
Chapter 12
Improving the QoS of a Composite Web
Service by Pruning its Weak Partners

Kuljit Kaur Chahal, Navinderjit Kaur Kahlon
and Sukhleen Bindra Narang

Abstract Quality of Service (QoS)-aware web service composition is based on
nonfunctional properties of component (or partner) web services. In a dynamic
environment, these properties of partner web services change on the fly. There exist
several research proposals that take into account QoS degradation of partner web
services at run-time, and propose solutions to maintain the optimality of the service
composition in such circumstances. In this paper, we focus on the problem from a
different perspective. We take into account the situation when quality (QoS values)
of some of the partner web services improves, but for some others it remains the
same. With the passage of time, if the quality of these web services does not
improve, they act as bottlenecks or the weakest links in an otherwise efficient
process. We simulate a framework which identifies such web services, and expands
the search domain by sending a selective query to remote/premium service
registries/brokers for finding better alternatives of such services. The proposed
approach is effective, efficient, and scalable as well.

Keywords Service computing � SOA � Service composition � Web services �
Supply-Chain network � Quality of Service � Weakest link

12.1 Introduction

In the Service-Oriented Architecture, a Composite Web Service (CWS) is created to
serve functionality which the existing web services are not able to provide. In
addition to the functionality, a CWS is also supposed to fulfill the expected non-
functional requirements of its end users. QoS attributes of a web service describe its

K.K. Chahal (&) � N.K. Kahlon
Department of Computer Science, Guru Nanak Dev University, Amritsar, India
e-mail: kuljitchahal@yahoo.com

S.B. Narang
Department of Electronics Technology, Guru Nanak Dev University, Amritsar, India

© Springer International Publishing AG 2017
M. Ramachandran and Z. Mahmood (eds.), Requirements Engineering
for Service and Cloud Computing, DOI 10.1007/978-3-319-51310-2_12

271



nonfunctional properties. It encompasses a number of performance metrics of a web
service such as availability, reputation, price, execution time, response time, etc.
A CWS depends upon its partner web services to fulfill functional as well as
nonfunctional requirements of its end users. Successful execution of partner web
services contributes to meet user’s expected QoS of the CWS. Inability to do so
may lead to loss of current as well as future business of the CWS, though the cause
of the deficient service lies outside the ambit of the CWS provider.

Several methods have been proposed in the research literature to accurately
estimate aggregate QoS value of a CWS given the QoS values of its partner
(component) web services [4]. A web composition can be static in which partner
web services are decided at design-time [8]. However, such a composition is not
suitable for a dynamic environment in which partner web services are controlled by
third parties and may become unavailable or their QoS values degrade during
run-time [1]. We need solutions which are dynamic as well as proactive to manage
QoS degradation of partner web services in such a way that aggregate quality level
of the CWS can be maintained.

We conjecture that a suboptimal (QoS aware) solution may not always be due to
QoS degradation of some of the partner web services of a CWS. A solution may
also become suboptimal when quality of most of the services improves barring a
few. In such a situation, there is need to look into the web services whose QoS
value is worst and stable (i.e., neither degrades nor improves).

Performance (in terms of QoS) of a CWS is dependent on the performance of its
partner web services (in combination). We define weakest link of a CWS as a
partner web service that limits the web service in attaining higher efficiency beyond
a certain threshold. Therefore, identification and penalization (i.e., substitution) of
weakest links becomes imperative to improve performance of the CWS. The idea of
identifying a weakest link in a CWS (when comprehended as a value chain) is akin
to identification of bottlenecks in a supply-chain network.

We propose to use log analysis of the previous CWS execution traces to identify
a weakest link in its execution. A weakest link, in a CWS execution process, is a
web service whose QoS value contributes the maximum (or minimum) to the global
(aggregate) QoS value of the process to deviate it from attaining a better value. For
example, a set of partner web services of a CWS has the following values for the
Execution Time (ET) QoS attribute (in ms): {w1 = 0.3, w2 = 0.4, w3 = 0.6, w4 = 0.7,
w5 = 2.5}. If ET for the CWS is calculated using the aggregation formula for a serial
workflow (i.e., sum of all the values), it is 4.5 ms. In this aggregate value, maxi-
mum contribution is of the web service W5. It has the maximum value for the ET,
and the value is significantly different from the corresponding values of the other
web services. Now W5’s ET value may be high due to the nature of the task it
performs. For a complex task, ET will be high. If nature of the task is not complex,
then high ET indicates low quality level of the web service in comparison to other
web services in the value chain. Then, such a web service is identified as the
weakest link.

We suggest that search space can be expanded on demand. When all other
services in a web service composition improve, we should be able to identify a web

272 K.K. Chahal et al.



service which proves to be a weakest link in the configuration. Such web services
can be replaced with alternative web services by exploring remote and/or premium
repositories to look for alternatives.

The remainder of the paper is organized as follows: Next section defines the
problem with the help of a motivating example. Section 12.3 presents the related
work. Section 12.4 explains the research methodology. Section 12.5 shows eval-
uation of the proposed framework. Section 12.6 mentions limitations of the study.
Last section concludes the paper followed by the references.

12.2 Problem Definition

Consider a situation in which execution time of some of the partner web services of
a CWS improves over a period of time. There is a partner web service, for example,
whose ET neither improves nor degrades. Had its ET degraded, it would have got
substituted with a better alternative. Therefore, it continues to be a part of the
configuration. With the passage of time, its ET is significantly different from the
execution times of other web services in the CWS. As no degradation happens in its
execution time over the period of time, it cannot be identified by a framework that
may have been used to manage QoS degradation of partner web services [16].
There is need to identify this bottleneck service and find alternatives of this service
(may be from global/premium service repositories). However, to the best of our
knowledge, there does not exist any proposal that tackles the issues in a dynamic
environment of a service oriented solution from this point of view

In an ideal situation, the best web service for a task, wherever it exists on the
planet should be searched and included in the composition. But reality is very
different from this. A number of service registries exist. It is not possible for a
service discovery module to look into all the possible service registries in real time
to get the best services in a time-efficient manner when a composite web service is
configured from scratch. There is a tradeoff between finding the best services and
time complexity of a service discovery process [2, 7]. Moreover, some registries are
public, and some are private and available at a premium. Therefore, for time and
cost efficiency, a service discovery module should expand the search to premium
registries only in exigent cases. Previous work in the service discovery domain [6]
acknowledges the need for creating registry federations to carry out the discovery
process in multiple registries [3]. Such an approach gives more useful results than a
centralized repository. Among the numerous efforts to improve the efficiency of the
service discovery module in SOA, Sivashanmugam et al. [17] propose a crawler
engine that searches the web services information from multiple registries and other
heterogeneous resources and creates a centralized large database called Web
Service Storage (WSS). The large data set needs to be updated regularly by the
crawler as changes occur in the services in their base locations. Changes in the web
services are very frequent in the dynamic Internet based environment. Hence, such

12 Improving the QoS of a Composite Web Service … 273



solutions are inefficient. As they not only require high maintenance to reflect latest
updates, but also suffer from single point of failure syndrome, and are not scalable
as well. In distributed or decentralized approaches of web service registry man-
agement, a locally maintained registry is searched first. If the search request is not
satisfied by the local registry, then it is sent to global registries. We also propose to
involve global registries selectively as retrieval of web service information from
global repositories is not cost effective for routine searching in the beginning of the
web service composition process [2]. It takes time in tens of seconds [19]. We
suggest that search space can be expanded on demand during the web service life
cycle. When all other services in a web service composition improve, we should be
able to identify a web service which proves to be a weakest link in the configu-
ration. Then explore remote and/or premium repositories to look for an alternative.

We propose, in this paper, to start with a CWS (may be created with local
optimization approach criteria alone or along with a global optimization approach)
and then improve the solution in the dynamic environment. It is not (economically)
feasible to create a CWS with global optimization criteria for every user request
especially when the CWS is a long-term solution, and is invoked frequently. Once a
CWS is created, it should be self-optimizing after that. We propose a framework
which can identify partner web services, not in sync with other web services in the
execution plan of the CWS. Such web services can be replaced with alternative web
services. The premise of our proposal is that a discovery algorithm is able to search
a subset of service repositories for web services required for a CWS. Searching in
all the possible (under the sky) service repositories is not cost effective. A CWS
may be created with whatever is available at the first instance in a local repository.
It can be later improved by expanding the search scope to find alternatives for a few
web services which are not in sync with others in the combination. This expanded
search scope may encompass service repositories which are remote or are available
at a premium.

Next, we analyze the weakest link approach for managing QoS of a CWS with a
long life span. There exist a few web service composition approaches that consider
life span of a CWS as well to decide the composition process to follow [12, 15].
A CWS with a short life span responds to a few requests for a short period of time.
As soon as the business goal is fulfilled, the CWS ceases to exit. For every request,
the CWS is created from scratch. In case of a CWS with long life span, configu-
ration of the CWS is created once and then used many times. Jiang et al. [12]
distinguish between two composition approaches as one time query, and continuous
query. One time query corresponds to a CWS with short span, and is created from
scratch for a new request. In continuous query, an old instance of a CWS is (re)used
with some adaptation (if required) for the new requests. Liu et al. [15] define a
long-term composed service (LCS) as a web service with long-term business goal
(or an open-ended life time). It has a stable relationship with its partner web
services to serve a continuous stream of requests. In such a situation, creating a
CWS from scratch for every request is not right from efficiency point of view.

274 K.K. Chahal et al.



12.2.1 Motivating Example

An analysis of previous traces of the CWS on client side (see Table 12.1), shows
that web service WS42 is spending maximum time in execution (measured in ms),
and thus delays the overall process. This service is also not being replaced (in the
following traces) as its ET remains the same (i.e., does not degrade). We assume
that a better alternative of the web service is not available in the primary set of
registries that the service discovery module explores while searching for new ser-
vices. So there is need to extend the search boundary to include a distant repository
(may be of a premium category).

Our proposed work contributes in the following ways:

• We define a strategy to identify those web services in a value chain which
contribute in making the CWS sluggish. A web service is defined as a weakest
link if its QoS values are worst and stable for a long period of time.

• We make a case for the service discovery module to look for candidate web
services in premium/remote service repositories only in exigent cases. The
search space should expand as per demand, only if a better alternative is not
available in the local repository.

• The proposed framework is applied on two types of CWS––one with short term
use, and second with long term use.

12.3 Related Work

Major issue in the web service composition process has been to find a QoS-aware
optimal solution for the service composition problem. Researchers proposed several
methods to search for an optimal solution such as exact algorithms [5], heuristic
algorithms (e.g., [14], and meta-Heuristic algorithms [20] using local optimization

Table 12.1 Example of a typical scenario

Trace Service bindings Remarks

1 WS = {WS11, WS21, WS34, WS42, WS53,
WS61}
ET = {1000, 1200, 1300, 2000, 1300, 1400}

WS42 has the maximum execution time in the
set

2 WS = {WS11, WS21, WS34, WS42, WS53,
WS63}
ET = {1000, 1200, 1300, 2000, 1300, 1200}

WS63 replaces WS61 as WS61’s ET increases

3 WS = {WS11, WS21, WS34, WS42, WS53,
WS63}
ET = {1000, 1200, 1300, 2000, 1300, 1200}

=no change=

4 WS = {WS11, WS25, WS34, WS42, WS53,
WS61}
ET = {1000, 1100, 1300, 2000, 1300, 1200}

WS25 replaces WS21 as WS21’s ET increases

12 Improving the QoS of a Composite Web Service … 275



or global optimization as the criteria. These solutions look for an optimal or near
optimal solution by focusing on two perspectives: reducing time complexity of the
algorithm, and limiting the search space. Most of the solutions are applicable in
static environments only. However, web services-based solutions are realized using
the Internet. The Internet being a dynamic entity, a web service composition
configuration should remain optimal in the dynamic environment otherwise the
optimal solution is limited to a few instances only. As soon as the environment
changes, the solution goes below the optimum level.

Keeping the dynamism of the operating environment in mind, researchers in the
past have focused on handling QoS degradation of web services to maintain the
optimality of the solution in a dynamic environment. Research in this area has
handled QoS degradation of partner web services, and proposed solutions to adapt
the configuration of a CWS by replacing the degraded partner web service with a
better alternative [16].

We also work toward realizing an optimal solution for the web service com-
position problem. But we look at this problem from a different point of view. We
monitor not only degradation of the (partner) web services, but also the web ser-
vices which do not degrade themselves but become bottlenecks when all other
services in a configuration improve in their QoS values. The questions that we
aspire to answer are: what if (rather than degrading) some of the partner web
services improve in their quality except a few of them? Would not it lead to the web
services (whose quality does not improve) acting as bottlenecks or weakest links in
the value chain? As better alternatives for these services are not available in the
registries explored by the service-oriented application in routine, solution lies in
expanding the search space to include more repositories. We observe that this
improves the solution quality in a time-efficient manner as search in this case is for
selective web services (a subset of the total set of services) only.

In a dynamic environment, managing QoS degradation of the partner web ser-
vices requires querying the service resources for latest information about their QoS
values. Keeping in mind the running time overhead that is incurred for collecting
this information, Harney and Doshi [9] propose to use a selective query approach.
In this, full information is not requested from the resource providers for all the
services at one time. Only those services whose QoS values may have changed are
queried for the information. We also use selective querying, but in a different
context. They use selective querying, from monitoring point of view, to collect
latest information at the execution time. We too use this approach during execution
phase of the CWS but from discovery point of view. Their target of the query is a
service registry/broker that is already supporting the application. We target the
query at a service registry/broker which has not been yet explored by the appli-
cation for the service discovery task.

Finding the weakest link in a supply-chain network is of interest for every
business. But we could not find any solution from this domain that can be adopted
for finding the weakest link in a service network in the context of SOA for

276 K.K. Chahal et al.



managing the solution in an automated way. We chose a statistical approach to
identify the web service which contributes maximum to the aggregate QoS value of
the CWS. For the sake of simplicity, we have assumed only one dimension of the
QoS value, e.g., execution time. Execution time is a QoS attribute with a negative
dimension, i.e., lower is the value, better is the quality. Multiple attributes can also
be incorporated easily in this approach by using approaches like Simple Additive
Weighting to find a utility score for a web service.

During exploration of the related research literature, we could find only one
other research paper which focuses on the same issue of finding a weakest link in a
CWS configuration. Research work in [10] focuses on the weak points in a QoS
composition to improve it. The approach to identify weak point is similar to ours––
a service with biggest impact on the composition with respect to a QoS attribute.
Unlike our statistical approach, the authors suggest two approaches for doing so––
in brute force method all the services are tried one by one to identify the web
service with the biggest impact, and in branch and bound method a branch (in a
parallel workflow pattern) with the highest execution time is followed to identify
the weak point web service. Unlike our framework, they assume that a better
alternative of the weak point web service does not exist in the service repository.
Therefore, the solution to replace the weak web service with a set of alternatives is
limited to the available web services in the local repository. The solution is then
another combination of existing web services realized after analyzing various
arrangements for different workflow composition patterns.

We premise that such a solution is more relevant for a CWS with an open-ended
life time. A few solutions already exist which focus on managing partner web
services of a CWS created for long-term use [12, 15].

Jiang et al. [12] perceive the requirement of a mechanism to support execution of
a CWS which responds to a continuous stream of requests. For a one time com-
position request, a CWS is created from scratch, and it ceases to exist as soon as the
response is generated. However, when there is continuous flow of requests for a
CWS on the service network, an old CWS instance can be (re)used to respond to the
requests. In case of dynamic changes in the partner services of the CWS, only
affected services are replaced and not the whole web service space. The continuous
query-based approach has good scalability, and is more efficient than creating a
CWS from scratch for every request.

Liu et al. [15] propose a solution to manage changes that pertain to top level
view of a LCS (Long Composed composite web Service). For example, owners of
the LCS may have different functionality (due to business changes) or QoS (due to
new competitors in the market) requirements. Therefore, changes are introduced
from the top. As requirements change, web services may be added to or removed
from the LCS configuration. Unlike them, we manage changes in a LCS from
bottom to top. We detect web services whose QoS values are stable but worst in the
configuration, then change the LCS configuration by pruning such web services,
and replace them with better alternatives.

12 Improving the QoS of a Composite Web Service … 277



12.4 Research Methodology

We propose to analyze execution trace of a CWS periodically. Duration of peri-
odicity can be determined by the service owner on the basis of cost/benefit tradeoff
of executing the analysis. The execution trace records every partner web service’s
QoS value (e.g. Execution Time). Web services advertise their processing time or
provide methods to inquire about it. Kahlon et al. [13] propose publish-subscribe
mechanism based solution to provide web service QoS values to its clients.

12.4.1 The Statistics

This study explores analysis of the extreme values in an execution trace using
Interquartile Ranges and Tukey Fences [18] as the statistics. Interquartile range is
the statistic to measure variability in a data set. It is the difference between the first
Quartile, Q1, and the third Quartile, Q3. It gives the range of the middle 50% values
in a data set. The formula to calculate is

InterQuartile Range ðIQR) ¼ Q3 � Q1 ð12:1Þ

The Quartiles Q1, and Q3 represent respectively the least 25%, and the largest
25% of the values of a data set.

Tukey Fences is a popular method of identifying extreme values in a data set.
After calculating the first and third Quartiles for a data set, the Tukey Fences are
calculated as follows:

Lower limit ¼ Q1 � 1:5 ðIQR) ð12:2Þ

Upper limit ¼ Q3 þ 1:5 ðIQR) ð12:3Þ

12.4.2 Identifying the Outlier(s)

In the present case, the data set consists of QoS values of partner web services of a
composite web service. A QoS attribute can have a positive or a negative
dimension.

For identifying an outlier in the case of a negative QoS attribute, first find the
maximum value in the data set. If the maximum value is greater than the upper limit
(defined in Eq. 12.3), then the corresponding data item is an extreme value in the
data set. Similarly for finding an outlier in the case of a positive attribute, if the
minimum value is lower than the lower limit (Eq. 12.2), then that is the extreme
value in the data set. For a given data set regarding ET of 7 partner web services
that constitute a CWS, let us examine the statistics in Table 12.2.

278 K.K. Chahal et al.



As per the given values, the maximum value in the data set (i.e., 2200) is greater
than the upper limit of the Tukey Fences (i.e., 1301). Therefore, it is an extreme
value. We know that a better web service is not available in the service repositories
being explored by the service discovery module in the normal routine (otherwise
this web service would have got replaced already). There is need to expand the
search boundary to find a better web service.

12.4.3 Analyze the Influence of the Outlier

A workflow in a service composition may follow serial, cyclic, or parallel, or a
combination of the three execution patterns of partner web services. Aggregate
value of a QoS attribute for a CWS is calculated using different formulae for the
different workflow patterns [11]. In this paper, we consider that service composition
follows a serial workflow pattern. In a serial pattern, the partner web services
execute one after another. Output of one web service becomes input of another in a
serial order. Aggregate value of the Execution Time QoS for a CWS is the sum of
Execution Times of all its partner web services. In our context, the model is an
aggregate function Sum, it takes ET values of various web services and gives ET of
the CWS as output. We assume the workflow pattern as a simple sequence of
service executions. Here, the aggregate (global) value for the QoS attribute ET is
sum of the ET value of each partner service.

The influence of a data point on the aggregate is calculated by first finding the
difference between the original aggregate (which included the said data point) and
the modified aggregate (excluding the said data point). The influence is defined as a
ratio between this difference and the number of data points contributing to this
change. When there is more than 1 outlier, influence values can be used to order the
pruning actions. An outlier with maximum influence is pruned first.

12.5 Results and Analysis

The weakest link analysis approach is analyzed for a CWS with short span of life
(in Experiment 1), as well as for a CWS with long span of life (in Experiment 2).
A CWS, with short life, is created from scratch for every new request. Whereas a
CWS, with long life, is (re)used to respond to forthcoming requests. We use a
synthetic data set in the experiment. Values for the QoS attribute ET are generated
using a uniform random process. The solution is implemented in C++ using

Table 12.2 Statistics for an example data set

Data set Median Q1 Q3 IQR Upper limit

{70, 200, 400, 560, 756, 832, 2200} 560 300 794 494 1301

12 Improving the QoS of a Composite Web Service … 279



CodeBlocks 11.0 IDE with gcc as the compiler on an Intel machine with Core 2
Duo CPU, 2 GB RAM, and Windows XP as the operating system.

12.5.1 Experiment 1

Here, we consider a simple situation in which a CWS is created from scratch for
every request. A new configuration for the CWS is created by searching the
local/global repositories and then executed. Our proposed solution is to analyze
execution trace of a CWS to identify the partner web services that contributed the
maximum in QoS (parameters with negative dimension such as Execution Time) of
that instance of the CWS.

This section presents the evaluation of the framework by comparing it with other
two naïve approaches. We use local optimization as the criteria for selecting web
services from the candidate set of services.

We create three different cases to analyze the results of the proposed approach.
First two cases model two different base (benchmark) situations. In the first case,
service discovery is limited to a local repository. By using an exhaustive strategy,
best service for each task is selected from the candidate web services in the local
repository. In the second case, service discovery is expanded to a global repository,
and selection strategy is exhaustive again. In the third case (the proposed approach),
service composition is created using candidate web services from the local repos-
itory, and then service discovery is expanded to global repository only when the
need is felt to manage web services with worst QoS value in the configuration.

In order to compare the cases, we measure

• Efficiency, i.e., the time taken to generate the CWS configuration,
• Quality of the solution in terms of aggregate QoS value of the resultant CWS.

Before we compare the proposed approach with the two basic approaches, we
discuss the effectiveness (i.e., the usefulness) of the proposed approach in the next
paragraph.

12.6 Effectiveness

Figure 12.1 shows results of the simulation in which ET of all the partner web
services improves except one service. ET is increased at different rates at 10% in the
second run, at 25% in the third run. Then the web service which does not see any
improvement in its ET QoS attribute in the first two runs is identified by the
framework as the weakest link. When it is substituted with an alternate web service
(with 25% better ET) from a distant repository in the fourth run, aggregate ET of the
CWS improves by 33%. It improves only by 5 and 8% in the earlier two runs. It
shows that the proposed approach is promising.

280 K.K. Chahal et al.



12.7 Efficiency

We simulated one service repository at the local machine, and one global repository
on a different machine. Network latency value of 101 ms between the two sites was
taken on the basis of the monitoring information available on the Dotcom-Monitor
cloud network (https://www.dotcom-tools.com/internet-backbone-latency.aspx) on
June 10, 2016. The Dotcom-monitor provides standard baseline network latency
between different locations that it monitors across the globe. We selected Mumbai
(India), and Hongkong (China) as the two locations for simulating the process.
Mumbai has the least network latency with Hongkong.

Both the repositories were populated with web services with similar function-
alities. A few web services with better QoS values (than the local repositories) were
made available in the distant repository only.

For the first case, only the local repository was used in the discovery process.
Local optimization was used to create the initial composition configuration. Here,
the running time increases at a polynomial rate of growth when number of tasks is
five (Fig. 12.2). The best fit equation in this case is y = 13.45x2 − 133.8x + 345.6
with R2 = 0.833 for five tasks. However, as the situation becomes more complex
with a higher number of tasks, running time starts following an exponential growth
rate (Fig. 12.3). Here, the best fit equation is found to be y = 41.10e0.251x with R2 =
0.740.

In the second case, the local as well the global repository was searched during
the service discovery process. This approach is very poor in scalability as the
running time curve follows an exponential rise as the number of candidate web
services in the registry increases. The best fit equation is y = 0.347e0.596x for 5 tasks
with coefficient of determination R2 = 0.975. Similarly, y = 0.289e0.685x for 10 tasks

Fig. 12.1 Improvement in CWS ET after pruning and substituting its weakest link WS

12 Improving the QoS of a Composite Web Service … 281

https://www.dotcom-tools.com/internet-backbone-latency.aspx


with R2 = 0.985. It happens in both the cases: when number of tasks is five (see
Fig. 12.4), or is increased to ten (see Fig. 12.5).

The third case corresponds to the proposed work in this paper. A configuration
was analyzed to identify the weakest link in the service sequence, and the global
repository was searched only when there was a weakest link to find an alternative
web service for the weakest link web service only. In this case, running time follows
a polynomial rate of growth represented by the equation y = 12.71x2 − 126.7x +
333.1 with R2 = 0.852 for 5 tasks (Fig. 12.6). When number of tasks was increased to
ten, even then the running time followed a polynomial growth rate (Fig. 12.7) with
the best fit equation as y = 31.42x2 − 315.4x + 673.1, and coefficient of

Fig. 12.2 Using local repository with local optimization for number of tasks = 5

Fig. 12.3 Using local repository with local optimization for number of tasks = 10

282 K.K. Chahal et al.



determination R2 = 0.801. We analyzed the results for increasing the number of tasks
to 20 (Fig. 12.8). The running time is still with polynomial growth rate represented
by y = 54.11x2 − 533.9x + 1049 with R2 = 0.867 as the best fit equation.

12.8 Quality of the Solution

We measure quality of solution in terms of the aggregate QoS value for the
Execution Time of the CWS. It can be observed (see CWS QoS value in Figs. 12.2,
12.3, 12.4, 12.5, 12.6, 12.7 and 12.8) that quality of the solution improves as the

Fig. 12.4 Using local as well as global repository with 5 tasks

Fig. 12.5 Using local as well as global repository with 10 tasks

12 Improving the QoS of a Composite Web Service … 283



Fig. 12.6 Results for the proposed solution using local as well as a global repository with 5 tasks

Fig. 12.7 Results for the proposed solution using local as well as a global repository with 10 tasks

Fig. 12.8 Results for the proposed solution using local as well as a global repository with 20 tasks

284 K.K. Chahal et al.



search space is expanded in all the cases. Aggregate value of the Execution Time of
a CWS decreases as more and more number of services are added to the search
domain. As the number of tasks in a CWS increases, the aggregate ET values also
increases, and intuition also implies the same. However, the cost of improvement is
the least in case of the proposed solution.

12.8.1 Experiment 2

Analysis of the proposed framework for a CWS with long span of life is presented
in this section. This section presents the evaluation of the framework by comparing
it with a solution that does not use any policy to analyze a CWS execution plan to
identify partner web services posing as weakest links in the value chain. In the first
case, service discovery is limited to a local repository. By using an exhaustive
strategy, best service for each task is selected from the candidate web services in the
local repository. In the second case (or for the proposed approach), service com-
position is created using candidate web services from the local repository, and then
service discovery is expanded to global repository only when the need is felt to
manage web services with worst QoS value in the configuration.

In order to compare the approaches, we measure

• Quality of the solution in terms of aggregate QoS value of the CWS.
• Efficiency, i.e., the time taken to generate the CWS configuration
• Scalability, i.e., the response of the proposed approach as the problem size

scales up.

We use a synthetic data set in the experiment. Values for the QoS attribute ET
are generated using a uniform random process. The solution is implemented in C++
using CodeBlocks 11.0 IDE with gcc as the compiler on an Intel machine with Core
2 Duo CPU, 2 GB RAM, and Windows XP as the operating system.

12.9 Quality of the Solution

We measure quality of solution in terms of the aggregate QoS value for the
Execution Time of the CWS. In the first case, only the local repository was used in
the discovery process. Local optimization was used to create the initial composition
configuration. In a static environment, a CWS is created only once, and responds to
all the requests that it gets after that. Figure 12.9a shows the CWS QoS value for
first and the subsequent requests in case of static composition. It stays almost the
same for the 20 requests the CWS was run for. When the proposed framework is
used to analyze the CWS execution process for weakest link web services in a static
environment, CWS QoS value improves (for request number 2 in the Fig. 12.9).

12 Improving the QoS of a Composite Web Service … 285



We use NF for No Framework, and WLF for the Weakest Link Framework pro-
posed in this paper.

For the proposed solution, we simulated one service repository at the local
machine, and one global repository on a different machine. Network latency value
of 101 ms between the two sites was taken on the basis of the monitoring infor-
mation available on the Dotcom-Monitor cloud network (https://www.dotcom-
tools.com/internet-backbone-latency.aspx) on June 10, 2016.

In the second case, we considered a dynamic environment in which QoS values
of the partner web services change (improve) randomly. The experiment results (in
Fig. 12.10a) show that CWS QoS values improve consistently in both the cases
(without as well as with the framework). However, improvement in case of the
Weakest Link Framework (WLF) is far better than the case when no framework is
used.

12.10 Efficiency

Figures 12.9b and 12.10b present the running time of composing a CWS in static
and dynamic environments respectively. The running time of the naïve approach
(no framework) is better than the proposed approach in the static environment. With

Fig. 12.9 Experimental results for a static environment

286 K.K. Chahal et al.

https://www.dotcom-tools.com/internet-backbone-latency.aspx
https://www.dotcom-tools.com/internet-backbone-latency.aspx


the framework, running time is considerably high for the first request. But with
support for the weakest link analysis and replacement with a better alternative, the
running time decreases significantly for the subsequent requests.

In the dynamic environment, as QoS of the partner web services improve a few
web services become weakest links. We can see spikes in the running time for the
proposed framework. Otherwise, the running time for the proposed framework is
better than the naïve approach.

12.11 Scalability

Figure 12.11a, b gives a comparison of the average CWS QoS value, and average
running time for both the approaches. When we scale up the number of requests that
invoke the CWS, the average CWS QoS value improves in case the proposed
framework is employed. However, it remains almost at the same level throughout
for the naïve approach. The average running time is also better (than the naïve

Fig. 12.10 Experimental results for a dynamic environment

12 Improving the QoS of a Composite Web Service … 287



approach) for the proposed framework as the number of requests scale up from 50
to 80,000. In this case running time is almost constant. Actually, extra overhead to
deal with the weakest link web services gets distributed in multiple requests.

12.12 Limitations of the Study

Three factors determine optimization of a web service composition problem:
number of tasks of the CWS, number of candidate web services for the tasks, and
number of QoS factors to watch for optimization. This study focuses on only the
first two. For the third one, we assumed a simple QoS model with only one
dimension.

The proposed approach follows local optimization as the evaluation criteria for
service selection. It does not consider global constraints on the solution. Though
improvements in global QoS value are appreciated and given preference.

Fig. 12.11 Experiment results to show scalability of the approach

288 K.K. Chahal et al.



12.13 Conclusions

This paper proposes an approach to improve QoS of a composite web service when
some of its partner web services become weakest links in the workflow. The
weakest links are identified, and then pruned from the configuration of the com-
posite web service. Alternatives of such web services do not exist in the service
registry that the service discovery module explores in routine. Therefore, the search
space is expanded to bring some distant/premium service repositories/brokers in the
ambit of the service discovery module. Simulation results show that the proposed
approach is effective and efficient as well. In the present case, a web service
composition configuration is created from scratch for every request. Such an
approach is not efficient when requests for the same CWS are pouring at a con-
tinuous rate (called a long term composed service). In the second experiment, CWS
QoS analysis in static as well as dynamic environments shows that the proposed
framework gives better quality of the solution. At the same time, running time
(computation cost) of the proposed solution is better. Scalability of the proposed
framework is tested for running it for 50 requests to 80,000 requests. Its running
time is stable as the number of requests scales up. At present, we are working on a
prototype to implement the proposed solution in a real-world application.

References

1. Alamri, A. et al. (2006). Classification of the State-of-the-Art Dynamic Web Services
Composition Techniques, International Journal of Web and Grid Services, vol. 2, pp. 148–
166, Sept. 2006.

2. Al-Masri, E., Mahmoud, Q. (2007). Crawling Multiple UDDI Business Registries, WWW
2007(poster paper), May 8–12, 2007, Banff, Alberta, Canada, pp. 1255–1256.

3. Baresi, L., Miraz, M. (2006). A Distributed Approach for the Federation of Heterogeneous
Registries, (Eds.) A. Dan, W. Lamersdorf Proceedings 4th International Conference
Service-Oriented Computing ICSOC 2006:, Chicago, IL, USA, December 4–7, 2006.
Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 240-251.

4. Cardoso, J. et al. (2004). Quality of Service for Workflows and Web Service Processes,
Journal of Web Semantics, vol. 1, pp. 281–308.

5. Chen, M., Yan, Y. (2014). QoS-aware service composition over graphplan through graph
reachability, in Proceedings of the 2014 IEEE International Conference on Services
Computing, pp. 544–551.

6. Crasso, M., Zunino, A., Campo, M. (2011). A Survey of Approaches to Web Service
Discovery in Service-Oriented Architectures, J. Database Management. Vol 22, issue 1,
pp. 102–132.

7. Deng, S., Wu, Z., Wu, J. (2012). An Efficient Service Discovery Method and its Application
in (Eds.) Zhang, L. Innovations, Standards, and Practices of Web Services: Emerging
Research Topics. Information Science Reference, IGI Global.

8. Dustdar, S., Schreiner, W. (2005). A Survey on Web Services Composition, International
Journal on Web and Grid Services, vol. 1, pp. 1–30, Aug 2005.

12 Improving the QoS of a Composite Web Service … 289



9. Harney, J., Doshi, P. (2008). Selective querying for adapting web service compositions using
the value of changed information, IEEE Transactions on Services Computing, 1 (3), pp. 169–
185.

10. Jaeger, M., Ladner, H. (2006). A Model for the Aggregation of QoS in WS Compositions
Involving Redundant Services, Journal of Digital Information Management, 2006, Digital
Information Research Foundation.

11. Jaeger, M., Rojec-Goldmann, G., Muehl, G. (2004). QoS Aggregation for Web Service
Composition using Workflow Patterns, Proceedings of the 8th International Enterprise
Distributed Object Computing Conference (EDOC 2004), Monterey, California, USA,
IEEE CS Press, pp. 149–159.

12. Jiang, W., Hu, S., Lee, D., Gong, S., Liu, Z. (2012). Continuous Query for QoS-Aware
Automatic Service Composition. IEEE International Conference Web Services (ICWS), 2012.

13. Kahlon, N.K., Chahal, K. K., Kapoor, S.V., Narang, S.B. (2015). Managing Availability of
Web Services in Service Oriented Systems, Proceedings of 2015 Asia-Pacific Software
Engineering Conference (APSEC), New Delhi, pp. 316–321.

14. Li, J., Zhang, X., Chen, S., Song, W., Chen, D. (2014). An Efficient and Reliable Approach
for QoS aware service composition, Information Sciences, vol. 269, pp. 238–254, June 2014.

15. Liu, X., Bouguettaya, A., Wu, X. and Zhou, Li. (2013). Ev-LCS: A System for the Evolution
of Long-Term Composed Services. IEEE Trans. Serv. Comput. 6, 1 (January 2013), 102–115.

16. Ma, H., Bastani, F., Yen, I., Mei H. (2013). QoS-Driven Service Composition with
Reconfigurable Services, IEEE Transactions on Services Computing, 6(1):20–34.

17. Sivashanmugam, K., Verma, K., Sheth, A. (2012). Discovery of Web Services in a Federated
Registry Environment, Proceedings of the Second International Conference on Computer
Science, Engineering and Applications (ICCSEA 2012), May 25–27, 2012, New Delhi, India,
Volume 1.

18. Tukey, J. (1977). Exploratory Data Analysis, Addison-Wesley, 1977, pp. 43–44.
19. Zeng, L., Benatallah, B., Ngu, A., Dumas, M., Kalagnanam, J. and Chang, H. (2004).

QoS-Aware Middleware for Web Services Composition, IEEE Transactions on Software
Enggineering. 30(5): 311–327, 2004.

20. Zhou, X., Shen, J., Li, Y. (2013). Immune based chaotic artificial bee colony multiobjective
optimization algorithm, in Proceedings of the 4th International conference on Swarm
Intelligence, vol. 7928, pp. 387–395.

290 K.K. Chahal et al.


	12 Improving the QoS of a Composite Web Service by Pruning its Weak Partners
	Abstract
	12.1 Introduction
	12.2 Problem Definition
	12.2.1 Motivating Example

	12.3 Related Work
	12.4 Research Methodology
	12.4.1 The Statistics
	12.4.2 Identifying the Outlier(s)
	12.4.3 Analyze the Influence of the Outlier

	12.5 Results and Analysis
	12.5.1 Experiment 1

	12.6 Effectiveness
	12.7 Efficiency
	12.8 Quality of the Solution
	12.8.1 Experiment 2

	12.9 Quality of the Solution
	12.10 Efficiency
	12.11 Scalability
	12.12 Limitations of the Study
	12.13 Conclusions
	References


