
Chapter 1
What We Say We Want and What We
Really Need: Experiences on the Barriers
to Communicate Information System
Needs

Aapo Koski and Tommi Mikkonen

Abstract Information system requirements are meant to communicate the relevant
needs and intention to a wide range of stakeholders. The requirements form the basis
on which the tenders are issued, projects are agreed upon, and service-level agree-
ments are made. However, as the requirements state what the system owners—or the
ones who are willing to pay for the system—want the system to achieve, they reflect
the owners’ views and understanding. This setup is plagued by many weaknesses.
First, the system owners are seldom experts in the information system design and
therefore they may be unable to state all the relevant requirements comprehensively.
Second, no matter how much energy and time is invested in the requirement defi-
nition and elicitation, many aspects of the requirements are only revealed during the
development and deployment, and remain unforeseen until later on, when the
development is well under way. Finally, the required system architecture cannot be
appropriately designed, if we do not know the requirements at a sufficient level. In
this chapter we reflect our experiences from participating in a number of large,
commercial information system development projects in both public and private
sectors in which the traditional way of handling the requirements has proven to be
insufficient. With the software as a service (SaaS) business model, where the goal is
frequent releases and continuous delivery of ever-improved services, the associated
weaknesses become even more prominent. We propose better practices for speci-
fying systems and suggest concentrating a lot more on the true communication and
discussion, focusing always on the most important issues and most important
stakeholders only and keeping the vision updated and clear for the whole duration of
a system development project and also the system maintenance period.

A. Koski (&)
Basware Oyj, Tampere, Finland
e-mail: aapo.koski@iki.fi

T. Mikkonen
Tampere University of Technology, Tampere, Finland
e-mail: tommi.mikkonen@tut.fi

© Springer International Publishing AG 2017
M. Ramachandran and Z. Mahmood (eds.), Requirements Engineering
for Service and Cloud Computing, DOI 10.1007/978-3-319-51310-2_1

3



Keywords Requirements specification � Requirements management � System
architecture � External quality � Internal quality � Process quality �
Communication � Software as a service � Continuous delivery

1.1 Introduction

When referring to requirements related to an information system, we usually mean
requirements originating from customer-side stakeholders. These requirements
represent the views and needs of the people at the business or enterprise operations
level, covering end-users, acquirers, customers, and a number of other stakeholders.
The requirements are recorded to solve the stakeholders’ problems. These problems
to be solved vary in their nature, and often the different stakeholders perceive the
situation in very different ways. To further complicate the matter, the set of
requirements for fulfilling stakeholders’ needs typically has a strong connection not
just to the domain the stakeholders represent, but also to the history and to the
environment in which the system is to be operational.

In addition to stakeholder’s needs, we have system requirements, which should
unambiguously specify how the system is to be developed as well as define the
basis for system architecture design and technology selections. System require-
ments are naturally closely related and connected to the customer-side require-
ments, but they ought to be written in a language that is fully and unambiguously
understood by system designers, architects, developers, testers, as well as other
people that work on the system provider’s side. Ideally, system requirements
complement the original end-user requirements and provide deeper understanding
on what the system needs to be capable of doing. Making stakeholder and system
requirements meet—so-called requirements elicitation—appears to be the hardest
and the most critical part of the development of any larger information system.
Furthermore, the situation gets even more complex as new boundaries emerge over
time, for instance when the business model changes. Today, the most dramatic
change is when installable systems operated in full in customer premises are being
replaced by software that is provided as a service.

This chapter reflects industrial experiences gained from a number of large,
commercial, software as a service(SaaS) information system development projects
for both public and private sectors during the last decade. As we, the authors of the
chapter, represent the system providers, we look at the information system projects
from the system provider’s point of view, from which it is not always quite clear
where the customer-side requirements originate, what kind of a history the
requirements have and what kind of real needs are hiding behind the stated
requirements. In particular, we address the dependencies and overlaps between
requirements, which require extensive effort to understand properly, but if left not
fully understood, pose a significant threat to the success of the system development
project. While a prominent attribute throughout the information system projects has

4 A. Koski and T. Mikkonen



been that the bigger the project, the larger the number of requirements is, it is
equally clear that the traditional way of handling the requirements has proven
inadequate in several respects. Having had the first-hand opportunity to observe this
has thought us valuable lessons for later use.

The rest of this chapter is structured as follows. In Sect. 1.2, we discuss the
characteristics of the requirements and their diverse role in the information system
domain. In Sect. 1.3, we provide an insight to the actual requirements we have
encountered in the projects and discuss the possible reasons why the requirements
often are like they are: far from optimal. In Sect. 1.4, we present our understanding
on the nature of the true needs of the system owners and how the true needs are
reflected in the written requirements. In Sect. 1.5, we discuss the barriers to com-
munication which, based on our experiences, are the main reason for low-quality
requirements and requirement management. In Sect. 1.6, we discourse the relation
between the requirements and the system architecture. Finally, in Sect. 1.7, we
draw some final conclusions and present better ways to collaborate and commu-
nicate, thus enhancing the quality of the requirements.

1.2 The Challenging Role of the Requirements

With requirements, we aim at specifying what a computer system or service should
do [1]. The requirements are important in a number of ways in the development [2],
including typically at least the following views:

• They form the basis of the system requirements and various activities related to
the system design;

• They form the basis of system validation and stakeholder acceptance;
• They act as a reference for all the integration and verification activities;
• They serve as means of communication between all the stakeholders, like the

technical staff, management, and the stakeholder community.

Based on our industry experiences, especially the final view is often overlooked
and misinterpreted. Yet the role of the requirements as a means of communication
to a vast audience is pivotal in any development effort where contracting plays a
role, because the requirements form the basis on which the tenders are issued [3],
projects are agreed upon [4], and service-level agreements are made [5]. Altogether,
the requirements are fundamental to the economic context in the software devel-
opment: if the quality of the requirements is not good enough or the requirements
are not managed properly, the projects’ risk to fail increase significantly, the total
cost of ownership of the systems increase, and the overall user satisfaction will not
be as good as could have been expected. As reported in, e.g., [6, 7], low-quality
requirements are the most common reason for the failure of software projects.

The setup where a predefined, fixed set of requirements to satisfy the user needs
exists has many weaknesses [8, 9]. Firstly, the people involved in the requirement

1 What We Say We Want and What We Really … 5



creation, the system owner and other stakeholders, are seldom experts in the
information system design and are thus unable to state all the requirements—
especially the nonfunctional ones—with enough detail and rigor to be unambiguous
and comprehensive. Requirements that remain ambiguous will be misunderstood,
their effect will not be reliably estimated, and they cause a lot of waste in the form
of lost time and resources as they are re-specified, detailed and unfortunately also
expanded many times in course of a project. Secondly, no matter how much energy
and time is put into the creation of the requirements, for any larger information
system, many of the true requirements are only fully revealed during the devel-
opment and deployment of the system itself [10]. Finally, the system architecture,
which has the important role to describe how the system will be organized and
therefore also to define what the system can or cannot do, cannot be appropriately
designed if we do not know the requirements at a sufficient level. Especially, if
architecture design is based on assumptions made solely by the system provider
side designers and architects, it will be highly unlikely that the architecture will
behave in a way that fulfills all the true customer-side requirements.

An important factor that should not be forgotten is that requirements are not only
limited to the functionality of the system, as often supposed, but include other
aspects as well. Different authors have presented various definitions, but in general
functional and nonfunctional (or quality) requirements are separated. For the pur-
poses of this chapter we may take into use the classification by Davis [11]:

• Functional requirements: These include statements regarding the services which
the system should provide, how the system should react to particular inputs and
how the system should behave in particular situations.

• Nonfunctional requirements: Constraints related to the services or functions
offered by the system, such as timing constraints, security issues, constraints on
the development process and so on.

• Performance and reliability requirements: Requirements that specify the speed
or operational effectiveness of a capability that must be delivered by the system
architecture.

• Interface-related requirements: Requirements that come from the environment
of the system and that reflect characteristics of the integrability of the system.

• Design constraints: Requirements that come from the application domain of the
system. Typically, such reflect all kinds of constraints that need to be taken into
account in that specific domain.

In addition, there often are domain or system specific requirements, for example
associated with applicable standards or laws. For instance, developing medical
devices or aerospace systems typically have special requirements that are associated
with the development of the system rather than the eventual outcome. The problem
here is that a service provider cannot always trust that all the relevant domain and
system-specific requirements are stated by the system owners as the original
requirements that need to be fulfilled and taken into account. This aspect is further
emphasized in the SaaS environment, as the end-users who may or may not be

6 A. Koski and T. Mikkonen



aware of the laws and standards, not necessarily verify that the service provided is
standard compliant or legal. The unawareness of the end-users, however, does not
naturally acquit the service provider from the responsibilities.

1.3 What We Say We Want and Why

To identify possible reasons why the requirements are as they are, we next look at
what the stakeholders’ requirements of a large-scale information system specifi-
cation typically contain and what the typical process resulting in the specific set of
requirements is. In the scope of experiences presented here, all the projects have
started from the system providers’ point of view with a request for proposal
(RFP) or request for quotation (RFQ) process [12, 13]. While both mark a request
for describing a project and sometimes the difference is only in the eye of the
beholder, the principal difference between the RFP and the RFQ processes is that
commonly the RFP is used when the stakeholders concentrate on describing the
problem they have and want to hear in which ways it should be solved. In contrast,
the RFQ is used when the stakeholders know what they want but need information
on how potential vendors would meet the requirements and how much it will cost.
The goal of both the RFP and RFQ is that the potential suppliers are informed that
certain service is needed in a way that enables the suppliers to respond factually to
the identified requirements. Often, prior to the issuing of the RFQ or RFP to the
potential providers, a round of the standard business process of request for infor-
mation (RFI) [14] is also executed, where the potential vendors are asked to
determine what kind of services are available to meet the described needs.

Both RFP and RFQ processes of information systems, disregarding if their
domain is public or private sector and also almost regardless of the target and
characteristics of the system itself, have taken the habit of starting with a com-
prehensive specification phase, possibly including also a round of a RFI process. In
this phase, the representatives of the future owner of the system (and often also a
hired group of consultants) spend a considerable period of time trying to determine
the exact needs of the owner as precisely as possible. Typically, the specification
phase results in hundreds or even thousands of requirements, written carefully in,
e.g., IEEE 830 requirement format [15]. These requirements are reviewed many
times, over and over again, and usually they are finally accepted by all the stake-
holders, although usually only after a number of refinements and iterations.
However, for the potential system providers the details of these processes remain
mostly unknown, due to the common reckoning that by giving any of the potential
system provider information on the work-in-progress would introduce unfairness in
the tender to build the system based on the RFP or the RFQ.

Nevertheless, after the competition based on the RFP or RFQ has been decided
and an agreement on the development of the system is signed with a company, this
defined, refined, iterated, and finally accepted set of requirements serves as the most
valuable artifact for the following steps in the information system design and

1 What We Say We Want and What We Really … 7



development process. The requirements are treated in various occasions as the final
“truth” to which one can safely refer to when discussing system features or char-
acteristics and by which the customer assesses the progress and the quality of the
created system. As anyone involved with information system design and devel-
opment can verify, the fixed set of requirements is already a problem in itself, and,
if not adjusted and refined in a continuous manner, leads often to system imple-
mentation that does not correspond to the actual needs of the system owner.
Moreover, even if the requirements itself were at some point of the system
development process complete and able to reflect the true needs of the system
owner, the form and the language used in the writing of the requirements leaves
typically a lot of freedom to the interpretation of the requirement. This problem is
emphasized when the project is large in size, related to multiple organizations and
lasting for a long time, because then the same requirements can be interpreted
differently in different phases of the project, when considered by different people
playing different roles in the development.

The requirement gathering and specification phase commonly overlooks the
architecture of the system to be developed. Although some of the requirements can
be categorized as architecturally significant [16], the main features and required
characteristics of the system architecture largely remain unspecified and vague.
Especially at the present era of agile development methods, where room is typically
left for later fine-tuning and revisions, requirements that are specified upfront in the
project easily lead to a so-called emerging architecture [17]. Emergent architecture
in itself sounds acceptable—and indeed is acceptable for various projects—but for
long-lasting, dependable systems and as well as for systems provided by SaaS
model, such an approach means that the system architecture has to be rethought
many times during the project [18] as we learn more of the system we are devel-
oping. This in turn costs money, makes the system development slower, limits the
options, and causes a lot of confusion as several, incompatible views to the
architecture are simultaneously under consideration by various stakeholders.

The requirements, the architecture, and the original needs or vision of the system
to be developed and taken into use give us three points of view into the system.
These views are not necessarily similar, however. Ideally, these three elements,
complemented with the acceptance testing criteria or test cases, should support and
complement each other and together give any stakeholder a clear view on what are
we developing and how well it satisfies the needs we have.

When specifying the requirement in the fashion described above, we make,
partly unconsciously, partly fully consciously, assumptions, some of which are
almost too bold, namely:

• The representatives selected or set to specify the system have all the knowledge
required to do the specification job.

• The understanding on the needs we have will not change during the specifica-
tion process.

8 A. Koski and T. Mikkonen



• The representatives are capable of expressing the needs in a written format that
cannot be understood in a wrong or incomplete way by other people and the
written down needs leave as little space as possible for vagueness.

• The requirements can be written in the same way regardless of whether a
requirement specifies a functional feature or a quality issue.

• The requirements are expressed in such detail that the potential vendors can
reliably estimate the time and costs required to implement each requirement.

• Since information systems are nowadays created in an agile—although the most
appropriate term in connection with tender projects is agilish—way, the
requirements need to be written in a way that allows incremental development.
Ideally, the requirements should thus be independent of each other, and there-
fore implementable in any order.

• Related closely to the previous assumption, the requirements can be written in a
way that allows iterative development: the implementation of a feature related to
a requirement can be tested, verified, and accepted after an iterative develop-
ment phase (like sprint), although the need that the requirement reflects is not
necessarily fully satisfied by the iterative step in question.

To highlight the points given above, let us take a look at some real-life
requirements1 that we have encountered. These requirements demonstrate the
typical qualities and unambiguousness of the requirements (Table 1.1). As can be
clearly seen in the examples, even if elaborated with the system owner in project

Table 1.1 Examples of functional and nonfunctional requirements in industrial projects

Requirement Type Comment

“The system shall provide the user
the time she has been handling her
task”

Functional Requirement does neither specify
what is meant by the time nor give
any indication why the time is
important to the user

“The system shall support the
addition of new ways to
communicate”

Functional Requirement does not limit in any
way what kind of ways of
communication should be supported
and what supporting really means

“The system shall support high
availability”

Nonfunctional Requirement is far too generic and
does not succeed in communicating
any true need to the reader

“The system shall present all the
required information stored in the
system to the user in real time”

Non-functional Requirement cannot be truly met in
any distributed information system
as there always are delays in the
transferring, handling and
visualizing the information. The
requirement does not give any
indication in what scale the system
needs to be a real-time system

1Requirements are taken out of their context to protect the identity of the system in question.

1 What We Say We Want and What We Really … 9



negotiations or other such meetings, the requirements are easily understood dif-
ferently by different stakeholders, and the estimates on the effort needed to fulfill the
requirements are next to impossible to make reliably. The original system owner’s
intention and the interpretation of the requirement by a developer can easily be
totally two different things.

Furthermore, it seems that the bigger the program is and the longer the speci-
fication period has been, the greater and bolder the assumptions are, and, conse-
quently, also the greater are the risks involved. This at least partly false feeling of
certainty of a comprehensive specification project leads to requirements that are
actually neither correct nor comprehensive. Ironically, it seems that almost every-
body who has been involved in a public tender projects’ specification phase is ready
to admit that the produced set of final requirements is not comprehensive, contains
contradictory and dependent requirements, is not written in a way that allows
iterative and incremental development (i.e., requirements cannot be easily priori-
tized and split) and does not fully reflect the original vision of the system to be
developed.

It also seems that the system requirements—the ones that should specify in a
detailed way what the system should do—are often totally forgotten. Instead, an
attempt is made to create a system that matches the original system owners’
requirements, the ones that never truly were in a form that could be used for
verifying whether the original needs were satisfied.

1.4 What We Truly Need

With the requirements specification process explained above, the five main problem
areas emerge that are almost inevitably encountered when a project to build the
information system starts:

• Problems related to the scope of the developed system.
• Problems related to the volatility of the already specified requirements defining

the system.
• Problems related to differences in the expected and the observed quality of the

functional and nonfunctional aspects of the system.
• Problems related to the sheer large number of the requirements.
• Problems related to the communication of the true contents of the requirements

between the customer representatives and the system provider as well as
between the different groups of people, like architects, designers, developers,
testers, and management at the system provider side.

When we are aiming at providing an information system as a service—in other
words, using the SaaS model—the problems listed above become more prominent
than with more traditional system delivery models. With SaaS we are able to
provide easily frequent releases for the end-users to use, to easily monitor the user

10 A. Koski and T. Mikkonen



behavior and to give the users effective feedback channels. Thus with SaaS the
problems that otherwise may not have been detected, surface early in the system
development phase and need to be addressed already during the early phases of the
collaboration with all the stakeholders.

We will briefly discuss the first four problem areas in the remainder of this
section. In addition, we will address the fourth one—communication—with a more
extensive discussion in Sect. 1.5.

1.4.1 Problems of Scope

Requirement elicitation must begin with an organizational and context analysis to
determine the boundary of the target system as well as the objectives of the system.
Less ambitious elicitation techniques, not fully addressing this concern, introduce the
risk of producing requirements that are incomplete and potentially unusable, because
they do not adhere to the users’ or organizations’ true goals for the system.
Performing an organizational and context analysis allows these goals to be captured,
and then later used to verify that the requirements are indeed usable and correct.

Elicitation techniques can be overambitious as well. In projects that have
inspired this paper, elicitation processes were executed several times during the
duration of the system development project and almost every time the goal was set
to do proper work this time to find to real requirements. We ended up with a new set
of requirements, but it was hard to say if this new set was any better in quality.

Elicitation must focus on the creation of requirements and not design activities in
order to adequately address users’ concerns. Elicitation strategies which produce
requirements in the form of high-level designs run the risk of creating requirements
which are ambiguous to the user community. These requirements may not be
verifiable by the users because they do not adequately understand the design lan-
guage. Also, requirements expressed as a design are much more likely to incor-
porate additional decisions not reflecting user or sponsor needs, in which case the
requirements will not be precise or truly necessary for the development.

1.4.2 Problems of Volatility

One of the primary causes of requirements volatility is that user needs evolve over
time [19]. The requirements engineering process of eliciting, specifying, and val-
idating the requirements should not therefore be executed only once during system
development. We should return to these processes frequently and with low
threshold, so that the requirements can reflect the new knowledge gained during
specification, validation, and subsequent activities. To this end, any requirements
engineering methodology should be iterative in nature, enabling refining existing
solutions and creating new ones as knowledge increases [20].

1 What We Say We Want and What We Really … 11



Another cause of requirements volatility is that the requirements are the product
of the contributions a number of individuals, with different backgrounds and having
most often conflicting needs and goals [21].

Volatility also arises when the users and other customer representatives do not
fully understand the capabilities and limitations of the technology and architecture
already designed for the system. The lack of understanding leads to unrealistic
expectations of either the functionality that can be provided, or the time scale of the
development. These expectations should be corrected as early as possible in the
requirements elicitation process.

1.4.3 Problems of Observed Quality

When we face huge sets of requirements related to a project or some program
aiming for taking an information system into operative use, we rarely seem to verify
the comprehensiveness of the requirement set.

The quality of an information system is a complex thing, the quality is experi-
enced by different people in a different way and as the quality consists of a number
of diverse aspects, the different people on the customer side observe the quality on
totally different basis and also differently at different times.

When defining the quality of an information system, we must understand that
there exist at least two important categories of qualities, namely the external
qualities and the internal qualities.

External quality. When assessing the external quality, the one that the system
users and owners face, at least the following items must be taken into account:

• Observed functional quality of the system.
• Observed usability by real end-users.
• Observed performance of the system, under normal load and under some heavier

load during times of congestion.
• Observed reliability of the system in diverse but foreseen conditions.
• Observed maintainability of the system during version upgrades or system

patching.
• Observed integrability with the system’s true environment.

Above, the word observed bears particular significance. One cannot be satisfied
with any quality aspect of the system, if the aspect is not validated by measuring or
observing it. This requirement makes all the quality aspects above to classify as
external quality aspects. The external quality aspects are the ones the acceptance
criteria must deal with—and not just some of them, but all.

Internal quality. The quality of an information system is not just external
quality observed by an end-user or some other stakeholder. When considering an
information system of this scale, the internal quality aspects become as important as
the external quality aspects when judging the overall quality of the system in the
long run. The internal quality consists of the following aspects:

12 A. Koski and T. Mikkonen



• Testability. The time of manual testing as a major way to test almost any
real-life software system has long gone. Testing needs to be automated to enable
functional tests with good coverage and repeatability. With automated tests we
can perform hard enough stress testing, long-lasting load testing and even fuzzy
testing. Manual testing has its place, though. Nothing can replace a human tester
in exploratory testing task.

• Maintainability. A critical system has a long life span. The maintenance of the
system, in form of patches, updates, and repairs will form a major expenditure.

• Portability. During the long lifetime the system needs to live through all kinds of
environments. Non-portability and lack of robustness will become easily sui-
cidal for the system.

• Supportability. The critical system’s configuration needs to be identifiable and
we must be able to diagnose behavior and performance and debug it.

Without high quality of these aspects, the pace of the development gradually
slows soon down to a halt. In addition, to ensure the high quality of the
above-mentioned aspects, one needs to be capable of giving constant attention to
the aspects. This again requires a considerable amount of time and energy.

1.4.4 Problems of Expected Quality

With the SaaS paradigm gaining popularity, in addition to the problems related to
the observed quality by the users and customers of the provided service, one needs
to rethink also how the expectations related to the service have changed because of
SaaS.

To be able to benefit from the SaaS, the services need to be designed to be
provided as services and delivered in the way SaaS model requires. This means at
least that the services fulfill the following requirements:

• Provide easy and maintainable ways for integration with a multitude of
customer-specific systems

• Allow customer-specific maintainable configuration
• Support true multi-tenancy
• Provide enough scalability
• Allow regular updates
• Allow fast deployment
• Allow customer-specific upgrade schedules
• Provide world-class security the customers can count on.

Failing to meet these requirements hinders us from capitalizing the benefits made
possible by the SaaS model.

Furthermore, as the SaaS model is still for many customers a relatively new
thing, we cannot even expect the customer to be able to state these requirements in

1 What We Say We Want and What We Really … 13



any RFQ or alike, as these quality attributes are more or less assumed ones in the
era of the SaaS.

1.4.5 Problems of Quantity

There also seems to exist a common problem of confusion with the requirements
when the number of the requirements describing the system in question becomes
high. When the total number of requirements is in many hundreds or close to
thousand, the functional and nonfunctional requirements tend to become mixed up
and it begins to be extremely hard to tell apart the nonfunctional part of the
requirement from the functional one. Several different requirements may also be
expressed together or depend on each other in a way that makes the fulfillment and
verification of the single requirement almost impossible.

To the problem of the management of a large number of requirements the
available modern requirement management tools provide a partial solution but there
still seems to be a human factor that cannot be overlooked: only information
systems up to certain size can be understood by single human beings and when the
size increases the comprehensive understanding is gradually lost.

1.5 Barriers to Communication

When we have started new information system projects with some totally new or
partially unknown group of customer representatives, the first problem faced is
always communications. The customer side has typically been involved with the
specification process for already some years and in addition to that, has a vast
experience on the domain. The system providers, on the other hand, are typically
experts in information system creation and not deeply knowledgeable on the
specific details or conventions intrinsic to the domain in question. Now, with SaaS
all these stakeholders need to understand the customer domain as well, since
otherwise providing suitable service level can simply be impossible. Moreover, it is
not in clients’ interests to continuously educate the staff that runs the service for
them—instead, it should be a primary goal of the service provider that they learn
domain specifics as rapidly and as effectively as possible.

1.5.1 Barriers at the Customer Interface

A Savant Institute study found that 56% of errors in installed systems were due to
poor communication between user and analyst in defining requirements and that
these types of errors were the most expensive to correct using up to 82% of

14 A. Koski and T. Mikkonen



available staff time [22]. Problems of understanding during elicitation can lead to
requirements that are ambiguous, incomplete, inconsistent, and even incorrect
because they do not address the requirements elicitation stakeholders’ true needs.
Lack of user input arises when users are not fully aware of their needs or are unable
to communicate them. It also arises when analysts and developers fail to ask the
necessary questions.

When a system needs to be defined, a series of meeting needs to be held
consisting of stakeholders. These stakeholders include clients, users, software
engineers, system analysts, domain experts, managers, etc. It has been assumed that
having a larger number of people in a meeting helps refining the system require-
ments and brainstorming becomes much effective and easier. But there is also a
potential problem having superfluous and extra stakeholders in a meeting.
Furthermore, when we are to deliver possibly tailor-made information system for
the customer only once, the meetings make sense and are affordable, but with the
SaaS model, arranging constant meetings to define and refine the system require-
ments may easily become too expensive. Instead, more effective means for getting
feedback are required by, e.g., monitoring the service [23].

The language barrier is considered to be a major problem. When there is no
proper common protocol to communicate the whole purpose of meeting together is
defeated. Different stakeholders may speak literally different languages, e.g.,
Chinese and English. But even within the same language, it is notorious that
stakeholders from different domains (such as management, manufacturing, mar-
keting, and technical) use the same words with different meanings. When literally
different languages are used, there is the additional task of translating the relevant
documents. When figuratively different “languages” are used, the problem may not
even be recognized.

Of course, the lack of clarity in the written down documents also poses a
problem if not managed appropriately. Although both the customer and the system
provider representatives may have a common understanding on a requirements true
content, the precision of the description is difficult to reach without making the
requirement document difficult to read.

In the customer interface, according to our experiences, we also seem to play the
broken telephone game all too much. The game is played inadvertently when
information is passed from customers to consultants or business analysts and only
from there to designers, developers and testers.

1.5.2 Internal Barriers

Within the system provider organization, the same barriers to communication exist.
Within the development teams we always have some kind of communication
problems, being either just lack of discussion or the blind reliance on the infor-
mation on an issue tracking system’s issue instead of asking for better information.
The development organization’s culture is here in a crucial role: if the culture

1 What We Say We Want and What We Really … 15



encourages people to raise issues and do critical thinking, the barriers to commu-
nication can at least partly be overcome.

However, it should be always kept in mind that every time we pass information
on, it may get changed and misinterpreted, leading to increased project costs and the
delivery of the wrong solutions to our customers and users.

1.5.3 Human Barriers

Wiio’s laws [24] are observations about how human communication usually fails,
except by accident, formulated in a humoristic way. Since the Wiio’s laws point out
that the communication always fails, anyone who does understand part of your
message will miss the other parts. Consequently, the only way to ensure that the
essential information has been communicated is through feedback, which is a
necessary part of human communication. However, with feedback we cannot be
satisfied if we only get positive and encouraging feedback—only getting positive
and negative feedback together indicates that there are people who truly have been
trying to understand the communicated issue and are interested enough in it to
ensure that what she understood was correct.

An important part of one’s reflection is thus also an issue of misunderstanding
and its sources [25]. The main point here is that when we are communicating and
talking to each other we are rather building a common view of what we are really
talking about [25]. Accepting this while handling the requirements of an infor-
mation system would help us a lot in the process: the starting point should be that
the dialogue neither enforces one’s opinion against the other’s one, nor does it add
one’s opinion to the other’s one—the dialogue will change both of the opinions if
the communication is successful.

1.6 Requirements and Architecture

A dual relation exists between requirements and architecture. On one hand,
requirements specify what a system must do. On the other hand, architecture
describes how a system will be organized and how it will behave in order to fulfill
these requirements. As requirements describe the problem and architecture
describes the solution, it is easy to think that the requirements naturally precede the
architecture. Following this line of thought results in the conclusion that the
requirements can be defined without any input from the architecture. However, in
any larger scale information system project, all the stakeholders are nowadays ready
to admit that the requirements cannot really be specified in detail before the system
development starts. This means that the required system architecture, which
describes how the system will be organized and determines how it will behave,
cannot be appropriately designed. This leaves us with the traditional chicken and

16 A. Koski and T. Mikkonen



the egg problem: we cannot design the architecture without the requirements and on
the other hand, we cannot find the requirements without some form of architecture.

Without the architecture in the picture, high-level external outcomes and con-
straints often bubble down to use cases, functional specifications, and wireframe UI
models. Without architecture, the detailed requirements easily become conflicting
and incomplete. Thus the requirement specification and elicitation process without
the specification of the architecture does not really make sense. With every set of
requirements offered to the potential system providers, there should also be a
description of the architecture of the system to be created—and not just some
reference architecture, but an architecture the system owners are committed to and
which is not be changed easily as requirements evolve.

To generate such architecture—or maybe more realistically a minimum viable
architecture (MVA) [26]—a group of architects and domain experts should look for
the biggest challenges in the system at hand, especially from the points of view of
the deployment environment, the technical issues and the project teams on both
sides of the table, the customer and system provider side. The task for this group
is to prioritize the identified challenges, find solutions and also debate and lay out
alternative solutions. The architects should be able to point out where some
approach has potential side effects on other areas and refine the approaches with the
domain experts based on the new information.

At the end of the MVA process, the architects and domain experts have col-
laborated on finding a solution to a problem at hand that would not have been
possible to find without the contribution of both the architects and the domain
experts. However, while the MVA is not the solution to the entire set of problems
encountered during any larger scale information system project, it defines the
architecture strategy, the framework and skeleton for the eventual solution.

To make the concept of the MVA a bit more concrete, let us take a look at the
steps taken to create a real-life MVA. This example is related to an information
system the main purpose of which is to receive, process, refine, relay and store
incident-related data2:

• We created the most likely scenario of the process the service needs to handle
and identify the most critical part of this scenario.

• We analyzed carefully the roles of the users using the service first and their
behavior—what kind of users we expect the service to have and without what
features these users can still manage?

• We outlined the simplest possible way to achieve an architectural structure,
which allows the service to provide the users the functionalities needed for the
most likely scenario, the MVA.

• We made sure we understand all the nonfunctional requirements related to this
most typical scenario, like performance, scalability, security, reliability and
integrability related requirements. For the security and the performance

2The MVA is taken out of its context to protect the identity of the system in question.

1 What We Say We Want and What We Really … 17



requirements a good and realistic understanding of the number of users and the
amount of expected data is needed—no guesses.

• We wrote down a list of what identified functional and nonfunctional require-
ments cannot be met with the architecture outlined—all these related to other
than the most likely usage scenario. We tried to identify the hardest potential
problem areas in the MVA but did not try to solve them in this early phase of the
development process.

• We accepted the fact that the MVA will not be the final architecture, but it will
be good enough to start with and to get the development process moving on.

1.7 Guidelines for the Transformation

Based on our experiences, we do not assume that any quick changes will happen in
the fashion private and public sector information systems will be procured. Instead,
we acknowledge that we must deal with the IEEE 830 styled requirements, or
“questions” as the requirements are sometimes disguised as, in the foreseeable
future. Accepting this, we next start to look for ways to reduce the damage or at
least the harm the suboptimal way of expressing the system owner needs the
requirements typically cause.

Insisting to know why. We need to understand and accept the fact that the
requirements are just sentences written by some people at some point of time with
some level of understanding of the situation. If the requirements do not experience
transformations and we do not dispose or create new ones during the system
development project, we are not responding to the actual needs of the system
owner. Especially, the nonfunctional requirements may be very difficult to state
precisely. On the other hand, imprecise requirements are not of use, they easily
become expensive to implement and are almost impossible to verify reliably. Some
simple techniques, like the Five Whys [27], could be employed in the discussion
with the system owner’s to promote deeper thinking through questioning and is
easily adaptable to most problems.

Maintaining agreed practices. No matter how hard the customer and the
system or service provider both wish to execute a program or project in an agile
fashion, joint practices and processes must be carefully agreed upon. Agility does
not mean that we should invent the ways of working every day. Any larger
information system project needs to have fully agreed and also documented ways of
working related to all interaction between the customer and the system provider.
This does not mean naturally that the processes should be inflexible and bureau-
cratic—they just need to be agreed, known and followed by all the stakeholders in a
disciplined way.

Listening the right way. One of the buzzwords in the information system
domain has been for long already that the system provider should be customer
driven. This means that the system providers should always be aware and respond
to customer problems swiftly. However, this approach can also be fatal when the

18 A. Koski and T. Mikkonen



communicated requests from the customer side at different points in time have
varying and differing views of how the system should be developed. Cooper [28]
stresses the difference between listening to and following a customer. While lis-
tening to a customer is good, following a customer by merely doing what a cus-
tomer tells you to do is not. The customer that the system provider hears best—“the
loudest voice”—may not be the most important customer: it may even be that we
should not even have this customer!

Importance of continuous interaction. The relationship between the customer
and the system provider may not always be easy and all kinds of adversities will be
encountered during a long-lasting project. Nevertheless, despite the situation, the
communication channels should always be open and utilized on a daily basis. In our
experience, no information system project has failed due to excessive communi-
cation. If nothing else, the customer representatives should be regularly contacted
by the system provider representatives to ask them how they are and how they feel
about the project at hand. It should also be kept in mind that a feature management
system or a bug or issue tracking system is never a replacement for interactions with
end-users and other stakeholders at the customer side. The actuality of human
communication lies in the fact that the communication neither enforces one’s
opinion against the other’s one, nor does it add one’s opinion to the other’s one.
The result of the communication is that both of them are changed [25].

Identifying the most valuable features. One of the downsides the continuous
interaction with the customers and the end-users has it that along with wideband
and frequent communication we inevitably also talk about features and qualities
that the customer representatives or the end-users think they would like to have, the
so called nice-to-have features and qualities. New features are extremely easy to
invent and fun to discuss about. However, each feature should be associated with
explicit stakeholder value and prioritized accordingly.

Strict no to feature creep. Since the information system projects are nowadays
typically executed in a close co-operation with the end-users and other
customer-side stakeholders, the system provider receives easily a lot of feedback on
the functional quality aspects of the system under development. When receiving the
feedback, the system provider should be very careful to avoid the feature creep [29].
However, the responsibility on keeping the scope set by the system owner should
not be on the development teams solely but on the customer representatives and
end-users. It seems to be somehow many times forgotten that keeping the feature
creep under control is of the highest interest for all stakeholders. In case feature
creep takes place, the whole project is immediately in danger and in the worst case
no system will be ever created.

To avoid feature creep, one needs to perform rigorous and visible change
management. Learning to say “No” in a nice way to customers and end-users is
obligatory.

1 What We Say We Want and What We Really … 19



1.8 Conclusions

Although a considerable amount of work has been put into creating and refining the
requirements for all kinds of information systems, there still seems to be a lot to do
in order to make the development processes produce what is truly needed in an
effective way. We have problems with the scope, volatility and quality of the
requirements and in particular, problems with the communication related to the
requirements. The problems result in misunderstandings, a lot of confusion and
eventually waste of time and resources.

To overcome the requirement related problems in system development efforts,
no silver bullet exists. However, critical thinking and willingness to truly under-
stand the customer, strict prioritization and disciplined ways of working with the
requirements and wideband frequent communication help a lot.

In our opinion, system owners and stakeholders are not to blame for the
shortcomings that can be traced back to bad or missing requirements, encountered
during the design and development of an information system. The people who are
experts in the system design, development, and deployment are responsible for
educating the system owners and all other stakeholders regarding how to identify
and express the true needs in a form that enables more error-free communication
and full comprehension of the issues involved on both sides.

In addition, starting from quality needs instead of functional requirements gives
us better chances to find the right solutions to the true needs. One crucial step
toward being able to specify the nonfunctional requirements would be the usage of
minimum viable architecture (MVA), as an intrinsic part amending the functional
and other customer requirements. Doing such architecture requires a lot of trust
between the service providers and the system owners, but motivation for this
change should be clear: with better quality of requirements and better communi-
cation we would be seeing better new information systems, longer information
system life span, and eventually happier customers.

References

1. Leffingwell, D., & Widrig, D. (2000). Managing software requirements: a unified approach.
Addison-Wesley Professional.

2. Stakeholder Needs and Requirements. (2015, December 18). in BKCASE Editorial Board,
Guide to the Systems Engineering Body of Knowledge (SEBoK), version 1.5.1, R.D.
Ad-cock (EIC), Hoboken, NJ: The Trustees of the Stevens Institute of Technology ©2015.
Retrieved 14 Mar 2016 from http://sebokwiki.org/w/index.php?title=Stakeholder_Needs_
and_Requirements&oldid=51430.

3. Hochstetter, J., & Cares, C. (2012, November). Call for Software Tenders: Features and
Research Problems. In Proceedings of the 7th International Conference on Software
Engineering Advances (ICSEA (Vol. 12).

4. Jurison, J. (1999). Software project management: the manager’s view. Communications of the
AIS, 2(3es), 2.

20 A. Koski and T. Mikkonen

http://sebokwiki.org/w/index.php%3ftitle%3dStakeholder_Needs_and_Requirements%26oldid%3d51430
http://sebokwiki.org/w/index.php%3ftitle%3dStakeholder_Needs_and_Requirements%26oldid%3d51430


5. Marilly, E., Martinot, O., Betgé-Brezetz, S., & Delègue, G. (2002). Requirements for service
level agreement management. In IP Operations and Management, 2002 IEEE Workshop on
(pp. 57–62). IEEE.

6. Hofmann, H. F., & Lehner, F. (2001). Requirements engineering as a success factor in
software projects. IEEE software, 18(4), 58.

7. Jones, C. (2008). Applied software measurement: global analysis of productivity and quality.
McGraw-Hill Education Group.

8. Munassar, N. M. A., & Govardhan, A. (2010). A comparison between five models of software
engineering. IJCSI, 5, 95–101.

9. Abrahamsson, P., Salo, O., Ronkainen, J., & Warsta, J. (2002). Agile software development
methods: Review and analysis.

10. Ralph, P. (2013). The illusion of requirements in software development. Requirements
Engineering, 18(3), 293–296.

11. Davis, A. M. (1993). Software requirements: objects, functions, and states. Prentice-Hall, Inc.
12. Wikipedia contributors. “Request for proposal.” Wikipedia, The Free Encyclopedia. 7 Feb.

2016. Web. 14 Mar. 2016.
13. Wikipedia contributors. “Request for quotation.” Wikipedia, The Free Encyclopedia. 2 Feb.

2016. Web. 14 Mar. 2016.
14. Wikipedia contributors. “Request for information.” Wikipedia, The Free Encyclopedia.

20 Feb. 2016. Web. 14 Mar. 2016.
15. IEEE Std 830-1998 (Revision of IEEE Std 830-1993), IEEE Recommended Practice for

Software Requirements Specifications.
16. Chen, L., Babar, M. A., & Nuseibeh, B. (2013). Characterizing architecturally significant

requirements. IEEE software, 30(2), 38–45.
17. Frakes, W. B., & Kang, K. (2005). Software reuse research: Status and future. IEEE

transactions on Software Engineering, (7), 529–536.
18. Kramer, J., & Magee, J. (2007, May). Self-managed systems: an architectural challenge. In

Future of Software Engineering, 2007. FOSE’07 (pp. 259–268). IEEE.
19. Brooks, FP Jr. “No Silver Bullet Essence and Accidents of Software Engineering.” Computer

4 (1987): 10–19.
20. Christel, Michael G. and Kang, Kyo C. “Issues in Requirements Elicitation”,

CMU/SEI-92-TR-12, 1992.
21. Ebenau, B. and Strauss, S., Software Inspection Process. McGraw-Hill, 1994.
22. Goodrich, V., & Olfman, L. (1990, January). An experimental evaluation of task and

methodology variables for requirements definition phase success. In System Sciences, 1990.
Proceedings of the Twenty-Third Annual Hawaii International Conference on (Vol. 4,
pp. 201–209). IEEE.

23. Koski, A., Kuusinen, K., Suonsyrjä, S., & Mikkonen, T. (2016). Implementing Continuous
Customer Care: First-hand Experiences from an Industrial Setting. In Proceedings of the 42nd
Euromicro Conference on SEAA.

24. Wiio, O. A. (1978). Wiion lait—ja vähän muidenkin (Wiio’s laws—and some others’). Weilin
+Göös.

25. Klimova, B. F., & Semradova, I. (2012). Barriers to communication. Procedia-Social and
Behavioral Sciences, 31, 207–211.

26. Erder, M., & Pureur, P. (2015). Continuous Architecture: Sustainable Architecture in an Agile
and Cloud-centric World. Morgan Kaufmann.

27. Serrat, Olivier. “The five whys technique.” (2009).
28. Cooper, A. (1999). The inmates are running the asylum: [Why high-tech products drive us

crazy and how to restore the sanity] (Vol. 261). Indianapolis: Sams.
29. Elliott, B. (2007, July). Anything is possible: Managing feature creep in an innovation rich

environment. InEngineeringManagementConference, 2007 IEEE International (pp. 304–307). IEEE.

1 What We Say We Want and What We Really … 21


	1 What We Say We Want and What We Really Need: Experiences on the Barriers to Communicate Information System Needs
	Abstract
	1.1 Introduction
	1.2 The Challenging Role of the Requirements
	1.3 What We Say We Want and Why
	1.4 What We Truly Need
	1.4.1 Problems of Scope
	1.4.2 Problems of Volatility
	1.4.3 Problems of Observed Quality
	1.4.4 Problems of Expected Quality
	1.4.5 Problems of Quantity

	1.5 Barriers to Communication
	1.5.1 Barriers at the Customer Interface
	1.5.2 Internal Barriers
	1.5.3 Human Barriers

	1.6 Requirements and Architecture
	1.7 Guidelines for the Transformation
	1.8 Conclusions
	References


