
Chapter 11
Transition from Information Systems
to Service-Oriented Logical Architectures:
Formalizing Steps and Rules with QVT

Nuno Santos, Nuno Ferreira and Ricardo J. Machado

Abstract Specifying functional requirements brings many difficulties namely
when regarding the cloud services. During the analysis phase, the alignment
between the process-level requirements (information systems) with the
product-level requirements (service-based software) may not be properly achieved
or even understood. In this chapter, we describe an approach that supports the
creation of the intended requirements, beginning in a process-level and evolving to
a product-level perspective, to elicit requirements for specifying services that
execute in a cloud computing environment. The transition between perspectives are
supported by UML model transformations, encompassing a set of transition rules
using QVT, from one perspective to the other, in order to assure that process- and
product-level requirements are aligned.
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11.1 Introduction

The “generalized” adoption of cloud computing paradigm in software industry,
together with the industry’s high competitiveness, results in a highly demand for
new releases that make use of cloud computing platforms with quality but devel-
oped in lesser time. It is a common problem in software projects that the final
product is misaligned with the stakeholders’ needs. The stakeholders are respon-
sible for the business model development, and the development team is responsible
for implementing it in software. However, in many cases, there is no stable context
for eliciting requirements in Cloud Computing projects, and requirements engi-
neering (RE) for Software-as-a-Service (SaaS) [1] and Service-Oriented
Architecture (SOA) [2] are major challenging. A proper alignment is not always
easy and bad requirements are one of the main reasons of projects’ failure [3]. The
elicitation of product-level (service-based software) requirements is achievable by
using a process-level perspective to elicit process or (business process) needs and
then use the resulting artifacts, like an information system logical architecture, as
inputs for modeling of software functional needs. The first effort should be to
specify the requirements of the overall system in the physical world; then to
determine necessary assumptions about components of that physical world; and
only then to derive a specification of the computational part of the control system
[4]. There are similar approaches that tackle the problem of aligning
domain-specific needs with software solutions. For instance, goal-oriented
approaches are a way of doing so, but they do not encompass methods for deriv-
ing a logical representation of the intended system processes with the purpose of
creating context for eliciting product-level requirements.

Our main problem, and the main topic this chapter addresses, is assuring that
product-level (IT-related, in the software engineering domain) requirements are
perfectly aligned with process-level requirements (in the information systems
domain), and hence, are aligned with the organization’s business requirements. The
process-level requirements express the need for fulfilling the organization’s busi-
ness needs, and we detail how they are characterized within our approach further in
Sect. 11.2. These requirements may be supported by analysis models, that are
implementation agnostic [5]. According to [5], the existing approaches for trans-
forming requirements into an analysis model (i) do not require acceptable user effort
to document requirements, (ii) are efficient enough (e.g., one or two transformation
steps), (iii) are able to (semi-)automatically generate a complete (i.e., static and
dynamic aspects) consistent analysis model, which is expected to model both the
structure and behavior of the system at a logical level of abstraction. For that,
requirements are modeled by successive derivation (for more details, please refer to
our approach of a V-Model [6, 7]) using UML models, first in process-level per-
spective, and then in product-level perspective.

Our proposal is to provide context for RE for cloud computing projects, by using
a process-level approach for the initial eliciting of business needs, in order to give
context to the product-level functionalities elicitation. Our product-level approach
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includes the use of models to define functional and nonfunctional requirements for
SaaS and SOA solutions, initially in form of UML use cases, and in deriving a
service-oriented logical architecture by executing the Four-Step-Rule-Set (4SRS)
method [6–8]. This paper intends to detail the steps and rules required to perform
the transition between the process- and product-level perspectives within the V+V
Model (presented in [9]) using Query/View/Transformation (QVT) [10] in order to
achieve that transition between UML models. This way, we formalize the transition
between perspectives that is required in order to align the requirements of both
V-Models. In comparison with [9], besides the use of QVT transformations, we
include additional contributes to support of the rules, like a formalization of a UML
metamodel extension. In addition, we strengthen the state-of-the-art section. The
result is an integrated approach, beginning in information system architecture and
ending in a service-oriented logical architecture.

This chapter will be structured as follows: Sect. 11.2 briefly presents the
macro-process for information systems development based on both process- and
product-level V-Model approaches; Sect. 11.3 describes the transition steps and
detail the model transformations required for applying the transition rules between
both perspectives; in Sect. 11.4 we present a real industrial cloud-based demon-
stration case on the adoption of transition steps between process- and product-level
perspectives; in Sect. 11.5 we compare our approach with other related work; and
in Sect. 11.6 we present the conclusions.

11.2 The V+V Model

The V+V Model [11] is an approach for information systems development. The
entire V+V Model is not presented in this paper, since it is already detailed in [11]
and its composing artifacts presented in [6, 7]. Rather, in Fig. 11.1 is depicted the
main artifacts, and those artifacts are the ones involved in the transition process.
The transition process is presented in [9]. The main difference from our proposed
approach to other information system development approaches is that it is appli-
cable for eliciting product-level requirements in cases where there is no clearly
defined context for eliciting product requirements within a given specific domain,
by first eliciting process-level requirements and then evolving to the product-level
requirements, using a transition approach that assures an alignment between both
perspectives. Other approaches (described further in Sect. 11.5) typically apply to a
single perspective.

The first V-Model (in which the most important artifacts are depicted in the left
side of Fig. 11.1, the remaining models are out of the scope of this paper) is
executed at a process-level perspective performing the identification of business
needs and then, by successive artifact derivation, transiting from business-level
artifacts (i.e., process-level use case diagrams) to an IT-level artifact (i.e., infor-
mation system logical architecture) that is assured by the execution of the Four-Step
Rule-Set (4SRS) method. For the scope definition of our work, we characterize our
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process-level perspective by: (i) being related to real-world activities (including
business); (ii) when related to software, those activities encompass the typical
software development lifecycle.

Our process-level approach is characterized by using refinement (as one kind of
functional decomposition) and integration of system models. Activities and their
interface in a process can be structured or arranged in a process architecture [12].
The process-level 4SRS method execution (see [6–8] for details about the
process-level 4SRS method) assures the transition from the problem to the solution
domain by transforming process-level use cases into process-level logical archi-
tectural elements, and results in the creation of a validated architectural model
which allows creating context for the product-level requirements elicitation and in
the uncovering of hidden requirements for the intended product design. Use cases
are mandatory to execute the 4SRS method.

The second V-Model (in which the most important artifacts are depicted in the
right side of Fig. 11.1) is executed at a product-level perspective. By product-level,
we refer as the typical software requirements. The second execution of the V-Model
is performed by gathering information from the process-level V-Model in order to
create a new model referred as Mashed UCs (preliminary product-level use case
models). The creation of this model is detailed in the next section of this paper as
transition steps and rules. Mashed UC model is then used as input for successive
artifact derivation until requirements are modeled in product-level use case dia-
grams that gather typical software user requirements. The remaining models from
Fig. 11.1 are out of the scope of this paper. Like in the first V-Model, use cases are
input for the 4SRS method (but in its product-level perspective, detailed in [13–
15]), which then outputs a service-oriented logical architecture that depict system
requirements derived from the original user requirements. The resulting architecture
is then considered a design artifact that contributes for the creation of context for
product implementation (CPI) as information required by implementation teams.
Note that the design itself is not restricted to that artifact, since in our approach it

Fig. 11.1 V+V process framed in the development macro-process (from [11])
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also encompasses behavioral aspects and nonfunctional requirements
representation.

As depicted in Fig. 11.1, the result of the first V-Model (process-level) execution
is the information system logical architecture. The architectural elements that
compose this architecture are derived (by performing transition steps) into
product-level use cases (Mashed UC models). The result of the second V-Model
(product-level) execution is the service-oriented logical architecture. The Mashed
UC model is the output of the model transformations presented in the next section.

11.3 Steps and QVT Rules for Transition Between
V-Models

The V+V process is useful for both stakeholders, organizations and technicians, but
it is necessary to assure that they properly reflect the same system. This section
begins by presenting a set of transition steps whose execution is required to create
the initial context for product-level requirements elicitation, referred to as
Mashed UC model. The purpose of the transition steps is to assure an aligned
transition between the process- and product-level perspectives in the V+V process,
that is, the passage from the first V-Model to the second one. By defining these
transition steps, we assure that product-level use cases (UCpt’s) are aligned with the
architectural elements (AEpc’s) from the information system logical architecture
diagram; i.e., software use case diagrams are reflecting the needs of the information
system logical architecture. The application of these transition rules to all the par-
titions of an information system logical architecture gives origin to a set of Mashed
UC models. To allow the recursive execution of the 4SRS method [13, 15–17], the
transition from the first V-Model to the second V-Model must be performed by a set
of steps. The output of the first V-Model must be used as input for the second
V-Model; i.e., we need to transform the information system logical architecture into
product-level use case models. The transition steps to guide this mapping must be
able to support a business to technology changing. These transition steps (TS),
presented in [9], are depicted in Fig. 11.2 and are structured as follows:

TS1—Architecture Partitioning: By applying collapsing and filtering techniques
as detailed in [13], it is possible to identify major groups of elements in the
information system logical architecture that must be computationally supported by
software. In this transition step, the AEpc’s under analysis are classified by their
computation execution context with the purpose of defining software boundaries to
be transformed into UCpt’s. The final software boundary is represented after the
execution of filtering and collapsing techniques in the AEpc’s. Each of the iden-
tified major groups of elements is subject to a separate execution in the following
transition steps.

TS2—Use Case Transformation: This transition step is applied to each partition
defined in the previous transition step (i.e., to each major groups of elements) with

11 Transition from Information Systems to Service-Oriented … 251



the purpose of transforming elements of the information system logical architecture
(AEpc’s) into software use cases and actors. In this transition step, AEpc’s are
transformed into software use cases and actors that represent the system under
analysis. This is the most critical transition step of the transition process and, as
such, we have devised a set of transition patterns that must be applied as rules that
are later described in this section.

TS3—Original Actors Inclusion: For each defined partition, the original actors
that were related to the use cases from which the architectural elements of the
process-level perspective are derived (in the first V-Model execution) must be
included in the representation. The purpose of this transition step is to introduce
into the product-level perspective the necessary information regarding the skills and
stakeholders of the originally defined processes. The traceability between the
process-level use cases and the AEpc’s is assured by the process-level 4SRS
execution [6–8].

TS4—Redundancy Elimination: In the previous transition steps there is a pos-
sibility of including redundancy in the model in the form of actors and use cases
generated by the transition rules. For each partition defined in the first transition
step, it is important to remove such redundancy by explicitly removing the
unnecessary actors and use cases from the model.

TS5—Gap Filling: This final transition step intents to create, in the form of use
cases to be added to the model, the necessary information of any requirement that is
intended to be part of the design and that is not yet present. Typical missing use

Fig. 11.2 Process- to product-level transition
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cases are connections between existing use cases that were automatically created by
the transition rules.

During the execution of these transition steps, a specific stereotype of use cases,
called transition use cases (UCtr’s), bridge the AEpc’s and serve as basis to elicit
UCpt’s. UCtr’s also provide traceability between process- and product-level per-
spectives using tags and annotations associated with each representation. The
identification of each partition is first made using the information that results from
the packaging and aggregation efforts of the previous 4SRS execution (step 3 of the
4SRS method execution as described in [6, 7]). Nevertheless, this information is not
enough to properly identify the partitions. Information gathered in scenarios that
were elicited in early models in the first V-Model must also be accounted.
A partition is created by identifying all the relevant architectural elements that
belong to a given organizational configuration scenario. The rules to support the
execution of the TS2 are applied in the form of transition rules and must be applied
in accordance to the stereotype of the envisaged architectural element. There are
three stereotyped architectural elements: d-type, which refer to generic decision
repositories (data), representing decisions not supported computationally by the
system under design; c-type, which encompass all the processes focusing on
decision-making that must be supported computationally by the system (control);
and i-type, which refer to process’ interfaces with users, software, or other pro-
cesses. The full descriptions and specifications of the three stereotypes are available
in [6].

The proposed process not only includes activities for perspective transition (as it
is performed by the application of transition rules in TS2) but it also concerns to
obtain a stable model (by performing TS3-5). By analyzing the perspectives on
which the steps from the transition process are performed, the steps are easily
classified.

The transition process naturally starts in the process-level perspective with
AEpc’s. In Table 11.1 it is possible to realize that after TS1 the transition is still
dealing with AEpc’s as input; the execution of TS2 results in the perspective
transition, since it is in this TS that UCtr’s are introduced and they relate to
product-level; in the remaining transition steps, naturally they relate to
product-level perspective. The purpose of the remaining transition steps is to pro-
mote completeness and reliability in the model. The model is complete after adding
the associations that initially connected actors (the ones who trigger the AEpc’s)
and the AEpc’s, and then by mapping those associations to the UCtr’s. The model
is reliable since the enforcement of the rules eliminates redundancy and assures that
there are no gaps in the UCtr’s associations and related actors. Only after the
execution of all the TS we consider the resulting model as containing product-level
(software) use cases (UCpt’s), which will compose the Mashed UC model. In
summary, in TS1 the artifact regards AEpc’s, in TS2-5 the focus is in UCtr’s and
only when the Mashed UC model is finished UCtr’s become UCpt’s.
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For the sake of understandability we present in Fig. 11.3 an excerpt of the UML
extension that supports the creation of AEpc’s, UCtr’s and partitions (please note
that UCpt’s regard the traditional use cases). We consider that a partition is a
container of AEpc’s or UCtr’s and acts as a border delimiter for the combinations of
possible systems candidates to be analyzed.

After delimiting all the partitions, it is necessary to focus on a particular one
(called inbound partition) and execute the required transformations considering all
the remaining neighbor partitions (outbound partitions).

Table 11.1 Transition steps overview

Transition
step

Description Perspective

TS1 The AEpc’s under analysis are classified by their computation
execution context

Process-level

TS2 AEpc’s are transformed into software use cases and actors that
represent the system under analysis through a set of transition
patterns that must be applied as rules

Product-level

TS3 The original actors that were related to the use cases from
which the architectural elements of the process-level
perspective are derived (in the first V execution) must be
included in the representation

Product-level

TS4 The model is analyzed for redundancies Product-level

TS5 The necessary information of any requirement that is intended
to be part of the design and that is not yet present is added, in
the form of use cases

Product-level

Fig. 11.3 Excerpt of AEpc and UCtr extension
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Aproper way of defining the transformations betweenmodels is bymeans of using
OMG’s QVT [10]. QVT is a set of languages (QVT-Operational, QVT-Relations,
and QVT-Core) that enables models transformations. QVT-Operational enables
unidirectional transformations of a given model into another. QVT-Relations allow
bi-directional transformations. QVT-Core can be considered a subset of
QVT-Relations. All the QVT set of languages are associated with model-driven
approaches. These model-driven approaches are usually associated with design and
implementation models and lack support to requirements and analysis models. The
requirements specification (in any perspective) is a crucial task in any software
development process. As such, models that support requirements specification should
be integrated into model-driven methods.

In our proposed approach we have chosen QVT as a mean to transform AEpc’s
models into UCtr’s models, or being more specific, transforming information
system logical architectural models into Mashed UC models. This relates to inte-
grating models that support requirements specifications into a model-driven
approach. In [9], the steps and rules were already described, but without techno-
logical formalization. Associated with the transition rules, we present a subset of the
QVT-Operational (-like) code that supports the transformation intended by a given
rule. The defined transition rules, from the logical architectural diagram to the
Mashed UC diagram, are presented in [9] and are as follows:

TR1—an inbound c-type or i-type AEpc is transformed into an UCtr of the same
type (see Fig. 11.4). By inbound we mean that the element belongs to the partition
under analysis.

The QVT-like specification that supported the transformation for TR1 is as
follows:

if (AEpc.Partition=inbound) and 
(AEpc.4SRSstereotype=cType or 
AEpc.4SRSstereotype=iType) then { UCtr.name:=Aepc.name; 
UCtr.4SRSstereotype:=AEpc.4SRSstereotype}               
endif; 

TR2—an inbound d-type AEpc is transformed into an UCtr and an associated
actor (see Fig. 11.5). This is due to the fact that d-type AEpc’s correspond to
decisions not computationally supported by the system under design and, as such, it
requires an actor to activate the depicted process.

UCtr

{c, i}
AEpc

{c, i}

Fig. 11.4 TR1—transition
rule 1 (from [9])
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TR2 is supported by the following:

if (AEpc.Partition=inbound) AND 
(AEpc.4SRSstereotype=dType) then { 
UCtr.name:=AEpc.name; 
UCtr.4SRSstereotype:=AEpc.4SRSstereotype;  
Actor.name:=self.name;           
Actor.association:=UCtr}                          
endif; 

Rules TR1 and TR2 are the most basic ones and the patterns they express are the
most used in the transition step 2. The remaining rules regard more specific situ-
ations, however require equal attention from the analyst. The remaining rules are as
follows:

TR3—an inbound AEpc, with a given name x, which also belongs to an out-
bound partition, is transformed into an UCtr of name x, and an associated actor, of
name y, being responsible for outbound actions associated with UCtrx (Fig. 11.6).

The specification for TR3 is:

if (AEpc.Partition=multiple) and 
(AEpc.4SRSstereotype=cType) then {   
UCtr.name:=AEpc.name; 
UCtr.4SRSstereotype:=AEpc.4SRSstereotype;  
Actor.name:=self.name;           
Actor.association:=UCtr }                         
endif;

The connections between the use cases and actors produced by the previous rules
must be consistent with the existing associations between the AEpc’s. The focus of
this analysis is UCtr’s and is addressed by the following two transition rules.

UCtr

{d}
AEpc

{d}

Fig. 11.5 TR2—transition
rule 2 (from [9])

AEpcxP1 P2 UCtrx

Actor try

Fig. 11.6 TR3—transition
rule 3 (from [9])
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TR4—an inbound d-type UCtr of name x with connections to an (any type) UCtr
of name y and to an actor z, gives place to two UCtr’s, x and y, maintaining the
original types (see Fig. 11.7). Both are connected to the actor z. This means that all
existing connections on the original d-type AEpc that were maintained during
execution of TR2 or TR3 are transferred to the created actor must be consistent with
the existing associations between the AEpc’s. The focus of this analysis is UCtr’s
and is addressed by the following two transition rules.

The previous rule is executed after TR1, TR2, or TR3, so it only needs to set the
required association between the UCtr’s and the actors, that is to say, after all
transformations are executed (TR1, TR2, and TR3), a set of rules are executed to
establish the correct associations to the UCtr’s.

Regarding TR4, the necessary specification is

if (UCtr.Partition=inbound) and 
(UCtr.4SRSstereotype=dType) and  
(Actor.associations().FilterByPartition(UCtr).Count > 
1) then { 
Actor.Association:= Ac-
tor.associations().FilterByPartition(UCtr).GetUCtr()) 
} 
endif; 

TR5—an inbound UCtr of name x with a connection to an outbound AEpc of
name y (note that this is still an AEpc, since it was not transformed into any other
concept in the previous transition rules) gives place to both an UCtr named x and to
an actor named y (see Fig. 11.8). AEpc’s that were not previously transformed are
now transformed by the application of this TR5; this means that all AEpc’s which
exist outside the partition under analysis having connections with inbound UCtr’s
will be transformed into actors. These actors will support the representation of

Fig. 11.7 TR4—transition
rule 4 (from [9])

Actor try

P1 AEpcy P2UCtrx UCtrx

Fig. 11.8 TR5—transition rule 5 (from [9])
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required external inputs to the inbounds UCtr’s created during application of TR1,
TR2, or TR3.

For TR5, the supporting specification is

if (AEpc.Partition=outbound) then { 
Actor.name:=Aepc.name  
Actor.Association:= Ac-
tor.associations().FilterByPartition(UCtr).GetUCtr()) }
endif;

A special application of TR5 (described as TR5.1) can be found in Fig. 11.9
where we can see an UCtr with a connection to an outbound AEpc and another
connection to an actor. In this case, TR5 is applied and the resulting UCtr is also
connected to the original actor. Note that an UCtr belonging to multiple partitions is
first and foremost, an inbound UCtr due to being under analysis.

The application of these transition steps and rules to all the partitions of the
information system logical architecture gives origin to a set of Mashed UC models.
In the next section, we present a demonstration case study an information system
logical architecture is transformed into a product-level Mashed UC model by
executing the transition steps.

11.4 Demonstration Case on the Transition Process

The applicability of the proposed approach was assessed with a real project that is
analyzed in this manuscript as a case study: the ISOFIN project (Interoperability in
Financial Software) [18]. This project aimed to deliver a set of coordinating services
in a centralized infrastructure, enacting the coordination of independent services
relying on separate infrastructures. The resulting ISOFIN platform allows for the
semantic and application interoperability between enrolled financial institutions,
e.g., Banks, Insurances, and others.

The global ISOFIN architecture relies on two main service types: Interconnected
Business Service (IBS) and Supplier Business Service (SBS). In this context, there
are two external business domain entities with access to the ISOFIN Platform:

UCtrx Actor try

Actor trx

Actor trx P1 AEpcy P2UCtrx

Fig. 11.9 TR5.1—transition rule 5.1 (from [9])
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ISOFIN Customers and ISOFIN Suppliers. An ISOFIN Customer is an entity
whose domain of interactions resides in the scope of consuming, for economic
reasons, the functionalities exposed by IBSs. An ISOFIN Supplier is a company
that interacts with the ISOFIN SaaS Platform by supplying the platform with
functionalities (SBSs) that reside in their private clouds. IBS’s concern a set of
functionalities that are exposed from the ISOFIN core platform to ISOFIN
Customers. An IBS interconnects one or more SBS’s and/or IBS’s exposing
functionalities that relate directly to business needs. SBS’s are a set of function-
alities that are exposed from the ISOFIN Suppliers production infrastructure. SBSs
are made available in the ISOFIN Supplier private cloud by the use of generators
and are composed, in the public cloud where the ISOFIN SaaS Platform resides
implement an IBS. Composition of basic SBSs into IBSs give origin to more
powerful functionalities that are exposed by the platform.

The requirements elicitation of activities in the ISOFIN project resulted in a
model composed by 39 use cases (i.e., the process-level use cases from Fig. 11.1).
From the demonstration case, we first present a subset of the information system
logical architecture in Fig. 11.10, that resulted from the execution of the 4SRS
method at a process-level perspective [6–8]; i.e., the execution of the first
(process-level) V-Model. The information system logical architecture is composed
by architectural elements that represent processes executed within the ISOFIN
platform. The first V-Model execution ended with 74 documented architectural
elements (not counting associations). This means that we added more details to the
problem description. All of these architecture elements from the logical architecture
were input for the transition process.

The logical process-level architecture of the ISOFIN project has embedded
design decisions that are initially injected in the processes descriptions. The design
decisions concern the deployment of the system in a public cloud environment and

Fig. 11.10 Subset of the ISOFIN information system logical architecture (from [9])
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its interoperability with several other private clouds as defined in the project
objectives.

The resulting logical model of the system architecture, based on the processes
that are intended to be executed, shows a software solution able to be deployed in
IaaS layer. That layer will support the execution of a set of services that will allow
suppliers to specify the behavior of the services they intend on supplying, in a PaaS
layer. This will allow customers, or third-parties, to use the platform’s services, in a
SaaS layer and be billed accordingly. Additionally, processes regarding the pro-
vider perspective (e.g., infrastructure management) were also considered.

In Fig. 11.11, we depict the execution of TS1 to a subset of the entire infor-
mation system logical architecture, i.e., the partitioning of the information system
logical architecture, by marking its architectural elements in partition areas, each
concerning the context where services are executed, which resulted in two parti-
tions: (i) the ISOFIN platform execution functionalities (in the area marked as P1);
(ii) the ISOFIN supplier execution functionalities (in the area marked as P2).

The identification of the partitions will enable the application of the transition
steps to allow the application of the second V-Model to advance the macro-process
execution into the product implementation. Presenting the information that sup-
ported the decisions regarding the partitions in the case of the ISOFIN project is out
of the scope of this paper.

TS1 ends with the collapsing of AEpc’s from outside the boundaries and without
any associations to inbound AEpc’s. In the subset of Fig. 11.11, such only applied
to {AE3.7.2.i} Local SBS Publishing Interface. Thus, this AEpc is immediately
excluded from the remaining steps.

<<interface>>
{AE3.7.2.i} Local SBS 
Publishing Interface

{P1.3} SBS 
Generator

<<interface>>
{AE3.6.i} Generate SBS 

Code

<<control>>
{AE2.1.c} Access Remote 

Catalogs

<<control>>
{AE2.3.1.c} IBS Internal 
Structure Specifica on

<<control>>
{AE2.11.c} Global 

Publishing Integra on 
Decisions

<<interface>>
{AE2.11.i} Execute 

Publishing Info 
Integra on

<<data>>
{AE3.7.1.c} Remote SBS 
Publishing Informa on

<<interface>>
{AE3.7.1.i} Remote SBS 

Publishing Interface

{P2.2} IBS Analysis 
Decisions

{P2.3} IBS Generator

<<interface>>
{AE2.6.1.i} Generate IBS 

Code

<<interface>>
{AE2.6.2.i} IBS 

Deployment Process

<<control>>
{AE2.7.c} IBS Publica on 

Decisions

<<interface>>
{AE2.7.i} Execute IBS 
Publica on in Catalog

<<data>>
{AE2.6.2.d} IBS 

Deployment Decisions

P1

P2

Fig. 11.11 Partitioning of the information system logical architecture (TS1) (from [9])
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In Fig. 11.12, we depict the final Mashed UC model (the first product-level
artifact in the second V-Model), resulting from the execution of TS2-5. Due to
space restrictions, we only show the result of the execution of these four transition
steps altogether. The resulting mashed use cases are the result of the application of
the transition rules in TS2.

Table 11.2 summarizes the application of QVT transformations to the AEp’cs
from Fig. 11.11. It is possible to objectively recognize the effect of the application
of some transition rules previously described. TR1 was the most applied transition
rule and one example is the transformation of the AEpc named {AE2.1.c} Access
Remote Catalogs into one UCtr named {U2.1.c} Access Remote Catalogs. One
example of the application of TR2 is the transformation of the AEpc named
{AE2.6.2.d} IBS Deployment Decisions into the UCtr named {U2.6.2.d} Define IBS
Deployment and the actor named IBS Developer. TR3 was applied, for instance, in
the transformation of the AEpc named {AE3.7.1.c} Define SBS Information into the
UCtr named {U3.7.1.c} Define SBS Information and the actor named SBS
Publisher. Finally, we can recognize the application of TR5.1 in the transformation
of the AEpc named {AE3.6.i} Generate SBS Code into the actor named SBS
Developer. All the other actors result from the execution of TS3. We must refer, for
instance, that the actor SBS Developer results from the execution of TS4, since the
original actor and the actor resulting from an application of TR2 and TR5.1 and also
the inclusion of the original actor in TS3, result in the same actor which brings the
need to eliminate the generated redundancy. The resulting model allows to identify
potential gaps in use cases or actors (in the execution of TS5), but in this case such
wasn’t required.

After the execution of the transition steps, the resulting Mashed UC model is the
first artifact that composes the product-level V-Model and that is then used as
starting point for the rest of the V-Model execution. Thus, after performing the

SBS Publisher

{U3.7.1.c} Define 
SBS Informa on

{U3.7.1.i} Publish 
SBS Informa on

{U2.7.c} Define IBS 
Informa on

{U2.7.i} Publish IBS 
Informa on

{U2.6.1.i} 
Generate IBS Code

{U2.6.2.d} Define 
IBS Deployment

{U2.6.2.i} Deploy 
IBS

{U2.11.c} Define 
Global Publishing 

Integra on

{U2.11.i} Integrate 
Publishing 

Informa on

{U2.3.1.c} Define 
IBS Internal 

Structure

{U2.1.c} Access 
Remote Catalogs

SBS Developer

IBS Business Analyst

IBS Developer

Fig. 11.12 Mashed UC model resulting from the transition from process- to product-level (from
[9])
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transition process, the Mashed UC model was used for deriving a new set of
artifacts, this time regarding a product-level perspective, in a new V-Model exe-
cution. Like in the process-level perspective, the process ends with the 4SRS
method execution, where a service-oriented logical architecture was derived.

The derivation of this architecture is out of the scope of this paper, so this
demonstration case skips directly from the Mashed UC model to the software
system logical architecture. We depict in the second architecture of Fig. 11.13 the
entire software system logical architecture obtained after the execution of the V+V
process, derived by transforming product use cases in architectural elements using
product-level 4SRS method, having as input the information system logical
architecture (the first architecture of Fig. 11.13) previously presented.

The software system logical architecture is composed by architectural elements
(depicted in the zoomed area) that represent services that are executed in the
platform. The alignment between the architecture elements in both perspectives is
supported by the transition steps. It would be impossible to elicit requirements for a
service-oriented logical architecture as complex as the ISOFIN platform (the overall

Table 11.2 Executed QVT transformations to the model

QVT
rule

Process-level (transformation source) Output Product-level (transformation
target)

TR1 AEpc {AE2.1.c} Access Remote
Catalogs

UCtr {U2.1.c} Access Remote
Catalogs

AEpc {AE2.3.1.c} IBS Internal
Structure Specification

UCtr {U2.3.1.c} Define IBS Internal
Structure

AEpc {AE2.6.1.i} Generate IBS Code UCtr {U2.6.1.i} Generate IBS Code

AEpc {AE2.6.2.i} IBS Deployment
Process

UCtr {U2.6.2.i} Deploy IBS

AEpc {AE2.7.i} Execute IBS
Publication in Catalog

UCtr {U2.7.i} Publish IBS
Information

AEpc {AE2.7.c} IBS Publication
Decisions

UCtr {U2.7.c} Define IBS
Information

AEpc {AE2.11.i} Execute Publishing
Info Integration

UCtr {U2.11.i} Integrate Publishing
Information

AEpc {AE2.11.c} Global Publishing
Integration Decisions

UCtr {U2.11.c} Define Global
Publishing Information

TR2 AEpc {AE2.6.2.d} IBS Deployment
Decisions

UCtr {U2.6.2.d} Define IBS
Deployment

Actor IBS Developer

TR3 AEpc {AE3.7.1.i} Remote SBS
Publishing Interface

UCtr {U3.7.1.i} Publish SBS
Information

Actor SBS Developer

TR3 AEpc {AE3.7.1.c} Remote SBS
Publishing Information

UCtr {U3.7.1.c} Define SBS
Information

Actor SBS Publisher

TR5.1 AEpc {AE3.6.i} Generate SBS Code Actor SBS Developer

262 N. Santos et al.



F
ig
.
11

.1
3

Su
bs
et

of
th
e
IS
O
FI
N

se
rv
ic
e-
or
ie
nt
ed

lo
gi
ca
l
ar
ch
ite
ct
ur
e
ba
se
d
on

th
e
in
fo
rm

at
io
n
sy
st
em

lo
gi
ca
l
ar
ch
ite
ct
ur
e
(f
ro
m

[9
])

11 Transition from Information Systems to Service-Oriented … 263



information system logical architecture was composed by near 80 architectural
elements, and the resulting service-oriented logical architecture by near 100) by
adopting an approach that only considers the product-level perspective.

Our V+V process allows to perform RE activities in an integrated approach, and
the ISOFIN project demonstration case (namely the service-oriented logical
architecture) demonstrated that this approach is suitable for Cloud Computing
projects. The services that compose this SOA-based platform were identified, by
performing sequential RE-related tasks and requirements modeling. It is also pos-
sible to depict in Fig. 11.13 the alignment (supported by the transition steps and
QVT rules) between the architecture elements in both perspectives.

11.5 Comparison with Related Work

There are many approaches that allow deriving at a given level a view of the
intended system to be developed. Our approach clearly starts at a process-level
perspective, and by successive models derivation creates the context for trans-
forming the requirements expressed in information system logical architecture into
product-level context for requirements specification. Other approaches provide
similar results at a subset of our specification.

For instance, KAOS, a goal-oriented requirement specification method, provides
a specification that can be used in order to obtain architecture requirements [19].
This approach uses two step-based methods, which output a formalization of the
architecture requirements for each method. Since it uses two methods, each of the
derived architectures provides a different view of the system. It is acknowledged in
software engineering that a complete system architecture cannot be represented
using a single perspective [20]. Using multiple viewpoints, like logical diagrams,
sequence diagrams, or other artifacts, contributes to a better representation of the
system and, as a consequence, to a better understanding of the system. An important
view considered in our approach regards the architecture. The organization’s pro-
cesses can be represented by an enterprise architecture, as proposed in [21], and
representation extended by including in the architecture modeling concerns as
business goals and requirements [22]. However, such proposals do not intend to
provide information for implementation teams during the software development
process, but instead to provide to stakeholders with business strategic requirements.
Most agree that an architecture concerns both structure and behavior, with a level of
abstraction that only regards significant decisions, is influenced by its stakeholders
and the environment where it is intended to be instantiated and also encompasses
decisions based on some rationale or method. Some architecture views can be seen
in [20, 23–25]. Krutchen’s work [20] refers that the description of the architecture
can be represented into four views: logical, development, process, and physical.
The fifth view is represented by selected use cases or scenarios. Our stereotyped
usage of sequence diagrams adds more representativeness value to the specific
model. Additionally, the use of this kind of stereotyped sequence diagrams at the
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first stage of analysis phase (user requirements modeling and validation) provides a
friendlier perspective to most stakeholders, easing them to establish a direct cor-
respondence between what they initially stated as functional requirements and what
the model describes. Ullah and Lai [26] models business goals and derives system
requirements, but it outputs a UML state chart. Our approach outputs system
requirements in an architectural diagram and stereotyped sequence diagrams.

The relation between what the stakeholders want and what implementation teams
need requires an alignment approach to assure that there are no missing specifications
on the transition between phases. Tarafdar and Qrunfleh [27] argues that an alignment
between business and IT can be “strategic” and “tactical,” and [28] presents an
alignment approach also based on architectural models. An approach that enacts the
alignment between domain-specific needs and software solutions, is the GQM +
Strategies (Goal/Question/Metric+Strategies) [29]. This approach uses measurement
to explicitly link goals and strategies from business objectives to project operations.
Another goal-oriented approach is the Balanced Scorecard (BSC) [30]. BSC links
strategic objectives and measures through a scorecard in four perspectives: financial,
customer, internal business processes, and learning and growth. It is a tool for defining
strategic goals frommultiple perspectives beyond a purely financial focus, and can be
properly aligned with four key elements of IT-business alignment (integrated plan-
ning, effective communication, active relationship management, and institutionalized
culture of alignment) [31], as well as for information security management [32].
Another approach, COBIT [33], is a framework for governing and managing enter-
prise IT. It provides a comprehensive framework that assists enterprises in achieving
their objectives for the governance andmanagement of enterprise IT. It is based onfive
key principles: (1) meeting stakeholder needs; (2) covering the enterprise end-to-end;
(3) applying a single, integrated framework; (4) enabling a holistic approach; and
(5) separating governance from management. As far as the authors of this paper are
concerned, none of the previous approaches encompasses processes for deriving a
logical representation of the intended system processes with the purpose of creating
context for eliciting product-level requirements. Those approaches have a broader
specification concerning risk analysis, auditing, measurement, or best practices in the
overall alignment strategy.

The 4SRS method is used for transforming functional user requirements into
logical architectural models representing system requirements. It can be executed
either in a process-level [7–9] and in a product-level perspective [13–15] but the
method executed alone does not allow to transit between perspectives. Tan et al.
[34] presents an approach to transform a functional analysis model (in a data flow
diagram) into object-oriented design and implementation. This approach is exe-
cuted in a product-level perspective and, like 4SRS, the transformation only regards
a single perspective. In a product-level perspective, there are several approaches
that support model transformations to software architectures based on requirements,
like the work in [34], the Component-Oriented Platform Architecting Method for
product family engineering (COPA) [35], the Reuse-driven Software Engineering
Business (RSEB) [36], the Family-Oriented Abstraction, Specification and
Translation (FAST) [37], the Feature-Oriented Reuse Method (FORM) [38], the
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Komponentenbasierte Anwendungsentwicklung (german for component-based
product line engineering—KobrA) [39], or the Quality-driven Architecture
Design and Analysis (QADA) [40]. In a process-level perspective, Tropos [41] is a
methodology that uses notions of actor, goal, and (actor) dependency as a foun-
dation to model early and late requirements, architectural and detailed design;
afterwards, the SIRA approach describes a software requirements and architectural
models from the perspective of an organization in the context of Tropos, using i*
models (a goal-oriented approach to describe both the system and its environment
in terms of strategic actors and social dependencies among them) [42], in [43] is
presented a process to generate Acme ADL [44] architectural models from i*
models; and in [45] is described a method for obtaining architectural models based
in KAOS requirements models. None of these presented approaches support pro-
cess- to product-level transition.

There are many approaches that allow deriving at a given level a view of the
intended system to be developed. Our approach clearly starts at a process-level
perspective, and by successive models derivation creates the context for trans-
forming the requirements expressed in an information system logical architecture
into product-level context for requirements specification. Other approaches provide
similar results at a subset of our specification.

In [46] it is specified a mapping technique and an algorithm for mapping
business process models, using UML activity diagrams, and use cases, so functional
requirements specifications support the enterprise’s business process. In our
approach, we use information system logical architecture diagram instead of an
activity diagram, since an information system logical architecture provides a fun-
damental organization of the development, creation, and distribution of processes in
the relevant enterprise context [47].

In literature, model transformations are often related to the Model-Driven
Architecture (MDA) [48] initiative from OMG. An MDA-based approach uses
model transformations in order to transform a high-level model
(Platform-Independent Model—PIM) to a lower level model (Platform-Specific
Model—PSM). MDA-based model transformations are widely used but, as far as
the authors know, the supported transformations do not regard perspective transi-
tion, i.e., are perspective agnostic since they concern model transformations within
a single perspective (typically the product-level one). Model-driven transformation
approaches were already used for developing information systems in [49]. In [50]
business process models are derived from object-oriented models.

The existing approaches for model transformation attempt to provide an auto-
mated or automatic execution. Yue et al. [5] provides a systematic review and
evaluation of existing work on automating of transforming requirements into an
analysis model and, according to the authors, none of the compared approaches
provide a practical automated solution. The transition steps and rules presented in
this work intent to provide a certain level of automation into our approach and
improve the efficiency, validation, and traceability of the overall V+V process. The
transitions depicted in the present work are able to be fully implemented in devel-
opment tools that support QVT transformations, like the well-known Eclipse IDE.
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11.6 Conclusions

We have described the transition steps and rules for assuring an alignment between
process- and product-level requirements within the execution of the V+V process.
This approach is adopted to create context for software implementation teams in
Cloud Computing projects where requirements cannot be properly elicited. The V
+V process is based on successive models construction and recursive derivation of
logical architectures (first an information system one and then for a service-oriented
one), and makes use of model derivation for creating use cases, based on high-level
representations of desired system interactions.

We presented a real industry demonstration case in order to elicit requirements
for developing a platform that provides interoperability between financial institu-
tions by providing services in a cloud environment. Our approach is supported on a
set of transition steps and QVT-based transition rules in order to execute the
transition from process- to product-level perspective. These transition steps use as
basis an information system logical architecture to output a product-level use case
model. The product-level requirements are specified in a software system logical
architecture, having as basis the information system logical architecture.

It is a common fact that domain-specific needs, namely business needs, are fast
changing. Information system architectures must be in a way that potentially
changing domain-specific needs are local in the architecture representation. Our
approach enables requirements traceability within three stages of its process,
namely within the derivation of both process- (information system) and
product-level (service-oriented) logical architectures and during the transition
between perspectives. Each V-Model uses software engineering techniques, such as
operational model transformations to assure the execution of a process that begins
with business needs and ends with a logical architectural representation of a system.
Each V-Model from our proposed V+V process encompasses the derivation of a
logical architecture representation that is aligned with domain-specific needs by
executing the 4SRS method and any change made to those domain-specific needs is
reflected in the logical architectural model, and the transformation and traceability
is properly assured by the 4SRS method. Since the Mashed UC model (and, con-
sequently, the perspective transition) is derived from a model transformation based
on QVT mappings (from AEpc’s to UCtr’s), traceability between AEpc’s and
UCpt’s is guaranteed, thus any necessary change on product-level requirements due
to a change on a given business needs is easily identified and propagated alongside
the models that comprise the V+V process.

Since we are designing SOA and Cloud Computing solutions, using SOA
Modeling Language (SoaML) diagrams, an instantiation of UML models for SOA
contexts, instead of UML diagrams, may be more adequate. Within SoaML dia-
grams, 4SRS was already used to derive participants, requests, services, and
properties by using UML use cases as input. As future work, we intend to include in
our approach the derivation of other SoaML diagrams, like Service Contracts,
Service Architectures, Interfaces, Service Choreographies, amongst others, in order
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to improve our process, since we believe that using additional diagrams will
improve the specification of the SOA and cloud services. However, SoaML nota-
tion should be used throughout the entire V-Model, in order to obtain information
regarding services at the end of the requirements elicitation phase. We intend to
develop this V-Model in future work, as we believe that the rationale regarding the
RE-tasks present in the V-Model as described in this paper will be similar for
developing a SoaML variation of the V-Model.
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