation applied by students to solve the geometric
tasks that differ to the ones discussed in the previous section, further — curricular
and cognitive — justifications to analyze students performing rotation or other plane
transformations are the following:

¢ Rotation and other gyrating movements on screen are often applied due to the
various alternatives of handling touchscreen devices (Kruger et al. 2005; Tang

et al. 2010).

¢ Rotation and other plane transformations remained unaddressed in Brazilian
geometry classrooms so far.
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Open the file “Star task”™. What will | Selecting the tool will open a
appear is the following triangle: bar  with  six options:
T — e — T ——

Elaborate on a strategy in order to construct the following picture using only
these tools: ' '

Fig. 6 Star task

» Touchscreen devices provide possibilities of gyrating movements on screen, or
with the device itself, which might result in new insights on embodied cognition.

» Rotation and other plane transformations are concepts that involve intrinsically
embodied motions.

The proposed task with GeoGebra is the following (Figs. 6 and 7):

The analysis in this TE process was mainly based on (1) the videodata of
students working with the GeoGebraTouch software, (2) written answers on each
task, and (3) the use of the students’ lists of icons.

In the following pictures, as well as with the timing intervals, we illustrate and
describe how the student Adriano deals with the task on GeoGebra by using single
touch. He starts (12:14) to construct lines and reflects triangles related to them. By
moving the line (27:34) he tries to locate the triangle coincident to the other; but
since these actions remain unsuccessful, he decides to restart the construction.*

27:34 28:14

‘n_

Using reflection tool and moving Restarting the construction observing and adjusting
the line trying to adjust the
reflected triangle

“The whole video is available on https://www.youtube.com/watch?v=qC-G96NssJk


https://www.youtube.com/watch?v=qC-G96NssJk
https://www.youtube.com/watch?v=qC-G96NssJk
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Writing an answer on the tasks  Student’s list of icons® Videodatab

T

—

Fig. 7 Three main sources of data collection

“List containing all GeoGebra icons (Appendix 3). Each student had his/her own list and during
each TE they filled it in and reviewed it to their own accord

"The red arrows indicate motions on screen performed by students

Interestingly, he keeps his left finger below a point on the line while using his
right finger to rotate the line. Throughout this entire process, he carefully observes
and adjusts his actions. The next figures illustrate how Adriano constructs lines and
uses reflection to move the triangles.

28:28-28:33

38:16

L

Constructing lines and ~ Using the reflection tool and line by
using the reflection tool two points, reflecting the triangle
afterwards

Applving rotation motion

The student constructs lines (28:28) and uses the reflection tool (28:33) in order
to move the triangle. Afterwards, he constructed additional lines and repeated the
process of reflecting those triangles (35:51). In the next three figures, we illustrate
how Adriano applies a rotation motion by keeping his thumb on the line. At 38:17,
we observe him making a rotation motion with his index finger to move the triangle
and complete the shape (38:18).

Rotate touch
38:17

The next set of pictures show how Adriano uses his constructions (38:18) in
order to finalize the task.
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49:48

. . ) . Adjusting and
After that motion realizing that the triangle is finishing the

inverted construction

Reflecting triangle

Again using his index finger, Adriano selects the line (38:19) and translates it so
that the triangles connect. He creates another line and reflects the triangle (49:48).
Afterwards, he adjusts and finishes the construction in accordance with the task
statement.

TE 2: High School Students Working with the Geometric
Constructer

The GC is a free dynamic geometry software developed in Japan by Yasuyuki
lijima at the Aichi University of Education (Ilijima 2012). We chose the GC
software because it is software which incorporates all the potentialities of usual
DGE in a touch-screen device. With the term ‘potentialities’ we refer to the two
main features (Arzarello et al. 2014): (i) the possibility of using more than one digit
(multi-touch) on screen to interact with the software, and (ii) the possibility to
design constructions as opposed to mere explorations.

With the GC, we are able to construct basic geometrical objects (e.g. points,
segments, lines, or circles), measure such, drag, make traces of geometrical objects,
etc. Below, we summarize students’ working processes as well as results while
dealing with the Varignon Theorem” task. This entails the illustration of selected,
representative aspects of their geometrical thinking captured by means of their
manipulations. These are described in the following chart (Table 5).

The analytical process was done in two main steps: (1) identification of each type
of manipulation (Arzarello et al. 2014; Park et al. 2011; Yook 2009) and (2) con-
struction of the timeline (Appendices 1 and 2) to describe the global cognitive
movement throughout interaction on GC software.

Based on the videodata, we created a timeline which illustrates the ways of
touchscreen and shows geometric aspects from students’ interaction with the GC
software (Arzarello et al. 2014, p. 47). In the following two charts, we illustrate

SIn quadrilateral ABCD, the middle points (E, F, G and H) on each side have been drawn, forming
quadrilateral EFGH. What characteristics does EFGH have? What happens if ABCD is a rectan-
gle? What if it is a square? What if it is any quadrilateral? Demonstrate.
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Table 5 Example from students working on the Varignon Theorem”

Screen example
Task High School student Undergraduate student

Varignon
Theorem

Geometric | Student constructs the diagonals AC and | Student using different colors to edit

strategy BD by tapping (with one finger) on point | the construction and measuring inter-
A and C, and then on point B and D nal angles from the quadrilateral
EGHF

“The whole video is available on http://www.gepeticem.ufrrj.br/portal/materiais-curriculares/
varignon-touchscreen-no-construtor-geometrico-2/

parts of a timeline which shows students’ actions in order to solve task 3° by means
of the GC software. The analysis has shown that they perform four types of basic
actions: tap single, scale, hold single, and hold multi (Fig. 8).

Although, in order to construct a geometrical figure (e.g. a point, a line, an angle,
or a circle, etc.) with the GC software the user has to use the software icons, we
observed all the manipulation directly on the screen. For instance, we didn’t
consider touch on the icon as a case of the tap or hold action. Instead, we observed
more than a single kind of touch at a time, but in order to categorize them clearly we
selected the type of touch that was predominant in that specific situation.

Due to the nature of the task, which was situated in the domain of open
construction and exploration, the types of touches that we predominantly identified
were on the relational domain; for example, drag free, drag approach, and flick.
Rotation did not occur in the process of solving this task. As we can see in Fig. 9,
the drag approach was dominant (e.g. in interval 8:31-15:02).

SBuild a quadrilateral ABCD. On each of its sides build a square external to the quadrilateral with
one side coincident to the side of the quadrilateral. Consider the centers of the squares that have
been built: R, S, T, U. Consider the quadrilateral RSTU: what can you observe? What commands
do you use in order to verify your conjecture? This activity was thought as a task to introduce
curiosity among students for the Napoleon Theorem, which was explored on the next
assigned task.


http://www.gepeticem.ufrrj.br/portal/materiais-curriculares/varignon-touchscreen-no-construtor-geometrico-2/
http://www.gepeticem.ufrrj.br/portal/materiais-curriculares/varignon-touchscreen-no-construtor-geometrico-2/
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Basic 0:00- 2:06- 3:10- 3:43- | 4:55- 6:36- 7:06- 15:11-
actions | 0:30 2:56 3:15 4:54 | 6:01 6:37 7:08 15:30
Tap |
(single)
Flip
Move
Push
Scale
Tap
(double)
Scale
Hold
(single)

Fig. 8 Part of the timeline illustrating basic actions

‘ Active :00- | 0:30- | 1:28 | 1:46- 3:15- ‘a:us- | ‘3:31.-'_..-:5:02 [ 15:35-
actions 0:30 0:50 1:54 3:20 6:09 16:55
Drag free
Drag
approach |
Flick

Fig. 9 Part of the timeline illustrating active actions

Domains of Manipulation and Geometric Thinking Within
DGEwT

In the following screenshots, we show a summarized approach of students dealing
with the software features. They further illustrate types of manipulation in order to
identify conceptual reasons which prove that the EFGH shape is a parallelogram.
These screenshots illustrate four different approaches towards the picture given to
them (see footnote 4) (Fig. 10).

The analysis of the timelines (see Appendix) shows the progress of the altering
approaches of touches. The students’ constructions, strategies, and reasoning either
moved from basic to active, or from active to basic actions.

We built on the two types (basic or active) of finger actions (Table 6) to say that
the cognitive process with GC could be seen in two interrelated domains of
manipulation: firstly, in the constructive domain, where students basically refer to
tap and hold which are the basic or isolated ways of constructing geometric objects
(point, line, circle, shape etc.) with a touch interface. Secondly, the relational
domain is a combination of the constructional and the performed touches which
thereby include drag, flick, free, or rotational approaches. The Table 6 below
illustrates how we moved from a global observation — by means of a timeline — to
a descriptive one — with the focus on some cognitive processes concerning the two
domains of touches (Bairral and Arzarello 2015).
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Dragging the given
initial shape into a
rectangle

Tapping and
constructing the

diagonals AC and

BD

Tapping and
construction two
angles (red and
green)

Tapping and
constructing the
parallels HE and DB.
Icons of the GC on

the upper right side.

Fig. 10 Summarized student’s drag approach and reasoning on Varignon task

Table 6 Relating domains of touches, cognitive processes, and motions

Domain of Geometric Example of touches and students’ strategy
manipulation | process Motion descriptions
Constructive | Discrete Closed, Student
construction | predetermined constructing
and “iso- (specific goal, angle to
lated” obser- | basic observe rela-
vation construction) tion among
(perception) diagonals and
the side of
quadrilateral
ABCD
Relational Related con- | Open, but Student using
struction and | focused on two fingers and
global emergent con- dragging point
observation | ceptual AB to the left
demand of the to transform
task the initial
shape — a
square — into a
rectangle and
observing what
happens with
shape EFGH

Even though we did not expect this, we observed that students also constructed
geometric objects in the relational domain (Arzarello et al. 2014); they also showed
more interacting and reflecting about the construction in this particular domain.
Due to the nature of the geometry tasks we identified a predominance of
touchscreen types on the relational domain; touches such as drag free, flick, or
rotate occurred few times.

In the construction domain, students act as discrete observants; they focus on
some specific construction, a constructed object, or touch something on the screen.
In contrast to the relational domain, their manipulations seem more focused on their
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questioning, on conceptual understanding as well as on other emerging demands
concerning their manipulation as a whole. The manipulations in regard to the
construction domain seem focused on only predetermined motions, although
motion through relational manipulations facilitates motion that is ‘open’ in the
sense of that it can generate more unpredictable processes.

The Drag Approach Way of Touch and Semiotic Bundles
in Geometric Tasks in DGEwT

The drag approach’ seems to be a useful kind of touch in regard to the relational
domain. It is a kind of manipulation that students apply when they are confronted
with a specific geometric property, shape, or construction. During this process, we
identified that the usage of the drag approach was dominantly applied when
students aimed to clarify their reasoning.

Table 7 illustrates a student’s strategy to adjust his constructions of the star task
on GeoGebra (see Fig. 6) by applying the drag approach. The drag-approach is a
type of screen manipulation on the relational realm. Even when a student uses only
one finger, the drag-approach works as a refreshing, quite stabilizing and reflecting
way to a deep understanding of the geometric properties that emerge from the
manipulation on drag free or other ways of touchscreen use. It seems to be an
appropriate tool to facilitate mathematical justification, prove, and further geomet-
ric discoveries.

According to Arzarello et al. (2009), a semiotic bundle is a system of signs —
with Peirce’s comprehensive notion of the sign — that is produced by one or more
interacting subjects and evolves in time. Typically, a semiotic bundle is made of the
signs that are produced by a student or by a group of students while solving a
problem and/or discussing a mathematical question. Possibly the teacher too par-
ticipates to this production and so the semiotic bundle may include also the signs
produced by the teacher (Arzarello et al. 2009, p. 100).

The way of touch could not be identified as the only cognitive resource in
students’ learning processes. Rather, pictorial representations, cultural artifacts,
speaking, writing and gestures are examples of tools of a bundle of semiotic
resources (Arzarello et al. 2009) that contribute to an understanding of the process
of knowledge construction as well as for the development of tasks that foster the
improvement of the geometric thinking within DGEwT as we show in Table 8.

In other assigned tasks on rotation or other kinds of plane transformation, we
observed students applying composed forms of transformations. The picture above
illustrates how manipulation on a touchscreen, the device, its features, and other
artefact mediators are intertwined in the process of construction and performing
plane transformation strategies with the software. While observing students apply-
ing rotation and reflection we came to the conclusion that looking for specific types

"Inspired by Arzarello et al. (2002).
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Table 7 Illustrating student’s drag-approach and reasoning on star task

Screen shots

Student constructs and moves the vertices freely (without the use
of the grid squared)

Student adds the square grid on his construction and adjusts the
star’s vertices in some points (intersections of the grid)

of manipulation — as well as including the concept of the semiotic bundle — can
provide new epistemological insights on geometrical conceptualizing in DGEwT.

Conclusion and Implications of DGEwT

In the next sections, we present a variety of implications that summarize the main
results which emerged from the two teaching experiments illustrated in the previous
sections of this chapter.

Didactical Implications

In mathematics education, a considerable amount of research stresses the key role of the
task in each environment — with or without ICTs. The pedagogical importance of
carrying out research on touchscreen use is not that it is trendy. Rather than that, it is
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important to design new ways of instruction with that type of technology in order to
empower learners with high abilities to acquire mathematical knowledge (Leung 2011).

Since our research is embedded in the dynamic geometry environment (Ibid),
manipulation in this kind of environment should be regarded as a cognitive tool in
order to empower learners with amplified abilities to explore. Also, again in
agreement with Leung, we are of the opinion that a mathematical task within GC
becomes meaningful when it involves conjecturing, activities which require an
explanation, and that provokes learners to engage in situated discourses in order
to communicate their mathematical reasoning or argumentation. We aimed to fulfil
these requirements with the provision of tasks such as the Varignon Theorem.

To solve a task, which involves the concept of rotation, using GeoGebra with
single touch (as discussed on TE 1), we observed that the students used their fingers
—no more than two (Tang et al. 2010) — similar to the students who dealt with the
software GC in an open task (see TE 2).

In the TE 1 — due to the fact that the students were unacquainted with DGE, the list
of icons (see Appendix 3) was didactically helpful for them. During each teaching
experiment, they had the opportunity to remember the functionality of the tool,
review it, and add new items to the list. Throughout the sessions, we observed that
they resorted to the list to identify the most appropriate tool to apply in order to fulfil
the task. Besides defining the functions of a specific icon, they further took notes on
the geometric concept or strategy that underlied such icon. Revisiting and rewriting
their notes on the list of icons can also be considered a process of learning.

Besides cognitive challenges and constraints with respect to the used software,
we identified that the use of DGEwT can also provide new pedagogical issues in
regard to the wording of mathematical instructions. In addition, our identification of
the different types of manipulation can lead to improvements of the software,
basically related to the drag action and touch (Iijima 2012).

Cognitive and Epistemological Implications

The cognitive process of solving geometric tasks within DGEwT could be seen in
two intertwined domains of manipulation (Arzarello et al. 2014; Bairral et al.
2015a, b, c): the construction domain which refers to tap and hold as the basic or
isolated ways of constructing a geometric object, and the relational domain which is
a combination of the constructional domain and the performance on the
touchscreen. Although the students dealt with the device naturally, their manipula-
tion was apparently restricted by software constrains (or facilitated by the possibil-
ities offered) or by the proposed geometry task.

In respect to the two TE illustrated in this chapter, we are of the opinion that any
kind of manipulation that promotes open motion, e.g. relational ways of touching,
are appropriate in order to provide new epistemological challenges concerning
geometric knowledge as well as altering kinds of proving. Since the drag approach
is a relational action, it seems to be an appropriate tool to improve justification and
proving competences within the mathematics classrooms setting that uses
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touchscreen devices. As one restriction to that — depending on the aim of the teacher
—, the task has to be selected carefully, and the teacher should promote that the
students work independently on the task by experimenting with altering kinds of
touches. Identifying in which geometric constructions the manipulation with more
than two fingers occurs may be another interesting issue for future studies. What
was not being discussed by this study is the issue of the two domains of manipu-
lation analyzing kinds of touches on different touchscreen devices.

As simultaneous touchscreen manipulation of spots on the screen brings about
implications of an epistemological order, it also adds complexity to our cognitive
structures. This particular feature was observed by one of the students in our research.
According to him, “in a very complex figure, moving several elements at the same time
can become a bit difficult”. Besides this cognitive implication, the use of touchscreen
devices in the teaching of mathematics brings about transformations in didactic and
epistemological realms, but the necessary educational research is still needed.

Another relevant issue that needs to be considered is the way how using a multi-
touch-screen allows alterations on the task design in a substantial way. More pre-
cisely, multi-touch screen devices allow a design of geometrical problems in a way
that differs from familiar ones in such ways that the combination with non-multi-
touch screen environments would be very difficult. For instance, from TE 1 we are
intrigued how students — without previous instruction concerning rotation and reflec-
tion — apply these two concepts, mostly in form of a composition of the two.

Research Implications

Our prior assumption was that the single touch provided by GeoGebra would
restrict our possible observations of altering kinds of rotational manipulation on
the screen. However, as we illustrated in TE 1, even students without previous
experiences with rotation, or reflection, used those concepts intuitively, isolated, or
even a mixed variation of the two tools (Assis 2016).

Usually in Brazil, plane transformations (e.g. isometries) are conceptually mapped
in the following sequence: reflection, axial symmetry, rotation, and translation. The
composition of plane transformations is underexplored in geometry lessons when the
instruction uses traditional resources. In that sense, DGEwT seems to be a powerful
resource for changing tasks as well as the nature of the geometric understanding
concerning plane transformations. In our current analysis, we provided tasks where
students had to apply the concept of rotation. In this paper, we present results from
students dealing with GeoGebra touch to solve the proposed task.

In a more recent analysis (Bairral et al. 2015a, b, ¢), we further observed that the
drag approach manipulation — as discussed within the TE 2 — could be applied using
only one finger. The application apparently depends on the device features and the
task proposal. This sort of touch should be seen as a cognitive tool that empowers
learners to conjecture and explore their line of argumentation during the process of
solving the task. This allows us to ascertain that the drag approach provided by the
preconditions of a multi-touch environment can suitably support and improve the



136 M. Bairral et al.

students’ justifying (i.e. exploring) and proving (i.e. conjecturing) performances
(Bairral and Arzarello 2015).

According to Arzarello et al. (2012), using DGE there is an alternation between
an ascending and a descending modality: when there is a shift to a descending one,
this is, possibly marked by the production of an abduction, which can also deter-
mine the transition from an inductive to a deductive approach. Within DGEwT the
only difference seems to be in the time according to which such exchange takes
place: in touch-screen modalities, the changes seem to happen more frequently than
in mouse modalities. Possibly, this can have cognitive consequences similar to
those ascertained by Arzarello (2009) in TI-inspired environments in comparison to
Cabri-géométre ones; but this statement is in need of further investigation before
being an assured scientific result. At the moment, it is only a plausible conjecture.

To achieve our aim — which was to observe the development of geometric
thinking —, the next step after the identification of each kind of manipulation was
to construct timelines (see Appendices 1 and 2) and to gain information of the
global cognitive movement of the interaction with the device. For each analyzed
activity, we constructed one separate timeline. Depending on the type of task, some
kinds of touches were not classifiable, but in all the timelines that we constructed
we noticed a clear accumulation of active actions. In summary, the timeline has
been methodologically and didactically important in order to:

o Illustrate the global cognitive movement related to the various kinds of touches
(e.g. from constructive to relational and vice-versa) throughout the students’
working on the tasks.

» Show selected local cognitive movements of the kinds of touches throughout a
variety of geometric aspects in certain intervals.

e Allow researchers to determine and record certain intervals where students’
geometrical thinking focused on the relationship of touches on the screen with
other semiotic resources.

Another resource used for data collection was the Screen Recorder Pro device
(SCR PRO), which allows to capture, in addition to the audio, the touches on the
surface of the tablet (see Table 8). In the PRO version, the application does not limit
the recording time and should take into account the ability of the device itself.
However, the application installation requires a procedure that changes the tablet
configuration. This feature was utilized in implementations carried out with the GC,
since the acquisition and installation have been carried out only after the period in
which implementations are made with the touch GeoGebra.

Final Remarks

Mathematics applied by students to solve a task in a paper-and-pencil environment
differs from the mathematics applied on a touchscreen device. In this chapter, we
highlighted two intertwined domains of manipulation — the constructive and the
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relational domain — for geometrical thinking development with DGEwT. The
constructive domain refers to tap and hold; these are the basic, or isolated, ways
of constructing geometric objects. The relational domain is a combination of the
geometric construction and the performed touch. In the relational realm, the drag
approach appears as a useful way of touch to improve geometric thinking. With this
type of manipulation, students can make use of one or more than one finger.

We are of the belief that it is not important that the teacher monitors the students’
application of certain types of touches on the screen. By taking device features and
performances into account, we conclude that teachers need to be aware of the
singularity of each kind of touch while proposing tasks that aim to trigger the
students’ intrinsic motivation to work into mathematics activities that enhance
findings, reflections, and the development of mathematical thinking in its various
aspects (Bairral et al. 2015a, b, c).

Inspired by Fischbein (1993), we argue that logic, image, and manipulation — on
screen or gesturing on it — should be inseparable from geometrical reasoning with
touch devices. In this process, it is important to interpret geometrical figures as
mental entities which possess conceptual and figural properties (Fischbein 1993,
p. 160).

Our brain adjusts to its surrounding environment (Damasio 2010); this implies
that the touches on the screen or other touch performances add new mappings to the
brain. These should be taken into account regarding teaching and learning pro-
cesses. As a proofing example, the following picture illustrates how students
interact with a touch device and its features of manipulation — as well as performing
action (Sinclair and Pimm 2014) with hands on the screen — without previously
established knowledge on plane transformation which we also illustrated in the
TE 1 (Fig. 11).

In this geometrical process, the students apply figural concepts for executing
constructions and transformations. They use images based on their perceptive-
sensorial experience (Fischbein 1993). In this process — a sensorial process —
motion and manipulation on screen make up an important cognitive function and,
by becoming objects of thought and consciousness, geometric concepts are
endowed with particular determinations; they have to be actualized in sensuous
multimodal and material activity (Radford 2014, p. 354).

Fig. 11 Manipulation on touch devices interplaying symbolic, analytical and figural properties
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Appendices

Appendix 1: Timeline of the Varignon Theorem Task
(Discussed on TE 2)
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Appendix 3: List of Icons Elaborated for TE
with GeoGebraTouch
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Graphs in Primary School: Playing
with Technology

Daniela Ferrarello

Abstract It is very important to motivate primary school students in a way that
they enjoy mathematics, e.g. by encouraging their creative perspective on it. This
could be achieved by using everyday tools, i. e. tools children are familiar with in
regard to manipulation. With respect to, for example, graph theory teachers can
introduce the subject matter by giving the instruction to draw and play with several
graphs with paper-and-pencil, or with the help of advanced technology. This
technology is a precious tool for conjecturing activities due to the high variety of
cases that can be observed and compared simultaneously — which is also a lot less
time consuming than with paper-and-pencil activities. In this chapter, we describe
selected graph theory activities for third and fourth classes of primary school which
were designed for the application of technology; for this purpose, we named these
activities mathematics laboratory.

Keywords Graph theory ¢ Primary school ¢« Technology

Graphs in Primary School: Why and How?

Everyone should enjoy learning because if you enjoy what you do — in comparison
to doing something because it is your obligation to do so — you get maximum results
with a minimum of effort. This is particularly true for children. At the beginning of
institutionalized education, i.e. for pre-school children, mathematics is not yet that
“monster” as some older children might perceive mathematics. Five-year-old
children tend to enjoy mathematics as an internalized experience (Vygotsky
1986) rather then externally suggested to them. Thought and emotion agree; this
influences the learning process positively because as Brown (2012, p. 186) states:
affect, far from being the “other” of thinking, is a part of it. Affect influences
thinking, just as thinking influences affect (see, e.g., Chapter “A Framework for
Failed Proving Processes in a Dynamic Geometry Environment”, this volume).
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As soon as children enter young adulthood, they commonly develop a negative
attitude towards mathematics (Di Martino 2007) which originates from many
causes, including the experience of unfit teaching methodologies. These include,
for example, learning without manipulating, learning without self-generated
hypotheses, or without connecting mathematical concepts to reality (Mammana
and Milone 2009a, b). This possibly results in an alienation of pupils from math-
ematics as well as from the viewpoints of thinking and affection.

Too often, teachers do not integrate all the potentialities of their digital native
students, who could make use of their natural inclination towards technology to
learn better and faster. On the other hand, the use of technology is already
integrated in teaching mathematics: just think of 2.0 classes, or the high variety
of software and apps designed for math teaching and learning. Of course, technol-
ogy is not a panacea for all math related problems, which can be seen by the many
ongoing studies that are concerned with the advantages and disadvantages of
technology in the classroom practice such as Drijvers’ study (2012). Obviously,
the use of technology is not self-sufficient in a way to ensure learning to occur in
favourable ways.

This strongly technology-based teaching experiment with primary school chil-
dren is build up on laboratorial modalities as well as learners’ real-world experi-
ences that we called “horizontal teaching” (Ferrarello et al. 2014). Horizontal
teaching is a kind of teaching in which the teacher aims to envision the student’s
perspective and set up a learning environment that originates from this shared
perspective. Horizontal teaching necessitates that the teacher acquires knowledge
on the students’ perspective on life, to understand their needs, to analyse their
reality. This consequently requires an extra effort of the teacher, but it is effective
and promises to enlarge not only the students’ knowledge, but also the teacher’s
knowledge (see Fig. 1).

In this context, we apply the term “reality” not only to physically existent,
touchable objects, but also to situations and characters that are familiar to children
with the aim to motivate their effort to study. These could be, for example, cartoon
characters, personal relationships, etc. And by “envisioning the student’s perspec-
tive” we refer not only to the application of mathematical concepts familiar to the
pupils, but also to code switch to a level of language use to which students can
adapt to.

In this sense, the use of technology is intended to be a language that is familiar to
pupils and therefore could be applied to the above-mentioned setting up of a
learning environment that originates from a shared perspective of teacher’s and
student’s knowledge.

In this respect, we developed a mathematics classroom activity for primary
school children on the concept of graphs. In fact, a small variety of graph-theory
concepts are sufficiently simple enough to be proposed to primary school children.
The basic mathematical concept of a graph is quite straightforward: a graph G = (N,
E) consists of a set N, whose elements we call nodes, which we represent as points;
and a set E, formed by couples of nodes that we call edges, which are represented as
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Fig. 1 Horizontal teaching
(Ferrarello et al. 2014)

Student

lines; i.e., an edge is a line connecting two nodes A and B in the set N, if the couple
{A,B}isinE.

The prior, situational aim of this teaching experiment is to make children enjoy
mathematics; the secondary, future-oriented aim is to familiarise children with the
concept of modeling real-life situations with the aid of graphs. The mathematical
concept of the graph is well suited for this intention because it is easily visualizable,
drawable, open for an explorative, creative take on it, and also because it is quite
useful to describe real-life situations by schematizing them.

It is not by chance that there is an increasing attention towards graph theory in
several international projects (e.g., http://math.illinoisstate.edu/reu/). Not only is
there an undeniable effectiveness graphs and their several representations, but also
National Standards — in Italy, at least — ask for tools that enable to “represent
relations and data and, in significant situations, use the representations to get
information, formulate opinions and make decisions” as an aim for students at the
end of primary school (Ministero dell’Istruzione, dell’Universita e della Ricerca
2012) in order to support a concept of mathematics as “a context to solve and pose
significant problems”. These tools are provided by graph theory, but despite such
precise requests, Italian teachers often do not integrate graph theory into their
teaching in primary school; even further, quite a high amount of teachers are not
familiar with the basic concepts of graph theory.

The approach of this activity is adapted from the one described in Aleo et al.
(2009) and based on mathematics laboratories (Chiappini 2007). For our teaching
environment, we altered the activities in such a way that they fit the requirements of
eight to nine years-old students. Additionally, they are enriched with the use of
technology as described in the following sections. Theoretical references to topics
can be found in Higgins (2007) and Wilson (1996).

The next part of the chapter deals with the methodology used in the teaching
experiments and further presents the technology provided to the children — namely
the software and games used. We give a description of all the aspects and suitable
activities of graph theory involved in the courses. Moreover, for a more detailed
insight in our study, we describe a complete instructional unit in detail. Finally, we
present the main results and draw possible conclusions. A short glossary of the
basic definitions we used in our teaching experiment (in alphabetical order),
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together with a collection of activities, is provided in the appendix at the end of the
chapter.

Methodology

The teaching experiment activity has been carried out three times, twice during the
school year 2012/2013 and once in school year 2013/2014. It was led by the author
— who is not a primary-school teacher — and therefore was both a researcher as well
as a teacher during the teaching experiment activities. In regard to practical duties,
she was tutored by an assistant. Each teaching experiment activity — which had a
total duration of about three month — consisted of 12 weekly meetings; the children
participated voluntarily. They came from different morning classes — but from the
same grade — and were put together into groups of 14 to 20 children. In total, about
50 students participated.

Some activities, like Eulerian and Semieulerian graphs, were given the time of
more than one meeting because the different sub-contents were based upon one
another, so the children were given the time to think about the subject matter at
home as well as the possibility to enjoy the topic instead of consuming it in a “fast
and furious” way. Other activities, like the ones on nodes and edges, were intro-
duced simultaneously because they relate to the same mathematical concept.

The activities were embedded within the laboratorial methodology, which
means that they were embodied-mind oriented by making children manipulate the
objects and discover their properties. Activities proposed by the teacher (i.e. the
author of this chapter) as problems to be solved were introduced to the children on
the whiteboard. This led to the situation that some students attempted to solve the
posed problem directly on the whiteboard while other students tried to solve it in
their exercise books or suggested a strategy to their fellow students. Intermediate
and final tests, combined with satisfaction questionnaires, were collected and
analyzed. The teaching experiment was not filmed, except for selected moments
during the production of a poster.

Technologies

As it was said before, technology is a significant tool for our activity. In agreement
with diSessa et al. (1991), “we believed that design, construction, and exploration
of dynamic games and simulations would provide a rich context for an initial
exploration into what children’s science might involve” (p. 3). We used different
technologies, e.g. paper-and-pencil, coloured chalks, etc. and dynamic software to
handle graphs, online games, etc.

The whole teaching experiment activity was held in classes with Multimedia
Interactive Whiteboards in addition to a classical blackboard and chalks. This



Graphs in Primary School: Playing with Technology 147

resulted in children who manipulated graphs with paper-and-pencil, dragging nodes
and deforming edges both with a dynamic graph editor and online games namely
with the YED Graph Editor (http://www.yworks.com/en/products_yed_ about.
html) which is a dynamic software that is designed to draw and explore graphs.
Its main advantage is that you can easily draw nodes just with a click; and you can
choose nodes of many shapes which represent several objects (e.g. people, geomet-
ric shapes, but also any kind of picture you want to import — just by dragging the
pictures into the working area). For example, to draw an edge from node A to node
B you just have to click on A and — keeping the mouse pressed — move on B — and
release.

To drag nodes and to adjust edges with the help of this software is a very
explorative and creative take on the mathematical concept of graphs. In our activity,
many potentialities of the software there were not intended to be applied; the
children were just asked to use the basic functions, i.e. the ones sufficient to our
purposes such as drawing graphs, moving nodes, changing shapes to edges,
colouring nodes and edges with different colours, creating a random graph, or
changing the layout of the graph by putting it in a random shape.

Although the tool bar was in English, children did not encounter any difficulties
in using the software. They learned to use the software by mimicking the teacher
and trying for themselves afterwards.

Icosien (http://www.freewebarcade.com/game/icosien)

The pictures below illustrate an online game that includes Eulerian, Semieulerian,
and Hamiltonian paths in given graphs (see Fig. 2, Fig. 3) by wrapping the string
around the nails to create the given shape in each level.

It is not an educational software, it is just a game. Moreover, it is not a game that
is intended for children. However, this game was probably the most successful
activity within our teaching experiment because children quickly learned how to

Fig. 2 Semieulerian graph
in Icosien
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Fig. 3 Hamiltonian graph
in Icosien

Fig. 4 Planar graph in Fly
Tangle

construct and play with Eulerian graphs although they were not able to reach level
5 without knowing “the trick” (see paragraph “An instructional unit: Eulerian and
Semieulerian graphs”). After they discovered and explained “the trick™ about the
degree of the nodes, they succeeded to complete all nine Eulerian levels.

The levels on Hamiltonian graphs were more difficult to complete — even for
adults — mostly because of the lack of a clear winning strategy. This is presumably
why children were not able to solve more than four levels.

Fly Tangle 3 (http://www.gamesforwork.com/games/play-
18303-Fly_Tangle_3-Flash_Game)

Fly Tangle 3 is a game in which one drags nodes of a graph in order to show its
planarity (Fig. 4).

Not all children succeeded in the completion of this game. In order to make all
the students enjoy the activity and make them practice their mathematical skills
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Fig. 5 A planar graph to be 19 CONNECTIONS: 4/5  RESTART  LEVELS  MUTE
constructed in Strand

without risking frustration due to failure, we used YED to draw random planar
graphs and changing the layout randomly. Then, the students came to the white-
board and dragged the nodes to put each graph in a planar layout.

Strand (http://www.kongregate.com/games/ewmstaley/strand)

Strand is another online game whose aim it is to draw planar graphs with nodes of
given degrees. This game is quite helpful to understand the basic concept of planar
graphs because there are more basic levels to solve compared to Fly Tangle.
Moreover, while Fly Tangle graphs are already drawn, Strand graphs are to be
constructed. It showed that it was easier for children to build planar graphs step by
step instead of adjusting tangled graphs. Furthermore, this game is applicable to
reason about degrees. In fact, every node has a variable number that is the number
of nodes yet to be connected with it. For instance, in the graph of Fig. 5, there is a
missing edge between the two nodes with a “1” degree left, while the “0” degree
nodes are complete.

It is worth to note that in many levels there is not a unique solution. This is good
with respect to encourage children’s creativity.

Activity and Topics

The contents of the project are summarized in Table 1 together with some of their
related activities.'

In the following, we describe a selected variety of the activities that have shown
to be the most intriguing examples arising from “real” problems, by using multiple

! Activities written in bold are those we are analyzing within this chapter.
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Table 1 Topics and activities
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Topics

Activities

Introduction of graphs and basic definitions:

The Konigsberg bridges problem;

Graphs to solve real problems;

Nodes and edges;

Searching flights between cities by looking at
air lines’ maps;

Degree of nodes;

Bipartite graphs and matching problems;

Matching Disney princesses with their
boyfriends;

Paths;

The genealogic tree of Dragon Ball cartoon;

Cycles;

Trees.

football championship.

Eulerian and Semieulerian graphs:

Pictures of points joined by lines, that one
can draw without lifting the pencil from the
paper and drawing each line only once;

Graphs whose edges you all have to visit
just once.

Words or sentences you can discover in a
graph whose nodes are letters;

Online game Icosien.

Hamiltonian graphs:

The problem to sit around a table with friends
both on your right and on your left;

Graphs whose nodes you all have to visit
just once.

Violetta’s tour.

Planar graphs:

Three cottages problem;

Graphs that can be drawn on the plane in
such a way that its edges intersect only at
their endpoints.

Online game Fly Tangle;

Online game Strand.

Graph colouring:

Colour nodes of a graph in such a way
adjacent nodes have different colours.

Maps you can colour by using the least num-
bers of colours such that adjacent regions have
different colours.

software, and online games. As examples, we briefly present the activities 1), and 3)
as well as justifying our motivation to use them. The whole path on Eulerian and
Semieulerian graphs, including activities 6), 7), 8), is discussed in detail in the
following section while other activities are illustrated at the end of the chapter, in
the appendix.

Introduction to Graph Theory

Activity (1) The Konigsberg Bridges Problem

This puzzle has been introduced by telling the well-known Konigsberg bridges
story, and making the children try and find a possible path in the map of Konigsberg
by touching every bridge just once. A schema of the Konigsberg city was drawn
which included the Pregel river, the islands, and the seven bridges. It was drawn on
the blackboard, and in a second step students tried to find a proper path. Then, the
children were told how a famous mathematician, named Euler, had the idea to
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Fig. 6 Model of the
Konigsberg’s problem by
graphs (made with YED)

model this problem by assigning a point to every region of the city and a line to
every bridge. Children were asked to draw the appropriate graph upon the map of
Konigsberg by using the appropriate software (in this case YED) to handle graphs.

After the graph (Fig. 6) was completely drawn, the children copied it in their
exercise books and continued to work on it by themselves with pencil-and-paper.
Whenever some of them claimed to have found the solution, he/she came to the
whiteboard to show his/her possible solution. We did not immediately reveal that
the problem does not have a single solution, so the children continued to work on
the activity at home — also asking their parents about this problem.

Additionally, other examples of graph problems that required every edge to be
visited just once were given in order to make pupils aware that similar problems are
actually solvable. Later on, the problem of Konigsberg was shown to be unsolvable
when Eulerian and Semieulerian graphs were introduced.

One of the greater misconceptions of mathematics — since primary school —
concerns “the” solution of a problem: every problem — they taught us — has a
solution; and it has just one solution, preferably reachable with a particular method
and only that method. This idea of mathematics does not really do justice to the
complex and creative concepts of mathematics; and, above all, it does not fit the real
world. If we want to teach real mathematics in real world situations, we should
make students aware that many problems are “open” to no solution, or multiple
solutions. The Konigsberg’s puzzle was one of the “no solution” problems we
posed while several “multiple solutions” problems were handled, for instance, by
using the game Strand.

Activity (3) The Matching of Disney Princesses with Their
Boyfriends

A drawing of Disney princesses and their boyfriends was given to the students (see
Fig. 7); each princess had an assigned boyfriend. But, all princesses and their
boyfriends were mismatched. So, the students were asked to correct and redraw
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Sebastian
Gaston

Fig. 8 Right connections between princesses and boyfriends (made with YED)

the connections to end up with the right matches (see Fig. 8). It could be observed
that they had a lot of fun with this activity — partly because they had more
knowledge about the right matches than the teacher. This graph is useful to
introduce the degree of a node.

Teacher: How many boyfriends can a princess have?

Students: Just one!

Moreover, it is useful to introduce isolated nodes.

Teacher: Does Ursula have a boyfriend? Which degree does Ursula have?
Students: Zero!

After the students have finished to match up the princesses with their boyfriends,
one can use these graphs for to explain the mathematical notion of a function: if we
take Ursula out of the equation and follow the requirement that every princess has to
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have only one boyfriend, we develop a function from the set of princesses to the set
of boyfriends — a non onto function, actually, because of Gaston and Sebastian, who
have no girlfriend.

Finally, we adjusted the graph by putting all the princesses upside and all the
boyfriends downside (as older students usually do with bipartite graphs), so that the
graph is ready to represent a function with a separated domain and image set.

This is one of many examples of graphs that can be used in order to introduce the
notions of functions and relations.

In general, the activity was appreciated because of its integration into the
students’ reality. If it is true that the “concrete” is the “abstract” that becomes
familiar — also fictional objects such as cartoon princesses — they thereby become
real objects. Presumably, this is why the children manipulated these objects with
naturalness and straightforwardness. It was natural for them not only to connect
matching characters with a line and correct wrong connections, but also to move
nodes in such a way that the set of nodes resulted in two split partitioned sets.

An Instructional Unit: Eulerian and Semieulerian Graphs

In this section, we describe concept of Eulerian and Semieulerian graphs in detail.
For matters of clarification, we named Eulerian and Semieulerian graphs
“walkable”.

At first, we briefly refer to the process of acquiring and using knowledge
described by Spijkerboer (2015) with the use of the O.B.I.T. model: Remember,
which means to acquire knowledge by the use of appropriate words or images;
Understand, which refers to the acquisition of knowledge by practising procedures;
relate, i.e. the use of already acquired knowledge by relating it to new situations;
and Creative Application, which includes the use of knowledge in order to establish
individual approaches of how to deal with a task.

The first two items, Remember and Understand, are linked to the surface
approach, and focus on reproduction and memorization in order to relate “what I
know” to “how to do it”. The other two items, Relate and Creative Application, are
part of the deep approach and focus on relationships among different aspects of the
content and the competencies to “know what to do with what I know”. Quite often,
we are tempted to think that the deep approach is better than the surface approach.
But, both approaches have a value, especially for kids, who need the surface
approach. What we, as teachers, should not do is to stop at the surface approach,
but to use also the insight and creativity to make students able to apply their
creativity as well. Further, we should give the students time and space to grasp
the concept of what they are working on — to deepen their understanding of it, to
elaborate on it, and to use it creatively.

As we are going to explain in detail, in this teaching experiment we used both
approaches; and we focused on the appropriate use of words and included story-
telling to strengthen the chances that the mathematical concepts are being remem-
bered. Further, we included games for practicing the reproduction of solving
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strategies, we used insight and argumentation to deepen the concept, we used
stories as tasks to make it easier to apply knowledge that is already there, and we
encouraged students to transfer their newly acquired knowledge to their own daily-
life problems or to observe reality in order to draw further connections to the
mathematical concept of graphs.

We started with the Remember phase of the O.B.I.T. model: For matters of
simplification, we named Eulerian and Semieulerian graphs closed walkable and
open walkable, respectively, because the concept of walking is graspable for
students while the mathematical technical terms are not. Further, it made them
recall the activity where they walked through the edges of the graph and therefore
had an idea of what is requested for a graph to be walkable.

The instructional unit proceeds with the following phases:

Historic Introduction

The topic was introduced by the seven bridges problem (activity 1). We retold the
story and invited the students to think about a possible solution for the inhabitants
of Konigsberg. As discussed before, the students were guided to solve the
problem with an appropriate mathematical model, i.e. a graph. This was when
we passed from the real-life situation to the graph of Fig. 6, which is based on the
picture of the city of Konigsberg with the help of the YED software. This
mathematical problem remained unsolved for a couple of lessons. During that
time, it sometimes happened that parents asked their children whether they had
managed to solve that problem. For us, this meant that children got highly
involved into the problem and even thought about it outside of the classroom
situation — eager to solve it.

For reasons of motivation, solvable problems — as the classical cabin of Fig. 13 —
were presented to the students to make them aware that not all problems are
unsolvable or difficult, so that they would have fun and acquire a sense of self-
efficacy during the process.

After nodes, edges, and degrees were introduced, the children could practice on
those walkable graphs. By analyzing and practicing on these graphs, the students
were asked to identify similarities among walkable graphs and to discover that such
graphs had only nodes of even degree — which are mathematically defined as
Eulerian graphs, but we called them closed walkable —, or just two nodes of odd
degree — which are mathematically defined as Semieulerian graphs, but we called
them open walkable. Then, students practiced with several graphs, decided whether
they were walkable or not by hand, drew walkable graphs without lifting the pencil
from the paper (activity 6), and practiced paths in walkable graphs — especially by
means of the online game Icosien (activity 8). In addition, we realized such graphs
also with strings (see Fig. 9).
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Fig. 9 Graphs realised with
strings

Paper-and-Pencil Games

A variety of figures was presented to the group of primary school children (see
Fig. 10). They were then asked to draw the individual graphs in one go and the
premise to pass every edge just once.

In general, we noticed that students were quite excited about this activity. At the
beginning, they were convinced that it was always possible, especially after several
consecutive successes. When they failed to accomplish to redraw a graph
(e.g. graph e in Fig. 10) they were convinced that they had made a mistake rather
than thinking about the possibility that it might be impossible to do so, so they went
on trying and trying. When we claimed that it was impossible to redraw “graph e” as
a walkable graph, they did not believe it and kept on trying.

Practice with Sentences

After that, we practiced on words and sentences. The graph in Fig. 11 was used to
practice paths — especially Semieulerian paths. For this purpose, we posed the
question “Can you read the sentence hidden in the graph?”

Starting from a node of an odd degree — in this case G — you end up in the other
node of odd degree — in this case E. The sentence that has formed is “Grafo
percorribile”, which is Italian for «walkable graph». As explained in the following,
this graph was further used to introduce loops and multiple edges. When letters
occur twice such as “R” in the word “percoRRibile” they have to be repeated, which
means that we have a loop in “R”, i.e. an edge that connects a node to itself. When
there is a sequence of three letters whose first and third letter are the same, as the
two I of IBI in the word “percorrIBlIle”, you have to return to the first letter by
passing the second letter. In this case, you need a multiple edge between the first
and the second letter.
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Fig. 10 Graphs to be
explored with respect to
eulerianity

Fig. 11 Semieulerian
graph to represent a
sentence (made with YED)

Children played not only with sentences as in Fig. 11, but also with anagrams
and graphs related to possible configurations of letters, e.g. as in the popular game
Ruzzle, where letters can be used consecutively if they are neighbours in vertical,
horizontal, or diagonal direction. The graph associated to a Ruzzle level is made of
the letters shown in the game board as nodes; two letters are connected by an edge if
you can use them consecutively in a word. For example, to form the word “sea” you
have to follow the path °s’, ‘e’, ‘a’. You can do that because ‘s’ and ‘e’ are
connected and ‘e’ and ‘a’ are connected. However, you cannot form the word
“tea” because ‘t” and ‘e’ are not connected (see Fig. 12).

Figure 12 illustrates a graph that is linked to the highlighted rectangle. After they
were shown this example, the students were asked to think about their own set of
letters with their individual connections among such letters. The aim was to find a
set with the least possible number of letters, but with the most possible number of
words. The students did this activity at home; and when they were back in school,
they were quite proud to show the word-graph they had produced on their own.
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Fig. 12 A Ruzzle frame and a graph related to some letters of the frame

Such examples are considerably useful to practice on paths, but for them it was
rather challenging to identify walkable paths. This is why they came up with the
idea that not all graphs are walkable even though it was the first concept of graphs
that had been introduced to them. Before the introduction of this activity, they had
always been induced to consider eulerianity in every graph they were confronted
with, even if the task made explicit that they were dealing with, for instance, a
Hamiltonian graph, or trees.

Conjecturing by Online Games

The online game “Icosien” proofed to be quite useful to practice on Eulerian and
Semieulerian graphs. This is partly because this game clearly indicates actions that
are not allowed. For example, if you intend to connect two nodes that are not
connected by string, or you want to cross an edge twice the string — that is yellow —
becomes red. While working with the online game, the children were independent
from the teacher’s advises. We intervened only occasionally because it was our aim
that every child tries by him/herself — aided by the software or receiving sugges-
tions by classmates if necessary. Rarely, a student quit the game because he/she
failed a level. In the majority of cases the atmosphere among the students was
collaborative, so if someone needed assistance the other students helped him/her.
At the beginning, the children tried to construct graphs by wrapping the string
around the nails starting off from an arbitrary node. This solving strategy stopped
working out at level 4, and they began to notice that for some graphs — the Eulerian
ones — the starting point is irrelevant while for other graphs — the Semieulerian ones
— only two nodes were suited to be the starting point. The strategy of odd-degree
nodes was evident in the graph of Fig. 13, the cabin they were able to solve also
with paper and pencil, and we decided later on to use just this graph for reasoning
activities. Little by little, they identified that if there are two nodes with odd degrees
(the degree of a node was already introduced in the previous lessons), they needed
to start from one of them.
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Fig. 13 A graph used to
argue on Semieulerian paths

In the end, with the help of this winning strategy, all students were able to solve
all levels of the online game. What was striking was that the students were solely
satisfied to have established a strategy to win the game; however, they did not show
any interest in the motivation why their strategy was successful. Instead, they
preferred to think that it was a trick. In other words, they were satisfied with the
surface approach, being on the stage of having memorized (Remember in the
O.B.1.T. model) the concept and to know how to act to “win the game” (Understand
in the O.B.I.T. model).

The following activities were closer linked to the deep approach because it was
our aim to establish a full understanding of the concept instead of letting “whatever
works” to be sufficient. This turned out to be quite challenging for such young
students.

Argumentation by Chalk (In Case That Technology Does Not Work)

Technology was indeed quite useful for experimenting activities; however, it would
not have been useful for reasoning. The online game was not suitable for the
purpose to argue about odd degrees in Semieulerian graphs because the children
would have been too focused on the game itself rather than on reasoning. This is
why, instead of the whiteboard and our fingers, we used the blackboard and
coloured chalks. Even though we did not explicitly talk about directed graphs, we
used oriented edges (see Fig. 13). We argued about Semieularian paths on the basis
of students’ examples, i.e. {1,2}, {2,3}, {3,4}, {42}, {2,5}, {54}, {4.1}, {1.5}.
Due to this approach, the students did not encounter any difficulties in using
oriented edges; on the contrary, they intuitively made use of arrows to follow a
path. Then, we coloured every source with a green chalk and every sink with a red
chalk. After that, we focused on the two nodes 1 and 5 — they are the starting source
and the ending sink — and counted the green and red edges. In 1, we counted two
green edges and a red one because the path first goes through edge {1,2}, then
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through edge {4,1}, and finally through edge {1,5}. After passing {1,5}, the path
abandons node 1 because our path equals a Semieulerian graph. This is because of
the odd number of edges. In that case, the first two edges are edges were the path
changes its direction — but will pass the edges for a second time — while the last edge
indicates the end of the path. We did similar examinations on node 5, which we also
pass twice, i.e. in {2,5} and again in {5,4}, and then we end the path in {1,5}. So
this second path has one green starting source and two red ending sinks — one of
which is used to complete the path.

The other nodes are classified as passing nodes because their amount of being a
starting source and ending sink is equal.

This figure proofed helpful to make young students understand the motivation
for the two odd-degree nodes of Semieulerian graphs. In regard to Eulerian graphs,
we identified that the starting point coincides with the final point, i.e. we have the
same number of outgoing and incoming edges. The entire phase of argumentation
was teacher-led who stimulated the students with questions, encouraged them to
express their thoughts, made them reflect on their own actions and claims, and,
finally, thanked them for their insights and reflective reasoning.

Ongoing Test: Eulerian Carnival

Halfway through each activity we integrated a test to monitor each student’s
learning progress. In the first year, the test was about Eulerian and Semieulerian
graphs. The students were given a variety of graphs and were asked whether these
are Eulerian or not. In the case of a positive answer, they were asked to give an
example. The majority of students completed this test successfully. In the second
year, additionally to a selection of classical exercises, we decided to integrate a
story which was already used in the first year as a whole class activity — “The
Eulerian carnival”.
The story taken from Aleo et al. (2009, p. 112) is the following:

We are in a strange place called Polygonsland, peopled by polygons, namely the Decagon,
that is the king of the land, Mr. Equilater Triangle, Mr. Isosceles Triangle, Mr. Square,
Mr. Rectangle, Mr. Pentagon and Mr. Hexagon. For the three days of Carnival, the naughty
king Decagon, as he usually does every year, announces a contest. The inhabitants of
Polygonsland are requested to walk in the path drawn in Fig. 14, by passing from every
street, but only once. Each inhabitant starts from an assigned emplacement, as shown in
Fig. 14: A for Isosceles Triangle, B for Rectangle, C for Square, D for Pentagon, E for
Equilateral Triangle, F for Hexagon.

In the emplacement O there is a treasure, when you pass by O you can take the treasure.
It is not requested that O is the last emplacement to visit.

Question 1  Why did we say that the king was naughty? ... Is the king sure that no one
could win? ... Why? ...

But during the night Mr. Isosceles Triangle, who is smart and knows graph theory,
decides to modify the trace by adding a new street in such a way to win.
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Question 2 Which street is built by Isosceles Triangle to win the contest? .. .

So, the first day of the contest Mr. Isosceles Triangle wins. The king is surprised, but the
contest goes on. Mr. Equilateral Triangle, who knows graphs too, and understood every-
thing, during the second night also modifies the path, in such a way he wins.

Question 3~ Which street is built by Equilateral Triangle to win? ...

So, the second day of the contest Equilateral Triangle wins. The king is disappointed,
but the show must go on. Finally Mr. Rectangle, who is smart as his brothers Triangles,
decides that is right to give to all the possibility to win. And during the third and last night
modifies the whole path in such a way everyone could win.

Question 4 ~ Which change can Rectangle do in such a way everyone could win? . ..

The solving of the questions required from the children to apply acquired knowl-
edge about Eulerian and Semieulerian graphs. The results were that the students
were able to answer to the first question correctly. This was a result that we did not
definitely expect because the students were only used to count the degree of the
nodes — but while working with Eulerian or Semieulerian graphs — they were not
used to more than two nodes of odd degree. Usually, when they identified a graph
they could classify, they started to count the degree of nodes until they encountered
anode of odd degree which they used as a starting point. The only graphs they had
encountered before which were not Eulerian or Semieulerian were the graphs of
Fig. 10. And in that case, they had managed those graphs before starting to count the
degrees. So, the situation described in question one was unusual.

By the time that they identified that the graph of Fig. 14 neither Eulerian nor
Semieulerian, they had already acquired enough knowledge in order to know how
to make it Semieulerian. The aim of the task was to build a street. A few children
solved the task by deleting an edge so that the two nodes connecting that edge

Fig. 14 Path for
Polygonsland contest (Aleo
et al. 2009, p. 112)
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changed their parity. Of course, this was a possible solving strategy and such
answers were positively considered.

Some difficulties arose on question four, even though all students were familiar
with the fact that an Eulerian path could start anywhere in the graph. We later
identified that a few of them had not understood that the request could have been
translated into “make the graph Eulerian” — possibly because question two and three
both asked for semieulerianity.

Finally, we conclude — on the basis of the test results — that the majority of
students were able to relate acquired knowledge with the presented task.

Embodiment with Wool Strings

As a final activity in class, the children created posters which summarized the main
ideas that had arisen during the teaching experiment. One of these deliverables was
solely on walkable graphs (see Figs. 9 and 15) and was realized by manipulated real
wool strings which were wrapped around split pins, similar to the online game
Icosien.

In order to make every child an active part of the activity, the class was divided
into three homogeneous teams according to the self-assigned preferences of stu-
dents, i.e. drawers, writers, and thinkers. In each group, students designed their
poster together once the teacher assigned the task to each group. The thinkers then
defined the graphs to be used. In the whole, they worked as a team, but each student
had an individual role. At the beginning of the working progress, each student in
each group proposed his/her own graph to the others. After that, they decided which
one they want to use. The drawers were asked to apply their ability of drawing
which resulted in a mixture of experimenting and purposeful manipulating of the
graphs; It was not a mere copy of the thinkers’ graphs. The writers were in charge of
the title and subtitles, e.g. in Fig. 15 they decided for “inizio” and “fine” — Italian
words for “begin” and “end” respectively. As for the wrapping of the strings, all
members of the team were asked to participate because it is important to join mind
and body as well as putting the concepts they had studied into practical actions. This
requirement did not pose any difficulties; all students were quite eager to participate
in this activity.

Final “Fighting”’ with Parents

In the first year in which we carried out this teaching experiment, their children
from the very beginning, especially in regard to the online games, involved the
parents. In the second year, the teacher asked the students not reveal “the trick” of
walkable graphs, so that the parents could be invited to the last meeting of the
experiment for a “Children vs Parents Contest” based on the online games. The
games that were used for the contest were Icosien and Strand; and the children
clearly won the contest. In fact, it showed that the children had not only practised on
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Fig. 15 Poster realised by
children on “walkable”
graphs

Eulaerian and Semieulerian graphs during the teaching experiment, but they also
had internalized the underlying definition and reasoning. Further, it showed that the
children were very proud to win against their own parents which implemented that
they knew something that their parents did not. The parents, on the other side, were
proud to see their children so happy and excited about mathematical contents.

Results and Conclusion

This teaching experiment had two major aims. Firstly, mathematical oriented, we
wanted the children to be able to represent relations and data and — in significant
situations — use representations to get information. Secondly, emotionally oriented,
we wanted the children to be happy when doing mathematics. We will briefly
discuss both aspects.

The majority of children were able to master the activities as is shown by the
ongoing and final tests. Moreover, in the first lessons, when the basic concept had
been introduced, the teacher asked the students to name suitable examples from
their everyday life. They were able to identify the model of a graph in many
settings, which indicates that they mastered the “Creative Application” ability the
of O.B.I.T. model. An example is illustrated in Fig. 16. The figure represents a city,
but indeed it can be interpreted as a graph. The children successfully connected the
studied topic with the real life situation.
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Fig. 16 A picture of a city, seen by children as a graph

In the ongoing of the teaching experiment, it has clearly shown that the YED
artefact, which was used to draw several graphs, was a helpful tool. At the
beginning of each activity, objects were presented by the software as one precise
symbol, e.g. pictures of cartoon characters, letters, cities, persons, etc. The software
provided a high variety of symbols and included the possibility to drag each object
into the working area so that it could be used as a node of a graph. But, whenever a
topic had been mastered, the children went on by using standard symbols of nodes —
which was usually a dot. They were able to abstract from the real objects and
worked on the model rather than on the problem itself; they manipulated not only
real objects (e.g. characters, cities, etc.), but also mathematical objects
(e.g. graphs). Moreover, they were able to use conceptual metaphors: they inferred
properties of a certain source domain (i.e. real objects) by manipulating a target
domain (i.e. graphs) (Lakoff and Nunez 2001). The software contributed to this
transition.

Another feature of the software — the possibility to drag nodes or change the
shape of edges — made children aware of isomorphisms among graphs which look
different at first sight. As a matter of fact, they were able to transform a graph
without deleting or adding an element, but by simply changing the shape. Not every
child was able to grasp this concept by him/herself, but at the end of the teaching
experiment — after various manipulations of graphs on the YED software — they
were all convinced that it is possible to preserve mathematical properties in
differently looking graphs.

The major disadvantage that we encountered on the use of the software was the
English language; but, as we mentioned earlier, the tools that were required for our
purposes were self-explanatory so that the Italian translations were not needed.

As for the online games, we focus on Icosien because it was the most frequently
used during the teaching experiment. The wide range of possibilities to freely
experiment was highly appreciated by the children, and they eagerly lined up to
come to the whiteboard in order to do so. From a teaching and learning point of
view, the game is useful because students can experiment by themselves without
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the constant assistance of a teacher. The game itself restricts actions and signals the
end of it. The children are guided without any external intervention. Another
disadvantage of such a game is that it makes the students primarily focus on the
game itself. Their focus of attention was on winning the game, not on the analysis
why a certain property is held. Due to this, we used the game to conjecture, but we
did not use it to reason or argue. Even though the use of technology has a high
variety of advantages, it showed that time as well as pencil-and-paper activities help
students to reason successfully.

From the emotional point of view, students of both schools were enthusiastic to
encounter mathematics as we did in our teaching experiment that is without
numbers, calculations, or systematic operations, but rich of princesses, relatives,
football players, and real-life situations. They encountered “another mathematics”
which was different from what they previously experienced. Somehow, they saw
mathematics with the eyes of a mathematician. The students understood mathe-
matics as a game. Indeed, the activities required reaching a target while obeying the
“rules of the game”. On the basis of previous experiences, teachers often focus too
much on the application of rules of mathematics instead of making students analyse
the origin of such rules. If mathematics could be understood as a game more
frequently, students would be more encouraged to think about how to improve
the rules on higher levels as well as about strategies that are important in order to
achieve your aim: Aside from playing by the rules it is allowed to use creative
strategies to win in the most elegant and fastest way.

Young students appreciated the possibility to play with mathematics through
online games — even at home. It happened that children insisted on their parents to
play with them, and even a grandfather was invited to play. They further enjoyed
the possibility to draw their own graphs once they understood how to do so (see
Fig. 17).

Lilia Teacher, I thought of another graph!

With reference to the paper-and-pencil activity in the previous section, after the
teacher said that the graph f in Fig. 10 was not walkable, Lorenzo, an eight-years-
old student, said:

Lorenzo Then graph g is not walkable either; they are the same!

This showed that the student was able to identify the model underneath the
drawings without any guiding explanation of the teacher.

Technology had a fundamental part in this teaching experiment. As mentioned
before, we used “old technology” (e.g. pencils, paper, blackboard, and chalks) to
reason and to fully understand, but the application of “new technology” was very
useful in the practical part because it made children independent. This was also
previously discussed on Icosien. There, the students constructed different graphs
without the assistance of the teacher, and they continued to work independently at
home — with the online games and with YED. The possibility to drag nodes and/or
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Fig. 17 A student drawing
a graph by herself

by
ke

i

change shapes to edges made the manipulation of graphs easier; otherwise, one
would have been obliged to continuously redraw each representation of the same
graph. Moreover, by transforming the graph instead of redrawing it, the students
identified that the features of a graph do not change by the mere alteration of its
representation.

In addition to observing the students, other teachers of the students have been
interviewed. They noticed that the children’s logical skills increased as well as their
active participation in class. They posed questions more frequently instead of
passive listening. So, the students learnt to learn, and they transferred this new
skill to their whole learning process.

What was difficult was the argumentation activity. The students were much
more interested in experimenting and learning new “tricks” rather than in reasoning
on possible explanations. But when they were actively engaged into the discussion
and invited to participate actively instead of mere listening, this helped them to
concentrate on the topic.

In the second year of my teaching experiment, my tutor — a primary school
teacher — took notes at each of my lectures and then organized meetings with other
primary school math teachers to share materials and ideas for possible future math
sessions. It showed that this teaching experiment was highly appreciated by
teachers because primary school teachers — but also high-school teachers — are
not familiar with the underlying aspects of graph theory. Further, they appreciated
the idea that graphs can be used to model problems from real life situations, to
represent relations, to mathematize situations. Additionally, the teachers who took
part to these meetings had the opportunity to address questions about innovative
teaching/learning processes of mathematics.

Finally, this chapter ends on comments written by children in the final satisfac-
tion questionnaire: “I think that graphs are more funny than games”, “I think that
this laboratory on graphs helped me to reason more quickly”, “Mathematics is
beautiful, intriguing and is of help”.
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Appendix

This appendix provides a short glossary of those concepts in graph theory we dealt
with in the chapter and a collection of some activities we carried out with the
children.

Short Glossary of Graph Theory

— Bipartite graphs: a graph G = (N, E) is said bipartite if it is possible to divide the
set N into two subsets N and N,, in such a way that every edge in E joins a node
in N; with a node in N.

— Coloring of a graph: a colouring of a graph is a function from the set of nodes to
a set of colours, that assigns a colour to every node in such a way that connected
nodes have different colours.

— Complete graph: a graph is complete if every couple of nodes is connected by an
edge. A complete graph with n nodes is indicated by K,,.

— A bipartite graph with bipartition sets N; and N, is said complete bipartite if
every node in N; is connected to every node in N,. A complete bipartite graph
with m nodes in N; and n nodes in N, is indicated by K, ,..

— Cycle: a cycle is a path that is closed. Moreover, the starting node is the only
node repeated in the path (repeated as the ending node). For instance, in the
graph G =(N,E) withN = {1,2,3,4,5} and E = {(1,2), (1,3), (2,3), (2,4), (3,4),
3, 5), (4,5}, the path C = [(1,2), (2,3), (3,1)] is a cycle, while the path P =
[(1,2), (2,3), (3,5), (5,4), (4,3), (3,1)] is not a cycle because not only node 1 is
repeated, but also node 3.

— Degree of a node: the degree of a node in a graph is the number of edges
involving the node.

— FEulerian and Semieulerian graph: a graph is called Eulerian if there is a closed
path containing every edge of the graph just once. (An Eulerian graph has all the
nodes with even degree). A graph is called Semieulerian if there is an open path
containing every edge of the graph just once (a Semieulerian graph has exactly
two nodes with odd degree).

— Graph: A Graph G = (N, E) consists of two sets, N and E. N is called the set of
nodes, and its elements are represented by points. E is a set of couples of nodes,
called edges. If two nodes are a couple in E, then the two points representing the
two nodes in the edge are joined by a line. Whenever the couples are sorted, the
graph is said “directed”, otherwise it is said “undirected”. When we say just
graph, without specifying directed or undirected, we implicitly mean undirected.

— Two nodes A and B can be connected by one edge, in this case we indicate the
edge with (A, B), or by two or more edges, in this case we indicate the edges with
s1=(A,B), s,=(A,B), . ... Edges connecting the same couple of nodes are called
multiple edges, and a graph with multiple edges is said multigraph.

— Hamiltonian graph: a graph is called Hamiltonian if there is a cycle involving all
the nodes (it is not requested that this cycle involves all the edges). This cycle is
called Hamiltonian cycle.
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— Loop: aloop is an edge connecting a node with itself.

— Path: a path in a graph G = (N, E) is a sequence of consecutive edges, for
instance if we have N = {1, 2, 3,4, 5} and E = {(1,2), (1,3), (2,3), (2,4), (3,4),
(3,5), (4,5}, a path could be P = [(1,2), (2,4), (4,3)]. A path is said open if the
first node of the first edge in the path (starting node) is different by the last node
of the last edge in the path (ending node), closed otherwise.

— Planar graph: a graph is planar if it can be drawn in a plane without graph edges
crossing, i.e. if it can be drawn in such a way an edge can touch another edge just
in the common node.

— Tree: a tree is a graph without cycles and connected, where a graph is connected
if there is always a path between any two nodes.

Some Activities on Graph Theory in Primary School

Activity on Hamiltonian Graphs (We Called Hamiltonian Graphs
“Visitable’’) Violetta’s Tour

How can we help Violetta (a pop singer very popular among children) to adjust the
trip of her Italian tour in such a way that she stays in every city she planned to visit
just once? This problem is connected to reality, not only because the cities are the
real stops of Violetta’s tour in 2014, but also because we checked for flights
between the cities in question (but, for the sake of simplicity, only with just one
airline,). The children constructed the graph in Fig. 18 without difficulty by
connecting cities joined by a flight.

=N - h‘{é‘.’

PRENTE

Fig. 18 Hamiltonian graph to represent a tour (made with YED)
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The use of the software was irreplaceable. Even when the graphs are simple,
with just a low number of nodes — like the previous one — the same activity is much
more difficult to be carried out with paper-and-pencil. In fact, the students made
first attempts in their exercise books by drawing several cases or by colouring used
edges, but this was unsuccessful. As soon as they came to the whiteboard and could
drag nodes digitally, the task could be resolved easily. Additionally, several Ham-
iltonian graphs were explored by means of the online game Icosien. But the students
met difficulties in finding Hamiltonian paths because they did not have any strategy
to follow.

Activities on Planar Graphs

As for planar graphs, we applied the well-known three cottages problem (another
unsolvable problem, after the “seven bridges” impossible path): there are three
cottages and three utilities, each cottage has to be connected to each utility, but we
want to draw connections in such a way that they intersect just in utilities and
cottages.

The children started by constructing the requested bipartite graph in their
exercise books: they drew the six nodes in two separated lines, as they were used
to due to the Disney’s princesses graph. Then, they started to draw the edges from
cottages to utilities one by one, avoiding making them touch. All students were
successful up to the fifth edge, but they failed at the sixth edge because the problem
is not solvable. Then, a few children tried to solve the task at the whiteboard. This
time, the edges were already drawn — by the teacher — and the students dragged the
nodes, unsuccessfully of course. After that, a modified version of the problem —
simplified with three cottages and two utilities — was posed and solved very soon.

This problem was useful to introduce complete graphs with n nodes, named K,
and complete bipartite graphs with n and m nodes in the two sets of nodes, named
Ky m. The children were asked to analyse complete graphs and were guided to
discover the “trick” of triangulations when they have a K, inside a graph as shown
in Fig. 19.

The “triangulation trick” was often used in the games at school (as fly tangle, see
paragraph “Technologies”) and in the home-made games which consisted of

Fig. 19 A planar graph containing a subgraph K, (made with YED)
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adjusting planar random graphs produced by the YED software. The students were
guided to discover that for K5 — and higher — complete graphs are not planar and so
are graphs containing not planar graphs. Similarly, they easily grasped that com-
plete bipartite graphs are planar until K, 3 They tried this with the K53 of the
cottages problem and hence found an easy solution for K 3.
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Pocket Calculator as an Experimental Milieu:
Emblematic Tasks and Activities

Ruhal Floris

Abstract In this chapter, we present and analyze calculator-based tasks and
activities conceived as means for the learning of mathematics in several grades of
primary and secondary school. The tasks or activities have been experimented with
students and pre-service teachers. The intent is to show how a set of calculator-
based tasks can be organized in a way that they promote the development of
theoretical aspects. The results show that a high variety of numerical activities
can be proposed in such a way, but that a further institutional promotion is
necessary. The analyses are based on the concept of ‘milieu’ by Brousseau (Theory
of didactical situations in mathematics. Kluwer, Dordrecht, 1997) with an anthro-
pological approach (Chevallard Y, Recherches en Didactique des Mathématiques,
19(2):221-266, 1999; Lagrange JB, Educational Studies in Mathematics
43(1):1-30, 2000).

Keywords Calculator  Arithmetics ¢ Fractions ¢ Early algebra ¢ Theory of
situations ¢ Learning milieu « Adidacticity ¢ Anthropologic approach
Praxeologies ¢ Teaching

Introduction

In a considerable amount of countries, a relatively large number of primary and
secondary mathematics teachers do not consider it important to teach how to use a
calculator; they presumably assume that this is something pupils learn from their
classmates or outside school. At least, this is the case in the French speaking part of
Switzerland. The consequence, observed in higher secondary school, is that the
calculator skills of the students are not as far developed as they should be at that
point; for example, a few of the observed students showed difficulties to success-
fully enter expressions such as V2 — 1, but entered v/2 — 1 instead. This lack of
competences could possibly lead to the situation that when they study formal

calculations with square roots and try to check that (v2 —1)(v2+1) =1, the
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calculator is of no help for them. We are of the opinion that this situation is a cause
of social inequalities. A small group of students are able to use their calculators as a
powerful checking tool while others limit their use to basic operations; this phe-
nomenon has been observed on the use of symbolic calculators by Guin and
Trouche (1999). This is why we are of the opinion that working with calculators
on a regular basis is necessary in primary and secondary school. Furthermore, we
believe that calculators are highly beneficial tools in regard to mathematics learning
on the premise that their use is well introduced to the students and that the
calculators are incorporated within appropriate tasks or activities (that is, well-
designed sequence of tasks). In recent years, we regularly observed lessons where
the teacher aimed to integrate such kind of tasks and activities at different school
levels. Further, we integrated them in our pre-service teacher workshops: the
secondary student teachers were asked to adapt one calculator-based activity into
their teaching' which was then evaluated on in a feedback discussion. In this
chapter, we synthesize and analyze the results of different calculator-based teaching
experiments with primary and secondary school students (Del Notaro and Floris
2011; Weiss and Floris 2008) as well as within teachers’ training (Floris 2015). Our
analysis aims to answer the main research question whether the use of calculators
enhances the learning of mathematics and how it does so. We interpret the research
question by integrating the theoretical perspective, selected didactical situations,
and praxeological anthropology. These aspects of our interpretation will be thor-
oughly described in the next section.

Theoretical Background

Our main theoretical reference is Brousseau’s theory of didactical situations (1997).
This theory emphasizes the role of the adidactical milieu in the teaching-learning
process of mathematics; the gist of this theory is that, in the end, taught knowledge
has to be transferable and applicable to the real, non-didactical world. But, this can
only be realized when the non-didactical world is — at least partly — integrated into
classroom activities. This is due to the fact that mathematics is mainly a procedural
science, i.e. it is impossible to merely memorize questions and their answers, but it
requires to learn how to suggest solutions to an infinite variety of possible questions
— even with respect to simple additions.

As one example for adidactical feedback, we refer to the task where we asked the
students to enlarge a tangram puzzle (Ibid); the students were assigned to groups,
and each student of each group had to enlarge one piece of the puzzle. The feedback
was provided by the final assembly of the puzzle: in case that it was impossible to
put the pieces of the puzzle together because their sizes did not match, the former

'In Geneva, secondary teachers follow a two-year training and in the second year they teach half-
time in school.
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mathematical enlargement procedure, e.g. the addition of constant values to the
measurements, was thereby invalidated. In this situation — the adidactical milieu —
the nullification of the applied mathematical procedure is not provided by a teacher,
but by the situation itself. Here, it is important to acknowledge that the milieu is not
limited to the external situation, but it also refers to the goals defined by the teacher
and to students’ prior knowledge.

In everyday teaching, the adidactical part of the didactical milieu often is of
understated significance. In consequence, the learner is held accountable to create
individual “milieus”, but in case that this option is out of reach for the individual
learner the learning outcome is weak. The conjecture of Brousseau’s theory is that
an adidactical milieu provides rich feedback and thereby successfully supports
learning processes. On the basis of these hypotheses, the research question evolves
to how the integration of calculators into the classroom can be a successful learning
milieu. We will aim to provide an answer by giving examples of different grades
where the calculator was used to assist this adidactical learning milieu.

Our methodology is mainly qualitative; our data basis was students’ and
teachers’ gestures, calculator manipulations, and utterances. Finally, we compare
our findings to Brousseau’s theory to assess the learning potential of the proposed
tasks alongside with their feedback.

In our opinion, an analysis of effective teaching methods needs to integrate the
anthropological approach by Chevallard (1999). According to this approach, prax-
eology (from Greek ‘praxis’ and ‘logos’) is a four-part mathematical concept which
includes a type of tasks, technique, technology, and theory. The first two compo-
nents are practically oriented whereas, here, technology is the discourse that
justifies or explains the technique. It becomes theory when the discourse is more
structured. In the educational context, and in the domain of applying technological
tools, Lagrange (2000) reduces praxeology to three components: tasks, techniques
and theories, i.e. Chevallard’s last two components are being combined. Lagrange
further considers a study of Rabardel (1995) which analyses the process of tools’
transformation to effective working instruments. Thus, within the anthropological
approach, discourse is said to link technique and theory; this assumption entails the
conjecture that this linkage enhances the mathematical quality of learning processes
in the long term. Furthermore, the concept of praxeology is especially helpful for
the analysis of the introduction of new techniques.

In summary, the conditions for a profitable learning milieu according to the
above mentioned theories are:

LM1 A task, or a set of tasks, that involves some sort of adidactical feedback
which is independent from the teacher.

LM2 A more or less explicit presence of a tight mathematical link between
theory and technique.

In the following paragraphs, we discuss a set of selected examples. First, we
present two summarized examples and then present as well as thoroughly analyze
two further examples.
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A First Example: A Milieu for Place-Value Notation

The following tasks are intended for students at the end of primary school or early
secondary school (i.e. 11-12 years-old students). We suggest that the reader takes
out a calculator and solves them while thinking about the mathematical properties
involved.

1. Type in the number 89254 on your calculator. Without deleting this number,
using mathematical operations, find the shortest way to display the number
89454.

2. Type in the number 89254 on your calculator. Without deleting this number,
using mathematical operations, find the shortest way to display the number
80404.

3. Type in the number 89254 on your calculator. Without deleting this number,
using mathematical operations, find the shortest way to display the number
892054.

4. Type in the number 4.56 on your calculator. Without deleting this number, using
mathematical operations, find the shortest way to display the number 4.056.

As a whole, these tasks refer to the domain of place-value notation, which is one
of the main domains in primary school. This set of tasks proposes a learning milieu
for this fundamental arithmetical property because the use of this property is
necessary to solve the tasks. In the course of a workshop, these tasks have been
proposed to students and pre-service teachers in primary and secondary education
with the underlying intention to prepare them to integrate the calculator into their
teaching. We were surprised of the outcome that some of them had difficulties with
solving the tasks, even despite their mathematics knowledge. One of our possible
interpretations of this is linked to Brousseau’s didactic contract (1997):

It is the set of the reciprocal obligations and sanctions that each partner in the didactic
situation imposes, or believes to impose, explicitly or implicitly, on others, and those that
are imposed on him or her, or he or she believes that they are imposed on him or her.
(Translation by Indiogine 2010, n.p.)

At primary school, without specific instructions on a different handling of the
calculator, it is only used to obtain the result of a direct calculation. What is
proposed in the example above is an inversion of a common task: the result is
given and the operation is asked for. It is what Brousseau refers to as breaking the
didactic contract and further elaborates on the students’ and teachers’ perplexity
about this. Activities which propose such disruptions are interesting because they
introduce adidacticity into the milieu; or, rephrased slightly different, ignorance
triggers learning processes. Here, the teacher has the choice either to instruct the
students to find the solution by themselves, or to indicate possible solving strategies
(e.g. let a fellow student propose an answer). An alternative to level out the state of
not knowing is to propose a slightly easier task beforehand:



Pocket Calculator as an Experimental Milieu: Emblematic Tasks and Activities 175

1(a) Type in the number 89254 on your calculator. Without deleting this number,
using mathematical operations, find the shortest way to display the number
89264.

Evidently, the kind of feedback that is given by the calculator is in agreement
with the definition of feedback of LMI, a calculator coming clearly from the
non-didactical world (see previous section). With respect to LM2, on the basis of
the anthropological approach, we focus on the theoretical aspect. This refers to the
fact that the numbering position within the tasks links the way to solve them and
explains the solving strategy at the same time. For example, in case that the task
requires to change the digit two into a four, you have to add 200 because the digit
‘2’ is at the hundreds place of the positional notation system.

A Second Example: Milieu for Arithmetics Operation
Properties

At the beginning of this section, we provide a second example for a possible
integration of calculators into the classroom setting. Again, we suggest that the
reader takes out a calculator and solves it while thinking about the mathematical
properties involved:

1. Determine all digits of the numbers 712, 713, 714, etc. in their standard (base 10)
expression.

One possible answer could be that a student thinks that the requested answer for
7'% is 13841287200 (see Fig. 1).

In such a case, the feedback provided by the calculator is inadequate. This is why
the teacher has to supplement the students with sufficient validation techniques. For
example, one technique could be to determine the digits of 7'° and 7'" first, and then
determine the result for 7'% with the help of the calculator. Or the teacher could pose
the question if it is possible that the last digit of the displayed result is zero. This is
how the milieu is enriched with paper-and-pencil calculations, which are necessary
to give the right answer to this task. In this situation, the students’ calculations are
expedient with a mixture of calculator and paper-and-pencil calculations. With the
help of the TI-30XSMultiView?, it is possible to get the results to 7'', i.e. 7'! =
1977326743. This result can then be used in order to work out all digits of 7'* by
computing

72 =7(7'") =7 x (1977326743) = 7 x (1977326740 + 3)
=7 x 197732674 x 10 4 21 = 1384128718 x 10 + 21 = 13841287201.

%It is the official calculator in the schools of Geneva, provided to all 10 years-old students.
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Fig. 1 Display for the ™
result of 7' .Muﬁrol-"xfsl\'

-

?12
1.38412872%101°

This kind of calculation requires the students’ ability to apply certain operation
properties correctly, in this case distributivity. As a result, the integration of the
calculator into mathematics teaching is not only meant to be a calculation tool, but
its application needs to be carefully instructed. Hence, the following task could be
proposed afterwards to further strengthen the new didactical milieu which is
dialectic of calculator and paper-and-pencil work:

2. Without multiplication and with a minimum of operations, please calculate the
following products on your calculator: 387204 and 87x199.

A Milieu at Primary School: Division Without Multiplication

Description of an Experiment

1. Is it possible to equal 24 by repeating the sequence “+ 6 = 2 (See Fig. 2)
2. Is it possible to equal 24 by repeating the sequence “+ 7 = ?” (See Fig. 3)

These two tasks are examples from a long-term experiment with six to seven
years-old students. The experiment lasted over the time span of about four months
and was held once a week. The task was to identify all possible integers n that equal

3Starting from zero, that is after a reset of memory.
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Fig. 2 Repeating the

sequence * +6 =? g:g: 12 ?;E; ig
| 12+46= 18
18+6= 24
fovence - 17 21 007= 7| [reee
Target 1 23 4567891011 12 13 14 15 16 17 18 19 20 21 22 23 24 25
18 1 23 6 9 18
19 1 19
20 1 2 45 10 20
2001 3 7 21
2 1 2 1 22
23 1 23
24 1 234 6 8 12 24
25 1 5 -

Fig. 4 Correct results for the targets between 18 and 25

24 in the sequence “ +n = ? ”. The calculation result was then changed to another
value. It was possible to choose between individual work or group work. This phase
was followed by a public collection and discussion of results on the blackboard. A
final table is presented in Fig. 4. During the discussion phase, wrong propositions
were given by students which were then peer-reviewed by the other stu-
dents and under teacher’s management.

After the final agreement on the correctness of the table, the students were asked
to express their findings, for example all the ‘1’ in the first column, the alternate
occurrences of ‘2’ lines with only two numbers called ‘poor’ targets.

In the next session, another set of targets was proposed.

This kind of work, described in Del Notaro and Floris (2011) enriched the
classroom study with various arithmetic properties such as parity, multiples and
divisors, and primes. The use of the calculator played an important role in order to
check properties and to discard wrong ideas. The following feedback instructions
were summarized on the blackboard:

1. Make sure that for odd targets there are only odd divisors, and that there are even
and odd divisors for even targets.

2. The ‘poor’ numbers are primes (a prime number is odd, except for “2” — but not
all odd numbers are prime).
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The 90-minutes working sessions were held weekly. After three months, the
teacher introduced the idea of writing also the number of repetitions to reach the
target together with the chosen number, for example adding 6 (time ‘2’) to get
12 (Fig. 5). This provided a new possibility to control one’s results: if there is a pair
(a, b), there must be a pair (b, a).

1 2(3|4|5/6|7|8/9 10|11 |12 |13 (14 (15 | 16 | 17 | 18| 19 | 20 | 21 |22 | 23 | 24 | 25

T 11T ETH|
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Fig. 5 Writing the number of key iterations to reach the target
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Fig. 6 A table for multiplication control
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By studying the above table (Fig. 6), the following new rules were identified:

1. Check with your calculator: multiplying the two numbers (in a column) results in
the target.
2. Check that there is the reverse correspondent of each multiplication (commuta-
tive rule).
. When there is only one pair and its reverse, the number is prime.
4. A target with a pair type (a, a) is a square and a is its square root.

|98

The usual phenomena of a frantic search (called ‘fishing’ by Artigue 1997;
Meissner 2005) was observed, mostly instead of the use of already institutionalized
knowledge (such as provided in the list of control rules). But at mid-term, cognitive
changes could be observed in the students’ actions, especially on their first approach
to multiplication.

This activity provides powerful adidactical feedback. The target can be reached
and mathematical properties can be verified with the calculator and the judicious
use of different tables. As a result, the properties of LM1 and LM2 are completely
fulfilled. The learning milieu is in the sense of Brousseau (1997) because the
teacher’s input triggered the students to pose various questions which were
answered by the milieu itself.

Detailed Analysis of an Example of Simplification
of Fractions

The Type of Tasks

We focus on simplifying procedures for great fractions in case that a calculator is
available. For numerators and denominators beyond 100, students of lower secondary
school are generally not able to make use of a stored repertoire of mathematical results
to find a common divisor of numerator and denominator; therefore, they are urged to
apply other procedures to perform this type of task. In a former research (Weiss and
Floris 2008), a series of simplifying fractions have been proposed for different types of
students — at the age of about 15 years — with permission to use the calculator (Fig. 7).

It often occurred that students considered a fraction like 187/340 irreducible
because they did not consider common divisors beyond ten. These students are

Fig. 7 Which fractions are
irreducible?

2500 7

7500 ® 108
241 176
150 165
256 749

243 . 7000

187 110

340 h) 264
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Fig. 8 A theoretical 637 7713 7 7 13 1 7 7

transparent simpliﬁcation 1183 - 7.13-13 - 7 13 13 = 13 13

subject to the basic didactic contract in which the teacher proposes fractions
simplified by 2, 3, 5, 7, or 10. The tasks which were proposed in this teaching
experiment — a bit beyond this contract — aimed to extend the mathematical
knowledge of students. In this specific case, it aimed for the awareness of mathe-
matical procedures to make any fraction irreducible; hence, the decomposition of
the numerators and denominators into prime factors, which is deeper founded into a
theoretical context” than the use of GCD (Fig. 8).

The mathematics curriculum of the French part of Switzerland includes the study
of divisibility of integers and of their decomposition in a product of primes. But,
these mathematical procedures remain rather isolated and algorithmic and are not
linked to other parts of the curriculum (Floris 2013).

Analysis: Milieu, Praxeology, Instrumentation

We claim that the set of tasks in Fig. 7 promotes an experimental learning milieu for
the simplification of any numerical fraction. Following Brousseau (1997), there is
here a fundamental aspect, an essential basic knowledge, corresponding to the
prime factorization of integers. By proposing these tasks, the teacher introduces
the students to these techniques as well as to the advantages of their use. The
feedback (LM1), however, is not entirely adidactical. The teacher is required to
assist students, for example by suggesting to look for other common divisors in case
that they stop with ten. On the basis of the students’ first attempts to solve those
tasks, the teacher can then present the calculation of Fig. 8 and ask the students to
revise the tasks in the same way.

To set the task according to the LM2 condition, we first need to analyze this
calculation on the basis of Lagrange’s (2000) three components of praxeology. First
of all, the task aims to make any fraction irreducible. As a first step in Fig. 8, the
subtask is to decompose numerator and denominator, the technique being the
algorithm of successive divisions by all prime factors taken in increasing order.
The underlying theory is the theorem that the decomposition exists and that it is
unique. At this school level, this theory is generally not made explicit, and in this
specific case it is replaced by the use of the algorithm (because it always works). As
a second step, the subtask is to obtain a product of fractions by using the definition
of this product (technique) which is justified by a definition of a fraction (theory).
As a third step in Fig. 8, the subtask is to replace a/a fractions with “1”, using the
corresponding property (technique), which is also justified by a definition of

“See detailed praxeological analysis below.
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fraction. Finally, the neutrality of the number one is used. A more refined analysis —
which integrates properties of the integer ring as associativity and commutativity of
multiplication — could be made.

This analysis shows the importance of the teacher’s involvement into the
students’ working process, e.g. with respect to the choice of hints and degree of
institutionalization (i.e. theoretical statements). These have to be observed to
evaluate the theoretical level of the mathematical procedures. Furthermore, the
entire curriculum on fractions is called into question: how and when are fractions
and their operations defined? In some school programs in Switzerland, the multi-
plication of fractions is taught after simplification, whereas fractions themselves are
defined in a rather intuitive way (e.g. as parts of pizzas, etc.) never followed by a
rigorous definition.’

Inspired by this work, a pre service teacher proposed a similar set of fractions to
his students; and, after showing them how to factorize by decompositions, he asked
them to directly get the decomposition with the application of a symbolic calcula-
tor.® Further, the students were asked to check their results on this task as well as on
other ‘complicated’ fractions. He also introduced them to Geogebra and Aplusix’ as
a means of generating decompositions. Finally, he presented a mathematical tech-
nique to obtain simplification using the symbolic features of the calculator
(MATHPRINT mode, see Fig. 11 below). Here again, a contract disruption helps
to promote an experimental milieu for learning as well as enriches the theoretical
part of the praxeology corresponding to simplification of fractions — that is, in
particular, the linkage with the decompositions of integers and the awareness
towards the existence and unicity of any complete simplification of a fraction.

Activities on Non Decimal Numbers and the Limits of a
Calculator

Scientific calculators intended for scholarly mathematics treat fractions and square
roots in a problematic way which is why quite a lot of primary teachers — or even
graduates of mathematics — think that they have certain knowledge whether a
decimal development is infinite or not.® What we present in the following section
are activities aimed to analyze these peculiarities. Further, the analysis aims to give

50ur favourite one being ‘a / b is a real solution of equation b x = a with a, b integers and b
different from zero, positive real numbers being defined as lengths’.

SA TI-92 in this case.

"There is a CAS part in Geogebra (Geogebra.org); Aplusix is a useful program allowing direct
control of numerical equalities and algebraic equivalences (Aplusix.com). Other tools can be
easily found on the web, e.g. www.calculatorsoup.com/calculators/math/prime-factors.php.
8They also are of the opinion that transcendent functions are programmed according to their
Taylor series. Most of them ignore the CORDIC algorithms (https://en.wikipedia.org/wiki/
CORDIC).


http://geogebra.org
http://aplusix.com
http://www.calculatorsoup.com/calculators/math/prime-factors.php
https://en.wikipedia.org/wiki/CORDIC
https://en.wikipedia.org/wiki/CORDIC
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a detailed insight on the workings of scientific calculators in order to understand
them and to use them successfully. During the analysis, it was rather difficult to
separate this manipulative learning from the mathematics one, so the reader will
have to understand it while working out the activities. The first activity is intended
for twelve to thirteen years-old students. The second activity is designed for older
students when studying square roots.

Tasks on the Decimals of 3/7

1. Transform 3/7 into a decimal notation with the use of your calculator. Enter the
result into the third row of your calculator (here TI-30XSMultiView) and
multiply this result by 7 (Fig. 9). What can you conclude?

2. Transform 3/7 into a decimal notation with the use of your calculator. Then,
immediately multiply the result by 7 (press * and then 7, see Fig. 10). Explain the
difference to what had happened before.

3. Is the decimal notation of 3/7 periodic? If yes, determine the period. Can it be
done using the calculator?

Comments

The activity described above highlights how the calculator manages approxima-
tions. As for the long multiplications proposed above in this chapter (see second
example), it suggests a negotiation between the answers of the calculator and those
that can be obtained by using the usual paper-and-pencil algorithms. It leads to an
increased knowledge on the functioning of the calculator in case of hidden
decimals:

TI30XS Multiview™ uses internally 13 digits for calculations and it displays 10 in the

results. If the first hidden digit is 5, 6, 7, 8 or 9, the digit displayed as the right of the screen
will be increased by 1, it is the rounding rule. (Calculator guide book)

Fig. 9 Checking the

decimal result of 3:7 3+7_  0.428571 4é9
0.428571429%7
3. 000000003

Fig. 10 Multiplying e e
directly by 7 the decimal 3+7 _0.428571429
calculator result of 3:7 aNs*7 3
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mode _RAD GRAD -3 2
E)
6+

0123'-156789 9 0. 666666667

Another feature of the TI30XS Multiview™ is the possibility to partially work in
a non decimal world, called the MATHPRINT mode (Fig. 11). These features are
generally ignored by teachers and students at this level (lower secondary schools)
but could be presented after the completion of the previous activity on 3/7. It was
often the case that pre service teachers proposed these tasks in their classroom.
They further introduced the MODE menu and its different features. The discussion
about these tasks among the teachers was quite interesting (Floris 2015). Some of
them (mainly the teachers of lower secondary level) said that they were reluctant to
propose activities like the previous one, or the comparison between the calculator
results of 102°+1-10%° and 10?°~10?°+1, to their students. Their reluctancy relates
to a loss of confidence in using the calculator. Others emphasized that the limits or
errors of the calculators did not happen erratically but in precise cases. Moreover,
they claimed that working on these examples has to go alongside with an under-
standing and teaching of the concerned features. In the following section, we will
present a similar activity for fifteen to sixteen years-old students.

Analysis

For this activity, the focus of the analysis is on learning how the calculator
processes numbers with more than ten decimals and study periodical decimal
expressions. Additionally, the framing of decimal numbers with similar questions
as in the activity below will be considered. At this level, students simply consider
two decimals in their calculations when solving problems, and these decimals are
not always correctly rounded. It is considered to be a part of the didactic contract
and this is why teachers generally accept it. From the point of view of the milieu,
the activity seems to implement an uncertainty, but many students do not note this
and accept the situation without stepping back. At this stage of their scholarly
learning process, students already developed the habit to use the calculator only for
calculations, but what is required here is a thoughtful, reflexive approach. This
phenomenon is described as instrumentalisation by Rabardel (1995). Furthermore,
the mathematical treatment requires a long division that corresponds to a didactic
contract disruption. Thus, the relation between calculator tasks and paper-and-
pencil tasks is quite straightforward: They are either combined for a (complex)
calculation, or for checking one. This could explain the unwillingness of some
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teachers to address this with their students. From the perspective of the praxeolog-
ical approach, it is interesting to note that the technique corresponding to the
treatment of the third question is long division, and that the theory is a property
of this operation, i.e. the recurrence of rests.

This analysis shows the high efforts of teachers to construct enriching learning
milieus with the help of these tasks. They have to consider it as a basis for a
sequence of lessons on the properties of decimal numbers, framing, periodicity and
long division. In this way, the adidactical feedback (LM1) can be constructed by the
combination of mathematical properties already familiar to the students and the use
of the calculator. Such a medium term study could further entail a search for all
decimal figures of 1:31, or 1:29 by again combining the application of calculators
and paper-and-pencil tasks. This would improve the students’ handling skills of
such mathematical tools in agreement to the instrumentation process of Rabardel.

Activity Around the Square Root of 8

. Is /8 equal to 2? Justify.

. Is /8 equal to 3? Justify.

CIs /8 equal to 2,57 Justify.

. Find two numbers with three decimal digits which frame V3.

. Is /8 equal to 2,828427125?

. Do the following task with the calculator in CLASSIC mode:
Calculate the square root of 8. Then, put the result directly to the square.
Compare your result with the result of task 5. What can you conclude?

AN R W=

]

. Find the best possible framing of V8 using the calculator.
8. What is the decimal value of /8 ?

9. With the calculator in CLASSIC mode, calculate /8 + \/7-, and then
1
N

What conjecture can we draw from these results?
Can we prove this conjecture?
In MATHPRINT mode, does the calculator confirm the conjecture?

Explain the results given in MATHPRINT mode (Fig. 12).
10. Identify a generalization of the conjecture established in point 9.

Are the results reliable?

This activity can be analyzed identically to the previous one. It was proposed to
high school students, and while they were working on the task we could observe
difficulties linked to the didactical contract. Probably, these were due to the sparse
experiences with calculators of the concerned students. Nevertheless, the activity
was chosen by many teachers who were highly interested to improve their students’
instrumentation of calculators because it is a part of the calculus chapters of the
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Fig. 12 Calculator outputs P -

for the activity (question 9) 5. 474178436 m {7+2{2
1+ (8)=T(7)) -

nesniesed |27 {7+2{2

high school curriculum. With the aim of efficiency, they mainly proposed the
above-mentioned version of the set of tasks.

Experimental Milieu with Calculator for Early Algebra’

In this section, we aim to present the advantages of a compulsory school calculator
like TI30XII concerning the study of algebra. In some countries, there has been a
recent shift in the curricula towards new ideas for the introduction of algebra. In the
1960s, the New Math reform proposed a structured approach to algebra which was
based on the properties of the sets of numbers (i.e. integers and rational numbers).
The letter calculation rules were then worked on in isolation. However, the current
proposal, called ‘early algebra’, endorses a dialectic between the numerical and
algebraic conceptual domains. The literal calculations are considered both a pro-
duction tool of number sequences and a description tool of numerical properties
(e.g. for any integer n, the expressions 2n and 2n+1 equal sequences of even
numbers, respectively odd, and thus describe the parity). Furthermore, it is possible
to express algebraic properties in the numerical world; for example, 25=5
expresses the fact that 25 is a square, or 333 = 3 x 111 expresses that 333 is a
multiple of three (i.e. divisible by three):

One of the major goals of early algebra is generalizing number and set ideas. It moves from
particular numbers to patterns in numbers. This includes generalizing arithmetic operations
as functions, as well as engaging children in noticing and beginning to formalize properties
of numbers and operations such as the commutative property, identities, and inverses.
(Wikipedia ‘early algebra’ in 2017)

But even in case that the theoretical aspect is attached less weight in many
classrooms, the formal approach towards the algebraic domain has changed insig-
nificantly — apart from the integration of a few motivational activities at the
beginning of schoolbook chapters (these are mostly based on the formulas for
areas and perimeters). However, these are not connected to the main domain that
is being addressed in such a chapter. The study of computational techniques still
predominates; this provokes the impression of some students to see algebra as a
series of rules or laws which are devoid of meaning and poorly articulated within
the numerical frame (Pilet 2012).

°See http://ase.tufts.edu/education/earlyalgebra/.
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Calculation Programs

Within this new perspective on algebra, the notion of calculation programs is a key
element. The name ‘calculation program’ — rather than formula — was chosen to
emphasize the dialectic between the numerical and algebraic conceptual domains.
This idea is at the heart of the so-called ‘square-edged’ activity, where the aim is to
establish a method to identify the number of small coloured tiles on the edge
regardless of the size of the square (Fig. 13). A detailed analysis of this activity
can be found in Eduscol (2008).

This activity can be integrated into the study of literal calculations at various
points, whenever it is most suitable with respect to the learning process. For
example, in the Swiss textbooks of the year 2000, it was proposed at the beginning
of the section on Algebra. In the year 2010, however, the activity was integrated at
the end of the section as an ‘application’ (which is further specified in the teacher’s
comments). After the analysis of the results of a profound diagnostic test, Pilet
(2012) proposes such a task for the reworking of the meaning of algebraic manip-
ulations. In addition to that, we propose to integrate this ‘square-edged’ activity in
an early algebraic setting to create awareness for literal computing at the beginning
of secondary school because it further provides precise numeric challenges. This is
because the activity asks students to predict the number of small coloured tiles for a
square of sides of 6, 11, 37, 88, or 2012 tiles. It showed that higher values led
students to abandon calculation procedures based on counting. At this level, the
goal is not necessarily to introduce letters. For a square of 37 tiles per side, such a
procedure may limit entries to obtain solely calculations like: 4 x 374 or
37437435435 or 374-36+36+35 or 364+-364-36+36. For numeric values exceed-
ing ten, the use of the calculator can be accepted. A possible approach for teachers
could be to ask students to identify different calculations and then explain why the
results are equal. We  would expect explanations such as
374+37+35+35=37+36+36+35 or 37+37+37+37-4=36+36+36+36 which is
equal to (37-1)+(37-1)+(37-1)+(37-1). The calculator is used to validate the
calculation programs and their equivalence.

With the variation of tasks, these records may achieve a calculation program
status, that is a ‘model’ or ‘pattern’ of calculation which associates each calculation
with a diagram like the following (Fig. 14).

We observed the working on this activity in a class of twelve to thirteen years-
old students who are said to have difficulties in mathematics. They worked in

Fig. 13 ‘Square-edged’
activity
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Fig. 14 Different patterns
of calculations for the
number of tiles in the edge

groups of three to four students. It showed that for some of them, the calculator was
a helpful tool in regard to discussions because it assisted them to work out
similarities to the calculation programs. The writings of the groups exemplify the
successful dialectic of numerical and algebraic conceptual domains (see Fig. 15).
At this point, Eduscol (2008) proposes that teachers introduce a literal symbol:

The production of a formula appears as an answer to the question of the general description
of a situation involving specific numerical values and the use of letters solves the problem
of the appointment of the variables involved in the situation.

However, this is not a mandatory recommendation at this point of the learning
process, i.e. after the introduction of the topic. Our personal observations showed
that an immediate introduction can overextend students; thus, the idea to integrate
letters into calculations or equations is solely induced by the teacher without the
students having an actual need for it.'°

An alternative could be that the teacher claims that the numerical expressions are
equal and proposes to study this type of scriptures further; for example, this could
be achieved by tasks on the properties of sums of consecutive numbers — with the
focus on numbers. For example, the sum of three consecutive numbers is equal to
the triplication of the middle number because 88 + 89 + 90 = (89-1) 4+ 89 + (89 +
1) =89 4+ 89 + 89—-1 4+ 1 = 3 x 89. The aim of these activities is to establish an
early algebraic perspective on numerical expressions. This is linked to the idea that
algebra is a kind of modelling of the numbers world within a numeric-algebraic
dialectic whose lack or weakness is related to the difficulties of many students (Pilet
2012). The calculators which are used in secondary schools nowadays, which are
types of calculators with two or more displayed lines, is of great assistance for this
kind of calculating (see Fig. 16). It follows that these feedbacks and linkages help to
fulfill properties LM1 and LM2.

Additionally, the calculator can be useful when working on symbolic calcula-
tions; for example, by pressing the key TABLE one gains access to the feature to
create a sort of spreadsheet that introduces formula'' (Fig. 17).

1There is a way to enhance this ‘symbol gap’. Following Brousseau’s formulation phase (1997),
the teacher may propose a contest between groups: he will choose one student from each group,
and then give a value for the number of tiles of a side. The student that gives the quicker answer
gets a point for her group. The groups have the right and the time to prepare a method. In the
subsequent validation phase the contest is about the best methods.

""The TI30X Multiview, given to all students in the schools of Geneva.
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Fig. 15 Early algebra: dialectic between numerical and algebraic conceptual domains

Fig. 16 Multiple lines -
display in nowadays school gg:gg:gg %g;
calculators 3#89 267
First, TABLE key displays “y=" on the screen, and it is w=r+n-145-1+5-2_

possible to enter a formula using the variable key “x”

Table initialisation: Auto mode displays a sequence (de- o -
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the programmed formula. Y=HOSH

Fig. 17 How to use TABLE key (with the example of the study of the sum of three consecutive
integers)

From Calculation Programs to the Modelling of Arithmetic
Properties

The dialectic of numerical and algebraic conceptual domains can be realized in
connection to the TABLE key of the calculator, for example by asking students to
produce lists of even, odd, or multiples of a given number (Fig. 18). Modelling with
formulas can lead to a more logic-based type of thinking on properties such as the
thesis that the sum of even numbers is an even number, or that the sum of an even
number and an odd number is an odd number, etc.

What can further be studied are the properties of sums of consecutive numbers
whether using letters or not. It is interesting to compare this aforementioned work
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Fig. 18 Programming a s

sequence of odd numbers w=25+1_ z * |§ Y
using TABLE key .

Soit un nombre entier n.
a) Comment écrire le nombre entier qui le suit immédiatement ?
b) Comment écrire le nombre entier qui le précéde immédiatement ?
c) Comment écrire le cinquieme de n ?
d) Comment écrire le carré de n ?

Fig. 19 Classical work on algebraic scriptures (Let n be an integer (a) How to write (express) the
immediately following number? (b) How to write (express) the immediately preceding number?
(c) How to write (express) the fifth of n? (c) How to write (express) the square of n?)

with the following example, which is proposed in a current textbook of secondary
school (Fig. 19 from CIIP 2012, p. 99).

In such exercises, the dialectic with numbers is not explicitly integrated. The
decision to combine the results of this activity with the use of the calculator,
constructing paper-and-pencil numerical tables, or integrating the use of the
TABLE key function, is the teacher’s responsibility.

Another operation that is provided by TABLE is the comparison of calculation
programs. For example, in regard to the ‘square edged’ activity, we can introduce
the different formulas that are obtained within the activity and then observe whether
the values are the same. This motivates the study of literal transformations like their
justification based on properties such as distributivity or commutativity. An anal-
ysis of this has shown that this new point of view offers an enhancing relationship
between algebraic techniques and the properties founding them.

As TABLE allows the integration of only one formula at a time, this necessarily
involves paper-and-pencil transcriptions as well as working in groups of two, three
or four students who are assigned to program one formula each. One could argue
that it would be better to use a spreadsheet, but the formulas of such a software are
not written as polynomials in x which is why they require a technical introduction.
Furthermore, it would entail to work in the school’s computer room, unless your
classroom provides tablets or laptops.

From Calculation Programs to Equations

Problems like “Which number did I think of?”, allow to proceed to the notion of an
equation:
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I think of a number, add its double, divide the result by 3, and add 75. I come up with 80!
Which number did I think of? Why?

One possibility to resolve this problem is to approach it arithmetically by starting
from the end and reverse the operations. This allows students to grasp the type of
problem and then move on to a different one which suggests the use of two different
calculation programs at the same time. In such a case, the arithmetical approach
would be awkward:

I think of a number. I multiply it by 3. I add 10. I get the original number sevenfold, plus 30.
Which number did I think of? Why?

This type of problem allows a wide variation of different statements and pro-
motes working on the numerical properties of the ‘facts’. The task set will also
comprise ‘math-magic’ tricks:

Think of a number, add 2000, divide the result by 20, subtract 100, and multiply all by 20.

You end up with the number you thought of at the beginning! How do you explain it?

Or
Think of a number between 1 and 9. Double it. Add 2 to the result. Multiply the new

result again by 5, add 12, multiply the new result by 10, subtract 220.

Compare the number you get started with the number you had thought! Can you
explain?

These statements proposing sequence operations allow easy translation into
calculation programs.

An interesting presentation for a same kind of problem is the following activity,
“The Lost Number”:

I type the following sequence into my calculator:

[6]x 2 -[3]-J2]x 2 +]7]Enter|

Provided that the two grey boxes mask the same number and the calculator gives 24 as
result, can you identify this number?
Can you identify the number in case that the result is 592, 1.2, 69.2, -163.6, or 88?

In case that students aim to solve the task by random trials with the calculator —
with or without the TABLE key — these random trials become rather time consum-
ing as soon as the given result is something else than an integer. In fact, for many
teachers, this activity aims to motivate the use of equations and is supposed to
disqualify the use of the calculator. This intent, however, stems from a teaching
position that does not consider the numerical-algebraic dialectic.
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Equations, Equalities, Calculation Program DATA Key
and Spreadsheet

With problems such as “Which number did I think of?”, or “The Lost Number”, the
notion of equation can be introduced by further maintaining a numerical-algebraic
dialectic. The question remains how exactly the calculator can be of use here. We
already observed that the TABLE key only allows the display of a single column.
On the TI34X Multiview, the DATA key provides a small spreadsheet (see Fig. 20).
However, the use of this key is not self-explanatory and therefore requires instruc-
tions. But this effort is advisable to take in case that the DATA key functions will be
further integrated into the classroom teaching in other contexts. These are, for
example, numerical equations resolutions, proportionality, and programming a
formula (functions):

Comments About the Milieu for Algebra

In agreement with our research question and with the conditions LM1 and LM2, it
clarified in the course of our study that a milieu has to entail a variety of activities
that link numbers and letters on the basis of arithmetical properties; this is a long-
term project. We already presented selected options of how the calculator could be
of help, but a large scope research to assess how a learning milieu could be set up
for the student (LM1) is still pending. What needs to be constantly considered is
whether the numerical expressions are truly providing the correct feedback.

The proposed sets of tasks link naturally with theory, hence the condition LM2 is
satisfied.

Didactic Building of a Milieu with Calculator: An Example

Is the Calculator a Milieu?

All tasks or activities that are presented here share that they require the use of the
calculator as a mathematical learning tool. From this given, the question arises
whether the calculator itself is a learning milieu. According to Brousseau (1997), a
learning milieu consists of various elements that will help teaching, in particular,
the results of actions of the student such as calculations, drawings, or
manipulations.

Fig. 20 Programming

m (] i 2
formulas using DATA key 511 611
=7 =7

SLZ=4+Li+L1-1+L1-_
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Fig. 21 A didactic inquiry

for different scriptures of 999+1= 1668 999999+1=
numbers 18R AAA

9999939229+] | 99399990393
=1000006A6AA | +1= 1xn*1@

1000+1=10081 | 10660666+ ] =
1000aAA1

|QREEaAAA+] |"10G0EGAAAEGEE
= 1006B6aa6aAa] | +1= 1xn"10

This learning milieu further entails the elaboration on the connection between
the tasks proposed by the teacher and what is actually achieved by the students. The
results that are generated with the calculator can be considered a part of that milieu.
The calculator itself, however, is not a milieu just as paper-and-pencil calculations
are not a milieu either. They require a linkage with to the other properties of a
milieu, and the use of the calculator further requires an official classroom status.
The TI-30 calculator, for example, provides the answer 1x10'" to the operation
9999999999+ 1. But without a prior introduction by the teacher, this result is not a
part of the learning milieu. Nevertheless, the teacher should be able to provide a
suitable answer to the meaning of this result in case that a student, for example of
upper primary school, is interested in that; it is a basic part of the didactic contract.
A didactic work that would take such an interest into account cannot be straight-
forward. It would go back to the number of digits of an integer, leading to small-
range working theorems, such as “performing an addition, the number of digits does
not increase, or it increases by 1”. It would also include investigations of the
number of digits displayed by the calculator. Figure 21 provides a sketch of one
possible way to create a learning milieu.

Multiplication proves the most interesting operation for such an investigation.
One could pursue answers to the question of how the number of digits of the product
relate to the number of the digits of the factors.

A study this type, however, would only be of anecdotic interest. It could only be
meaningful in the context of a medium length teaching process which includes
technical work with mathematical properties. This is how the study on arithmetic
properties with primary school pupils presented above was structured. In the
example in Fig. 21, the theory corresponds to the positional writing of numbers in
base ten and all mathematical properties on which it is based, particularly those of
the ring structure. The reformation of the curricula in the 1970s has clearly shown
that it is a long process to change the workings of a (mathematical) institution. This
interjection does not include that we advocate the return of calculations in different
bases, or the introduction of the study of the rings.

Considering the notion of the learning milieu, we observed that it cannot operate
sustainably without the presence of praxeologies (Chevallard 1999) formed by
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tasks, techniques, a vocabulary describing actions, and properties that relativize the
results of these actions (e.g. “by adding the same even number several times, you
always get an even number as a result”). This is the logos or theoretical part of
praxeologies. We highly believe in the value of material results such as physical
objects, traces on a blackboard, on paper, or on the screen of a calculator. The
physical part of the milieu is essential to recall the actions performed and to help the
development of conjectures (i.e. a table, a list on the blackboard or calculator
displays). The study on the process of the “course a vingt” (Brousseau 1997)
highlights this role of the milieu. In this respect, the use of calculators which
display the mathematical transactions is very important, as well as the opportunity
to present the results to the whole class using an emulator and a data projector.
Kieran and Guzman (2007) highlighted this in their calculator-based experiment for
lower secondary school.

Result

The main research question was how the working with calculators in the classroom
can become a learning milieu.

Therefore, we presented a survey of selected qualitative studies as well as
examples on the use of calculators at different learning levels. In the theoretical
part at the beginning, we specified the conditions LM1 (feedback of the milieu) and
LM2 (links with theory) as a basis for a learning milieu. A high variety of examples
illustrated how these conditions could be totally or partially fulfilled. In the ‘target’
examples, the necessary requirements for a learning milieu are fulfilled in a
complete manner and the calculator is an essential tool. The theoretical output is
impressing at this school level: the students handled properties of divisors, prime
numbers, and square roots. In other examples, the feedback of the milieu showed to
be more problematic which was mostly due to interferences of the didactic contract
and flaws in the teacher’s management. In these cases, what needs to be prepared is
an accurate didactic engineering in order to propose challenging and theoreticaly
rich tasks. Such tasks are provided in the fractions and decimals examples.

From a methodological point of view, it was experienced how the properties
LMI1 and LM2 could be effective as means of analysing the learning potentialities
of calculator activities.

Conclusion

Students’ experiences set out the basis to create learning milieus for mathematics.
These are the reality in which they anticipate their actions and act. Technology,
even a pocket calculator, complicates the learning situation by adding specific
feedback which can be valid and therefore useful, but sometimes also surprising.
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The tool “calculator” cannot be successfully integrated in an instant. It requires
long-term planning which needs to be integrated into the curricula. In Switzerland,
this is accomplished in the new “Plan d’études romand” (CIIP 2010), but in a rather
minimalist manner and without links to specific mathematic subjects. However, the
present contribution showed that calculator activities could improve the study of
arithmetic properties in a significant way such as fraction operations, square roots,
approximation, and algebra. Due to the status quo, the integration of the calculator
is in the sole responsibility of the teacher. In our pre-service institution in Geneva,
they are prepared for this, but, as we have demonstrated, a long-term institutional
strategy is still necessary to transform individual efforts to an effective instrumen-
tation of calculators for the students.
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The Street Lamp Problem: Technologies
and Meaningful Situations in Class

Elisa Gentile and Monica Mattei

Abstract The chapter describes a problem solving activity posed with the use of
a Dynamic Geometry Software to middle school students. The problem leads
students to face a meaningful situation to be explored, and forces them to make
conjectures, to discuss and to formulate an argument. The activity starts with the
manipulation of materials (paper and pencil, pictures and flashlights) and con-
tinues with the transposition of this exploration through technology. We discuss
the use of problem solving activities to improve the argumentation skills and the
added value of technology in exploration activities.

Keywords Problem solving ¢ Geometry ¢ Discussion ¢ Meta-Didactical
Transposition

Introduction

The activity in this chapter belongs to an international research project entitled
“Problem Solving with GeoGebra”, which involved two different countries,
Australia and Italy, with the aim of engaging in-service secondary school teachers
in professional development based on best practices in mathematics. This
research project is connected to a national project, named PLS (Piano nazionale
Lauree Scientifiche — National Programme for Scientific Degrees), born in 2004
from the collaboration among the Italian Ministry of Education, the National
Conference of Headmasters of Science and Technology University Faculties and
Confindustria' with two aims: to increase the number of students enrolled in
Scientific Departments and to improve the professional development of teachers,
promoting collaborations between school teachers and university teachers.

!Confindustria is the main association representing manufacturing and service industries in Italy.
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The project was mainly focused on teachers and their professional development,
during and after a short course led by researchers and teacher-researchers. The
course was addressed to in-service teachers that voluntary choose to attend an 18-h
professional development workshop for teachers that took place in several after-
noons during the school year. The project involved two communities: the commu-
nity of researchers, who designed the tasks and the educational programme, and the
community of teachers who attended the course. The teachers were also asked to
experiment with the activity in their classes, and to reflect on what transpired
throughout the activity with the other teachers and the researchers. The teachers
were observed during both the course meetings and during the didactical experi-
mentation in the teachers’ classrooms; the resulting data were analysed using
techniques of “Meta — Didactical Transposition” (Aldon et al. 2013; Arzarello
et al. 2012, 2014).

The teaching experiment performed is an adaptation to a middle school context
of an open-ended problem, “The street lamp problem”. The street lamp problem has
been studied previously by the team of researchers in Turin, originally addressed to
higher secondary school students (14—19 years old) in order to involve them in a
problem-solving activity, activating their argumentation skills. Since this research
focused on lower secondary school (11-13 year old students), we needed to adapt
the problem to this context. In particular, we paid attention to maintaining the
“openness” of the problem and the idea of problem solving, but we inserted
additional questions to slightly guide the students (and the teachers) to better
understand the problem.

In this chapter we analyse both the students’ side, reporting what happened in
class, and the teachers’ side, focusing on the development of their professionalism.

Overview of Research in Mathematics Education
with Technologies

The CIEAEM Manifesto (2000) reflected about the changing role and the impor-
tance of technology related to mathematical education. One of the key questions
was:

How can the development and spread of new information technologies really give better
access to mathematical knowledge for all? (CIEAEM 2000, p. 7).

The importance of technology in mathematical education was then underlined
by the National Council of Teachers of Mathematics in its two positions, proposed
in 2008 and 2011 (NCTM 2011). In the most recent one we can read:

It is essential that teachers and students have regular access to technologies that support and
advance mathematical sense making, reasoning, problem solving, and communication.
Effective teachers optimize the potential of technology to develop students’ understanding,
stimulate their interest, and increase their proficiency in mathematics. When teachers use
technology strategically, they can provide greater access to mathematics for all students.
(NCTM 2011, p. 1).
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A very important study about technology and mathematics education was the
first ICMI Study in 1985 (Churchhouse et al. 1986). After that many frameworks
followed, emphasizing different aspects of the integration between technology and
didactical practice. For example, the CIEAEM Manifesto (2000) considers modern
technology as a tool to support, facilitate, organise and rationalise learning and
teaching.

In the position about technology, NCTM (2011) highlights that numerous
studies, even more recently, have shown that a mindful use of technologies in
class can support both advanced mathematical thinking (problem solving, reason-
ing, arguing, justifying and even proving) and the acquisition of mathematical
procedures. Furthermore, technological tools used with didactical intent comple-
ment mathematical teaching-learning, and prepare students for their future lives in
which technology will play a crucial role.

The simple availability of technology is not sufficient for effective teaching-
learning process (NCTM 2011); both the teacher and the curriculum can change the
nature of the pedagogical action, mediating the use of technological tools.
According to these points, the focus of the research is now about the role of the
teacher in constructing effective teaching-learning environments using technology
(Artigue et al. 2009; Clark-Wilson et al. 2014; Drijvers et al. 2010). Therefore, it is
important to involve teachers in a professional development programme based not
only on the technology itself but also on didactical methodologies, best practices,
task design and so on (Drijvers et al. 2010). NCTM (2011) pointed out this key
concept in this except:

Programs in teacher education and professional development must continually update
practitioners’ knowledge of technology and its application to support learning. This work
with practitioners should include the development of mathematics lessons that take advan-
tage of technology-rich environments and the integration of digital tools in daily instruc-
tion, instilling an appreciation for the power of technology and its potential impact on
students’ understanding and use of mathematics. (pp. 1-2)

Teaching and Learning with Tools: DGS as an Example

In the last years a great number of studies concerning learning with tools (not only
technological ones) have been carried out, especially in the Italian reality. A very
important document by UMI (Union of Italian Mathematicians) was produced
during years 2000 through 2003 (see UMI 2001, 2003), collecting key ideas for
curriculum improvement. Some of these ideas were included in the official docu-
ment (Guidelines) of the Italian Ministry of Education during its last review of the
National Curriculum (in 2012 for the first cycle of education and in 2010 for the
second one). The UMI documents pointed out that “basic* materials could be used

2We are using the word “basic” without a negative meaning but, on the contrary, with the meaning
of simple and easy to find in every house or classroom. Nevertheless, the Italian word used for
defining these materials (UMI 2003) can be translated with the word “poor”.
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as a meaningful starting point not only in primary schools but also at other levels of
education. The integration of these materials with technological tools can enhance
the teaching-learning process.

We can locate Dynamic Geometry Software (DGS), micro-worlds designed for
specific educational tasks, in the theoretical and political context described above.
DGS allows students to explore, investigate and observe; to look for invariants,
regularities or patterns; and to formulate conjectures and test them within the
software. Knowledge is embodied in this software in ways that facilitate students
facing it directly, constructing mathematical meanings and objects in the process of
using the software (Bartolini Bussi et al. 2004). Marrades and Gutierrez (2000)
underlined this as a non-traditional learning environment:

The contribution of DGS is two-fold. First, it provides an environment in which students
can experiment freely. They can easily check their intuition and conjectures in the process
of looking for patterns, general properties, etc. Second, DGS provides non-traditional ways
for students to learn and understand mathematical concept and methods. (p. 8)

Many research studies have been carried out regarding the role of DGS in
proving mathematical theorems (Arzarello et al. 1999; Marrades and Gutierrez
2000; Paola and Robutti 2001; Sinclair and Robutti 2013). The contribution of
DGS in constructing knowledge and in promoting justifying competencies is
widely recognised among the community of researchers. About this topic, Marrades
and Gutierrez (2000) stated:

DGS environment may help students use different types of justification, setting the basis for
them to move from the use of basic to more complex types of empirical justifications, or
even to deductive ones. (p. 96)

Sinclair and Robutti (2013) pointed out that the role of the teacher is crucial: the
teacher needs to help students develop “schemes of use” (Rabardel 1995). That is,
students have to learn not only how to do a specific action (e.g. dragging, measur-
ing) but also the reasons behind their actions, why some actions are not available on
every object (e.g. non-draggable points), how and when measuring is useful, and
furthermore to learn the limits of using measures with DGS for proofs and justifi-
cations. It is important to introduce the scheme of use in a cognitive and
metacognitive way, rather than to teach the students a sequence of instructions
and rules and then expecting them to reflect on the exploration made.

In this chapter we focus mainly on the role of the integration between ‘““basic”
materials and DGS and the emerging of justifying approaches in middle school
students.

Realistic Mathematics Education

Although the problem was not created under the framework of Realistic Mathe-
matics Education (RME), a Dutch approach to Mathematics Education (see Van
den Heuvel-Panhuizen and Drijvers 2014) that is rarely employed in Italy, this
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theoretical framework came up during the discussion of the teaching experiment at
CIEAEM 66 Conference held in 2014, and we decided to analyse our data in light of
this approach, since we can recognize some common ideas with our framework. In
fact, the question posed at the CIEAEM meeting was about the reality behind the
problem, and we emphasized that the problem was designed to involve students as
actors in the learning process, representing a meaningful situation through a
“realistic” problem.

Van den Heuvel-Panhuizen and Drijvers (2014) explain in this way the meaning
of “realistic problems”, which we believe matches with the intent of our activity:
Although “realistic” situations in the meaning of “real-world” situations are important in
RME, “realistic” has a broader connotation here. It means students are offered problem
situations which they can imagine. [...] It is this emphasis on making something real in
your mind that gave RME its name. Therefore, in RME, problems presented to students can

come from the real world but also from the fantasy world of fairy tales, or the formal world
of mathematics, as long as the problem are experientially real in the student’s mind. (p. 521)

The International Research Project and Its Theoretical
Framework

The open problem analysed belongs to an international research project that
considered the interactions between the community of researchers, who designed
the educational programme, and the community of teachers who attended the
professional development workshop. The “Meta-Didactical Transposition”
(Aldon et al. 2013; Arzarello et al. 2012, 2014) is the framework used to analyse
the data collected through the observation of the teachers.

The Meta-didactical Transposition Model

Meta-Didactical Transposition (MDT) is a new model for framing teacher educa-
tion projects. Its focus is the interaction between the praxeologies of the researchers
and the praxeologies of the teachers (in-service or pre-service training), and the
dynamics between internal and external components (Aldon et al. 2013; Arzarello
etal. 2012, 2014). It is an adaptation of the Anthropological Theory of the Didactic
(ATD) by Chevallard (1999) to teacher education. Its main theoretical tool is the
notion of praxeology, which can be described using two levels:

1. the “know how” (praxis): a family of similar problems to be studied and the
techniques available to solve them;

2. the “knowledge” (logos): the “discourses” that describe, explain and justify the
techniques that are used for solving that task. The “knowledge level” can be
further decomposed in two components: Technologies and Theories.
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Researchers’ — Teachers'
Praxeologies Praxeologies

Internal
components

Internal
Components

Brokering
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DIDACTICAL
TRANSPOSITION

External
components

Shared Praxeologies

Fig. 1 Internal and external components in MDT

In other words, a praxeology consists in a Task, a Technique and a more or less
structured argument that justifies or frames the Technique for that Task.

The MDT model considers the meta-didactical praxeologies, which consist of
the tasks, techniques and justifying discourses that develop during the process of
teacher education, and focus on the mechanisms in which the praxeologies of the
researchers’ community are transposed to the community of teachers, and how this
implementation transforms the professionalism of teachers. In this way, we can
observe a shift from the “savoir savant” to the mathematical and pedagogical
knowledge necessary for teaching.

There are two communities involved in this project: the community of teachers
(who are in training) and the community of teacher-researchers (who designed the
task, act as trainers and observe the teachers). Each of these communities has its
own praxeologies; the challenge at the end of the project is to create shared
praxeologies, thanks to the brokers.

A broker is a person who belongs to more than one community (e.g. a teacher-
researcher belongs to the community of mathematics experts and to the community
of school-teachers). Brokers are able to make new connections across communities
and facilitate the sharing of knowledge and practices from one community to the
other. The creation of such connections by the brokers is called brokering.

Some of the components of the two communities’ praxeologies can change
during the educational programme and move from external to become internal
(Fig. 1), in terms of the community to which they refer.

Institutional Context

One of the current Italian paradigms for the research in Mathematics Education is
“Research for innovation” (Arzarello and Bartolini Bussi 1998), based on teaching
experiments in classroom that involve school teachers in every phase of the
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research, with different roles: teacher-researchers (working with the group of
researchers), teacher-trainers (doing education programmes for teachers) and
teachers (involved in teacher programmes as learners and working in class as
teachers). Sometimes the same teachers may have different roles in different phases
of the project: for example, a teacher-researcher can be also teacher-trainer during
the process of professional development in the education programme for teachers.

National Curriculum — Grade 1-8

Since in this chapter we discuss a problem proposed to lower secondary school
pupils, it is important to understand this problem in the context of the lower
secondary school curriculum. We present here a brief analysis of the Italian national
curriculum for mathematics education.

In September 2012 the Italian Ministry of education released a new version of
the National Curriculum for the first cycle of education (from 3 to 14 years old). The
National Curriculum is organized into “Goals for the development of competences”
and “Learning Objectives”, and explains the expected knowledge and competence
at the end of lower secondary school. The National Curriculum is also accompanied
by a description of the main ideas of the teaching-learning process and of the
different school subjects.

Here you can find some quotations from the National Curriculum for the lower
secondary school excerpted because of their relevance for the framework of the
activity we proposed (bold by the authors).

The resolution of problems is a characteristic of mathematical practice. Problems need to be
understood as real and significant issues, related to everyday life, and not just as repetitive
exercises or questions that are answered simply by recalling a definition or a rule. Gradu-
ally, stimulated by the teacher’s guidance and the discussion with peers, the student will
learn to deal with difficult situations with confidence and determination, representing them
in several ways, conducting appropriate explorations, dedicating the time necessary for
precise identification of what is known and what to find, conjecturing solutions and
results, identifying possible strategies.

Particular attention will be devoted to the development of the ability to present and
discuss with their peers the solutions and the procedures followed.

The conscious and motivated use of calculators and computers must be encouraged
appropriately [...] to check the accuracy of mental and written calculations and to explore
the world of numbers and shapes.

The development of an adequate vision of mathematics is of a great importance. This
vision does not reduce mathematics to a set of rules to be memorized and applied, but
recognizes mathematics as a framework to address significant problems and to explore
and perceive relationships and structures that are found and occur in nature and in the
creations of men.

Furthermore, we framed our activity with the following Goal for the develop-
ment of competencies:
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To explain the procedure followed, also in written form, maintaining control on both the
problem-solving process, both on the results.

and the following Learning Objective:

To know the definitions and properties (angles, axes of symmetry, diagonals,...) of the main
plane figures (triangles, quadrilaterals, regular polygons, circles).

The National Curriculum provides clear instructions: the teaching of Mathemat-
ics must start from meaningful situations to stimulate and involve students, and to
give significance to the topics. In particular, in our experimentation we encouraged
the use of technological devices, since the use of technology can effectively support
the reaching of some of the National Curriculum goals. As a matter of fact, using a
dynamic Geometry software like GeoGebra, students are main actors in their
learning process: they can easily explore situations, generalize problems, make
and check conjectures.

Class Context

We proposed this activity to 12 year-old pupils belonging to two different schools.
One class, whose teacher was Monica, came from “Istituto Don Bosco” in San
Benigno Canavese (Turin). It was a 25-student class, including 4 boys with learning
disabilities. During the school year they showed interest and curiosity in front of
Maths problems, especially involving real situations. In the first part of the year,
students started to use GeoGebra as a tool for exploring the geometrical content of
the curriculum in an active way. They showed, first of all, astonishment and then a
strong desire to learn how the software works.

The other class, whose teacher was Elisa, came from “Scuola Media Holden” in
Chieri (Turin). The class was composed of 2 students: a male and a female. They
were interested in and curious about the activities proposed during maths lessons.
They were used to working with a laboratory methodology and to discussing results
and ideas with the teacher. They started to use GeoGebra to explore Geometrical
properties (such as angles, perpendicular and parallel lines, etc.) as a support for
manipulation of materials (paper folding, paper and pencil, etc.). Both the classes
experienced the activity in the second part of the school year, in the same week of
April.

The Street Lamp Problem

The street lamp problem, as we said before, is an open problem. The starting
situation is a meaningful situation for the students: the municipal technician has
to put a unique street lamp in a triangular pedestrian area, designed by the previous
administration. The technician has to find the best point for the street lamp in order
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Fig. 2 The pedestrian area,
covered with grass

to light up the entire triangular area. This is the text of the problem given to the
students of lower secondary school:

The City Council has decided to build a small triangular pedestrian area planned by the
previous administration. The registered project foresees only one street lamp as illumi-
nation for the whole area. Here there is the picture of the pedestrian area (Fig. 2).

Can you help the technician, who will have to deal with the installation, to find the exact
point where the street lamp should be placed?

Part 1: You can use the picture of the pedestrian area and an electric flashlight to simulate
the street lamp. Explain how you will proceed to find the best place to locate the
street lamp.

Part 2: Now open the file GeoGebra Streetlamp.ggb. You will find the pedestrian area to be
lit. Together with your group try to find, using GeoGebra, the best point.

What are the operational guidelines that you could give to the municipal technician to
identify the point to put the lamp in? What are the relationships of that point with the
triangle that defines the pedestrian area?

Part 3: In your opinion, does the position of the point depend on the shape of the pedestrian
area? What happens if the triangular shape changes? Be careful! It always remains a
triangle but with a different shape! Try to explore the situation with GeoGebra: draw in
a new sheet a generic triangle and save the file as Park.ggh. Explain what you have
discovered and give reason for your answers.

In order to guide our young students, we divided the problem into three parts,
beginning with the exploration with “basic” materials and arriving at the use of
GeoGebra. In this activity the use of GeoGebra was thought not only to establish
confirmation of previous conjectures but also to enable exploration of a more
general situation. We also added the sentence related to the operational guidelines
to be given to the technician as a way to foster students’ argumentation skills:
forcing them to explain to a third person how to find the exact point can help them to
more deeply understand the geometrical properties of that point (e.g. it is the
intersection of the perpendicular bisectors, it is equidistant from the vertices, etc.).

Design of the Open Problem

The design of the problem involved the community of teacher-researchers together
with university researchers; they worked to construct the project and the activities
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(Bardelle et al. 2014). The streetlamp problem is a transformation of an OECD Pisa
item, expected to have only one answer (the circumcentre, see OECD 2003) within
an open-ended problem, focusing on multiple solution methods and argumentation
skills.

The task in the OECD (2003) Pisa Test was:

The City council has decided to construct a streetlamp in a small triangular park so that it
illuminates the whole park. Where should it be placed? (p. 26)

The problem has been transformed into a more open one, working mainly on
three aspects: exploration (with “basic materials” and with GeoGebra), different
solutions and discussion.

The idea of giving more space to exploration with both “basic” materials and
GeoGebra has been made explicit by adding the sentences:

You can use the picture of the pedestrian area and an electric flashlight to simulate the street
lamp. Explain how you will proceed to find the best place to locate the streetlamp. [...]
Now open the file GeoGebra Streetlamp.ggb. You will find the pedestrian area to be lit.

While the idea of giving more space to different solutions depending on the
constraints has been made explicit by adding:

Together with your group try to find, using GeoGebra, the best point. [...] In your opinion,
does the position of the point depend on the shape of the pedestrian area?

The idea of giving more space for discussion has been suggested by the follow-
ing request:

What happens if the triangular shape changes? [. . .] Explain what you have discovered and
give reason for your answers.

Giving more space to exploration meant to let students face the problem for a
first time with the use of paper, pencil and an electric flashlight to simulate the lamp,
for a second time using a DGS such as GeoGebra to analyse the problem from a
static point of view and for a third time using GeoGebra that enables and even cries
out for a dynamic perspective where constraints can change.

This exploration with “basic” materials and technological tools helps the
students to grasp the dynamicity of the problem and to consider different
solutions depending on the shape of the pedestrian area and on the constraints
they fixed.

The OECD Pisa item was focused on the transformation of the problem into a
mathematical problem: “locating the centre of a circle that circumscribes the
triangle” (see OECD 2003 pp. 26-27). The reformulation, instead, is focused on
the argumentation skills of the students. In fact the problem does not have a clear set
of information to start with (e.g. Is the park inside a residential area? Is it possible to
put the lamp outside the pedestrian area? ...). The different solutions depend on the
choices made by students, on the ideas they consider relevant for the problem, and
on the constraints they fix. Having different possible solutions forces the students’
argumentation skills, and requires them to develop a strategy for defending their
solutions, explaining their reasons, justifying their choices and even proving.
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The methodology we used in designing the activity is based on the idea of a
“mathematics laboratory” (UMI 2003) not as a physical place, external to the class,
but as an approach to mathematics itself:

A mathematics laboratory is not intended as opposed to a classroom, but rather a method-
ology, based on various and structured activities, aimed to the construction of meanings of
mathematical objects. A mathematics laboratory activity involves people (students and
teachers), structures (classrooms, tools, organisation and management), ideas (projects,
didactical planning and experiments). [...] In the laboratory activities, the construction of
meanings is strictly bound, on one hand, to the use of tools, and on the other, to the
interactions between people working together (without distinguishing between teacher and
students). (UMI 2003, p. 28).

The tools of the laboratory can be “basic” materials (transparent sheets, paper
folding, grid paper, use of pins and twines), mathematical machines® or technolog-
ical tools, such as DGS or CAS. During and after the laboratory, the “mathematical
discussion” (Bartolini Bussi 1996) is the key point, in fact through the discussion it
is possible to construct meanings and common ideas.

Aim of the Activity

The problem as posed is related to the exploration of a contextualized situation that,
regarding mathematical content, leads to the centres of a triangle, focusing on their
geometrical properties.

In Monica’s classroom, pupils had already studied triangles and triangles’
centres, whereas in Elisa’s classroom only triangles and the concepts of perpendic-
ular bisector of a segment, angle bisector, median and altitude had been introduced.
Then, in the first situation the problem-solving aim was meant to consolidate
acquired knowledge with the testing of the students’ competences in using known
mathematical concepts within unknown contexts. In the second situation, the aim
was more aptly describe as construction of mathematical objects along with a
co-construction and discovery of related geometrical properties.

The aim of this activity was not to create students skilled in the use of GeoGebra,
but rather to support the development of skills requisite to exploring, conjecturing,
justifying and arguing; the aim was also to construct a curriculum around a
meaningful problem, powerful in engaging students in a specific context and
stimulating their problem-solving competencies. Within this use of technology,
the focus was not on the tool per se, but on the learning process mediated by the
tool, on the new possibilities opened by the tool and on the mathematical objects
constructed with the tool. Exploration, argumentation, justification and explanation
are the key concepts in this problem-centred activity: it allows students to do maths
and to build a piece of knowledge through finding solutions by themselves,

3For further information, see UMI (2003, p- 28).
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exploring, arguing and justifying their choices. The power of open-ended problems
is that the solution depends not only on the problem itself, but also on the
interpretation of the problem that students make, on the constraints they fix, on
the assumptions they make. Furthermore, the use of a dynamic software environ-
ment generates a learning environment that is naturally open-ended because of the
way that the dynamic software demands the changing of constraints. It allows the
creation of a family of related problems that share characteristics but, at the same
time, provoke new directions of exploration caused by the changing constraints.

This use of exploration problems, matched with the use of technology, since the
lower secondary school, can help students to face with proofs and can improve their
proving competencies, that will become central in the further studies.

Although in the text of the problem there is a reference to the real world, the
focus was not to create a realistic problem, plausible from the point of view of the
real life. The main aim was to create a problem able to involve students as actors in
the learning process and to shift to them the responsibility of learning. In this sense
we can say that the problem is not “real”, meaning belonging to real-life, but is
“realistic” because it is meaningful for the students, according to RME approach
(Van den Heuvel-Panhuizen and Drijvers 2014).

Description of the Activity

The activity was organized into 4 phases: three of them were developed by group
work while the last one was collective.

1. Analysis of the situation using “basic” materials. Students explored the open
problem with “basic” materials: paper and pencil, a flashlight and the picture of
the park.

2. Exploration of the problem with static use of GeoGebra.

. Exploration of the generic situation with dynamic use of GeoGebra.

4. Collective discussion in order to construct together the meanings of the objects
involved in the activity.

(98]

Research Questions and Observation’s Methodology

The research questions we asked ourselves at the beginning of the teaching exper-
iment can be divided into two categories:
Students related

* What is the value added by this activity to the competence of our students?
o Is the use of technology an added value to the activity?

Teachers related

¢ Had the brokering been performed fostering the creation of shared praxeologies?
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During the activity, in order to observe and analyse both students and teachers’
works, we used a logbook to record, day by day, the things done, the materials used
and to write observations about our behaviour as well as the behaviour of the
students. Since we gave them forms, with some questions that guided the explora-
tion of the problem, to work with and to fill in, we also collected them to reflect on
our experimentation in teaching methodology. Elisa observed Monica’s class
during the activity, while Elisa’s lessons were videotaped.

Critical Analysis

In order to answer out research questions, we critically analyse the activity,
focusing on both the work of the students and the teachers.

Critical Analysis of the Activity in Monica’s Classroom

Students were divided into working groups of 4-5 people and they were asked to fill
in a report giving a shared answer to the questions. We are going to analyze these
protocols focusing on the most interested passages.

First Phase

As soon as the students received the flashlight, they started using it to simulate the
lamp. First, they noticed that the lamp can be put perpendicular to the ground or
oblique: this aspect disoriented them since they were used to exercises with only
one solution. Discussing within the group and then all together, guided by the
teacher, they agreed that the perpendicular position lights up better than the oblique
one. The teacher, in order to encourage them, explained that in this kind of activity
there is not a right answer or a wrong one but “every” answer, if justified, is right.

Then they drew some of the fundamental elements of the triangle and two
different conjectures emerged concerning the best point: four groups over six
chose the barycentre and the other two the circumcentre.

During the previous lesson, the teacher showed, using a cardboard triangle and a
pencil as a support, the physical property of the barycentre of being a point of
equilibrium. This demonstration suggested students and could, reasonably, had
influenced their choice.

From their protocols we can notice that while students were working in a
mathematical context they were making considerations concerning the real context.
For instance, in Marta’s group protocol (that chose the barycentre) we read:

The lamp however must be high to light up more the fixed area.
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[The lamp needs to have an adequate altitude to light up the whole park.]

Fig. 3 Alessandro’s group solution
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[We have found the barycentre but, then, we noticed that this was not the right method,
since we were wasting too light.]

Fig. 4 Umberto’s group consideration

And in Umberto’s one:

Putting the lamp in the centre [barycentre], we notice that lifting it up we are able to light up
all the park.

Also Alessandro’s group, that chose the circumcentre instead, noticed what is
shown in Fig. 3.

Second Phase

We gave the students a GeoGebra file with the picture of the pedestrian area and
asked them to work on it. They reproduced with GeoGebra the same construction
made with paper and pencil. The static use of GeoGebra helped students to clearly
visualize their conjectures and to reflect on the suitability of the choice made.
Sometimes, after a discussion with peers, they changed their minds as we are going
to analyse.

For example, Umberto’s group wrote (see Fig. 4).

They discussed together looking for a better solution. With the help of GeoGebra,
they built several triangle’s centres and drew some circumferences. They agreed
that the best one, with their constraint of wasting as least as possible light, was the
circumcentre. Finally they wrote:

The circumference we have drawn fits perfectly with the triangle.
They noticed that the circumference passed through all the three vertices (Fig. 5),

linking together their geometrical knowledge with the exploration of a realistic
problem.
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Fig. 5 Solutions in Umberto’s group: first barycentre and finally circumcentre

The technological tool helped students to approach to the problem in different
ways and to connect mathematical objects to their meanings.

The first solution of Giulia’s group was the barycentre, but after a discussion
they decided to search for a circumference passing through all the vertices, they
drew it with GeoGebra and then they used their mathematical knowledge about the
circumference circumscribed to a triangle to find the point:

We found the barycentre, then we noticed that it wasn’t the best solution. We drew the
circumference through three points [the vertices] and we used the tool perpendicular
bisector on every side of the triangle to find the intersection.

Third Phase

Dragging the triangle drawn with GeoGebra, students were able to explore different
situations, making observations that were not possible with the only use of paper
and pencil. We are going to report two meaningful quotations in order to support
our assertion.

Marta’s group (that moved to circumcentre) wrote:

In the case of the triangle representing the park, the lamp was inside the area, but changing

the shape of the triangle we saw that the circumcentre is outside. But if the lamp is higher,

even if it were outside the park, it will light up everything [all the park]. We also noticed
that, the lamp [put] outside the park lights besides it also the surroundings.

While Alessandro’s group wrote:

[The lamp] can light the park even if it is outside but, in the reality, such high lamps do not
exist.

Paying attention to students’ work and listening carefully to their discussion, as
teacher we noticed that the more they explored, the more they became curious and
interested. Some groups, as we have reported, wondered which was the connection
between the abstract situation (the triangle, the centre of the circumference and the
circumference) and the real situation where we have to use a real lamp. Comparing
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the geometrical solution found with the real situation, students noticed that there
were some problems in putting the street lamp outside of the pedestrian area and,
furthermore, they wondered about the maximum possible height of a lamp.

Fourth Phase

We guided the students to explain their solutions in order to convince the other
classmates about their ideas. This part of the activity deeply involved students’
ability of justify and argue. Almost the students took actively part in the discussion,
explaining their ideas or making observations. We report the most interesting
considerations:

The barycentre is not always the best solution! In some cases you have to waste a lot of light
in order to light up all the area.

Another student said:

If the circumcentre is outside the park, you need a very high lamp that could not exist in the
real world.

This two sentences point out that students are simultaneously reasoning on two
levels: the mathematical one and the realistic one, considering geometrical proper-
ties and real problems. Other considerations raised, concerning the situation where
the circumcentre is outside the park: “We cannot put the lamp in another property”,
“Or in a river” beat one classmate “Or in the middle of a motorway” said another.

The ending of the activity was not the choice of ONE solution, but of a SET of
solutions and a SET of justifications for those constructions:

¢ The barycentre seemed to be a suitable point since it was always inside the
triangle. Students noticed that in some cases the lamp lights up a big area around
the park but they agreed that this was an added value;

* A group of students agreed that the circumcentre is always the best solution, even
if it is outside the park, because the circumference passes through all the vertices;

¢ Other students agreed that the circumcentre is the best point in the case of an
acute angled triangle while, in the case of an obtuse angled triangle, the best
choice is the barycentre.

Finally we briefly asked them (because the lesson was ending) a personal
opinion about the activity. Most of the students were rather surprised from the
activity proposed: since schoolbooks usually have closed problems, at the begin-
ning they felt disoriented. Then, they told to have appreciated the use of technology
because it allowed them to explore in order to find the point.

Furthermore, students with learning disabilities, that were often bored and
distracted during traditional lessons, were actively involved in group working,
and in one case a student acted as leader working with GeoGebra.



The Street Lamp Problem: Technologies and Meaningful Situations in Class 213
Critical Analysis of the Activity in Elisa’s Classroom

Elisa’s students have already studied the fundamental elements of triangles (angle
bisectors, perpendicular bisectors, medians and altitudes) but they never faced the
triangle’s centres, nor in a theoretical way, neither in an exploration activity. The
street lamp problem was used as a starting point for the discovery of such centres.
Since the class was very small, composed of only two students, they worked in pair.
On one hand this represented an advantage: in fact, it allowed the teacher to follow
students’ reasoning very closely, on the other hand it represented a disadvantage:
the collective discussion was less rich because no other point of view was present.

The teacher introduced the activity leveraging on the “realistic” connotation of
the problem (in the RME meaning), trying to involve the students as actors:

T: This is a realistic problem, we have to try to understand how to solve this problem,
knowing that there is not only one correct answer. This is not a “standard” problem,
like an exercise. .. you finish it and you get the result. . . that is the same to the one
written in the book. Here, we have to let our brain work. . .

V: Right!

T: The same happens in our everyday life. .. in our real life we do not have the result at
the end of the book, right?

The exploration phase is very important and it is important to do this activity at
first time manipulating some materials. As soon as Edoardo picked up the flashlight,
he moved it up and down, looking at the light on the picture of the park (Fig. 6).

E: Up or down?

Although the initial idea was to put the streetlamp vertical (as the flashlight in
Edoardo’s picture) the students engaged a discussion to decide what kind of
streetlamp use.

T: Try to discuss. .. I will do in this way. .. I will do in that way. ..
E: I will do this [puts the flashlight on one vertex]
V:  Yes, but. .. here [points the farthest vertex] there is no light. . .

Fig. 6 Edoardo with the flashlight
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Fig. 7 The model of the lamp
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However. .. if we put the lamp here [points where Valentina pointed before] it does
not light up there [points the vertex in which he put the lamp before]

[...]

Up... [puts the flashlight perpendicular to the sheet, but it lights up also outside the
park]

It is too high!

But it lights up everything!

And, what about here? [he comes back to his original idea — a vertex]

No!

During the exploration with “basic” materials they used the flashlight and the
fingers or a pen to simulate the lamp (Fig. 7)

T:
E:
V.

Think about. .. what does the lamp look like?

It is high, like this [points the picture of the lamp on the paper]

A straight line and then like this. . . [puts the flashlight down] [...] Maybe we can use
Edoardo’s finger. ..

The discussion continued, with the teacher posing some level-raising questions
and helping the students to make a decision about the kind of streetlamp. The shape
of the lamp represented the first constraint chosen by the students, as underlined by
the words of the teacher.

T:

4<H

And... how can you choose the point?
[...]
I got it! We will put the lamp here [points the centre of the triangle, with the flashlight
perpendicular to the sheet]
[.]
Let’s try to have a different lamp. . .
As I told before!
... Have we decided that we like more this kind of lamp? Ok, so we have done a
CHOICE:
how does our lamp look like? Our streetlamp is one of those with the light bulb
hanging down. And now. .. where do we put it?
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Fig. 8 The construction of angle bisectors

The students decided to draw the angle bisectors in order to find the point (Fig. 8).
Probably they chose in a first time the angle bisectors because the teacher worked a
lot on this topic, constructing them in several ways: using paper folding, tracing
paper, compass, GeoGebra, also exploring the property of their points of being
equidistant from the sides of the angle.

After drawing the angle bisectors and discovering that they all meet in the same
point, they pointed out that the height of the flashlight/lamp was an important
variable for the problem in order to light up the entire park.

During the second phase the students worked on the GeoGebra file prepared by
the teacher, with the same picture of the park used with the flashlight. Students used
GeoGebra as a static instrument reproducing the same construction made with the
flashlight and the compass. In this phase they never tried to drag the triangle,
because the picture of the park (underlying the triangle) forced them to focus on
that specific triangle. The previous activity with “basic” material helped students in
this technological phase, the mediation of these instruments enabled them to find a
first solution to the problem connecting the image of the circular light of the
flashlight with the concept of circumference. In particular, Valentina used the
flashlight also with the screen of the computer and Edoardo found the mathematical
object connected and represented it in GeoGebra.

And now, that is the point you have chosen, how can we manage. . .

In GeoGebra there is not a lamp-tool. . .[puts the flashlight near the screen of the pc,
representing the same situation explored before with paper and pencil]

I got it... [draws a circumference]

Edo, what have you done?

I drew a circumference

What circumference?

Passing through the farthest point

From the lamp

The circumference has to pass through the point A, because it is the farthest and then
we are sure that the circumference contains the other two points. . . In fact, if I draw a
circumference passing through C, something remains out. .. (Fig. 9).

<
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Fig. 9 The right radius of the circumference

Once this solution was found, the students were happy and thought to have
solved the problem. The teacher suggested some further reflections on the question.

T: And, in your opinion, is this the BEST point? What is the meaning of BEST point?

The students, then, checked other possible situations and drew the perpendicular
bisectors (apparently without a particular reason). They discovered that the circum-
ference in that case passed through all the three vertices and decided that this one
was the most beautiful solution.

V: We have found a new point! [...] The circumference now “takes” everything! And it
is also smaller than the other one! (Fig. 10)

T:  What has happened?

V: With the perpendicular bisector. .. the circumference now ‘“takes” all the points
[points at the vertices] instead before it takes only the point A. Now there is more
light, while before, with the bigger circumference, the light was less intense. So this
one is PERFECT.

T:  Why do you like this point more than the other?

V: Because it is more centred, the circumference is smaller and it lights up more the park!

T:  And what other characteristics does this point have?

V: If we do a smaller circumference, then it does not pass any more through all the

vertices. This point is BEAUTIFUL.

Then the students investigated the properties of this centre (circumcentre) while
they were trying to explain to the technician how to reach the point, and discovered
that it has the same distance from the vertices. The teacher continued asking
questions in order to connect the geometrical situation with the realistic one.

T: How would you explain to the technician how to find the point?

E: He has to construct the perpendicular bisectors.

T: Yes... and the technician will say to you “I do not know how to construct a
perpendicular bisector”.
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Fig. 10 Circumcentre versus incentre

Fig. 11 The distances from the centre

o<

I will say to him “Take half of each side of the park...”

And then? [...] What kind of point is the centre?

It has the same distance from A, B and C [the vertices], because if the circumference
centred there passes through A, B and C.. . then the distance is the same.

It is perfect.

Let’s ask GeoGebra. . . [uses the distance tool to verify if the point is equidistant from
the vertices. Figure 11]

Can we say to the technician how to construct the point?

With the perpendicular bisector tool.

But does he have this tool?

No.[...]

Walk away from the sides of the park, perpendicularly, starting in the midpoint.

The students explored the problem from a dynamic point of view. Valentina
suggested to draw a lot of different triangles, but Edoardo immediately replied that
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Fig. 12 Obtuse angled
triangle: the circumcentre is
outside (zoom tool)

they could use the dragging tool, he drew a generic triangle and moved the
vertices around. They reproduced the same construction for the circumcentre and
they noticed that, dragging the triangle, there were some situations in which this
point seemed not so “beautiful” as before: the streetlamp was outside the park and
the circumference was big. They explored with GeoGebra in order to find what
kind of triangle was it and they argued it was the obtuse angled triangle. They
dragged the triangle unless it was “less obtuse angled” (measuring the angle with
GeoGebra) and they verified with the zoom tool that the circumcentre was still
outside (Fig.12).

At first they recognised that, when the circumcentre is outside the park, the
streetlamp needs to be taller in order to light up the whole area. The teacher asked if
there were other problems in putting the streetlamp outside and then they decided
that it would be not suitable to have it outside the park, then they moved back to the
incentre for the obtuse angled triangle.

Through this activity the teacher became aware of some aspects of their students
she never observed before: Edoardo, who has some difficulties with calculations,
procedures and sequential activities, showed wide intuition and a great accuracy in
the geometrical construction, while Valentina became more self-confident, in
particular facing problems, instead of being “afraid” of problems such in previous
experiences, and solved the task with determination.

Elisa’s students, used to laboratory and discussion, were able to discover by
themselves that, for instance, the three angle bisectors of a triangle meet in a unique
point, that, in a generic triangle, this point is not the same as the intersection of
perpendicular bisectors or medians or altitudes and that the circumcentre is equi-
distant from the vertices. Only at the end of the activity, during the institutionali-
zation discussion, the teacher gave the “names” to these points and formalized
definitions and properties.

Comment About the Activity Experienced

The technology represents a key element of this teaching experiment. Technology
is involved in the activity with the use of a DGS — GeoGebra — to explore the
problem. GeoGebra has the power, as others DGS, of being dynamic, so the
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students can manipulate dynamically the shapes they constructed by dragging them,
they can also modify the shape (enlarge, restrict, etc.) keeping unchanged the
construction protocol.

The manipulation in this activity occurred twice, the first time was a concrete
action with materials, while the second was a construction and dragging activity
carried out with the software. Within the first part, students focus the problem and
try to find a solution that will be confirmed, rejected or modified by the observation
of the dynamic situation represented with technology.

The integration between “basic” materials and GeoGebra helped students to con-
struct knowledge, and the dynamic use of GeoGebra gave students space to explore,
conjecture and argue. One of the added values of this kind of activity is the mediation
of instruments and technology (think about Valentina with the flashlight on the screen).
The first phase pointed out that the tools we named “poor/basic” (in the meaning of
simple) are instead very “rich” elements for the comprehension of the problem. But the
use of technology offers more possibilities to investigate the problem with constraints
changing over time. Without technological tools the activity’s solution could be very
different, the dynamicity of the software helped students to emphasize the critical
aspects, such as the obtuse angled triangle case and to grasp the variability of the
situation over time. For instance, when they used the picture of the triangle it was not A
generic triangle, but it was THE particular triangle drawn. When they draw instead a
triangle with GeoGebra, it was really a generic one: using the dragging it can change,
but maintaining its own properties as a triangle. Looking at the experience, we noticed
that students were able to use their knowledge in a real situation, different from the one
in which they have learnt it, improving their competences. Finally, they have been able
to manage a collective discussion, sharing their ideas and constructing together the
meanings. As teachers we noticed that open-ended problems give the possibility of
discussing about various aspects, even different from those designed.

Critical Analysis of the Teachers

We tried to find some answers to the research questions analysing the data collected
during the teacher-training course: written materials (the beginning questionnaire
and the logbook) and also video materials (the beginning interview).

We applied the MDT model to Monica, who belonged to the teachers’ commu-
nity while Elisa belonged to the teacher-researchers’ community and acted as a
broker during the educational programme.

Initially, the use of GeoGebra in lower secondary school and the use of open-
ended problems are external components for the teachers, as we can recognize in
the following excerpt from Monica’s interview:

I: Do you use technology in your class? What kind of software?
M: Although I’ve been teaching for many years, this is the first year I use technology in
class. This year we have the Interactive White Board (IWB) in class and I also
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attended some courses to learn how to use GeoGebra in class. We don’t have a
computer lab big enough to contain all the students, so I worked in class with the
IWB, showing the files and the constructions. Students downloaded the software in
their personal devices and used it to solve some homework.

Also the focus on the National Curriculum was an external component:

et

Does your Annual Programme of Education follow the National Guidelines?

M: When we wrote the Annual Programme, we followed the previous year’s programme.
When I started to work in this school the other teachers working here before had
already written the programme and I didn’t change anything. We never compared the
National Guidelines with our Programme. Actually the reference with the Guidelines
is missing, but I know the National Guidelines and I think the Programme follows
their main ideas.

The laboratorial methodology (group work and discussion) was also an external
component for Monica:

I: Are you used to collective discussion? What kind of activity do you manage with
collective discussion?

M: Ilike that students compare their ideas and reasons, but I think that in a middle school

(maybe due to the age of the students) it is difficult to manage effective discussions.

Students are interested, but they are not able to organize properly a discussion, they

have to learn to talk one at a time and to listen to their mates. You waste a lot of time

trying to manage the mess and this persuades me not to use the discussion. [...]

Sometimes I use it during science lessons.

Are you used to group work? Do you think it is useful?

M: Inever used group work with this class. They are 25 students and for reasons of time
and organization I avoided it. Maybe group work is useful. I have always the problem
of managing time: group work needs a lot of time.

—

At the beginning Monica was sceptical and worried about proposing the activity
to her students due to its openness and, furthermore, because the students were very
young (12 years old). But she accepted the challenge. At the end of the educational
programme the National Curriculum, the use of GeoGebra in middle school classes
and the laboratorial methodology became internal components in her praxeologies
as we can notice in these excerpts from Monica’s logbook.

During the activity the students seemed very interested and involved, working seriously on
the task given, arguing and justifying their solutions in an accurate way. I felt very involved
in this activity; they worked with interest and curiosity and this gave me a great satisfaction
and an incentive to repeat in the future this kind of experience. I’'m going to design other
activities like this one and I will use group work for other tasks.

Elisa acted as a broker, being a teacher as Monica but also a member of the
researchers’ community (as a teacher-researcher). She discussed with Monica and
the other teachers, sharing ideas and doubts, reflecting on their didactical practice.
The action of brokering was performed by the teacher-researchers during the face-
to-face sessions of the course and also through the Moodle platform with forums
and discussions.
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Among the preaxeologies of the researcher community, we choose to analyse
the praxeology of designing a task for the teachers. We can recognize the four
elements identified in ATD (Chevallard 1999):

Task: designing the activity for teachers and students;

Technique: finding a problem considered linked to the topics of Curriculum;
opening a close-ended problem, adapting it to the aims of the project, the
methodology to induce, the use of GeoGebra and the institutional constrictions;

Technology: institutional (the new curriculum), from research about exploring,
conjecturing, arguing, proving, the use of mathematics laboratory and the use
of GeoGebra;

Theory: research elements such as: open problem, conjecturing and arguing, math-
ematics laboratory, meta-didactical transposition with the related literature as
background.

This praxeology became a shared praxeology when Monica, during the educa-
tional course, designed tasks for her own students, in particular Monica took part in
the following year to another PLS educational programme, focused on Task design
for students.

Conclusion

During the activity, students worked in two different environments: the paper and
pencil environment and the technological environment. Technological tools
allowed students to explore a variety of different situations simply by dragging
the construction made in the specific case. With DGS they can easily represent a
generic situation and then study how it changes, test the different ideas and
solutions found and validate those most appropriate to their model while justifying
choices. Both paper and pencil and technology are important tools for problem
solving, but the real potential stands in their integration. Using only paper and
pencil or only technology, students do not achieve the same results as they do when
using them together. The key point is the mediation and integration of the two
environments.

Furthermore, the experience was useful for teachers and students alike. Monica
experienced a new approach and new praxeologies, improving her professionalism
as a teacher, while her pupils were involved with a leading role in the activity: they
have made decisions, discussed, argued and mobilized their competencies. Elisa
had the opportunity of observing again her didactical practice and to reflect further
upon it.

Taking part in an international project is a great opportunity for sharing ideas,
methodologies, doubts and for the construction of shared praxeologies, that will be,
from now on, a critical component of the praxeologies of the teachers involved in
the training.
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A Framework for Failed Proving Processes
in a Dynamic Geometry Environment

Madona Chartouny, Iman Osta, and Nawal Abou Raad

Abstract The study aimed to evaluate the potentialities of Dynamic Geometry
Environments (DGE) in the teaching and learning of mathematical proof by
analyzing students’ cognitive processes while solving an open geometry problem.
The study was conducted in a grade-10 math class in a Lebanese school. Data were
collected through whole-class observation with analysis of paper-based data and
closer observation of 12 pairs of students. The analysis focused on the mistakes that
occurred at the three stages of the proving process: the construction and manipu-
lation of the figure; the formulation of the conjecture; and the proof itself. The
results suggest the development of a “framework of failed proving processes” that
classifies errors by type and by explanations for the failure.

Keywords Proof « Dynamic geometry « Secondary « Failed proving processes ¢
Conjecture elaboration

Introduction

The teaching and learning of mathematical proof has always been a challenging
process for both students and teachers. Many research studies in mathematics
education have been conducted to investigate proving processes and to analyze
the types of proofs produced by students. (Balacheff 1988; De Villiers 2012; Hanna
and De Villiers 2008; Harel and Sowder 2007). Some studies have led to epistemic
and pragmatic strategies aimed at the advancement of the teaching and learning of
proof in school mathematics. Harel and Sowder (ibid) identify proving as the
process that an individual or a community employs to remove doubts about the
truth of a statement. De Villiers (2012), however, rejects the definition of proof in
terms of its verification function or any other function. He argues that “proof should
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rather be defined simply as a deductive or logical argument that shows how a
particular result can be derived from other proven or assumed results; nothing more,
nothing less” (p. 4). In this definition, the truth or validity of the statements, whether
the premise or the conclusion, is not the main concern. Hanna and De Villiers
(2008) argue that even though there are diverse definitions to proof in formal
mathematics one crucial principle underlies all of them. This principle is: “To
specify clearly the assumptions made and to provide an appropriate argument
supported by valid reasoning so as to draw necessary conclusions” (p. 329). This
main principle is at the core of proof, yet it also expands to situations that
are external to mathematics and establishes a base for the reasoning of human
beings.

Many researchers have analyzed the types of proofs produced by students and
classified them according to the types of arguments presented. Balacheff (1988)
studied students’ proofs as products and provided a classification of proofs
according to a continuum from empirical to deductive arguments. Additionally,
he distinguished two types of justification, namely pragmatic and conceptual
justifications. Pragmatic justifications are based on the use of examples, actions
or showings, whereas conceptual justifications are based on abstract formulations of
properties and of relationships among these properties

Marrades and Gutiérrez (2000) built on Balacheff’s classification by adding
sublevels to the existing categories, as well as a new category, that of failed
justifications: “Failed justifications are necessary to complete the classification
because the assessment of students’ justification and proof skills cannot be associ-
ated only to correct solutions of problems” (p. 94). A failed justification occurs
when students employ empirical or deductive strategies to solve a proof problem,
yet either fail to elaborate a correct conjecture, or, in case that they do elaborate a
correct conjecture, they nevertheless fail to provide any justification.

According to Harel and Sowder (1998), proving or justifying a result involves
ascertaining — that is, convincing oneself, and persuading — that is, convincing
others. In their 1998 study, they constructed a framework for the analysis of
students’ proof schemes generated from teaching experience, interviews with
secondary school and college students, and the work of other researchers in the
field. Proof or justification schemes were in this framework organized into three
categories: externally based proof schemes, empirical proof schemes, and analytic
proof schemes. Each of these categories represents a cognitive level; the classifi-
cation framework is not concerned with the content of proofs or their methods.

Hoyles (1998) highlighted the common practice, in the math education litera-
ture, of presenting types of proofs in hierarchical structures where the empirical
precedes the deductive. Despite the need for students to distinguish empirical
proofs from deductive ones, the question remains whether empirical pragmatic
proofs develop into conceptual ones, or whether links can be forged between the
two types. In general, Hoyles showed that students are usually aware of the
limitations of empirically-based proofs, and that they recognize that a theoretical,
formal proof is needed.
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Boero (2007) proposes that a reform of the way proof is being taught in the
classrooms is needed:

Old teaching models (essentially based on learning and repetition of proofs of relevant
theorems as they are written in textbooks) do not fit the current needs of students and
teachers. (...) Therefore entirely new approaches are needed. And these approaches must
take into account the actual complexity of the subject. (p. 19).

In recent decades, educational technologies, which are an example of such novel
approaches, have been introduced to the teaching and learning of proof. Educa-
tional technologies have been made widely accessible to schools, and research on
new technologies has demonstrated their importance for the teaching and learning
of mathematics in general, and for the teaching and learning of proof, especially for
argumentation methods and techniques. The mathematics education literature is
indeed rich with research in this regard (e.g. Artigue 2010; Laborde and Strafler
2010; Leung et al. 2013; Mariotti 2006).

The study presented in this chapter, and conducted in a Lebanese context,
attempts to contribute to this body of research. Its aim is to investigate the role
that Dynamic Geometry Software (DGS) can play in supporting students’ thinking
when solving geometry problems, and analyze the cognitive processes that students
use, and the types of conjectures and proofs that they produce in such an
environment.

Laborde (1998) introduced a distinction between objects, relations and opera-
tions belonging to the theoretical domain (denoted by T), and entities — including
physical actions and opinions — belonging to the spatial-graphical domain (denoted
by SG). When working on a geometrical problem, students are usually expected to
give an answer belonging to the theoretical domain (Laborde 1998). Laborde adds
that teachers accept that students use drawings and figures as auxiliary means; but
these drawings or figures are typically not meant to be referred to in the solution.
However, the solution of a geometry problem lies in both the SG and T domains,
and is characterized by continuous shifts between them. The Dynamic Geometry
Environment (DGE) presents the learner with a combination of the two domains
since it provides diagrams whose behavior is controlled by the theory.

According to Artigue (2010), the DGE can help in generating conjectures and
eventually lead to the construction of proofs, based on the dragging possibility, the
instant feedback, and the dynamic figures resulting from dragging. The DGE tools
are loaded with potentialities that can unite theoretical knowledge with concrete
siuations in a new environment meaningful to students. One example is the possi-
bility given to students by the dragging tool of examining a seemingly infinite
number of instances of the same geometrical figure to support a certain conjecture.
In addition, while dragging, students go back and forth between concrete figures
and theoretical knowledge, which helps them progress from the empirical to the
theoretical level.

Leung et al. (2013) suggested that a defining characteristic of DGE is the
dependency among points and objects of a construction: when basic points are
dragged, each dependent element moves together with the others while preserving
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the properties of the construction. Dragging is seen as a powerful epistemic tool that
supports geometrical reasoning and, in particular, it becomes a tool capable of
producing conjectures. Behind this epistemic power is an implicit assumption that
connects the world of DGE to the formal axiomatic world of Euclidean geometry.

Trying to make explicit such assumption, we state it as the following dragging exploration
principle: During dragging, a figure maintains all the properties according to which it was
constructed and all the consequences that the construction properties entail within the
axiomatic world of Euclidean geometry. (p. 458)

Graphical representations are central in the teaching of geometry as they allow
the student to “see” geometric properties, to form conjectures, to experiment with
and verify a given property. However, representations can also be confusing and
deceiving, as they may appear to show relations among objects that are not
necessarily properties of the geometric figure that the teacher intends the students
to examine, which leads to wrong interpretations. For this reason, the important
distinction between a drawing and a figure was introduced by Parzysz (1988) and
developed later by Laborde and Capponi (1994). According to Parzysz (1988), the
figure is a theoretical object defined by a descriptive text, an imaginary object, or an
idea; the drawing is only the illustration of this figure. Laborde and Capponi (1994)
define a figure as a theoretical construct associated with each of its possible
drawings. Students interpret drawings based on their mathematical knowledge as
well as on the nature of the drawings and the way they are represented. This is why
and where ambiguities emerge, creating problems caused by different interpreta-
tions. It is neither easy nor evident to detach oneself from the perceived drawing in
order to access the theoretical figure, as students have to distinguish the properties
of the perceived drawing that correspond to the theoretical figure from the ones that
are only spatio-graphical properties that cannot be used in the conjecture or proof.

In DGE teachers usually expect students to construct figures that preserve all
their properties under dragging. However, Healy (2000) observed that many stu-
dents worked differently. They started with constructions that verified some of the
properties, and then used these constructions to find ways of obtaining the
remaining properties. This strategy should not be totally rejected, since it allows
the student to search for the required properties while exploring the figure. Healy
thus introduced the distinction between soft and robust constructions. A robust
construction is one that holds under dragging, and that has all required geometrical
properties. Soft constructions are “constructions, in which one of the chosen
properties is purposely constructed by eye, allowing the locus of permissible figures
to be built up in an empirical manner under the control of the student” (p. 107).

In DGE, dragging plays different roles according to the purpose of its use. In
robust constructions, dragging is used as a verification tool: the correctness of the
figure is verified when its properties remain invariant under dragging. While
dragging for verification, students move from the general to the specific, since a
multitude of drawings with the same geometrical properties is produced from the
generic robust figure. On the other hand, in soft constructions dragging is used as a
construction tool rather than a verification tool. The dependent property is evident



A Framework for Failed Proving Processes in a Dynamic Geometry Environment 229

when the other property is manually incorporated using dragging; thus the general
can emerge from the specific.

Another role for dragging highlighted by Mariotti (2014), is the role of mediator
between geometrical invariants and logical statements. In fact, dragging to elabo-
rate a conjecture is a complex process, since it requires the interpretation of
perceptual data by decomposing the image in order to identify a geometrically
significant relationship between its elements and properties. For example, when
dragging to search for consequences, students need to interpret the geometrical
dependence between “direct invariants” and “indirect invariants” as the logical
dependencies between premises and conclusions of conditional statements: direct
invariants are properties given by the problem, that is, invariant properties observed
between independent elements; while indirect invariants are the consequences of
the properties given by the problem, or invariant properties observed between
dependent elements.

The Study

In the Lebanese curriculum in effect at the present time (CERD 1997), proof writing
begins at grade 7 (students at the age of 11 or 12) and continues through the
intermediate school (grades 7, 8 and 9) and the secondary school (grades 10, 11
and 12). Beginning from the secondary school, i.e., grade 10 (at the age of 15 or 16),
proof writing becomes more rigorous and formal. It is at this level that students are
asked to formalize their thinking, link different mathematical domains in one
context, choose among a variety of solution strategies what is most appropriate
for the given context, and write clear and concise justifications for their solutions.
However, the Lebanese curriculum neither includes explicit instruction of logic, nor
does it explicitly address techniques or conditions of argumentation and proof as an
independent topic of study. Students are implicitly expected to acquire the proving
abilities as a by-product of their learning of geometrical theorems and properties,
and through working on solutions to geometrical problems. It is assumed that if
students know the properties of geometrical shapes, they should be able to develop
proofs based on those properties.

Given this background, the aims of this study are: (1) to provide students with a
learning environment, namely DGE, in which they can be supported in their
approach to proof; and (2) to analyze the students’ cognitive processes while they
engage in conjecturing and proving activities. The study examines the proofs
produced by the students at different stages of the proving process, including the
construction and manipulation of geometric figures, as well as the formulation of
the conjecture and the proof itself. These stages are, of course, neither linear nor
independent. On the other hand, while most of the previous research works devel-
oped classifications of only valid proofs, the present study focuses on the failed
proofs produced by the students, in order to gain a deeper understanding of their
nature, at which stage they occurred, and the reasons behind them.
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Method

The study took place in a tenth-grade mathematics class of a Lebanese school, and
consisted of a series of geometrical problem solving sessions during which students
(15-16 years old) worked using a DGS, namely GeoGebra, on solving an open
geometry problem that required conjecturing and proving. The problem was taken
from Olivero (2002), and involved the angle bisectors of a quadrilateral.

The study used a qualitative research method, both in the data collection and
analysis. The method used consists of an analytical process of theory-building
(Eisenhardt 1989) which was highly iterative, including going back and forth
from one case to another, from building a category to looking back at the data
and literature; this process allowed new elements and explanations to constantly
emerge and to be continuously refined.

Data were collected through observation. The proving process is twofold:
external practices and internal practices. External practices consist of what students
do and say, of behaviors that can be directly observed, such as dragging, drawing,
sketching on paper, talking, etc. Internal practices represent the students’ reasoning
processes. Students’ thoughts and internal practices had to be externalized through
dialogues, thus all students were set to work in pairs. Observations were conducted
on two different levels: observation of the whole class and observation of specific
pairs of students. All students participating in the study were introduced for the first
time to GeoGebra in grade 8. Thus by grade 10, when the study was conducted,
students were familiar with the basic commands and features of GeoGebra, and
capable of different types of constructions and manipulations.

Whole-Class Observation During the problem-solving session, the work of the
whole class was observed, i.e., 22 pairs of students. The observer targeted one pair
of students at a time and took detailed notes and screenshots of all significant and
interesting instances of the solving processes. In addition, paper material produced
by each student was collected. The paper-based materials included sketches as well
as written conjectures and proofs generated by the class. During observation and
data collection, special attention was given to the interplay between the spatio-
graphical field (including DGE objects, paper drawings, etc.) and the theoretical
field (including geometrical properties, theorems and definitions).

Observation of Specific Pairs of Students In addition to class observation, the
primary research tool used to document the details of students’ proving processes
was the observation of selected pairs of students. Students’ interactions with each
other, with the mathematical ideas of the problem, and with the computer were
closely observed and recorded. Given that the research aim of this study required
the analysis of students’ proving processes, i.e., the production of conjectures and
proofs, effective techniques were necessary for uncovering these processes. Both
video and audio data were needed, since the analysis included the use of DGS and
other supports such as paper and pencil, as well as the interaction between the
students in each pair. The work of 12 pairs of middle and high achieving students
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was videotaped. The selection of pairs of students to observe was based on four
criteria: Selected students were (1) used to working in pairs, (2) capable of
producing conjectures and proofs, consequently middle to high achievers, (3) talk-
ative — because the analysis was based on what is “visible” from the proving
processes, and (4) willing to be video-taped during class.

The problem-solving sessionstarted with the teacher introducing the problem.
Then the students were left alone to work on the problem for 60 min. Students were
asked to write their conjectures and prove them. The teacher did not intervene. The
main goal of these sessions was to access students’ basic and essential ideas
involved in their proving processes, during their interaction with DGS, and while
moving back and forth between the elaboration of conjectures and their justification
and formalization.

The Problem

In order to observe the proving processes there was a need to find a context where
they happen naturally and can be easily and authentically observed. The choice of
the mathematical context, i.e., the open proof problem was crucial. In previous
studies (Leung 2012; Mariotti 2012), open proof problems affirmed themselves to
be adequate contexts for observing proving processes, because they tend to allow
the observation of the whole process, from exploring to conjecturing and proving.

The choice of the problem to be used in this study was based on the following
theoretical and pragmatic considerations: (1) The chosen problem is in accordance
with the definitions of open problems given by Charnay (1992) and Mogetta et al.
(1999). The statement is short and does not suggest any particular solution method.
It cannot be reduced to the execution of a set of routine procedures that students
might have memorized by heart; (2) The chosen problem is a type 2 problem
according to the classification of Laborde (2001). That is, the nature of the problem
is not changed by the DGE which simply acts as a visual amplifier facilitating the
mathematical task, i.e., exploration, identification of properties and analysis. This
type of problem can be used as a research tool for investigating students’ concep-
tions. It acts as a window on students’ ideas and understandings; (3) The chosen
problem lies in a conceptual domain familiar to the students; its difficulty does not
reside in the understanding of the problem (Charnay 1992). The students partici-
pating in the study have a good mastery of the mathematics needed for the solution
of the problem; they were taught these mathematical concepts in previous grades
and are now capable of employing them skillfully.
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Statement of the Problem (Previously Used by Olivero 2002)

1. Let ABCD be a quadrilateral. Consider the bisectors of its internal angles and the
intersection points H, K, L, and M of pairs of consecutive bisectors.

2. Drag ABCD, considering different configurations, and explore how HKLM
changes in relation to ABCD.

3. Write down conjectures and prove them.

Type of Tasks Evoked by the Problem

The problem was chosen as it evokes the implementation of different types of tasks
and the use of various DGE tools:

» Construction and exploration tasks: Students need to construct, draw or drag
different types of quadrilaterals to explore the nature of HKLM in relation to the
nature of ABCD. It is expected that the figures will be soft constructions using
Polygon or Points and Segments as they are easily transformed into different
types of quadrilaterals ABCD. However, the question remains whether students
might use robust figures, to which end might they be used, and how their use
could affect the proving process.

e Conjecturing tasks: This problem is characterized by the richness of potential
conjectures. There are more than one or a couple of correct conjectures that
students can develop. They are free to explore any type of quadrilateral such as
special and regular quadrilaterals, to group different cases together such as the
cases of the square and rhombus, to focus on a specific quadrilateral and to
investigate its types, such as the trapezoid, or to explore any other case they
desire to investigate.

» Proving tasks: While some proofs are straightforward, necessitating the use of
only one property, others are more complex. Students need to recall the proper-
ties of special quadrilaterals, congruent triangles, bisectors of supplementary
angles, or parallelism and properties of corresponding angles. They also need to
identify which angles, sides or triangles they want to use and isolate them
visually or by using DGE options such as coloring or marking angles and
segments.

Solution of the Problem

To facilitate the description of solutions in the rest of the chapter, the Correct
Conjectures are coded consecutively CC1, CC2, .. .; the proof(s) are coded simi-
larly to the corresponding conjecture i.e., P1 is the proof of the conjecture CC1, P3
is the proof of CC3; letters are added to the number of the proof to represent
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Fig. 1 The case where
ABCD is a parallelogram

different proofs for the same conjecture i.e., P1la and P1b are two possible proofs
for the conjecture CC1. The code IC is used for Incorrect Conjectures.

As mentioned above, the problem has many solutions, since there are different
types of quadrilaterals that can be investigated, conjectured and proven. The cases
that were most commonly investigated are the following:

CC1. If ABCD is a parallelogram, then HKLM is a rectangle (Fig. 1).

Pla. In a parallelogram the consecutive angles are supplementary; in particular

ADC +DCB = 180°; also in the triangle KDC,KDC + KCD = L(ADC + DCB) = 90°
leaving 90° to DKC. The same proof should be applied to two additional angles

chosen from K@, HML and KLM thus making HKLM a rectangle.
P1b. The same conjecture could also be proven using corresponding angles:

¢ Consider I the intersection point between (DC) and (AM), the bisector of BAD.

— BAI = ' BAD so AID = ': BAD (gA\I and AID alternate interior angles)
— KCD = "% BCD ((CK) bisector of B/&))
— But BAD= BCD (opposite angles in a parallelogram)
Therefore, the two angles AID and KCD are equal and have the position of
corresponding angles, so (KC) is parallel to (AM).
e Similarly, (DK) is parallel to (BM) thus HKLLM is a parallelogram.
« In addition, DKC = 90° (same proof as in Pla) thus HKLM is a rectangle.
CC2. If ABCD is a rectangle, then HKLM is a square (Fig. 2).

P2. The proof will be divided into two phases: showing that HKLM is a
rectangle, then showing that it’s a square.

* Showing that HKLM is a rectangle by showing that it has three right angles:
— AMB = 180° — (MAB + MBA) = 180° — (45° + 45°) = 90°.
— Similarly, DKC = 90°
— KLM or KHM = 90° (using triangles BLC or AHD respectively to show BLC
or AHD = 90° then vertically opposite angles).
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Fig. 2 The case where
ABCD is a rectangle

The first phase could be proven using the same proof as P1b, as ABCD is a
parallelogram.

» The second phase requires the use of congruent triangles to show consecutive
equal sides, as follows:

— KC =KL + LC and KD = KH + HD
— KC = KD (KCD right isosceles triangle at K with base angles of 45°)
— LC = HD (BLC and AHD are congruent triangles)

Thus KH = KL, and HKLM is a square.

CC3. If ABCD is a rhombus then H, K, L, and M coincide (Fig. 3).

P3. This case requires the instantiation of only one property, namely, the
bisectors of a rhombus are also its diagonals, so they intersect at one point;
thus H, K, L and M are coincident.

CCA4. If ABCD is a square, then H, K, L, and M coincide (Fig. 4).

P4. Since the square is a special rhombus, this case requires the same proof P3.

Description of Students’ Work

The following section presents the work of four of the observed student pairs, which
were found to be most interesting and significant for the purpose of this study. The
description focuses on the important moments in students’ work and prepares the
ground for the detailed analysis presented in the subsequent section. The four
observations are named consecutively O1, 02, O3 and O4.

Ol. Kevin and Sam

Kevin and Sam explored the case of the random quadrilateral, i.e. a quadrilateral
that is not a trapezoid, a kite, or a parallelogram, and four types of special
quadrilaterals. For each case, they drew a new figure by placing the vertices of
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Fig. 3 The case where
ABCD is a rhombus

Fig. 4 The case where
ABCD is a square

the quadrilateral in the form of the intended shape based on perceptual
approximation.

IC1. If ABCD is a random quadrilateral then HKLM is also a random
quadrilateral

Kevin and Sam drew a random quadrilateral using the Segment tool (Fig. 5).
Without dragging or doing any manipulation, they directly wrote the conjecture
IC1. They did not attempt any proof.

This conjecture is considered as an empty conjecture. A quadrilateral cannot be
proven to be “random” since random quadrilaterals are not defined according to
specific characteristics or necessary geometric properties.

CC1. If ABCD is a square then H, K, L and M coincide
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Fig. 5 O1-When ABCD is
a random quadrilateral

Students used the Regular Polygon tool to construct the square. Then, they
developed the conjecture CC1 but did not attempt to find a proof.

CC2. If ABCD is a rectangle then HKLM is a square

To test the case of the rectangle, Kevin and Sam made a new drawing by placing
the vertices to form a rectangle based on visual approximation by means of the
Polygon tool (Fig. 6).

Kevin: I think it’s the same as the square
Sam: Mmmmm why?

Kevin:  both have angles of 90°

Sam: Oh yes, you’re right.

When they saw that H, K, L and M formed a square they doubted the correctness
of the drawing. After some reflection, Kevin accepted the graphical result since he
was able to find part of a theoretical support: he noticed that in triangle ABM,

MAB = MBA = 45° thus AMB = 90°, and formulated the conjecture CC2.
However, the proof they developed was incomplete, mainly because they used
“(AB) parallel to (HL)” without proving it first:

e In triangles ABM and MLH
— AMB = HML = 90° (vertical angles)
— MHL =HLM = 45° alternate interior angles with ABM and MAB

((AB) parallel to (HL))
Thus HLM is right isosceles and MH = ML

e Having 2 consecutive equal sides and 4 right angles then HKLM is a square.

CC3. If ABCD is a parallelogram then HKLM is a rectangle
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Fig. 6 O1-When ABCD is
a rectangle

Fig. 7 O1-When ABCD is

a parallelogram P / 9/

B
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To test the case of the parallelogram, Sam made a new soft drawing also based

on visual approximation (Fig. 7). Kevin and Sam developed the conjecture CC3
and proved it as follows:

In the triangle KDC,
KDC + KCD =1 (ADC + DCB) = 1.180° = 90°

We deduce that DKC = 180° — 90° = 90°

Similarly AMB = 90°.
Thus HKLM is a rectangle.

However, they did not mention exphcltly the fact that HKL and HML are 90°, as

they are vertically opposite to DKC and AMB respectively. Also, they showed only
two right angles.

IC2. If ABCD is a right trapezoid then HKLM is a rectangle
Kevin and Sam were able to prove that HML and HKLare right angles (Fig. 8):

« Intriangle ABM,MAB + MBA = ' DAB + :AABC = 90° thus AMB = 90° which

implies that HML = 90°.

« In triangle DKC, s(ADC + DCB ) = +180° = 90° thus DKC = 90° which

implies that HKL = 90°.
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Fig. 8 O1-When ABCD is
a right trapezoid

L
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They were not able to go further and prove a third angle right. Nevertheless,

Kevin insisted that HKLM should be a rectangle, despite the fact that the drawing
shows it not to be a rectangle. When writing the proof, they only stated the previous

two right angles[—ﬁ/I\L and HKL but concluded that HKLM is a rectangle having four
right angles.

02. Eric and Vicky

Eric and Vicky started their work by developing three conjectures consecutively
and then attempting to prove them. At the end, they developed a fourth conjecture
and attempted to prove that one as well.

Eric and Vicky drew the quadrilateral ABCD using the Polygon tool and then
throughout the session they dragged its vertices to form the intended shape, each
time based on perceptual approximation. They stopped at each figure and observed
how HKLM varied as a result of the changes effected to ABCD. They developed
three correct conjectures for the cases where ABCD is a rectangle, a square and a
parallelogram. When Vicky pointed out that they need to prove these conjectures,
the conjecturing phase was interrupted and they started working on the proofs.

Following are the conjectures developed at the beginning of the session.

During the proving phase, Eric and Vicky worked on four different conjectures,
two of which are correct and two are incorrect:

CC1. If ABCD is a rectangle then HKLM is a square

Eric and Vicky dragged A, B, C and D to form a rectangle (see figure in Table 1).
They showed that in triangle ADM,]VZ—A\D = MDA = 45° thusAMD = 90°; similarly
BKC = 90° and DLC = 90° thus HKLM is a rectangle. They tried using congruent
triangles to further show that it’s a square but failed to isolate the triangles needed

for the proof.
CC2. If ABCD is a square then H, K, L and M coincide
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Table 1 O2. The first three conjectures

CC1. If ABCD is a rectangle then HKLM is a square.

CC2. If ABCD is a square then H, K, L, and M
coincide.

CC3. If ABCD is a parallelogram then HKLM is a
rectangle.

Eric and Vicky Eric dragged A, B, C and D to form a square (see figure in
Table 1) and developed a deductive proof by saying that the angle bisectors in a
square are also its diagonals, which intersect at a single point.

IC1. If ABCD is a parallelogram then H, K, L, and M coincide

Eric dragged A, B, C and D to form a parallelogram which happened to be a
rhombus in which H, K, L, and M coincided (Fig. 9). Eric and Vicky thought that
ABCD was only a parallelogram and elaborated the conjecture. They did not notice
that this new conjecture contradicted the conjecture CC3 previously elaborated in
the conjecturing phase. Since the conjecture was incorrect it led to a wrong proof as
Eric and Vicky argued that in a parallelogram the angle bisectors are also the
diagonals which intersect at one point.

IC2. If ABCD is a thombus then HKLM is a square

Eric and Vicky dragged to form a rhombus ABCD but the sides were not exactly
equal, thus H, K, L and M did not coincide (Fig. 10). When they saw that points H,
K, L, and M formed a small square (although in their drawing HKLM looked more
like a rectangle), they generated another wrong conjecture: “If ABCD is a rhombus
then HKLM is a square”. They only showed that HKLM is a rectangle by stating
that in a rhombus the diagonals which are also the angle bisectors are perpendicular,
so the angles are right making it a rectangle, which is a failed proof.
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Fig. 9 O2-When ABCD is
a parallelogram

Fig. 10 O2-The
parallelogram ABCD
mistaken for a rhombus

03. Matt and Jessica

The work of Matt and Jessica was divided into two separate phases: a conjecturing
phase followed by a proving phase. Following are the conjectures developed at the
beginning of the session.

In the proving phase, Matt and Jessica worked on proving the first two

conjectures:
CC1. If ABCD is a parallelogram then HKLM is a rectangle (see Table 2)

* (AK)//(CM) since they are two lines coming from two equal and opposite angles.
Similarly (DM)//(BK).

« In the triangle MDC, MDC + MCD =} (ADC + BCD) = 1 « 180° = 90° thus
DMC = 90°.

e Thus HKLM is a rectangle being a parallelogram with one right angle.

Matt and Jessica showed that the opposite sides are parallel and that there is one
right angle. However the property used to show the parallel sides was incorrect.
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Table 2 O3. The first four conjectures

\ \ | CC1.If ABCD is a parallelogram then HKLM is a
\ \ | rectangle.

CC2. If ABCD is a rectangle then HKLM is a
square.

IC1. If ABCD is a square then HKLM is a square.

IC2. If ABCD is a trapezoid then H, K, L and M
D coincide.

CC2. If ABCD is a rectangle then HKLLM is a square.

Matt and Jessica considered a new drawing which happened to be a particular
case where AB = 2 BC thus M and K were the midpoints of [AB] and
[DC] respectively (Fig. 11).

The proof was as follows:

e HKILM is a rectangle since it has 4 right angles:
— In the triangle MDC, MDC + MCD =} ADC +1BCD = 90° thus DMC
= 90°. Similarly AKB = 90°.
— Inthe triangle ADH, ADH + HAD = %ATD\C + %B/AT) — 90° thus DHA = 90°
which implies that KHM = 90°. Similarly KLM = 90°.
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Fig. 11 O3-Special case 5 /
drawing for the rectangle
ABCD

A B

e HKLM is a square since it is a rectangle with two consecutive equal sides:
We consider the two triangles DHK and AHM :

— DHK = AHM = 90°.
— DH =AH (ADH right isosceles triangle)
— HDK = HAM = 45°

Therefore HK = HM.

The proof started correctly; however, in the second phase, when showing that the

triangles DHK and AHM are congruent, the students considered HDK = HAM
= 45°, which worked only because M and K happened to belong to [AB] and
[DC] respectively. Because the drawing represents a special case of the figure, the
proof is not generic.

04. Tom and Mary

Tom and Mary started their exploration with the case of the square ABCD. They
directly observed that H, K, L, and M are coincident, since the angle bisectors in a
square are also its diagonals, which intersect at a single point. Thus the first
conjecture was CC1. If ABCD is a square then H, K, L and M coincide.

Then they considered the case of ABCD being a right trapezoid (Fig. 12). As
they were not able to determine the nature of HKLM at first sight, they measured the
angles of quadrilateral HKLM. Based on those measures they developed the
conjecture IC1. If ABCD is a right trapezoid then HKLM has two right angles
and one angle of 60°. They proved the two right angles as follows:

« In the triangle KDC, CKD =180° —(: ADC +1 BCD) = 90° thus HKL = 90°.
« In the triangle MBA, BMA =180° — (ADC + BCD) =180° 1 .180° = 90° thus
HML = 90°.
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Fig. 12 O4-Displaying the
measures of the angles of
HKLM when ABCD is a
right trapezoid

They tried, in vain, to prove that MHK =60°. They did not realize that the

measure of MHK is a spatio-graphic one relative only to this particular instance of
the figure.

Analysis of Students’ Proving Processes

Building on the four previous cases, it can be seen that a majority of the proofs that
the students developed were flawed. Tracing back through the mistakes, we can see
that they originated at different moments of the proving process: some mistakes
were found at the graphical level, which lead to both a failed conjecture and a failed
proof; other mistakes were found at the conjecturing level, i.e., the figure was
correct but the subsequent conjecture was not, leading to a failed proof; while other
mistakes were at the theoretical level, i.e., students failed to find a correct theoret-
ical support for their conjecture.

We developed an associated typology of failed proving processes with three
main types, namely: Failed Construction, Failed Conjecture and Failed Proof,
each type can be elaborated with particular sub-types illustrated in the following
sections. The purpose of this typology is not to define a totally self-contained set of
categories, but rather to make it easier for a teacher or researcher to undertake an
analysis of different possible mistakes when assigning proving tasks within DGE.

Failed Construction

This first type indicates that the mistake originated from the figure, causing the
subsequent conjecture and proof to be incorrect. The following three types of
Failed Construction were identified, based on the analysis of the students’ work.

Type 1 We consider the following two examples (see Table 3) taken from O2 and
03 respectively.
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Table 3 First type of failed construction

Case 02 - Eric and Vicky 03 - Matt and Jessica

Figure \\_Q

A i\B
Conjecture |IC2. If ABCD is a rhombus then IC1. If ABCD is a square then HKLM
HKLM is a square. is a square.

Comments | The mistakes found in both conjectures originated at the graphical level since both
drawings were inaccurate:

The sides of the intended rhombus The sides of the intended square
ABCD were not exactly equal; thus ABCD were not exactly equal; thus
instead of coinciding, H, K, L and M instead of coinciding, H, K, L and M
formed a small rectangle seen as square | formed a small square.

by the students.

Therefore, the first type of Failed Construction can be named Inaccurate
Drawing. An Inaccurate Drawing results from a construction which is based on
visual approximation and does not incorporate the use of any DGE tool that can
validate it. An Inaccurate Drawing can create the illusion of elements that do not
exist in reality or properties of the figure which are incorrect.

Type 2 A second type of Failed Construction (see Table 4) was observed twice
in O3.

This type of Failed Construction can be named Special Case Drawing. A
Special Case Drawing is a correct drawing but it incorporates (on purpose or not)
extra properties. Thus the subsequent conjecture and proof are applicable only to
this special case and cannot be generalized.

Type 3 A third type of a Failed Construction was seen in the work of a pair from
the class who drew the figure shown in Fig. 13. The conjecture that they developed
was: “If ABCD is a parallelogram then HKI.M is a right trapezoid”. Although the
conjecture was consistent with the figure but it was incorrect because the figure in
itself was incorrect: the angle bisectors were not constructed using the Angle
Bisector tool; instead they were constructed through using Line through Two Points
and adjusted based on visual approximation, thus a rectangle was not formed.

This type of Failed Construction can be named Incorrect Construction. An
Incorrect Construction is caused by the misuse or non-use of the proper tools
available in DGE. Instead of a formal axiomatic construction protocol, students
might construct the figure based on visual approximation and/or use some tools out
of context, which leads to an incorrect construction.
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Table 4 Second type of failed construction
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Figure

Conjecture | CC2. If ABCD is a rectangle then IC2. If ABCD is a trapezoid then H, K,
HKLM is a square. L and M coincide.

Comments | Both drawings represent special cases of the figure. The observations made based

on these drawings do not hold for all other instances of the figure; therefore the

conjecture and/or proof are not generic.

Although the conjecture is correct, the
proof was based on the fact that HDK
= HAM = 45° which s specific to this
case of the figure where the length of
ABCD was double its width. If the
rectangle was not constructed with this
special relation the points K and H
would not belong to the sides of ABCD
and the angles HDK and HAM would
not be not 45°.

The conjecture itself is incorrect since
in a different instance of this fig. H, K,
L and M will not coincide

Fig. 13 The angle bisectors
incorrectly constructed

Failed Conjecture

The second type of failed proving processes is Failed Conjecture. Three types of
Failed Conjecture were identified, based on the analysis of the students’ work.

Type I In O1, Kevin and Sam dragged the vertices of ABCD to form a right
trapezoid (Fig. 14). Even though it was clear in the drawing that HKLM is not a
rectangle, Kevin insisted that HKLM should be a rectangle and elaborated IC2. If
ABCD is a right trapezoid then HKLM is a rectangle.
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Fig. 14 Conjecturing that

HKLM is a rectangle / 9/
although in the figure it is
not H

M

Fig. 15 The rhombus
ABCD mistaken for a
parallelogram

Another example of such a conjecture is taken from O2. Eric and Vicky dragged
ABCD to form a parallelogram but without noticing that they formed a rhombus
(Fig. 15). They saw that H, K, L, and M coincided and thus formulated the
following conjecture: “If ABCD is a parallelogram then H, K, L, and M coincide”;
whereas the correct conjecture for the case of the parallelogram in general is: “If
ABCD is a parallelogram then HKLM is a rectangle”. In the particular case where
the parallelogram is a rhombus, the vertices of the rectangle HKLM coincide. As a
proof, Eric suggested that the bisectors of the angles of a parallelogram are also the
diagonals which intersect at one point.

The figure at hand is a rhombus but Eric and Vicky thought it was a parallelo-
gram; thus the constructed figure is correct but the elaborated conjecture did not
accurately describe it, which resulted in a failed conjecture and a failed proof.

This type of Failed Conjecture can be named Conjecture-Figure Inconsistency.
It occurs when the figure is correct but the students generate a conjecture that does
not properly reflect its properties. They fail in recognizing all the invariants of the
figure that lead to the desired conclusion since they focus on those recognized at
first sight and perceived to be right.

Type 2 In O4. Tom and Mary developed IC1. If ABCD is a right trapezoid then
HKLM has two right angles and one angle of 60° (Fig. 16). They based their
conjectures on the measures they took for the angles of HKLLM in a specific instance

of the figure. They showed that HKL = 90° and HML = 90°. They did not realize
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Fig. 16 Considering the measures of the angles of HKLM

Fig. 17 When ABCD is a
random quadrilateral

that the measures of these two angles are true in all instances but the measure of

MHK is a spatio-graphical one relative only to this particular instance of the figure.

This type of Failed Conjecture can be named Spatio-graphical Conjecture. A
Spatio-graphical Conjecture occurs when students analyze geometric figures on the
basis of their appearance and the visual transformations that they perform on the
drawings. They do not take into consideration the geometrical relational properties
of the figure.

Type 3 In O1, Kevin and Sam drew a random quadrilateral (Fig. 17) and developed
the conjecture: “If ABCD is a random quadrilateral then HKLM is also a random
quadrilateral”.

This type of Failed Conjecture can be named Empty Conjecture since the
premise does not provide any properties to work with; it is rather defined by the
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absence of properties; similarly for the conclusion, a quadrilateral cannot be proven
to be “random”.

Failed Proof

Building a proof is, in fact, a complex process as it involves locating the informa-
tion needed to apply a property or a theorem, selecting from among several known
rules, and selecting from among several theories that provide justification for the
chosen rule. Four types of Failed Proof were identified, based on the analysis of the
students’ work.

Type 1 In 02, Eric and Vicky worked on proving “If ABCD is a rectangle then
HKLM is a square”. First, they showed that HKLM is a rectangle. Then they tried
using congruent triangles to further show that it’s a square but failed to isolate the
triangles needed for the proof.

This type of Failed Proof can be named Incomplete Proof. An Incomplete Proof
occurs when students have a road map for their proof, start part of it but interrupt
their proof due to obstacles in finding theoretical justifications or simply due to time
constraints. The students are aware that the proof is incomplete and do not assume
the conjecture to be successfully proven.

Type 2 In O3, Matt and Jessica worked on proving “If ABCD is a parallelogram
then HKLM is a rectangle”. They showed that the opposite sides are parallel, and
that the quadrilateral has one right angle. However, the property used to show the
parallel sides was incorrect: (AK)//(CM) since they are two lines coming from two
equal and opposite angles. Because the figure (Fig. 18) was strongly convincing,
the students invented a property to fit what they saw as true on the screen.

This type of Failed Proof can be named Fabricated Property. It occurs when
students observe in DGE a relationship among certain objects of the figure and
invent a property that fits. Instead of analyzing the relationships observed in the

Fig. 18 Fabricating a
property to justify that
(AK)//(CM).
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Fig. 19 Assuming a
property of the figure as H
given A D

spatio-graphical field according to the properties of the theoretical field, the theo-
retical field is manipulated to fit the relationships observed in the spatio-graphical
field.

Type 3 In O1, Kevin and Sam were proving “If ABCD is a rectangle then HKLM is
a square” (Fig. 19). In the proof they assumed that (AB) is parallel to (HL) without
proving it first:

This type of Failed Proof can be named Assumed Hypothesis. Given that the
spatio-graphical field is a powerful influence on students’ minds, students might
confuse the hypothesis of the problem with the properties revealed by the dynamic
figure, and thus assume as hypothesis, a property that needs to be proven.

Type 4 In O1, Kevin and Sam were proving the conjecture “If ABCD is a
parallelogram then HKLM is a rectangle”. They showed that HKLM has two
right angles and deduced that it is a rectangle. They did not realize that the
arguments that they presented to show that HKLM is a rectangle are necessary
but insufficient since three right angles were needed to show that it is a rectangle.

This type of Failed Proof can be named Overreached Conclusion. An
Overreached Conclusion occurs when students are unable to identify all the nec-
essary and sufficient conditions for a property to be true. The reached conclusion
might be true but it is not supported with all the necessary arguments.

Discussion

Interplay Between the Spatio-Graphical Field
and the Theoretical Field

According to Laborde (1998), the solution of a geometry problem lies in both the
Spatio-Graphical (SG) and Theoretical (T) domains, and is characterized by con-
tinuous shifts between them. Students work at three different levels while solving a
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problem: at a spatio-graphical level, when they observe spatio-graphical invariants;
at a theoretical level, when they use definitions and theorems; and at a combination
of the spatio-graphical and the theoretical level, when they understand and justify
spatial observations in theoretical terms. The mistakes and difficulties identified in
the proving process can be better understood in light of this distinction: since
students are perceived to work at three different levels (SG, T, or SG and T), then
each mistake can be localized in one of these levels and analyzed accordingly.

From the results of the analysis of students’ work, the only mistake that occurred
at the spatio-graphical level is the Incorrect Construction resulting from a purely
technical obstacle related to knowing the tools available in DGE the required
inputs, and the generated outputs.

The mistakes that occurred at the theoretical level are: Empty Conjecture,
Incomplete Proof and Overreached Conclusion. These mistakes are purely theoret-
ical since students were either unaware of the problem in formulating a conjecture
having a premise and/or conclusion too general to be proven (the case of the empty
conjecture), or they did not find the necessary and sufficient theoretical support for
the conjecture (case of the incomplete proof and overreached conclusion)

The remaining observable mistakes in this study, i.e., Inaccurate Drawing,
Special-Case Drawing, Spatio-graphical Conjecture, Conjecture-
Figure Inconsistency, Assumed Hypothesis and Fabricated Property, occurred at
the spatio-graphical and theoretical levels. These mistakes were the ones most
frequently observed in students’ work, and indeed these are widely discussed in
the literature. According to Laborde (1998), the use of diagrams is usually a tedious
task for students, because they can be interpreted on two different and ambiguous
levels by students. On the one hand, they refer to theoretical objects defined by
axioms, properties and theorems, while on the other hand, students are drawn to
engage in a purely empirical and perceptual activity because of the strong graphical
and spatial properties that diagrams provide. When dealing with a geometrical
figure, students always find it hard to distinguish between what you are allowed
to read and say, what you are allowed to read without saying, and what you are not
allowed to read.

The main obstacle behind the Inaccurate Drawing, Special-Case Drawing and
Spatio-graphical Conjecture is the confusion between drawing and figure. Laborde
and Capponi (1994) defined a figure as a theoretical construct associated with all its
possible drawings. The drawings are interpreted based on the mathematical knowl-
edge of the student and on the nature of the drawing and the way it is represented.
This is why and where most students face ambiguities that create interpretation
problems. It is not easy for them to detach themselves from the drawing in order to
access the figure, as they have to distinguish the properties of the drawing which
correspond to the figure from the ones that are only spatial, perceived properties that
cannot be used in the conjecture or proof. According to Holzl (2001), DGE makes it
easier for students to determine which geometrical properties of the figure can be
“read”, since they are those that hold under dragging; the correct constructions are



A Framework for Failed Proving Processes in a Dynamic Geometry Environment 251

those that preserve these properties under dragging. In particular, the appropriation
of dragging is what should allow the students to distinguish between a drawing and
a figure and thereby facilitate the transition between them.

The reason behind the Conjecture-Figure Inconsistency errors/difficulties can be
interpreted using Mariotti’s (2006) work; she argues that in order to generate
conjectures, the student has to interpret the motion dependency observed through
dragging in terms of the concomitant, logical dependency between what will
become the premise, and the conclusion of the statement of a conjecture. It is not
given that students are capable of transforming perceptual data into a conditional
relationship. In fact, it is a task which is not at all trivial.

An Assumed Hypothesis occurs when students confuse the direct and indirect
invariants identified by Mariotti (2014). The direct invariants are the invariant
properties given by the problem possible to be used in a hypothesis. The indirect
invariants are invariant properties observed as a consequence of the relationship
between direct invariants, and therefore are not part of the hypothesis; they need to
be proven.

The obstacles that the students who participated in this study faced in the case of
Fabricated Property were also observed by Duval (1994), who underlines that
students tend to over-trust the shapes and properties they recognize at first sight; the
first look of the figure seems to exclude a mathematical look at this figure. In
addition, students did not seem capable of identifying the solution elements that
they could read in the figure, because this required them to focus on specific parts
more than others.

Instructional Strategies for Remediation

The difficulty identified in the proving process and occurring at the spatio-graphical
level, i.e., Incorrect Construction, may be remediated in the technological field as
students practice the use of DGE tools, each one according to the way it was
designed and to the purpose behind its use. The difficulties that occurred at the
theoretical level, (Empty Conjecture, Incomplete Proof and Overreached Conclu-
sion), may be remediated in the geometrical field, outside DGE. Students need to
learn and practice the content of a proof, i.e., the required theorems and properties,
as well as the structure of a proof, i.e., the technique of writing a logical chain of
deductive arguments. As for the remaining mistakes, namely the ones that occurred
at the spatio-graphical and theoretical levels, they may be remediated by instruc-
tional strategies on the nature of geometry in a DGE, thus at a combination of both
fields. Since the nature of geometry is fundamentally changed in a DGE (Laborde
and Strifer 2010; Mariotti 2012), students need to be aware of the rules and
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strategies inherent to DGE in order to be well-prepared to solve problems in this
environment. Instructional interventions should focus on:

¢ Introducing the difference between a drawing and a figure, which is overlooked
in the paper-and-pencil environment but essential to DGE.

o Familiarizing the students with the differences between soft and robust con-
structions, and the optimal use of each type; this distinction is nonexistent in the
paper-and-pencil environment.

¢ Defining and experimenting with invariants under dragging, and highlighting the
difference between direct and indirect invariants.

» Scaffolding the students in discovering the different roles that can be played by
the dragging tool, such as a construction tool and a verification tool.

Conclusion

In terms of the framework of types of justifications developed by Marrades and
Gutierrez (2000), students in this study elaborated two types of justifications:
Deductive justifications by structural thought experiment, and failed justifications.
However, not all failed justifications were comparable, since students faced obsta-
cles in the figure, or in the conjecture or in the proof itself; therefore, for a more
accurate description, we prefer to adopt a more general term, “failed proving
processes”, rather than “failed justifications™; this leads to a wider analytic frame-
work. The analysis of participating students in this study led to a framework of
failed proving processes, one that was not possible without the DGE. It consists of
three main categories: Failed Construction, Failed Conjecture, and Failed Proof.
Failed Figure means that the mistake was at the graphical level; the figure was
either incorrect, inaccurate or represented a special case. Failed Conjecture desig-
nates that the mistake was found in the conjecture, which was based on spatial
properties, inconsistent with the figure or an empty conjecture. The last type was
Failed Proof indicating a mistake in the proof; the proof was either incomplete,
used a fabricated property, assumed a property observed in the figure as hypothesis,
or overreached the conclusion by not presenting sufficient arguments.

The purpose of this framework is not to define a totally self-contained set of
categories, but rather to make it easier for teachers and researchers to anticipate and
to undertake an analysis of different possible mistakes as they design or analyze
proving tasks within DGE. Therefore, when teachers become aware of the difficul-
ties that students might confront in DGE, and of the resulting mistakes, they would
be better equipped to teach, warn, and guide students. The framework of failed
proving processes developed in this study can be validated in further research and
extended if new categories emerge. In another study, a teaching sequence based on
the suggestions of instructional strategies for remediating the difficulties faced in
the proving process can be developed, implemented in a classroom, and its
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efficiency evaluated. Other research can conduct a comparative study to analyze
whether these mistakes would present themselves differently in the paper-and-
pencil environment and in which way.
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Disclosing the ‘“Ramotionality’ of a
Mathematics Teacher Using Technology
in Her Classroom Activity

Marina De Simone

Abstract In this chapter, I will focus on the relation between affect and technology
during the classroom activity of a mathematics teacher. This constitutes a first
approach for developing a new aspect of my PhD thesis where, in general, I tried to
bring together cognitive and affective dimensions in the classroom behaviour of
mathematics teachers, often considered separately. In particular, in this paper, I will
focus on the practice of a teacher who routinely uses digital technologies in her
mathematical activity, showing how her expectations on the use of technology are
actually reflected in her classroom experiences and how these expectations inform
us about the reasons of their actions.

Keywords Technology « Mathematics teaching « Emotional orientation ¢ Linear
equations

Introduction

Over the last two decades, mathematics education research has increasingly
focused on the role of digital technologies in teaching/learning processes (Artigue
2007, 2010; Clark-Wilson et al. 2015; Gueudet et al. 2013). Many studies have
documented how the use of ICT can enhance students’ learning (Artigue 2013;
Buckingham 2013; Clark-Wilson et al. 2013). As a result, curriculum documents
and professional development programmes commonly encourage teachers to
employ technology in their practice. However, teachers using technology have to
cope with factors of a different nature than they are used to. In particular, as
presented in this chapter, I will discuss how cognitive and the affective factors
are unavoidably intertwined in the practice of a teacher who uses digital technol-
ogies in her classroom practice. In fact, the teacher decides to employ technology
not only on a rational level, but also on an affective one, because she has expec-
tations toward students’ learning, and toward integrating ICT into her practice.
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Looking at this teacher’s expectations for the use of technology, I could also infer
numerous reasons for the decisions she makes in her classroom in general.

The core of my research is the decision-making of the teacher, because, as much
research in mathematics education has consistently highlighted, decision-making
has a very crucial role in teaching activity. For example, Bishop pointed out that
decision-making is “at the heart of the teaching process” (Bishop 1976, p. 42).

From a theoretical point of view, I rely on the notion of “emotional orientation”
(Brown and Reid 2006), locally analysing teacher’s decisions drawing on the
philosophical theory of rationality (Habermas 1998). In particular, I employ the
neologism “remotionality” (De Simone 2015), which refers to the rationality and
the emotions of the teacher as a unicum, that is, as a unique example or specimen.

Entering in the structure of this chapter: in the first section, I illustrate the
theoretical perspective that contextualizes my work, explaining also the analytical
tool I chose for analysing my data; in the second section, I present qualitative data
analyses of five excerpts of the activity of a teacher, Silvia, who uses two kinds of
technology while explaining linear equations (GeoGebra and two Java applets); in
the third section, I make some concluding remarks, highlighting both points
common to the two different types of technology, and how my theoretical frame-
work allows me to make an in-depth analysis of a teacher who uses digital
technologies in her practice. I would like to underline that my research is a
qualitative study in which I attempt to construct theoretical concepts for analysing
particular case studies. These theoretical concepts might be applicable to other
cases, without the presumption of generalization.

Linear equations is a mathematical topic that is very interesting to analyse in
terms of the coordination among different representation registers, especially using
digital technologies. Thus, I choose to develop the analysis about examples
concerning linear equations to study how multi-representations influence and
intervene in the affective and rational decisions within the mathematics activity.

Theoretical Perspective and Methodology

As already anticipated in the introduction of the paper, my research interest is the
study of the intertwinement between the emotional and the rational aspects in the
decision-making processes of a mathematics teacher, who uses digital tech-
nologies in her practice.

In the mathematics education literature, several authors have focused on the
decision-making of the teacher in classroom. For example, Schoenfeld (2010)
offered a model for describing the decision-making of teachers according to three
different elements: “their knowledge and other intellectual, social, and material
resources; their goals; and their orientations (their beliefs, values, and preferences)”
(Schoenfeld 2011, p. 1). As he pointed out, these three aspects are deeply related,
and the third one, orientation, heavily affects the other two.
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In my work described here, I combined two different theoretical perspectives:
the philosophical speculation offered by Habermas (1998) and the concept of
“emotional orientation” developed by Brown and Reid (2006). The integration of
these two theories has produced a new possible theoretical lens, which I have called
“remotionality”, through which I tried to bring together the rationality and emo-
tions of the mathematics teacher, often considered separately.

The Habermasian philosophical speculation has been re-elaborated and adjusted
to mathematics education by many researchers (see, e.g., Boero and Planas 2014).
Habermas centred his theory on the concept of discursive rationality proper of a
rational being (e.g., the mathematics teacher) involved in a discursive activity. He
explains that discursive rationality is constituted by three different components: the
epistemic rationality, the teleological rationality, and the communicative rational-
ity. These three components of rationality are always present and intertwined in the
discursive activity of a rational being. In particular, we face an epistemic rationality
when we can simultaneously give an account of the justification of the knowledge at
play, the teleological rationality surfaces when “the actor has achieved this result on
the basis of the deliberately selected and implemented means” (Habermas 1998,
p- 313), and the communicative rationality “is expressed in the unifying force of
speech oriented toward reaching understanding” (Habermas 1998, p. 315).

Within the mathematics-related affect research, Brown and Reid (2006) pro-
posed the notion of emotional orientation in order to study the decision-making
processes both of the teacher and the students. As the words themselves suggest, the
“orientation” in a teacher’s decision-making processes is “emotional”, that is,
affected by emotions in particular ways. Hence, this concept allows me to speak
of the interconnection between rationality and emotion. For operationalizing the
notion of emotional orientation, I propose an adaptation of the concept of the
“emotional orientation” of a teacher in terms of her “set of expectations™: the
term “expectation” is connected to her “emotions of being right” when she uses
specific criteria for accepting an explanation from the class rather than other ones
(Ferrara and De Simone 2014).

My research questions are twofold: How does the use of emotional orientation
help me understand the decisions of teachers relating to the use of technology, and
thus complement the Habermasian rationality framework? And, How does
remotionality help me understand why teachers make certain choices in their
teaching with digital technologies and not others?

This chapter focuses on the work of an Italian teacher-researcher,' Silvia, while
she explains linear equations in her grade 9 classroom, in a scientifically-oriented
secondary school in the Piedmont region of Italy. The teacher was first interviewed,
and the interview was transcribed for analysis. Teacher’s usual lessons in the
classroom were also videotaped. All voice and bodily movements during the
classroom activities were recorded. The videos were transcribed for data analysis.

'In Italy, the teacher-researcher is a teacher of the school who participates to the research carried
out within the academic research group.
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Fig. 1 Diagram about relations of different concepts

Concerning the structure of the analysis, I first considered the a-priori interview
and, from what Silvia explicitly described to me, I was able to identify some of her
expectations for the use of technology in terms of what she hoped for her students.
At this stage these expectations were only potential, because they were not yet
driving the action of Silvia in her classroom. Hence, I also looked at what actually
happened in the classroom, in order to see if there was a correspondence between
what the teacher stated a-priori and how she actually behaved in classroom. For
determining this correspondence or non-correspondence, I looked at “emotional
indicators”, namely the gestures, facial expressions, word emphases, repetitions,
rhetorical questions, pauses, the tone of voice, and so on. These emotional indica-
tors informed me on the emotionality of the teacher, where the term “emotionality”
is defined “in terms of behaviours that are observable and theoretically linked to the
(hypothetical) underlying emotion” (Reber et al. 1995). Hence, the expectations of
the teacher became visible through her emotionality. In this way, I outlined the
emotional orientation for the teacher, intended as the set of her expectations. In the
diagram below (Fig. 1), the relations among these different concepts are
schematised.

Following the initial emotional schematization, I went deeper into the lessons of
the teacher, in order to identify the intertwinement between her rationality and
emotionality. In particular, I looked at her decisions related to the use of ICT,
through the three components of rationality (epistemic, teleological and communi-
cative); simultaneously looking at the emotional indicators and expressions of her
expectations, I was able to say something about why she made linkedsome deci-
sions and not others.

In particular, the emotionality will be always intertwined with the rationality of
the teacher. For this reason, I describe the emotionality of the teacher using the
adjectives of the Habermasian rationality, epistemic emotionality, of teleological
emotionality and of communicative emotionality (De Simone 2015): these
Habermasian adjectives constitute the different components of remotionality. For
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example, the epistemic emotionality surfaces when the teacher decides to draw on
the properties of equations via the model of a virtual scale, and, at the same time,
says, with a blaring tone of voice, the expressions “to put on the scale” and “to take
away from the scale”, manipulating the virtual scale. This ways, it is not only which
kind of knowledge she chooses to consider (properties of equations, epistemic
rationality), but why she decides to focus on it in that way (through the virtual
scale). The reason is connected to her expectation that using the virtual scale will
help students understand the meaning of the properties of equations, by having the
possibility of visually manipulating the scale. This expectation is made visible
through the tone of voice of the words “to put on the scale” and “to take away
from the scale”. In other words, the epistemic emotionality is related to why the
teacher uses that specific justification of the knowledge at play.

The teleological emotionality could be highlighted when, for example, the
teacher decides to explain equations with the graph option of Geogebra for geo-
metrically interpreting the solution and, simultaneously, with the highest pitch of
her tone of voice, repeats many times the verb “to see”, pointing to different
elements on the graph. In addition to the action the teacher undertakes to accom-
plish a goal, namely interpreting geometrically the resolution of a linear equation,
we can also observe that she expects GeoGebra to help students to reason about
equations, “seeing” through the graphical register of GeoGebra. This expectation is
made visible through the tone of voice of the verb “to see”, while gesturing on the
graph. Thus the teleological emotionality is related to why the teacher makes these
actions to achieve a particular goal.

The communicative emotionality surfaces, for example, when the teacher has an
insistent rhythm to her voice, as she directs the class to look at what happens both
on the graph and on the “Algebra view” of GeoGebra. In this instance, there is not
just the matter of her speech oriented towards reaching understanding within the
classroom, but also the question of why she decides to communicate with an
insistent thythm. Her reason for this repetition is connected to her expectation
that students are facilitated to connect different registers of representations through
the use of technology. Hence, the communicative emotionality is related to why the
teacher uses a particular type of speech during her discursive activity in the
classroom.

For pragmatic necessities of analysis, these three types of emotionality could
appear separated. Nevertheless, it is important to stress that they are always
intertwined and present in the discursive activity of the teacher.

Data Analysis

From what Silvia explicitly described during the a-priori interview, I detected
different expectations of the teacher, mostly concerning the role of technology.
These expectations are actually reflected in her classroom activity and contribute to
shaping her emotional orientation.
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I will show five examples of Silvia’s activity in the context of linear equations
for shaping a convincing and representative outline of Silvia’s remotionality in
using two types of technology: first GeoGebra and then a Java applet.

Firstly, I will quote the passages of the interview from which I identified her
expectations involved in these examples. Then, I will analyse her remotionality,
looking at both the decisions of the teacher and, simultaneously, at the emotional
indicators, expressions of her expectations. This way I can reveal the different
components of her remotionality, and thus explain why Silvia takes those decisions
and not others.

During the analysis of teacher’s activity on linear equations, three different
treatments of graphical representations developed by Duval in 1988 also emerge.
In particular, Duval speaks of the “démarche de pointage”, the “démarche
d’extension” and the “démarche d’interprétation globale”. The first approach, dé
marche de pointage, concerns the focus on particular points of the graph. For
example, it is related to the drawing of the graph of a first grade equation or to
the reading of the coordinates of an interesting point of a graph. The “démarche
d’extension” concerns the imagination of a set of infinitely potential points that
have a particular property. The “démarche d’interpretation globale” is related to
the association between what happens on the graph and on the algebraic represen-
tation of the graph.

GeoGebra
First Example

This example comes after two lessons in which Silvia had introduced the concept of
equation as a mathematical statement that two expressions are equal. The solution
of an equation is the value that, when substituted for the unknown, makes the
equation a true statement. Then, in this excerpt, she begins to work on the dynamic
geometric software GeoGebra for introducing the solution to an equation from a
geometrical point of view. In this example, two of Silvia’s expectations that I have
extracted from the a-priori interview are involved. I quote the passages of the
interview that allowed me to identify them.

In the middle of the a-priori interview, Silvia presents her way of introducing
linear equations:

I introduce linear equations through an activity of M@at.abel (M@at.abel is an Italian
teacher education programme for in-service mathematics teacher supported by the Ministry
of Education). In particular, we consider a pseudo-real situation of a boy who walks with
constant velocity and we ask, knowing the velocity, how many kilometers he covers while
the time passes. “How many kilometers while the time passes” is a linear function, then, on
GeoGebra, we consider a table and we start to see after how much time he will cover 300m
and then we go to see [she mimes the solution on the graph] the answer on the graph of
GeoGebra. We start from that for talking of equations because, after we have the straight
line [she mimes the straight line], we can read on the graph of GeoG