Chapter 8

Architecturally Significant Requirements
Identification, Classification and Change
Management for Multi-tenant
Cloud-Based Systems

Muhammad Aufeef Chauhan and Christian W. Probst

Abstract Involvement of numerous stakeholders in cloud-based systems’ design
and usage with varying degrees of nonfunctional requirements makes
Architecturally Significant Requirements (ASRs) identification and management a
challenge undertaking. The aim of the research presented in this chapter is to
identify different types of design-time and run-time ASRs of the cloud-based sys-
tems, provide an ASRs classification scheme and present a framework to manage
the requirements’ variability during life cycle of the cloud-based systems. We have
used a multifaceted research approach to address the ASRs identification, classi-
fication, and change management challenges. We have explored findings from
systematic as well as structured reviews of the literature on quality requirements of
the cloud-based systems including but not limited to security, availability, scala-
bility, privacy, and multi-tenancy. We have presented a framework for requirements
classification and change management focusing on distributed Platform as a Service
(PaaS) and Software as a Service (SaaS) systems as well as complex software
ecosystems that are built using PaaS and SaaS, such as Tools as a Service (TaaS).
We have demonstrated applicability of the framework on a selected set of the
requirements for the cloud-based systems. The results of the research presented in
this chapter show that key quality requirements of the cloud-based systems, for
example, multi-tenancy and security, have a significant impact on how other quality
requirements (such as scalability, reliability, and interoperability) are handled in the
overall architecture design of a cloud-based system. It is important to distinguish
tenant-specific run-time architecturally significant quality requirements and corre-
sponding cloud-based systems’ components so that run-time status of the

M.A. Chauhan (X)) - C.W. Probst

Department of Applied Mathematics and Computer Science (DTU Compute),
Technical University of Denmark, Kongens Lyngby, Denmark

e-mail: muac@itu.dk

C.W. Probst
e-mail: cwpr@dtu.dk

M.A. Chauhan
Software and Systems Section, IT University of Copenhagen, Copenhagen, Denmark

© Springer International Publishing AG 2017 181
M. Ramachandran and Z. Mahmood (eds.), Requirements Engineering
for Service and Cloud Computing, DOI 10.1007/978-3-319-51310-2_8

182 M.A. Chauhan and C.W. Probst

tenant-specific architecture quality requirements can be monitored and system
configurations can be adjusted accordingly. For the systems that can be used by
multiple tenants, the requirements change management framework should consider
if the addition or modification (triggered by a specific tenant) of a quality
requirement can impact quality requirements of other tenants, and whether or not a
trade-off point should be introduced in the architecture (corresponding to the
requirements). The trade-off point can also be referred as a variability point, that is,
a compromise has to be made among the number of quality requirements and only
some of the requirements can be satisfied. System analysts and software architects
can use the proposed taxonomy and the management framework for identifying
relevant quality requirements for multi-tenant cloud-based systems, for analyzing
impact of changes in the requirements on the overall system architecture, and for
managing variability of the architecturally significant requirements.

Keywords Cloud computing - Platform as a service (PaaS) - Software as a service
(SaaS) - Architecturally significant requirements (ARSs) - Requirements classifi-
cation - Requirements change management - Architecture quality

8.1 Introduction

Cloud computing’s utility and service provisioning model offers on-demand scal-
ability and flexible acquisition of computing and storage resources [6]. The cloud
resources are offered as Infrastructure as a Service (IaaS), Platform as a Service
(PaaS), and Software as a Service (SaaS) [18]. IaaS provides virtualization of
underlying hardware infrastructure, whereas PaaS and SaaS utilize IaaS for pro-
viding platforms for cloud-enabled software development or on-demand software
systems for end users. Cloud computing adoption can be broadly classified into
three categories: (i) Utilizing Infrastructure as a Service (IaaS) [43] cloud envi-
ronments (as a hosting platform) to deploy software applications. (i) Migrating
existing applications to the cloud to offer the applications as Software as a Service
(SaaS) following pay-per-use model [7, 16, 17]. (iii) Developing new SaaS appli-
cations using IaaS and PaaS [43] cloud resources.

Development of the cloud-based systems for each of the above-mentioned pur-
poses have associated challenges in terms of Architecturally Significant
Requirements (ASRs) identification, analysis and management. Nonfunctional
requirements that can have a significant impact on architecture of a software system
are referred as ASRs [29]. Each cloud-based system can have a specific set of ASRs,
which are more relevant to that system. In the cloud-based systems that use IaaS as a
mean to acquire flexible and on-demand infrastructure resources, requirements such
as scalability, elasticity, and security are important. For the systems that are to be
migrated from old infrastructure to the cloud, the requirements such as interoper-
ability, security, and privacy are more important [16]. The ability of the selected IaaS
and PaaS clouds to support the future enhancements in the system are critical for

8 Architecturally Significant Requirements Identification ... 183

developing new applications as well as migrating existing applications on the cloud
[7, 17]. Some of the ASRs are equally important for different types of the cloud-based
systems. For example, as cloud-based systems are aimed to serve many tenants, a
characteristic that is referred as multi-tenancy [10] is critical for each of the IaaS,
PaaS, and SaaS systems. Moreover, each tenant of the system can have its specific
design-time and run-time architecturally significant requirements, including but not
limited to security, privacy, availability, scalability, elasticity, and portability [18,
47]. Hence, managing different quality requirements for different tenants is also
important. Specific types of cloud-based systems can have additional ASRs, for
example, the systems that provision Tools as a Service (TaaS) need to support
semantic and process-centric integration [19, 45]. Furthermore, as the data and ser-
vices are hosted on geographically distributed locations, the cloud-based systems
have to comply with additional constraints and regulatory requirements that can
directly or indirectly impact architecture of the systems. Last, but not the least, the
ASRs can change during life cycle of a cloud-based system. The changes can be
either because of involvement of the new stakeholders or modifications in the
requirements of the existing stakeholders.

To adequately address the above-mentioned challenges, there is a need to have a
specialized approach for identification, classification, analysis, and management of
the design-time and run-time architecturally significant requirements of the
cloud-based systems and for variability management of the requirements. In par-
ticular, we aim to address the following objectives:

e Discuss important Architecturally Significant Requirements (ASRs) of the
cloud-based systems, different dimensions of the requirements and the impact
that the requirements can have on difference life cycle phases of the cloud-based
systems (i.e., system design, system instantiation, system operation, and system
evolution). The discussion on ASRs and their respective dimensions can facil-
itate analysis of the run-time and design-time architecture quality of a
cloud-based system.

e Provide a classification scheme to group the ASRs into different categories
based upon their impact on the life cycle phases of the cloud-based systems. The
classification scheme can help to identify the requirements that should be
focused during each phase (including the systems’ deployment and operational
phases with respect to the multi-tenancy configurations).

e Propose a quality requirements management approach so that the requirements
corresponding to the specific tenants can be managed and their impact on each
other can be analyzed when existing requirements are changed or modified, or
the new requirements are added. The proposed management approach can
facilitate to keep track of the changes in the requirements and to control the
architecture quality of a cloud-based system in terms of inclusion of the desired
ASRs in a specific cloud-based system.

This chapter is organized as follows. Section 8.2 provides an insight to the ASRs for
the cloud-based systems. Section 8.3 explores the relation of the ASRs with

184 M.A. Chauhan and C.W. Probst

multi-tenancy quality of the cloud-based systems. Section 8.4 describes a classification
scheme that can be used for classifying the ASRs into different groups using the
presented classification parameters. Section 8.5 presents a probabilistic analysis
method to analyze the impact of the included ASRs on overall architecture quality of the
systems. Section 8.6 describes the related work and Sect. 8.7 concludes this chapter.

8.2 Architecturally Significant Requirements
of the Cloud-Based Systems

Architecturally Significant Requirements (ASRs) play a critical role in architecture
design, development, and adoption of a software system [29]. The ASRs’ impact on
a software system raises the need to incorporate the ASRs at early stages of the
software architecture design. If the ASRs are not analyzed and anticipated during
initial phases of architecture design, a major architecture refactoring may be needed
during later stages, which can result in multifold increase in development cost of a
software system [29]. Hence, it is important to analyze different types of the ASRs
(that can be important for the cloud-based systems) and their impact on different
parts of the systems. A summarized view of the ASRs for the cloud-based systems
is presented in Fig. 8.1. The details of the ASRs critical for the cloud-based systems
are discussed in the following subsections.

Resource monitoring
Resource adaptability
& management

Trust parameters Persistence layer SLA-centered Data and services isolation
Data and service interoperability resource composition Tenant specific monitoring
placement strategies QoS interoperability Pricing and hilling Safe resource termination
Legal & regulatory Service composition Resource utilization Tenant-specific system
constraints interoperability prediction operations and constraints
| Privacy | Interoperab|llty| SLAs I Multi-tenanacy ‘

&L J_J

Architecturally Slgmflcant Requirements
for the Cloud- based Systems

Scalability Elasticity Availability | Security

Autonomous resource Optimization of Acquiring Access to data and
acquisition resource utilization additional resources services

Avoiding performance Minimizing system Avoiding system Persistence
bottlenecks exacution cost overloading security

Failure safety

Interfaces security
Failure liabilities
management

Fig. 8.1 An overview of Architecturally Significant Requirements (ASRs) for the cloud-based
systems

8 Architecturally Significant Requirements Identification ... 185

8.2.1 Scalability

Scalability is one of the fundamental quality requirements of the cloud-based
systems. Scalability supports on-demand provisioning of a cloud-based system by
acquiring additional resources, as the number of users using the system grow [18].
Scalability needs for the cloud-based systems can be classified into two main
groups. (i) Scalability requirements associated with identifying the system usage
and bottlenecks so that a prediction (an estimation) can be made for the needed
resources [35]. (i) Autonomous resource acquisition requirements along with
resource acquisition rules so that the resources from the public, private, or hybrid
clouds can be acquired on-demand [5, 67].

The most commonly used system monitoring metrics are active profiling of CPU
and identification of bottlenecks associated with response time using heuristics
algorithms [35]. The cloud resources can be acquired from private, hybrid, or public
clouds depending upon constraints on the data and the service. For more compet-
itive and cost-effective resource acquisition approaches, different auction schemes
such as Modified Vickery Auction (MVA) and Continuous Double Auction
(CDA) can be adopted for sufficient resource availability and unsufficient resources
availability, respectively [67]. Vertical scaling (when scalability patterns are
adopted in multiple layers of a cloud-based system) and horizontal scaling (when
scalability patterns are adopted in only one layer of a cloud-based system) can also
be adopted in the cloud-based systems using private, hybrid, and public IaaS clouds
[5]. Therefore, the scalability requirements for the cloud-based systems should
consider all the above-mentioned factors.

8.2.2 Elasticity

While scalability handles acquisition of additional resources, elasticity deals with
optimizing the resource acquisition process so that the extra IaaS resources can be
disposed off when not needed [39, 41]. The elasticity requirements can be asso-
ciated with different types of Quality of Service (QoS) parameters. Observing a time
lapse between a request for a particular operation and response of the request is one
of the frequently used QoS parameters [39]. Throughput of the layers and data
retrieval time is another QoS parameter that is considered for elasticity [S1].
Minimizing execution cost of a cloud-based system is also an important parameter
to measure elasticity of the system [30]. Last but not the least, providing lowcost
computing cycles is an important dimension to consider for achieving elasticity in a
PaaS system [52].

186 M.A. Chauhan and C.W. Probst

8.2.3 Availability

Availability quality requirements guarantee that a cloud-based system and its
constituting services are available for utilization as specified in a Service Level
Agreement (SLA) [18]. Availability quality characteristics in the cloud-based
systems can be achieved in the following ways: (i) Acquiring additional infras-
tructure resources for hosting the system’s services and data for redundant
deployment to avoid complete system failures [26]. (ii) Avoiding overloading of the
system’s resources by replicating the components and services to distribute load
among the replicated resources [66]. (iii) Achieving increased application perfor-
mance by replicating the computing resources to distribute computing intensive
tasks and workflows [4, 37].

There are a number of additional constraints that need to be examined corre-
sponding to the availability requirements. The specific location constraints on the
TaaS cloud resources that can be used for hosting the system’s components (e.g.,
computing and storage resources available on the IaaS cloud nodes or geographical
regions where the physical infrastructure is available) should be examined [26]. The
nature of the required availability approaches, i.e., active or passive approaches
should be considered [4]. Moreover, the requirements associated with the questions
such as whether to make the cloud monitoring mechanism an integral part of the
system or to carry out the monitoring via external monitoring agents should also be
considered [37].

8.2.4 Security

As the cloud-based systems are accessible via Internet, security becomes an
essential quality requirement of the cloud-based systems [18]. The security quality
characteristics of the cloud-based systems can be classified into four categories:
(i) Access to the cloud-hosted data and services. (ii) Security of the persisted data
on the cloud. (iii) Security of the APIs through which the cloud services are
exposed to the external world. (iv) Security liabilities of the cloud providers and
cloud-hosted Virtual Machines (VMs).

Each of the security quality requirements categories can be further broken down
into a number of sub-quality requirements with respect to the nature and types of
security attacks that can target a cloud-based system. To restrict the users so that
they can have access to the system only according to the desired privileges, different
types of the authorization requirements can be incorporated, such as authorization
based upon users’ roles (e.g., if a specific user is authorized to perform certain
operations in the system or can have access to a specific type of data) or users’
hierarchy in the users access tree structure (e.g., administrators and super users have
more privileges than normal users) [18]. Quality requirements associated with data
persistence on the cloud deal with data confidentiality and integrity [55].

8 Architecturally Significant Requirements Identification ... 187

The confidentiality requirements for the persisted data deal with threats to the stored
data, undesired use of the stored data and availability of the stored data. There can
also be data encryption requirements for using different types of encryption algo-
rithms [25, 32], e.g., using ElGamal public key cryptosystems [23]. The require-
ments for protection against undesired or illegal use of data can require embedding
certain types of auditing schemes for data usage history [21, 63]. The requirements
concerning the security of the Application Programable Interfaces (APIs) encom-
pass protection from code-centric or SQL injection attacks, hijacking of user ses-
sions, and XML/SOAP wrapping or flooding attacks (the attacks in which huge
volume of XML data are sent to APIs to fail the access control and authentication
mechanisms) [1]. The requirements for cloud providers security liabilities include
handling of plausible service deniability, anonymizing data, and service indexes,
introducing intermediate security services to protect direct access to the
cloud-hosted data and catering oblivious routing of the data [14]. Protecting the
internal application services and providing standards-based end point abstractions
for secured communication among the services are also important security con-
siderations [59]. The integrity requirements encompass inclusion of Byzantine Fault
Tolerance approaches in the persistence services of the cloud-based systems [3].

8.2.5 Privacy

Privacy requirements of the cloud-based systems are closely related to the security
requirements. Privacy on the cloud means that the data is stored and processed on
the cloud as defined in privacy specifications. The privacy quality requirements can
be classified into three categories: (i) The requirements for specifying trusted cloud
parameters and identifiers (that can be used to capture stakeholders’ privacy con-
straints and to select the cloud resources according to the specified constraints).
(i) The requirements for data storage and service placement strategies corre-
sponding to the privacy constraints. (iii) The privacy requirements to comply with
legal and regulatory constraints.

The requirements for identification of parameters that can characterize trusted
cloud services (and when the services should be opened to remote users) and trusted
external services are derived from further refinements of the privacy requirements
[8]. Similarly, the privacy specific location parameters that specify where the data
and services can be hosted (and which can be driven by legal or regulatory con-
straints) are a critical part of the privacy requirements [8]. The requirements for
services matching process (to facilitate service composition) are a core factor that
can influence the design of a cloud-based system. For example, if the end users are
allowed to specify their privacy parameters and select the services that are to
process the data, a market-oriented cloud-broker infrastructure can be helpful. The
cloud-broker can facilitate the users to interact with a cloud market in which the
users can specify their privacy constraints and the cloud-broker selects the services
with optimal match to the privacy constraints [11]. Hence, in order to incorporate

188 M.A. Chauhan and C.W. Probst

the security in a cloud-based system, the requirements for the brokerage infras-
tructure should be considered.

8.2.6 Interoperability

Cloud interoperability enables multiple cloud-enabled systems to collaborate with
each other [15]. Cloud interoperability can be classified into multiple dimensions as
follows: (i) Interoperability of the data persistence layer so that the data can be
stored on the cloud resources satisfying location, security, and privacy constraints
on the data. (ii) Interoperability among different layers of the cloud service model
(i.e., TaaS, PaaS, and SaaS) so that the underlying cloud infrastructure satisfying
location, security, and privacy constraints can be selected. (iii) Interoperability of
the cloud-hosted services so that the services can be composed at runtime according
to the desired Quality of Service (QoS) parameters.

The requirements for the above-mentioned interoperability dimensions can be
broken down further into multiple sub-requirements. Cloud services and persistence
interoperability requirements deal with how to handle multiple collaborative cloud
services, how to select the appropriate persistence store of the data, details on the
mechanisms of storing and retrieving the data from the data persistence units, and
on-the-fly migrating of the data and services among heterogeneous clouds [31, 57].
The requirements for the brokerage process among the clouds deal with defining
and executing the mechanisms for selection of the desired cloud resources via cloud
brokerage [64]. Defining interlayer mappings among the cloud resources to cate-
gorize the resources that can be replaces with one another is vital for interoper-
ability [15]. The requirements of defining, identifying, and selecting interoperable
cloud services can facilitate not only service selection process but also run-time
composition of the services [56]. Decentralized deployment of the cloud infras-
tructure can facilitate satisfaction of the security and privacy constraints on the data
and the services, hence the cloud-based systems’ requirements for the decentralized
deployment should be matched with the infrastructure support of the underlying
cloud [50]. The requirements for autonomous selection and composition of the
underlying cloud resources and the hosted cloud-based systems’ services explore
different parameters needed for resources or services identification and the attributes
for which the search queries can be run [48]. The selection and composition
requirements can also facilitate the resources and services matching and portability
of the services among the clouds [49]. These requirements can also be used for
discovering and composing heterogeneous cloud services on the fly [68].

8 Architecturally Significant Requirements Identification ... 189

8.2.7 Service Level Agreement (SLA) Compliance

The compliance of the cloud-hosted data and services with Service Level Agreements
(SLA) between the cloud-resource providers and the cloud-resource consumers is
vital; especially when a large number of tenants with varying service quality needs are
being served [40]. Hence, the requirements related to SLAs compliance focus on the
following dimension: (i) Monitoring requirements for the cloud resources and
cloud-hosted services to monitor the quality attributes of interest. (ii) Resources’
adaptability and management requirements corresponding to the monitoring
parameters. (iii) Service composition requirements for satisfying SLAs. (iv) Billing
requirements for managing pricing variability with respect to the SLAs.
(v) Requirements for predicting the system’s behavior with respect to the run-time
quality requirements in order to enable the SLLA compliance for unforeseen scenarios.

For the cloud-resource providers to comply with SLAs, the providers have to
monitor the resources for quality attributes of interest such as scalability [38]. The
monitoring requirements need to be focused on key performance indicators of the
system (e.g., elasticity, scalability, and performance) and the monitoring should be
nonintrusive so that the monitoring mechanism do not affect normal operations of
the system [34]. Adaptability requirements should be focused on quality of service
parameters for services transmission and communication environments, and should
focus on key performance indicators [34]. SLA requirements should also include
requirements associated with availability of the qualified candidate services [53],
optimal service composition approaches to be adopted for QoS specific services’
composition [46] and requirements for license management of the virtualized cloud
resources [12].

For services and data management in the cloud-based systems, the focus of the
requirements engineering and management effort should be on characterizing SLA
compliance and regulatory requirements for data retention, intercloud migration of
the services and data, and confidentiality constraints on the data and the services
[42, 60]. The requirements for run-time management of the SLAs (including
enforcement of fine-grained SLA compliance policies for managing data and han-
dling run-time services operations, enforcement of data retention policies on data
persistence objects, and management of billing corresponding to the run-time
quality requirements) are also critical [11]. Moreover, the requirements for resource
discovery and monitoring in accordance with SLAs are also important. To con-
clude, the SLA compliance requirements need to focus on consistency, scalability
[20], workload management driven by applications and users behavior [40],
monitoring of the resources deployed on different platforms [70], anticipation of the
system behavior for desired QoS parameters [27], customization of the monitoring
parameters for different types of the systems following users’ specifications [13],
and optimization of profit margins while satisfying SLAs [9].

190 M.A. Chauhan and C.W. Probst

8.3 Relationship of the Architecturally Significant
Requirements with Multi-tenancy Quality
Characteristics

Multi-tenancy quality characteristic (requirement) of the cloud-based systems
facilitates secured sharing of the resources among multiple tenants and adoption of
the systems with respect to tenant-specific configurations [62]. Multi-tenancy
characteristic affects the design of the cloud-based systems from two-different
perspectives. First, multi-tenancy determines security to provide isolation among
different services belonging to different tenants in a cloud-based system. Services’
isolation is also referred as security dimension of multi-tenancy. Second,
multi-tenancy determines a specific configuration of a cloud-based system for a
specific tenant with respect to the quality requirements discussed in Sect. 8.2. The
security requirements of the multi-tenancy can be classified into three broad cate-
gories: (i) Isolation among the data and services belonging to different tenants.
(i1) Monitoring of the resources for their compliance with QoS parameters and their
usage (so that the tenants can be billed accordingly). (iii) Safe termination of the
resources once tenant-specific operations are completed so that run-time state of
tenant-specific configuration of the system cannot be exploited via a cross tenant
attack. Specification and management of the run-time quality requirements for
different tenants are determined by the nature of the run-time system’s operations
and constraints on the data processing services and need for exposure of the data to
external systems.

Security requirements of the multi-tenancy focus on the following dimensions.
To control access to the multi-tenant systems, the requirements focus on hierar-
chical Role-Based Access Control (hRBAC) mechanisms or conditional
Role-Based Access Control (c(RBAC) mechanisms [10]. For hRBAC mechanisms,
different users and external systems are grouped into hierarchical clusters of users,
and access rights are determined based upon the position of a user or an external
system in the hierarchy. For cRBAC mechanisms, the users and systems are granted
access to the system to perform a specific operation if all the preconditions are
satisfied. The preconditions include not only authentication and authorization but
also if the prerequisite operations have been completed and the data needed for the
current operations (to be performed) is available. To have a centralized security
control mechanism for all the system provided by a particular cloud platform, an
aspect-oriented security mechanism can be adopted [2]. The requirements for the
aspect-based security control mechanism focus on database requirements to
maintain architecture description of the hosted systems and security constraints
desired by different tenants, management system requirements to define and inte-
grate security in the hosted systems, and interface requirements through which the
security aspects can be integrated in the hosted systems.

The focus of handling generic quality requirements for multi-tenant cloud-based
systems is on feature-based resource management, cost-based resource optimiza-
tion, tenant distribution over the resources, and monitoring of the services and

8 Architecturally Significant Requirements Identification ... 191

hosted platforms for their compliance with SLAs. The requirements associated with
feature-based resource management focus on models that can be used to share
instances of the services among the tenants with similar quality requirements [44].
These requirements also focus on resource allocation model to analyze failure cost
of wrong service placement strategy and cost of successful service placement
strategy in terms of energy footprint and price of the used resources. For dis-
tributing tenant-specific resources on hybrid clouds to satisfy the privacy and
security constraints, the scheduling and routing algorithms should focus on context
of the operations and data requests [24]. For monitoring the deployed resources on
the hybrid clouds, observers on all layers of the cloud service and deployment
model can be needed [28]. Moreover, to satisfy the run-time performance param-
eters for SLA compliance, the multi-tenancy requirements should focus on moni-
toring, scheduling, load balancing and provisioning of the components, and services
and data according to available computing resources for each specific tenant [61].

8.4 A C(lassification Scheme for Management
of Architecturally Significant Requirements

Traditionally, architecturally significant quality requirements are classified into two
broad categories: (i) design-time quality requirements and (ii) run-time quality
requirements [29]. However, in order to organize the requirements for complex
software systems, such as cloud-enabled systems, the requirements need to be
further classified into sub-groups. The sub-groups facilitate to establish the rela-
tionship among different types of the requirements’ classes and analyze the impact
of changes in the requirements across the sub-groups. In this section, we identify
different attributes that can be used to classify the architecturally significant quality
requirements of the cloud-based systems into different groups and discuss a selected
set of the requirements to explain the classification approach. An overview of the
requirements classes and the classification parameters is shown Fig. 8.2 and the
details of the sub-classes along with description of the classification parameters are
summarized in Table 8.1.

8.4.1 System Management Requirements for Hosted
Services and Data

The requirements that can be classified into this group are associated with provi-
sioning of the cloud-hosted services following the desired run-time quality
parameters, providing communication among the hosted services, and handling the
security and privacy constraints. In the following subsections, we describe the
details on classification parameters for different dimensions of the system man-
agement requirements.

192 M.A. Chauhan and C.W. Probst

Fig. 8.2 Architecturally
Significant Requirements
classes and key classification
parameters for the
cloud-based systems

e

1 Nature

(_Type) (Facade)

Quality Specific
Provisioning !

Communication &
Collaboration

I Interoperability Y

______ -

Management

Monitoring _ _ _
rT T 7™, I Discovery &\|
|\Conflact5) |\com position

- -

f Dynamic Quality
l\ Parameters

8.4.1.1 Quality Specific Provisioning

The requirements of the cloud-enabled systems can be classified into Quality
Specific Provisioning group if the requirements satisfy to the following conditions:

e The requirements defining the parameters for initialization and deployment of
the services, data, or a combination of these on the cloud.

e The requirements that can have an impact on run-time behavior of a cloud-based
system.

e The requirements that either specify the parameters for SLAs management or
deal with the system compliance with the SLAs.

e The requirements classifying the nature and types of the client systems or ser-
vices that are to interact with a cloud-based system.

e The requirements specifying the nature and type of the end user devices that are
to interact with the system.

8.4.1.2 Interoperability and Integration Requirements

The Interoperability and Integration Requirements group encapsulates the
requirements satisfying the following conditions:

e The requirements that deal with specifying system interfaces. For example,
REST-based interfaces, SOAP-based interfaces, or translucent -callback
interfaces.

8 Architecturally Significant Requirements Identification ... 193

Table 8.1 Requirements classes and parameters used for classification

Requirement classes

Classification parameters

Quality specific
provisioning

Controlling initialization and deployment

Effecting run-time system behavior

Facilitating SLAs achievement

Dealing with nature and type of client systems and services

Dealing with end-user devices

Interoperability and
integration

Enabling translucent system interfaces

Governing cloud federation

Specifying interoperability of the hosted services

Security and privacy

Accessing data and services

Dealing with multi-tenancy

Specifying data encryption requirements

Trusting cloud and the hosted services

Complying with legal and regulatory requirements

Handling data and service placement strategies

Managing liabilities of the cloud-hosted services

Communication and

Enabling communication and interaction with heterogeneous cloud

collaboration environments and externally services
Securing inter service communication
Providing services interface facades
Abstracting service end points
Monitoring Checking compliance with respect to dynamically changeing

quality characteristics

Adapting run-time quality parameters

Monitoring quality parameters

Managing run-time quality conflicts

Optimizing system configuration with respect to quality
characteristics

Enabling autonomous services selection and composition

Managing services distribution and scheduling mechanisms

Enabling dynamic cloud resource discovery

Handling redundant service deployments

e The requirements that handle specification, management, and governance of the
federated cloud. That is, what kind of cloud resources should be combined to
form a federated cloud, when the cloud federation should take place, and under
which conditions specific services from a federated cloud should be selected.

e The requirements which deal with nature and type of the data that should be
exchanged among the services. For example, whether XML-based data struc-
tures or a language-specific data structures are to be used for interoperability and
integration among the services.

194 M.A. Chauhan and C.W. Probst
8.4.1.3 Security and Privacy Requirements

The Security and Privacy group includes the requirements dealing with one or more
of the following specifications.

e The requirements dealing with access to the cloud-hosted data and services.
These requirements include both authentication and authorization requirements.

e The requirements handling different aspects of the multi-tenancy characteristic
of a cloud-based system. For example, whether the tenant-specific service
instances should be isolated from each other or not, what quality of service
parameters are desired by each tenant, and how multiple services can be com-
posed to meet QoS constraints of a specific tenant.

e The requirements associated with security of the data. For example, whether the
data should be encrypted or not, what kind of encryption algorithm should be
applied on the data, and how the data should be persisted.

e The requirements specifying constrains on the trusted execution of the services
on the cloud. These requirements can include the characteristics of the trusted
cloud environments and the parameters to be used for the selection of a trusted
cloud environment.

e The requirements specifying legal and regulatory constrains on the systems. For
example, for how long the data history of a system should be maintained before
permanently deleting the data.

e The requirements specifying the strategies for hosting the services and persisting
the data on different cloud environments. For example, a constraint specifying
that sensitive data should always be stored on a private cloud in an encrypted
format.

e The requirements specifying system liabilities and penalties for cases in which a
cloud-based system fails to comply with desired operational conditions. These
requirements can also include how to handle the exceptional cases in which
desired security and privacy constraints could not be satisfied.

8.4.2 Communication and Collaboration Requirements

Communication and collaboration among the services and hosting cloud environ-
ments, when a cloud-based system is operational, are a critical run-time property of
the cloud-based systems. The requirements associated with communication and
collaboration group can be classified based upon the following properties.

e The requirements that specify the parameters for communication and interaction
among heterogeneous cloud environments as well as interaction among the
services hosted on the heterogeneous cloud environments.

e The requirements defining nature and type of the communication. For example,
whether the communication is to be encrypted or not, or whether a specific

8 Architecturally Significant Requirements Identification ... 195

communication protocol (e.g., publisher subscriber pattern) should be followed
to exchange the notifications and data.

e The requirements defining services’ facade.

e The requirements defining types of interfaces and signatures of interfaces for
services’ end points.

8.4.3 Monitoring Requirements

Services monitoring requirements handle observation of the run-time system
behavior and adaptation based on the analysis of the monitoring parameters. The
requirements can be classified into this category based upon the following
properties.

e The requirements monitoring system compliance with respect to the dynami-
cally changing architecture quality attributes. For example, security and privacy
requirements of the data can be different for different types of tenants and can
vary according to the nature and type of the data.

e The requirements dealing with monitoring of specific run-time quality attributes
of a cloud-based system.

e The requirements specifying mechanisms to handle conflicting run-time quality
requirements.

e The requirements associated with optimization methods based upon the sys-
tems’ monitoring metrics.

e The requirements specifying concrete methods to achieve the quality attributes.
For example, services distribution and scheduling mechanisms.

e The requirements specifying details of resource discovery and composition.

8.5 A Probabilistic Analysis Method to Analyze Impact
of Changes in Architecturally Significant
Requirements

The different types of the architecturally significant requirements discussed in
Sects. 8.2 and 8.3 can be classified into different groups as discussed in Sect. 8.4.
A change in one of the requirements can impact one or more of the related or
dependant requirements. As a result, to manage and track changes in the require-
ments, a systematic approach is required that can be used to analyze the impact of
the changes with reference to the nature and type of relationships that exist among
different requirements and the degree of impact that the requirements can have on
each other. In this section, we describe a probabilistic analysis method to analyze
impact of the changes in architecturally significant requirements.

196 M.A. Chauhan and C.W. Probst

The requirements can be related to each other with different types of relations to
represent dependency, composition, complementation, contradiction, and propor-
tionality relationships. These relationships are explained as follows:

e Dependency relation represents a relationship among the architecturally sig-
nificant requirements such that a requirement B is dependent upon a require-
ment. In other words, in order to satisfy the requirement B, the system first has
to satisfy the requirement A.

e Composition relation represents a relationship among the architecturally sig-
nificant requirements such that the composition of a number of sub-requirements
is needed in order to satisfy a higher order requirement.

o Complementation relation represents a relationship among the architecturally
significant requirements such that incorporation of a requirement A in the
system can complement a requirement B, i.e., incorporating the requirement A
in the system can make it easy to incorporate the requirement B.

e Contradiction relation represents a relationship among the architecturally sig-
nificant requirements such that a requirement A is contradictory to a requirement
B, i.e., it is not possible to completely satisfy both the requirements (A and B) in
the system at the same time. In other words, either the requirements A and B are
mutually exclusive or a trade-off has to be made for degree of satisfaction of
each requirement in the system.

e Inverse proportionality relation represents a relationship among the architec-
turally significant requirements such that the degree of achieving a requirement
A can have an inverse impact on the degree of achieving a requirement B. For
example, if a cloud-based system satisfies a requirement A 90% of the time, the
requirement B can only be satisfied 10% of the time, and vice versa.

Each of the defined relationships has a probabilistic value, which represents the
degree of strength of the relationship between two requirements. For example, a
probabilistic value of 50% with dependency relation between the requirements A
and B shows that the requirement B is at least 50% dependent on the requirement
A. Figure 8.3 shows the symbolic representation of the relationships that can exist
among the requirements and describes an example scenario. The relationships can
be used for not only to establish a link among the requirements of the cloud-based
systems but also to analyze impact of changes in one of the requirements on the
other system requirements.

Figure 8.3 shows the details of the proposed approach for the analysis of two
types of high-level Architecturally Significant Requirements (ASRs), i.e., high
response time and security of a cloud-based system. The probability score associ-
ated with the different relations in the diagram is based upon the expert opinion of
the authors of this chapter. An alternative approach to the expert opinion can be to
seek input from the stakeholders of the system and calculate the probability score
using weighted averages (e.g., for cases in which some of the stakeholders have
more control on the requirements engineering and management than others). The
relations to achieve the change management shown in Fig. 8.3 are linked to each

8 Architecturally Significant Requirements Identification ... 197

r Inverse Probability :
'Legend- Dependency Composition Complementation Contradiction Proportionality Va'l_ue |
: —s —e —A> «—N—> —I> EXy
e e e e e e o s e 0 s o
. {050} e
R1: Avoidance of performance - ... : R2: Optlmlz‘a.tlortr of
bottlenecks resource utilization ‘0-25,,'

R4: Avoiding system overloading

fowy o]

'R3: Autonomous resource acquisition = .- {030} 7
R8: Encryption of R7: Tenant specific R6: Resource adaptability and
persisted data constraint checking management

b {00} {020} >< fowy 10w} o (o

v \
R10: System security has e R9: High response time has R5: Resource
high priority high priority monitoring

e

Fig. 8.3 Relationships of the probabilistic analysis method and an example application scenario

other in the following manner. The requirement R2 for optimization of the resource
utilization is dependant on the requirement R/, which deals with avoidance of the
performance bottlenecks of the systems. A probability value score of 0.50 is
assigned, indicating that R2 is 50% dependent upon R/. To avoid system over-
loading, the requirement R4 is composed of R2 (for optimization of the resource
utilization) and R3 (for autonomous resource acquisition). Each of the requirements
R2 and R3 complement 25% to the achievement of R4, whereas remaining 50% is
handled by the requirement R4 itself. The requirement R6 is associated with
resource adaptability and management. R6 can be complemented by R4 by dele-
gating system overloading avoidance capability to R4. The probability score of 0.30
is assigned, which indicate that 30% of the R6 responsibility can be handled by R4.
Similarly, the requirement R5 handling resource monitoring contributes 40% to R6
and subsequently R6 contributes 50% to the requirement R9. R9 describes that high
response time is of higher priority for the system than security. The requirements R7
and RS deal with security in terms of tenants specific security constraints checking
and encryption of persisted data, respectively. R7 and R8 are inversely proportional
to R9 because incorporating more security measures in the system decreases
response time. The probability values associated with inverse proportionality
relationships have negative contributions, i.e., R7 decreases response time by 20%
and R8 decreases response time by 50%. The requirement R/0 described that higher
system security is desired. R7 and R8 have positive contribution to R/0 and can
facilitate to incorporate RI0 in the system by the factor of 20% and 50%, respec-
tively. As shown in Fig. 8.3, R9 and RI0 are contradictory requirements and both
cannot be fully satisfied at the same time, hence a trade-off has to be made to decide
to which extend each of R9 and RI0 should be incorporated in the system.

198 M.A. Chauhan and C.W. Probst

The quality of architecture in terms of ASR can be calculated in the following
manner. A maximum score 1 can be assigned to each quality requirement indicating
that it can be completely incorporated in the system. For dependency, composition
and complementation relations, probability value assigned with the relation is added
to the target requirement’s score (for the requirements incorporation into the sys-
tem). For example, in Fig. 8.3 the requirement R/ contributes to the requirement R2
with value 0.50. This means 50% of R2 can be achieved by incorporating R/ in the
system. Similarly, the requirements R4 is composed of the requirements R2 and R3
each with a factor of 0.25. This means that each of R2 and R3 contributes 25% for
incorporation of R4 in the system. For inverse proportionality, the probability value
score with the relation is subtracted from the target requirement’s score. For
example, in Fig. 8.3, the requirements R7 and RS are inversely related with the
requirement R9 by factors of 0.20 and 0.50, respectively. As a result, if R7 and RS
are incorporated in the system, the probability for satisfaction of R9 is the system is
only 0.30 (1-0.20-0.50). Only of the requirements associated with each other with
a contradiction relation cannot be fully satisfied by the system. As a result, either
only one of the requirements should be considered to be part of the system or a
trade-off has to be made among the requirements for their respective degree of
incorporation in the system. Table 8.2 lists the relations that can exist between the
requirements versus their contributions to a system’s architecture quality.

The probability value scores associated with the relations (as shown in Fig. 8.3)
can be calculated in the following manner: (i) If there is a consensus among the
stakeholders on the probability score of a relation, the agreed probability score can
be assigned directly. (ii) If the stakeholders cannot reach a consensus, then the
weighted averages for a relation & can be taken according to the following formula,
in which & corresponds to identifier of each relation and N corresponds to the total
number of stakeholders involved in the decision making process of the relation k.

Y| Weight(k), x Score(k),

Probability Score(k) N

The values of each of the Weight(k); and Score(k); can range between O and 1,
depending upon the value of a specific stakeholder’s weight for a specific relation
and the probability score assigned by the stakeholder to the relation. The weighted
average of a relation k specifies probability score value of the relation k between
two requirements. For example, let us assume that there are two stakeholders of the

Table 8.2 Contribution of the relations between ASRs to overall system quality

Relation Relation’s contribution

Dependency Positive

Composition Positive

Complementation Positive

Contradiction Mutually exclusive (trade-off required)
Inverse proportionality Negative

8 Architecturally Significant Requirements Identification ... 199

requirements R/ and R2 and they cannot reach a consensus on the probability score
of the dependency relation between R/ and R2. If first stakeholder has 0.75 weight
(stakes on the requirements) and choose a probability value score of 0.80 for the
relation, and second stakeholders has 0.50 weight and choose a probability value
score of 0.25. The probability score of the dependency relation between the
requirements R/ and R2 can be calculated as follows:

0.75(Weight,) x 0.80(Score;) 4 0.50(Weight,) x 0.25(Score;)

2 =0.36

The weighted averages for all the relations among the requirements in case of
disagreements can be calculated in the similar manner.

The relations and probabilities assigned with the relations (as shown in Fig. 8.3)
can also be used to analyze impact of the changes in the requirements on overall
architecture quality of a cloud-based system. Addition of new requirements or
removal of existing requirements from the probabilistic analysis model can result in
addition or removal of the relations and changes in the respective probabilities of
the relations. Modification in the requirements can require reanalysis of the prob-
abilities assigned to the relations. Addition, removal or modification in some of the
requirements can require recalculation of the whole probabilistic analysis model.
Hence, the probabilistic analysis method presented in this section provides not only
the traces among different types of the requirements but also the types of the traces
(in terms of the relations) and strength of the traces (in terms of the probability
values), which in turn provides a mechanism to evaluate overall requirements
quality of a cloud-based system.

8.6 Related Work

A number of studies have focused on requirements for cloud-based system and
variability management of the requirements. Ramachandran [54] has proposed a
business-oriented requirements engineering approach for the cloud-based systems.
The proposed approach takes market requirements as a baseline for requirements
engineering and cloud business strategy. In subsequent stages, the requirements are
elicited, and cloud services are designed and tested. The business analysis is con-
sisted of tasks, knowledge, and techniques that can be used to identify business
needs and solution to the business needs. Dey and Lee [22] have proposed a
requirements elicitation and variability management approach. The presented
approach proposed that the requirements elicitation should focus on the social,
environmental, and economic context. The proposed variability management
approach focused on recording and analyzing identified conflicts, identifying key
changes for the system redesign, identifying users expected behavior for different
states of the system and identifying most feasible set of requirements for the
cloud-based systems. lankoulova and Daneva [33] have presented a systematic

200 M.A. Chauhan and C.W. Probst

review of the studies discussing cloud computing security requirements. The review
has identified access control, integrity, auditing, privacy, and nonrepudiation as
commonly reported security requirements. Kalloniatis et al. [36] have analyzed the
cloud deployment scenarios with respect to security and privacy requirements. The
authors have argued that the security analysis should be performed with respect to
organizational needs and cloud-deployment models.

Rimal et al. [58] have described the architecture requirements for the
cloud-based systems in terms of provider requirements, enterprise requirements,
and user requirements. The requirements describe cloud-service models, cloud
deployment models, cloud quality characteristics, and billing requirements. Wind
and Schrodl [65] have provided a comparison framework of the requirements
engineering models for the cloud-based systems. Four well-known software
development models including V Model, Rational Unified Process, Extreme
Programming, and Volere are explored in terms of their suitability for requirements
engineering to analyze cloud offerings with respect to suppliers and customers
viewpoints, orchestration, and application components. Zardari and Bahsoon [69]
have presented a goal oriented requirements engineering approach to support cloud
adoption. The presented approach focuses on matching-desired goals with features
of the cloud service providers. After features selection, matches are analyzed for
risks and finally cloud services with least risks are selected for utilization.

The related work discussed in this section focus on higher level enterprise and
business requirements for the cloud-based systems, and describe approaches to
match the requirements with available cloud services. On the contrary, the research
presented in this chapter focuses on multiple dimensions of the architecturally
significant requirements for the cloud-based systems, relations among the
requirements and an approach to manage changes in the requirements.

8.7 Conclusions

A clear understanding of the Architecturally Significant Requirements (ASRs) and
relation among different dimensions of the ASRs is critical to achieve quality in
architecture of the cloud-based systems. The biggest challenge for architecting
quality in the cloud-based systems is to have an understanding of the details to
which the ASRs should be explored and how the changes in one type of the ASRs
can impact the other ASRs. In this chapter, we have presented a set of core ASRs of
the cloud-based systems and have explored the requirements’ relationships with the
multi-tenancy quality characteristic of the cloud-based systems. The ASRs are
classified into three classes including system management requirements, commu-
nication and collaboration requirements, and monitoring requirements. We have
identified key classification attributes for each of the requirements classes. For
example, monitoring requirements handle dynamic monitoring of the quality
parameters, identification of the run-time quality conflicts, and dynamic discovery
and composition of the system services (or components) to maintain the run-time

8 Architecturally Significant Requirements Identification ... 201

quality of a cloud-based system. We have also presented a probabilistic analysis
method to analyze the impact of the ASRs on each other as well as to analyze
impact of change in one of the requirements on other related and dependant
requirements. The presented analysis method utilizes five different types of the
relations (i.e., dependency, composition, complementation, contradiction, and
inverse proportionality) to evaluate impact of the changes.

We foresee that the presented research can be used by the researchers and
practitioners to identify core quality characteristics of the cloud-based systems and
to use the identified dimensions of the ASRs to elicit the requirements’ details. The
presented probabilistic analysis method can be used to control run-time system
configuration to achieve desired quality in a cloud-based system. In future, we tend
to explore the presented research for its suitability for managing SaaS product lines.
We also plan to extend the presented research to provide the traces among the live
components of the cloud-based systems so that the quality of on-the-fly system
composition for multi-tenant cloud-based systems can be determined.

Acknowledgements Part of the research leading to these results has received funding from the
European Union Seventh Framework Program (FP7/2007-2013) under grant agreement no.
318003 (TRESPASS). This publication reflects only the authors’ views and the Union is not liable
for any use that may be made of the information contained herein.

References

1. Al-Aqgrabi, H., Liu, L., Xu, J., Hill, R., Antonopoulos, N., Zhan, Y.: Investigation of it
security and compliance challenges in security-as-a-service for cloud computing. In:
Object/Component/Service-Oriented Real-Time Distributed Computing Workshops
(ISORCW), 2012 15th IEEE International Symposium on. pp. 124-129. IEEE (2012).

2. Almorsy, M., Grundy, J., Ibrahim, A.S.: Tossma: A tenant-oriented saas security management
architecture. In: Cloud computing (cloud), 2012 ieee 5th international conference on. pp. 981—
988. IEEE (2012).

3. AlZain, M.A., Soh, B., Pardede, E.: A byzantine fault tolerance model for a multi-cloud
computing. In: Computational Science and Engineering (CSE), 2013 IEEE 16th International
Conference on. pp. 130-137. IEEE (2013).

4. An, K., Shekhar, S., Caglar, F., Gokhale, A., Sastry, S.: A cloud middleware for assuring
performance and high availability of soft real-time applications. Journal of Systems
Architecture 60(9), 757-769 (2014).

5. Ardagna, C.A., Damiani, E., Frati, F., Rebeccani, D., Ughetti, M.: Scalability patterns for
platform-as-a-service. In: Cloud Computing (CLOUD), 2012 IEEE 5th International
Conference on. pp. 718-725. IEEE (2012).

6. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G., Patterson,
D., Rabkin, A., Stoica, 1., et al.: A view of cloud computing. Communications of the ACM 53
(4), 50-58 (2010).

7. Babar, M.A., Chauhan, M.A.: A tale of migration to cloud computing for sharing experiences
and observations. In: Proceedings of the 2nd international workshop on software engineering
for cloud computing. pp. 50-56. ACM (2011).

8. Belimpasakis, P., Moloney, S.: A platform for proving family oriented restful services hosted
at home. Consumer Electronics, IEEE Transactions on 55(2), 690-698 (2009).

202 M.A. Chauhan and C.W. Probst

9. Beloglazov, A., Abawajy, J., Buyya, R.: Energy-aware resource allocation heuristics for
efficient management of data centers for cloud computing. Future generation computer
systems 28(5), 755-768 (2012).

10. Bernabe, J.B., Perez, J.JM.M., Calero, J.M.A., Clemente, F.J.G., Perez, G.M., Skarmeta, A.F.
G.: Semantic-aware multi-tenancy authorization system for cloud architectures. Future
Generation Computer Systems 32, 154-167 (2014).

11. Buyya, R., Pandey, S., Vecchiola, C.: Cloudbus toolkit for market-oriented cloud computing.
In: Cloud Computing, pp. 24—44. Springer (2009).

12. Cacciari, C., Mallmann, D., Zsigri, C., D’Andria, F., Hagemeier, B., Rumpl, A., Ziegler, W.,
Martrat, J.: Sla-based management of software licenses as web service resources in distributed
computing infrastructures. Future Generation Computer Systems 28(8), 1340-1349 (2012).

13. Calero, J.M.A., Aguado, J.G.: Monpaas: an adaptive monitoring platformas a service for
cloud computing infrastructures and services. IEEE Transactions on Services Computing 8(1),
65-78 (2015).

14. Vera-del Campo, J., Pegueroles, J., Herna'ndez-Serrano, J., Soriano, M.: Doccloud: A
document recommender system on cloud computing with plausible deniability. Information
Sciences 258, 387402 (2014).

15. Celesti, A., Tusa, F., Villari, M., Puliafito, A.: How to enhance cloud architectures to enable
cross-federation. In: Cloud Computing (CLOUD), 2010 IEEE 3rd International Conference
on. pp. 337-345. IEEE (2010).

16. Chauhan, M.A., Babar, M.A.: Migrating service-oriented system to cloud computing: An
experience report. In: Cloud Computing (CLOUD), 2011 IEEE International Conference on.
pp- 404—411. IEEE (2011).

17. Chauhan, M.A., Babar, M.A.: Towards process support for migrating applications to cloud
computing. In: Cloud and Service Computing (CSC), 2012 International Conference on.
pp. 80-87. IEEE (2012).

18. Chauhan, M.A., Babar, M.A., Benatallah, B.: Architecting cloud-enabled systems: a
systematic survey of challenges and solutions. Software: Practice and Experience (2016).

19. Chauhan, M.A., Babar, M.A., Sheng, Q.Z.: A reference architecture for a cloud-based tools as
a service workspace. In: Services Computing (SCC), 2015 IEEE International Conference on.
pp. 475-482. IEEE (2015).

20. Chen, T., Bahsoon, R., Tawil, A.R.H.: Scalable service-oriented replication with flexible
consistency guarantee in the cloud. Information Sciences 264, 349-370 (2014).

21. Daniel, W.: Challenges on privacy and reliability in cloud computing security. In: Information
Science, Electronics and Electrical Engineering (ISEEE), 2014 International Conference on.
vol. 2, pp. 1181-1187. IEEE (2014).

22. Dey, S., Lee, S.W.: From requirements elicitation to variability analysis using repertory grid:
A cognitive approach. In: 2015 IEEE 23rd International Requirements Engineering
Conference (RE). pp. 46-55. IEEE (2015).

23. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms.
In: Advances in cryptology. pp. 10-18. Springer (1984).

24. Fehling, C., Leymann, F., Mietzner, R.: A framework for optimized distribution of tenants in
cloud applications. In: Cloud Computing (CLOUD), 2010 IEEE 3rd International Conference
on. pp. 252-259. IEEE (2010).

25. Fernandes, D.A., Soares, L.F., Gomes, J.V., Freire, M.M., Ina’cio, P.R.: Security issues in
cloud environments: a survey. International Journal of Information Security 13(2), 113-170
(2014).

26. Frincu, M.E.: Scheduling highly available applications on cloud environments. Future
Generation Computer Systems 32, 138-153 (2014).

27. Garcia, A.G., Espert, I.B., Garc'ia, V.H.: Sla-driven dynamic cloud resource management.
Future Generation Computer Systems 31, 1-11 (2014).

28. Goldschmidt, T., Murugaiah, M.K., Sonntag, C., Schlich, B., Biallas, S., Weber, P.: Cloud-
based control: A multi-tenant, horizontally scalable soft-plc. In: Cloud Computing (CLOUD),
2015 IEEE 8th International Conference on. pp. 909-916. IEEE (2015).

8 Architecturally Significant Requirements Identification ... 203

29.
30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

Gorton, I.: Essential software architecture. Springer Science & Business Media (2006).
Han, R., Ghanem, M.M., Guo, L., Guo, Y., Osmond, M.: Enabling cost-aware and adaptive
elasticity of multi-tier cloud applications. Future Generation Computer Systems 32, 8§2-98
(2014).

Hassan, M.M., Song, B., Huh, E.N.: A market-oriented dynamic collaborative cloud services
platform. Annals of telecommunications-annales des te’le’communications 65(11-12), 669—
688 (2010).

Huang, W., Ganjali, A., Kim, B.H., Oh, S., Lie, D.: The state of public infrastructure-as-a-
service cloud security. ACM Computing Surveys (CSUR) 47(4), 68 (2015).

Iankoulova, I., Daneva, M.: Cloud computing security requirements: A systematic review. In:
2012 Sixth International Conference on Research Challenges in Information Science (RCIS).
pp. 1-7. IEEE (2012).

Inzinger, C., Hummer, W., Satzger, B., Leitner, P., Dustdar, S.: Generic event-based
monitoring and adaptation methodology for heterogeneous distributed systems. Software:
Practice and Experience 44(7), 805-822 (2014).

Igbal, W., Dailey, M.N., Carrera, D., Janecek, P.: Adaptive resource provisioning for read
intensive multi-tier applications in the cloud. Future Generation Computer Systems 27(6),
871-879 (2011).

Kalloniatis, C., Mouratidis, H., Islam, S.: Evaluating cloud deployment scenarios based on
security and privacy requirements. Requirements Engineering 18(4), 299-319 (2013).
Kanso, A., Lemieux, Y.: Achieving high availability at the application level in the cloud. In:
Cloud Computing (CLOUD), 2013 IEEE Sixth International Conference on. pp. 778-785.
IEEE (2013).

Katsaros, G., Kousiouris, G., Gogouvitis, S.V., Kyriazis, D., Menychtas, A., Varvarigou, T.:
A self-adaptive hierarchical monitoring mechanism for clouds. Journal of Systems and
Software 85(5), 1029-1041 (2012).

Kaur, P.D., Chana, I.: A resource elasticity framework for qos-aware execution of cloud
applications. Future Generation Computer Systems 37, 14-25 (2014).

Kerte'sz, A., Kecskemeti, G., Brandic, I.: An interoperable and self-adaptive approach for
sla-based service virtualization in heterogeneous cloud environments. Future Generation
Computer Systems 32, 54-68 (2014).

Kirschnick, J., Alcaraz Calero, J.M., Goldsack, P., Farrell, A., Guijarro, J., Loughran, S.,
Edwards, N., Wilcock, L.: Towards an architecture for deploying elastic services in the cloud.
Software: Practice and Experience 42(4), 395-408 (2012).

Li, J., Stephenson, B., Motahari-Nezhad, H.R., Singhal, S.: Geodac: A data assurance policy
specification and enforcement framework for outsourced services. Services Computing, IEEE
Transactions on 4(4), 340-354 (2011).

Louridas, P.: Up in the air: Moving your applications to the cloud. IEEE software 27(4), 6
(2010).

Moens, H., Truyen, E., Walraven, S., Joosen, W., Dhoedt, B., De Turck, F.: Cost-effective
feature placement of customizable multi-tenant applications in the cloud. Journal of Network
and Systems Management 22(4), 517-558 (2014).

Moser, T., Biffl, S.: Semantic integration of software and systems engineering environments.
Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on 42
(1), 38-50 (2012).

Nae, V., Prodan, R., Iosup, A.: Sla-based operations of massively multiplayer online games in
clouds. Multimedia Systems 20(5), 521-544 (2014).

Nidd, M., Ivanova, M.G., Probst, C.W., Tanner, A., Ko, R., Choo, R.: Tool-based risk
assessment of cloud infrastructures as socio-technical systems. The cloud security ecosystem.
Syngress (2015).

Paik, 1., Chen, W., Huhns, M.N.: A scalable architecture for automatic service composition.
IEEE Transactions on Services Computing 7(1), 82-95 (2014).

204 M.A. Chauhan and C.W. Probst

49. Paraiso, F., Merle, P., Seinturier, L.: socloud: A service-oriented component-based paas for
managing portability, provisioning, elasticity, and high availability across multiple clouds.
Computing 98(5), 539-565 (2016).

50. Peifeng, S., Chuan, S., Xiang, Z.: Intelligent server management framework over extensible
messaging and presence protocol. Communications, China 10(5), 128-136 (2013).

51. Perez-Sorrosal, F., Patin"o-Martinez, M., Jimenez-Peris, R., Kemme, B.: Elastic si-cache:
consistent and scalable caching in multi-tier architectures. The VLDB Journal—The
International Journal on Very Large Data Bases 20(6), 841-865 (2011).

52. Prodan, R., Sperk, M.: Scientific computing with google app engine. Future Generation
Computer Systems 29(7), 1851-1859 (2013).

53. Qi, L., Dou, W., Zhang, X., Chen, J.: A qos-aware composition method supporting
cross-platform service invocation in cloud environment. Journal of Computer and System
Sciences 78(5), 1316-1329 (2012).

54. Ramachandran, M.: Business requirements engineering for developing cloud computing
services. In: Software Engineering Frameworks for the Cloud Computing Paradigm, pp. 123—
Springer (2013).

55. Ren, K., Wang, C., Wang, Q.: Security challenges for the public cloud. IEEE Internet
Computing (1), 69-73 (2012).

56. Rezaei, R., Chiew, T.K., Lee, S.P., Aliee, Z.S.: A semantic interoperability framework for
software as a service systems in cloud computing environments. Expert Systems with
Applications 41(13), 5751-5770 (2014).

57. Ribeiro, L.S., Viana-Ferreira, C., Oliveira, J.L., Costa, C.: Xds-i outsourcing proxy: ensuring
confidentiality while preserving interoperability. IEEE journal of biomedical and health
informatics 18(4), 1404-1412 (2014).

58. Rimal, B.P., Jukan, A., Katsaros, D., Goeleven, Y.: Architectural requirements for cloud
computing systems: an enterprise cloud approach. Journal of Grid Computing 9(1), 3-26 (2011).

59. Ryan, J.: Rethinking the esb: building a secure bus with an soa gateway. Network Security
2012(1), 14-17 (2012).

60. Serrano, D., Bouchenak, S., Kouki, Y., Ledoux, T., Lejeune, J., Sopena, J., Arantes, L., Sens,
P.: Towards qos-oriented sla guarantees for online cloud services. In: Cluster, Cloud and Grid
Computing (CCGrid), 2013 13th IEEE/ACM International Symposium on. pp. 50-57. IEEE
(2013).

61. Sousa, F.R., Machado, J.C.: Towards elastic multi-tenant database replication with quality of
service. In: Proceedings of the 2012 IEEE/ACM Fifth International Conference on Utility and
Cloud Computing. pp. 168-175. IEEE Computer Society (2012).

62. Takabi, H., Joshi, J.B., Ahn, G.J.: Security and privacy challenges in cloud computing
environments. IEEE Security & Privacy (6), 24-31 (2010).

63. Tari, Z., Yi, X., Premarathne, U.S., Bertok, P., Khalil, I.: Security and privacy in cloud
computing: Vision, trends, and challenges. Cloud Computing, IEEE 2(2), 30-38 (2015).

64. Villegas, D., Bobroff, N., Rodero, 1., Delgado, J., Liu, Y., Devarakonda, A., Fong, L.,
Sadjadi, S.M., Parashar, M.: Cloud federation in a layered service model. Journal of Computer
and System Sciences 78(5), 1330-1344 (2012).

65. Wind, S., Schro'dl, H.: Requirements engineering for cloud computing: a comparison
framework. In: International Conference on Web Information Systems Engineering. pp. 404—
415. Springer (2010).

66. Wu, L., Garg, S.K., Buyya, R.: Sla-based admission control for a software-as-a-service
provider in cloud computing environments. Journal of Computer and System Sciences 78(5),
1280-1299 (2012).

67. Wu, X., Liu, M., Dou, W., Gao, L., Yu, S.: A scalable and automatic mechanism for resource
allocation in self-organizing cloud. Peer-to-Peer Networking and Applications 9(1), 28-41
(2016).

8 Architecturally Significant Requirements Identification ... 205

68.

69.

70.

Xu, Z., Mei, L., Liu, Y., Hu, C., Chen, L.: Semantic enhanced cloud environment for
surveillance data management using video structural description. Computing 98(1-2), 35-54
(2016).

Zardari, S., Bahsoon, R.: Cloud adoption: a goal-oriented requirements engineering approach.
In: Proceedings of the 2nd International Workshop on Software Engineering for Cloud
Computing. pp. 29-35. ACM (2011).

Zhang, Y., Zhou, Y.: Transparent computing: spatio-temporal extension on von neumann
architecture for cloud services. Tsinghua Science and Technology 18(1), 10-21 (2013).

	8 Architecturally Significant Requirements Identification, Classification and Change Management for Multi-tenant Cloud-Based Systems
	Abstract
	8.1 Introduction
	8.2 Architecturally Significant Requirements of the Cloud-Based Systems
	8.2.1 Scalability
	8.2.2 Elasticity
	8.2.3 Availability
	8.2.4 Security
	8.2.5 Privacy
	8.2.6 Interoperability
	8.2.7 Service Level Agreement (SLA) Compliance

	8.3 Relationship of the Architecturally Significant Requirements with Multi-tenancy Quality Characteristics
	8.4 A Classification Scheme for Management of Architecturally Significant Requirements
	8.4.1 System Management Requirements for Hosted Services and Data
	8.4.1.1 Quality Specific Provisioning
	8.4.1.2 Interoperability and Integration Requirements
	8.4.1.3 Security and Privacy Requirements

	8.4.2 Communication and Collaboration Requirements
	8.4.3 Monitoring Requirements

	8.5 A Probabilistic Analysis Method to Analyze Impact of Changes in Architecturally Significant Requirements
	8.6 Related Work
	8.7 Conclusions
	Acknowledgements
	References

