
Chapter 10
Appraisal and Analysis of Various
Self-Adaptive Web Service Composition
Approaches

Doaa H. Elsayed, Eman S. Nasr, Alaa El Din M. El Ghazali
and Mervat H. Gheith

Abstract Service-Oriented Requirements Engineering (SORE) plays a significant
role in eliciting, specifying, and validating service requirements that will be
developed by Web service technology. With the increasing complexity of users’
requirements, Web services need to be combined together to fulfill them. The
process of building new value-added services by integrating sets of existing Web
services to satisfy users’ requirements is called Web Service Composition (WSC).
The main objective of WSC is to develop composite services to satisfy users’
requirements, which does not only include Functional Requirements (FR), but also
Non-Functional Requirements (NFR). One of the main challenges of WSC is how it
deals with dynamic environments. Since the Web service properties and compo-
sition requirements are frequently changeable, this demands that SORE activities
must be equipped with a self-adaptation mechanism to provide the most appropriate
composite services and satisfy users’ requirements emerged. Self-adaptation occurs
in either a proactive or reactive manner. In this chapter, we appraise and analyze
existing reactive adaptation research that deals with the problem of WSC in a
dynamic environment in order to identify the research gaps in this field. These
approaches are classified into three categories: used of variability models,
context-awareness, and multi-agent approaches. Most of these approaches are not
able to deal with continuous and unanticipated changes in complex uncertain
contexts because they need to define the contexts in design time. It is usually

D.H. Elsayed (&) � M.H. Gheith
Institute of Statistical Studies and Research, Cairo University, Cairo, Egypt
e-mail: doaa.hani@hotmail.com

M.H. Gheith
e-mail: mervat_gheith@yahoo.com

E.S. Nasr
Independent Researcher, Cairo, Egypt
e-mail: nasr.eman.s@gmail.com

A.E.D.M. El Ghazali
Sadat Academy for Management Sciences, Cairo, Egypt
e-mail: a.elghazali@gmail.com

© Springer International Publishing AG 2017
M. Ramachandran and Z. Mahmood (eds.), Requirements Engineering
for Service and Cloud Computing, DOI 10.1007/978-3-319-51310-2_10

229



difficult to predict all of the possible situations that might arise in an uncertain
environment.

Keywords Web service composition � Reactive adaptation � User requirement

10.1 Introduction

Service-Oriented Architecture (SOA) is an architectural approach to design and
develop distributed systems in the form of interoperable services. Interoperability is
the ability of two or more systems to work together to achieve a common goal
[1, 2]. A Web service is a technology that implements SOA [3]. Web services
achieve interoperability between applications using three major Web technologies
to provide an industrial standard for deploying, publishing, discovering, and
invoking enterprises’ services. The standard technologies for implementing Web
services are Web Services Description Language (WSDL), Universal Description,
Discovery and Integration (UDDI), and Simple Object Access Protocol (SOAP) [4].
With the increasing complexity of users’ requirements, Web services need to be
combined together to fulfill them [5]. The process of developing a composite
service that satisfies users’ requirements is called Web Service Composition
(WSC). The ultimate objective of WSC is to develop composite services to satisfy
users’ requirements, and hence Requirements Engineering (RE) could be consid-
ered the most critical phase of WSC [6]. RE establishes the goals and objectives of
the system in consultation with all relevant stakeholders. RE could be divided into
Functional Requirements (FR) and Non-Functional Requirements (NFR) [7]. FR
represent functionality in a system or component (i.e., what the system does). NFR
are treated as requirements on quality of the system, such as Quality of Services
(QoS), cost, scalability, usability, maintainability, etc. FR are represented by
task/function, while NFR are operationalized by quality constraints. If FR and NFR
are not defined correctly in the beginning, the resulting WSC will not fully satisfy a
user’s request.

RE has evolved from classical methods to object-oriented methods and finally to
Service-Oriented Requirements Engineering (SORE) [8]. SORE defines method-
ologies to elicit, specify, and validate the services’ requirements from two different
standpoints: the service consumer and the service provider [8]. The service provider
needs to understand the functional and non-functional parts of the service being
offered. For the service consumers, the challenge is to find the best-matched service
for the requirements while making a tradeoff among cost, FR, and NFR. One of the
key research challenges of WSC is how WSC deals with dynamic environments. In
dynamic composition environments, the change occurs during design and runtime,
such as the availability of Web services, a composition of requirements, and
changes in QoS (e.g., price, reputation, etc.) [9]. Therefore, WSC should be
equipped with self-adaptation mechanisms to ensure the ability to adapt to meet
changing requirements, and seek to minimize user interventions in order to provide

230 D.H. Elsayed et al.



the most appropriate composite services and satisfy user’s requirements [9]. SORE
activities need to be performed at design time with more explicit constructs to
specify requirements for Self-Adaptation Software (SAS), and are also needed for
runtime adaptation for adaptable WSC approaches to deal with contextual changes
in a dynamic environment [9]. SAS supports adaptation in either a proactive or
reactive manner [10]. Proactive adaptation is able to predict the need for adaptation
before the problem occurs [10]. Moustafa and Zhang [7] propose a proactive
adaptation approach in WSC, which uses Markov Decision Process (MDP) to
model WSC process and uses Q-learning for Reinforcement Learning (RL) tech-
nique to adapt to dynamic change in the WSC environments proactively. This
approach monitors the WSC to determine proactive adaptation via analyzing the
historical data in the Web service execution log. Aschoff and Zisman [11] also
propose a ProAdapt framework for proactive adaptation in WSC. This framework
triggers proactive adaptation in case of changes in response times of service
operation or unavailability of operations in services and providers. It uses
Exponentially Weighted Moving Average (EWMA) technique to predict response
times of operations. The adaptation process occurs during the execution of WSC.
Moustafa and Zhang [7] and Aschoff and Zisman [11] need to extend to support
adaptive WSC in other types of QoS aspects and other circumstances, for example,
the availability of new (better) service operations in comparison to the ones used in
a composition, and changes in the structure of the WSC’s workflow. Contrary to
proactive adaptation, reactive adaptation is able to react to change; this means that
adaptation occurs after an event which causes the need for adaptation [12].

This chapter presents various reactive adaptation WSC approaches to deal with
the changes that might occur within and outside the dynamic composition envi-
ronment; approaches are analyzed and compared. These approaches are classified
into three categories: variability model, context-aware WSC, and multi-agent
approaches. To the best of our knowledge, no survey on reactive adaptation WSC in
the dynamic environment has been published yet. The rest of this chapter is
organized as follows. Section 10.2 presents adaptation aspect and self-adaptation
properties in WSC. Section 10.3 presents levels and challenges for RE for
self-adaptive systems; Sect. 10.4 presents requirement specification models in
WSC. Various self-adaptive WSC approaches are classified in Sect. 10.5; the
comparison and limitation of approaches are presented in Sect. 10.6. Finally,
Sect. 10.7 gives the conclusion and future work.

10.2 Self-Adaptive WSC

WSC needs to provide adaptive capabilities in order to respond to evolving
demands and changes without compromising operational and financial efficiencies
[13]. Avila [14] presents five of the main aspects that are considered parts of
adaptation in WSC as shown in Fig. 10.1. The first aspect is the adaptation goal,
which defines the adaptation purpose based on FR and/or QoS needs. Some

10 Appraisal and Analysis of Various Self-Adaptive … 231



approaches such as Deng et al. [15] deal with single QoS optimization, while Liu
et al. [16], Shanshan et al. [17], and Qiqing et al. [18] deal with multi QoS criteria.
The second aspect is the adaptation level. These levels are identified differently in
the literature. Raik [19] classifies them into three levels: infrastructure, service, and
process. Various approaches concerned with process level are focused on in this
chapter. The third aspect is adaptation action, which is used to solve an adaptation
problem. This action can involve service replacement, workflow redesign, and
service recall. The fourth aspect is the adaptation mechanism, which means the
approaches that could be applied to execute an adaptation action such as
agent-based, rule-based, policy-based, or feedback approaches. We focus on three
adaptation mechanisms, namely variability model, context-aware, and multi-agent.
The fifth aspect is the stage of adaptation, which means the time when the adap-
tation occurs. An adaptation could be triggered in a proactive or reactive way as
explained before. Reactive approaches are focused on in this chapter.

Self-adaptation (self-*) properties are important in adaptive WSC too. Self-*
properties enable WSC to deal with dynamic WSC execution environment.
Figure 10.2 shows self-* properties applied to WSC. These self-* properties are
self-healing, self-optimizing, self-configuring, and self-aware [14]. Self-healing is
automatic discovery and correction of the failure of WSC by itself due to changes in
QoS and/or FR without any human intervention and without stopping the WSC [20].
As WSC is done dynamically, they need to balance themselves with the changing
environment. If the Web service cannot balance itself, then it leads to several faults
such as incorrect order, misunderstood behavior, QoS service failure such as poor
response and service unavailability, etc. [21]. Incorrect order occurs due to message
flow through SOAP [22]. When the packets arrive in an order different on receiver
side from sender side, this leads to incorrect order [22]. Misunderstood behavior
occurs when the requester receives a service different from what he expects [22]. For
example, if the requester requests a service for stock exchange quotes, and the
provider returns a service supplying exchange rate quotes. This type of fault occurs if
the description of a service is incorrect, or if the service provider misinterpreted the
request from the requester [22]. QoS service failures occur during runtime [21].

Self-optimizing aims to select services at runtime, in order to maintain the
expected QoS of the entire WSC [23]. The main objective of self-optimization
WSC is to find the best Web service for each abstract service to achieve the FR as
well as optimize QoS requirements. An abstract service is a set of Web service

Fig. 10.1 The main aspects of adaptation in WSC

232 D.H. Elsayed et al.



instance nodes in the WSC model that describes the functionality of the corre-
sponding service [3]. Service selection for each abstract service is based on local or
global QoS requirements. In the local optimization approach, service selection for
each abstract service is based on the QoS of individual service. These approaches
are useful in decentralized and dynamic environments. Local optimization
approaches are the best in case there is no requirement to identify global constraints.
This approach is suitable when the global QoS constraints are decomposed into
local QoS constraints. The global optimization approach considers QoS constraints
and preferences as a whole, e.g., when the whole response time is constrained.

Self-configuring aims to search for an optimal configuration of WSC compo-
nents based upon the initial constraints [23]. Self-configuring WSC indicates that
the WSC is able to discover and select services automatically. Self-awareness
enables services to be aware of the system structure and platform execution.
Self-awareness also enables the service to predict the impact of changes in their
behavior and the effects of adaptation actions [14]. Self-awareness is aimed to
ensure that the proactive adaptation of QoS requirements is satisfied [14].

10.3 RE for Self-Adaptive Systems

RE for dynamic adaptive systems is defined in the fourth level [10] as shown in
Fig. 10.3. Level one is a general definition of the system and its reaction by
developers. Level two is RE at runtime for achieving adaptation. Level three is

Fig. 10.2 Self -* properties in adaptive WSC

10 Appraisal and Analysis of Various Self-Adaptive … 233



decision of developers about adaptation mechanisms. Level four is research
regarding adaptation mechanisms. RE for self-adaptive systems must deal with
uncertainty because the execution environment information is unknown, and
therefore the requirements for system behavior may need to change at run time in
response to changes in the environment [24]. Requirement for self-adaptive system
is specified as “incomplete” [24]. Chang [24] highlights research challenges for RE
for self-adaptive systems. These challenges are new requirements language, map-
ping requirements language to architecture, managing uncertainty, requirements
reflection, and traceability from requirements to implementation.

The traditional RE models such as i* and KAOS are not supported adaptivity or
uncertainty. Various approaches are proposed to include runtime capabilities for
RE. Baresi et al. [25] propose FLAGS, a goal model-based approach that gener-
alizes the KAOS model, for modeling requirements at runtime. Pasquale et al. [26]
present a FLAGS infrastructure to support requirements at runtime. Tropos 4AS is
an agent-based methodology to model SAS requirement based on Tropos [27].
CARE is also modeling SAS requirement based on Tropos but it focuses on
service-based applications for modeling [27].

The basic characteristics of the system become self-awareness and
context-awareness to achieve adaptive behavior. Self-awareness describes the
ability of a system to be aware of itself [10]. Context-awareness means that the
system adapts its behavior based on the context of the application and the user [28].
Context is defined as “any information that can be used to characterize the situation
of an entity. An entity is a person, place, or object that is considered relevant to the
interaction between a user and an application, including the user and applications
themselves” [10]. Bucchiarone et al. [29] propose a framework for adaptively of
service-based applications according to context changing. This framework utilizes
the concept of process fragments as a way to model processes. Business processes

Fig. 10.3 Four levels to define RE for dynamic adaptive systems

234 D.H. Elsayed et al.



and fragments are modeled as Adaptable Pervasive Flows (APFs). APFs add
annotating activities with preconditions and effects besides classical workflow
language. This makes business processes and fragments suitable for adaptation and
execution in dynamic environments. At design time, abstract activities are specified
for each fragment in terms of the goal it needs to achieve. Different adaptation
mechanisms and strategies are used to handle dynamicity of context-aware perva-
sive systems. Adaptation mechanisms are refinement mechanism, local adaptation
mechanism, and compensation mechanism. The adaptation strategies are one-shot
adaptation, re-refinement strategy, and backward adaptation strategy; other
context-aware approaches are founded in Sect. 10.5.2.

10.4 Requirements Specification Models in WSC

Li [6] classifies requirement models in WSC into three categories: WSC based on
workflow, WSC based on Artificial Intelligent (AI) planning technique, and
model-driven WSC as shown in Fig. 10.4. In WSC based on workflow, the logic of
WSC can be captured using workflow pattern of Web service. In this approach,
users’ requirements are modeled in terms of workflow which refers to the logical
execution order of action [6]. When implementing a WSC, atomic Web services are
selected and invoked according to each action defined in the workflow, after that,
the WSC is executed according to the predefined execution orders [6]. Workflow is
generated in either a static or dynamic manner [30]. Static WSC workflow means
that users are required to describe all the necessary actions and all possible exe-
cution orders among these actions. The selection of Web service is done auto-
matically. In dynamic WSC workflow, creating business workflow or model and
selecting Web service is done automatically.

WSC based on AI planning requires an algorithm to translate WSC problem to
AI planning technique problem such as Planning Domain Definition Language
(PDDL) [31], Hierarchical Task Network (HTN) [32], and graph plan [33]. This
approach requires users to specify their composition requirements in different
technical languages, which includes the descriptions of initial state, goal state,

Fig. 10.4 Requirements models for WSC

10 Appraisal and Analysis of Various Self-Adaptive … 235



possible domain states, and different actions that can be performed. For further
information about WSC based on AI planning, it can be found in [34].

Model-driven approach for WSC uses models to describe user requirement (FR
and NFR), business processes, abstract Web services, and dependence between
Web services. The models are separated from executable WSC specifications. WSC
can be modeled using Unified Modeling Language (UML) [35–37], MDP [38, 39],
and Business Process Model and Notation (BPMN) [40, 41].

10.5 Classification of Self-Adaptive WSC Approaches

SAS modifies its own behavior in response to changes in the WSC environment.
These environments are classified into the dynamic environment or static envi-
ronment. In the dynamic environment, new WSC behavior and adaptation plans can
be introduced during runtime. Contrary to the dynamic environment, the static
environment is self-contained and not able to support the addition of new behaviors.
In this section, approaches for reactive adaptation are classified into three cate-
gories: used of variability models, context-awareness, and multi-agent approaches.

10.5.1 Used of Variability Models

Variability is the ability of a service to change its behavior efficiently in the
dynamic configurations [42]. The two important concepts concerning variability are
variation points and variants. Variation points are located in a software system in
which variation will occur, and variants are the alternatives that can be selected at
those variation points [42]. Modeling and managing variability in a process can be
classified into an architectural level and an implementation level. In an architectural
level, variants are modeling inside software architecture such as BPMN and UML.
In an implementation level, variants are modeling inside WSC language.

10.5.1.1 Architecture Level

Alférez et al. [41], Sun et al. [43], Yua et al. [40], and Xiao et al. [44] model
variants in the architecture level to accommodate for changes that occur in FR. By
changes in FR, we mean that the changes occur in a business logic or business
requirement. Alférez et al. [41] create variability models and adaptation policies at
design time to support the dynamic adaptive WSC. The composition model and
variability model are separated. The dynamic adaptive WSC is described in
adaptation policies in terms of the activation or deactivation of features in the
variability model. The activation and deactivation of features in the variability
model result in changes that occur in the WSC by adding or removing fragments of

236 D.H. Elsayed et al.



Business Process Execution Language (WS-BPEL) code, that are deployed at
runtime. The variability model and its possible configurations are verified at design
time using Constraint Programming (CP). Sun et al. [43] extended ConIPF
Variability Modeling Framework (COVAMOF) to allow it to configure the vari-
ability in a WSC. COVAMOF is a variability management framework that is used
with software product families. COVAMOF variability concepts are modeled using
UML diagrams and Variation point Interaction Diagram (VID). COVAMOF-VS
tool suite is used to automated variability management in WSC at runtime.

Yua et al. [40] and Xiao et al. [44] propose model-driven based approaches for
WSC. Yua et al. [40] propose an approach called the Model-Driven Development
of Dynamically Adaptive Service-Oriented Systems with Aspects and Rules
(MoDAR) to support the development of dynamically adaptive WS-BPEL-based
systems. MoDAR includes the base model, the variable model, and the weave
model. The base model follows the flow logic of the system. Variable model is used
to take the decision aspect of a business requirement, which is changeable at
runtime. Variable model is specified by business rule. Weave model is the
aspect-oriented approach used to integrate the base model and the variable model.
Xiao et al. [44] present model-driven variability-based WSC approach. Variability
is defined within VxUML that is a UML extension. Class diagram, activity dia-
gram, sequence diagram, and deployment diagram are extending to specify the
variation points and variants. Variation point Interaction Diagram (VID) defines the
dependencies between variation points and variants. Rule-based transformation
language is used to transform VxUML to VxBPEL. VxBPEL is a BPEL extension
to support variability at the implementation level.

Yua et al. [40], Alférez et al. [41], and Sun et al. [43] approaches are modeled to
adapt the changes in the business process but these changes are fully known at
design time to model the variability model. Furthermore, these approaches are not
suitable for use in the dynamic environment because they are not able to deal with
continuous and unanticipated changes in complex uncertain contexts.

10.5.1.2 Implementation Level

Imed et al. [45] solve the variability of QoS (vQoS) by introducing three variability
operators: replicate, delete, and replace. Replicate and delete operators are used to
adding and removing service instance in WSC, while the replace operator is used to
change some faulty Web services. These operators are used to reconfigure auto-
matic WSC when the SLA contract is violated. WSC reconfiguration (variability
model) is modeling and verifying using Event-B. ProB model checker is used to
trace possible design errors. Variability model is not required to define all at design
time but variability operators that are used to adapt WSC are not enough to solve
correctly vQoS problem. Koning et al. [46] propose VXBPEL language which is an
extension of the standard BPEL language to adapt the changes in the business
process. VXBPEL adds XML extension elements that store variability information
inside the process definition BPEL which result in their being time-consuming,

10 Appraisal and Analysis of Various Self-Adaptive … 237



tedious, difficult to manage, and error-prone. This approach is very complex in the
case of having a large number of variation points. Furthermore, this approach is not
working in the dynamic environment like those approaches at the architecture level.
Sun et al. [47] also adapt the changes in the business process by executing
VXBPEL WSC using VxBPEL ODE engine. The performance of VxBPEL_ODE
is compared with VxBPEL_ActiveBPEL. From the experimental result,
VxBPEL_ODE shows a comparable performance of VxBPEL_ActiveBPEL.

10.5.2 Context-Awareness

Alférez and Pelechano [48] present a runtime model to guide the dynamic evolution
of context-aware WSC to deal with unforeseen QoS events in the dynamic envi-
ronment. Tactics are used to preserve the requirements that can be negatively
affected by unknown context events. These tactics are known at design time, but
they are used to tackle unknown context events. The negative effect of selected
tactics to other expected goals is not taken into consideration. Bucchiarone et al.
[49] and Cubo et al. [50] focus on changes that occur in FR. Bucchiarone et al. [49]
define a formal framework that uses a planning technique to adapt the execution of
the WSC at runtime in case of context changes. At design time, the context
properties and their evolution are modeled by defined context property diagrams.
Context property diagrams present the possible values of the property as the dia-
gram states and the changes of the property values as transitions. The changes of the
service are annotated with the effects on the context properties. The business policy
over the service is annotated with preconditions on the context property values to
determine in which context setting the service may be executed. Adaptation
activities are not explicitly represented inside context change. They are dynamically
derived from the currently observed context, the state of a business process, and
business goals. This framework is implemented and validated using a scenario from
the logistics domain. Cubo et al. [50] extend Discovery, Adaptation and Monitoring
of Context-Aware Services and Components (DAMASCo) framework with feature
models to represent the variability and self-adaptive WSC according to context
change situations. This approach is implemented in the Intelligent Transportation
Systems (ITS) domain. This approach is not supported self-adaptive of the service
to context change at runtime. This means that DAMASCo execution plan does not
support the switching from one running configuration to another.

Li et al. [51], Cao et al. [52], andWang and Tang [53] propose approaches that deal
with changes that occur in FR and QoS. Li et al. [51] present case-based reasoning for
self-healing ability in WSC. Previous failure instances as cases are stored in a case
base. When a new fault occurs, the closest cases in the case base are retrieved. Cao
et al. [52] present context-aware adaptive WSC framework that contains five main
functionmodules. Thefirstmodule is the design of BPELprocess. The secondmodule
is the parse and execution of the BPEL document. The third module is the search
agent. The fourth module is a context-aware agent. The fifth module is an update

238 D.H. Elsayed et al.



agent. All of these modules are implemented using WSIG technology and Java lan-
guage. The first three modules are used to execute BPEL process. The context-aware
WSC is classified into service contexts and service composition contexts. Service
context is responsible for gathering and checking context information before service
establishment. Service composition contexts work while a composite service is per-
formed. When perceiving the changes of contexts value, service composition may
need to make some adjustment such as adding, deleting, or replacing a service, or
fundamentally changing the whole combination process. When receiving a message
about a variation of context value from a context-aware agent, update agentwill search
the most suitable policy from a policy library and send it to BPEL execution engine
which will change the composition process according to chosen policy. Wang and
Tang [53] present an architecture for self-adaption WSC. This architecture contains a
context module that is responsible for adapting WSC to the changing at QoS and
satisfies the service consumer’s requirements. The context is categorized into service
context, user context, and device context. Service context describes the properties of
the service and the required execution environment of a service. These properties and
preferences for services are written by a service provider and updated by user ratings.
User context describes requirements and the environment that the service consumer
can provide. Device context describes the real execution environment, including
hardware and software environment. Changing contexts are handled according to
user-defined personalized policies. Recomposition in Web services is made in a case
where input and output changed only. Otherwise, changing contexts are handled
according to user-defined personalized policies. This approach is not suitable for the
dynamic environment because the contexts are predefined and other undefined con-
texts are not supported. It is difficult to predict all the possible situations arising in an
uncertain environment.

10.5.3 Multi-Agent Approaches

Wang et al. [54] present self-adaptive WSC framework based on RL. MDP is used in
this framework to model WSC. Workflows and alternative services are integrated
into a single WSC. At runtime, the concrete workflows and services selection are
specified based on the environment and the status of services. Q-Learning is used to
find an optimal policy to follow up the dynamic environment. Wang et al. [55]
extend the RL framework that was introduced in Wang et al. [54]. This study
presents a Multi-Agent Reinforcement Learning (MARL) mechanism to enable
adaptive WSC. The WSC process is modeled as MDP to adapt dynamic evolution of
user requirements. The Q-learning algorithm is used to find an optimal policy to
follow up the dynamic environment. This mechanism introduces a sharing strategy
in the composition process to share information with an agent that make agent use
the policies explored by the others. The MDP model needs complete knowledge and
observation about the environment, which may be difficult to achieve in practical
application. WSC may contain some failure services that can reach to a complete

10 Appraisal and Analysis of Various Self-Adaptive … 239



disability of this WSC workflow. This case is not taken into consideration. Wang
et al. [56] also proposed a new model for large-scale and adaptive WSC based on
MARL. This model integrates State-Action-Reward-State-Action (SARSA) learning
algorithm and same theory. Multi SARSA algorithm which is extended from
single-agent SARSA is utilized to find the optimal solution. Team Markov Games
(TMG) is used to model multi-agent WSC. This algorithm does not take into con-
sideration the case of some failure service that can reach complete disability of this
WSC workflow. Wang et al. [57] also use TMG to model multi-agent WSC like in
Wang et al. [56] but it used Q-learning instead of multi SARSA algorithm.

Moustafa and Zhang [58] design two algorithms to fulfill data efficiency by
saving experience data and using it to make updates to the learned policy. The first
algorithm introduces an offline learning scheme for WSC. Offline learning scheme
avoids the limitation of online reinforcement learning algorithms. This limitation is
the time which is taken to achieve convergence which may exceed the limits
imposed by service consumers. The second algorithm presents a coordination
mechanism in order to enable MARL to learn the WSC task cooperatively.
A collaborative learning algorithm is a group of independent agents who learn to
organize their action selection strategies and each agent notifies other agents with its
action selections to make WSC collaboratively. Q-table is used to connect and
communicate with each agent directly. This shared Q-table records the most recent
QoS information of Web services and the rate with which these services have been
chosen by other agents. Hsieh and Lin [1] use Holonic Multi-agent System
(HMS) architecture to design SAS systems. A Workflow Adaptation Problem
(WAP) is formulated and an interaction mechanism between agents is proposed
based on Contract Net Protocol (CNP) to find a WAP solutions. Self-* scheme is
proposed to respond to the structural and non-structural change workflow.
Structural changes refer to changes in FR, which means changes in a business
process. Non-structural changes refer to changes in NFR such as changes in pro-
cessing time, the number of available resources, and available time slots of
resources. When the change occurs, an affected agent will apply CNP to determine
the best services provided by the existing downstream agents.

10.6 Comparison and Limitations of Self-Adaptive
WSC Approaches

In this section, we compare between the approaches we presented in Sect. 10.5 and
present the limitations of some of these approaches. The comparison between these
approaches is given in Table 10.1. We compare between these approaches
according to

• Category of these approaches according to classification in Sect. 10.5;
• RE classification according to changes in FR, changes in QoS, and changes in

both FR and QoS;

240 D.H. Elsayed et al.



• Adaptation mechanism which described in Sect. 10.2;
• Composition model which described in Sect. 10.4.

The limitations are summarized in Table 10.2. Most of the approaches, e.g.,
Alférez et al. [41], Sun et al. [47], Yua et al. [40], Xiao et al. [44], Imed et al. [45],
Koning et al. [46], Wang and Tang [53], Wang et al. [54, [55], and Wang et al. [57],
are not suitable for use in dynamic environments because they are not able to deal
with continuous and unanticipated changes in complex uncertain contexts. A study
by Imed et al. [45] is suitable for use in a dynamic environment through the use of
variability operators, but they are not enough to solve correctly vQoS problem.
Imed et al. [45], Koning et al. [46], and Sun et al. [47] store variability information

Table 10.1 Analysis and comparison between self-adaptive WSC approaches

Approaches Category RE
classification

Adaptation
mechanism

Composition
model

Alferez et al. [41] Used of variability models FR Feature model BPMN

Sun et al. [43] Used of variability models FR COVAMOF,
UML and
VID

BPEL

Yua et al. [40] Used of variability models FR Business rule BPMN

Xiao e1 al. [44] Used of variability models FR VxUML Not defined

Imed et al. [45] Used of variability models QoS VxBPEL Not defined

Koning et al. [46] Used of variability models FR Event-B Not defined

Sun et al. [47] Used of variability models FR VxBPE Not defined

Alferez and
Pelechauo [48]

Context-awareness QoS Tactics
strategies

BPMN

Bucchiarone et al.
[49]

Context-awareness FR Planning
techniques

Not defined

Cubo et al. [50] Context-awareness FR Extend
DAMASCo
framework
with feature
models

BPEL and
windows
workflow
foundation(WF)

Li et al. [51] Context-awareness FR and QoS Case-based
reasoning

WS-BPEL

Cao et al. [52] Context-awareness FR and QoS Not defined BPEL

Wang and Tang [53] Context-awareness FR and QoS Personalized
policies

SHOP2 as Al
planning
technique

Wang et al. [54] Multi-agent approach QoS MARL MDP

Wang et al. [55] Multi-agent approach QoS MARL TMG-WSC

Wang et al. [56] Multi-agent approach QoS MARL TMG-WSC

Wang et al. [57] Multi-agent approach QoS RL MDP

Moustafa and Zhang
[58]

Multi-agent approach QoS RL MDP

MARL

10 Appraisal and Analysis of Various Self-Adaptive … 241



inside language which result in their being time-consuming, tedious, difficult to
manage, and error-prone. Therefore, their approaches are very complex in the case
of a large number of variation points.

Alférez and Pelechano [48] use tactics to tackle unknown context events. The
selected tactics strategies may be negative effective to other expected goals. Cubo
et al. [50] approach does not support the switching from one running configuration
to another at runtime. Wang et al. [54] and [55] model WSC process as a MDP
model. WSC process is modeled as a MDP model. This model needs complete
knowledge and observation about environment, which may be difficult to achieve in
practical application. Wang et al. [54], [55], and Wang et al. [57] do not take into
consideration the case of some failure service that can reach complete disability of
this WSC workflow.

Table 10.2 Some WSC adaptation approach limitations

Approaches Limitations

Alferez et al. [41], Sun et al. [43], Yua
et al. [40] and Xiao et al. [44]

These approaches are not able to deal with
continuous and unanticipated changes in complex
uncertain contexts. This means that they are not
suitable for use in dynamic environments

Imed et al. [45], Koning et al. [46] and
Sun et al. [47]

These approaches store variability information
inside languages which result in their being
time-consuming, tedious, difficult to manage, and
error-prone. They are very complex in the case of a
large number of variation points. In addition, they do
not work in dynamic environments

Alférez and pelechano [48] The selected tactics strategies that are used to adapt
the changes may be negative effective to other
expected goals

Cubo et al. [50] This approach is not supported self-adaptation of the
service to context change at runtime. This means
that DAMASCo execution plan does not support the
switching from one running configuration to another

Imed et al. [45] Variability operators that are used to adapt WSC are
not enough to solve correctly the vQoS problem

Wang and Tang [53] This approach is not suitable for the dynamic
environment because the contexts are predefined and
other undefined contexts are not supported. It is
difficult to predict all the possible situations arising
in an uncertain environment

Wang et al. [54, [57] WSC process is modeled as a MDP model. This
model needs complete knowledge and observation
about environment, which may be difficult to
achieve it in practical application

Wang et al. [54], [56, 57] These algorithms are not taken into consideration the
case of some failure service that can reach to a
complete disability of this WSC workflow

242 D.H. Elsayed et al.



10.7 Conclusion and Future Work

WSC is a key issue in SOA. The objective of this chapter is to analyze and compare
various self-adaptive WSC approaches to deal with the changes that may occur
within and outside the dynamic composition environment. These approaches are
classified into three categories: used of variability models, context-awareness, and
multi-agent approaches. These approaches have some limitations. One of the lim-
itations is that the approaches, which deal with changes that occur in QoS, adapt the
WSC process based on changes in local and single QoS criteria. Another limitation
is that most of these approaches are not able to deal with continuous and unan-
ticipated changes in complex uncertain contexts because they need to define the
contexts in design time and other undefined contexts are not supported. It is usually
difficult to predict all of the possible situations that might arise in an uncertain
environment. In future work, we intend to overcome these limitations by combining
QoS-aware WSC approaches such as ant colony optimization or genetic algorithm
with multi-agent approaches to obtain an optimal policy in case of multi QoS
criteria. Partially Observable Markov Decision Process (POMDP) is used to model
composition requirement instead of MDP because POMDP does not need the full
knowledge observation of environment.

References

1. F.-S. Hsieh and J.-B. Lin, “A Self-adaptation Scheme for Workflow Management in
Multi-agent Systems,” Journal of Intelligent Manufacturing, vol. 27, no. 1, p. 131–148, 2016.

2. N. Ide and J. Pustejovsky, “What Does Interoperability Mean, Anyway? Toward an
Operational Definition of Interoperability for Language Technology,” in Proceedings of the
2nd International Conference on Global Interoperability for Language Resources (ICGL),
2010.

3. B. Rohallah, M. Ramdane and S. Zaidi, “Agents and Owl-s based Semantic Web Service
Discovery with User Preference Support,” International Journal of Web & Semantic
Technology (IJWesT), vol. 4, no. 2, pp. 57–75, April 2013.

4. I. sommerville, Software Engineering (9th Edition), 2011, p. 509.
5. L. Wang and J. Shen, “A Systematic Review of Bio-Inspired Service Concretization,” IEEE

Transactions on Services Computing, vol. PP, no. 99, p. 3, 2014.
6. W. Li, “Towards a Resilient Service Oriented Computing based on Ad-hoc Web Service

Compositions in Dynamic Environments(Doctoral Dissertation),” Institut d’Optique
Graduate School, 2014.

7. A. Moustafa and M. Zhang, “Towards Proactive Web Service Adaptation,” in Proceedings of
the 24th International Conference Advanced Information Systems Engineering (CAiSE),
2012.

8. P. v. Eck and R. Wieringa, “Requirements Engineering for Service-Oriented Computing: A
Position Paper,” in Proceedings of the 1st International Workshop on e-Services at ICEC,
2003.

9. N. B. Mabrouk, S. Beauche, E. Kuznetsova, N. Georgantas and V. Issarny, “QoS-aware
Service Composition in Dynamic Service Oriented Environments,” in Proceedings of the 10th
International Middleware Conference, 2009.

10 Appraisal and Analysis of Various Self-Adaptive … 243



10. C. Krupitzer, F. M. Roth, S. VanSyckel, G. Schiele and C. Becker, “A Survey on Engineering
Approaches for Self-adaptive Systems,” Pervasive and Mobile Computing, vol. 17, pp. 186,
Part B, February 2015.

11. R. Aschoff and A. Zisman, “QoS-driven Proactive Adaptation of Service Composition,” in
Proceedings of the 9th International Conference on Service Oriented Computing (ICSOC),
2011.

12. S. Vansyckel, D. Schäfer, G. Schiele and C. Becker, “Configuration Management for
Proactive Adaptation in Pervasive Environments,” in Proceedings of the IEEE 7th
International Conference on Self-Adaptive and Self-Organizing Systems, 2013.

13. C. Pahl, “Dynamic Adaptive Service Architecture—Towards Coordinated Service
Composition,” in Proceedings of the 4th European Conference Software Architecture
(ECSA), 2010.

14. S. D. G. Avila, “QoS Awareness and Adaptation in Service Composition(Doctoral
Dissertation),” The University of Leeds, pp. 34–38, 2014.

15. D. Shuiguang, L. Huang, W. Tan and Z. Wu, “Top- Automatic Service Composition: A
Parallel Method for Large-Scale Service Sets,” IEEE Transactions on Automation Science
and Engineering, vol. 11, no. 3, pp. 891–905, 2014.

16. J. Liu, J. Li, K. Liu and W. Wei, “A Hybrid Genetic and Particle Swarm Algorithm for
Service Composition,” in Proceedings of the 6th International Conference on Advanced
Language Processing and Web Information Technology (ALPIT), 2007.

17. Z. Shanshan, W. Lei, M. Lin and W. Zepeng, “An Improved Ant Colony Optimization
Algorithm for QoS-aware Dynamic Web Service Composition,” in Proceedings of the
International Conference on Industrial Control and Electronics Engineering, 2012.

18. F. Qiqing, P. Xiaoming, L. Qinghua and H. Yahui, “A Global QoS Optimizing Web Services
Selection Algorithm based on MOACO for Dynamic Web Service Composition,” in
Proceedings of the 2009 International Forum on Information Technology and Applications,
2009.

19. H. Raik, “Service Composition in Dynamic Environments: From Theory to Practice (Doctoral
Dissertation),” University of Trento, p. 40, 2012.

20. S. Poonguzhali, R. Sunitha and G. Aghila, “Self-Healing in Dynamic Web Service
Composition,” International Journal on Computer Science and Engineering (IJCSE), vol. 3,
no. 5, p. 2055, 2011.

21. S. Poonguzhali, L. JerlinRubini and S. Divya, “A Self-Healing Approach for Service
Unavailability in Dynamic Web Service Composition,” International Journal of Computer
Science and Information Technologies, vol. 53, p. 4381, 2014.

22. K. May Chan, J. Bishop, J. Steyn, L. Baresi and S. Guinea, “A Fault Taxonomy for Web
Service Composition,” in Proceedings of the International Conference on Service-Oriented
Computing (ICSOC), 363–375.

23. S. D. G. Avila and K. Djemame, “A QoS Optimization Model for Service Composition,” in
Proceedings of the 4th International Conference on Adaptive and Self-Adaptive Systems and
Applications, 2012.

24. B. H. Cheng, R. d. Lemos, H. Giese, P. Inverardi and J. Magee, “Software Engineering for
Self-Adaptive Systems: A Research Roadmap,” in Software Engineering for Self-Adaptive
Systems, 2009, pp. 1–26.

25. L. Baresi, L. Pasquale and P. Spoletini, “Fuzzy Goals for Requirements-driven Adaptation,”
in Proceedings of the 18th IEEE International Requirements Engineering Conference, 2010.

26. L. Pasquale, L. Baresi and B. Nuseibeh, “Towards Adaptive Systems through
Requirements@Runtime,” in Proceedings of the 6th International Workshop on
MODELS@Runtime, 2011.

27. K. Angelopoulos, V. E. S. Souza and J. Pimentel, “Requirements and Architectural
Approaches to Adaptive Software Systems: A Comparative Study,” in Proceedings of the 8th
International Symposium on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS), 2013.

244 D.H. Elsayed et al.



28. G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith and P. Steggles, “Towards a
Better Understanding of Context and Context-Awareness,” in Proceedings of the 1st
International Symposium Handheld and Ubiquitous Computing (HUC), 1999.

29. A. Bucchiarone, A. Marconi, M. Pistore and H. Raik, “Dynamic Adaptation of
Fragment-based and Context-aware Business Processes,” in Proceedings of the IEEE 19th
International Conference on Web Services, 2012.

30. S. G. H. Tabatabaei, W. M. N. W. Kadir and S. Ibrahim, “A Review of Web Service
Composition Approaches,” in Proceedings of the 1st International Conference on Computer
Science and Information Technology (CCSIT), 2011.

31. O. Hatzi, D. Vrakas, M. Nikolaidou, N. Bassiliades, D. Anagnostopoulos and I. Vlahavas,
“An Integrated Approach to Automated Semantic Web Service Composition through
Planning,” IEEE Transactions on Services Computing, vol. 5, no. 3, pp. 319–332, 2011.

32. X. Yihong, Z. Xianzhong and H. Xiaopeng, “Automated Semantic Web Service Composition
Based on Enhanced HTN,” in Proceedings of the 5th IEEE International Symposium on
Service Oriented System Engineering, 2010.

33. Y. Bo and Q. Zheng, “Semantic Web Service Composition using Graphplan,” in Proceedings
of the 4th IEEE Conference on Industrial Electronics and Applications, 2009.

34. J. Rao and X. Su, “A Survey of Automated Web Service Composition Methods,” in
Proceedings of the 1st International Conference on Semantic Web Services and Web Process
Composition (SWSWPC), 2005.

35. B. Orriens, J. Yang and M. P. Papazoglou, “Model Driven Service Composition,” in
Proceedings of the 1st International Conference Service-Oriented Computing (ICSOC), 2003.

36. Q. Z. Sheng and B. Benatallah, “ContextUML: A UML-Based Modeling Language for
Model-driven Development of Context-aware Web Services,” in Proceedings of the
International Conference on Mobile Business (ICMB), 2005.

37. C. C. Dumez, A. Nait-sidi-moh, J. Gaber and M. Wack, “Modeling and Specification of Web
Services Composition using UML-S,” in Proceedings of the 4th International Conference on
Next Generation Web Services Practices, 15–20.

38. V. Uc-Cetina, F. Moo-Mena and R. Hernandez-Ucan, “Composition of Web Services using
Markov Decision Processes and Dynamic Programming,” The Scientific World Journal, vol.
2015, 2015.

39. A. Gao, D. Yangx, S. Tang and M. Zhang, “Web Service Composition using Markov
Decision Processes,” in Proceedings of the 6th International Conference Advances in
Web-Age Information Management (WAIM), 2005.

40. J. Yua, Q. Z. Shengb, J. K. Sweeb, J. Hanc, C. Liuc and T. H. Noorb, “Model-driven
Development of Adaptive Web Service Processes with Aspects and Rules,” Journal of
Computer and System Sciences, vol. 81, no. 3, p. 533–552, May 2015.

41. G. Alférez, V. Pelechano, R. Mazo, C. Salinesi and D. Diazca, “Dynamic Adaptation of
Service Compositions with Variability Models,” The Journal of Systems and Software, vol.
91, pp. 24–47, 2014.

42. M. Svahnberg, J. v. Gurp and J. Bosch, “A Taxonomy of Variability Realization Techniques:
Research Articles,” Journal of Software:Practice & Experience, vol. 35, no. 8, pp. 705–754,
2005.

43. C.-A. Sun, R. Rossing and M. Sinnema, “Modeling and Managing the Variability of Web
Service-based Systems,” The Journal of Systems and Software, vol. 83, no. 3, p. 502–516,
2010.

44. H. Xiao, F. Yanmei, S. Chang-Ai, M. Zhiyi and S. Weizhong, “Towards Model-driven
Variability-based Flexible Service Compositions,” in Proceedings of the IEEE 39th Annual
International Computers, Software & Applications Conference (COMPSAC), 2015.

45. A. Imed, M. Graiet, S. Boubaker and N. B. Hadj-Alouane, “A Formal Approach for Verifying
QoS Variability in Web Services Composition using EVENT-B,” in Proceedings of the 2015
IEEE International Conference on Web Services., New York, 2015.

46. M. Koning, C.-a. Sun and M. Sinnema, “VxBPEL: Supporting Variability for Web Services
in BPEL,” Information and Software Technology, vol. 51, no. 2, p. 258–269, 2009.

10 Appraisal and Analysis of Various Self-Adaptive … 245



47. C.-A. Sun, P. Wang, X. Zhang and M. Aiello, “VxBPEL_ODE: A Variability Enhanced
Service Composition Engine,” in Web Technologies and Applications, 2014, pp. 69–81.

48. G. H. Alférez and V. Pelechano, “Facing Uncertianty in Web Service Compositions,” in
Proceedings of the IEEE 20th Internatinal Conference on Web Services (ICWS), 2013.

49. A. Bucchiarone, R. Kazhamiakin, M. Pistore and H. Raik, “Adaptation of Service-based
Business Processes by Context-aware Replanning,” in Proceedings of the IEEE International
Conference on Service-Oriented Computing and Applications (SOCA), 2011.

50. J. Cubo, N. Gamez, L. Fuentes and E. Pimentel, “Composition and Self-Adaptation of
Service-based Systems with Feature Models,” in Proceedings of the 13th International
Conference on Software Reuse (ICSR), 2013.

51. G. Li, L. Liao, D. Song, J. Wang, F. Sun and G. Liang, “A Self-healing Framework for
QoS-aware Web Service Composition via Case-Based Reasoning,” in Proceedings of the 15th
Asia-Pacific Web Conference (APWeb), 2013.

52. Z. Cao, X. Zhang, W. Zhang, X. Xie, J. Shi and H. Xu, “A Context-aware Adaptive Web
Service Composition Framework,” in Proceedings of the 2015 IEEE International
Conference on Computational Intelligence & Communication Technology, 2015.

53. B. Wang and X. Tang, “Designing a Self-adaptive and Context-aware Service Composition
System,” in Proceedings of the IEEE Computers, Communications and IT Applications
Conference (ComComAp), 2014.

54. H. Wang, Q. Wu, X. Chen, Q. Yu, Z. Zheng and A. Bougu, “Adaptive and Dynamic Service
Composition Using Q-Learning,” in Proceedings of the 22nd International Conference on
Tools with Artificial Intelligence, 2010.

55. H. Wang, X. Wang, X. Hu, X. Zhang and M. Gu, “A Multi-Agent Reinforcement Learning
Approach to Dynamic Service Composition,” Journal of Information Sciences, vol. 363,
pp. 96–119, 2016.

56. H. Wang, Q. Wu, X. Chen, Q. Yu, Z. Zheng and A. Bougu, “Integrating On-policy
Reinforcement Learning with Multi-agent Techniques for Adaptive Service Composition,” in
Proceedings of the 12th International Conference Service Oriented Computing (ICSOC),
2014.

57. H. Wang, Q. Wu, X. Chen, Q. Yu, Z. Zheng and A. Bougu, “Adaptive and Dynamic Service
Composition via Multi-agent Reinforcement Learning,” in Proceedings of the IEEE
International Conference on Web Services, 2014.

58. A. Moustafa and M. Zhang, “Learning Efficient Compositions for QoS-aware Service
Provisioning,” in Proceedings of the IEEE International Conference on Web Services, 2014.

246 D.H. Elsayed et al.


	10 Appraisal and Analysis of Various Self-Adaptive Web Service Composition Approaches
	Abstract
	10.1 Introduction
	10.2 Self-Adaptive WSC
	10.3 RE for Self-Adaptive Systems
	10.4 Requirements Specification Models in WSC
	10.5 Classification of Self-Adaptive WSC Approaches
	10.5.1 Used of Variability Models
	10.5.1.1 Architecture Level
	10.5.1.2 Implementation Level

	10.5.2 Context-Awareness
	10.5.3 Multi-Agent Approaches

	10.6 Comparison and Limitations of Self-Adaptive WSC Approaches
	10.7 Conclusion and Future Work
	References


