
Chapter 9
Cyber Security Requirements Engineering

Christof Ebert

Abstract Virtually every connected system will be attacked sooner or later. This
holds specifically for cloud-based services and systems. A 100% secure solution is
not feasible. Therefore, advanced risk assessment and mitigation is the order of the
day. Risk-oriented security engineering helps in both designing for robust systems
as well as effective mitigation upon attacks or exploits of vulnerabilities. Security
must be integrated early in the design phase to understand the threats and risks to
expected functionality. The security analysis provides requirements and respective
test vectors so that adequate measures can be derived for balancing security costs
and efforts. This book chapter provides experience and guidance concerning how
information security can be successfully achieved with a security requirements
engineering perspective. Our experiences from embedded security in critical IT
systems show that security is only successful with a systematic understanding and
handling of security requirements and their interaction with functional require-
ments. Four requirements engineering-related levers for achieving security are
addressed: security requirements elicitation, security analysis, security design, and
security validation. We will show for each of these levers how security is analyzed
and implemented. A case study from automotive systems will highlight concrete
best practices. Only systematic and disciplined security requirements engineering
will ensure that security needs are met end to end from concept to architecture to
verification and test and—most relevant—operations, service, and maintenance.
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9.1 Introduction

IT evolution is driven by five forces: Collaboration, Comprehension, Connectivity,
Cloud, and Convergence (Fig. 9.1):

• Collaboration, i.e., consumer Internet, social network interaction, single cus-
tomer segmentation, configurators for products and services, digital money,
computer-assisted collaboration tools, crowdsourcing;

• Comprehension, i.e., augmented reality, semantic search, big data handling,
smart data, data analytics, data economy, online data validation, data quality;

• Connectivity, i.e., ubiquitous mobile computing, mobile services,
cyber-physical systems, industry 4.0, machine-to-machine (m2m) communica-
tion, sensor networks, multisensor fusion;

• Cloud, i.e., applications and services in the cloud, location-based networks, new
license models for software and application, sustainability, energy efficiency;

• Convergence, i.e., mobile enterprise, bioinformatics, Internet of things, perva-
sive sensing, autonomous systems.

The five forces all relate to cyber security and will not work adequately without
end-to-end cyber security engineering. Coupled with the underlying complexity and
scale these drivers demand new solutions for cyber security. Examples include new
IT architectures that facilitate seamless connectivity, robust infrastructures for
cyber-physical systems in safety-critical environments, or data analytics to predict
choices and behaviors to improve overall customer experience. Such
software-driven solutions can create nontraditional market entry points and

Collaboration

Comprehension

Connectivity

Cloud

Convergence

Fig. 9.1 Cyber security is impacted by five forces: collaboration, comprehension, connectivity,
cloud, and convergence
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consequently entirely new mechanisms to address a single customer with
time-specific and location-specific services.

New technologies not only create numerous opportunities but also introduce
complexity. Thereby, these solutions introduce new challenges, for instance, with
respect to information security, robustness, and usability.

Security and robustness have tremendous impact on business decisions. The
more we share and network, the more we are exposed to attacks of all kinds. The
exploding need for secure software and protection schemes for our business pro-
cesses, end to end, indicate this impact. Imagine automotive suppliers working on
multisensor fusion connected to GPS and vehicle-to-vehicle communication to
predict critical situations and foresee appropriate measures at situations where even
the driver might not even be aware of what will happen. Another example is service
companies who leverage their sales channels to flexibly provide related services
such as door-to-door transportation, or firms that offer a single service card for
identification, payment, and access to services of various providers both physical
and in the cloud.

Complexity and scale demand focus on usability. We already face situations
where users without adequate training are forced to operate systems which they do
not understand sufficiently to meaningfully assess risks and stay in control across
normal day-to-day scenarios. Insufficient usability today is a major source of critical
failures caused by humans in health care, transportation, and production plants.

For embedded software–hardware systems complexity and technology will grow
fast. The resulting competence gap will lead to even stronger fight for skills. From
the survey and interviews, we can see that companies will continue to invest in
growth through innovation by developing new products and solutions, because this
determines their market position. They are aware of the volatile market situation
and want their development teams across the world to be as lean and innovative as
possible.

The IT industry deals already since years with strategies for data protection and
to provide secured networks to prevent them against unauthorized access. Wide
experiences are available here that, with special considerations, can be adapted and
are useful for different industries. This allows, for instance, taking over the proven
software architecture of Ethernet, so that a number of approved protocols are
available as well for a secured data transmission. Essentially, they are based on
cryptography, software algorithms based on more or less complex mathematics.
The algorithms itself are not the secret and are available to the public, but keys
provide the secret and they must be created, distributed, and maintained carefully.
A popular key management system used by the IT industry is the PKI (Public Key
Infrastructure). It contains a hierarchical certificate management with associated
keys and builds the basis for an authenticated communication between partners.

We will look in this book chapter to key elements of security requirements
engineering, namely requirements elicitation and security requirements analysis.

Our examples mostly come from automotive systems, because unlike any other
industry, automotive connects three relevant drivers of modern IT systems, namely
the following:
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• Systems Engineering with a combination and integration of mechanics, hard-
ware, and software;

• Embedded real-time systems with safety-critical requirements;
• IT systems with huge computing power and distributed cloud services.

On this basis technology transfer to other industries is easily feasible.

9.2 Cyber Security Requirements

Security is a quality attribute which heavily interacts with other such attributes,
such as availability, safety, or robustness. It is the sum of all attributes of an
information system or product which contributes toward ensuring that processing,
storing, and communicating of information sufficiently protects confidentiality,
integrity, and authenticity. Cyber security implies that it is not possible to do
anything with the processed or managed information which is not explicitly
intended by the specification of the embedded system [1, 2].

Based on the specific challenges of cyber security, system, and service suppliers
have to realize an effective protection against manipulations of IT and embedded
electronic and electric systems. Key points in the development of protected systems
are the proper identification of security requirements, the systematic realization of
security functions, and a security validation to demonstrate that security require-
ments have been met. The following items need to be considered to achieve security
in the development process:

• Standardized process models for a systematic approach which is anchored in the
complete development process. This starts in the requirements analysis through
the design and development to the test and integration of components and the
network.

• Quick software updates to close vulnerabilities in installed operational software,
be it in the cloud or embedded in systems.

• Reliable governance that is state of the art and meets long-term security
demands, such as key management and updates of crypto algorithms.

• Robust networks and system architecture that provides flexibility and scalability
and are designed under consideration of security aspects.

Based on our experiences in many cyber security projects, we show which
security engineering activities are necessary to create secure systems and how these
activities can be performed efficiently. In the following discussion, we want to
examine each of these topics, the current activities, and provide suggestions con-
cerning how to mitigate the security risks.

Traditionally systems and electronics requirements are function driven. But, by
defining functionalities alone, there is nothing said about the correlation of features
which is where security risks typically show up (see our introductory example). We
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will start with explicit security requirements, as they have emerged in IT systems
over time [1–5]:

• Confidentiality demands for information being unavailable for unauthorized
entities. Note that data may be gathered by unauthorized entities without losing
confidentiality, as long as the information contained in the data is not revealed.

• Integrity requires information remaining unchanged by unauthorized entities.
• Authenticity necessitates that the origin of information or the identity of a

communication partner can be satisfactorily proven.
• Availability hardens that the system to be protected by making it highly reliable,

including all necessary cyber security mechanisms.
• Governance ensures that agreed policies and protection mechanisms both hard

and soft, specifically those being people oriented, are used and part of the
culture, independent of time pressure or budget impacts.

Security requirements encountered in IT, cloud services, and embedded systems
development typically target its dependability. Such systems are embedded into a
technical process, thus dependability is imperative to prevent failures of the tech-
nical process itself or its environment. Dependability demands that system func-
tionality, determined by its functional requirements, is delivered correctly—
considering feature correlations and disturbances from the outside. Besides accurate
realization of the functionality, information needs to be correctly processed during
operations of the embedded system, i.e., without being distorted during transmis-
sion or storage. Additionally to the need for correct information processing,
embedded systems interact with real-world objects, which means they are subject to
real-time requirements of these real-world objects. Information must not only be
processed correctly, but also within determined time limits.

Both cyber security requirements and embedded systems’ reliability require-
ments have one thing in common: They aim to deflect unauthorized manipulation of
information inside of computer systems—be it interferences with the system
environment or intentional manipulations of unauthorized entities (i.e., attacks).

9.3 Risk-Oriented Security

Over the past decade trends like IoT, connected service workflows and driver
assistance systems among others have led to software and connectivity playing an
increasingly important part in developing critical systems and also for business
models of OEMs and suppliers likewise.

Devastating impact of security issues is already known from industrial sectors
like IT-infrastructure, aviation, information technology and telecommunications,
industrial control systems, and energy and financial payments. Virtually every
connected system will be attacked sooner or later. A 100% secure solution is not
feasible. Therefore, advanced risk assessment and mitigation is necessary to protect
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assets. Consequently, the typical solution to security in these industries relies on
suitable risk assessment that projects threats on assets of interests. Thereby cost of
implementing specific security measures can be compared with the probability of a
particular threat that they counter.

Security in a complex system cannot be achieved by applying countermeasures
on single items. It requires an analysis of the complete functionality or system as a
whole and to apply countermeasures as an integral part. First, you need to identify
what are the assets I want to protect. Besides financial aspects also confidentiality
and safety functions must be considered carefully. The next step would be a threat
analysis: who has access to my assets, what are potential attackers, and where are
my access points. A typical approach to this is the construction of a data flow
diagram in which the assets are identified. It provides an overview of all connec-
tions and access points, where attacks and manipulations can be achieved. From the
material above a risk assessment can be done to obtain the measurements and
results in a classification of the risk. An example of such a risk assessment can be
found in the picture below. Here, as an example, the classification was defined in
three categories: Low, medium, and high (Fig. 9.2).

This process provides systematic means to deal with the subject and results in a
balanced trade-off for cost and efforts. Depending on the determined security level,
countermeasures can be defined on system level and further derived as security
input requirements. The analysis phase provides now also requirements for hard-
ware extensions, e.g., if hardware acceleration is needed for authentication or if a
specific key management is required for higher security measures. The requirements
are also an input to define test vectors on functional (e.g., for an ECU) and system
level (e.g., for the vehicle). These tests, together with standard penetration tests,
then will help to provide evidence for successful application of the security to the
function and system.

Asset-based risk assessment is a suitable tool for companies to steer efforts for
security engineering in a systematic and comprehensive way and thereby involve all
relevant stakeholders in the organization. For example, a CEO may not find it very
helpful to have a long exhaustive list with every attack vector or potential threat—
they need to be provided with a ranked listing and useful decision-support tools
which clearly shows alternatives and consequences. From the view of a system

Fig. 9.2 Definition of
security level derived from
threat analysis and risk
assessment
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developer, a flat listing of potential threats might not help to improve the system. To
really help, they need to be able to map security threats, countermeasures and
requirements to system/architecture elements in their scope of the project.

The systematic management of security threats and associated security goals is
essential to actually providing safe and competitive products, and to protect valu-
able assets and business models.

But what makes security engineering so complex?
Developers face the challenge of securing a system against attackers whose

capabilities and intentions are at best partially known. Some attacks might today
appear infeasible, but today’s impossible attacks might become more likely in the
near future. An example of this is attacking a vehicle simply by exploiting wireless
interfaces, 20 years ago would have been extremely unlikely; however, today a
cheap software-defined radio accomplishes these types of attacks with little effort.
On the other hand, an attacker might invest more effort into launching an attack the
more valuable a successful attack is to him. Some attacks represent more effort to
the attacker than others given the specific potential of the attacker. It is this
risk/reward payoff that is analyzed in security engineering.

Likewise during testing and verification, suitable methods to verify that the
vehicle has the required security level and process goals like test strategy and
coverage need to be chosen.

Furthermore, the assets to be protected from attacks are decided by stakeholders
involved, e.g., drivers would indicate different assets of their vehicle to be protected
compared with what a developer considers an asset. However, customers/drivers
need to be satisfied with their vehicle in order to buy another one from the same
company. Consequently, security engineering must seek trade-offs between cost of
security measures and benefit to assets in order to make sustainable decisions.

Security concepts must balance the cost of not having enough security and thus
being successful attacked with all damaging consequences and the cost spent to
implement appropriate security mechanisms and keep them updated along the life
cycle—covering service workflows as well (Fig. 9.3).

To summarize, the relationship between assets, attackers and threatsis complex
and dynamic (e.g., attacks are more probable the less effort is required and the more
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Fig. 9.3 Overview of cyber security analysis process
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value successful attacks represent; attack vectors and effort change over time).
Furthermore, common understanding of assets among all stakeholders of security
engineering is mandatory in order to provide information for steering the security
engineering.

Choosing the right set of security engineering methods for analysis, concept, and
testing is challenging but required in order to enable goal-oriented and manageable
security engineering.

Risk-based Security Engineering combines state-of-the-art methods for cyber
security risk assessment in a practical framework and supports all involved stake-
holders to develop “secure-enough” products. The method and our approach for
proposing a concrete technical security concept is based upon security best prac-
tices such as the following:

• ISO 15408 (Evaluation criteria for IT security) with its focus on IT systems,
specifically the seven evaluation assurance levels (EAL) for security require-
ments and guidance on common criteria.

• ISO 27001 (Information security management systems) with its governance
requirements for security engineering across the entire value chain.

• IEC 62443 (Industrial communication network security) with its strong view on
distributed systems and necessary security technologies and governance.

The Vector Security Check and our security engineering method adopt the state
of the art not only from standards mentioned above but also from significant
research work. For example, several research projects like “E-safety vehicle
intrusion protected applications” (EVITA) funded by European Union and
HEAVENS, proposed solutions for security risk assessment (Fig. 9.4).

We will further on show by examples how to use the risk-oriented security
concept covering the entire security life cycle with focus on the upper left activities,
namely

Fig. 9.4 EVITA classification for the hardware security module (HSM)
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• Asset Definition and Threat and Risk analysis
• Security Goals
• Security Concept.

9.4 Industry Case Study

To better illustrate evolving cyber security needs we will look to modern auto-
motive systems. Figure 9.1 shows the interaction of functions in their distributed
networks being an essential part for our today’s modern infrastructures with their
needs for safety and comfort. Besides the further development of innovative sensors
like radar and camera systems and the analysis of the signals in highly complex
systems, the connected cars will be a driving factor for tomorrow’s innovation.
Internet connections will not only provide the need for information to the
passenger.

Cloud-based functions like eCall or communication between cars or car to
infrastructure (vehicle2x) shows high potential to revolutionizing the individual
traffic. This includes the improvement of the traffic flow controlled by intelligent
traffic lights, warnings from roadside stations, or brake indication of adjacent cars.
This builds the basis for enhanced driver assistant systems and automated driving.
But the connection to the outer world also bears also the risk for attacks to the car.

Figure 9.5 shows interworking for vehicle2x and external communication that
are already available today or will become available in the near future. Each con-
nection to the car has a potential risk for an attack, regardless whether it is wireless

Fig. 9.5 Car with remote connections
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or wired. Just the threat is different. The access through a connector is only possible
for a limited amount of cars, whereas a far field connection can be accessed from
anywhere in the world. But also near field connections play an important role, such
as tire pressure monitoring system, Bluetooth, and wireless LAN. Security and
reliability of these connections will be essential for the acceptance and success of
these systems. With the introduction of this technology precautions must be taken
to increase the reliability and to reduce the vulnerability to the system.

We will show security engineering with the example of a connected car. The car
is connected to an external cloud from which it receives secured updates and
diagnosis support. The car itself has numerous controllers (so-called ECU, elec-
tronic control units) which are connected by secured bus systems (see also
Fig. 9.1).

As an example, we utilize the simplified functionality of an Automotive
embedded control unit (ECU) that controls the automatic opening and closing of the
roof of a convertible. Security impacts are manifold with this example, from getting
access to the car and its contents to inserting a safety hazard to the driver if the roof
opens during driving. The top level functional requirements are presumed to be (the
abbreviation FR denominates functional requirements and SR security
requirements):

• The roof is to be opened, if the open roof button is pressed (FR 1).
• The roof is to be closed, if the close roof button is pressed (FR 2).
• When the roof is completely opened or closed, feedback is given to the driver

(FR 3).
• Additionally, two-top level safety requirements are supposed:
• The roof is not allowed to move, if the speed of the car is greater than 10 km/h

(SR 1).
• If an obstacle is detected in the direction of movement of the roof, the roof has to

stop the movement within 0.1 s (SR 2).

To conduct the security analysis, we assume the following system situation.
A controller receives the following information to execute its functionality: “open
roof button pressed,” “close roof button pressed,” “vehicle velocity,” and “obstacle
detected.” The following information is sent by the ECU: “roof completely opened”
and “roof completely closed.”

All information is received or sent via the embedded network, implemented by
bus systems such as CAN and Flexray, which are controlled by the AUTOSAR
base software. The ECU actuates the roof motor by controlling the electric current
to the motor. Obstacles are detected by a smart sensor, which is also connected to
the CAN bus. The system functionality is realized as software on one microcon-
troller inside the ECU. The microcontroller features internal nonerasable memory.
Figure 9.6 depicts the system.
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9.5 Security Requirements Elicitation

A first step is setting the security objectives. When considering above requirements,
it becomes clear that the detail level of such information is not sufficient for security
analysis. Possible security threats emerge from unauthorized information gathering
and manipulation. To judge these possible attack vectors, more detailed knowledge
of the embedded system in question is required. To discuss security threats, the
communication transactions of the system must be known as well as the effect of
these transactions.

Knowledge of the communication technology to be employed is equally
important, because different communication standards imply different vulnerabili-
ties, where an attacker can mount an attack. The same holds true for determination
of security threats against device software. The distribution of functions on different
devices is to be known as well as underlying hardware details. The device hardware
constitutes, which (hardware) interfaces can be used by attackers and if stored
information can be deleted or modified.

9.6 Security Analysis

To understand vulnerabilities and determine security risks we apply misuse cases.
Similar to use cases, misuse cases show a specific way to use a system. Misuse
cases describe sequences of events that, taken together, lead to a system doing
something that is not intended or even unwanted. Misuse cases that imply an
unacceptable risk are taken to deduce concrete security requirements which are
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ECU Software

Motor
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Roof moving
state sensor

Fig. 9.6 Assumed system layout
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subsequently translated into functional requirements. Here is additional concrete
guidance: Each identified security requirement must be linked to at least one
functional requirement that is linked to design artifacts and test cases and monitored
until closure—from design to validation and service.

9.6.1 Threat Analysis

In the first step, we will discuss the possibilities of an attack on the convertible’s
roof. First, the information that are received by the roof ECU and used to act
accordingly are to be considered. Second, the ECU software program, which
implements the ECU functionality, needs to be regarded. Both information entities,
transmitted via communication systems or stored as a program, can, in principle, be
tampered with by an attacker.

Different transmitted information is used by the roof ECU:

• Information that the roof is to be opened or closed (from FR 1, FR 2)
• Information on vehicle velocity (from SR 1)
• Information if an obstacle is detected (from SR 2).

As depicted in Sect. 9.3, there are different ways to attack communication. The
network, which is used to transmit information concerning the roof ECU, shows
vulnerabilities against all these ways of attack. Thus, the following functionalities
need to be considered to protect such distributed communication:

• Protection of confidentiality to prevent acquisition of information by attackers
• Protection of content integrity to detect manipulation of messages by attackers
• Protection of authenticity to detect broadcasting of messages by attackers
• Protection of temporal integrity to detect delay or replay of messages by

attackers.

The program controlling the ECU is verified by means of checksums, making it
difficult for an attacker to change it. Attack paths thus need to consider software
updates starting from the code creation and its validation up to its delivery in a
repair shop anywhere in the world. Determining attacker motivation is difficult in
the given case. Generally, it seems unlikely in the example that someone would
manipulate functionality as the one depicted above. However, we will look into
possible impacts of manipulations to determine which protection functionalities
need to be realized and which can be disregarded.

9.6.2 Risk Assessment

Possible hacker motivations may include curiosity or sabotage. Thus, we quantify
attacker motivation with “3,” meaning a medium motivation to attack.
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Because of the high degree of publicity of bus specifications, its vulnerabilities
to attacks, and the availability of hardware/software tools for manipulation, attacker
capabilities need to be judged at least to be “4,” meaning the attacker possesses
advanced capabilities to manipulate the bus.

Effects of attacks depend on the information to be manipulated. Misuse cases
related to the functional requirements presented result in malfunctions that may be
inconvenient but are essentially harmless. A forged request to open or close the roof
would result in the opening or closing of the roof, without the driver requesting this
operation. Here we have a security requirement with clear safety impacts. If the
messages containing information about vehicle velocity or obstacle detection are
manipulated, the roof could be opened at high speed or the closing roof would not
be interrupted despite an obstacle in the path of the roof. Both incidents can result in
the mentioned effects, so the cost effect is assigned to be “5,” resulting in a risk
priority number of 60.

Assuming an acceptable residual risk of 50, one would define the following
security requirements:

• Vehicle velocity data communication must be protected
• Obstacle detection data communication must be protected.

We see that dependability requirements are a good starting point to identify
relevant security requirements and to guide elicitation of further functional
requirements that will mitigate security risks. The same technique as outlined here
can be applied for other scenarios—always starting with attacker motivation or
functional risks due to the system architecture. Our guidance: Do not limit exposure
to known incidents and defects as some textbooks suggest. Security analysis is not a
checklist approach. It has to consider attack motivations of persons thinking dif-
ferent than the usual engineer. However with an engineering mind, we can easier
identify vulnerabilities in our architectures.

9.7 Security Design

Although one might argue that design is not much related to security requirements
engineering, we will elaborate some of the techniques to show how traceability
from security requirements to their implementation is achieved. Without such
traceability not only the validation is impossible but also there would be no way to
prove—after an incident—that the necessary cautions had been taken.

9.7.1 Security Functionality with Minimal Resource Impact

Different mechanisms exist to realize protection of communication: encryption for
protection of confidentiality, message authentication codes for protection of content
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integrity, digital signatures for protection of authentication, and time stamps as well
as sequence numbers for temporal integrity protection. Since these mechanisms
need to be deployed to embedded systems at field level, the realization of the
mechanisms must strive for minimal resource (especially memory) consumption.
Therefore, the notion is to avoid the use of monolithic protective mechanisms, such
as digital signatures, but to identify more fine-grained mechanisms instead, which
provide protection functionalities by combination of one or more of such smaller
mechanisms. Ideally, these protective mechanisms can be used to provide different
protection functionalities, while being implemented only once.

To provide confidentiality, encryption is the mechanism of choice. For content
integrity, cryptographic hash functions exist, but an attacker, who is able to change
the content of a message, will also be able to compute the hash value and change it,
pretending the integrity being intact. Therefore, keyed hash functions exist, which
secure message integrity against purposeful manipulation by incorporating
encryption into the hash value. If encryption already has been selected to realize
confidentiality, it can be reused in conjunction with hashing to provide content
integrity consequently saving resources.

Likewise, authenticity can be provided by digital signatures, which can also be
constructed using an ID and keyed hash functions. It is then realized with a non-
ambiguous identifier of a device and the reuse of hash and encryption functions.
Finally, temporal integrity can be verified with time stamps and sequence numbers,
but for these mechanisms to work, it is required that an attacker is not able to
manipulate time stamps/sequence numbers or pretend to be the origin of the
message. This requires the aforementioned mechanisms. The delineated depen-
dencies yield a layered structure where major implementations are linked with
security requirements thus facilitating semi-automatic consistency checks
(Fig. 9.7).

To manipulate functionality, attackers with physical access to devices can flash
the device memory with new programs, which fulfill the attackers’ requirements.
Examples for this kind of attack are manipulations of mileage indicators or
unlocking of programmed limitations (e.g., maximum speed) of motorized vehicles.
Modern microcontrollers can usually be flashed using defined interfaces, such as
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JTAG or SPI. In consequence, surveillance functionality is required to monitor the
integrity of device functionality, i.e., the program code. A complete deletion of the
device memory would also eradicate the surveillance functionality. Therefore,
surveillance functionality must be distributed to different devices, which then
monitor the functional integrity of other devices.

In case of detection of irregularities, e.g., manipulated code or unreachable
devices, the monitoring devices can vote for counter measures (assumed, there is
more than one device monitoring the manipulated one) and react in an appropriate
way, for instance, by ignoring messages of the manipulated device or by trans-
ferring the technical process into a safe state.

For distributed surveillance and voting, communication is required. This com-
munication must be protected against manipulation. Otherwise, an attacker might
exploit this functionality to simulate manipulated devices. Thus, the layered
structure can be extended with a fifth layer (Fig. 9.8).

9.7.2 Composition of the Layers

The layers, i.e., the mechanisms to realize the desired functionalities, each provide a
service. Every service specifies what activities are to be realized on a certain layer,
but not how the activities are realized. To satisfy real-time requirements, the real-
ization, i.e., the selected algorithms must be deterministic. This is the case for most
cryptographic algorithms, making it possible to calculate an execution time for the
algorithms. To meet the demands of timing constraints, efficient algorithms ought to
be selected.

This composition offers a high degree of adaptability and flexibility. It is pos-
sible to adapt to three different conditions, which need to be determined during the
risk analysis phase of security engineering:

• Parts of the system are secured by physical protection. Thus, only unprotected
parts need to be protected by software-based mechanisms. If, e.g., a field device
is physically protected, it is not necessary to implement functional integrity
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checks. Thus, the lower four layers need to be realized with software-based
mechanisms, the fifth layer is then realized as a physical mechanism.

• Certain system elements are not vulnerable to specific attacks, because they
already include security mechanisms or there are intrinsic features that prevent
or detect these attacks. In that case, the respective layer can be a “dummy” layer,
which does not contain a software-based protective mechanism.

• Even if a system is susceptible to attacks, it might be the case that there are only
minimal resources available in a controller. It is then possible to select mech-
anisms that consume few resources (which might result in reduced protection
strength). Another possibility is to realize only a “base” protection, using only
lower layers.

While these adaptations can be made during development time, it is also possible
that ambient conditions change during run time. During the long life span of field
level system elements, it is probable that specific protective mechanisms are
compromised, which has been the case with several cryptographic algorithms
during the last years. Thus, it is necessary to be able to exchange protective
mechanisms, even when cars are already on the road. The ability to flexibly
exchange protective mechanisms during run time depends on the implementation of
the mechanisms, which is depicted in the next section.

9.7.3 Implementing Security Functionality

When implementing protective mechanisms, the limited resources of embedded
systems need to be considered. Additionally, implementations of these mechanisms
should be tested and well proven. Otherwise, vulnerabilities due to faulty code
could be inserted into the system. On this account, reuse of existing software
components is a promising approach. Therefore, a software component technology
has been selected, which allows for implementation in structured programming
languages. Such structured components for embedded systems are implemented in
“structured C.”

Figure 9.9 shows the assembly of one layer. The layer component
(“SecurityLayerX”) can access different interfaces (“ISecurityMechanismA,” “-B,”
“-C”) of protective mechanisms (“SecurityMechanismA,” “-B,” “-C”). So, multiple
mechanisms can be used on every layer, e.g., to provide different kinds of
encryption. The interface “ISecurityLayerX” is used to make the service of layer X
available to the upper layer X + 1 in a uniform way. Likewise, the layer component
uses the interface “ISecurityLayerX − 1” to access the service of the lower layer X
− 1 (Fig. 9.9).

To realize protection, the required protection functionalities need to be selected.
All layers, which provide required services, are to be set in. Furthermore, the
concrete mechanisms are to be chosen, which fulfill the given requirements (e.g.,
integration into an existing system that requires asymmetric encryption). The
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chosen layer components (“SecurityLayerX,” “-X-1,” …) need to be connected to
each other in order to be able to access the lower layer services and to the selected
mechanism components, which implement the services of the layer. With the ability
to dynamically exchange components during run time (given the underlying
hardware platform supports modification of software at run time, e.g., by flashing),
there is a high degree of flexibility of the concept. With this flexibility, it is possible
to update implementation failures as well as compromised algorithms. Modern
security modeling tools allows tracing security requirements (and their functional
counterparts) down to the code-level as requested when security certification should
be done before release.

9.8 Security Validation

Security validation is conducted on two different tiers. To ensure the quality of the
software components, every component is subject to a rigid review process looking
for typical design errors and manually checking adherence to security requirements.
Additionally, comprehensive unit and system tests are made. Like all other software
components, the test cases themselves may contain errors as well and should be
checked before use. Such quality ensuring procedures are imperative for security
functionality, because these are often targeted by attackers to manipulate the pro-
tected system.

Automatic regression testing of security requirements is absolutely mandatory
due to the many changes to the code during the product life cycle. To automate
testing of security requirements, an automatic penetration test tool for embedded
systems has been created and used in real-world embedded systems. This pene-
tration test tool makes it possible to define attacks against embedded systems based
on the identified security requirements. The prototype allows for automatic exe-
cution of these attacks and detection of attack results, i.e., if an attack was suc-
cessful or has been neutralized by the security functionality.

«PassiveComponent»
SecurityLayerX

«PassiveComponent»
SecurityMechanismA

«ServiceInterface»
ISecurityMechanismA

«ServiceInterface»
ISecurityLayerX

«ServiceInterface»
ISecurityLayerX-1

Adapter
«PassiveComponent»
SecurityMechanismB

«ServiceInterface»
ISecurityMechanismB

«PassiveComponent»
SecurityMechanismC

«ServiceInterface»
ISecurityMechanismC

… …

Fig. 9.9 Assembly of a layer
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Abstraction is a commonly used and important method for handling complexity
in software development and system design. Abstraction on the signal level is a
common way to test ECU functionality. In a common distributed network system,
for example, an interaction layer in the ECU provides the signal abstraction.
Abstraction layers in ECU and test environment must utilize the same abstractions
to allow same reference signals, authentication checks, and even sandboxing of
unknown signal patterns. Simultaneously, signal abstraction also represents—at
least on the protocol level—the remaining bus simulation. For example, it ensures
that periodic signals are actually transmitted periodically. This allows using security
test pattern also for real-signal load and overload or DOS-attacks. When a change is
made to the system’s communication matrix, such test patterns and associated test
cases are reused thus ensuring consistency during the life of a component.

Figure 9.10 shows security validation on the basis of security test patterns. Tools
such as PREEvision are used to model the system, its embedded components, the
network (both sensors and actuators) to the level, where the control algorithm is
detailed in a controller model.

9.9 Relevance and Outlook

Security is thus of growing relevance to all industry areas. Both advanced IT
systems as well as embedded systems increasingly utilize cloud-based networked
software components based upon standardized open architectures. Due to their long
lifetime within changing environments, different versions and configurations are
combined in different variants over time with software or hardware upgrades.

Currently used concepts, such as proprietary subsystems, the protection of
components, firewalls between components and the validation of specific features
are insufficient to ensure security on a systems level [5]. Intelligent attack scenarios
evolve from different directions, such as attacks on unprotected networks, intro-
duction of dangerous code segments through open interfaces, changes to configu-
rations, and prove that security has to become a topic throughout the entire
organization and with high management attention.

Fig. 9.10 Automated security validation based on specific security test patterns
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Systematically ensuring security from requirements to service of systems

• protects against manipulations,
• increases the safety and reliability of users, and
• facilitates even more software-driven services, applications and business

models.

Security demands an end-to-end requirements engineering perspective. The
article with its many practical examples underlines that security of IT and
embedded systems can be achieved with clear and systematic focus and limited
extra effort on the basis of disciplined requirements engineering. Security engi-
neering in embedded systems has to start with a clear focus on security require-
ments and related critical quality requirements, such as safety, footprint, or
performance and how they map to functional requirements.

Software suppliers and integrators first define the key functional requirements.
These requirements are then analyzed on their security risks and impacts. Security
requirements are expanded into further functional requirements or additional
security guidelines and validation steps. Requirements engineering security con-
cepts are subsequently and consistently (i.e., traceable) implemented throughout the
development process. Finally, security is validated on the basis of previously
defined security requirements and test cases.

We practically showed how security requirements engineering is mastered along
the entire system life cycle. Many security attacks are the result of poorly managed
software updates and uncontrolled complexity growth. Architectures, systems, and
protocols have to be developed with security in mind (i.e., design for security).
Competences have to be developed around security engineering, and employees
have to be trained how to design, verify, and sustain security throughout the pro-
duct’s life cycle. Most important it is that before-mentioned methods and processes
are implemented consistently, systematically, and rigorously with traceable effects.
Only with continuous measurements on their effectiveness the value of security
measures improves.

Traditional embedded software engineering ignored security for various reasons,
such as having isolated components, dealing with heavily constrained resources,
and being unable to handle the computational overheads. Today however,
embedded security is in the foreground due to safety, legislative, and intellectual
property concerns [5].

With our described product life cycle-oriented security requirements engineer-
ing, the good news is that different from Internet security securing embedded
systems is likely to succeed in the next 5 years. By doing so, embedded system
suppliers and integrators are increasingly in a position that allows marketing and
selling security as part of an overall quality concept. It will help to master liability
risks and to ultimately increase revenues.
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