
Muthu Ramachandran
Zaigham Mahmood Editors

Requirements
Engineering
for Service
and Cloud
Computing

Requirements Engineering for Service and Cloud
Computing

Muthu Ramachandran • Zaigham Mahmood
Editors

Requirements Engineering
for Service and Cloud
Computing

123

Editors
Muthu Ramachandran
School of Computing, Creative
Technologies, and Engineering

Leeds Beckett University
Leeds
UK

Zaigham Mahmood
University of Derby
Derby
UK

and

North-West University
Potchefstroom
South Africa

ISBN 978-3-319-51309-6 ISBN 978-3-319-51310-2 (eBook)
DOI 10.1007/978-3-319-51310-2

Library of Congress Control Number: 2016960727

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

To
My mother Guruvammal and my family
(Vasuki wife, and daughters Virupa,
and Uma)

Muthu Ramachandran

To
My sister Khalida Khanam and brother
Masood Zaigham

Zaigham Mahmood

Preface

Overview

Requirements Engineering (RE) is the process of discovering, documenting, and
managing the requirements for a computer-based system. The goal is to produce a
set of specifications, as the first stage in the system development process, to form
the basis for further design and development of the required system. Since the
production of a complete, correct, and unambiguous set of requirements has
numerous inherent issues, RE has become an important research topic in the field of
software engineering. Additionally, with the emergence of the cloud computing
paradigm, developments in social media and service computing, inherent chal-
lenges of the RE process have grown in numbers and complexity. This is because
the new software systems are expected to be scalable, operable on all varieties of
diverse platforms, sustainable, fail safe, and, in general, suitable for distributed
computing environments. Now, software is being deployed as Web services and as
software-as-a-service (SaaS) to be consumed by users on a wide variety of diverse
smart devices, via the Internet protocols.

The current approaches to developing SaaS, embedded systems and enterprise
applications, using methodologies such as service orientation and component-based
design, have their focus on meeting the increasing levels of demands for distributed
software as a service that is more accessible, configurable (over a distributed
large-scale global network), and shareable for multi-tenancy. In the recent past, we
have known software as functions, objects, classes, components, and even frame-
works. However, the concept of a software service is new and different from the
traditional software engineering perspective. In this context, the notion of a soft-
ware product has changed considerably.

Unfortunately, there is a distinct lack of systematic approaches and method-
ologies to identify, define, visualize, specify, and validate requirements for such
services, although there are some developments underway by way of new products
and methodologies to cater for the needs of the industry. Also, the current software
systems are beyond the traditional stakeholder concept. In respect to the newer

vii

approaches, the user base is now much wider and data and applications are shared
through social media and other networked mobile technologies.

With this background, there is an urgent need for properly integrated solutions,
taking into account the requirements of scalability, flexibility, sustainability, and
operability for distributed computing environments. In this respect, the current text
is probably the first book on the topic of RE for service and cloud computing.

This book, Requirements Engineering for Service and Cloud Computing, aims to
capture the state of the art of the current advances in requirements engineering.
Majority of the contributions in this book focus on: requirements elicitation;
requirements specifications; requirements classification and requirements validation
and evaluation. In this book, 36 researchers and practitioners of international repute
have presented latest research developments, methodologies, current trends,
state-of-the-art reports, case studies, and suggestions for further understanding,
development and enhancement of subject area of requirements engineering for
software systems for distributed environments.

Objectives

The aim of this volume is to present and discuss the state of the art in terms of
methodologies, trends and future directions for requirements engineering for the
service and cloud computing paradigm. The objectives include:

• Capturing the state-of-the-art research and practice relating to requirements
engineering for the service and cloud computing;

• Discussing developments, tools, technologies, and trends in the subject area of
software requirements engineering;

• Analyzing the relevant theoretical frameworks, practical approaches, and
methodologies for service requirements;

• In general, advancing the understanding of the emerging new methodologies
relevant to requirements engineering for the service and cloud computing.

Organization

There are 13 chapters in Requirements Engineering for Service and Cloud
Computing. These are organized in three parts, as follows:

• Part I: Requirements Elicitation for Service and Cloud Computing.
Requirements elicitation is the first key component of requirements engineering
that involves various stakeholders to identify and clarify requirements for ser-
vices’ development. This section has a focus on various approaches, research,
and practices towards requirements elicitation. There are five chapters in this
part. Chapter 1 discusses experiences gained from participation in a number of

viii Preface

large, commercial information system development projects in both public and
private sectors in which the traditional way of handling the requirements has
proven to be insufficient. Chapter 2 presents cloud dimensions that are graph-
ically presented via conceptual models, as each dimension has specific entities,
properties, and relationships. Chapter 3 presents approaches to requirements
engineering for cloud-based environments; whereas Chap. 4 presents an overall
aggregated effective quality of service (OAEQoS) model for capturing
non-function requirements. Chapter 5 probes further into requirements engi-
neering for software-defined cloud environments.

• Part II: Requirements Specification for Service and Cloud Computing. This part
of the book comprises three chapters that focus on requirements specification.
The first chapter presents an abstraction layer for SaaS architecture with a focus
on multi-agent based inter-cloud environment, called enterprise cloud bus sys-
tem (ECBS), to conceptualize the different behavioral facets of software systems
in service and cloud computing paradigm. The next chapter discusses an
approach on how BPMN nodes are mapped to services and presents an algo-
rithm for dynamic discovery of appropriate services. The final contribution in
this section suggests a framework for requirements classification and change
management focusing on distributed platform-as-a-service (PaaS) and
software-as-a-service (SaaS) systems as well as complex software ecosystems
that are built using PaaS and SaaS, such as tools-as-a-service (TaaS).

• Part III: Requirements Validation, Evaluation, and QoS for Service and Cloud
Computing. There are four chapters in this section that focus on requirements
validation, evaluation, and quality of service (QoS). The first three chapters
present appraisal and analysis of inherent security requirements, and discuss
ways to make transition from information systems to Web services. The fourth
contribution in this part addresses an approach to simulating composite Web
services for predicting the QoS parameters. The final contribution presents a set
of distributed agile requirements engineering patterns after several validation
process.

Target Audiences

The current volume is a reference text aimed at supporting a number of potential
audiences, including the following:

• Software engineers and project managers who wish to adopt the newer
approaches to ensure the accurate and complete system specifications.

• Students and lecturers who have an interest in further enhancing the knowledge
of technologies, mechanisms, and frameworks relevant to requirements engi-
neering for distributed environments.

Preface ix

• Researchers in this field who require up-to-date knowledge of the current
practices, mechanisms, and frameworks relevant to systems’ requirements
engineering.

Leeds, UK Muthu Ramachandran
Derby, UK and Potchefstroom, South Africa Zaigham Mahmood

x Preface

Acknowledgements

The editors acknowledge the help and support of the following colleagues during
the review, development, and editing phases of this text:

• Dr. S. Parthasarathy, Thiagarajar College of Engineering, Tamil Nadu, India
• Dr. Pethuru Raj, IBM Cloud Center of Excellence, Bangalore, India
• Prof. Andrea Zisman, Open University
• Prof. Bashar Nuseibeh, Open University
• Prof. T.R.G. Nair, Raja Rajeswari College of Engineering, India.

We would also like to thank the contributors to this book: 34 authors and
co-authors, from academia as well as industry from around the world, who col-
lectively submitted 12 chapters. Without their efforts in developing quality con-
tributions, conforming to the guidelines and meeting often the strict deadlines, this
text would not have been possible.

October 2016 Muthu Ramachandran
Zaigham Mahmood

xi

Contents

Part I Requirements Elicitation for Service and Cloud Computing

1 What We Say We Want and What We Really Need: Experiences
on the Barriers to Communicate Information System Needs 3
Aapo Koski and Tommi Mikkonen

2 Cloud Dimensions for Requirements Specification 23
Ana Sofia Zalazar, Luciana Ballejos and Sebastian Rodriguez

3 Analyzing Requirements Engineering for Cloud Computing 45
Ana Sofia Zalazar, Luciana Ballejos and Sebastian Rodriguez

4 Classification of Non-functional Requirements of Web Services
from Multiperspective View . 65
Maya Rathore and Ugrasen Suman

5 The Requirements Elicitation Approaches for Software-Defined
Cloud Environments . 89
Pethuru Raj, Parvathy Arulmozhi and Nithya Chidambaram

Part II Requirements Specification for Service and Cloud
Computing

6 Formal Modeling of Enterprise Cloud Bus System: A High
Level Petri-Net Based Approach . 121
Gitosree Khan, Sabnam Sengupta and Anirban Sarkar

7 Requirements to Services: A Model to Automate Service
Discovery and Dynamic Choreography from Service Version
Database. 151
Swapan Bhattacharya, Ananya Kanjilal, Sabnam Sengupta,
Jayeeta Chanda and Dipankar Majumdar

xiii

8 Architecturally Significant Requirements Identification,
Classification and Change Management for Multi-tenant
Cloud-Based Systems . 181
Muhammad Aufeef Chauhan and Christian W. Probst

Part III Requirements Validation, Evaluation, and QoS
for Service and Cloud Computing

9 Cyber Security Requirements Engineering . 209
Christof Ebert

10 Appraisal and Analysis of Various Self-Adaptive
Web Service Composition Approaches . 229
Doaa H. Elsayed, Eman S. Nasr, Alaa El Din M. El Ghazali
and Mervat H. Gheith

11 Transition from Information Systems to Service-Oriented
Logical Architectures: Formalizing Steps
and Rules with QVT . 247
Nuno Santos, Nuno Ferreira and Ricardo J. Machado

12 Improving the QoS of a Composite Web Service
by Pruning its Weak Partners . 271
Kuljit Kaur Chahal, Navinderjit Kaur Kahlon
and Sukhleen Bindra Narang

13 Using Distributed Agile Patterns for Supporting
the Requirements Engineering Process . 291
Maryam Kausar and Adil Al-Yasiri

Index . 317

xiv Contents

About the Editors

Dr. Muthu Ramachandran is a Principal Lecturer in the Computing, Creative
Technologies, and Engineering School as part of the Faculty of Arts, Environment
and Technology at Leeds Beckett University in the UK. Previously, he spent nearly
eight years in industrial research (Philips Research Labs and Volantis Systems Ltd,
Surrey, UK) where he worked on software architecture, reuse, and testing. His first
career started as a research scientist where he worked on real-time systems
development projects. Muthu is an author of books including: Software
Components: Guidelines and Applications (Nova Publishers, NY, USA, 2008) and
Software Security Engineering: Design and Applications (Nova Publishers, NY,
USA, 2011). He has also widely authored and published nine books, over hundreds
of journal articles, over 50 book chapters and over 200 conferences papers on
various advanced topics in software engineering, software security, cloud com-
puting, and education. Muthu has been leading conferences as chairs and as keynote
speakers on global safety, security and sustainability, emerging services, IoT, big
data, and software engineering. Muthu is a member of various professional orga-
nizations and computer societies: IEEE, ACM, Fellow of BCS, and a Senior Fellow
of HEA. He has also been an invited keynote speaker on several international
conferences. Muthu’s research projects have included all aspects of software
engineering, SPI for SMEs (known as Prism model), emergency and disaster
management systems, software components and architectures, good practice
guidelines on software developments, software security engineering, and service
and cloud computing. Projects details can be accessed at www.se.moonfruit.com
and at www.software-research.com.

Muthu can be reached at m.ramachandran@leedsbeckett.ac.uk and
re.for.cloud@gmail.com

Prof. Dr. Zaigham Mahmood is an author/editor of 19 books, six of which are
dedicated to electronic-government and the other thirteen focus on the subjects of
cloud computing, data science, Internet of Things, and software project manage-
ment, including: Cloud Computing: Concepts, Technology & Architecture which is
also published in Korean and Chinese languages; Cloud Computing: Methods and

xv

Practical Approaches; Software Engineering Frameworks for the Cloud
Computing Paradigm; Cloud Computing for Enterprise Architectures; Cloud
Computing Technologies for Connected Government; Continued Rise of the Cloud:
Advances and Trends in Cloud Computing; Cloud Computing: Challenges,
Limitations and R&D Solutions; Data Science and Big Data Computing:
Frameworks and Methodologies; Connectivity Frameworks for Smart Devices: The
Internet of Things from a Distributed Computing Perspective; and Software Project
Management for Distributed Computing: Life-Cycle Methods for Developing
Scalable and Reliable Tools. Additionally, he is developing two new books to
appear later in 2017. He has also published more than 100 articles and book
chapters and organized numerous conference tracks and workshops.

Professor Mahmood is the Editor-in-Chief of Journal of E-Government Studies
and Best Practices as well as the Series Editor-in-Chief of the IGI book series
E-Government and Digital Divide. He is a Senior Technology Consultant at
Debesis Education UK and Associate Lecturer (Research) at the University of
Derby UK. He further holds positions as Foreign Professor at NUST and IIU in
Islamabad Pakistan and Professor Extraordinaire at the North West University
Potchefstroom South Africa. Professor Mahmood is also a certified cloud com-
puting instructor and a regular speaker at international conferences devoted to cloud
computing and e-government. His specialized areas of research include distributed
computing, project management, and e-government.

xvi About the Editors

Other Springer Books by the Editors

Strategic Systems Engineering for Cloud and Big Data

By Muthu Ramachandran

This reference text provides state of the approaches on strategic approaches to cloud
computing and big data.

Enterprise Security

By Muthu Ramachandran

This book provides state-of-the-art approaches on enterprise security, cloud secu-
rity, and big data security issues.

Cloud Computing: Challenges, Limitations and R&D Solutions

By Zaigham Mahmood

This reference text reviews the challenging issues that present barriers to greater
implementation of the cloud computing paradigm, together with the latest research
into developing potential solutions. This book presents case studies and analysis
of the implications of the cloud paradigm, from a diverse selection of researchers
and practitioners of international repute. ISBN: 978-3-319-10529-1.

Continued Rise of the Cloud: Advances and Trends in Cloud Computing

By Zaigham Mahmood

This reference volume presents latest research and trends in cloud-related tech-
nologies, infrastructure, and architecture. Contributed by expert researchers and
practitioners in the field, this book presents discussions on current advances and
practical approaches including guidance and case studies on the provision of
cloud-based services and frameworks. ISBN: 978-1-4471-6451-7.

xvii

Cloud Computing: Methods and Practical Approaches

By Zaigham Mahmood

The benefits associated with cloud computing are enormous; yet the dynamic,
virtualized, and multi-tenant nature of the cloud environment presents many chal-
lenges. To help tackle these, this volume provides illuminating viewpoints and case
studies to present current research and best practices on approaches and tech-
nologies for the emerging cloud paradigm. ISBN: 978-1-4471-5106-7.

Software Engineering Frameworks for the Cloud Computing Paradigm

By Zaigham Mahmood

This is an authoritative reference that presents the latest research on software
development approaches suitable for distributed computing environments.
Contributed by researchers and practitioners of international repute, the book offers
practical guidance on enterprise-wide software deployment in the cloud environ-
ment. Case studies are also presented. ISBN: 978-1-4471-5030-5.

Cloud Computing for Enterprise Architectures

By Zaigham Mahmood

This reference text, aimed at system architects and business managers, examines the
cloud paradigm from the perspective of enterprise architectures. It introduces
fundamental concepts, discusses principles, and explores frameworks for the
adoption of cloud computing. The book explores the inherent challenges and pre-
sents future directions for further research. ISBN: 978-1-4471-2235-7.

Data Science and Big Data Computing: Frameworks and Methodologies

By Zaigham Mahmood

This reference text focuses on data science and provides practical guidance on
methodologies and frameworks for big data analytics. Expert perspectives are
provided by an authoritative collection of 36 researchers and practitioners, dis-
cussing latest developments, emerging trends; and innovative approaches sug-
gesting best practices for efficient data analytics. ISBN: 978-3-319-31859-2.

Connectivity Frameworks for Smart Devices: The Internet of Things from a
Distributed Computing Perspective

By Zaigham Mahmood

This is an authoritative reference that focuses on the latest developments on the
Internet of Things. It presents state of the art of the current advances in the con-
nectivity of diverse devices; and focuses on the communication, security, privacy,
access control, and authentication aspects of the device connectivity in distributed
environments. ISBN: 978-3-319-33122-5.

xviii Other Springer Books by the Editors

Part I
Requirements Elicitation for Service and

Cloud Computing

Chapter 1
What We Say We Want and What We
Really Need: Experiences on the Barriers
to Communicate Information System
Needs

Aapo Koski and Tommi Mikkonen

Abstract Information system requirements are meant to communicate the relevant
needs and intention to a wide range of stakeholders. The requirements form the basis
on which the tenders are issued, projects are agreed upon, and service-level agree-
ments are made. However, as the requirements state what the system owners—or the
ones who are willing to pay for the system—want the system to achieve, they reflect
the owners’ views and understanding. This setup is plagued by many weaknesses.
First, the system owners are seldom experts in the information system design and
therefore they may be unable to state all the relevant requirements comprehensively.
Second, no matter how much energy and time is invested in the requirement defi-
nition and elicitation, many aspects of the requirements are only revealed during the
development and deployment, and remain unforeseen until later on, when the
development is well under way. Finally, the required system architecture cannot be
appropriately designed, if we do not know the requirements at a sufficient level. In
this chapter we reflect our experiences from participating in a number of large,
commercial information system development projects in both public and private
sectors in which the traditional way of handling the requirements has proven to be
insufficient. With the software as a service (SaaS) business model, where the goal is
frequent releases and continuous delivery of ever-improved services, the associated
weaknesses become even more prominent. We propose better practices for speci-
fying systems and suggest concentrating a lot more on the true communication and
discussion, focusing always on the most important issues and most important
stakeholders only and keeping the vision updated and clear for the whole duration of
a system development project and also the system maintenance period.

A. Koski (&)
Basware Oyj, Tampere, Finland
e-mail: aapo.koski@iki.fi

T. Mikkonen
Tampere University of Technology, Tampere, Finland
e-mail: tommi.mikkonen@tut.fi

© Springer International Publishing AG 2017
M. Ramachandran and Z. Mahmood (eds.), Requirements Engineering
for Service and Cloud Computing, DOI 10.1007/978-3-319-51310-2_1

3

Keywords Requirements specification � Requirements management � System
architecture � External quality � Internal quality � Process quality �
Communication � Software as a service � Continuous delivery

1.1 Introduction

When referring to requirements related to an information system, we usually mean
requirements originating from customer-side stakeholders. These requirements
represent the views and needs of the people at the business or enterprise operations
level, covering end-users, acquirers, customers, and a number of other stakeholders.
The requirements are recorded to solve the stakeholders’ problems. These problems
to be solved vary in their nature, and often the different stakeholders perceive the
situation in very different ways. To further complicate the matter, the set of
requirements for fulfilling stakeholders’ needs typically has a strong connection not
just to the domain the stakeholders represent, but also to the history and to the
environment in which the system is to be operational.

In addition to stakeholder’s needs, we have system requirements, which should
unambiguously specify how the system is to be developed as well as define the
basis for system architecture design and technology selections. System require-
ments are naturally closely related and connected to the customer-side require-
ments, but they ought to be written in a language that is fully and unambiguously
understood by system designers, architects, developers, testers, as well as other
people that work on the system provider’s side. Ideally, system requirements
complement the original end-user requirements and provide deeper understanding
on what the system needs to be capable of doing. Making stakeholder and system
requirements meet—so-called requirements elicitation—appears to be the hardest
and the most critical part of the development of any larger information system.
Furthermore, the situation gets even more complex as new boundaries emerge over
time, for instance when the business model changes. Today, the most dramatic
change is when installable systems operated in full in customer premises are being
replaced by software that is provided as a service.

This chapter reflects industrial experiences gained from a number of large,
commercial, software as a service(SaaS) information system development projects
for both public and private sectors during the last decade. As we, the authors of the
chapter, represent the system providers, we look at the information system projects
from the system provider’s point of view, from which it is not always quite clear
where the customer-side requirements originate, what kind of a history the
requirements have and what kind of real needs are hiding behind the stated
requirements. In particular, we address the dependencies and overlaps between
requirements, which require extensive effort to understand properly, but if left not
fully understood, pose a significant threat to the success of the system development
project. While a prominent attribute throughout the information system projects has

4 A. Koski and T. Mikkonen

been that the bigger the project, the larger the number of requirements is, it is
equally clear that the traditional way of handling the requirements has proven
inadequate in several respects. Having had the first-hand opportunity to observe this
has thought us valuable lessons for later use.

The rest of this chapter is structured as follows. In Sect. 1.2, we discuss the
characteristics of the requirements and their diverse role in the information system
domain. In Sect. 1.3, we provide an insight to the actual requirements we have
encountered in the projects and discuss the possible reasons why the requirements
often are like they are: far from optimal. In Sect. 1.4, we present our understanding
on the nature of the true needs of the system owners and how the true needs are
reflected in the written requirements. In Sect. 1.5, we discuss the barriers to com-
munication which, based on our experiences, are the main reason for low-quality
requirements and requirement management. In Sect. 1.6, we discourse the relation
between the requirements and the system architecture. Finally, in Sect. 1.7, we
draw some final conclusions and present better ways to collaborate and commu-
nicate, thus enhancing the quality of the requirements.

1.2 The Challenging Role of the Requirements

With requirements, we aim at specifying what a computer system or service should
do [1]. The requirements are important in a number of ways in the development [2],
including typically at least the following views:

• They form the basis of the system requirements and various activities related to
the system design;

• They form the basis of system validation and stakeholder acceptance;
• They act as a reference for all the integration and verification activities;
• They serve as means of communication between all the stakeholders, like the

technical staff, management, and the stakeholder community.

Based on our industry experiences, especially the final view is often overlooked
and misinterpreted. Yet the role of the requirements as a means of communication
to a vast audience is pivotal in any development effort where contracting plays a
role, because the requirements form the basis on which the tenders are issued [3],
projects are agreed upon [4], and service-level agreements are made [5]. Altogether,
the requirements are fundamental to the economic context in the software devel-
opment: if the quality of the requirements is not good enough or the requirements
are not managed properly, the projects’ risk to fail increase significantly, the total
cost of ownership of the systems increase, and the overall user satisfaction will not
be as good as could have been expected. As reported in, e.g., [6, 7], low-quality
requirements are the most common reason for the failure of software projects.

The setup where a predefined, fixed set of requirements to satisfy the user needs
exists has many weaknesses [8, 9]. Firstly, the people involved in the requirement

1 What We Say We Want and What We Really … 5

creation, the system owner and other stakeholders, are seldom experts in the
information system design and are thus unable to state all the requirements—
especially the nonfunctional ones—with enough detail and rigor to be unambiguous
and comprehensive. Requirements that remain ambiguous will be misunderstood,
their effect will not be reliably estimated, and they cause a lot of waste in the form
of lost time and resources as they are re-specified, detailed and unfortunately also
expanded many times in course of a project. Secondly, no matter how much energy
and time is put into the creation of the requirements, for any larger information
system, many of the true requirements are only fully revealed during the devel-
opment and deployment of the system itself [10]. Finally, the system architecture,
which has the important role to describe how the system will be organized and
therefore also to define what the system can or cannot do, cannot be appropriately
designed if we do not know the requirements at a sufficient level. Especially, if
architecture design is based on assumptions made solely by the system provider
side designers and architects, it will be highly unlikely that the architecture will
behave in a way that fulfills all the true customer-side requirements.

An important factor that should not be forgotten is that requirements are not only
limited to the functionality of the system, as often supposed, but include other
aspects as well. Different authors have presented various definitions, but in general
functional and nonfunctional (or quality) requirements are separated. For the pur-
poses of this chapter we may take into use the classification by Davis [11]:

• Functional requirements: These include statements regarding the services which
the system should provide, how the system should react to particular inputs and
how the system should behave in particular situations.

• Nonfunctional requirements: Constraints related to the services or functions
offered by the system, such as timing constraints, security issues, constraints on
the development process and so on.

• Performance and reliability requirements: Requirements that specify the speed
or operational effectiveness of a capability that must be delivered by the system
architecture.

• Interface-related requirements: Requirements that come from the environment
of the system and that reflect characteristics of the integrability of the system.

• Design constraints: Requirements that come from the application domain of the
system. Typically, such reflect all kinds of constraints that need to be taken into
account in that specific domain.

In addition, there often are domain or system specific requirements, for example
associated with applicable standards or laws. For instance, developing medical
devices or aerospace systems typically have special requirements that are associated
with the development of the system rather than the eventual outcome. The problem
here is that a service provider cannot always trust that all the relevant domain and
system-specific requirements are stated by the system owners as the original
requirements that need to be fulfilled and taken into account. This aspect is further
emphasized in the SaaS environment, as the end-users who may or may not be

6 A. Koski and T. Mikkonen

aware of the laws and standards, not necessarily verify that the service provided is
standard compliant or legal. The unawareness of the end-users, however, does not
naturally acquit the service provider from the responsibilities.

1.3 What We Say We Want and Why

To identify possible reasons why the requirements are as they are, we next look at
what the stakeholders’ requirements of a large-scale information system specifi-
cation typically contain and what the typical process resulting in the specific set of
requirements is. In the scope of experiences presented here, all the projects have
started from the system providers’ point of view with a request for proposal
(RFP) or request for quotation (RFQ) process [12, 13]. While both mark a request
for describing a project and sometimes the difference is only in the eye of the
beholder, the principal difference between the RFP and the RFQ processes is that
commonly the RFP is used when the stakeholders concentrate on describing the
problem they have and want to hear in which ways it should be solved. In contrast,
the RFQ is used when the stakeholders know what they want but need information
on how potential vendors would meet the requirements and how much it will cost.
The goal of both the RFP and RFQ is that the potential suppliers are informed that
certain service is needed in a way that enables the suppliers to respond factually to
the identified requirements. Often, prior to the issuing of the RFQ or RFP to the
potential providers, a round of the standard business process of request for infor-
mation (RFI) [14] is also executed, where the potential vendors are asked to
determine what kind of services are available to meet the described needs.

Both RFP and RFQ processes of information systems, disregarding if their
domain is public or private sector and also almost regardless of the target and
characteristics of the system itself, have taken the habit of starting with a com-
prehensive specification phase, possibly including also a round of a RFI process. In
this phase, the representatives of the future owner of the system (and often also a
hired group of consultants) spend a considerable period of time trying to determine
the exact needs of the owner as precisely as possible. Typically, the specification
phase results in hundreds or even thousands of requirements, written carefully in,
e.g., IEEE 830 requirement format [15]. These requirements are reviewed many
times, over and over again, and usually they are finally accepted by all the stake-
holders, although usually only after a number of refinements and iterations.
However, for the potential system providers the details of these processes remain
mostly unknown, due to the common reckoning that by giving any of the potential
system provider information on the work-in-progress would introduce unfairness in
the tender to build the system based on the RFP or the RFQ.

Nevertheless, after the competition based on the RFP or RFQ has been decided
and an agreement on the development of the system is signed with a company, this
defined, refined, iterated, and finally accepted set of requirements serves as the most
valuable artifact for the following steps in the information system design and

1 What We Say We Want and What We Really … 7

development process. The requirements are treated in various occasions as the final
“truth” to which one can safely refer to when discussing system features or char-
acteristics and by which the customer assesses the progress and the quality of the
created system. As anyone involved with information system design and devel-
opment can verify, the fixed set of requirements is already a problem in itself, and,
if not adjusted and refined in a continuous manner, leads often to system imple-
mentation that does not correspond to the actual needs of the system owner.
Moreover, even if the requirements itself were at some point of the system
development process complete and able to reflect the true needs of the system
owner, the form and the language used in the writing of the requirements leaves
typically a lot of freedom to the interpretation of the requirement. This problem is
emphasized when the project is large in size, related to multiple organizations and
lasting for a long time, because then the same requirements can be interpreted
differently in different phases of the project, when considered by different people
playing different roles in the development.

The requirement gathering and specification phase commonly overlooks the
architecture of the system to be developed. Although some of the requirements can
be categorized as architecturally significant [16], the main features and required
characteristics of the system architecture largely remain unspecified and vague.
Especially at the present era of agile development methods, where room is typically
left for later fine-tuning and revisions, requirements that are specified upfront in the
project easily lead to a so-called emerging architecture [17]. Emergent architecture
in itself sounds acceptable—and indeed is acceptable for various projects—but for
long-lasting, dependable systems and as well as for systems provided by SaaS
model, such an approach means that the system architecture has to be rethought
many times during the project [18] as we learn more of the system we are devel-
oping. This in turn costs money, makes the system development slower, limits the
options, and causes a lot of confusion as several, incompatible views to the
architecture are simultaneously under consideration by various stakeholders.

The requirements, the architecture, and the original needs or vision of the system
to be developed and taken into use give us three points of view into the system.
These views are not necessarily similar, however. Ideally, these three elements,
complemented with the acceptance testing criteria or test cases, should support and
complement each other and together give any stakeholder a clear view on what are
we developing and how well it satisfies the needs we have.

When specifying the requirement in the fashion described above, we make,
partly unconsciously, partly fully consciously, assumptions, some of which are
almost too bold, namely:

• The representatives selected or set to specify the system have all the knowledge
required to do the specification job.

• The understanding on the needs we have will not change during the specifica-
tion process.

8 A. Koski and T. Mikkonen

• The representatives are capable of expressing the needs in a written format that
cannot be understood in a wrong or incomplete way by other people and the
written down needs leave as little space as possible for vagueness.

• The requirements can be written in the same way regardless of whether a
requirement specifies a functional feature or a quality issue.

• The requirements are expressed in such detail that the potential vendors can
reliably estimate the time and costs required to implement each requirement.

• Since information systems are nowadays created in an agile—although the most
appropriate term in connection with tender projects is agilish—way, the
requirements need to be written in a way that allows incremental development.
Ideally, the requirements should thus be independent of each other, and there-
fore implementable in any order.

• Related closely to the previous assumption, the requirements can be written in a
way that allows iterative development: the implementation of a feature related to
a requirement can be tested, verified, and accepted after an iterative develop-
ment phase (like sprint), although the need that the requirement reflects is not
necessarily fully satisfied by the iterative step in question.

To highlight the points given above, let us take a look at some real-life
requirements1 that we have encountered. These requirements demonstrate the
typical qualities and unambiguousness of the requirements (Table 1.1). As can be
clearly seen in the examples, even if elaborated with the system owner in project

Table 1.1 Examples of functional and nonfunctional requirements in industrial projects

Requirement Type Comment

“The system shall provide the user
the time she has been handling her
task”

Functional Requirement does neither specify
what is meant by the time nor give
any indication why the time is
important to the user

“The system shall support the
addition of new ways to
communicate”

Functional Requirement does not limit in any
way what kind of ways of
communication should be supported
and what supporting really means

“The system shall support high
availability”

Nonfunctional Requirement is far too generic and
does not succeed in communicating
any true need to the reader

“The system shall present all the
required information stored in the
system to the user in real time”

Non-functional Requirement cannot be truly met in
any distributed information system
as there always are delays in the
transferring, handling and
visualizing the information. The
requirement does not give any
indication in what scale the system
needs to be a real-time system

1Requirements are taken out of their context to protect the identity of the system in question.

1 What We Say We Want and What We Really … 9

negotiations or other such meetings, the requirements are easily understood dif-
ferently by different stakeholders, and the estimates on the effort needed to fulfill the
requirements are next to impossible to make reliably. The original system owner’s
intention and the interpretation of the requirement by a developer can easily be
totally two different things.

Furthermore, it seems that the bigger the program is and the longer the speci-
fication period has been, the greater and bolder the assumptions are, and, conse-
quently, also the greater are the risks involved. This at least partly false feeling of
certainty of a comprehensive specification project leads to requirements that are
actually neither correct nor comprehensive. Ironically, it seems that almost every-
body who has been involved in a public tender projects’ specification phase is ready
to admit that the produced set of final requirements is not comprehensive, contains
contradictory and dependent requirements, is not written in a way that allows
iterative and incremental development (i.e., requirements cannot be easily priori-
tized and split) and does not fully reflect the original vision of the system to be
developed.

It also seems that the system requirements—the ones that should specify in a
detailed way what the system should do—are often totally forgotten. Instead, an
attempt is made to create a system that matches the original system owners’
requirements, the ones that never truly were in a form that could be used for
verifying whether the original needs were satisfied.

1.4 What We Truly Need

With the requirements specification process explained above, the five main problem
areas emerge that are almost inevitably encountered when a project to build the
information system starts:

• Problems related to the scope of the developed system.
• Problems related to the volatility of the already specified requirements defining

the system.
• Problems related to differences in the expected and the observed quality of the

functional and nonfunctional aspects of the system.
• Problems related to the sheer large number of the requirements.
• Problems related to the communication of the true contents of the requirements

between the customer representatives and the system provider as well as
between the different groups of people, like architects, designers, developers,
testers, and management at the system provider side.

When we are aiming at providing an information system as a service—in other
words, using the SaaS model—the problems listed above become more prominent
than with more traditional system delivery models. With SaaS we are able to
provide easily frequent releases for the end-users to use, to easily monitor the user

10 A. Koski and T. Mikkonen

behavior and to give the users effective feedback channels. Thus with SaaS the
problems that otherwise may not have been detected, surface early in the system
development phase and need to be addressed already during the early phases of the
collaboration with all the stakeholders.

We will briefly discuss the first four problem areas in the remainder of this
section. In addition, we will address the fourth one—communication—with a more
extensive discussion in Sect. 1.5.

1.4.1 Problems of Scope

Requirement elicitation must begin with an organizational and context analysis to
determine the boundary of the target system as well as the objectives of the system.
Less ambitious elicitation techniques, not fully addressing this concern, introduce the
risk of producing requirements that are incomplete and potentially unusable, because
they do not adhere to the users’ or organizations’ true goals for the system.
Performing an organizational and context analysis allows these goals to be captured,
and then later used to verify that the requirements are indeed usable and correct.

Elicitation techniques can be overambitious as well. In projects that have
inspired this paper, elicitation processes were executed several times during the
duration of the system development project and almost every time the goal was set
to do proper work this time to find to real requirements. We ended up with a new set
of requirements, but it was hard to say if this new set was any better in quality.

Elicitation must focus on the creation of requirements and not design activities in
order to adequately address users’ concerns. Elicitation strategies which produce
requirements in the form of high-level designs run the risk of creating requirements
which are ambiguous to the user community. These requirements may not be
verifiable by the users because they do not adequately understand the design lan-
guage. Also, requirements expressed as a design are much more likely to incor-
porate additional decisions not reflecting user or sponsor needs, in which case the
requirements will not be precise or truly necessary for the development.

1.4.2 Problems of Volatility

One of the primary causes of requirements volatility is that user needs evolve over
time [19]. The requirements engineering process of eliciting, specifying, and val-
idating the requirements should not therefore be executed only once during system
development. We should return to these processes frequently and with low
threshold, so that the requirements can reflect the new knowledge gained during
specification, validation, and subsequent activities. To this end, any requirements
engineering methodology should be iterative in nature, enabling refining existing
solutions and creating new ones as knowledge increases [20].

1 What We Say We Want and What We Really … 11

Another cause of requirements volatility is that the requirements are the product
of the contributions a number of individuals, with different backgrounds and having
most often conflicting needs and goals [21].

Volatility also arises when the users and other customer representatives do not
fully understand the capabilities and limitations of the technology and architecture
already designed for the system. The lack of understanding leads to unrealistic
expectations of either the functionality that can be provided, or the time scale of the
development. These expectations should be corrected as early as possible in the
requirements elicitation process.

1.4.3 Problems of Observed Quality

When we face huge sets of requirements related to a project or some program
aiming for taking an information system into operative use, we rarely seem to verify
the comprehensiveness of the requirement set.

The quality of an information system is a complex thing, the quality is experi-
enced by different people in a different way and as the quality consists of a number
of diverse aspects, the different people on the customer side observe the quality on
totally different basis and also differently at different times.

When defining the quality of an information system, we must understand that
there exist at least two important categories of qualities, namely the external
qualities and the internal qualities.

External quality. When assessing the external quality, the one that the system
users and owners face, at least the following items must be taken into account:

• Observed functional quality of the system.
• Observed usability by real end-users.
• Observed performance of the system, under normal load and under some heavier

load during times of congestion.
• Observed reliability of the system in diverse but foreseen conditions.
• Observed maintainability of the system during version upgrades or system

patching.
• Observed integrability with the system’s true environment.

Above, the word observed bears particular significance. One cannot be satisfied
with any quality aspect of the system, if the aspect is not validated by measuring or
observing it. This requirement makes all the quality aspects above to classify as
external quality aspects. The external quality aspects are the ones the acceptance
criteria must deal with—and not just some of them, but all.

Internal quality. The quality of an information system is not just external
quality observed by an end-user or some other stakeholder. When considering an
information system of this scale, the internal quality aspects become as important as
the external quality aspects when judging the overall quality of the system in the
long run. The internal quality consists of the following aspects:

12 A. Koski and T. Mikkonen

• Testability. The time of manual testing as a major way to test almost any
real-life software system has long gone. Testing needs to be automated to enable
functional tests with good coverage and repeatability. With automated tests we
can perform hard enough stress testing, long-lasting load testing and even fuzzy
testing. Manual testing has its place, though. Nothing can replace a human tester
in exploratory testing task.

• Maintainability. A critical system has a long life span. The maintenance of the
system, in form of patches, updates, and repairs will form a major expenditure.

• Portability. During the long lifetime the system needs to live through all kinds of
environments. Non-portability and lack of robustness will become easily sui-
cidal for the system.

• Supportability. The critical system’s configuration needs to be identifiable and
we must be able to diagnose behavior and performance and debug it.

Without high quality of these aspects, the pace of the development gradually
slows soon down to a halt. In addition, to ensure the high quality of the
above-mentioned aspects, one needs to be capable of giving constant attention to
the aspects. This again requires a considerable amount of time and energy.

1.4.4 Problems of Expected Quality

With the SaaS paradigm gaining popularity, in addition to the problems related to
the observed quality by the users and customers of the provided service, one needs
to rethink also how the expectations related to the service have changed because of
SaaS.

To be able to benefit from the SaaS, the services need to be designed to be
provided as services and delivered in the way SaaS model requires. This means at
least that the services fulfill the following requirements:

• Provide easy and maintainable ways for integration with a multitude of
customer-specific systems

• Allow customer-specific maintainable configuration
• Support true multi-tenancy
• Provide enough scalability
• Allow regular updates
• Allow fast deployment
• Allow customer-specific upgrade schedules
• Provide world-class security the customers can count on.

Failing to meet these requirements hinders us from capitalizing the benefits made
possible by the SaaS model.

Furthermore, as the SaaS model is still for many customers a relatively new
thing, we cannot even expect the customer to be able to state these requirements in

1 What We Say We Want and What We Really … 13

any RFQ or alike, as these quality attributes are more or less assumed ones in the
era of the SaaS.

1.4.5 Problems of Quantity

There also seems to exist a common problem of confusion with the requirements
when the number of the requirements describing the system in question becomes
high. When the total number of requirements is in many hundreds or close to
thousand, the functional and nonfunctional requirements tend to become mixed up
and it begins to be extremely hard to tell apart the nonfunctional part of the
requirement from the functional one. Several different requirements may also be
expressed together or depend on each other in a way that makes the fulfillment and
verification of the single requirement almost impossible.

To the problem of the management of a large number of requirements the
available modern requirement management tools provide a partial solution but there
still seems to be a human factor that cannot be overlooked: only information
systems up to certain size can be understood by single human beings and when the
size increases the comprehensive understanding is gradually lost.

1.5 Barriers to Communication

When we have started new information system projects with some totally new or
partially unknown group of customer representatives, the first problem faced is
always communications. The customer side has typically been involved with the
specification process for already some years and in addition to that, has a vast
experience on the domain. The system providers, on the other hand, are typically
experts in information system creation and not deeply knowledgeable on the
specific details or conventions intrinsic to the domain in question. Now, with SaaS
all these stakeholders need to understand the customer domain as well, since
otherwise providing suitable service level can simply be impossible. Moreover, it is
not in clients’ interests to continuously educate the staff that runs the service for
them—instead, it should be a primary goal of the service provider that they learn
domain specifics as rapidly and as effectively as possible.

1.5.1 Barriers at the Customer Interface

A Savant Institute study found that 56% of errors in installed systems were due to
poor communication between user and analyst in defining requirements and that
these types of errors were the most expensive to correct using up to 82% of

14 A. Koski and T. Mikkonen

available staff time [22]. Problems of understanding during elicitation can lead to
requirements that are ambiguous, incomplete, inconsistent, and even incorrect
because they do not address the requirements elicitation stakeholders’ true needs.
Lack of user input arises when users are not fully aware of their needs or are unable
to communicate them. It also arises when analysts and developers fail to ask the
necessary questions.

When a system needs to be defined, a series of meeting needs to be held
consisting of stakeholders. These stakeholders include clients, users, software
engineers, system analysts, domain experts, managers, etc. It has been assumed that
having a larger number of people in a meeting helps refining the system require-
ments and brainstorming becomes much effective and easier. But there is also a
potential problem having superfluous and extra stakeholders in a meeting.
Furthermore, when we are to deliver possibly tailor-made information system for
the customer only once, the meetings make sense and are affordable, but with the
SaaS model, arranging constant meetings to define and refine the system require-
ments may easily become too expensive. Instead, more effective means for getting
feedback are required by, e.g., monitoring the service [23].

The language barrier is considered to be a major problem. When there is no
proper common protocol to communicate the whole purpose of meeting together is
defeated. Different stakeholders may speak literally different languages, e.g.,
Chinese and English. But even within the same language, it is notorious that
stakeholders from different domains (such as management, manufacturing, mar-
keting, and technical) use the same words with different meanings. When literally
different languages are used, there is the additional task of translating the relevant
documents. When figuratively different “languages” are used, the problem may not
even be recognized.

Of course, the lack of clarity in the written down documents also poses a
problem if not managed appropriately. Although both the customer and the system
provider representatives may have a common understanding on a requirements true
content, the precision of the description is difficult to reach without making the
requirement document difficult to read.

In the customer interface, according to our experiences, we also seem to play the
broken telephone game all too much. The game is played inadvertently when
information is passed from customers to consultants or business analysts and only
from there to designers, developers and testers.

1.5.2 Internal Barriers

Within the system provider organization, the same barriers to communication exist.
Within the development teams we always have some kind of communication
problems, being either just lack of discussion or the blind reliance on the infor-
mation on an issue tracking system’s issue instead of asking for better information.
The development organization’s culture is here in a crucial role: if the culture

1 What We Say We Want and What We Really … 15

encourages people to raise issues and do critical thinking, the barriers to commu-
nication can at least partly be overcome.

However, it should be always kept in mind that every time we pass information
on, it may get changed and misinterpreted, leading to increased project costs and the
delivery of the wrong solutions to our customers and users.

1.5.3 Human Barriers

Wiio’s laws [24] are observations about how human communication usually fails,
except by accident, formulated in a humoristic way. Since the Wiio’s laws point out
that the communication always fails, anyone who does understand part of your
message will miss the other parts. Consequently, the only way to ensure that the
essential information has been communicated is through feedback, which is a
necessary part of human communication. However, with feedback we cannot be
satisfied if we only get positive and encouraging feedback—only getting positive
and negative feedback together indicates that there are people who truly have been
trying to understand the communicated issue and are interested enough in it to
ensure that what she understood was correct.

An important part of one’s reflection is thus also an issue of misunderstanding
and its sources [25]. The main point here is that when we are communicating and
talking to each other we are rather building a common view of what we are really
talking about [25]. Accepting this while handling the requirements of an infor-
mation system would help us a lot in the process: the starting point should be that
the dialogue neither enforces one’s opinion against the other’s one, nor does it add
one’s opinion to the other’s one—the dialogue will change both of the opinions if
the communication is successful.

1.6 Requirements and Architecture

A dual relation exists between requirements and architecture. On one hand,
requirements specify what a system must do. On the other hand, architecture
describes how a system will be organized and how it will behave in order to fulfill
these requirements. As requirements describe the problem and architecture
describes the solution, it is easy to think that the requirements naturally precede the
architecture. Following this line of thought results in the conclusion that the
requirements can be defined without any input from the architecture. However, in
any larger scale information system project, all the stakeholders are nowadays ready
to admit that the requirements cannot really be specified in detail before the system
development starts. This means that the required system architecture, which
describes how the system will be organized and determines how it will behave,
cannot be appropriately designed. This leaves us with the traditional chicken and

16 A. Koski and T. Mikkonen

the egg problem: we cannot design the architecture without the requirements and on
the other hand, we cannot find the requirements without some form of architecture.

Without the architecture in the picture, high-level external outcomes and con-
straints often bubble down to use cases, functional specifications, and wireframe UI
models. Without architecture, the detailed requirements easily become conflicting
and incomplete. Thus the requirement specification and elicitation process without
the specification of the architecture does not really make sense. With every set of
requirements offered to the potential system providers, there should also be a
description of the architecture of the system to be created—and not just some
reference architecture, but an architecture the system owners are committed to and
which is not be changed easily as requirements evolve.

To generate such architecture—or maybe more realistically a minimum viable
architecture (MVA) [26]—a group of architects and domain experts should look for
the biggest challenges in the system at hand, especially from the points of view of
the deployment environment, the technical issues and the project teams on both
sides of the table, the customer and system provider side. The task for this group
is to prioritize the identified challenges, find solutions and also debate and lay out
alternative solutions. The architects should be able to point out where some
approach has potential side effects on other areas and refine the approaches with the
domain experts based on the new information.

At the end of the MVA process, the architects and domain experts have col-
laborated on finding a solution to a problem at hand that would not have been
possible to find without the contribution of both the architects and the domain
experts. However, while the MVA is not the solution to the entire set of problems
encountered during any larger scale information system project, it defines the
architecture strategy, the framework and skeleton for the eventual solution.

To make the concept of the MVA a bit more concrete, let us take a look at the
steps taken to create a real-life MVA. This example is related to an information
system the main purpose of which is to receive, process, refine, relay and store
incident-related data2:

• We created the most likely scenario of the process the service needs to handle
and identify the most critical part of this scenario.

• We analyzed carefully the roles of the users using the service first and their
behavior—what kind of users we expect the service to have and without what
features these users can still manage?

• We outlined the simplest possible way to achieve an architectural structure,
which allows the service to provide the users the functionalities needed for the
most likely scenario, the MVA.

• We made sure we understand all the nonfunctional requirements related to this
most typical scenario, like performance, scalability, security, reliability and
integrability related requirements. For the security and the performance

2The MVA is taken out of its context to protect the identity of the system in question.

1 What We Say We Want and What We Really … 17

requirements a good and realistic understanding of the number of users and the
amount of expected data is needed—no guesses.

• We wrote down a list of what identified functional and nonfunctional require-
ments cannot be met with the architecture outlined—all these related to other
than the most likely usage scenario. We tried to identify the hardest potential
problem areas in the MVA but did not try to solve them in this early phase of the
development process.

• We accepted the fact that the MVA will not be the final architecture, but it will
be good enough to start with and to get the development process moving on.

1.7 Guidelines for the Transformation

Based on our experiences, we do not assume that any quick changes will happen in
the fashion private and public sector information systems will be procured. Instead,
we acknowledge that we must deal with the IEEE 830 styled requirements, or
“questions” as the requirements are sometimes disguised as, in the foreseeable
future. Accepting this, we next start to look for ways to reduce the damage or at
least the harm the suboptimal way of expressing the system owner needs the
requirements typically cause.

Insisting to know why. We need to understand and accept the fact that the
requirements are just sentences written by some people at some point of time with
some level of understanding of the situation. If the requirements do not experience
transformations and we do not dispose or create new ones during the system
development project, we are not responding to the actual needs of the system
owner. Especially, the nonfunctional requirements may be very difficult to state
precisely. On the other hand, imprecise requirements are not of use, they easily
become expensive to implement and are almost impossible to verify reliably. Some
simple techniques, like the Five Whys [27], could be employed in the discussion
with the system owner’s to promote deeper thinking through questioning and is
easily adaptable to most problems.

Maintaining agreed practices. No matter how hard the customer and the
system or service provider both wish to execute a program or project in an agile
fashion, joint practices and processes must be carefully agreed upon. Agility does
not mean that we should invent the ways of working every day. Any larger
information system project needs to have fully agreed and also documented ways of
working related to all interaction between the customer and the system provider.
This does not mean naturally that the processes should be inflexible and bureau-
cratic—they just need to be agreed, known and followed by all the stakeholders in a
disciplined way.

Listening the right way. One of the buzzwords in the information system
domain has been for long already that the system provider should be customer
driven. This means that the system providers should always be aware and respond
to customer problems swiftly. However, this approach can also be fatal when the

18 A. Koski and T. Mikkonen

communicated requests from the customer side at different points in time have
varying and differing views of how the system should be developed. Cooper [28]
stresses the difference between listening to and following a customer. While lis-
tening to a customer is good, following a customer by merely doing what a cus-
tomer tells you to do is not. The customer that the system provider hears best—“the
loudest voice”—may not be the most important customer: it may even be that we
should not even have this customer!

Importance of continuous interaction. The relationship between the customer
and the system provider may not always be easy and all kinds of adversities will be
encountered during a long-lasting project. Nevertheless, despite the situation, the
communication channels should always be open and utilized on a daily basis. In our
experience, no information system project has failed due to excessive communi-
cation. If nothing else, the customer representatives should be regularly contacted
by the system provider representatives to ask them how they are and how they feel
about the project at hand. It should also be kept in mind that a feature management
system or a bug or issue tracking system is never a replacement for interactions with
end-users and other stakeholders at the customer side. The actuality of human
communication lies in the fact that the communication neither enforces one’s
opinion against the other’s one, nor does it add one’s opinion to the other’s one.
The result of the communication is that both of them are changed [25].

Identifying the most valuable features. One of the downsides the continuous
interaction with the customers and the end-users has it that along with wideband
and frequent communication we inevitably also talk about features and qualities
that the customer representatives or the end-users think they would like to have, the
so called nice-to-have features and qualities. New features are extremely easy to
invent and fun to discuss about. However, each feature should be associated with
explicit stakeholder value and prioritized accordingly.

Strict no to feature creep. Since the information system projects are nowadays
typically executed in a close co-operation with the end-users and other
customer-side stakeholders, the system provider receives easily a lot of feedback on
the functional quality aspects of the system under development. When receiving the
feedback, the system provider should be very careful to avoid the feature creep [29].
However, the responsibility on keeping the scope set by the system owner should
not be on the development teams solely but on the customer representatives and
end-users. It seems to be somehow many times forgotten that keeping the feature
creep under control is of the highest interest for all stakeholders. In case feature
creep takes place, the whole project is immediately in danger and in the worst case
no system will be ever created.

To avoid feature creep, one needs to perform rigorous and visible change
management. Learning to say “No” in a nice way to customers and end-users is
obligatory.

1 What We Say We Want and What We Really … 19

1.8 Conclusions

Although a considerable amount of work has been put into creating and refining the
requirements for all kinds of information systems, there still seems to be a lot to do
in order to make the development processes produce what is truly needed in an
effective way. We have problems with the scope, volatility and quality of the
requirements and in particular, problems with the communication related to the
requirements. The problems result in misunderstandings, a lot of confusion and
eventually waste of time and resources.

To overcome the requirement related problems in system development efforts,
no silver bullet exists. However, critical thinking and willingness to truly under-
stand the customer, strict prioritization and disciplined ways of working with the
requirements and wideband frequent communication help a lot.

In our opinion, system owners and stakeholders are not to blame for the
shortcomings that can be traced back to bad or missing requirements, encountered
during the design and development of an information system. The people who are
experts in the system design, development, and deployment are responsible for
educating the system owners and all other stakeholders regarding how to identify
and express the true needs in a form that enables more error-free communication
and full comprehension of the issues involved on both sides.

In addition, starting from quality needs instead of functional requirements gives
us better chances to find the right solutions to the true needs. One crucial step
toward being able to specify the nonfunctional requirements would be the usage of
minimum viable architecture (MVA), as an intrinsic part amending the functional
and other customer requirements. Doing such architecture requires a lot of trust
between the service providers and the system owners, but motivation for this
change should be clear: with better quality of requirements and better communi-
cation we would be seeing better new information systems, longer information
system life span, and eventually happier customers.

References

1. Leffingwell, D., & Widrig, D. (2000). Managing software requirements: a unified approach.
Addison-Wesley Professional.

2. Stakeholder Needs and Requirements. (2015, December 18). in BKCASE Editorial Board,
Guide to the Systems Engineering Body of Knowledge (SEBoK), version 1.5.1, R.D.
Ad-cock (EIC), Hoboken, NJ: The Trustees of the Stevens Institute of Technology ©2015.
Retrieved 14 Mar 2016 from http://sebokwiki.org/w/index.php?title=Stakeholder_Needs_
and_Requirements&oldid=51430.

3. Hochstetter, J., & Cares, C. (2012, November). Call for Software Tenders: Features and
Research Problems. In Proceedings of the 7th International Conference on Software
Engineering Advances (ICSEA (Vol. 12).

4. Jurison, J. (1999). Software project management: the manager’s view. Communications of the
AIS, 2(3es), 2.

20 A. Koski and T. Mikkonen

http://sebokwiki.org/w/index.php%3ftitle%3dStakeholder_Needs_and_Requirements%26oldid%3d51430
http://sebokwiki.org/w/index.php%3ftitle%3dStakeholder_Needs_and_Requirements%26oldid%3d51430

5. Marilly, E., Martinot, O., Betgé-Brezetz, S., & Delègue, G. (2002). Requirements for service
level agreement management. In IP Operations and Management, 2002 IEEE Workshop on
(pp. 57–62). IEEE.

6. Hofmann, H. F., & Lehner, F. (2001). Requirements engineering as a success factor in
software projects. IEEE software, 18(4), 58.

7. Jones, C. (2008). Applied software measurement: global analysis of productivity and quality.
McGraw-Hill Education Group.

8. Munassar, N. M. A., & Govardhan, A. (2010). A comparison between five models of software
engineering. IJCSI, 5, 95–101.

9. Abrahamsson, P., Salo, O., Ronkainen, J., & Warsta, J. (2002). Agile software development
methods: Review and analysis.

10. Ralph, P. (2013). The illusion of requirements in software development. Requirements
Engineering, 18(3), 293–296.

11. Davis, A. M. (1993). Software requirements: objects, functions, and states. Prentice-Hall, Inc.
12. Wikipedia contributors. “Request for proposal.” Wikipedia, The Free Encyclopedia. 7 Feb.

2016. Web. 14 Mar. 2016.
13. Wikipedia contributors. “Request for quotation.” Wikipedia, The Free Encyclopedia. 2 Feb.

2016. Web. 14 Mar. 2016.
14. Wikipedia contributors. “Request for information.” Wikipedia, The Free Encyclopedia.

20 Feb. 2016. Web. 14 Mar. 2016.
15. IEEE Std 830-1998 (Revision of IEEE Std 830-1993), IEEE Recommended Practice for

Software Requirements Specifications.
16. Chen, L., Babar, M. A., & Nuseibeh, B. (2013). Characterizing architecturally significant

requirements. IEEE software, 30(2), 38–45.
17. Frakes, W. B., & Kang, K. (2005). Software reuse research: Status and future. IEEE

transactions on Software Engineering, (7), 529–536.
18. Kramer, J., & Magee, J. (2007, May). Self-managed systems: an architectural challenge. In

Future of Software Engineering, 2007. FOSE’07 (pp. 259–268). IEEE.
19. Brooks, FP Jr. “No Silver Bullet Essence and Accidents of Software Engineering.” Computer

4 (1987): 10–19.
20. Christel, Michael G. and Kang, Kyo C. “Issues in Requirements Elicitation”,

CMU/SEI-92-TR-12, 1992.
21. Ebenau, B. and Strauss, S., Software Inspection Process. McGraw-Hill, 1994.
22. Goodrich, V., & Olfman, L. (1990, January). An experimental evaluation of task and

methodology variables for requirements definition phase success. In System Sciences, 1990.
Proceedings of the Twenty-Third Annual Hawaii International Conference on (Vol. 4,
pp. 201–209). IEEE.

23. Koski, A., Kuusinen, K., Suonsyrjä, S., & Mikkonen, T. (2016). Implementing Continuous
Customer Care: First-hand Experiences from an Industrial Setting. In Proceedings of the 42nd
Euromicro Conference on SEAA.

24. Wiio, O. A. (1978). Wiion lait—ja vähän muidenkin (Wiio’s laws—and some others’). Weilin
+Göös.

25. Klimova, B. F., & Semradova, I. (2012). Barriers to communication. Procedia-Social and
Behavioral Sciences, 31, 207–211.

26. Erder, M., & Pureur, P. (2015). Continuous Architecture: Sustainable Architecture in an Agile
and Cloud-centric World. Morgan Kaufmann.

27. Serrat, Olivier. “The five whys technique.” (2009).
28. Cooper, A. (1999). The inmates are running the asylum: [Why high-tech products drive us

crazy and how to restore the sanity] (Vol. 261). Indianapolis: Sams.
29. Elliott, B. (2007, July). Anything is possible: Managing feature creep in an innovation rich

environment. InEngineeringManagementConference, 2007 IEEE International (pp. 304–307). IEEE.

1 What We Say We Want and What We Really … 21

Chapter 2
Cloud Dimensions for Requirements
Specification

Ana Sofia Zalazar, Luciana Ballejos and Sebastian Rodriguez

Abstract Cloud computing is a business paradigm that changes the way to eval-
uate information systems and computing resources. Cloud requirements can rapidly
change and new service capabilities are often requested in order to adapt to new
business scenarios. The existing works are generally focused in a limited number of
requirements and capabilities. The aim of this contribution is to understand the
multifaceted components of a service and to give guidelines towards requirements
engineering for cloud computing. Thus, cloud services are analyzed by different
aspects called dimensions and five dimensions are proposed (i.e., Contractual,
Financial, Compliance, Operation, and Technical). Cloud dimensions are graphi-
cally presented in conceptual models, because each dimension has specific entities,
properties, and relationships. Different specialists and experts may be requested to
evaluate particular dimensions in the service level agreement and cloud service
adoption, and this approach can guide those activities, support requirements
specification, and guide system analysis for cloud computing.

Keywords Cloud computing � Requirements engineering � Requirements speci-
fication � Cloud dimension � Service level agreement � Conceptual model � System
analysis

A.S. Zalazar (&) � S. Rodriguez
GITIA (UTN-FRT), CONICET, Rivadavia 1050, 4000 Tucumán, Argentina
e-mail: ana.zalazar@gitia.org

S. Rodriguez
e-mail: sebastian.rodriguez@gitia.org

L. Ballejos
CIDISI (UTN-FRSF), Lavaisse 610, 3000 Santa Fe, Argentina
e-mail: lballejo@frsf.utn.edu.ar

© Springer International Publishing AG 2017
M. Ramachandran and Z. Mahmood (eds.), Requirements Engineering
for Service and Cloud Computing, DOI 10.1007/978-3-319-51310-2_2

23

2.1 Introduction

Cloud Computing is a business paradigm, where cloud service providers offer
services (e.g., software, storage, computing, and network) managed in their phys-
ical infrastructure and cloud service consumers pay per- use after accepting to the
service level agreement. Consumers usually move the functionality of their legacy
systems to cloud computing or acquire new functionality contracting cloud service
to minimize costs of maintenance and to get the advantages of rapidly adaptation to
changes.

The NIST introduces a cloud definition framework [17], where there are five
main characteristics (i.e., broad network access, rapid elasticity, measured service,
on-demand self-service, and resource pooling), five roles (i.e., consumer, provider,
auditor, carrier, and broker), three service models (i.e., Software as a Service,
Platform as a Service, and Infrastructure as a Service), and four deployment models
(i.e., public cloud, private cloud, community cloud, and hybrid cloud). In this paper,
the NIST cloud definition framework is extended and five cloud dimensions are
added (i.e., contractual, financial, compliance, operational, and technical).

The five proposed cloud dimensions link static properties (e.g., contractual
aspects) and dynamic requirements (e.g., technical and operational aspects). Some
dimensions may be separately analyzed by domain experts (e.g., compliance
dimension is analyzed by lawyers in small- and medium-sized enterprises). The
final purpose is to bind different service perspectives in order to manage cloud
service adoption. The contribution aims to consolidate different cloud aspects to
fluidly satisfy consumer dynamic requirements. Requirements must be clear and
interpreted in one way, so this approach proposes an alternative to carry on cloud
contracts and manage requirements in a simple and concise manner. In conclusion,
cloud consumers (i.e., organizations and users) are provided with accurate infor-
mation to address their requirements to service offers and cloud providers are fitted
with precise attributes to offer service capabilities. This avoids potentially
ambiguous terms.

Cloud service agreements may change often according to the service business
context, so this type of contract has to be modifiable. Consumers may often require
changing quality of service and scalability values. However, dimensions make
possible to specify requirements and capabilities for creating cloud contracts. In this
paper, requirements specification, dimensions, metrics, and service level agree-
ments are explained in cloud context.

The rest of the paper is organized as a follows. In Sect. 2.2, the background is
explained. In Sect. 2.3, the proposed dimensions and some models are proposed in
order to facilitate cloud requirements specification and to understand contracts.
Section 2.4 is focused on the application and integration of cloud dimensions in
service contracts using a sample scenario. Finally, Sect. 2.5 concludes this
contribution.

24 A.S. Zalazar et al.

2.2 Background

Cloud computing has been defined by multiple authors [1, 7, 25], and the National
Institute of Standard and Technology (NIST) proposes a definition that encom-
passes general aspects of cloud environment [17]: “Cloud computing is a model for
enabling ubiquitous, convenient, on-demand network access to a shared pool of
configurable computing resources (e.g., networks, servers, storage, applications,
and services) that can be rapidly provisioned and released with minimal man-
agement effort or service provider interaction”.

This definition introduces also five essential characteristics attributed to Cloud
Computing [17]: (a) On-demand self-service: cloud consumers automatically access
to cloud capabilities according to their needs without human interaction; (b) Broad
network access: cloud capabilities are available in the network and accessed
through heterogeneous client platforms; (c) Resource pooling: cloud provider
resources are shared to serve multiple cloud consumers using virtualization and
tenancy mechanisms; (d) Rapid elasticity: cloud provider resources are added and
released according to cloud consumers demand, so cloud capabilities appears
unlimited; and (e) Measured service: cloud resources are measured at a granular
level in a transparent manner for both cloud provider and cloud consumer of the
used service.

The different deployment models defined by NIST [17] are: (a) Private cloud:
Under this model, cloud services delivered from a data center are accessed by a
single organization with multiple internal users, while preserving management and
control of the resources; (b) Public cloud: cloud services are allocated under the
providers or third parties control, and the underlying infrastructure is shared by
multiple consumers and open for public use, using multi-tenancy mechanism;
(c) Community cloud: physical and virtual resources are shared between several
users and organizations from a specific community with common concerns, so this
model may require specific policies among users; and (d) Hybrid cloud: this type of
model is a combination of two or more clouds, which safeguards sensitive data and
applications on restricted manner and it takes advantage of the rapid provisioning of
other models.

Cloud service models indicate the level of control and abstraction in cloud
services. There are three principal service models, and other models can be derived
from them [17]: (a) Software as a Service (SaaS): cloud providers offer software
applications over the Internet, and users can access them from any location using a
computer or mobile device that has Internet access, without managing any infras-
tructure and platform where the application runs; (b) Platform as a Service (PaaS):
this type of services are containers within programming environments, libraries,
database, and tools that support development in virtual platforms, so consumers can
develop and run their software applications without the cost and responsibility of
buying and maintaining the underlying hardware and software; and
(c) Infrastructure as a Service (IaaS): cloud service providers offer virtual server
instance and storage, and abstract the consumer from the details of infrastructure

2 Cloud Dimensions for Requirements Specification 25

taking responsibility of all resource physical maintenance, workload balance,
technical staff, connectivity devices, and virtual machine (VM) management.

Service characteristics have to be well-defined and specified in order to identify
the consumer requirements and to compare different service offers. However,
requirements specification approaches in the cloud domain are mostly focused on
quality of service [5], pricing and costing [16], access control, privacy, and security
[10, 18, 19]. Since the term cloud computing includes other aspects and perspec-
tives, the existing approaches also need to be extended.

2.3 Cloud Dimensions, Requirements, and Capabilities

In order to understand cloud computing, the NIST cloud definition framework [17]
is extended and five dimensions are proposed in this contribution, presented in
Fig. 2.1. Each proposed dimension represents a specific aspect of cloud computing,
and cloud adoption process should consider those dimensions in order to com-
pletely satisfy service requirements.

The proposed dimensions support the integration of requirements specifications
raised by consumers and capabilities owned by providers into cloud computing.
Requirement is what cloud consumers want from cloud service and capability is
what cloud providers offer related to their competences in cloud services. SLA can
be used as a specification artifact to assist the selection of cloud service considering
consumer requirements and service capabilities. The SLA is a legal format [2] that

Fig. 2.1 Cloud computing definition framework [17]

26 A.S. Zalazar et al.

helps to negotiate agreements. Cloud consumer hopes to see all his requirements in
the corresponding SLA, and cloud provider makes sure that only capabilities that
they can meet in his service are included in the agreement. Due to the dynamic nature
of the cloud, continuous monitoring on SLA is requested in these contexts [20].

However, practitioners also deal with other requirements and capabilities. For
example, IT contracts include terms regarding technical properties, financial factors,
compliance restrictions, operational responsibilities, and contractual aspects in
cloud computing. The idea of cloud computing as a multidimensional paradigm is
not new [21, 22]. This approach grouped cloud aspects in the following dimensions
based on the academic community and the practitioners’ concerns:

1. Contractual Dimension covers all organizational aspects of cloud service level
agreement. It includes actors, time periods, and objects like binding service level
agreements (SLA), similar to the information of business contractual headlines.
Communication between actors is very important, thus contractual dimension
also specifies roles, responsibilities, and relations between actors.

2. Financial Dimension is defined considering cloud computing as a utility [7],
where economic and financial capabilities play a central role in cloud adoption
[8]. Cloud service provider employs pricing plan (i.e., renting, usage-based
pricing), in which cloud service consumers pay proportionally to the amount of
time or resource they use [4]. This dimension considers all aspects of cloud
agreements for billing and accounting, such as pay methods, credit management,
and cost variables.

3. Compliance Dimension describes all legal and regulatory restrictions for cloud
service adoption [3], and it also specifies government regulation, business
standards, security policy, and privacy certifications which cloud service should
be compliant with [15]. The restrictions are strictly imposed in order to respect
laws and regulations in the jurisdiction where data resides or is collected.

4. Operational Dimension is based on usual events (such as restore, maintain,
configuration, and backups) and unusual events (such as incident management
and recovery). By considering operational aspects, the cloud providers must
have efficient means to support resource allocation and scheduling decisions to
remain competitive [13]. Simultaneously, it is important to ensure the confi-
dentiality of cotenants who share the same infrastructure by monitoring virtual
behavior. Operative dimension explains all aspects to keep the service running
and meet the changes in runtime.

5. Technical Dimension encompasses functional properties and measurable aspects
of cloud service. Values, units, functions, and methods are requested to define
cloud services. Some key performance indicators are measured using a set of
measureable properties. Technical aspects are specified in SLAs to understand,
compare, and control SLAs.

There is a number of overlapping properties within the five dimensions, such as
monitoring and auditing aspects. Audits are requested to ensure that cloud services
do not break the laws and regulations in the jurisdiction where data resides or is

2 Cloud Dimensions for Requirements Specification 27

collected, simultaneously ensuring the confidentiality of cotenants who share the
same infrastructure [21]. Thus, frequent audits should be performed on the
dimensional properties to monitor compliance with security terms and to ensure
adherence to SLA terms, performance standards, procedure, and regulations [6, 23].
Most of the time services are like “black boxes” to cloud consumers, so services are
evaluated by their behavior (i.e., comparing its inputs, outputs, and performance
level) with the expected results [27].

In this contribution, cloud service dimensions are considered the basis for
building dynamic SLAs and specifying cloud requirements and capabilities. In the
next subsection, more details about each dimension are presented and all aspects
related to cloud dimensions are introduced in a conceptual framework for capturing
and integrating cloud requirements and capabilities.

2.3.1 Contractual Dimension

Contractual Dimension specifies general information of SLAs and cloud contracts,
such as supporting parties, policy of contracting third parties, agreed time, and term
conditions. Contractual properties are mostly static during service runtime.
Figure 2.2 presents the conceptual model for Contractual Dimension, and it is
based on SLA services presented by Patel et al. [20]. The shadowy entities in the

Fig. 2.2 Conceptual model of cloud computing dimension

28 A.S. Zalazar et al.

proposed models represent classes which appear in more than one dimension (e.g.,
Service Contract and Service Level Agreement).

This dimension also introduces involved parties (“Party” in Fig. 2.2) and their roles
during the contract duration. The five cloud roles proposed by theNIST are included in
the model [17]: (a) Provider: entity that owns the deployed service in its physical
servers, and it is responsible for service maintenance and availability; (b) Consumer:
entity that use the service for completing its business process; (c)Carrier: intermediary
that provides data transportation and service connectivity; (d)Broker: intermediary that
is involved in the business contract and the relation between other roles; and
(e)Auditor: external agent responsible for keeping track all business process, reporting
failures, and analyzing the quality of services considering the SLA. “Signatory Party”
is mandatory and involves “Service Consumer” and “Service Provider”. The manda-
tory roles have “Reputation” that represents a big impact on organization credibility
and trust, and it is also about confidentiality, integrity, and resilience of the service
actors. “Supporting Party” is optional and involves third parties such as “Service
Auditor”, “Service Carrier”, and “Service Broker”.

“Service Contract” presents all information about contract starting time, termi-
nation date, service overview, and definitive delete information date that is when
the provider must destroy all information about the use of service (consumer data
and workload). The terms and conditions within the contract that would cause the
termination of the service agreement are presented in Compliance Dimension.

“Contractual Term” is probably the most important entity in this model, because
it involves all policies and clauses about SLA. It describes expressions and implied
terms in the contract [12]. “Term Type” defines contractual clauses about termi-
nation, modification, suspension, disclaimer, indemnification, remedy, warranty,
guarantee, obligation, money refund, support, notification, government request,
collecting information, limitation of liability, etc. “Penalty” is a category of “Term
Type” and it is a term used for compensation of non-delivery of service or inade-
quate service level.

The differences between “Service Contract” and “Service Level Agreement” are
that the former generally describes contracting parties and dates, and the latter
describes service parameters, quality of service, agreement terms, and service level.

2.3.2 Financial Dimension

Financial Dimension involves all economic factors of cloud services and contracts,
and Fig. 2.3 shows the most relevant classes and their relationships in this
dimension. It is universally acknowledged that “Service Consumer” associates his
“Billing Account” to the “Payment” processes of the “Service Contract”. “Billing”
is defined by the sum of “Service Charging” (cardinality is “*” which means
“many”) that is refines by “Cost Description” of different resources (i.e. “Storage
Cost”, “Processing Cost”, “Network Cost”, etc.) related to a “Service Description”.
“Billing Frequency” is regarding the cost calculation and it can be daily, weekly,

2 Cloud Dimensions for Requirements Specification 29

biweekly, monthly, semi-annual, and annual. Billing processes may use metering
mechanisms on the consumption of cloud resources in order to calculate the cost.
“Cost Type” is related to service adoption phases, and the resource costs can be
calculated during service acquisition, service on-going, service composition, and
service contract termination. “Payment Type” is concerning to payment methods
such as debit card, credit card, electronic note, bank transfer, Bitcoins, Pay-Pal, and
other credit mechanisms.

From the early years of cloud computing, most of the interest was focused on
service pricing of cloud computing [4], and cost reduction was a central factor to
the uptake of cloud services. This business paradigm is considered as a fifth utility
[7], where resource optimization, pricing models, and virtualization were funda-
mentals to introduce cloud computing into the market. Therefore, “Pricing Method”
is probably the most studied attribute of Financial Dimension. “Service Consumer”
can freely choose a service provider with better “Pricing Method” and more
favorable “Billing” terms. Youseff et al. [26] present three models for calculating
prices: (a) tiered pricing: each service tier has a specific price per unit of time;
(b) per-unit pricing: cost is applied to the usage units during data storing, data
processing, and data transferring; and (c) subscription-based pricing: the cost is
periodically the same. Other authors [3, 24] similarly list diverse pricing models:
(a) per-use: resources are billed per unit of time usage; (b) subscription: resources
can be reserved and renewed for the same price; (c) prepaid per-use: the billing is
performed against a prepaid credit; and (d) combined method: resources can be

Fig. 2.3 Conceptual model of cloud financial dimension

30 A.S. Zalazar et al.

rented for a period of time and also requested on demand. Karunakaran et al. [14]
divulge four extensive subthemes: pricing schemes, user welfare, pricing elements,
and collaborative pricing; and they indicate that the key elements for pricing
included, hardware, maintenance, power, cooling, staff, and amortization. However,
“Service Consumer” may subscribe to free services or dynamically adjust pricing
method according to his workload and security requirements.

Any change in prices and payments must be notified to “Service Consumer” in
advance, according to obligations explained in Contractual and Compliance
Dimensions. It may seem like Financial Dimension can be also part of Compliance
Dimension, but governance is a very wide term that mostly involve more legal,
security, and standard aspects. Financial Dimension is mainly focused on reducing
operative costs by sharing infrastructure instead of investing in physical servers.

“Penalty” can have a direct impact to “Payment” process through “Credit”
application. When there are violations of contractual terms, such as inappropriate
service level or non-delivered capabilities, “Penalty” implies a “Credit Amount”
that is discounted to the “Payment Amount”. This indemnification mechanism is
very important; because it involves a compensation for the negative impact on
consumer economy. Monitor algorithms must inform about services level changes
and violations of contractual terms, before applying any compensation. Cloud
providers know through “Penalty Level” about the importance and criticism of
cloud capabilities in consumer business processes.

2.3.3 Compliance Dimension

Cloud governance and security can be considered the trend topic nowadays [21].
They are also considered challenges, because users no longer have control over the
complete system. Compliance Dimension specifies legal information, security
methods, and service compliance with standards, agreement terms, procedures, and
law. Figure 2.4 shows the conceptual model of Compliance Dimension.

“Governance” implies a collection of compliance attributes, norms, and certi-
fications. “Standard Compliance” has the information about standards that service
contract has to conform in order to attain the agreed service level and quality.
“Standard Type” details the scope of the standardized norms, and it can be focused
on communication, virtualization, security, green computing, cloud federation, data
interoperability, and syndication. “Certification Compliance” specifies information
about international certifications that determine capabilities in cloud computing.
Certifications and standards are used to formalize security and technical aspects of a
procurement agreement, and they ensure that business objectives are met while
meeting compliance requirements (e.g., TOSCA, OCCI, OVF, SOAP, ISO 14000,
Green Star, HIPAA, PCI, SAS70, FISMA, SSAE16, SCOC1, SCOC2, ISAE3402,
IS027001, etc.,). “Legal Compliance” and “Security Compliance” are contractual
agreements that covers data protection and laws application in cloud computing.
Legal experts can infer internal and external security risks by considering those

2 Cloud Dimensions for Requirements Specification 31

compliance terms. “Legal Type” specifies terms of uses (ToU), terms of service
(ToS), user licensing agreement (ULA), intellectual property clauses, copyright
terms, acceptable use, and other legal aspects that limit responsibilities and rights
about cloud services. Finally, “Penalty” represents the conditions and the com-
pensation when those established governance terms are not met.

“Security Compliance” saves information about levels of confidentiality, integ-
rity, availability, accountability and accuracy, and it requires terms for “Human
Resource Security” and “Asset Security”. “Human Resource Security” demands
human resources and employers to provide required security level, and some
security triggers are created in other to monitor their behaviors. This entity includes
all security measures for avoiding internal attacks and unauthorized accesses.

Fig. 2.4 Conceptual model of cloud compliance dimension

32 A.S. Zalazar et al.

“Identity Management” uses account and name to identify individuals, and it
imposes “Access Control” to restrict entrance (physically or logically) to the
resources and applications.

“Access Control” put into effect “Authentication” and “Authorization” by
granting access based on “Credential”. “Credential” is a security binding and the
most common type of credential are “Key Pair”, “Token”, and “Key Access”.
Control algorithms compare credential to an access control list, grant or deny
accesses to cloud resources, and keep transaction logs. “Secure Area” is a trust
location where facilities are installed and capabilities are deployed.

Data are particularly heterogeneous due to the fact the number of databases and
files for specific operations [9], thus providers should indicate the efficiency of data
management preventing security breaches in runtime [6]. “Data Specification” is
the entity in the conceptual model that contains all information about data
manipulation and management. “Data Management” is about data store,
data transfer, data regulation, data governance, data portability, data migration, data
protection, data controller, data security (i.e., mechanisms for availability, integrity,
confidentiality, authentication, and non-repudiation), data access (i.e., mechanism
for accounting, credentials, and security logs), data recovery, data backup, data
replication, data persistency, data deletion (e.g., right to be forgotten), data saniti-
zation, data preservation, data import and data export.

“Data Location” is limited by “Secure Area” and “Jurisdiction”. Service con-
sumer and service provider should divide their attention to the jurisdictions over the
contract terms (i.e., where signing parties come from) and the jurisdictions over the
data is divided, subcontracted, outsourced, collected, processed, and transferred;
because each jurisdiction has laws and restrictions. However, “Jurisdiction” and its
law applications depend on the physical location of the data [21]. If the data is
replicated to other countries, “Legal Compliance” terms must compliance with one
or more “Jurisdiction” instances. Before adopting cloud services, “Service
Consumer” must agree to know and respect jurisdiction laws and legal policy
wherein the data is physically stored.

“Support for Forensic” is referenced to “Legal Compliance”, and it is the
reserved right of the service provider to make available evidences, user data and
process to external government and to collaborate with its investigations [2, 21].
Moreover, all compliance terms are guidelines for security, manipulation and
visualization of data and workload in cloud environments.

“Data Encryption” is part of “Data Specification” and it is increasingly relevant
for cloud computing. Data should always be encrypted considering “Data
Structure” and “Data Description” in order to evade external intrusions and data
leakages. There are many mechanisms for encryption and “Service Provider”
generally offers an API for this process [21].

Compliance Dimension represents an analysis of governance terms in cloud
contracts. It covers regulations and agreements to ensure that cloud service do not
breach security policies and laws imposed by the jurisdictions.

2 Cloud Dimensions for Requirements Specification 33

2.3.4 Operational Dimension

Operational Dimension covers requirements about service management and busi-
ness continuity. This dimension ensures that service workload and data are con-
tinuously available or not disrupted for longer than is permissible. Operational tasks
are defined in this approach as service maintenance, service recovery, systems
powering, systems update, scaling up, and scaling down. Figure 2.5 shows the
conceptual model of Operational Dimension.

“Service Description” is the most important entity in this conceptual model,
because it specifies the requirements and capabilities of cloud services. “Service
Description” indicates relevant information about “Service Model” (i.e., Software
as a Service, Platform as a Service, and Infrastructure as a Service), “Deployment
Model” (i.e., Public cloud, Private cloud, Community cloud, and Hybrid cloud) and
“Provisioning Model” (i.e., on demand, static Provisioning, or dynamic

Fig. 2.5 Conceptual model of cloud operational dimension

34 A.S. Zalazar et al.

provisioning of resources). The service is reachable by “Service Access” that
describes the access mechanisms to use the services.

“Service Level Agreement” specifies “Service Description” that involves
“Physical Resource” (i.e., servers, data center) and “Virtual Resources” (i.e., virtual
machines). The features of those resources are stored in configuration files, and they
indicate the setting of each instance. “VM Management” covers the information
about virtual machines (VM) with the aim of assurance isolation and scalability.

“Runtime Property” is the entity that contains information about load balance
and service runtime. “Runtime Property” manages “Service Resources” that are
specific service features, such “Storage” (i.e., database, files), “Processing” (i.e.,
CPU, cores), “Network” (i.e., bandwidth, switches), and “Memory” (i.e., cache and
RAM). Load balancer dynamically distributes data and workloads across multiple
computing resources for enhancing the overall performance of service.

Operational Dimension cares about growing the number of resource during
period of peak demands and resource updating. Resource capacities change over
time due to capability demands. Thus, “Runtime Property” has “Elasticity” prop-
erties that are related to “Scalability”, and those entities specify the “Upper Limit”,
“Lower Limit”, “Scalability Time”, and “Elasticity Ruler” (i.e., triggers and events
that change service capacity). In case of peak demands, “Elasticity” indicates
“Upper Limit” of provisioning resources to meet the current need. After the peak
load, “Elasticity” indicates “Down Limit” of decreasing unused resources. Unused
resources are released and available in the resources pool that keeps resources
active and ready to be used anytime.

Operational Dimension aims to keep the service running and available. Thus,
disruption, disaster, peak loads, and peak demands have to be resolved.
Consequently, “Service Level Agreement” is supported by “Serviceability” that has
all information to technically support tasks and operations in the cloud. “Power
Management” is also considered and it administrates power energy and saver
methods.

Usually, service providers limit their actions and responsibilities in the presence
of force majeure, external suspension, or criminal attacks. However, “Business
Continuity” is attached to “Service Level Agreement” and it considers a contingency
plan and evaluation of threats and risks. It also implies “Node” and “Jurisdiction”,
because those have impact into “Risk Analysis” and “Incident Management”.
Moreover, services can be allocated in places where natural disasters or cybercrimes
often occur, so those location statistics impact risks and threats analysis (e.g.,
accidents, security attacks, restrictions imposed by public authorities). Finally,
“Auditing” driven by “Auditor” verifies that services and resources are appropriate
and adequately controlled to ensure the service level presented in the agreements.

2 Cloud Dimensions for Requirements Specification 35

2.3.5 Technical Dimension

Technical Dimension is about technical metrics and measurements. It aims to verify
that the results of measurements are over the acceptance values and service level
objectives are met, consequently the promised quality of service has been achieved.
Figure 2.6 presents the proposed conceptual model for Technical Dimension.

In the conceptual model, “Service Level Agreement” specifies “Service
Description” that involves several “Service Resources” (cardinality is “1..*” and
means “one or more”). “Service Resource” has a “Configuration Setting File” that
indicates all features and configurations of the resources. This service configuration
file can be thought of as “web.config” or “app.config” or “config”.

“Service Level Agreement” is associated to “Service Level Objective” that con-
tains “Service Level Target” of the deployed service. “Indicator” is about “Service
Resource” and it utilizes “Metric” to calculate “Actual Value”. “Metric” has a
measurement method and measurement scale, which is used in relation to a quan-
titative service level objective and it can be composed with other metrics, similar to

Fig. 2.6 Conceptual model of cloud technical dimension

36 A.S. Zalazar et al.

“Measurement”. “Collection Method” specifies the “Collection Frequency” (e.g.,
every day, after processing data, etc.) and “Collection Ruler” (e.g., when an external
event occurs, metric collects value). Each service can have associated one or more
metrics, and metrics can be associated to a simple value or a collection of values.

“Monitoring” supervises “Indicator” instances of the measured service, and
“Reporting” records “Outage”. When “Outage Notification” is critical, “Penalty” is
applied, because service is under the “Service Level Objective” and the “Service
Contract” is violated. Service provider should offer adequate access to carry on
measuring and monitoring of services deployed into his infrastructure. There are
many service key indicators (e.g., performance, availability, reliability, agility, etc.)
and diverse metrics for measuring indicator values (e.g., processing throughput,
network throughput, bandwidth speed, instance speed, computing speed, response
time, recovery time, resolution time, upload time, download time, connecting time,
boot time, reboot time, scale up time, scale down time, request per minute, uptime,
downtime, etc.,). Metrics provide knowledge about capabilities of a cloud service
and it is very important to support decisions in order to satisfy service level
requirements.

Key indicators are not explicitly defined in the model, because they mostly
depend on service level agreements. Moreover, some authors point out that the
indicator “Performance” is only measured by the metric “Service Response Time”
[11] and others specify that the indicator “Performance” is calculated by the metric
“Page Down Load Rate” [5]. Moreover, there are many attributes regarding to
quality of service and key performance indicators in cloud computing that express
almost same requirements but using different expressions, metrics, and restrictions
(e.g., availability and reliability). The list below explains the most common indi-
cators and their associated metrics.

• Accountability is a group of quality attributes used to evaluate whether data is
handled according to service consumer requirements and is protected in the
cloud. It is associated to measure and score services, and it is related to com-
pliance, transparency, control, and auditability of the services [11].

• Agility represents how quickly new capabilities are added to adjust the amount
of demands and also resources scale. It is related to elasticity, portability,
adaptability, and flexibility [11]. It can be measured considering capacity of
CPU, memory, and time to scale up and scale down service resources.

• Assurance indicates that service is securely delivered in accordance to the SLA
and service consumer expectations. It involves availability, stability, service-
ability, reliability, and resiliency [11].

• Availability is typically measured by the probability that service is active when
needed. It is used as an indicator of the percentage uptime, considering the
downtime due to faults and other causes, such as planned maintenance and
upgrading. It can be also presented as a redundancy method for masking errors
and faults. It is measured considering uptime of the service in specific time (e.g.,
99.99% uptime per month) [2].

2 Cloud Dimensions for Requirements Specification 37

• Performance is probably the most common indicator in cloud computing, and
there are many solutions to calculate in terms of functionality, time, and resource
processing. Depending on the context, performance can be metering by time to
complete and receive the process request (service response time), amount of data
that can be recuperated from the system in specific unit of time (throughput), or
capability to meet deadlines (timeliness) [2].

• Scalability describes the aptitude and the time to increase or decrease storage
space, and growth or reduction of workloads. It is associated to Elasticity that is
the illusion of unlimited resources. Scalability can also be measured by con-
sidering maximum of virtual machines for account (scale up), minimum of
virtual machines for account (scale down), time to increase a specific number of
resources, and time to decrease a specific number of resources, boot time,
suspend time, delete time, and provisioning time [2].

• Usability is complex to measure because it indicates how practical is to use and
consume cloud services. So it depends of cloud users and subjectivism. It is
related to accessibility, learnability, and operability [11].

In summary, the proposed conceptual model is useful to identify relevant
information about cloud service, but service provider and consumer should clearly
indicate what to consider an indicator and what metrics are relevant to measure it.

2.4 Sample Scenario: The Security Guard Company

The sample scenario about the Security Guard Company was introduced for the first
time in this project in the approach about dynamic requirements of cloud computing
[27], and it is extended in this contribution for explaining cloud dimensions. The
Security Guard Company offers a catalog of real-time security modules to its clients
in South America, in order to solve the weakness and vulnerabilities of the local
public security services. Moreover, the company significantly reduces clients’
on-site staff costs by automating security controls in small and large-scale
installations.

The Security Guard Company has deployed an integrated system that enables
entrances and exits monitoring of buildings, rooms, and parking lots. The system
integrates sophisticated digital video cameras, smoke sensors, motion sensors,
temperature sensors, and algorithms of face recognition and car patent recognition.
The video cameras and sensors are strategically installed in spots of the client
facilities, and the incoming data of those devices are recording in the company data
center. The company remotely monitors multiple buildings, and some triggers are
executed to send notification to clients, local police office, fire station, and emer-
gency medical services. Additionally, the clients can visualize multiple cameras and
sensor status in a single interface. The system notifies relevant events to clients
using mobile apps, text messages, and email notifications.

38 A.S. Zalazar et al.

The company has grown exponentially in the last months, and it decides to
reduce costs by moving all video records and control data older than 6 months to a
cloud server, because those videos are not regularly consulted. It also decides to
keep the complex security system on premise into the company data center in order
to avoid security threats and to regularly update software modules.

Finally, Amazon Simple Storage Service (Amazon S3) is picked after comparing
multiple services to find the best one in regard to cloud dimension in South
America. Amazon S3 provides secure, durable, highly scalable cloud storage, and it
also takes account of backup, recovery, near-line archive, big data analytics, dis-
aster recovery, and content distribution. The relevant terms are extracted from
requirements document file and service offers, in order to pick the best service for
the given scenario. Some terms of the cloud dimension are completed during the
service specification (e.g., pricing method, price currency, term description) and
others, during the service runtime (e.g., storage cost, cost reference, capacity).

In the service specification, some entities of Contractual Dimension explained in
Fig. 2.2 are clearly identified in Amazon Web Service Agreement (AWS
Agreement), Amazon S3 agreement and the consumer requirements. The “Subject”
of the contract is storage capacity, the “Service Reference” is named “Amazon S3
Standard” and it is based on the “Service Level Agreement” updated on “September
16, 2015”, in the provider’s website. The information of service provider is “Amazon
Web Services, Inc.,” and its address is “410 Terry Avenue North, Seattle, WA 98109-
5210, USA”. Some of the “Contractual Term” detected in the SLA are mostly about
suspension or termination when maintenance, force majeure events, unavailable
internet access, demarcation point, action or inaction of third part and failure of
equipments, software or other technology under control of consumer or third part
take place. “Penalty” is only considered when a claim of outage is sent from the
consumer to Amazon Web Service, Inc. Finally, other “Contractual Term” specifies
the right of the service provider to change any term with no less than 90 days
advance notice. It is required 30 days advance notice prior to service termination,
and 30 days are required not to erase any content after termination date.

About Financial Dimension showed in Fig. 2.3, it is clear that payment method
is “pay-per-use” and the billing is released “monthly”. Penalty terms take places
when “monthly update percent (MUP)” is less than “99.95%” and the refund is
about “10–30% in credit” to the service consumer. One “Credit” is equivalent to “1
USD” and the “Credit Amount” can only be used in the next payments. All money
transactions use credit card accounts in Amazon Web Service, Inc., so the Security
Guard Company should indicate a credit card number in the “Billing Account” and
“Payment”. The company credit card will automatically be charged for that month’s
usage. The service pricing is complex, because it depends on service reference (e.g.,
Amazon S3 standard, Glacier), region (e.g., South America, USA, Europe), giga-
bytes per months, data transfer (i.e., IN and OUT) and requests type (i.e., put, copy,
post, list, get). However, the provider offers an online calculator for billing calculus
(e.g., “cost reference” for “data transfer out from Amazon S3” in “South America”
is between “$0.250 and $0.230 per GB”). Delete requests are always free.

2 Cloud Dimensions for Requirements Specification 39

Entities of Compliance Dimension presented in Fig. 2.4 are often referenced in
AWSAgreement in different parts, because the provider offers many mechanisms for
“Data Encryption”, “Access Control”, and “Data Specification”. Some available
options for “Access Control” are: (a) “AWS identity and Access Management (IAM)”
that grant IAM users fine-grained control to bucket or object; (b) “Access Control
Lists (ACLs)” that selectively grants certain permissions on individual objects;
(c) “Bucket Policy” that grants permission across some or all of the objects within a
single bucket, (d) “Query String Authentication” that shares object through URLs on
a specified period of time, and (c) “Virtual Private Cloud (VPC)” that uses provider
network to transfer data in multiple levels of security control. Some “Data
Encryption” methods are: (a) Server-Side Encryptation with Amazon S3 Key
Management (SSE-S3) using Advanced Encryption Standard (AES) 256-bit sym-
metric key, (b) Server-Side Encryptation with Customer-Provided Keys (SSE-C)
using Advanced Encryption Standard (AES), and (c) Server-Side Encryptation with
AWS Key Management Service (KMS) (SSE-KMS) that provides an audit trail and
control to comply with PCI-DSS, HIPAA/HITECH, and FedRAMP industry
requirements. For authentication method, the “Multi-Factor Authentication (MFA)”
and “Authentication Device” are the alternatives in this service. For data transference,
SSL encryption of data is the basic method for data in transit using HTTPS protocol,
and Bit Torrent Protocol is also available in the cloud provider environment. In
“Multitency Protection”, Amazon S3 uses a combination of Content-MD5 check-
sums and cyclic redundancy checks (CRCs) for assuring data integrity. The service
should also comply with Apache Software License or other open source license.

The contract “Jurisdiction” depends on the U.S. government rights respect with
federal law. The “Jurisdiction” of the consumer is also part of the Compliance
Dimension, as it is showed in Fig. 2.4, and tax exemption certificates depend on
each consumer jurisdiction. The service “Jurisdiction” depends on the country on
where the data is stored and processed, so Brazil is also a “Jurisdiction” implied in
the agreements.

In Operational Dimension presented in Fig. 2.5, “Service Description” is
specified as Infrastructure as a Service. The Amazon S3 instance is allocated in Sao
Paulo, Brazil (South America Region), because it is the closest data center to the
service consumer’s facilities. The node is called as “sa-east-1 (3)” into Amazon S3
environments. Sao Paulo is closed to the clients and this data center location
enables the company to address specific legal and regulatory requirements.
However, it is common that available backup is cross-region replication (CRR) and
in two provider facilities. Elasticity and scalability are unlimited into this provider
offer and “VM Management” uses XEN hypervisor in virtualization settings.
Finally, the “Support” is free of charges, and any suggestion is confidential.

The last but not less important characteristics of the services are in the Technical
Dimension showed in Fig. 2.6, and there are many instances for the attribute
“Service Level Target” (e.g., “durability is equal to 99.999999999% in MUP”,
“availability is equal to 99.99% in MUP”, “availability SLA is equal to 99.9% in
MUP”, “first byte latency is equal to milliseconds”). Storage is measured by “total

40 A.S. Zalazar et al.

byte hour usage”. “Audit Logs” are configurable and “Reporting” considers event
notification and send alerts by Amazon SNS or Amazon SQS.

In conclusion, cloud dimension structure makes requirements specification and
service specification more efficient than using other methods. Amazon S3 Standard
is considered the best solution to keep copy of files under the pricing model
“pay-per-use”, especially when clients can ask for old video records anytime,
however the company can define rules to automatically migrate Amazon S3 objects
to Amazon S3 Standard—Infrequent Access (Standard—IA) or Amazon Glacier
based on the age of the data. The Security Guard Company can save money in
infrastructure and its clients can access directly to the data stored in the cloud server.

2.5 Conclusions

In this paper, traditional cloud definition framework is extended and five new
dimensions are considered: (a) Contractual Dimension: contract trails that specify
stakeholders, disclaims, and general agreements between parties; (b) Financial
Dimension: economic aspects of cloud services that are involved in billing, pricing,
and costs; (c) Compliance Dimension: regulations that restrict cloud services such
as legal, standards, and proceedings; (d) Operational Dimension: characteristics
that cover specifications about service management, deployment, and access con-
trol; and (e) Technical Dimension: measurable and technical factors that may need
functions, values, constraints, metrics, and units.

Because of the stochastic and dynamic nature of cloud contexts, there is not a
simple and standard procedure for managing requirements and matching them with
service providers offers. Thus, conceptual models about cloud dimensions are pre-
sented in order to analyze requirements and capabilities of cloud services, and they
can be used to understand them and negotiate agreements with service providers.

In conclusion, considering cloud service as a multifaceted component is a good
starting point for handling the dynamism of cloud environment. Different experts
can individually analyze those cloud facets and contribute with the contract
negotiation. Moreover, the dimensions are very complete and flexible for adding
new features, so they can be the bases for future proposals, models, and ontologies.
The dimensions are the bases for defining SLA schemas and ontology to create a
consistent SLA in machine readable format.

References

1. Abbasov, B. (2014). Cloud computing: State of the art reseach issues. In Application of
Information and Communication Technologies (AICT), 2014 IEEE 8th International
Conference on (pp. 1–4). IEEE.

2. Alhamad, M., Dillon, T., Chang, E. (2010). Conceptual SLA framework for cloud computing. In
4th IEEE International Conference onDigital Ecosystems andTechnologies (pp. 606–610). IEEE.

2 Cloud Dimensions for Requirements Specification 41

3. Andrikopoulos, V., Binz, T., Leymann, F., Strauch, S. (2013). How to adapt applications for
the Cloud environment. Computing, 95(6), 493–535.

4. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G., Patterson,
D., Rabkin, A., Stoica, I., Zaharia, M.(2010). A view of cloud computing. Communications of
the ACM, 53(4), 50–58.

5. Bao, D., Xiao, Z., Sun, Y., Zhao, J. (2010). A method and framework for quality of cloud
services measurement. In 2010 3rd International Conference on Advanced Computer Theory
and Engineering (ICACTE) (Vol. 5, pp. V5–358). IEEE.

6. Boampong, P. A., Wahsheh, L. A. (2012). Different facets of security in the cloud. In
Proceedings of the 15th Communications and Networking Simulation Symposium (p. 5).
Society for Computer Simulation International.

7. Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J., and Brandic, I. (2009). Cloud computing
and emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th
utility. Future Generation computer systems, 25(6), 599–616.

8. Carroll, M., Van Der Merwe, A., Kotze, P. (2011). Secure cloud computing: Benefits, risks
and controls. In 2011 Information Security for South Africa (pp. 1–9). IEEE.

9. Copie, A., Fortiş, T. F., Munteanu, V. I. (2012, August). Data security perspectives in the
framework of cloud governance. In European Conference on Parallel Processing (pp. 24–33).
Springer.

10. Fabian, B., Gürses, S., Heisel, M., Santen, T., Schmidt, H. (2010). A comparison of security
requirements engineering methods. Requirements engineering, 15(1), 7–40.

11. Garg, S. K., Versteeg, S., Buyya, R. (2013). A framework for ranking of cloud computing
services. Future Generation Computer Systems, 29(4), 1012–1023.

12. Greenwell, R., Liu, X., Chalmers, K. (2015). Semantic description of cloud service
agreements. In Science and Information Conference (SAI) (pp. 823–831). IEEE.

13. Heilig, L., Voß, S. (2014). Decision analytics for cloud computing: a classification and
literature review. Tutorials in Operations Research–Bridging Data and Decisions, 1–26.

14. Karunakaran, S., Krishnaswamy, V., Sundarraj, R. P. (2013). Decisions, models and
opportunities in cloud computing economics: a review of research on pricing and markets. In
Australian Symposium on Service Research and Innovation (pp. 85–99). Springer.

15. Liu, F., Tong, J., Mao, J., Bohn, R., Messina, J., Badger, L., Leaf, D. (2011). NIST cloud
computing reference architecture. NIST special publication 500–292.

16. Martens, B., Walterbusch, M., Teuteberg, F. (2012, January). Costing of cloud computing
services: A total cost of ownership approach. In System Science (HICSS), 2012 45th Hawaii
International Conference on (pp. 1563–1572). IEEE.

17. Mell, P., Grance, T. (2011). The NIST Definition of Cloud Computing (Draft). NIST Special
Publication 800–145.

18. Mouratidis, H., Islam, S., Kalloniatis, C., Gritzalis, S. (2013). A framework to support
selection of cloud providers based on security and privacy requirements. Journal of Systems
and Software, 86(9), 2276–2293.

19. Naveed, R., Abbas, H. (2014). Security Requirements Specification Framework for Cloud
Users. In Future Information Technology (pp. 297–305). Springer Berlin Heidelberg.

20. Patel, P., Ranabahu, A. H., Sheth, A. P. (2009). Service level agreement in cloud computing.
21. Pichan, A., Lazarescu, M., Soh, S. T. (2015). Cloud forensics: technical challenges, solutions

and comparative analysis. Digital Investigation, 13, 38–57.
22. Repschlaeger, J., Wind, S., Zarnekow, R., Turowski, K. (2012, January). A reference guide to

cloud computing dimensions: infrastructure as a service classification framework. In System
Science (HICSS), 2012 45th Hawaii International Conference on (pp. 2178–2188). IEEE.

23. Rimal, B. P., Choi, E., Lumb, I. (2010). A taxonomy, survey, and issues of cloud computing
ecosystems. In Cloud Computing (pp. 21–46). Springer London.

24. Suleiman, B. (2012). Elasticity economics of cloud-based applications. In Services
Computing (SCC), 2012 IEEE Ninth International Conference on (pp. 694–695). IEEE.

42 A.S. Zalazar et al.

25. Vaquero, L. M., Rodero-Merino, L., Caceres, J., and Lindner, M. (2008). A break in the
clouds: towards a cloud definition. ACM SIGCOMM Computer Communication Review, 39
(1), 50–55.

26. Youseff, L., Butrico, M., Da Silva, D. (2008). Toward a unified ontology of cloud computing.
In 2008 Grid Computing Environments Workshop (pp. 1–10). IEEE.

27. Zalazar, A. S., Rodriguez, S., Ballejos, L. (2015). Handling Dynamic Requirements in Cloud
Computing. In Simposio Argentino de Ingeniería de Software (ASSE 2015)-JAIIO 44
(pp. 21–46). SADIO.

2 Cloud Dimensions for Requirements Specification 43

Chapter 3
Analyzing Requirements Engineering
for Cloud Computing

Ana Sofia Zalazar, Luciana Ballejos and Sebastian Rodriguez

Abstract Cloud computing is a business paradigm, where cloud providers offer
resources (e.g., storage, computing, network) and cloud consumers use them after
accepting a specific service level agreement. Cloud requirements can rapidly
change over time, so organizations need to count with rapid methods to elicit,
analyze, specify, verify, and manage dynamic requirements in a systematic and
repeatable way. The existing works of this field are generally focused in a limited
number of requirements and capabilities for cloud services. This chapter aims to
provide a comprehensive and systematic literature review of academic researches
done in requirements engineering for cloud computing area. During this study,
some approaches for cloud computing were found that considered a limited number
of characteristics (e.g., security, privacy, performance) and few activities involving
diverse stakeholders. Generally, cloud stakeholders have got neither guidelines nor
standards to manage multiple aspects of services in cloud environments. Thus, a
literature review was first conducted and five dimensions are discussed (i.e.,
Contractual, Compliance, Financial, Operational, and Technical) in order to classify
cloud characteristics, specify requirements, and support cloud contracts. Different
specialists and experts may be requested to evaluate particular dimensions in the
service level agreement and cloud service adoption. Finally, a simple sample is
given to illustrate how to identify the cloud dimensions.

Keywords Cloud computing � Requirements engineering � Cloud dimension �
Requirements specification � Literature review � Information system � Service level
agreement

A.S. Zalazar (&) � S. Rodriguez
GITIA (UTN-FRT), CONICET, Rivadavia, 1050, 4000 Tucumán, Argentina
e-mail: ana.zalazar@gitia.org

S. Rodriguez
e-mail: sebastian.rodriguez@gitia.org

L. Ballejos
CIDISI (UTN-FRSF), Lavaisse 610, 3000 Santa Fe, Argentina
e-mail: lballejo@frsf.utn.edu.ar

© Springer International Publishing AG 2017
M. Ramachandran and Z. Mahmood (eds.), Requirements Engineering
for Service and Cloud Computing, DOI 10.1007/978-3-319-51310-2_3

45

3.1 Introduction

Cloud computing is an Internet-based business where service providers offer
information and communication technology (ICT) resources by optimizing physical
and logical infrastructure, and service consumers pay only those which they use for
storing, analyzing, processing, transferring, and managing data in provider’s
resources. Cloud computing enables organizations to consume ICT resources as a
utility (like gas and electricity), rather than having to invest and maintain
on-premise computing infrastructures. Thus, cloud computing is changing the way
in which companies are doing business and dealing with information technology.

Even though the success of any software solution depends mostly in the iden-
tification of requirements in early stages of software development [1], it is shown
that there are not well-known foundations and methodologies for handling cloud
requirements in the academic community [2, 3]; and no empirical evidence was
found about how to elicit and manage requirements in cloud domain [4]. Therefore,
a systematic literature review is necessary to compile all the evidences of
requirements engineering activities in this context, to synthesize high-level insights
from published studies, and to consider the challenges presented in research results.
Individual published studies considered in systematic reviews are called primary
studies, so systematic reviews are labeled secondary studies [5].

Primary studies have reported experiences and lessons learned from applying
diverse methods and techniques for adopting cloud services. The secondary study
presented in this chapter is expected to identify, analyze, and interpret those primary
researches, in order to contribute to the existing knowledge bases and to improve
the state of the practice in requirements engineering for cloud computing.

It is a fact that cloud environments are stochastic and dynamic, so it is complex
to manage cloud requirements in a systematic and repeatable way [3], especially
when requirements rapidly change in a non-predictive manner. The main causes
why cloud requirements change are: (a) organizational policies change the business
priorities, so the requirements have to be aligned with the new scope and goals;
(b) environment and marketplace change by the addition of competitors or new
business targets; (c) legislation changes may request new forms, features, and
security algorithms in cloud applications; and (d) new technology solutions appear.
Thus, the main objective of this work is to understand and carefully analyze cloud
computing domain, considering published researches in the field of requirements
engineering, in order to identify and quantify research topics on requirements
engineering in cloud computing.

The NIST introduces a cloud definition framework, where there are five main
characteristics (i.e., broad network access, rapid elasticity, measured service,
on-demand self-service, and resource pooling), five roles (i.e., consumer, provider,
auditor, carrier, and broker), three service models (i.e., Software as a Service,
Platform as a Service, and Infrastructure as a Service), and four deployment models
(i.e., public cloud, private cloud, community cloud, and hybrid cloud) [6]. In this
contribution, the NIST cloud definition framework is also extended and five cloud

46 A.S. Zalazar et al.

dimensions are added (i.e., contractual, financial, compliance, operational, and
technical) after conducting a literature review.

The five proposed cloud dimensions link static properties (e.g., contractual
aspects) and dynamic requirements (e.g., technical and operational aspects). Some
dimensions may be separately analyzed by domain experts (e.g., compliance
dimension is analyzed by lawyers in small and medium-sized enterprises). The final
purpose is to bind different service perspectives in order to manage cloud service
adoption. This chapter aims to consolidate different cloud aspects to fluidly satisfy
consumer dynamic requirements. In conclusion, cloud consumers (i.e., organiza-
tions and users) are provided with accurate information to address their require-
ments to service offers and cloud providers are fitted with precise attributes to offer
service capabilities. This avoids potentially ambiguous terms.

The rest of this paper is organized as follows. Section 3.2 introduces some
insights about cloud computing and requirements engineering. Section 3.3 presents
a brief discussion about the findings and some graphs of the literature review. In
Sect. 3.4, the proposed dimensions and some models are proposed in order to
facilitate cloud requirements specification. Finally, Sect. 3.5 discuses the final
remarks and future works.

3.2 Background

Cloud computing is a paradigm of external arrangement, where third party services
are contracted according to Service Level Agreements (SLA) between cloud pro-
viders and service consumers, by means of Internet protocols. In this way, cloud
providers optimize the usability of their own technology infrastructure offering
storage solutions (hosting) and computer services (outsourcing), and cloud con-
sumers pay for cloud services taking into account the type of service charge (i.e.,
pay per use, subscription, etc.) [6, 7]. The cloud environments are stochastic and
dynamic, so it is complex to identify, clarify, and manage cloud requirements in a
systematic way [3, 8], especially when services and requirements change in an
unpredictable manner.

Requirements engineering is the field of software engineering dedicated to
identify, analyze, specify, and validate software requirements [9]. The software
requirements represent the needs and constraints considered in the software solution
of a real problem.

Requirements engineering is related to software design, software testing, soft-
ware maintenance, configurations management, quality assurance, and other pro-
cesses of software engineering. Pohl in his book [10] considers elicitation, analysis,
specification, validation/verification, and management of requirements, as require-
ments engineering processes. In addition, Flores et al. assume that requirements
engineering process for general services involve the next activities [11]:

3 Analyzing Requirements Engineering for Cloud Computing 47

1. Requirements Specification: service requirements are identified.
2. Requirements Analysis: requirements are analyzed in detail and possible con-

flicts between them are examined.
3. Requirements Validation: requirements consistency and completeness must be

evaluated.
4. Requirements Management: it supports all activities and solutions during RE

process.

Wieger in [1] classifies requirements engineering artifacts in: business require-
ments, scenarios and uses cases, business rules, functional requirements, quality
attributes, external interface requirements, constraints, data definitions, and poten-
tial software solutions. Moreover, Pohl specifies goals, scenarios, and requirements
oriented to the software solutions, as part of the RE artifacts [10].

In cloud computing, requirements engineering approaches are mostly concen-
trated in object-oriented artifacts and service-oriented tools. Thus, some authors
adjusted existing tools, languages, and methodologies to this paradigm. The biggest
challenge in cloud computing is the lack of standard, that help meet the objectives
covering many different aspects of cloud services [12]. Existing requirements
engineering processes for cloud computing are generally about a limited number of
nonfunctional requirements. Moreover, most of the approaches about cloud
requirements are focused on particular characteristics, as security [8], privacy [13],
availability, and other performance aspects [14, 15].

However, cloud business paradigm is still growing popularity, because cloud
offers and cloud demands are rising at the marketplace. Cloud providers optimize
their physical infrastructure offering IT resources as cloud services, and consumers
outsource solutions adopting cloud models (i.e., Software as a Service, Platform as
a Service, and Infrastructure as a Service). In consequence, cloud computing is very
complex to administrate because of the dynamism imposed by the context, i.e.,
elastic resources (released, turned off/on, resized, scaled up/down), stochastic
requirements depending of business changes (peak/nonpeak times), heterogeneous
consumers from different places and jurisdictions, distributed systems, and remote
manage.

Some authors propose frameworks and methods, but there is no available
empirical evidence on the elicitation methods utilized by cloud providers [4]. For
instance, Repschlaeger et al. [2] present a framework that includes evaluation cri-
teria to adopt cloud services, and Schrödl and Wind [16] propose a framework to
validate established process models for RE in regards to the implementation for
cloud computing. Schrödl and Wind conclude that none of the common models
(V-model, Volere, Extreme Programming, and Rational Unified Process) is suitable
to cover the needs of requirements engineering under cloud computing.

Small and medium-sized enterprises also develop projects for adopting cloud
services and migrating legacy systems to cloud environments. Besides cloud pro-
jects are a major trend in IT solutions [17], little information about frameworks and
methods for supporting projects during system development life cycle for this
domain is given [18]. In addition, the lack of requirements engineering methods

48 A.S. Zalazar et al.

promotes the occurrence of unpredictable risks related with incorrect or unjustified
decisions which can be made during project plan developments. There are no
standardized processes to manage requirements engineering activities or to decide
how they should be performed, and organizations try to adapt existing techniques or
create new one for supporting cloud projects, missing suitable, and systematic
guidance [3, 4]. Thus, this chapter aims to provide a comprehensive and systematic
literature review of the academic research done in requirements engineering for
cloud computing, and introduces the main concerns in this area. Having an over-
view about methods and techniques for handling cloud requirements, providers and
consumers can implement existing approaches taking into account different
dimensions for cloud services. Regarding this background, different aspects of
requirements are considered for cloud computing by identifying and classifying
core concepts within existing academia literature. Security is one of the most rel-
evant issues in cloud computing community [18, 19]. Moreover, IT governance,
legal, laws, ethical, standards, and managerial issues are not completely considered
in the researches done in this area [20, 21].

In order to conduct this review, several reviews and mapping studies about cloud
computing were first consulted, because they compile all the evidence about con-
tributions and synthesize high-level insights from primary studies during past years.
In fact, there was not found any general peer-reviewed paper on requirements
engineering for cloud computing specifically, while secondary researches found
showed that academic community is mainly focused on only specific characteristics
of cloud services, i.e., security [19, 21–24], technological aspects [17], accounting
models [25], quality of services [26, 27], and service composition [28]. The pro-
posed cloud dimensions for requirements engineering are derived from those
characteristics.

3.3 Literature Review

Selecting digital libraries and relevant databases was crucial for this secondary
research (literature review). Four popular digital libraries were chosen: IEEE Xplore
Digital Library, ACM Digital Library, Elsevier ScienceDirect, and SpringerLink.
Those libraries covered important works in requirements engineering and cloud
computing. However, some considerations were made on the research scope and
strategy of this research. First, Google Scholar engine was taken out of the scope,
because it returned the largest number of duplicate articles during the search sim-
ulations. Second, ACM Digital Library returned similar results offered by IEEE and
Springer engines, but it also returned some relevant studies. Third, it was not found
relevant evidence of related works about cloud requirements before 2009 during the
pilot searches, so the manual search of primary studies in digital libraries published
between 2009 and 2015 was planned. Finally, the basic query string was searched
within titles and calibrated regarding each engine. Data extraction and selection
process was undertaken using the steps described in Fig. 3.1.

3 Analyzing Requirements Engineering for Cloud Computing 49

Advanced search options for each database source were used that allowed to
improve the inclusion of articles related to the study. Even though some articles
were first picked by title and abstract, they were no precisely about requirements
engineering for cloud computing. Thus, some articles were excluded from the set of
relevant primary studies after considering the inclusion and exclusion criteria. The
inclusion and exclusion criteria which were applied in this literature reviews are
listed in Table 3.1. Search engines previously mentioned returned a list of studies as
result of the research protocol which also were considered in three phases of manual
inspection. First, each paper was scanned to ensure that its contributions were

Fig. 3.1 Selection process of the literature review

Table 3.1 Selection criteria of primary studies

Inclusion criteria Exclusion criteria

The study was published in digital libraries
between 2009 and 2015

The primary study did not comply with the
inclusion criteria

The full-text of the study was available and
written in English

The study was a short paper (less than 6
pages)

The study was published in the form of
journal article or conference paper

The study was in form of text book, thesis,
book chapter, editorials, paper position,
keynotes, opinion, tutorial, poster, or panel

The study was focused on requirements
engineering for cloud computing

The study was a duplicated report of the same
research (same authors, similar title and
results)

The study contained relevant information to
answer the proposed research questions

The study paper was a previous version of a
more complete paper published about the
same topic.

The study was related to requirements
engineering processes and it involved explicit
activities

The study summarized an existing research
work or road-map, so it is considered
incomplete

The study was a primary study that included
solutions, experiences or evaluations

The study was a secondary study (informal
survey, literature review, mapping study)

The study provided a reasonable amount of
information, technical characteristics, and
details regarding its contribution

The study did not suggest explicitly any
method, technique, tool, or artifact to manage
cloud requirements

50 A.S. Zalazar et al.

related to the scope of this review. Then, some studies were selected after applying
the criteria on each title, abstract, keywords, and conclusion. Finally, each full-text
was analyzed considering the criteria in order to decide whether or not a study
should be involved in this review.

From the list of selected articles, the tendency of publication date was evaluated,
and it is showed in Fig. 3.2. The interest in the topic has changed over time, and
half of the selected studies put attention to security and privacy aspects of cloud
computing. Most of the articles were published in 2013, but only two articles were
written by the same authors and two articles were published in the same journal. It
seems that cloud computing fundamentals and processes are occasionally consid-
ered by researchers in different journals and scientific events. However, several
organizations and workgroups were found to be working on standards and pro-
cesses, such as National Institute of Standards and Technology (NIST),1 Cloud
Standard Customer Council (CSCC),2 IEEE Cloud Computing Standard Study
Group (IEEE CCSSG),3 and Open Cloud Consortium (OCC).4

To conduct the literature review, eight research questions were formulated. The
research questions and the findings are graphically evaluated below.

RQ1: What are the main requirements engineering approaches investigated in
cloud computing? From the selected primary studies, it can be noted that
frameworks and methodologies motivated research activities on the field of cloud
computing. Recently, contributions proposed frameworks to evaluate and to handle
requirements for cloud computing projects, however there are not well-known tools
and automatic techniques supporting cloud adoption. The answer of this question is
summarized in Fig. 3.3.

Fig. 3.2 Number of studies per year

1http://www.nist.gov/.
2http://www.cloud-council.org/.
3http://www.computer.org/web/ieee-cloud-computing/standards/.
4http://www.cloud-council.org/.

3 Analyzing Requirements Engineering for Cloud Computing 51

http://www.nist.gov/
http://www.cloud-council.org/
http://www.computer.org/web/ieee-cloud-computing/standards/
http://www.cloud-council.org/

RQ2: What phases and activities of requirements engineering do the
approaches support? The results for this question are shown in Fig. 3.4.
Requirements engineering activities were listed and answer “All” were considered
when the contribution was generic and represented all activities in its process. The
most studied activities were requirements elicitation and requirements specification,
and some authors considered both activities in the same step in requirements
engineering process. Requirements validation was not considered in the primary
studies, and it was concluded that this activity was difficult to carry on especially
because stakeholders have limited control over the services.

RQ3: Who are the actors/stakeholders or roles considered in the approaches?
For this question, the roles presented by NIST [29] were considered, i.e., consumer,
provider, broker, carrier, and auditor. The results are presented in Fig. 3.5. Most of
the selected papers had consumers as main actors during requirements engineering
activities. Carrier that supports transportation of service and auditor that evaluates
the service provided were explicitly out of the primary study scopes. Developer role
was considered in several studies, but analyst, consultant, and manager were not

Fig. 3.3 Main requirements engineering approaches (RQ1)

Fig. 3.4 Phases and activities of requirements engineering (RQ2)

52 A.S. Zalazar et al.

implicitly considered. During the research, answer “stakeholder” was selected when
the contribution was general, unclear about who were the target actors, or focused
on several actors.

RQ4: What are the cloud requirements and attributes covered in the studied
literature? Most of the studies were focused on specific attributes and require-
ments, and the results are shown in Fig. 3.6. Security is the most studied aspect of
cloud computing in the field of requirements engineering. Cloud security is a trend
topic and many research groups try to find a way for guaranteeing security in cloud
services. Privacy, trust, and access control can be considered as part of security
aspects.

Fig. 3.5 Actors/stakeholders/roles considered in the approaches (RQ3)

Fig. 3.6 Cloud requirements attributes covered in the studies (RQ4)

3 Analyzing Requirements Engineering for Cloud Computing 53

RQ5: What are the domains involved in the primary studies? Figure 3.7 pre-
sents the different domains announced in the studies. The selected approaches were
mainly general and with little information about domains and supported areas.
Several primary studies considered banking, healthcare, and enterprise scenarios.
However, there was strong tendency to integrate many domains in the same
solution, “General” in Fig. 3.7, so it is concluded that general and generic
approaches are needed for handling cloud requirements suitable to all domains.

RQ6: What are the cloud computing models considered in the proposals?
Deployment models were not taken into account in the selected papers and most
studies did not specify any service model as study scope. Figure 3.8 shows the final
results. Only one article [30] considered Platform as a Service and Software as a
Service in the same approach. Software as Service is the most studied model,
because cloud service adoption was mainly related to application development and
programs in the primary studies. “General” in Fig. 3.8 indicates that authors did not
specify the models and the proposal is generic.

RQ7: How automatable are the approaches? For this question, there were three
possible answers and semiautomatic approaches were often presented in the pri-
mary studies. There were many contributions that presented some manual activities
supported by tools or programs, but only three studies [31–33] presented automatic

Fig. 3.7 Domains involved in the studies (RQ5)

Fig. 3.8 Cloud computing models considered in the studies (RQ6)

54 A.S. Zalazar et al.

and automatable approaches for requirements engineering in cloud computing. The
results are shown in the pie chart presented in Fig. 3.9.

RQ8: What are the open issues and publication trends in requirements engi-
neering for cloud computing? Cloud services are deployed in multiple resources
shared by many different stakeholders [34, 35], and the main challenge is how to
elicit commonalities and variances of numerous consumer requirements [36]. So
far, there was identified a large amount of issues towards legal constraints [37–40],
privacy, access control, and security requirements [13, 31–34, 41–46]. However,
several approaches were also focused on functional aspects [36, 47], nonfunctional
requirements [48], trust and reputation characteristics [35], and other requirements
[3]. In the same manner, specific primary studies considered important to analyze
separately billing attributes [49], architectural aspects [12], autonomic requirements
[50], brokerage regulations [30], and contractual ruling [51].

Quality Assessment. Finally, a quality assessment considering a scale from 0 to 1
was conducted. The goal was to detect those primary studies with low quality or
irrelevant contribution. Quality assessment of the studies considered was a signifi-
cant part into the research protocol, because it helped reviewers to evaluate whether
the contribution of each study was relevant for this review or not. In order to detect
the level of significance of each study, six quality assessment questions and possible
scores based on [52] were defined, and the final checklist was built, as follow:

• QA1: How clear was the approach presented in the study?
• QA2: How relevant and mature was the approach for cloud computing?
• QA3: How detailed were the activities explained in the approach?
• QA4: How clear was the approach applied in the application domain?
• QA5: How complete was the list of goals and requirements considered in the

approach?
• QA6: How flexible and extensible was the approach presented in the study?

Fig. 3.9 Automated
approaches in cloud
computing

3 Analyzing Requirements Engineering for Cloud Computing 55

In Table 3.2, the number of papers that present high, medium, and low values
for each of the qualitative questions is summarized. In conclusion, most of the
studies were over the medium values.

Finally, it can be concluded that cloud computing is a traversal field and it can be
studied in different domains (i.e., health, insurance, financial, etc.). However, cloud
computing processes are occasionally considered by researchers in different jour-
nals and scientific events. The literature failed to provide a systematic approach to
identify requirements and select the most suitable cloud service provider based on
such requirements [13]. Nowadays, consumers have to trust providers taking into
account functional attributes, price, and provider’s reputation and market share [13,
35, 41].

3.4 Discussions

From a set of 187 documents, only 26 relevant works have been selected and some
terms were extracted to define the vocabulary of cloud computing. The terms are
classified into five cloud dimensions. Each proposed dimension represents a
specific aspect of cloud computing, and cloud adoption process should consider
those dimensions in order to completely satisfy service requirements. For each
dimension, service consumers should also follow the most suitable requirements
engineering methods considering the nature of their requirements. The NIST cloud
definition framework [6] is presented in Fig. 3.10 and the five dimensions are
added.

The proposed dimensions show the semantic connections among such terms, and
the cloud domain knowledge can be inferred from it. The dimensions are related to
cloud services and SLA, and they can also be used to identify cloud requirements
and constraints in natural language documents, such as request for proposal and
software specification template. Organizations may also consider having experts in
diverse fields (such as accounting manager, lawyer for legal terms, etc.) to elicit
specific requirements for each dimension, especially for billing and law regulation.

The idea of cloud computing as a multidimensional paradigm is not new. For
instance, Repschlaeger et al. [53] presented six target dimensions based on general
objective which stakeholders pursue: (1) service and cloud management; (2) IT
security and compliance; (3) reliability and trustworthiness; (4) scope and

Table 3.2 Qualitative summary of the studies

Value description QA1 QA2 QA3 QA4 QA5 QA6

High = 1 18 16 18 14 10 22

Party = 0.5 8 10 8 11 16 4

None/unknown = 0 0 0 0 1 0 0

56 A.S. Zalazar et al.

performance; (5) costs; and (6) flexibility. Pichan et al. [54] considered three
dimensions to analyze services in cloud computing: (1) technical; (2) organiza-
tional; and (3) legal. However, practitioners also deal with other requirements and
capabilities that research question four (RQ4) has showed. For example, IT con-
tracts include terms regarding technical properties, financial factors, compliance
restrictions, operational responsibilities, and contractual aspects in cloud
computing.

In this contribution, cloud service dimensions are considered the basis for
specifying cloud requirements and capabilities. The cloud dimensions are explained
below.

Contractual Dimension. Contract trails specify stakeholders, disclaims, and
general agreements between parties (i.e., “Supporting Party” and “Signatory
Party”). This dimension covers all organizational aspects of cloud service level
agreement. It includes actors (i.e., “Provider”, “Consumer”, “Broker”, “Carrier”,

Fig. 3.10 Extension of the NIST cloud definition framework [6]

3 Analyzing Requirements Engineering for Cloud Computing 57

and “Auditor”), time periods and contract duration (i.e., attributes of “Contract”),
and objects like binding in “Service Level Agreements” (SLA), similar to the
information of business contractual headlines. Communication between actors is
very important, thus contractual dimension also specifies roles, responsibilities, and
relations between actors (i.e., “Term of Service”). “Umbrella Agreement” specifies
all agreements and contracts with similar provider and characteristics. For the
requirements elicitation of contractual dimensions, Bochicchi et al. [51] proposed
an approach based on contract management process modeling and information
modeling to extend the current generation of open contract management tools.

Financial Dimension. Economic aspects of cloud services are involved in
“Billing”, “Pricing”, “Account” and “Credit”. This dimension is defined consid-
ering cloud computing as a utility [15], where economic and financial capabilities
play a central role in cloud adoption [55]. Cloud service provider employs pricing
plan (i.e., renting, usage-based pricing), in which cloud service consumers pay
proportionally to the amount of time or resource they use [14]. This dimension
involves all aspects of cloud agreements for billing, such as pay methods, credit
management, and cost variables. Klems et al. [18] presented a framework to esti-
mate cloud computing costs. For analyzing requirements of billing management,
Iwashita et al. [49] represented some approaches based on the Soft Systems
Methodology (SSM) with Unified Modeling Language (UML). Finally, “Penalty”
is also part of this dimension, because it has always an economic impact.

Compliance Dimension. Regulations (i.e., “Guarantee” and “Remedy”) that
restrict cloud services such as legal, standards, and proceedings. They describe all
legal and regulatory restrictions for cloud service adoption [56], and it also specifies
government regulation, business standards, security policy, and privacy certifica-
tions which cloud service should be compliant with [57]. The restrictions are part of
“Policy” strictly imposed in order to respect laws and regulations in the place where
data resides or is collected (i.e., “Jurisdiction”). “Remedy” involves “Penalty” when
a “Policy” is violated. The consumer should pay attention to all requirement
dimensions at a given time and describe in details some specifications about
security, privacy, data manipulation, performance, and availability under “Policy”
class. For instances, several approaches may be suitable for analyzing Compliance
Dimensions. Mouratidis et al. [13] present a methodology that supports just elici-
tation and security of privacy requirements in cloud computing, by the under-
standing of the organizational context (i.e., goals, actors, tasks, resources, and plan)
and the analysis of constraints, threats, and vulnerabilities [58]. Beckers et al. [41]
contribute a catalog of security and privacy requirement patterns that support
engineers in eliciting compliance requirements [31, 37]. Ficco et al. [42] present the
development of a methodology that considers security concerns as an integral part
of cloud-based applications design and implementation. Humberg et al. [39]
developed an approach to represent regulations in the form of ontologies, which can
then be used to examine a given system for compliance requirements in cloud
computing.

Operational Dimension. All characteristics that cover specifications about
service management, deployment, and access control. Operational Dimension is

58 A.S. Zalazar et al.

related to “Service Description”, “Virtual Resource” and “Physical Resource”. It is
based on usual events (such as restore, maintain, configuration, and backups) and
unusual events (such as incident management and recovery). By considering
operational aspects, the cloud providers must have efficient means to support
resource allocation and scheduling decisions to remain competitive [59]. Bao et al.
[60] proposed a measurement method, which mainly measures availability and
performance of cloud services and it supports operational decisions.
Simultaneously, it is important to ensure the confidentiality of co-tenants who share
the same infrastructure by auditing virtual behavior. Operative Dimension explains
all aspects to keep the service running and meet the changes in runtime. In
requirements engineering, Rimal et al. [12] classified architectural features
according to the requirements of end users and provided key guidelines to software
architects and cloud computing application developers for creating future
architectures.

Technical Dimension. It encompasses functional properties and measurable
aspects of cloud service. Some key performance indicators are measured using a set
of measureable properties. Technical aspects are specified in SLA to understand,
compare, and control SLA. Measurable and technical factors that need “Indicator”,
“Metric”, “Measure”, “Unit”, “Collection Method”, and “Function”. “Service Level
Objective” is used to compare “Current Value” audited by the “Monitor”. All
technical aspects are requested to defined cloud services. For Technical Dimension
and application requirements, Sun et al. [47] provided a framework for searching
the cloud market for a set of products that meet those requirements, using
ontologies. Zardari and Bahsoon [36] also proposed a process for cloud adoption
considering cloud requirements and Goal Oriented Requirements Engineering
(GORE).

There are a number of overlapping properties and classes within the five
dimensions, such as “Monitor”, “Account”, and “Penalty”. “Monitor” is requested
to ensure that cloud services do not break the laws and regulations in the juris-
diction where data resides or is collected, simultaneously ensuring the confiden-
tiality of co-tenants who share the same infrastructure [54]. Thus, frequent audits
should be performed on the dimensional properties to monitor compliance with
security terms and to ensure adherence to agreements terms, performance standards,
procedure, and regulations [61, 62]. Most of the time services are like “black
boxes” to cloud consumers, so services are evaluated by their behavior (i.e.,
comparing its inputs, outputs, and performance level) with the expected results [58].

The service consumer, as a requirements engineer, may compare different
methodologies (BPMN, UML, GoRE, SecureUML, Secure i*, Tropos, KAOS, and
SQUARE) and present a conceptual framework with a strong focus on security and
compliance for cloud computing. The consumer may also combine the approaches
to come to the definition of the requirements, because some approaches may be
focused on just few requirements engineering activities and different dimensions.

3 Analyzing Requirements Engineering for Cloud Computing 59

3.5 Sample Scenario: Sales Company

In this section, there is a sample about how to identify cloud dimensions. For
example, a sales company (i.e., “Consumer” in Contractual Dimension) has
recently shown consistent growth, so it aims to reduce the workload of the orga-
nization by migrating the purchase and sales module to cloud computing. The goal
is to let suppliers and customers interoperate through this module after exchanging
security certificates. The module allows visualizing the available stock and book
new orders in real time, without overloading the company infrastructure. This
company expects to reduce its total costs by paying a service subscription price
(“Pricing”) and to gain flexibility considering unlimited storage and network
resources (i.e., “Service Description”). The requirements engineer uses a natural
language description (e.g., something similar to the description just provided) as an
input to specify the basic needs of his/her system. The engineer maps the terms of
the expressed needs to the proposed conceptual model. Then, the conceptual model
shows relationships with other concepts, which can be associated to additional
dimensions that were not considered in the needs expressed by the requirements
engineer at the beginning. For example, “Subscription Price” from the initial
description is related to Financial Dimension. “Storage” and “Network” are related
to Operational Dimension.

Other classes are implicit in the initial description, such as “Data Security”,
“Ethical”, and “Law Regulation” that are linked to “Policy” in Compliance
Dimension. At this stage, the requirements engineer can realize that other concepts
(e.g., “Measure”, “Unit”, “Current Value”, etc.) in the model are related to his/her
needs, and those concepts may have a relevant impact during the cloud service
adoption, so he/she should pay considerable attention to them.

Finally, the company relies on the requirements engineering deliverable (e.g.,
supporting documents and descriptions) produced as a result of the proposed
conceptual model. This deliverable helps the company to document initial
requirements, to understand cloud services, to manage its dynamic requirements, to
find inconsistency and risks, to compare cloud offers of different providers, and to
contract the best cloud solution according to the company business goals and
mission.

3.6 Conclusions

Summarizing, requirements engineering for cloud computing was investigated.
Some primary studies were selected between 2009 and 2015, and only 26 filtered
studies answered the proposed research questions. The literature review presented
an overview about the topic and created new concerns about cloud requirements.

Cloud computing may be considered as a multidimensional paradigm, where
different activities (i.e., elicitation, analysis, specification, validation/verification,

60 A.S. Zalazar et al.

and management), roles (i.e., consumer, provider, broker, auditor, carrier, user,
analyst, consultant, manager, engineer, developer), and service dimensions (i.e.,
contractual, operational, technical, compliance, and financial) are integrated.

The cloud dimensions are explained in this chapter and a conceptual model
integrated all of them. It is considered that the service consumer still needs to do
some initial modeling and specification, because requirements have to be docu-
mented to ensure that the service provider offers exactly what is needed by the
consumer. The service consumer should describe the required services, compo-
nents, or applications using the dimensions. The dimensions are very complete and
flexible for adding new features, so they can be the bases for future proposals,
models, and ontologies.

Because the requirements change frequently, a streamline is needed. They
should be monitored and traced using some traceability mechanisms (i.e.,
backward-from, forward-from, backward-to, or forward-to). Consequently, the
requirements can undergo changes over the time and are normally covered under
change management. A simple change in a requirement implies modifications in the
parameters, configuration, and components, and the solution may no longer support
the necessary functionality. In our future work, the objective is to give support to
the complete requirement engineering process for cloud computing, by offering a
framework to manage requirements in all dimensions and also support cloud
adoption.

References

1. Wiegers, K., Beatty, J. (2013). Software requirements. Pearson Education.
2. Repschlaeger, J., Zarnekow, R., Wind, S., Turowski, K. (2012). Cloud Requirement

Framework: Requirements and Evaluation Criteria to Adopt Cloud solutions. In European
Conference on Information Systems (ECIS) (p. 42).

3. Zardari, S., Bahsoon, R. (2011). Cloud adoption: a goal-oriented requirements engineering
approach. In Proceedings of the 2nd International Workshop on Software Engineering for
Cloud Computing (pp. 29–35). ACM.

4. Todoran, I., Seyff, N., Glinz, M. (2013). How cloud providers elicit consumer requirements:
An exploratory study of nineteen companies. In 2013 21st IEEE International Requirements
Engineering Conference (RE) (pp. 105–114). IEEE.

5. Kitchenham, B. (2004). Procedures for performing systematic reviews. Keele, UK, Keele
University, 33(2004), 1–26.

6. Mell, P., Grance, T. (2011). The NIST Definition of Cloud Computing (Draft). NIST Special
Publication, 800–145:1–6, 145.

7. Vaquero, L. M., Rodero-Merino, L., Caceres, J., Lindner, M. (2008). A break in the clouds:
towards a cloud definition. ACM SIGCOMM Computer Communication Review, 39(1), 50–
55.

8. Iankoulova, I., Daneva, M. (2012). Cloud computing security requirements: A systematic
review. In 2012 Sixth International Conference on Research Challenges in Information
Science (RCIS) (pp. 1–7). IEEE.

9. Abran, A., Bourque, P., Dupuis, R., Moore, J. W. (2001). Guide to the software engineering
body of knowledge-SWEBOK. IEEE Press.

3 Analyzing Requirements Engineering for Cloud Computing 61

10. Pohl, K. (2010). Requirements engineering: fundamentals, principles, and techniques.
Springer Publishing Company, Incorporated.

11. Flores, F., Mora, M., Álvarez, F., Garza, L., Duran, H. (2010). Towards a systematic
service-oriented requirements engineering process (S-SoRE). In International Conference on
ENTERprise Information Systems (pp. 111–120). Springer Berlin Heidelberg.

12. Rimal, B. P., Jukan, A., Katsaros, D., Goeleven, Y. (2011). Architectural requirements for
cloud computing systems: an enterprise cloud approach. Journal of Grid Computing, 9(1), 3–
26.

13. Mouratidis, H., Islam, S., Kalloniatis, C., Gritzalis, S. (2013). A framework to support
selection of cloud providers based on security and privacy requirements. Journal of Systems
and Software, 86(9), 2276–2293.

14. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G., Patterson,
D., Rabkin, A., Stoica, I. and Zaharia, M. (2010). A view of cloud computing.
Communications of the ACM, 53(4), pp. 50–58.

15. Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J., Brandic, I. (2009). Cloud computing and
emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th utility.
Future Generation computer systems, 25(6), 599–616.

16. Schrödl, H., Wind, S. (2011). Requirements engineering for cloud computing. Journal of
Communication and Computer, 8(9), 707–715.

17. Sriram, I., Khajeh-Hosseini, A. (2010). Research agenda in cloud technologies.
18. Klems, M., Nimis, J., Tai, S. (2008). Do clouds compute? a framework for estimating the

value of cloud computing. In Workshop on E-Business (pp. 110–123). Springer Berlin
Heidelberg.

19. Mazher, N., Ashraf, I. (2014). A Systematic Mapping Study on Cloud Computing Security.
International Journal of Computer Applications, 89(16):6–9.

20. El-Gazzar, R. F. (2014). A literature review on cloud computing adoption issues in
enterprises. In International Working Conference on Transfer and Diffusion of IT (pp. 214–
242). Springer Berlin Heidelberg.

21. Pfarr, F., Buckel, T., Winkelmann, A. (2014). Cloud Computing Data Protection–A Literature
Review and Analysis. In 2014 47th Hawaii International Conference on System Sciences
(pp. 5018–5027). IEEE.

22. Benslimane, Y., Plaisent, M., Bernard, P., Bahli, B. (2014). Key Challenges and
Opportunities in Cloud Computing and Implications on Service Requirements: Evidence
from a Systematic Literature Review. In Cloud Computing Technology and Science
(CloudCom), 2014 IEEE 6th International Conference on (pp. 114–121). IEEE.

23. Latif, R., Abbas, H., Assar, S., Ali, Q. (2014). Cloud computing risk assessment: a systematic
literature review. In Future Information Technology (pp. 285–295). Springer Berlin
Heidelberg.

24. Zapata, B. C., Alemán, J. L. F., Toval, A. (2015). Security in cloud computing: A mapping
study. Comput. Sci. Inf. Syst., 12(1), 161–184.

25. da Silva, F. A. P., Neto, P. A. D. M. S., Garcia, V. C., Assad, R. E., Trinta, F. A. M. (2012).
Accounting models for cloud computing: A systematic mapping study. In Proceedings of the
International Conference on Grid Computing and Applications (GCA) (pp. 3–9). The Steering
Committee of The World Congress in Computer Science, Computer Engineering and Applied
Computing (WorldComp).

26. Abdelmaboud, A., Jawawi, D. N., Ghani, I., Elsafi, A., Kitchenham, B. (2015). Quality of
service approaches in cloud computing: A systematic mapping study. Journal of Systems and
Software, 101, 159–179.

27. Lehrig, S., Eikerling, H., Becker, S. (2015). Scalability, elasticity, and efficiency in cloud
computing: A systematic literature review of definitions and metrics. In Proceedings of the
11th International ACM SIGSOFT Conference on Quality of Software Architectures (pp. 83–
92). ACM.

28. Jula, A., Sundararajan, E., Othman, Z. (2014). Cloud computing service composition: A
systematic literature review. Expert Systems with Applications, 41(8), 3809–3824.

62 A.S. Zalazar et al.

29. Grance, T., Patt-Corner, R., Voas, J. B. (2012). Cloud Computing Synopsis and
Recommendations. NIST Special Publication, 800–146.

30. Kourtesis, D., Bratanis, K., Friesen, A., Verginadis, Y., Simons, A. J., Rossini, A.,
Schwichtenberg, A. and Gouvas, P. (2013). Brokerage for quality assurance and optimisation
of cloud services: An analysis of key requirements. In International Conference on
Service-Oriented Computing (pp. 150–162). Springer International Publishing.

31. Beckers, K., Côté, I., Goeke, L., Güler, S., Heisel, M. (2014). A structured method for
security requirements elicitation concerning the cloud computing domain. International
Journal of Secure Software Engineering (IJSSE), 5(2), 20-43.

32. Jhawar, R., Piuri, V., Samarati, P. (2012). Supporting security requirements for resource
management in cloud computing. In Computational Science and Engineering (CSE), 2012
IEEE 15th International Conference on (pp. 170–177). IEEE.

33. Muller, I., Han, J., Schneider, J. G., Versteeg, S. (2011). Tackling the Loss of Control:
Standards-based Conjoint Management of Security Requirements for Cloud Services. In
Cloud Computing (CLOUD), 2011 IEEE International Conference on (pp. 573–581). IEEE.

34. Clarke, R. (2010). User requirements for cloud computing architecture. In Cluster, Cloud and
Grid Computing (CCGrid), 2010 10th IEEE/ACM International Conference on (pp. 625–
630). IEEE.

35. Moyano, F., Fernandez-Gago, C., Lopez, J. (2013). A framework for enabling trust
requirements in social cloud applications. Requirements Engineering, 18(4), 321–341.

36. Zhou, X., Yi, L., Liu, Y. (2011). A collaborative requirement elicitation technique for SaaS
applications. In Service Operations, Logistics, and Informatics (SOLI), 2011 IEEE
International Conference on (pp. 83–88). IEEE.

37. Beckers, K., Heisel, M., Côté, I., Goeke, L., Güler, S. (2013). Structured pattern-based
security requirements elicitation for clouds. In Availability, Reliability and Security (ARES),
2013 Eighth International Conference on (pp. 465–474). IEEE.

38. Gordon, D. G., Breaux, T. D. (2011). Managing multi-jurisdictional requirements in the
cloud: towards a computational legal landscape. In Proceedings of the 3rd ACM workshop on
Cloud computing security workshop (pp. 83–94). ACM.

39. Humberg, T., Wessel, C., Poggenpohl, D., Wenzel, S., Ruhroth, T., Jürjens, J. (2013). Using
Ontologies to Analyze Compliance Requirements of Cloud-Based Processes. In International
Conference on Cloud Computing and Services Science (pp. 36–51). Springer International
Publishing.

40. Kousiouris, G., Vafiadis, G., Corrales, M. (2013). A Cloud provider description schema for
meeting legal requirements in cloud federation scenarios. In Conference on e-Business,
e-Services and e-Society (pp. 61–72). Springer Berlin Heidelberg.

41. Beckers, K., Côté, I., Goeke, L. (2014). A catalog of security requirements patterns for the
domain of cloud computing systems. In Proceedings of the 29th Annual ACM Symposium on
Applied Computing (pp. 337–342). ACM.

42. Ficco, M., Palmieri, F., Castiglione, A. (2015). Modeling security requirements for cloud
based system development. Concurrency and Computation: Practice and Experience, 27(8),
2107–2124.

43. Guesmi, A., Clemente, P. (2013). Access control and security properties requirements
specification for clouds’ seclas. In Cloud Computing Technology and Science (CloudCom),
2013 IEEE 5th International Conference on (Vol. 1, pp. 723–729). IEEE.

44. Kalloniatis, C., Mouratidis, H., Islam, S. (2013). Evaluating cloud deployment scenarios
based on security and privacy requirements. Requirements Engineering, 18(4), 299–319.

45. Liccardo, L., Rak, M., Di Modica, G., Tomarchio, O. (2012). Ontology-based Negotiation of
security requirements in cloud. In Computational Aspects of Social Networks (CASoN), 2012
Fourth International Conference on (pp. 192–197). IEEE.

46. Naveed, R., Abbas, H. (2014). Security Requirements Specification Framework for Cloud
Users. In Future Information Technology (pp. 297–305). Springer Berlin Heidelberg.

3 Analyzing Requirements Engineering for Cloud Computing 63

47. Sun, Y. L., Harmer, T., Stewart, A. (2012). Specifying cloud application requirements: an
ontological approach. In International Conference on Cloud Computing (pp. 82–91). Springer
International Publishing.

48. Tariq, A., Khan, S. A., Iftikhar, S. (2014). Requirements Engineering process for
Software-as-a-Service (SaaS) cloud environment. In Emerging Technologies (ICET), 2014
International Conference on (pp. 13–18). IEEE.

49. Iwashita, M., Tanimoto, S., Fujinoki, Y. (2013). Approaches to analyze requirements of
billing management for cloud computing services. In Computer and Information Science
(ICIS), 2013 IEEE/ACIS 12th International Conference on (pp. 17–22). IEEE.

50. Vassev, E., Hinchey, M. (2014). Autonomy requirements engineering for self-adaptive
science clouds. In Parallel & Distributed Processing Symposium Workshops (IPDPSW), 2014
IEEE International (pp. 1344–1353). IEEE.

51. Bochicchio, M. A., Longo, A., Mansueto, C. (2011). Cloud services for SMEs: Contract
Management’s requirements specification. In 12th IFIP/IEEE International Symposium on
Integrated Network Management (IM 2011) and Workshops (pp. 145–152). IEEE.

52. Brereton, P., Kitchenham, B. A., Budgen, D., Turner, M., Khalil, M. (2007). Lessons from
applying the systematic literature review process within the software engineering domain.
Journal of systems and software, 80(4), 571–583.

53. Repschlaeger, J., Wind, S., Zarnekow, R., Turowski, K. (2012). A reference guide to cloud
computing dimensions: infrastructure as a service classification framework. In System Science
(HICSS), 2012 45th Hawaii International Conference on (pp. 2178–2188). IEEE.

54. Pichan, A., Lazarescu, M., Soh, S. T. (2015). Cloud forensics: technical challenges, solutions
and comparative analysis. Digital Investigation, 13, 38–57.

55. Carroll, M., Van Der Merwe, A., Kotze, P. (2011). Secure cloud computing: Benefits, risks
and controls. In 2011 Information Security for South Africa (pp. 1–9). IEEE.

56. Andrikopoulos, V., Binz, T., Leymann, F., Strauch, S. (2013). How to adapt applications for
the Cloud environment. Computing, 95(6), 493–535.

57. Liu, F., Tong, J., Mao, J., Bohn, R., Messina, J., Badger, L., Leaf, D. (2011). NIST cloud
computing reference architecture. NIST special publication, 500(2011), 292.

58. Zalazar, A. S., Rodriguez, S., Ballejos, L. C. (2015). Handling Dynamic Requirements in
Cloud Computing. In Simposio Argentino de Ingeniería de Software (ASSE 2015)-JAIIO 44
(Rosario, 2015).

59. Heilig, L., Voß, S. (2014). Decision analytics for cloud computing: a classification and
literature review. Tutorials in Operations Research–Bridging Data and Decisions, 1–26.

60. Bao, D., Xiao, Z., Sun, Y., Zhao, J. (2010). A method and framework for quality of cloud
services measurement. In 2010 3rd International Conference on Advanced Computer Theory
and Engineering (ICACTE) (Vol. 5, pp. V5–358). IEEE.

61. Boampong, P. A., Wahsheh, L. A. (2012). Different facets of security in the cloud. In
Proceedings of the 15th Communications and Networking Simulation Symposium (p. 5).
Society for Computer Simulation International.

62. Rimal, B. P., Choi, E., Lumb, I. (2010). A taxonomy, survey, and issues of cloud computing
ecosystems. In Cloud Computing (pp. 21–46). Springer London.

64 A.S. Zalazar et al.

Chapter 4
Classification of Non-functional
Requirements of Web Services
from Multiperspective View

Maya Rathore and Ugrasen Suman

Abstract With the rapid growth of functionally identical web services, Quality of
Service (QoS) plays vital role for deciding the most suitable services for consumers.
Although, QoS for web services has gained extensive attention in the literature,
most of the existing efforts are unable to consider the multiperspective QoS of web
services. Unlike conventional software paradigms, web services are provided,
developed and used by different users such as provider, consumer and broker. As a
result, QoS requirements vary from user to user. Existing researches are unable to
provide standard solution, which can deal with what service providers, consumers
and broker should expose in service description as QoS parameters. Therefore, in
this book chapter, a multiperspective PCB-QoS classification of non-functional
parameters along with new QoS parameters, i.e. access rate and Overall Aggregated
Effective Quality of Service (OAEQoS) is presented. Due to the extensible nature of
PCB-QoS classification, it can be extended to accommodate more number of QoS
parameters. This QoS classification is based on the idea of partitioning the generic
QoS parameters according to multi-user’s perspective. An Average Real Value Sum
Method (ARSM) based on default priority constraints is also proposed for ranking
of web services that uses the presented QoS classification. With the help of pro-
posed approach, the user can specify the service requirements without taking the
hurdle of specifying the weights for each QoS parameter during web service
operations. It also prevents the services from malicious service provider to publish
the incorrect and inaccurate QoS information. Experimental evaluation shows the
effectiveness of proposed approach over the existing approach.

M. Rathore (&) � U. Suman
School of Computer Science and IT, Devi Ahilya University (DAVV),
Indore, Madhya Pradesh, India
e-mail: mayarathore114@gmail.com

U. Suman
e-mail: ugrasen123@yahoo.com

© Springer International Publishing AG 2017
M. Ramachandran and Z. Mahmood (eds.), Requirements Engineering
for Service and Cloud Computing, DOI 10.1007/978-3-319-51310-2_4

65

Keywords Qos � Web services � SLA � SOA � Collaborative filtering �
Non-functional requirements � Multi-attribute decision mechanism � QoS broker �
Weighted sum method � QoS model

4.1 Introduction

With the rapid development of functionally identical web services available on the
web, QoS plays essential role in determining the most suitable services for con-
sumers. QoS parameters can be considered as the distinctive criteria for web service
operation. In order to ensure the QoS of web services, service-level agreement
(SLA) is negotiated as a contract between service provider and service consumer
[1]. The SLA can also contain other agreed details such as, cost and some func-
tional properties. In traditional software development paradigm, different users are
involved at various stages of application development life cycle and play significant
role in expressing the non-functional requirements explicitly or implicitly. As a
result, QoS requirements vary from user to user. Unlike traditional software para-
digms, web services are created, provided and used by different users, such as
provider, consumer and broker. However, many service consumers are not involved
in any of the service development phase and do not have access to their predefined
logic or implementation. Hence, service consumers cannot easily evaluate the
non-functional aspects of web services until they actually invoke them [2]. Also,
service providers must have to provide a detailed service description for each
service.

Moreover, among the various phases of service development, most of the current
efforts classify the QoS parameters from consumer’s perspective for web service
selection [3, 4, 5, 6, 7]. Web service selection based on QoS parameters is a
multi-attribute decision mechanism (MADM). It uses weighted sum method
(WSM) to transform the multidimensional parameters of QoS of web services into a
single-goal function [2, 5]. In this, a utility function is used, which maps the quality
vector into a single real value, to enable sorting and ranking of service candidates.
In this method, each parameter should have a predefined weight or priority
according to its importance for web service discovery request, which is very dif-
ficult when service consumers do not know which parameter is more/or less
important. Therefore, an approach can be designed that can automatically decide
the priority of each QoS parameter during service selection and registration by
service consumer and provider. At the same time, it can evaluate the overall QoS
score of a web service.

In this book chapter, a multiperspective PCB-QoS classification of
non-functional parameters along with new QoS parameters, i.e. access rate and
OAEQoS, is presented [8]. Due to the extensible nature of PCB-QoS classification,
it can be extended to accommodate more number of QoS parameters. This QoS
classification is based on the idea of partitioning the generic QoS parameters
according to multi-user’s perspective. PCB-QoS classifies QoS parameters at the

66 M. Rathore and U. Suman

level of web service operation, which are performed by service consumer, provider
and broker during service request, service publish and service discovery of atomic
as well as composite web services. In this chapter, an average real value sum
method (ARSM) approach is also proposed for the computation of overall quality
score (OQS) of each candidate web service that uses PCB-QoS classification. With
the help of proposed approach, service broker and consumer can rank services
based on their OQS. Experimental evaluation shows the effectiveness of proposed
approach over the existing approach.

The remainder of the chapter is organized as follows. Section 4.2 provides the
related work and literature review of various QoS classification models and ranking
methods used by existing QoS-based web service selection approaches.
A comparative study of various QoS models is presented in Sect. 4.3. An extensible
multiperspective PCB-QoS classification along with its parameters is proposed in
Sect. 4.4. In this section, an algorithm for the evaluation of proposed parameters is
also presented. Section 4.5 presents an ARSM approach for aggregating different
QoS parameters into a single unit. The implementation of proposed approach is
presented in Sect. 4.6. Section 4.7 shows the experimental evaluation of proposed
approach. Finally, summary of the chapter is provided in Sect. 4.8.

4.2 Literature Review

Currently, discovering the most appropriate services based on QoS for a simple or
complex task requires continuous monitoring for trustworthiness of published QoS
information and the reputation of involved web services. Assuring the quality of
selected web services has been discussed in various research proposals [6, 9–11].
Various QoS models have been proposed in the literature in which QoS parameters
are evaluated by third-party broker [6, 9–11, 12, 13, 14]. A third-party broker can
be a software, web service or application through which service provider and
consumer interact to each other for publishing and discovering the web services
[15]. A third-party broker also performs monitoring and updation of QoS database
to guarantee that the discovered services based on QoS are reliable and trustable 9–
11, 13]. The QoS service broker helps service consumers to select the best services
for the composite service before invocation. The consumer uses the required service
and provides a feedback about that web service to the QoS broker. The QoS broker
collects feedback and updates reputation parameter for future uses of service by
consumer. Generally, QoS broker assigns and stores rank for all accessed services
according to this reputation value.

A QoS-aware middleware for web service composition is proposed in which the
non-functional parameters are defined for atomic services including execution price,
completion time, reputation, successful execution rate and availability [16].
A generic QoS model is proposed, which includes response time, price, reliability
and throughput [16]. Web service quality model includes six QoS properties, i.e.
execution price, execution duration, reliability, reputation, availability and a new

4 Classification of Non-functional Requirements … 67

parameter, i.e. composability [13]. A QoS-aware model for web service discovery
contains cost, response time and availability [7]. These approaches deal with
generic QoS parameters of web services from consumers’ perspective such as,
price, execution duration, availability and reliability [6, 7, 9–11, 12, 13, 14–17].
Moreover, these approaches rely on service providers to advertise their QoS
information or provide an interface to access the QoS values, which is subject to
manipulation by the providers. Obviously, service providers may not advertise their
QoS information in an impartial way, for example, execution duration, reliability,
etc. The approaches only obtain quality supplied by providers and unable to obtain
quality experienced from consumers.

A collaborative filtering method based on combining the user-based and
item-based approaches automatically predicts the QoS values of the current user by
collecting information from other similar users. Similar service users are the users,
who have the same previous QoS experience on the same set of commonly invoked
web services with the current user [18]. This approach requires no web service
invocations and at the same time, it helps service users to discover suitable web
services by analyzing QoS information from similar users. It uses response time and
failure rate QoS parameters for web services. The approach is unable to construct
the runtime QoS information of web services and considers only consumers per-
spective for service selection.

There exists a classification of QoS parameters for distributed heterogeneous
system [19]. The QoS parameters are classified into absolute, relative and computed
category. A tree structure to represent the composite service providers requirements,
which is defined on the multiple QoS properties and service offers is proposed with
varied consumer preferences [20]. The QoS requirements are classified into QoS
category and context category, which are often divided into execution, security,
environmental and business categories [21]. On web service management, a trusted
quality of web service management framework is based on multidimensional
qualities of web service model and end-to-end monitoring [22]. These approaches
have a high dependency on the service provider to publish non-functional parameter
values, which may be malicious and inaccurate.

A policy-centred metamodel (PCM) is proposed that provides developers, pro-
viders and users with a frame to describe non-functional parameters (NFP) aiming
to support the web service selection and composition [23]. The approach is based
on the explicit distinction between NFP offered by service provider and requested
by service consumer, concept of policy that aggregates NFP descriptions into single
entity with an applicability condition, and finally, on a set of constraint operators,
which is particularly relevant for NFP requests. A QoS model is proposed that
allows service providers to advertise the QoS offered and service consumers to
specify QoS requirements [1]. A catalogue of generic QoS parameters is considered
when service descriptions are developed and non-functional parameters that are
relevant from consumer’s perspective [2]. A quality model classifies non-functional
parameters based on the different stakeholders’ requirements [3]. In this model, the
web services qualities from three different perspectives, namely; developer,

68 M. Rathore and U. Suman

provider and consumer are discussed. The presented model also contains metrics for
some of the identified quality parameters.

The literature contains a large number of approaches dealing with QoS classi-
fication and management at the consumer side. This is reasonable, as many QoS
requirements are important mostly from the consumer point of view. However,
customer-level requirements should be considered along with provider and broker
level, which are quite different. A successful QoS management strategy should
consider all these point of views. Also, there are various generic and domain
specific QoS models for web service selection in which the overall quality score is
computed using the traditional WSM method. The limitation with WSM method is
that it requires user preferences in terms of weights to be specified with each
non-functional parameter at design time, which is not always possible with inex-
perienced users. Therefore, an approach can be proposed, which is able to construct
the weights for each non-functional parameter automatically, if user is unable to
decide.

4.3 Comparison of Various QoS Models

Various research works have been discussed in the literature to address the QoS for
web services from different users’ perspective. Most of the existing work considers
only generic QoS parameters from consumer’s perspective in their QoS models [6,
7, 13, 16]. Table 4.1 shows the comparative analysis of existing QoS models of
web services. These QoS models are compared on the basis of various parameters
such as, QoS parameters, QoS evaluation and monitoring method, runtime QoS
aggregation, QoS model extensibility, inclusion of consumers’ ranking, inclusion of
brokers’ ranking and perspectives. The strength and weakness of various QoS
models are evaluated on the basis of these parameters, which are discussed as
follows:

• QoS parameters used: It can be classified into generic and domain-specific QoS
parameters. With the help of this parameter, it will be easy to determine whether
the approach uses the generic or domain-specific QoS parameters in their QoS
models.

• QoS evaluation and monitoring: It helps in analyzing whether or not the existing
approach supports runtime evaluation and monitoring of QoS parameter for
composed process.

• Runtime QoS aggregation: It can be helpful to determine whether the approach
is able to aggregate non-functional parameters to generate overall score at
runtime using the suitable aggregation function. On the basis of the generated
score, rank of the service can be decided by the broker.

• QoS model extendibility: An approach can be analyzed for the extendibility of
their QoS model so that new QoS parameters can easily be accommodated
depending on the different application domains.

4 Classification of Non-functional Requirements … 69

T
ab

le
4.
1

C
om

pa
ra
tiv

e
an
al
ys
is
of

ex
is
tin

g
Q
oS

m
od

el
s

Pa
ra
m
et
er
s

Q
oS

pa
ra
m
et
er

Q
oS

ev
al
ua
tio

n
an
d
m
on

ito
ri
ng

R
un

tim
e

Q
oS

ag
gr
eg
at
io
n

Q
oS

m
od

el
ex
te
nd

ib
ili
ty

In
cl
us
io
n
of

co
ns
um

er
s

ra
nk

in
g

In
cl
us
io
n
of

br
ok

er
s

ra
nk

in
g

U
se
r

pe
rs
pe
ct
iv
es

A
pp

ro
ac
h

T
ru
st
an
d
re
pu

ta
tio

n
[2
4]

G
en
er
ic

N
o

N
o

N
o

Y
es

N
o

C
on

su
m
er

U
D
D
I
ex
te
ns
io
n
an
d

ce
rt
ifi
er

[6
,
13

]
[1
6]

[2
0]

[2
5]

G
en
er
ic

N
o

N
o

N
o

Y
es

N
o

C
on

su
m
er

B
ro
ke
r
[7
]

G
en
er
ic

N
o

N
o

N
o

N
o

N
o

C
on

su
m
er

A
na
ly
tic

hi
er
ar
ch
y
pr
oc
es
s

[2
0]

G
en
er
ic

N
o

N
o

N
o

N
o

N
o

C
on

su
m
er

U
se
r
an
d
ite
m

ba
se
d

co
lla
bo

ra
tiv

e
fi
lte
ri
ng

ap
pr
oa
ch

[1
]

G
en
er
ic

N
o

N
o

N
o

Y
es

N
o

C
on

su
m
er

PC
M

m
et
am

od
el

[2
3]

G
en
er
ic

N
o

N
o

Y
es

N
o

N
o

Pr
ov

id
er
,

de
ve
lo
pe
r
an
d

co
ns
um

er

70 M. Rathore and U. Suman

• Inclusion of consumers’ ranking: Different service consumers have diverse and
changeable preferences for the non-functional parameters depending on the
situation. This parameter helps in determining whether or not the approaches
involve the consumer preferences during service discovery request.

• User perspectives: This parameter helps in analyzing whether or not the existing
approach considers requirements of different users at various stages of service
development while designing the QoS models.

• Inclusion of brokers’ ranking: Runtime evaluation of QoS parameter after the
verification of providers’ service by broker should be recorded as brokers’
feedback. The broker generates the ranking of particular web service before
publishing on web. This parameter helps in determining whether or not the
approach involves brokers’ ranking for web service during service registration.

From the comparative analysis of various existing QoS models, it has been
observed that most of the existing work only focus on consumers’ perspective QoS
for web service selection [5, 6, 7, 16, 20, 24, 25]. Some considers non-functional
parameters from both consumer and provider perspective while others include
broker, consumer and developer perspectives [1, 2, 3]. Apart from the existing
work, there can be a multiperspective classification of QoS parameters, which can
classify non-functional parameters from the consumer, broker and provider per-
spective at the level of web service operation. Also, developing a mechanism
through which the computation of rank value can be performed without taking the
hurdle of specifying the weights for each QoS parameter. In this book chapter, an
extensible multiperspective classification of QoS parameters, PCB-QoS classifica-
tion is presented, which considers some new QoS parameters, i.e. access rate and
overall aggregated effective QoS (OAEQoS) parameter [8]. An approach for the
computation of overall quality score of web services that uses presented classifi-
cation is also proposed. Unlike traditional WSM approach, the ARSM approach
computes the overall quality score using default priority constraints, which is
associated with each QoS parameter of PCB-QoS classification.

4.4 PCB-QoS Classification

Generally, web service requirements are classified into functional and
non-functional categories. Functional requirements describe the specific function of
a web service, which includes inputs, operations and outputs. Non-functional
requirements describe the additional features associated with each web service
related to the operation. An extensible multiperspective PCB-QoS classification of
non-functional parameters of web services is proposed and it is shown in Fig. 4.1.
This classification is based on the idea of partitioning generic non-functional
parameters from different perspective. This type of classification can be helpful for
the explicit distinction between requested, offered and monitored non-functional
parameters from the perspective of service provider, consumer and broker. Also, it

4 Classification of Non-functional Requirements … 71

can be helpful to specify non-functional requirements for different types of oper-
ations performed on web services such as, web service monitoring, discovery and
publish to be performed by various parties involved at runtime.

PCB-QoS Class i f ica t ion

Consumer Spec i f ic

QoS

Provider Spec i f ic

QoS

Broker Spec i f ic QoS

Pr ice

Minimum

Reputa t ion

Maximum

Reputa t ion

Avai lab i l i ty

Rel iabi l i ty

Response Time

Pr ice

Avai lab i l i ty

Rel iabi l i ty

Response Time

Ranking

Access Rate

Reputa t ion

Calcu la t ion

OAEQoS

Fig. 4.1 PCB-QoS classification for web services

72 M. Rathore and U. Suman

4.4.1 Perspectives of PCB-QoS Classification

The parameters of PCB-QoS classification can be viewed from three perspectives,
i.e. provider, consumer and broker, which are discussed in subsequent paragraphs.

Service Consumers’ Perspective. From service consumers’ perspective,
non-functional properties can be classified as mandatory and optional. Service
consumer uses QoS parameter with functional requirements during service dis-
covery request, which includes price, response time, availability, reliability, mini-
mum reputation score and maximum reputation score. The service consumer
requires the knowledge and representation of various non-functional parameters for
service discovery request, which is not always possible. The presented PCB-QoS
classification automatically predicts non-functional parameters value with a default
priority constraint on behalf of service consumers’ to avoid aforementioned
problem.

Service Broker’s Perspective. Since the internal logic of the services is hidden
from service consumers; therefore, actual QoS is unknown until the service is
invoked. Hence, quality management of services before publishing is important in
SOA environment. Defining metrics is a precondition to evaluate the QoS, which
ensures that the high quality service is published [8]. Exposing non-functional
parameters from brokers’ perspective is essential during web service monitoring,
publishing and service discovery request. From consumers’ perspective, the broker
can automatically consider the non-functional parameter for service discovery
request, if they are unable to explicitly specify these parameters. Since, there can be
situations where the service consumers do not have appropriate knowledge about
the importance and values for different non-functional parameters to be specified
during service request. A priority can be used to control the order in which QoS
parameters have to be considered at various web service operations. Non-functional
parameters from broker’s perspective include availability, reliability, response time,
ranking, access rate and OAEQoS. The broker also works on behalf of service
provider in order to ensure the correctness and accuracy of published QoS
information.

Service Providers’ Perspective. From the providers’ point of view,
non-functional parameters are those parameters that web service provider require to
be guaranteed after publishing the web service. A provider can publish two types of
non-functional parameters along with functional requirements, which are static and
dynamic. The PCB-QoS model prevents the services from publishing the malicious
and wrong information of non-functional parameters by service provider. Some
static parameters such as price can be obtained from the service providers directly.
However, other QoS attributes’ values like response time, availability and reliability
need to be monitored and published by reliable third-party broker. Here, service
provider registers the services to broker and then broker publishes the services
along with static and dynamic QoS parameters.

4 Classification of Non-functional Requirements … 73

4.4.2 PCB-QoS Parameters

The parameters of PCB-QoS classification are explained as follows:
Access Rate. Access rate is an accessibility parameter that requires continuous

monitoring of web services through broker to provide updated QoS information. It
is directly related with the availability from the host location. Before publishing a
new service on the server, the broker invokes and monitors the particular service in
its own operating environment for a specific time period. The purpose of moni-
toring the web service is to evaluate the access rate and other QoS parameter, so that
the consumer can always access web service with updated QoS information.

Access rate (Ar) can be defined as the rate of total number of web service
requests which are requested by the service consumer through broker interface. It is
the sum of successfully invoked web services, failed web services and bounced web
services without invocation. These three types of request can be represented by
success access rate, i.e. (S(Ar)), failure access rate, i.e. (F(Ar)), and bounce access
rate, i.e. (B(Ar)). Access rate can be calculated as follows:

Ar ¼
X

S Arð Þð Þþ
X

F Arð Þð Þþ
X

B Arð Þð Þ ð4:1Þ

Bounce access rate. It is the rate at which the service consumer discovers the
particular service and return back without invoking it through broker interface. The
bounce access rate can be calculated as the ratio of total number of bounces for a
web service (Wb) and access rate Ar. B(Ar) can be calculated as follows:

B(Ar) = Total number of bounced web services/(total number of bounced web
services + total number of invoked web services)

¼ B Arð Þ ¼
P

WbP
Wb þ

P
Wi

ð4:2Þ

Thus, the percentage of B(Ar) can be calculated as

B Arð Þ ¼
P

Wb

Ar
� 100 ð4:3Þ

Failure access rate. It is the ratio between the number of times a web service
request failed (Wfailed) to perform its operation for any reason and the number of
times the web service was called for execution; i.e. failed executions/called for
execution. It is the relationship between the number of times the web service failed
after execution and the number of times the web service is successfully invoked.
Failure access rate can be represented by F(Ar) and can be calculated using the
following formula:

F(Ar) = Failed web services/(failed web services + successfully invoked web
services + bounced web services).

74 M. Rathore and U. Suman

Thus, the percentage of F(Ar) can be calculated as

F Arð Þ ¼
P

Wfailed

Ar
� 100 ð4:4Þ

Successful access rate. It is the ratio between the number of times a web service
is successfully invoked to perform its operation and the number of times the web
service was called for execution, i.e. successful executions/called for execution. It is
the relationship between the number of times the web service is successfully
invoked and the number of times the web service was called for execution.
Successful access rate S(Ar) can be calculated using the following formula:

S Arð Þ ¼
P

Wsuccessful

Ar
� 100 ð4:5Þ

The sum of the probability of S(Ar) and the probability of F(Ar) will always be
unity. It can be expressed as follows:

S Arð Þþ F Arð Þ ¼ 1 ð4:6Þ

S Arð Þ ¼ 1� F Arð Þ ð4:7Þ

Reliability. Reliability is the probability in which the provider correctly answers
a request within a maximum expected time. It is measured as the number of success
request divided by the number of request. It is denoted by Wreliability and can be
expressed as follows:

Wreliability ¼ SðArÞ ð4:8Þ

Availability. is the probability that the web service is in its expected functional
condition, and therefore, it is capable of being used in a stated environment.
Availability deals with the duration of uptime for web service operations. It is often
expressed in terms of uptime and downtime of web service. Uptime refers to a
capability to perform the task and downtime refers to not being able to perform the
task. It is dented by availability and can be expressed as follows:

Wavailability ¼
P

SðArÞ
Ar

ð4:9Þ

Response Time. Response time is the total time duration spent between the
request from service consumer to broker (Tsc_request, Tsb_request) and response from
service broker to service provider (Tsb_response, Tsp_response) for a particular web
service from the side of service consumer, broker and service provider It is denoted
by Wrt and can be calculated as

4 Classification of Non-functional Requirements … 75

Wrt ¼ Tsc request þTsb request
� �� Tsb response þTsp response

� � ð4:10Þ

Effective Service Access Time. It is the total time required to serve the con-
sumers’ request for particular service through broker. It can be denoted by TESA.
The broker access time (TBA) and service access time (TSA) can be evaluated
through broker for TESA. TBA and TSA can be calculated as

TBA ¼ Tsc request � Tsb response ð4:11Þ

TSA ¼ Tsc request þTsb request
� ��ðTsb response þTsp responseÞ ð4:12Þ

Therefore,

TESA ¼ FðArÞ � TBAð Þþ FðArÞ � TSAð Þ ð4:13Þ

Overall Aggregated Effective QoS. Overall aggregated effective QoS
(OAEQoS) parameter is an aggregated quality score of a web service that requires
the values of all non-functional parameters obtained through monitoring and
evaluation performed by third-party broker. With the help of this parameter, the
broker can easily obtain the overall quality score and rank of a web service by
combining all the non-functional parameter of registered web service before pub-
lishing it on server. Also, the consumer can select the best services for simple as
well as complex task with provided rank.

In OAEQoS parameter, each non-functional parameter should have a priority
assigned according to their importance during service selection and registration.
Most of the times, service consumers are not experienced enough in deciding
priorities to non-functional parameters for web service selection; therefore, a default
priority constraint can be assigned to non-functional parameters according to their
importance. The priority value can vary from 1 to 5. The priority value 1 is the
lowest priority assigned to a parameter, which is less important and 5 means highest
priority assigned to a parameter, which is more important during service selection
and registration and so on.

OAEQoS requires that the values of non-functional parameters should be in
exactly the same measurable unit. It is calculated at runtime as an average aggre-
gated sum of real values of response time, availability, reliability, etc., by the
number of non-functional parameters. OAEQoS for each web service can be
computed as follows:

OAEQoSðWSÞ ¼
Xn;m

i;j¼0
wiqj=x; ð4:14Þ

where qj is the monitored QoS value of each non-functional parameter of web
service, wi is the default priority value of a parameter, and x is the number of
non-functional parameters. The values of each QoS parameter qj for every web
service are calculated at runtime by third-party broker during service registration.

76 M. Rathore and U. Suman

Although, the number of QoS parameters discussed in the presented classifica-
tion is limited, but due to the extensible nature of the PCB-QoS, it is possible to
extend the classification to integrate other non-functional parameters without
altering the basic one.

4.4.3 Monitoring and Evaluation Algorithm for PCB-QoS
Parameters

An algorithm is proposed for monitoring and evaluation of different non-functional
parameters and overall quality score at broker’s operating environment. With the
help of proposed algorithm, broker can monitor the non-functional parameters of
each web service before publishing on host location and the consumers of service
can retrieve up-to-date web services with QoS information. In this algorithm,
invoke and monitor procedure invokes the particular web service for a specified
time period for finding the number of successful request (success_req), failed
request (failed_req) and bounced request (bounced_req). The obtained values of
success_req, failed_req and bounced_req can further be used to construct the values
of other non-functional parameters. The tot_req is the count of total number of
request arrived for a particular web service. The s_rate, f_rate and b_rate represents
the rate of percentage of successful, failed and bounced requests. OAEQoS is the
average of all the evaluated QoS parameters. The update_old_QoS_dataset updates
the old QoS data with the new QoS data after every invocation.

The algorithm for monitoring and evaluation of proposed QoS parameters, i.e.
INVOKE_&_MONITOR_WEB_SERVICE performed at broker’s operating envi-
ronment is discussed in Algorithm 1 below.

Algorithm 1 INVOKE_&_MONITOR_WEB_SERVICE (WSName, WSUrl, N).
WSName is the name of web service to be invoked and WSUrl is the destination
URL, where the service is actually located. N is the total number of QoS parameters
used for the evaluation of average score of all QoS parameters.

Input: WsName, WSUrl, N.
Output: successful_req, failed_req, bounced_req, tot_req, s_rate, f_rate, b_rate,

reliability, availability, response_time, OAEQoS.

1. [Initialize]
success_req=0
failed_req=0
bounced_req=0

2. [Retrieve old successful request, failed request and bounced request from web
service QoS dataset]
Read&Store (WSName, old_succ_request, old_failed_request, old_bounced_
request)

3. [Invoke the specified web service]

4 Classification of Non-functional Requirements … 77

If invoked_success=true then
End if
If invoked_bounced=true then
success_req=success_req +1
End if
If invoked_failed=true then
failed_req =failed_req +1
End if
If invoked_bounced=true then
bounced_req =bounced_req +1
End if

4. [Evaluate other parameters]
tot_req=success_req+failed_req+bounced_req
s_rate=success_req/ tot_req
f_rate=failed_req/ tot_req
b_rate=bounced_req/tot_req
reliability=s_rate
availability=s_rate/ (s_rate+f_rate)
response_time=avg (resp_time)
OAEQoS=(reliability+availability+response_time)/ N

5. [Update the old QoS values into the dataset]
update_old_QoS_Dataset (success_req, failed_req, bounced_req, tot_req,
s_rate, f_rate, b_rate, reliability, availability, response_time, OAEQoS)

6. [Display the QoS values]
Print availability, reliability, response_time, OAEQoS.

7. [Finished]
Return.

The INVOKE_&_MONITOR_WEB_SERVICE algorithm monitors and evalu-
ates non-functional parameters. The procedure EVALUATE_WEB_SERVICES
calls INVOKE_&_MONITOR_WEB_SERVICE to evaluate non-functional
parameters for each web service and it is described as follows:

Algorithm 2 EVALUATE_WEB_SERVICES (WSName s). Given WSName is
the name of web service; WSUrl is the destination url of web service and N is the
number of QoS parameters. Algorithm Evaluate_WS shows the list of similar web
services that fulfils the required functionality. This algorithm evaluates the QoS
parameters for each service s in service list service_list.

Input: Web service name
Output: Web service with QoS

1. [Read the number of non-functional parameters]
Read N

78 M. Rathore and U. Suman

2. [Select web service from service_list for QoS evaluation]
For each service s in service_list
Begin

CALL INVOKE_&_MONITOR_WEB_SERVICE

End.

This algorithm can be helpful in evaluating the values of different non-functional
parameters through access rate and provide the aggregated QoS score of each web
service during service discovery and publish. The obtained quality score can be
used for ranking and selecting the appropriate service for composition, which has
highest score. In spite of the aforesaid advantages, the proposed algorithm can be
considered to evaluate the values of non-functional parameters of different units.

4.5 ARSM Approach

An ARSM approach is a rank-value computational approach for computing the
rank value of a service. It uses the PCB-QoS classification for the computation of
overall quality score. It is based on the concept of MADM approach for the cal-
culation of overall quality score. In ARSM approach, each non-functional param-
eter is assigned a default priority implicitly as a weight. An ARSM approach is an
enhancement over traditional WSM approach, where each non-functional parameter
is assigned a specific weight explicitly between 0 and 100 % [5]. It is an averaging
method in which the monitored values of different non-functional parameters are
multiplied with corresponding weights, summed up and finally it is divided by the
number of non-functional parameters. The ARSM approach helps to determine the
values of non-functional parameters of PCB-QoS classification model. Among the
various non-functional parameters, the OQS can be computed in three steps using
ARSM approach, namely; scaling QoS parameters values, assigning default priority
constraint and computation of OQS. These steps are discussed in following
subsections.

4.5.1 Scaling QoS Parameters Value

Scaling QoS parameter values to allow a uniform measurement of the multidi-
mensional service qualities requires independent units and range. Since, QoS
parameters could be either positive or negative in scaling, some QoS values need to
be maximized, i.e. higher value provides higher quality, for example availability
and reliability. Whereas, other values have to be minimized, i.e. higher value
provides lower quality. This includes parameters such as, execution time and price.
In this situation, the QoS parameters need to be normalized according to the

4 Classification of Non-functional Requirements … 79

formulas [5]. The values of negative attributes are normalized by expression (4.15)
and the values of positive attributes are normalized by expression (4.16).

qi;j ¼
ðqmax

i;j � qi;jÞ=ðqmax
i;j � qmin

i;j Þ if qmax
i;j � qmin

i;j 6¼ 0; i; j ¼ 1; 2; . . .; n
1 if qmax

i;j � qmin
i;j ¼ 0

(

ð4:15Þ

qi;j ¼
ðqi;j�qmin

i;j Þ=ðqmax
i;j � qmin

i;j Þ if qmax
i;j � qmin

i;j 6¼ 0; i; j ¼ 1; 2; . . .; n
1 if qmax

i;j � qmin
i;j ¼ 0

(
ð4:16Þ

In the scaling process, each QoS attribute value, qi,j, is transformed into a value
between 0 and 1, by comparing it with the minimum(qi,j) and maximum(qi,j)
possible values according to the available QoS information of service candidates.

4.5.2 Assigning Default Priority Constraints

Scaling process is followed by a priority assignment process for representing user
priorities and preferences. The ARSM approach requires that each non-functional
parameter should have assigned default priority according to their importance
during service selection and registration such as WSM method. Unlike WSM
method, ARSM approach is able to automatically incorporate the priority with each
non-functional parameter, if it is not specified by the service consumer. Since there
can be situations, where the service consumers do not know which non-functional
parameter is more or less important for web service discovery. Therefore, on behalf
of service consumer, a default priority is assigned to each non-functional parameter
according to their importance by the service broker. The priority value varies from 1
(less important) to 5 (more important). The default priority can be used at the time
of service selection as well as services registration.

4.5.3 Computation of OQS

Computation of OQS requires transforming the multidimensional parameters of
QoS of web service into a single real value, to enable sorting and ranking of service
candidates. OQS parameter is an overall quality score of a web service that requires
the values of all non-functional parameters obtained through monitoring and
evaluation performed by a third-party broker. This parameter can be helpful to
obtain the overall quality score and rank of a web service, which is to be published

80 M. Rathore and U. Suman

later onto server. Also, on the basis of provided rank, the consumer can also be able
to select the best services for simple as well as complex task. OQS requires that the
values of all non-functional parameters should be in the same measurable unit. It is
calculated at runtime as an average aggregated sum of real values of response time,
availability, reliability, etc., by the number of non-functional parameters. The fol-
lowing formula can be used to compute OQS for each web service:

OQSðWSÞ ¼
Xn;m
i;j¼0

wiqj=x ð4:17Þ

4.6 Implementation

The monitoring and evaluation of PCB-QoS parameters can be implemented
through a set of functionally similar web services stored into database. These web
services have been collected from different sources such as service-repository.com,
xmethod.net, theserverside.com, visualwebservice.com, webservicex.com and
webservicex.net. The WSdatabase for these web services is created in SQL Server
2008 R2, which includes approximately 1385 web services with their web service
id (WSID), web service name (WSname) and URLs. These web services were
invoked several times for a period of 1 month. All the web services were tested to
initially determine the number of successful, failed and bounced request. The
total_request, success_rate, failure_rate, bounce_rate, availability, reliability,
response_time and rating can be calculated after finding the success, failed and
bounced requests.

Out of 1385 web services, a weather forecasts web service having WSDL URL;
http://www.webservicex.net/WeatherForecast.asmx? and web service ID 8 is
accessed directly from remote location around 80 times to determine successful,
failed and bounced request. The results after invoking the web services have stored
in SQL Server 2008 R2. The value of OAEQoS parameter can be evaluated using
these evaluated values of non-functional parameter as shown in Table 4.2.

A graphical user interface (GUI) is developed as shown in Fig. 4.2, to implement
the monitoring and evaluation mechanism for the proposed parameters on Windows
2007 server platform using Microsoft Visual Studio .NET 2012 development
environment and ASP.NET, C#.NET as a programming language. The interface
helps to evaluate the values of above parameters such as, total_request, suc-
cess_rate, failure_rate, bounce_rate, availability, reliability, response_time and
OAEQoS for weather forecast web service.

4 Classification of Non-functional Requirements … 81

http://www.webservicex.net/WeatherForecast.asmx

Table 4.2 Values of non-functional parameters

ID WSName WSURL Success
Access
Rate

Failure
Rate

Average
Success
Access

Availability Response
 Time

Reliability OAEQoS

1 Calculator service #http://localhost:5 100 30 0.76 0.7058824 0.041 0.7058824 0.484255
2 calculator service #http://localhost:5 59 45 0.59 1 0.001 0.8023 0.6011
3 calculator service #http://localhost:5 90 20 0.81 1 0.001 0.5 0.500333
4 Translate service #http://www.web 79 15 0.84 0.8723 0.441 0.45 0.587767
5 Whether forcast se http://www.webse 50 18 0.74 0.8727 0.041 0.7 0.5379
6 Stock Quote #http://www.web 30 45 0.4 0.8749 0.041 0.7 0.538633
7 Send SMS service #http://www.web 20 5 0.7 0.81 0.003 0.84 0.551
8 Whether forcast se #http://www.web 50 10 0.5 0.84 0.003 0.74 0.527667
9 Whether forcast se #http://www.restf 67 15 0.45 0.74 0.005 0.4 0.381667

10 US Address verifc #http://www.web 90 20 0.7 0.4 0.008 0.7 0.369333
11 Calculate http://www.deept 89 30 0.7 0.7 0.015 0.67 0.461667
12 AutoCompleteSer http://www.hydro 90 50 0.5 0.5 0.002 0.7 0.400667
13 ASP_x0020_to_x http://fullerdata.co 78 10 0.76 0.45 0.002 0.6 0.350667
14 showmyip http://www.ippag 89 10 0.47 0.7 0.002 0.5 0.400667
15 PingService http://216.33.67.1 89 10 0.6 0.7 0.002 0.74 0.480667
16 Dilbert http://gcomputer.n 90 4 0.5 0.5 0.041 0.4 0.313667
17 Trans http://www.sarma 98 7 0.42 0.67 0.041 0.7 0.470333
18 Artists http://sixteencolor 95 9 0.37 0.7 0.041 0.5 0.413667
19 Comments http://adamkinney 45 10 0.8 0.6 0.003 0.8727 0.4919
20 captchaWebServi http://www.axiseb 67 15 0.77 0.5 0.003 0.8749 0.4593
21 AutoCompleteSer http://www.brend 60 10 0.8 0.42 0.005 0.81 0.411667
22 ExtractWS http://cluuz1.cluuz 55 10 0.8 0.37 0.008 0.84 0.406
23 IpToLocationWS http://www.conne 34 10 0.9 0.8 0.015 0.8727 0.562567
24 GuestBook http://www.dotne 69 25 0 0.77 0.002 0.8749 0.548967
25 Crop http://crop.goofyt 40 1 0 0.8 0.003 0.81 0.537667
26 sendmailWSDL http://www.nhuyn 32 1 0 0.8 0.003 0.84 0.547667
27 HashProviderServ http://web8.secur 60 1 0 0.9 0.005 1 0.635
28 Calculator_x0020 http://www.ecs.sy 20 1 0 0.8 0.008 1 0.602667
29 soapCheckUserR http://www.trixbo 40 1 0 0.77 0.015 0.8723 0.552433
30 SessionService1 http://aspalliance.c 45 1 0 0.8 0.002 0.8727 0.558233
31 CasGroups http://skyservice.p 45 1 0 0.8 0.002 0.8749 0.558967
32 RecipeService http://oscar.snapp 50 1 0 0.9 0.002 0.7 0.534
33 EktronAsyncProc http://www.capito 68 1 0 0 0.002 0.66 0.220667

Fig. 4.2 Evaluation of non-functional parameters and OAEQoS

82 M. Rathore and U. Suman

For example, for weather web service, which is having ID 8, the value of
OAEQoS will be 0.4631, when the observed real values of reliability, availability
and response time are considered as 0.7058824, 0.7058823 and 0.041, respectively,
as shown in Table 4.2. Similarly, the non-functional parameters can be evaluated
for other web services. With the help of interface as shown in Fig. 4.2, the broker
can evaluate the value of OAEQoS parameter by aggregating different
non-functional parameters value. Through the value of OAEQoS parameter, the
broker can rank web service before publishing on the host location from where it is
accessible by the service consumers. The service consumer can select the best
services for discovery and composition of services with the help of published
OAEQoS score.

4.7 Experimental Evaluation

The experimental evaluation of ARSM approach have been conducted and com-
pared with the WSM method used by most of the existing service selection
approaches for ranking candidate services. Out of these 1385 services, 20 web
services were invoked and tested several times for a period of 8 days to determine
the value of access rate, availability, reliability, response time, and reputation of
service. The overall quality score can be computed with the help of five
non-functional parameters, which are response time, availability, reliability, cost
and reputation. The functional requirements of a service and the QoS constraints are
provided as input for the service selection process.

The validity of proposed ARSM approach can be analyzed by applying it on a
set of generic QoS parameters such as, response time, throughput, availability,
reliability and cost considered by most of the existing service selection approaches
[5, 6, 7, 13, 16]. Here, the performance of ARSM approach is compared against
WSM approach using the QoS parameters and their values specified in Table 4.3.
Empirical results of the proposed ARSM approach against the existing service
selection approaches, which uses WSM, are shown through the graphical repre-
sentation in Fig. 4.3. It shows that the performance of proposed ARSM approach is
10% better than WSM method used in existing approaches for calculation of overall
quality score of around 1385 services [5, 6, 13]. Thus, it is easier to rank and select
the candidate web service with highest quality score using the proposed approach
for composition without specifying weights for non-functional parameters
explicitly.

4 Classification of Non-functional Requirements … 83

T
ab

le
4.
3

V
al
ue
s
of

no
n-
fu
nc
tio

na
l
pa
ra
m
et
er
s
in

W
SM

an
d
A
R
SM

[5
]

Se
rv
ic
es

R
es
po

ns
e

tim
e

T
hr
ou

gh
pu

t
A
va
ila
bi
lit
y

R
el
ia
bi
lit
y

C
os
t

R
an
k
va
lu
e
us
in
g

W
SM

=
P W

i
*
Q
i

R
an
k
va
lu
e
us
in
g

A
R
SM

=
P (W

i
*
Q
j)
/x

S1
0.
67

83
0.
64

48
1

0.
95

0.
99

0.
72

14
8

0.
85

26
2

S2
0.
57

78
0.
50

58
1

0.
99

0.
96

0.
70

15
3

0.
80

67
2

S3
0.
40

2
0.
45

85
0.
98

0.
98

0.
97

0.
65

53
4

0.
75

81

S4
0.
25

12
0.
56

69
0.
99

0.
99

0.
98

0.
65

47
8

0.
75

56
2

S5
0.
27

02
0.
59

8
0.
97

0.
97

0.
99

0.
65

47
0

0.
75

96
4

S6
0.
47

72
0.
56

7
0.
97

0.
96

0.
98

0.
69

78
3

0.
79

08
4

S7
0.
55

12
0.
56

67
0.
99

0.
94

0.
99

0.
70

75
8

0.
80

75
8

S8
0.
25

12
0.
56

69
0.
99

0.
99

0.
99

01
0.
65

73
4

0.
75

76
4

S9
0.
35

12
0.
00

9
0.
99

0.
98

0.
97

0.
56

70
4

0.
66

00
4

S1
0

0.
25

12
0.
56

69
0.
99

0.
99

0.
99

01
0.
65

84
0

0.
75

76
4

84 M. Rathore and U. Suman

4.8 Summary

The classification of generic QoS parameters from the multi-user perspective is
required at different levels of web service operations such as, service discovery
request, publishing, monitoring and evaluation. In most of the service selection
approaches, QoS models are designed from consumers’ point of view. Since the
QoS requirements are different at various stages of service development, still there
is a lack of standard solution, which can deal with different users’ QoS require-
ments. In this chapter, an extensible multiperspective PCB-QoS classification is
presented in which non-functional parameters are classified with various perspec-
tive considering web service consumers, providers and broker at various stages of
service development. This classification can reduce the overhead to specify QoS
parameters during web service discovery and registration. PCB-QoS classification
is helpful in situation, where the service consumers have little or no knowledge
about the description of QoS of web service. It also prevents the services from
malicious service provider to publish the incorrect and inaccurate QoS information.

Apart from the PCB-QoS classification, an ARSM approach is proposed to
compute the overall quality score for ranking candidate services with the help of
presented QoS classification. Unlike WSM approach, the ARSM approach uses the
default priority constraints associated with each QoS parameter of PCB-QoS
classification. An algorithm is also presented for monitoring and evaluation of
PCB-QoS parameters. Experiments have been conducted to show the effectiveness
of proposed approach. In spite of the above advantages, the proposed ARSM
approach is unable to consider the non-functional parameter values of different
units.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

O
ve

ra
ll

Q
ua

lit
y

Sc
or

e

Web Services

WSM versus ARSM Approach

WSM Approach

ARSM Approach

Fig. 4.3 WSM versus ARSM Approach

4 Classification of Non-functional Requirements … 85

References

1. Choi, S. W., Her, J. S., Kim, S. D.: QoS Metrics for Evaluating Services from the Perspective
of Service Providers. IEEE International Conference on e-Business Engineering, pp. 622–625
(2007).

2. Balfagih, Z., Hassan, M. F.: Quality Model for the Web Services from Multi-stakeholders’
Perspective. Information Management and Engineering (ICIME’09), Kuala Lumpur,
Malaysia, pp. 287–291 (2009).

3. Becha, H. and Daniel, A.: Non-functional Properties in Service Oriented Architecture—A
Consumer’s Perspective. Journal of Software, Vol. 7, No. 3 (2012).

4. Hong, L., Hu, J.: A Multi-dimension QoS based Local Service Selection Model for Service
Composition. Journal of Networks, Vol. 4, No. 5, pp. 351–358 (2009).

5. Guoping, Z., Huijuan, Z., Zhibin, W.: A QoS-based Web Services Selection Method for
Dynamic Web Service Composition. First International Workshop on Education Technology
and Computer Science (ETCS’09), IEEE Computer Society, Vol. 3, pp. 832–835 (2009).

6. Thirumaran, M., Balasubramanie, P.: Architecture for Evaluating Web Services QoS
Parameters using Agents. International Journal of Computer Applications (IJCA), Foundation
of Computer Science, USA, Vol. 10, No. 4, (2010).

7. Zheng, Z., et al.: QoS Aware Web Service Recommendation with Collaborative Filtering.
Published in IEEE Transactions on Services Computing, Vol. 4, No. 2, pp. 140–152 (2011).

8. Rathore, M., Suman, U.: Evaluating QoS Parameters for Ranking Web Services. 3rd IEEE
International Advance Computing Conference(IACC-2013), IEEE Computer Society,
Ghaziabad (UP), February 22–23, (2013).

9. Rajendran, T., Balasubramanie, P.: An Efficient WS-QoS Broker based Architecture for Web
Service Selection. International Journal of Computer Applications (IJCA), Foundation of
Computer Science, USA, Vol. 1, No. 9, (2010).

10. Rajendran, T., Balasubramanie, P.: An Optimal Broker based Architecture for Web Service
Discovery with QoS Characteristics. International Journal of Web Services Practices (IJWSP),
Korea, Vol. 5, No. 1, pp. 32–40 (2010).

11. Rajendran, T.: Flexible and Intelligent Architecture for Quality based Web Service Discovery
with an Agent based Approach. International Conference on Communication and
Computational Intelligence (INCOCCI), Erode, pp. 617–622 (2010), 27-29 December.

12. Esfahani, R. K. M.: Reputation Improved Web Service Discovery based on QoS. Journal of
Convergence Information Technology (JCIT), Vol. 5, No. 9, (2010).

13. Ye, G.: A QoS Aware Model for Web Service Discovery. First International Workshop on
Education, Technology and Computer Science (ETCS ‘09), IEEE Computer Society, Wuhan,
Vol. 3, pp. 740–744 (2009).

14. Rajendran, T., Balasubramanie, P.: An Efficient Architecture for Agent based Dynamic Web
Services Discovery with QoS. Journal of Theoretical and Applied Information Technology
(JATIT), Pakistan, Vol. 15, No. 2, (2010).

15. Rathore, M., Suman, U.: A Quality of Service Broker based Process Model for Dynamic Web
Service Composition. Science Publications, Journal of Computer Science, USA, Vol. 7,
No. 8, pp. 1267–1274 (2011).

16. Rajendran, T.: Efficient Approach towards an Agent-Based Dynamic Web Service Discovery
Framework with QoS Support. Proc. of CSIT International Symposium on Computing,
Communication, and Control (ISCCC 2009), Singapore, Vol. 1, pp. 74–78 (2009).

17. Zeng, L., et al.: QoS aware Middleware for Web Services Composition. IEEE Transactions on
Software Engineering, Vol. 5, No. 30, pp. 311–327 (2004).

18. Vinek, E., et al.: Classification and Composition of QoS Parameters in Distributed,
Heterogeneous System. 11th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (CCGrid), IEEE Computer Society, Washington, pp. 424–433 (2011).

19. Yu, T., et al.: Efficient Algorithms for Web Services Selection with End to-End QoS
Constraints. ACM Transaction on Web (TWEB), ACM New York, Vol. 1, No. 1, (2007).

86 M. Rathore and U. Suman

20. Chaari, S., et al.: Framework for Web Service Selection Based on Non-functional Properties.
International Journal of Web Services Practices (IJWSP), Korea, Vol. 3, No. 2, pp. 94–109
(2008).

21. Guo, N., et al.: A Trusted Quality of Web Service Management Framework based on Six
Dimensional QOWS Model and End to End Monitoring. Proc. of the 11th APNOMS,
Springer. pp. 437–440 (2008).

22. Kim, Y.: QoS Aware Web Services Discovery with Trust Management. Journal of
Convergence Information Technology (JCIT), Vol. 3, No. 2, pp. 67–73 (2008).

23. Paoli, F. D., et al.: A Meta-model for Non-functional Property Description of Web Services.
Proc. of IEEE International Conference on Web Services (ICWS), (2008).

24. Wang, H.: Reputation based Semantic Service Discovery. Fourth International Conference on
Semantics, Knowledge and Grid (SKG’08), Beijing, pp. 485–486 (2009), 3–5 December.

25. Sha, L., Shaozhong, G., Xin, C., Mingjing, L.: A QoS based Web Service Selection Model.
International Forum on Information Technology and Applications, IEEE Computer Society,
Vol. 3, pp. 353–356 (2009).

4 Classification of Non-functional Requirements … 87

Chapter 5
The Requirements Elicitation Approaches
for Software-Defined Cloud Environments

Pethuru Raj, Parvathy Arulmozhi and Nithya Chidambaram

Abstract Without an iota of doubt, the overwhelming domain of requirements
elicitation and engineering has been continuously and consistently evolving in order
to catch up and match with the tricky and terrific expectations of producing and
sustaining next-generation systems, solutions, and services. Especially in the hot
and happening IT space and considering the growing complications of systems of
engagements (SoE)-like applications, the aspect of requirements engineering is
garnering a lot of attention and attraction. IT industry professionals and academic
professors are working in unison in charting out easy-to-implement and use
methods toward simplified requirements-gathering platforms, procedures, and
practices. In this chapter, we would like to dig deeper and deal with the concept of
software-defined clouds. Further on, the readers can read how requirements are
being solicited and subjected to a variety of investigations before getting selected as
sound and rewarding requirements for the right formation of software-defined
clouds. We will also register the proven and promising approaches and articulations
to speed up the process of simplifying and streamlining up the tasks associated with
the requirements engineering activity.

Keywords Software-defined networks � Requirements elicitation � Systems of
engagements (SoE) � Software-defined clouds

P. Raj (&)
Infrastructure Architect, Global Cloud Center of Excellence, IBM India,
Bangalore, India
e-mail: peterindia@gmail.com

P. Arulmozhi � N. Chidambaram
School of Electrical & Electronics Engineering, SASTRA University,
Thanjavur 613401, India
e-mail: parvathy@ece.sastra.edu

N. Chidambaram
e-mail: cnithya@ece.sastra.edu

© Springer International Publishing AG 2017
M. Ramachandran and Z. Mahmood (eds.), Requirements Engineering
for Service and Cloud Computing, DOI 10.1007/978-3-319-51310-2_5

89

5.1 Recollecting the Requirements Engineering Process

The field of software requirements engineering has been positively evolving in
order to fulfill the varying expectations of building new-generation software
products and packages. The quality of requirements collection has a direct impact
on the mandated success of software engineering. It enables software developers,
programmers, and engineers, to gain a deeper and decisive understanding about the
problems to resolve and the functionalities to implement. Building a competent
software-based solution is good but if it does not meet the customers’ expectations,
then it is bound to doom. Precisely and perfectly capturing both business expec-
tations and end users’ needs and constructing the software accordingly are the most
crucial things for the intended success of software engineering. In short, producing
and refining proven and promising techniques for efficient and effective require-
ments elicitation and engineering is, therefore, an important ingredient for software
engineering. With the arrival and articulation of powerful technologies (cloud,
mobile, analytics, social, embedded, etc.), there have to be improvements and
innovations in requirements gathering and application construction in consonance.

Typically, the requirements engineering process begins with the inception phase
and then moves on to elicitation, elaboration, negotiation, problem specification, and
ends with review or validation of the requirements specification. There are several
techniques, templates, tables, patterns, and other methods to unambiguously share
the requirements understanding across geographically distributed software devel-
opment team. Use cases, scenarios, functionality and feature lists, model diagrams,
and written specifications. Different methods are being followed for different situ-
ations. The first and foremost stage of inception is described as follows. Software
engineers use context-free and common questions to establish the nitty-gritty of the
problem, the people who want a solution, the nature of the solution, and the effec-
tiveness of the collaboration between customers and developers

The second phase is requirements elicitation that involves identifying and
understanding directly from customers and end users what the foremost objectives
and end-goals of software productions are, how the product ultimately fits into the
brewing business needs, and how the product is to be used on a day-to-day basis,
etc. The elaboration phase focuses on developing a refined technical model of
software functions, features, and constraints using the information obtained during
inception and elicitation. The negotiation step includes the refined requirements are
further categorized and organized into subsets, the intrigued relations among the
requirements identified, requirements reviewed for correctness and get prioritized
based on customer needs, etc.

The specification stage represents the production of work products describing the
functional as well as the nonfunctional requirements. Finally, it is validating the
recorded requirements with different stakeholders. Typically a comprehensive
feasibility study covering the various aspects such as the financial implications,
technical competency, resource availability, etc. is initiated to get to know whether
there is any kind of risks toward fulfilling the project implementation. There are

90 P. Raj et al.

integrated platforms and tools galore for requirements management and tracking,
change management, etc. However considering the complexity of software appli-
cations, the requirements engineering step goes through a variety of beneficial and
strategically sound transformations peppered with a few distinct disruptions. In this
chapter, we would like to focus on the ways and means of doing requirements
engineering for next-generation cloud environments. As accentuated below, the
cloud paradigm is traversing through a number of inspiring and innovation-filled
transformations.

5.2 The Literature Survey

The field of requirements engineering is definitely a matured one but with the
consistent arrival and availability of newer technology paradigms, the need for
unearthing fresh and flexible techniques and tools for facilitating accurate and
auditable requirements elicitation is being insisted everywhere. In this survey
section, we are to see some of the well-known research papers on this critical yet
challenging topic.

Holger Schrödl and Stefan Wind [1] evaluate a few selected requirements engi-
neering methods in terms of their applicability to the specific requirements of
cloud-based solutions. Armed with that knowledge, the authors have prepared a
comparison framework containing the features of cloud computing for a structured
comparison of different requirements engineering methods. This comparison
framework is applied to four established process models for requirements engi-
neering followed by recommendations for a requirements engineering system
adapted to cloud computing. Shreta Sharma and S.K. Pandey [2] have attempted to
cover all the major elicitation techniques along with their significant aspects at one
place. The intention of the authors is that such a comprehensive review would enable
the concerned stakeholders and readers to understand and select the most appropriate
technique to be used for their impending projects. Lori MacVittie [3] has written a
white paper and titled it as “Controlling the Cloud: Requirements for Cloud
Computing.” The author has articulated the various requirements to setup and sustain
cloud environments. Bhaskar Prasad Rimal, Admela Jukan, Dimitrios Katsaros, and
Yves Goeleven [4] have explored the architectural features of cloud computing and
classified them according to the requirements of end users, enterprises that use the
cloud as a platform, and cloud providers themselves. They have also shown that
several architectural features will play a major role in the adoption of the cloud
paradigm as a mainstream commodity in the enterprise world. This paper also pro-
vided a few key guidelines to software architects and cloud application developers.

The white paper [5] outlines the top ten critical requirements of cloud service
providers (CSPs) to worldwide corporates in order to confidently and cogently
embrace the various cloud offerings. There are a variety of service providers and it
is pertinent and paramount to have a firm grip of what are being offering, how they
are being packaged and delivered, etc. There are certain minimum expectations out

5 The Requirements Elicitation Approaches … 91

of these fast-flourishing cloud service providers. There are well-articulated risks and
this paper has listed the important ingredients of CSPs in order to lessen the
headaches of cloud consumers and customers.

Pericles Kouropoulos [6] has clearly articulated the urgent need for the
state-of-the-art mechanisms to extract traceable and trendy requirements for
building and hosting enterprise-grade application software on cloud environments.
As enlisted below, cloud environments, whether private, public or hybrid, are being
preferred to host and deliver enterprise-class applications. Thus the requirements
are definitely different for cloud-native as well as cloud-enabled applications. The
point here is that the appropriate changes need to be embedded in the ways and
means of performing requirements engineering in order to match up with the latest
trends and transitions happening in the hot IT space. This paper has laid down a set
of viable and venerable procedures and practices in order to emerging software.

Todoran, Irina; Seyff, Norbert; Glinz, Martin [7] has detailed a lot about re-
quirements elicitation in his seminal paper. It is a well known andwidely accepted fact
that requirements elicitation is a crucial step toward delivering successful software. In
the context of emerging cloud systems, the question is whether and how the elicitation
process differs from that used for traditional systems, and if the current methods
suffice. The authors have prepared value-enabling questionnaire and interviewed 19
cloud providers to gain an in-depth understanding of the state of practice with regard
to the adoption and implementation of existing elicitation methods. The results of this
exploratory study show that, whereas a few cloud providers try to implement and
adapt traditional methods, the large majority uses ad hoc approaches for identifying
consumer needs. There are various causes for this situation, ranging from consumer
reachability issues and previous failed attempts, to a complete lack of development
strategy. The study suggests that only a small number of the current techniques can be
applied successfully in cloud systems, hence showing a need to research new ways of
supporting cloud providers. The primary contribution of this paper lies in revealing
what elicitation methods are used by cloud providers and clarifying the challenges
related to requirements elicitation posed by the cloud paradigm. Further on, the
authors have identified some key features for cloud-specific elicitation methods.

Iliana Iankoulova andMaya Daneva [8] have exclusively focussed on the security
requirements. There are many publications dealing with various types of security
requirements in cloud computing but not all types have been explored in sufficient
depth. It is also hard to understand which types of requirements have been
under-researched and which are most investigated. This paper’s goal is to provide a
comprehensive and structured overview of cloud computing security requirements
and solutions. The authors have carried out a systematic review and identified security
requirements from previous publications that they have classified in nine subareas:
access control, attack/harm detection, non-repudiation, integrity, security auditing,
physical protection, privacy, recovery, and prosecution. The authors have found that

(i) the least researched subareas are non-repudiation, physical protection,
recovery and prosecution, and that (ii) access control, integrity, and auditability
are the most researched subareas.

92 P. Raj et al.

There is an executive’s guide [9] to the software-defined data center (SDDC)
published by TechRepublic, USA. This document details and describes the
nitty-gritty of next-generation cloud centers. The motivations, the key advantages,
and the enabling tools and engines along with other relevant details are being neatly
illustrated there. An SDDC is an integrated abstraction layer that defines a complete
data center by means of a layer of software that presents the resources of the data
center as pools of virtual and physical resources and allows their composition into
arbitrary user-defined services. A modern SDDC deployment is defined by virtu-
alized, software-defined resources that can be scaled up or down as required and
can be deployed as needed in a number of distinct ways. There are three key
components to the SDDC:

1. Software-defined computing
2. Software-defined networking
3. Software-defined storage

There are a several useful links in the portal [10] pointing to a number of
resources on the software-defined cloud environments. The readers are encouraged
to visit the portal to get the links for highly beneficial information on SDDCs.

5.3 Reflecting the Cloud Journey

The cloud journey is rigorously on the right track. The principal objective of the
hugely popular cloud paradigm is to realize highly organized and optimized IT
environments for enabling business automation, acceleration, and augmentation.
Most of the enterprise IT environments across the globe are bloated, closed,
inflexible, static, complex, and expensive. The brewing business and IT challenges
are therefore how to make IT elastic, extensible, programmable, dynamic, modular,
and cost-effective. Especially with the worldwide businesses are cutting down their
IT budgets gradually year after year, the enterprise IT team has left with no other
option other than to embark on a meticulous and measured journey to accomplish
more with less through a host of pioneering and promising technological solutions.
Organizations are clearly coming to the conclusion that business operations can run
without any hitch and hurdle with less IT resources through effective commoditi-
zation, consolidation, centralization, compartmentalization (virtualization and
containerization), federation, and rationalization of various IT solutions (servers,
storage appliances, and networking components). IT operations also go through a
variety of technologies-induced innovations and disruptions to bring in the desired
rationalization and optimization. The acts of simplification and standardization for
achieving IT industrialization are drawing a lot of attention these days. The various
IT resources such as memory, disk storage, processing power, and I/O consumption
are critically and cognitively monitored, measured and managed toward their
utmost utilization. The pooling and sharing of IT solutions and services are being
given the prime importance toward the strategic IT optimization.

5 The Requirements Elicitation Approaches … 93

Even with all the unprecedented advancements in the cloud landscape, there are
opportunities and possibilities. The concept of software-defined clouds (SDCs) is,
therefore, gaining a lot of accreditation these days. Product vendors, cloud service
providers, system integrators, and other principal stakeholders are looking forward
to having SDCs. The right and relevant technologies for the realization and sus-
tenance of software-defined cloud environments are fast maturing and stabilizing,
and hence, the days of SDCs are not too far away. This chapter is specially crafted
for expressing and exposing all the appropriate details regarding the elicitation and
engineering of various requirements (functional as well as nonfunctional).

5.4 Elucidating the Cloudification Process

The mesmerizing cloud paradigm has become the mainstream concept in IT today
and its primary and ancillary technologies are flourishing. The cloudification
movement has blossomed these days and most of the IT infrastructures and plat-
forms along with business applications are being remedied to be cloud-ready in
order to reap all the originally envisaged benefits of the cloud idea.

The virtualization technique has put in a firm and fabulous foundation for the
runaway success of cloud computing. Especially server machines are being logi-
cally partitioned to carve out a few highly insulated virtual machines (VMs). Then
there are a number of standards-compliant and industry-strength automation tools
for resource provisioning, configuration, orchestration, monitoring, and manage-
ment, software deployment and delivery. A 360° view of IT infrastructural com-
ponents through an integrated dashboard is the new normal. Thus powerful tools
play out a very interesting and inspiring role in making cloud pervasive, persuasive,
and penetrative. Most of the manual activities associated with the establishment of
IT infrastructures, software installation, IT administration and operation, IT services
management and maintenance are being automated through a variety of technolo-
gies. The concept of DevOps is very enticing these days in order to ensure the
incredible requirements of IT agility, adaptivity, and affordability. Automation
through templates, patterns, and tools is becoming a common affair in IT lately and
to substantially reduce human errors. The productivity of IT systems is being
remarkably increased through various ways and means. The processes are syn-
chronized to be lean yet efficient. Domain-specific languages (DSLs) are being
brought into bring the required automation. Platforms are being readied to accel-
erate IT management, governance, and enhancement. There are standards, such as
OpenStack and their optimal implementations in order to enforce resource porta-
bility, interoperability, accessibility, scalability, live-in migration, etc. That is, the
distributed deployment of compute instances and storage appliances under the
centralized management is the key differentiator for the prodigious success of cloud
computing.

94 P. Raj et al.

Technology Choice is Critical—There are several competent yet contrasting
technologies in the IT space today and hence the selection of implementation
technologies has to be strategically planned and carefully played out. Not
only the technologies but also the methodologies need to be smartly carried
out. In other words, the technology embarkation and usage have to be done
with all seriousness and sagacity otherwise, even if the technologies chosen
might be sound yet projects would not see the originally emphasized success.
Further on, the history clearly says that many technologies emerged and
disappeared from the scene without contributing anything substantial due to
the lack of inherent strengths and sagacity. Very few technologies could
survive and contribute copiously for a long time. Primarily the intrinsic
complexity toward technologies’ all-around utilization and the lack of revered
innovations are being touted as the chief reasons for their abject and abysmal
failure and the subsequent banishment into the thin air. Thus, the factors, such
as the fitment/suitability, adaptability, sustainability, simplicity, and extensi-
bility of technologies ought to be taken into serious consideration while
deciding technologies and tools for enterprise-scale, transformational and
mission-critical projects. The cloud technology is being positioned as the
best-in-class technology in the engrossing IT domain with all the necessary
wherewithal, power, and potential for handsomely and hurriedly contributing
for the business disruption, innovation, and transformation needs. Precisely
speaking, the cloud idea is the aggregation of several proven techniques and
tools for realizing the most efficient, elegant, and elastic IT infrastructure for
the ensuing knowledge era.

5.5 The IT Commoditization and Compartmentalization

The arrival of cloud concepts has brought in remarkable changes in the IT land-
scape that in turn lead in realizing big transitions in the delivery of business
applications and services and in the solid enhancement of business flexibility,
productivity, and sustainability. Formally cloud infrastructures are centralized,
virtualized, automated, and shared IT infrastructures. The utilization rate of cloud
infrastructures has gone up significantly. Still, there are dependencies curtailing the
full usage of expensive IT resources. Employing the decoupling technique among
various modules to decimate all kinds of constricting dependencies, more intensive
and insightful process automation through orchestration and policy-based config-
uration, operation, management, delivery, and maintenance, attaching external
knowledge bases are widely prescribed to achieve still more IT utilization to cut
costs remarkably.

5 The Requirements Elicitation Approaches … 95

Lately, the aroma of commoditization and compartmentalization is picking
up. These two are the most important ingredients of cloudification. Let us begin
with the commoditization technique.

• The Commoditization of Compute Machines—The tried and time-tested
abstraction aspect is being recommended for fulfilling the commoditization
need. There is a technological maturity as far as physical/bare metal machines
getting commoditized through partitioning. The server commoditization has
reached a state of semblance and stability. Servers are virtualized, containerized,
shared across many clients, publicly discovered and leveraged over any net-
work, delivered as a service, billed for the appropriate usage, automatically
provisioned, composed toward large-scale clusters, monitored, measured, and
managed through tools, performance tuned, made policy-aware, automatically
scaled up and out based on brewing user, data and processing needs, etc. In
short, cloud servers are being made workloads-aware. However, that is not the
case with networking and storage portions.

• The Commoditization of Networking Solutions—On the networking front, the
propriety and expensive network switches, and routers and other networking
solutions in any IT data centers and server farms are consciously commoditized
through a kind of separation. That is, the control plane gets abstracted out and
hence, the routers and switches have only the data forwarding plane. That
means, there is less intelligence into these systems thereby the goal of com-
moditization of network elements is technologically enabled. The controlling
intelligence embedded inside various networking solutions are adroitly segre-
gated and is being separately developed and presented as a software controller.
This transition makes routers and switches dumb as they lose out their costly
intelligence. Also, this strategically sound segregation comes handy in inter-
changing one with another one from a different manufacturer. The vendor
lock-in problem simply vanishes with the application of the widely dissected
and deliberated abstraction concept. Now with the controlling stake is in pure
software form, incorporating any kind of patching in addition to configuration
and policy changes in the controlling module can be done quickly in a risk-free
and rapid manner. With such a neat and nice abstraction procedure, routers, and
switches are becoming commoditized entities. There is fresh business and
technical advantages as the inflexible networking in present-day IT environ-
ments is steadily inching toward to gain the venerable and wholesome benefits
of the commoditized networking.

• The Commoditization of Storage Appliances—Similar to the commoditization
of networking components, all kinds of storage solutions are being commodi-
tized. There are a number of important advantages with such transitions. In the
subsequent sections, readers can find more intuitive and informative details on
this crucial trait. Currently, commoditization is being realized through the
proven abstraction technique.

96 P. Raj et al.

Thus commoditization plays a very vital role in shaping up the cloud idea. For
enhanced utilization of IT resources in an affordable fashion and for realizing
software-defined cloud environments, the commoditization techniques are being
given more thrusts these days.

The compartmentalization is being realized through the virtualization and con-
tainerization technologies. There are several comprehensive books on Docker-
enabled containerization in the market and hence, we skip the details of container-
ization, which is incidentally being touted as the next best thing in the cloud era.

As indicated above, virtualization is one of the prime compartmentalization tech-
niques. As widely accepted and articulated, virtualization has been in the forefront in
realizing highly optimized, programmable, managed, and autonomic cloud environ-
ments. Virtualization leads to the accumulation of virtualized and software-defined IT
resources, which are discoverable, network-accessible, critically assessable, interop-
erable, composable, elastic, easily manageable, individually maintainable, centrally
monitored, and expertly leveraged. The IT capabilities are being given as a service and
hencewe often come across theword “IT as a Service.”There is amovement toward the
enigma of granting every single IT resource as a service.With the continued availability
of path-breaking technologies, resource provisioning is getting automated and this will
result in a new concept of “resource as a service (RaaS).”

Bringing in the much-discoursed modularity in order to enable programmable IT
infrastructures, extracting and centralizing all the embedded intelligence via robust
and resilient software, distributed deployment, centralized management, and fed-
eration are being touted as the viable and venerable course of actions for attaining
the originally envisaged success. That is, creating a dynamic pool of virtualized
resources, allocating them on demand to accomplish their fullest utilization,
charging them for the exact usage, putting unutilized resources back to the pool,
monitoring, measuring, and managing resource performance, etc. are the hallmarks
of next-generation IT infrastructures. Precisely speaking, IT infrastructures are
being software-defined to bring in much-needed accessibility, consumability,
malleability, elasticity, and extensibility.

On-demand IT has been the perpetual goal. All kinds of IT resources need to
have the inherent capable of preemptively knowing of users’ as well as applica-
tions’ IT resource requirements and accordingly fulfill them without any instruc-
tion, interpretation, and involvement of human resources. IT resources need to be
scaled up and down based on the changing needs so that the cost can be under
control. That is, perfect provisioning of resources is the mandate. Overprovisioning
raises up the pricing whereas underprovisioning is a cause for performance
degradation worries. The cloud paradigm transparently leverages a number of
software solutions and specialized tools in order to provide scalability of applica-
tions through resource elasticity. The expected dynamism in resource provisioning
and de-provisioning has to become a core and concrete capability of clouds.

That is, providing right-sized IT resources (compute, storage, and networking)
for all kinds of business software solutions is the need of the hour. Users
increasingly expect their service providers’ infrastructures to deliver these resources
elastically in response to their changing needs. There is no cloud services

5 The Requirements Elicitation Approaches … 97

infrastructure available today capable of simultaneously delivering scalability,
flexibility, and high operational efficiency. The methodical virtualization of every
component of a cloud center ultimately leads to software-defined environments.

5.6 The Emergence of Software-Defined
Infrastructures (SDI)

We have discussed the commoditization tenet above. Now the buzzword of
software-defined everything (SDE) is all over the place as a fulfilling mechanism for
next-generation cloud environments. As widely accepted, software is penetrating
into every tangible thing in order to bring in decisive and deterministic automation.
Decision-enabling, activating, controlling, routing, switching, management, gover-
nance, and other associated policies and rules are being coded in software form in
order to bring in the desired flexibilities in product installation, administration,
configuration, customization, etc. In short, the behavior of any IT products (com-
pute, storage, and networking) is being defined through software. Traditionally, all
the right and relevant intelligence are embedded into IT systems. Now those insights
are being detached from those systems and run in a separate appliance or in virtual
machines or in bare metal servers. This detached controlling machine could work
with multiple IT systems. It is easy and quick to bring in modifications to the policies
in software controller rather on the firmware, which is embedded inside IT systems.
Precisely speaking, deeper automation and software-based configuration, control-
ling, and operation of hardware resources are the principal enablers behind the
longstanding vision of software-defined infrastructure (SDI).

A software-defined infrastructure is supposed to be aware and adaptive to the
business needs and sentiments. Such infrastructures are automatically governed and
managed according to the business changes. That is, the complex IT infrastructure
management is automatically accomplished in consonance with the business
direction and destination. Business goals are being literally programmed in and
spelled in a software definition. The business policies, compliance and configura-
tion requirements, and other critical requirements are etched in a software form. It is
a combination of reusable and rapidly deployable patterns of expertise, recom-
mended configurations, etc. in order to run businesses on the right path. There are
orchestration templates and tools, cloud management platforms, such as OpenStack,
automated software deployment solutions, configuration management, and work-
flow scheduling solutions, etc. in order to accelerate and automate resource pro-
visioning, monitoring, management, and delivery needs. These solutions are able to
absorb the above-mentioned software definitions and could deliver on them per-
fectly and precisely. The SDI automatically orchestrates all its resources to meet the
varying workload requirements in near real-time. Infrastructures are being stuffed
with real-time analytics through additional platforms, such as operational, log,
performance, and security analytics.

98 P. Raj et al.

As enunciated above, the SDI is a nimble, supple, highly optimized and orga-
nized, and workload-aware. The agility gained out of SDI is bound to propagate and
penetrate further to bring the much-needed business agility. The gap between the
business expectations and the IT supplies gets closed down with the arrival of
software-defined infrastructures. SDI comprises not only the virtualized servers but
also virtualized storages and networks. There are a few other names for SDI.
VMware calls it software-defined data centers (SDDCs), while others call it
software-defined environments (SDEs), software-defined clouds (SDCs),
cloud-enabled data centers (CeDCs). We can settle for the name “software defined
clouds (SDCs).”

5.7 The Major Building Blocks of Software-Defined
Clouds (SDCs)

Software-defined infrastructures are the key ingredients of SDCs. That is, an SDC
encompasses software-defined compute, storage, and networking components. The
substantially matured server virtualization leads to the realization of software-defined
compute machines. Highly intelligent hypervisors (alternatively recognized as virtual
machine monitors (VMMs) act as the perfect software solution to take care of the
creation, provisioning, de-provisioning, live-in migration, decommissioning of
computing machines (virtual machines and bare metal servers), etc. Most of the
servers across leading cloud centers are virtualized and it is clear that the server
virtualization is reaching a state of stability. In a sense, the SDC is simply the logical
extension of server virtualization. The server virtualization dramatically maximizes
the deployment of computing power. Similarly, the SDC does the same for all of the
resources needed to host an application, including storage, networking, and security.

In the past, provisioning a server machine to host an application took weeks of
time. Today a VM can be provisioned in a few minutes. Even containers can be
provisioned in a few seconds. That is the power of virtualization and containeriza-
tion. This sort of speed and scale being made possible through virtualization plat-
forms is being extended to other IT resources. That is, the whole cloud center is
getting fully virtualized in order to tend towards the days of software-defined clouds.

In SDCs, all IT resources are virtualized so they can be automatically configured
and provisioned and made ready to install applications without any human inter-
vention, involvement, and interpretation. Applications can be operational in min-
utes thereby the time to value has come down sharply. The IT cost gets reduced
significantly. There are a number of noteworthy advancements in the field of server
virtualization in the form of a host of automated tools, design, and deployment
patterns, easy-to-use templates, etc. The cloud paradigm became a famous and
fantastic approach for data center transformation and optimization because of the
unprecedented success of server virtualization. This riveting success has since then
penetrated into other important ingredients of data centers. IT resources are

5 The Requirements Elicitation Approaches … 99

virtualized thereby are extremely elastic, remotely programmable, easily consum-
able, predictable, measurable, and manageable. With the comprehensive yet com-
pact virtualization sweeping each and every component of data centers, the goals of
distributed deployment of various resources but centrally monitored, measured, and
managed is nearing the reality. Server virtualization has greatly improved data
center operations, providing significant gains in performance, efficiency, and
cost-effectiveness by enabling IT departments to consolidate and pool computing
resources. Considering the strategic impacts of 100% virtualization, we would like
to focus on network and storage virtualization methods in the sections to follow.

Network Virtualization—Server virtualization has played a pivotal and para-
mount role in cloud computing. Through server virtualization, the goals of
on-demand and faster provisioning besides the flexible management of computing
resources are readily and rewardingly fulfilled. Strictly speaking, server virtual-
ization also includes the virtualization of network interfaces from the operating
system (OS) point of view. However, it does not involve any virtualization of the
networking solutions such as switches and routers. The crux of the network vir-
tualization is to derive multiple isolated virtual networks from sharing the same
physical network. This paradigm shift blesses virtual networks with truly differ-
entiated capabilities to coexist on the same infrastructure and to bring forth several
benefits toward data center automation and transformation. Further on, VMs across
geographically distributed cloud centers can be connected to work together to
achieve bigger and better things for businesses. These virtual networks can be
crafted and deployed on demand and dynamically allocated for meeting differently
expressed networking demands of different business applications. The functional-
ities of virtual networks are decisively varying. That is, virtual networks come
handy in fulfilling not only the basic connectivity requirement but also are capable
of getting tweaked to get heightened performance for specific workloads. The
Fig. 5.1 vividly illustrates the difference between server and network virtualization.

Fig. 5.1 Depicting the differences between server and network virtualization

100 P. Raj et al.

5.8 Network Functions Virtualization (NFV)

There are several network functions, such as load balancing, firewalling, routing,
switching, etc. in any IT environment. The idea is to bring forth the established
virtualization capabilities into the networking arena so that we can have virtualized
load balancing, firewalling, etc. The fast-emerging domain of network functions
virtualization aims to transform the way that network operators and communication
service providers architect and operate communication networks and their network
services.

Network Functions Virtualization (NFV) is getting a lot of attention these days
and network service providers have teamed up well to convince their product
vendors to move away from special-purpose equipment and appliances toward
software only solutions. These software solutions run on commodity servers,
storages, and network elements, such as switches, routers, application delivery
controllers (ADCs), etc. By embracing the NFV technology, communication, and
cloud service providers could bring down their capital as well as operational costs
significantly. The power consumption goes down, the heat dissipation too goes
down sharply, the cost of employing expert resources for administering and oper-
ating special equipment is bound to come down significantly, and time-to-market
for conceiving and concretizing newer and premium services. Due to its
software-driven approach, NFV also allows service providers to achieve a much
higher degree of operational automation and to simplify operational processes such
as capacity planning, job scheduling, workload consolidation, VM placement, etc.

In an NFV environment, the prominent operational processes such as service
deployment, on-demand allocation of network resources, such as bandwidth, failure
detection, on-time recovery and software upgrades, can be easily programmed and
executed in an automated fashion. This software-induced automation brings down
the process time to minutes rather than weeks and months. There is no need for the
operational team to personally and physically visit remote locations to install,
configure, diagnose, and repair network solutions. Instead, all kinds of network
components can be remotely monitored, measured, and managed.

In short, it is all about consolidating diverse network equipment types (firewall,
switching, routing, ADC, EPC, etc.) onto industry-standard x86 servers using
virtualization. The immediate and strategic benefits include the operational agility,
which could empower business agility, autonomy, and affordability.

Software-Defined Networking (SDN)—The brewing technology trends indicate
that networks and network management are bound to change once for all. Today’s
data centers (DCs) extensively use physical switches and appliances that haven’t
yet been virtualized and are statically and slowly provisioned. Further on, the
current environment mandate for significant and certified expertise in operating
each vendor’s equipment. The networking solutions also lack an API ecosystem
towards facilitating remote discovery and activation. In short, the current situation
clearly points out the absence of programmable networks. It is quite difficult to
bring in the expected automation (resource provisioning, scaling, etc.) on the

5 The Requirements Elicitation Approaches … 101

currently running inflexible, monolithic and closed network and connectivity
solutions. The result is the underutilization of expensive network equipment. Also,
the cost of employing highly educated and experienced network administrators is
definitely on the higher side. Thus besides bringing in a bevy of pragmatic yet
frugal innovations in the networking arena, the expressed mandate is for substan-
tially reducing the capital as well as the operational expenses being incurred by the
traditional network architecture is clearly playing in the minds of technical pro-
fessionals and business executives.

As the virtualization principle has been contributing immensely to server con-
solidation and optimization, the idea of network virtualization has picked up in the
recent past. The virtualization aspect on the networking side takes a different route
compared to the matured server virtualization. The extraction and centralization of
network intelligence embedded inside all kinds of network appliances, such as
routers, switches, etc. into a centralized controller aesthetically bring in a number of
strategic advantages for data centers. The policy-setting, configuration, and
maneuvering activities are being activated through software libraries that are
modular, service-oriented, and centralized in a controller module and hence the new
terminology “software-defined networking” (SDN) has blossomed and hugely
popular. That is, instead of managing network assets separately using separate
interfaces, they are controlled collectively through a comprehensive, easy-to-use,
and fine-grained interface. The application programming interface (API) approach
has the intrinsic capability of putting a stimulating and sustainable foundation for
all kinds of IT resources and assets to be easily discoverable, accessible, usable and
composable. Simplistically speaking, the aspect of hardware infrastructure pro-
gramming is seeing the reality and thereby the remote manipulations and machi-
nations of various IT resources are gaining momentum.

The control plane manages switch and routing tables while the forwarding plane
actually performs the Layer 2 and 3 filtering, forwarding and routing. In short, SDN
decouples the system that makes decisions about where traffic is sent (the control
plane) from the underlying system that forwards traffic to the selected destination
(the data plane). This well-intended segregation leads to a variety of innovations
and inventions. Therefore, standards-compliant SDN controllers provide a widely
adopted API ecosystem, which can be used to centrally control multiple devices in
different layers. Such an abstracted and centralized approach offers many strate-
gically significant improvements over traditional networking approaches. For
instance, it becomes possible to completely decouple the network’s control plane
and its data plane. The control plane runs in a cluster setup and can configure all
kinds of data plane switches and routers to support business expectations as
demanded. That means data flow is regulated at the network level in an efficient
manner. Data can be sent where it is needed or blocked if it is deemed a security
threat.

A detached and deft software implementation of the configuration and control-
ling aspects of network elements also means that the existing policies can be
refurbished whereas newer policies can be created and inserted on demand to

102 P. Raj et al.

enable all the associated network devices to behave in a situation-aware manner. As
we all know, policy establishment and enforcement are the proven mechanisms to
bring in the required versatility and vitality in network operations. If a particular
application’s flow unexpectedly needs more bandwidth, SDN controller proactively
recognizes the brewing requirement in real time and accordingly reroute the data
flow in the correct network path. Precisely speaking, the physical constraints are
getting decimated through the software-defined networking. If a security appliance
needs to be inserted between two tiers, it is easily accomplished without altering
anything at the infrastructure level. Another interesting factor is the most recent
phenomenon of “bring your own device (BYOD).” All kinds of employees’ own
devices can be automatically configured, accordingly authorized and made ready to
access the enterprise’s network anywhere anytime.

The Key Motivations for SDN—In the IT world, there are several trends man-
dating the immediate recognition and sagacious adoption of SDN. Cloud-enabled
data centers (CeDCs) are being established in different cool locations across the
globe to provide scores of orchestrated cloud services to worldwide businesses and
individuals over the Internet on a subscription basis. Application and database
servers besides integration middleware solutions are increasingly distributed
whereas the governance and the management of distributed resources are being
accomplished in a centralized manner to avail the much-needed single point of view
(SPoV). Due to the hugeness of data centers, the data traffic therefore internally as
well as externally is exploding these days. Flexible traffic management and ensuring
“bandwidth on demand” are the principal requirements.

The consumerization of IT is another gripping trend. Enterprise users and
executives are being increasingly assisted by a bevy of gadgets and gizmos such as
smartphones, laptops, tablets, wearables etc. in their daily chores. As enunciated
elsewhere, the “Bring Your Own Device (BYOD)” movement requires enterprise
networks to inherently support policy-based adjustment, amenability, and amelio-
ration to support users’ devices dynamically. Big data analytics (BDA) has a telling
effect on IT networks especially on data storage and transmission. The proprietary
nature of network solutions from worldwide product vendors also plays a sickening
role in traditional networks and hence there is a clarion call for bringing in nec-
essary advancements in the network architecture. Programmable networks are
therefore the viable and venerable answer to bring in the desired flexibility and
optimization in highly complicated and cumbersome corporate networks. The
structural limitations of conventional networks are being overcome with network
programming. The growing complexity of traditional networks leads to stasis. That
is, adding or releasing devices and incorporating network-related policies are really
turning out to be a tough affair at the current setup.

As per the leading market watchers, researchers and analysts, SDN marks the
largest business opportunity in the networking industry since its inception. Recent
reports estimate the business impact tied to SDN could be as high as $35 billion by
2018, which represents nearly 40% of the overall networking industry. The future
of networking will rely more and more on software, which will accelerate the pace

5 The Requirements Elicitation Approaches … 103

of innovation incredibly for networks as it has in the computing and storage
domains (explained below). SDN has all within to transform today’s static and sick
networks into calculative, competent and cognitive platforms with the intrinsic
intelligence to anticipate and allocate resources dynamically. SDN brings up the
scale to support enormous data centers and the virtualization needed to support
workloads-optimized, converged, orchestrated, and highly automated cloud envi-
ronments. With its many identified advantages and astonishing industry momen-
tum, SDN is on the way to becoming the new norm and normal for not only for
cloud but also corporate networks. With the next-generation hybrid and federated
clouds, the role of SDN for fulfilling network function virtualization (NFV) is
bound to shoot up.

In short, SDN is an emerging architecture that is agile, adaptive, cheaper, and
ideal for network-intensive and dynamic applications. This architecture decouples
the network control and forwarding functions (routing) enabling the network
control to become directly programmable and the underlying infrastructure to be
abstracted for applications and network services, which can treat the network as a
logical or virtual entity.

The Need of SDN for the Cloud—Due to a number of enterprise-wide benefits,
the adoption rates of cloud paradigm have been growing. However, the networking
aspect of cloud environments has typically not kept pace with the rest of the
architecture. There came a number of enhancements, such as network virtualization
(NV), network function virtualization (NFV) and software-defined networking
(SDN). SDN is definitely the comprehensive and futuristic paradigm. With the
explosion of computing machines (both virtual machines as well as bare metal
servers) in any cloud centers, the need for SDN is sharply felt across. Networks
today are statically provisioned, with devices that are managed at a box-level scale
and are underutilized. SDN enables end-to-end based network equipment provi-
sioning, reducing the network provisioning time from days to minutes, and dis-
tributing flows more evenly across the fabric allowing for better utilization.

On summarizing, SDN is the definite game-changer for next-generation IT
environments. SDN considerably eliminates network complexity in the midst of
multiple and heterogeneous network elements. All kinds of network solutions are
centrally configured and controlled to eliminate all kinds of dependencies-induced
constrictions and to realize their full potential. Network capabilities are provisioned
on demand at the optimal level to suit application requirements. In synchronization
with other infrastructural models appropriately, the on-demand, instant-on, auto-
nomic, and smart computing goals are easily delivered.

5.9 Accentuating Software-Defined Storage (SDS)

We are slowly yet steadily getting into the virtual world with the faster realization
of the goals allied with the concept of virtual IT. The ensuing world is leaning
toward the vision of anytime anywhere access to information and services. This

104 P. Raj et al.

projected transformation needs a lot of perceivable and paradigm shifts. Traditional
data centers were designed to support specific workloads and users. This has
resulted in siloed and heterogeneous storage solutions that are difficult to manage,
provision newer resources to serve dynamic needs, and finally to scale out. The
existing setup acts as a barrier for business innovations and value. Untangling this
goes a long way in facilitating instant access to information and services.

Undoubtedly storage has been a prominent infrastructural module in data cen-
ters. There are different storage types and solutions in the market. In the recent past,
the unprecedented growth of data generation, collection, processing, and storage
clearly indicates the importance of producing and provisioning of better and bigger
storage systems and services. Storage management is another important topic not to
be sidestepped. We often read about big, fast, and even extreme data. Due to an
array of technology-inspired processes and systems, the data size, scope, structure,
and speed are on the climb. For example, digitization is an overwhelming world-
wide trend and trick gripping every facet of human life thereby the digital data is
everywhere and continues to grow at a stunning pace. Statisticians say that every
day, approximately 15 petabytes of new data is being generated worldwide and the
total amount of digital data doubles approximately every 2 years. The indisputable
fact is that machine-generated data is larger compared to man-generated data. The
expectation is that correspondingly there have to be copious innovations in order to
cost-effectively accommodate and manage big data.

Software-defined storage (SDS) is a relatively new concept and its popularity is
surging due to the abundant success attained in software-defined compute and
networking areas. As explained above, SDS is a part and parcel of the vision behind
the establishment and sustenance of software-defined data centers (SDDCs). With
the virtualization concept penetrating and piercing through every tangible resource,
the storage industry also gets inundated by that powerful trend. Software-defined
storage is a kind of enterprise-class storage that uses a variety of commoditized and,
therefore, cheap hardware with all the important storage and management functions
being extricated and performed using an intelligent software controller. With such a
clean separation, SDS delivers automated, policy-driven, and application-aware
storage services through an orchestration of the underlining storage infrastructure.
That is, we get a dynamic pool of virtual storage resources to be picked up
dynamically and orchestrate them accordingly to be presented as an appropriate
storage solution. Unutilised storage resources could be then incorporated into the
pool for serving other requests. All kinds of constricting dependencies on storage
solutions simply vanish with such storage virtualization. All storage modules are
commoditized and hence the cost of storage is to go down with higher utilization. In
a nutshell, storage virtualization enables storage scalability, replaceability, substi-
tutability, and manageability.

An SDS solution remarkably increases the flexibility by enabling organizations
to use nonproprietary standard hardware and, in many cases, leverage existing
storage infrastructures as a part of their enterprise storage solution. Additionally,
organizations can achieve massive scale with an SDS by adding heterogeneous
hardware components as needed to increase capacity and improve performance in

5 The Requirements Elicitation Approaches … 105

the solution. Automated, policy-driven management of SDS solutions helps drive
cost and operational efficiencies. As an example, SDS manages important storage
functions including information lifecycle management (ILM), disk caching, snap-
shots, replication, striping, and clustering. In a nutshell, these SDS capabilities
enable you to put the right data in the right place, at the right time, with the right
performance, and at the right cost automatically.

Unlike traditional storage systems such as SAN and NAS, SDS simplifies scale
out with relatively inexpensive standard hardware, while continuing to manage
storage as a single enterprise-class storage system. SDS typically refers to software
that manages the capture, placement, protection, and retrieval of data. SDS is
characterized by a separation of the storage hardware from the software that
manages it. SDS is a key enabler modernizing traditional, monolithic, inflexible,
costly, and closed data centers toward software-defined data centers that are highly
extensible, open, and cost-effective. The promise of SDS is that separating the
software from the hardware enables enterprises to make storage hardware purchase,
deployment, and operation independent from concerns about over or underuti-
lization or interoperability of storage resources.

Cloud-based Big Data Storage—Object storage is the recent phenomenon.
Object-based storage systems use containers/buckets to store data known as objects
in a flat address space instead of the hierarchical, directory-based file systems that
are common in the block and file-based storage systems. Nonstructured and
semi-structure data are encoded as objects and stored in containers. Typical data
includes emails, pdf files, still and dynamic images, etc. Containers stores the
associated metadata (date of creation, size, camera type, etc.) and the unique
Object ID. The Object ID is stored in a database or application and is used to
reference objects in one or more containers. The data in an object-based storage
system is typically accessed using HTTP using a web browser or directly through
an API like REST (representational state transfer). The flat address space in an
object-based storage system enables simplicity and massive scalability. But the data
in these systems cannot be modified and every refresh gets stored as a new object.
Object-based storage is predominantly used by cloud services providers (CSPs) to
archive and backup their customers’ data.

Analysts estimate that more than 2 million terabytes (or 2 exabytes) of data are
created every day. The range of applications that IT has to support today spans
everything from social computing, big data analytics, mobile, enterprise, and
embedded applications, etc. All the data for all those applications has got to be
made available to mobile and wearable devices, and hence, data storage acquires an
indispensable status. As per the main findings of Cisco’s global IP traffic forecast,
in 2016, global IP traffic will reach 1.1 zettabytes per year or 91.3 exabytes (1
billion gigabytes) per month, and by 2018, global IP traffic will reach 1.6 zettabytes
per year or 131.9 exabytes per month. IDC has predicted that cloud storage capacity
will exceed 7 Exabytes in 2014, driven by strong demand for agile and
capex-friendly deployment models. Furthermore, IDC had estimated that by 2015,
big data workloads will be one of the fastest-growing contributors to storage in the

106 P. Raj et al.

cloud. In conjunction with these trends, meeting service-level agreements (SLAs)
for the agreed performance is a top IT concern. As a result, enterprises will
increasingly turn to flash-based SDS solutions to accelerate the performance sig-
nificantly to meet up emerging storage needs.

The Key Characteristics of Software-Defined Storage—SDS is characterized by
several key architectural elements and capabilities that differentiate it from the
traditional infrastructure.

Commodity Hardware—With the extraction and centralization of all the intel-
ligence embedded in storage and its associated systems in a specially crafted
software layer, all kinds of storage solutions are bound to become cheap, dumb,
off-the-shelf, and hence, commoditized hardware elements. Not only the physical
storage appliances but also all the interconnecting and intermediate fabric is to
become commoditized. Such segregation goes a long way in centrally automating,
activating, and adapting the full storage landscape.

Scale-Out Architecture—Any SDS setup ought to have the capability of
ensuring fluid, flexible, and elastic configuration of storage resources through
software. SDS facilitates the realization of storage as a dynamic pool of hetero-
geneous resources thereby the much-needed scale-out requirement can be easily
met. The traditional architecture hinders the dynamic addition and release of storage
resources due to the extreme dependency. For the software-defined cloud envi-
ronments, storage scalability is essential to have a dynamic, highly optimized and
virtual environment.

Resource Pooling—The available storage resources are pooled into a unified
logical entity that can be managed centrally. The control plane provides the
fine-grained visibility and the control to all available resources in the system.

Abstraction—Physical storage resources are increasingly virtualized and pre-
sented to the control plane, which can then configure and deliver them as tiered
storage services.

Automation—The storage layer brings in extensive automation that enables it to
deliver one-click and policy-based provisioning of storage resources.
Administrators and users request storage resources in terms of application need
(capacity, performance, and reliability) rather than storage configurations, such as
RAID levels or physical location of drives. The system automatically configures
and delivers storage as needed on the fly. It also monitors and reconfigures storage
as required to continue to meet SLAs.

Programmability—In addition to the inbuilt automation, the storage system
offers fine-grained visibility and control of underlying resources via rich APIs that
allows administrators and third-party applications to integrate the control plane
across storage, network and compute layers to deliver workflow automation. The
real power of SDS lies in the ability to integrate it with other layers of the
infrastructure to build end-to-end application-focused automation.

The maturity of SDS is to quicken the process of setting up and sustaining
software-defined environments for the tactic as well as the strategic benefits of
cloud service providers as well as the consumers at large.

5 The Requirements Elicitation Approaches … 107

5.10 The Key Benefits of Software-Defined Clouds (SDCs)

The new technologies have brought in highly discernible changes in how data
centers are being operated to deliver both cloud-enabled and cloud-native appli-
cations as network services to worldwide subscribers. Here are a few important
implications (business and technical) of SDCs.

The consolidation and centralization of commoditized, easy-to-use and main-
tain, and off-the-shelf server, storage, and network hardware solutions obviates the
need for having highly specialized and expensive server, storage, and networking
components in IT environments. This cloud-inspired transition brings down the
capital as well as operational costs sharply. The most important aspect is the
introduction and incorporation of a variety of policy-aware automated tools in order
to quickly provision, deploy, deliver and manage IT systems. There are other
mechanisms such as templates, patterns, and domain-specific languages for auto-
mated IT setup and sustenance. Hardware components and application workloads
are being provided with well-intended APIs in order to enable remote monitoring,
measurement, and management of each of them. The APIs facilitate the system
interoperability. The direct fallout here is that we can arrive at highly agile,
adaptive, and affordable IT environments. The utilization of hardware resources and
applications goes up significantly through sharing and automation. Multiple tenants
and users can avail the IT facility comfortably for a cheaper price. The cloud
technologies and their smart leverage ultimately ensure the system elasticity,
availability, and security along with application scalability.

Faster Time to Value—The notion of IT as a cost center is slowly disappearing
and businesses across the globe have understood the strategic contributions of IT in
ensuring the mandated business transformation. IT is being positioned as the most
competitive differentiator for worldwide enterprises to be smartly steered in the
right direction. However, there is an insistence for more with less as the IT budget is
being consistently pruned every year. Thus enterprises started to embrace all kinds
of proven and potential innovations and inventions in the IT space. That is,
establishing data centers locally or acquiring the right and relevant IT capabilities
from multiple cloud service providers (CSPs) are heavily simplified and acceler-
ated. Further on, resource provisioning, application deployment, and service
delivery are automated to a greater extent and hence it is easier and faster to realize
the business value. In short, the IT agility being accrued through the cloud idea
translates into business agility.

Affordable IT—By expertly pooling and assigning resources, the SDCs greatly
maximize the utilization of the physical infrastructures. With enhanced utilization
through automation and sharing, the cloud center brings down the IT costs
remarkably while enhancing the business productivity. The operational costs come
down due to tools-supported IT automation, augmentation, and acceleration.

Eliminating Vendor Lock-in—Today’s data center features an amazing array of
custom hardware for storage and networking requirements, such as routers,

108 P. Raj et al.

switches, firewall appliances, VPN concentrators, application delivery controllers
(ADCs), storage controllers, intrusion detection, and prevention components. With
the storage and network virtualization, the above functions are performed by
software running on commodity x86 servers. Instead of being locked into the
vendor’s hardware, IT managers can buy commodity servers in quantity and use
them for running the network and storage controlling software. With this transition,
the perpetual vendor lock-in issue gets simply solved and surmounted. The mod-
ifying source code is quite easy and fast, policies can be established and enforced,
software-based activation and acceleration of IT network and storage solutions are
found to be simple, supple and smart, etc.

Less Human Intervention and Interpretation—SDCs are commoditized and
compartmentalized through abstraction, virtualization and containerization mecha-
nisms. As accentuated above, there are infrastructure management platforms,
integration and orchestration engines, integrated brokerage services, configuration,
deployment and delivery systems, service integration, and management solutions,
etc. in order to bring in deeper and decisive automation. That is, hitherto manually
performed tasks are getting automated through toolsets. This enablement sharply
lessens the workloads of system, storage, and service administrators. All kinds of
routine, redundant, and repetitive tasks are getting automated on a priority basis.
The IT experts, therefore, can focus on their technical expertise to come up with a
series of innovations and inventions that subsequently facilitate heightened business
resiliency and robustness.

Hosting a range of Applications—All kinds of operational, transactional, and
analytical workloads can be run on SDCs, which is emerging as the comprehensive
yet compact and cognitive IT infrastructure to ensure business operations at the top
speed, scale, and sagacity. Business continuity, backup and archival, data and
disaster recovery, high availability, and fault-tolerance are the other critical
requirements that can be easily fulfilled by SDCs. As we expectantly move into the
era of big data, real-time analytics, mobility, cognitive computing, social net-
working, web-scale systems, the Internet of Things (IoT), artificial intelligence,
deep learning, etc., the SDCs are bound to play a very stellar and sparkling role in
the days ahead.

Distributed Deployment and Centralized Management—IT resources and busi-
ness applications are being extremely distributed these days by giving considera-
tions for cost, location, performance, risk, etc. However, a 360° view through a
single pane of glass is required in order to have a firm and fine grip on each of the
assets and applications. The centralized monitoring, measurement, and management
is the most sought-after feature for any SDC. The highly synchronized and unified
management of various data center resources is getting fulfilled through SDC
capabilities.

Streamlined Resource Provisioning and Software Deployment—There are
orchestration tools for systematic and swift provisioning of servers, storages, and
network components. As each resource is blessed with RESTful or other APIs, the
resource provisioning and management become simpler. Policies are the other

5 The Requirements Elicitation Approaches … 109

important ingredient in SDCs in order to have intelligent operations. As we all
know, there are several configuration management tools and in the recent past, with
the culture of DevOps spreads widens overwhelmingly, there are automated soft-
ware deployment solutions. Primarily orchestration platforms are for infrastructure,
middleware, and database installation whereas software deployment tools take care
of application installation.

Containerized Platforms and Workloads—With the unprecedented acceptance
of Docker-enabled containerization and with the growing Docker ecosystem, there
is a wave of containerization across the data centers and their operations. Packaged,
home-grown, customized, and off-the-shelf business applications are being con-
tainerized, IT platforms, database systems, and middleware are getting container-
ized through the open-source Docker platform and IT infrastructures are
increasingly presented as a dynamic pool of containers. Thus SDCs are the most
appropriate one for containerized workloads and infrastructures.

Adaptive Networks—As inscribed above, SDC comprises network virtualization
that in turn guarantees network function virtualization (NFC) and software-defined
networking (SDN). Network bandwidth resource can be provisioned and provided
on demand as per the application requirement. Managing networking solutions such
as switches and routers remains a challenging assignment for data center operators.
In an SDC, all network hardware in the data center is responsive to a centralized
controlling authority, which automates network provisioning based on defined
policies and rules. A dynamic pool of network resources comes handy in fulfilling
any varying network requirements.

Software-defined Security—Cloud security has been a challenge for cloud center
professionals. Hosting mission-critical applications and storing customer, confi-
dential, and corporate information on cloud environments are still a risky affair.
Software-defined security is emerging as the viable and venerable proposition for
ensuring unbreakable and impenetrable security for IT assets, business workloads,
and data sources. Policy-based management, the crux of software-defined security,
is able to ensure the much-required compliance with security policies and princi-
ples. SDC is innately stuffed with software-defined security capabilities.

Green Computing—SDCs enhance resource utilization through workload con-
solidation and optimization, VM placement, workflow scheduling, dynamic
capacity planning, and management. Energy-awareness is being insisted as the most
vital parameter for SDCs. When the electricity consumption goes down, the heat
dissipation too goes down remarkably thereby the goal of green and lean computing
gets fulfilled. This results in environment sustainability through reduced release of
harmful greenhouse gasses.

In summary, applications that once ran on static, monolithic and dedicated
servers are today hosted in software-defined, policy-aware, consolidated, virtual-
ized, automated, and shared IT environments that can be scaled and shaped to meet
brewing demands dynamically. Resource allocation requests that took days and
weeks to fulfill now can be accomplished in hours or even in minutes.
Virtualization and containerization have empowered data center operations,

110 P. Raj et al.

enabling enterprises to deploy commoditized and compartmentalized servers,
storages, and network solutions that can be readily pooled and allocated to
fast-shifting application demand.

5.11 The Requirements Gathering Steps
for Software-Defined Clouds

Typically there are two major types of requirements. The first one is functional
requirements (FR). That is, what the system will provide to users. The second one is
nonfunctional requirements (NFR), which is being termed as the quality of service
(QoS) or quality of experience (QoE) attributes. That is, how the functionality is
being provided to users. The key activities associated with the cloud idea are as
follows

1. Enterprise-wide Assessment for cloud journey
2. IT Rationalization and Modernization and Cloud Migration
3. Cloud Compute, Storage, and Network Provisioning
4. Cloud-based Application Development, Deployment, and Delivery
5. Cloud Management and Security
6. Cloud Backup and Disaster Recovery

There are different requirements for different enterprises. There are several types
of cloud environments ranging from private, public, hybrid, and community clouds.
There are specific cloud options, such as storage, knowledge, sensor, device, sci-
ence, and mobile clouds. As explained above, we are stepping into the era of
software-defined clouds. There are not only cloud infrastructures but also cloud
platforms and software. Thus the full IT stack is incrementally cloudified. It is
predicted that most of the business workloads are to find their new residence in
multiple clouds. There are technologically sound solutions in order to enable and
establish a seamless connectivity between different and distributed cloud environ-
ments. Cloud integration, orchestration, and federation are being simplified and
streamlined through a host of powerful tools.

Let us focus on software development and deployment in Cloud Environments.
Software applications can be fully or partially moved to clouds. That is, some

components can be kept locally and the remaining ones can be migrated to remote
clouds. Similarly, applications can be fully developed using cloud-based platforms
(PaaS). There are greatly popular PaaS solutions, such as the open-source Cloud
Foundry, IBM Bluemix, GE Predix, etc. Some application components can be
replaced by highly advanced software from third-party software vendors. So there
are a number of possibilities and opportunities. That is, with the arrival of local and
remote IT environments and the seamless connectivity between them, there are
more viable and venerable options for software developers, business executives, IT

5 The Requirements Elicitation Approaches … 111

architects, etc. However, this emergence of two key and fast-expanding landscapes
brings forth new set of concerns and challenges,

Modernization and migration of legacy/local/on-premise applications to
empower them to run in cloud environments comfortably are an on-going activity.
The legacy application is referred to as a tightly coupled and massive package of
software and hardware solutions whose programming languages, technologies, and
tools belong to the past decades. Then the multi-tier/distributed architecture
applications, such as JEE and .NET came along and shone for some time. These
days, everything is service-oriented, centric and software-defined. With clouds
emerging as the most competitive and cognitive IT environment, the modernization,
and migration of old as well as recent applications are initiated and subjected to a
variety of investigations in order to clearly understand the risks, the opportunities,
the challenges, the dependencies, etc. There are articulations by research scholars
and scientists that there has to be a set of tasks to be performed as a part of cloud
migration preparation. Some of them are being given below.

Organizational Analysis—An organization-wide business, offering, social, and
financial details of the organization have to be studied and gathered. That is, the
business strategy in place needs to be thoroughly understood and validated with the
concerned executives and stakeholders in order to gain a deeper knowledge of the
various business offerings, operations, and outputs. The business capabilities,
processes, architecture, and other decision-enabling details need to be carefully
collected and classified.

The Technical Team Analysis—On the other side, how the business expectations
are being accomplished by the enterprise IT team. The application portfolio, the
platform details, and the underlying infrastructure, the security and the governance
mechanisms in place, etc. need to be consciously captured and verified with all the
sincerity and sagacity. The team’s technical capabilities ought to be analyzed
deeply to gain whether the cloud migration can be fast-tracked in a hassle-free
manner. The other prominent analyses need to be planned and performed in the
direction of unearthing any other show-stoppers. There are several persistent
questions such as whether application workloads getting modernized and migrated
to the cloud can produce the same performance as they were giving in the local
environment?

Requirement Analysis—Gathering requirement is an important aspect for
attaining the intended success of cloud migration. There are certain distinct
advantages cloud consumers and customers can easily and quickly avail and accrue
out of the raging and mesmerizing cloud paradigm. Depending on the job at hand,
the requirements need to be elicited from various stakeholders with all the care.

Cloud Opportunity Assessment—This is the first and foremost activity to
understand whether the impending engagement is opening up a sustainable cloud
opportunity through a few basic questions. The business strategy and planning
details can throw the right and relevant information for cloud service providers to
incisively and decisively to understand what sort of opportunity is in the hand.
Accordingly, further queries and clarifications can be sent out to the prospective
client to gather more decision-enabling information. The details such as what is the

112 P. Raj et al.

current IT state of the client, where the corporate wants to be in, how it wants to
reach the planned state, etc. can definitely lead to zero down the exact route to be
considered and capitalized. A template for cloud opportunity assessment is given
below.

International deal (Yes/no)

Name of the customer/project code

Lead IMT country

Sector**

Sales connect #

Opportunity type (New logo/base growth)

Deal stage (NBIE/NBP/FIRM/BAFO)

Lead business unit

Contract duration (years)

Total TCV $M

Cloud TCV $M

Bid submission date

Customer down select date

Expected contract signature date

Expected boarding start date

Expected service start date (Go Live)

Competitor/s

Functional Requirements—Once it is clearly understood that the deal is all about
the cloud-enablement, the cloud architects, consultants, and project executives have
to prepare a set of questions to probe the client to extract as much as possible to
formulate a comprehensive requirements document. Typically the functional
requirements explain about the facilities, features, and functionalities to be provided
to the client and its users by the cloud and communication service providers,
security, and storage service providers, etc. Functional requirements are being
documented and well-understood through the leverage of use case and scenario
concepts. Use cases can be further subdivided into primary, secondary, and tertiary
use cases. The traceability need gets easily accomplished through the classification
of use cases. There are integrated development platforms enabling the requirements
management.

Nonfunctional Requirements—This set of requirements is tough to implement.
Still, there are pioneering technologies and tools to realize the quality of service
(QoS) attributes/nonfunctional requirements (NFRs). Generally, there can be scala-
bility of application workloads through elastic cloud infrastructures, high availability
through clustering of resources, fault-tolerance through clustering and redundant
systems, security through a bevy of mechanisms, algorithms, industry-strength
standards, certifications, improved processes, practices, security patterns, etc.
A sample template for capturing nonfunctional requirements is given below.

5 The Requirements Elicitation Approaches … 113

Non-functional requirements

Availability

Scalability

Security

Data privacy

Single sign-on

Vendor lock-in

Energy efficiency

Modifiability/maneuverability

Accessibility

Consumability

Simplicity and sustainability

Auditability

The non-functional requirements are relatively tough but mandatory to fulfill the
agreed SLA comfortably to earn the customer delight. There are additional
requirements for the cloud arena. For example, they are migration, integration,
orchestration, BUR strategy, etc.

5.12 Integration Requirements

The customer’s cloud requirements go beyond the originally anticipated. New
public, as well as private cloud companies providing newer offerings, are emerging
on the planet, and hence, the cloud integration needs are bound to grow consis-
tently. The cloud solution architecture has to be prepared based on the current and
future requirements.

Multiple public cloud service providers (CSPs)

Traditional IT

Private clouds

SaaS and PaaS providers

Identity management

Service management

Approval management

Configuration management DB

Management/billing

Security management providers

114 P. Raj et al.

The cloud characteristics checklist

Technical area Description

Architectural control (a) Can the workload be relocated to a Cloud center?
(b) Does the client require the architectural control? If yes, list the

details in the deck
(c) Mention the cloud deployment pattern: IaaS/PaaS/SaaS/Service

Provider (SP)

Integration (a) Is there integration with multiple clouds/legacy
infrastructure/other cloud providers?

(b) Is there a requirement of cloud broker services? Specify

Provisioning (a) Does the client accept the standard SLO for provisioning
services?

(b) Who will operate the cloud portal for provisioning of services?
(c) Is there a requirement of unified portal for multiple clouds and

non-cloud environments?
(d) Is there a requirement for a software-defined environment?

(E.g.), SDN/NFV, SDS, etc.
(e) Does the solution include business continuity services—

HA/DR/Backup/Archive?
Has client detailed on any specific failure scenarios to be
considered for resiliency? If Yes, has a solution arrived for
addressing the same?

Service catalog (a) Who will develop and manage the custom service catalog?
(b) Does the solution include reusable patterns? List details in the

deck.
(c) Mention the portal used for placement of the service catalog for

unified operation

Metering and elasticity (a) Does the client ask to pay only for the services consumed with
high volatility of capacity requirements? If so, does the
proposed solution outline the associated billing solution?

(b) Does the proposal entail on-demand scaling of resources? If
yes, explain the bursting requirements and modalities for
scaling the solution

Migration (a) What are the T&T/Migration elements that are part of the deal?
E.g., DC relocation, System Migration, Server consolidation,
Server refresh, Move existing images to the cloud, etc.

(b) Mention which elements—New install/Rapid
migration/Re-platforming.

(c) If migration is in proposal scope, add the implementation
details. Which team is engaged for the migration services?

Security and regulatory
compliance

(a) Does the customer have any additional security or compliance
requirements for Industry or Country specific? E.g., FDA, PCI
etc. If yes, list the details.

(b) Are there special security or compliance requirements that will
drive the “local delivery” of the cloud service (e.g., Data
residency/privacy, ITAR, NHS, specific design requirements
etc.)? If yes, list the details.

(c) Who is responsible for defining and delivering the security
policies?

(continued)

5 The Requirements Elicitation Approaches … 115

(continued)

Technical area Description

(d) Which security services team is engaged to solution these
additional/special security requirements?

Service Management
(SM)

(a) For Private/Hybrid cloud, list the SM process and tools.
Describe how it is realized in the solution.

(b) Is there a requirement of the SM bridge—Cloud and non-cloud
and Client managed environments? Describe the integration
points with a list of tools.

(c) Who is responsible for steady state delivery
(d) Who will provide service management (Client)—(1)

OS-and-below (2) MW&DB (3) Application?
(e) Is the client willing to use global resources for managed

services?
(f) Does the client accept standard SLAs of the cloud service

provider?

DevOps (a) Is DevOps in scope for the cloud solution? What capabilities
are being expected from the cloud—E.g., Release
Management, Quality Management, Collaborative Life Cycle
Management, etc.

(b) Does the client have DevOps capability in their existing
environment? Enumerate the tools and DevOps solution used
in the existing environment in the deck.

(c) Is the cloud solution expected to deliver DevOps by re-using
the client’s existing tooling landscape?

5.13 Conclusion

The aspect of IT optimization is continuously getting rapt and apt attention from
technology leaders and luminaries across the globe. A number of generic, as well as
specific improvisations, are being brought into make IT aware and adaptive. The
cloud paradigm is being touted as the game-changer in empowering and elevating
IT to the desired heights. There have been notable achievements in making IT being
the core and cost-effective enabler of both personal as well as professional activi-
ties. There are definite improvements in business automation, acceleration, and
augmentation. Still, there are opportunities and possibilities waiting for IT to move
up further.

The pioneering virtualization technology is being taken to every kind of infras-
tructures, such as networking and storage to complete the IT ecosystem. The
abstraction and decoupling techniques are lavishly utilized here in order to bring in
the necessary malleability, extensibility, and serviceability. That is, all the config-
uration and operational functionalities hitherto embedded inside hardware compo-
nents are now neatly identified, extracted, and centralized and implemented as a
separate software controller. That is, the embedded intelligence is being developed

116 P. Raj et al.

now as a self-contained entity so that hardware components could be commoditized.
Thus, the software-defined compute, networking, and storage disciplines have
become the hot topic for discussion and dissertation. The journey of data centers
(DCs) to software-defined environments (SDEs) is being pursued with vigor and
rigor. In this chapter, we have primarily focused on the industry mechanism for
capturing and collecting requirements details from clients.

References

1. Holger Schrödl and Stefan Wind, “Requirements Engineering for Cloud Computing” Journal
of Communication and Computer 8 (2011)

2. Shreta Sharma and S. K. Pandey, “Revisiting Requirements Elicitation Techniques”,
International Journal of Computer Applications, August 2013

3. Lori MacVittie, a white paper on the title “Controlling the Cloud: Requirements for Cloud
Computing” 2014

4. Bhaskar Prasad Rimal, Admela Jukan, Dimitrios Katsaros and Yves Goeleven, “Architectural
Requirements for Cloud Computing Systems: An Enterprise Cloud Approach” J Grid
Computing (2011)

5. Critical Requirements for Cloud Applications—How to Recognize Cloud Providers and
Applications that Deliver Real Value, a white paper by Workday 2014

6. Pericles Loucopoulos, Requirements Engineering for Emergent Application
Software J. Cordeiro et al. (Eds.): ICEIS 2012, LNBIP, Springer-Verlag Berlin Heidelberg
2013

7. Todoran, Irina; Seyff, Norbert; Glinz, Martin, How cloud providers elicit consumer
requirements: An exploratory study of nineteen companies, In: 21st IEEE International
Requirements Engineering Conference, Rio de Janeiro, Brazil, 15 July 2013

8. Iliana Iankoulova & Maya Daneva, “Cloud Computing Security Requirements: a Systematic
Review” Sixth International Conference on Research Challenges in Information Science
(RCIS), 2012

9. Executive’s guide to the software defined data center, published by TechRepublic, USA, 2016
10. www.peterindia.net An Information Technology Portal

5 The Requirements Elicitation Approaches … 117

http://www.peterindia.net

Part II
Requirements Specification for Service and

Cloud Computing

Chapter 6
Formal Modeling of Enterprise Cloud
Bus System: A High Level Petri-Net
Based Approach

Gitosree Khan, Sabnam Sengupta and Anirban Sarkar

Abstract The chapter focuses on an abstraction layer of SaaS architecture for
multi-agent-based inter-cloud environment, called Enterprise Cloud Bus System
(ECBS) to conceptualize the different behavioral facets of such system in service
and cloud computing paradigm. The model is formalized using a set of high level
Petri-net-based formal constructs called High Level Enterprise Cloud Bus Petri-net
(HECBP) with varieties of relationship types among participation cloud bus com-
ponents. It is accompanied with a rich set of Petri-net graphical notations and those
are used to specify the effective toward modeling interactions among the hetero-
geneous agent present within the cloud bus of ECBS at conceptual level design of
multi cloud system. The approach facilitates to analyze the behavioral features of
inter-cloud architecture and modeled its dynamics at the conceptual level. The
HECBP is also able to ensure correctness and performance of the system at design
time by focusing on meeting the increasing demands for distributed software as a
service and making the system functionality more scalable, configurable, and
shareable. This chapter includes modeling of several behavioral facets like, fairness,
boundedness, liveliness, safeness, etc., in a dead lock-free way. Moreover, this
chapter provides a discussion on state-space analysis study, which further validates
the theoretical analysis of HECBP model and future research scope in this area.

Keywords Cloud computing � Service-Oriented architecture � Enterprise cloud bus
system � Multi-agent system � Behavioral analysis � High-level enterprise cloud bus
Petri-net � Colored Petri-net � Boundedness � Liveness � Reachability � Safeness

G. Khan (&) � S. Sengupta
B.P. Poddar Institute of Management & Technology, Kolkata, India
e-mail: khan.gitosree@gmail.com

S. Sengupta
e-mail: sabnam_sg@yahoo.com

A. Sarkar
National Institute of Technology, Durgapur, India
e-mail: sarkar.anirban@gmail.com

© Springer International Publishing AG 2017
M. Ramachandran and Z. Mahmood (eds.), Requirements Engineering
for Service and Cloud Computing, DOI 10.1007/978-3-319-51310-2_6

121

6.1 Introduction

Service-Oriented Computing is an emerging computing paradigm for requirement
engineering that utilizes service as software as the basic constructs to support the
development of rapid and low-cost composition of software applications. Growing
complexity of Enterprise Software applications and increasing numbers of clouds
throughout the world have increased the challenges for Software as a Service
(SaaS) in the recent trends of requirement engineering. Therefore, the need for
Cloud computing has evolved as an important key areas of software engineering
research and practices, which identifies functional requirements from users along
with its benefits of cost effectiveness and global access. By providing on demand
access of services to a distributed environment of computing resources in a
dynamically scaled and virtualized manner, agent-based cloud computing offers
compelling advantages in cost, speed, and efficiency.

Along with the emergence of Service-Oriented Architecture (SOA), Software as
a Service (SaaS) architecture has emerged as a new and evolving domain in cloud
computing based on the request/reply design paradigm for Enterprise Software
applications. Existing ESB-based systems cannot address the complexity of
Enterprise Software applications due to the increase in number of clouds and their
services. Therefore, service registration, discovery, scheduling, and composition of
services are facing complexity and performances issues nowadays. To address such
issues, our previous work focused mainly on the abstraction layer of Software as a
service architecture, called Enterprise Cloud Bus (ECB) [1, 2]. It models the ser-
vices, agents, and their interconnections for all the locations for satisfying the client
needs. This approach is introduced by integrating agent technology in ECB
framework.

Modeling and design methodologies for multi-agent-based cloud infrastructure
have not taken a shape as yet. One of the most challenging domains is to model
various agent-based architecture of SOA in distributed cloud computing environ-
ment to make the SOA system modeling more reliable and robust. Petri-net-based
approach is a relevant choice for modeling and analyzing the dynamic behavior of
such agent-based cloud architecture. However, those approaches are also less
expressive for large systems like inter-cloud architecture comprising of multiple
agents and components. Therefore, colored Petri-net (CPN) tool is an efficient tool
that is used for constructing and analyzing such multi-cloud system. Many of the
research works reveals about the behavioral analysis of multi-cloud architecture
using colored Petri-net. But they are some shortcomings toward analysis of
dynamics multi-cloud architecture. Therefore, high-level Petri-net-based approach
is the most suitable one toward analysis of dynamics of such system.

With the aforementioned objectives, the chapter has been organized in six
sections. In Sect. 6.2, previous researches related to modeling of multi-agent-based
inter-cloud architecture have been summarized with major emphasis on the models
based on cloud computing paradigm. In Sect. 6.3, the concept and importance of
multi-agent-based inter-cloud architecture (ECBS) have been summarized with

122 G. Khan et al.

major emphasis on the conceptual definition followed by several issues that need to
be handled related to multi-agent system (MAS) paradigm. This section also
introduced the comprehensive summary of key benefits and challenges of ECBS in
MAS environment. In Sect. 6.4, a novel approach on formal modeling and analysis
of ECBS using high-level Petri-net has been summarized. Here, the colored
Petri-net (CPN) tool is used for simulation of the model so that this chapter will
serve as a valuable source of information for academia and industry related to
multi-agent inter-cloud model-based testing especially for cloud-based enterprise
applications in optimizing the performance, cost, elasticity, flexibility, high relia-
bility, and availability of the computing resources. This section also includes the
analysis of the behavioral features like, safeness, boundedness, liveliness etc., of the
model in order to ensure the system dynamics such as high accuracy of system
functionality, operational design of system flexibility that comprises of autonomous
agents and system components, automation of cloud services and quantitative
measurement of system processes, performance, and scalability. In Sect. 6.5, the
future research directions of ECBS framework using high-level Petri-net have been
summarized. Finally, the chapter has been concluded in Sect. 6.6 with identification
of key areas of research in the domain of requirements engineering for service and
multi-agent-based inter-cloud architecture.

6.2 Related Research

Nowadays, Enterprise Software applications are growing in complexity; therefore,
there is a rapid increase in number of clouds and their web services. Thus, the
demand for cloud computing technology toward organizations is growing expo-
nentially. Lots of researchers discuss over the architectural design of cloud com-
puting and its applications. Among them, [1–3] focus on the architectural driven
environment for cloud applications that facilitates monitoring cloud services,
composing, and adapting cloud applications. Putting a distributed cloud-based
integration and deploying in Enterprise Service Bus with service-oriented archi-
tecture processes help enterprises to integrate their process over the cloud, and
achieve scalable cloud enabled business applications with greater efficiency. In such
cloud computing environment, the competition between service providers has led to
a large number of cloud-based solutions that offered to consumers. Moreover, in the
work proposed in [4] the author focuses on “vision, challenges and architectural
elements of inter-cloud environments.” The ability to run and manage the
multi-cloud system [5, 6] is a challenge for preventing interoperability and increase
scalability, elasticity, and autonomy of multi-cloud system.

The work in [7, 8] provides a “classification of the state-of-the-art of cloud
solutions and discusses the dynamic provisioning, deployment and adaptation of
dynamic multi-cloud behavior systems which aim at addressing the issues.”

6 Formal Modeling of Enterprise Cloud Bus System … 123

The author in [9] proposes a new approach for dynamic autonomous resource
management in cloud computing. Several researches, in last decade, have devised
conceptual model for multi-agent-oriented system [10, 11]. But, all these approa-
ches have got certain limitations to exhibit the dynamism of internal behavior of the
system which comprises of heterogeneous set of components.

In this context, analysis of such dynamics is a major challenge. For the purpose,
proper mechanism is required to conceptualize and study the behavioral properties
of multi-cloud architecture. Agent-based architecture is most acceptable paradigm
to handle the dynamicity of such large-scale system like inter-cloud architecture.
The works proposed in [12] have discussed about the structural definition of
agent-based hybrid multi-cloud applications. In [13], the structural modeling of
agent-based multi-cloud architecture called enterprise cloud bus (ECB) has been
discussed followed by service discovery mechanism [14, 15] that helps to identify
services during run time. The structural components of ECB system is modeled
using UML 2.0 [16]. But, the UML modeling is not suitable for rigorous analysis of
multi-cloud dynamics due to its semi-formal nature.

Petri-net [17]-based approach is an obvious choice for modeling and analyzing
the dynamic behavior of agent-based inter-cloud architecture. In [18], the modeling
and analysis of agent-oriented system has been stated by the author. However, those
approaches are also less expressive for large systems like Inter-cloud architecture
comprising of multiple agents and components. Moreover, in [19], the conceptual
model of multi-cloud architecture called Enterprise Cloud Bus Petri-net (ECBP) has
been proposed in MAS domain and modeled its dynamics using Petri-net-based
tool called PIPE. For detail reference of modeling and analysis of multi-agent
system refer [26–29] of additional reading section.

Therefore, colored Petri-net (CPN) Tools is an efficient tool [20] that is used for
constructing and analyzing such multi-cloud system. The work in [21] reveals about
the behavioral analysis of Multi-cloud architecture using colored Petri-net. But
there are some shortcomings toward analysis of dynamics multi-cloud architecture.
Therefore, high-level Petri-net-based approach [22, 23] is most suitable toward
analysis of dynamics of such system and accepted as standard. In Sect. 6.3 of this
chapter, the ECBS has been stated formally and modeled using high-level
Petri-net-based approach, called high-level enterprise cloud bus Petri-net (HECBP)
which further used to represent the behavioral analysis of ECBS using high-level
Petri-net tool, called CPN.

Moreover, the concepts of HECBP have been implemented using a simulation
tool called CPN for further validation of the architecture. The proposed approach is
effective toward modeling interactions among the heterogeneous agent present
within the cloud bus of ECBS. The model is also effective toward analysis of the
key behavioral features of multi-cloud architecture. For detail reference on
High-level Petri-net according to ISO/IEC [43] standard of additional reading
section.

124 G. Khan et al.

6.3 Multi-agent Based Inter-cloud Architecture (ECBS)

Enterprise Cloud Bus System (ECBS) [13, 14], describes a high-level abstraction
layer of SaaS architecture in Inter-cloud environment, where different clouds
interacts and collaborates through cloud agent from various locations in order to
publish and/or subscribe their services. The detailed set of building blocks in the
context of ECBS has been described as follows:

6.3.1 Building Blocks of ECBS

This subsection describes briefly the building blocks of the ECBS:

(a) Client: Client is the end-users/actor in multi-cloud environment; here, the
CLIENT placed the service request through Provider Agent (PA).

(b) Provider Agent (PA): PA invokes the request from the CLIENT and schedules
the required services.

(c) Cloud Universal Description Discovery and Integration (CUDDI): CUDDI
is the extended meta-service registry where PA published the client request.

(d) Enterprise Service Bus (ESB): ESB is the Bus where the services are
published.

(e) Cloud Enterprise Service Bus (CESB): CESB is extension of ESB that
enhance the ESB’s to register their services for single cloud environment.

(f) Cloud Agent (CA): CA is deployed for collecting various services from dif-
ferent cloud service providers based on various locations, context, etc.

(g) Hierarchical Universal Description Discovery and Integration (HUDDI):
HUDDI is the extended meta-service registry of CESB’s in ECB where CA
published the services.

(h) Scheduling Agent (SA): SA is deployed in ECB to configure, discover, and
schedule the cloud services as per Quality of Service (QoS) parameters.

(i) MAPPER: MAPPER is the one of the Cloud Bus component where service
mapping is done as per Client request.

(j) LOGGER: LOGGER holds the mapped services before dispatching.
(k) RES: RES are the resources shared by the cloud bus.

6.3.2 Formalization of ECBS

This chapter is the extensions of ESB’s with formal approach toward analysis of
dynamics of Inter-cloud architecture. The CloudBus (CB) is the set of agents and
components (as refer in earlier section) of Enterprise Cloud Bus System. The
structural representation of the CloudBus (CB) is defined as:

6 Formal Modeling of Enterprise Cloud Bus System … 125

CB ! CLIENT ^ PA ^ CUDDI ^ ESB ^ CESB ^ CA ^ HUDDI

^ SA ^ MAPPER ^ LOGGER ^ RES
ð6:1Þ

A multi-cloud environment Multi-CloudEnv is that where components of CB
will work using the following four tuples. It can be defined as

Multi� CloudEnv ¼ Res; Actor; CB; Relationf g ð6:2Þ

In the given cloud environment, Res is the set of cloud resource, Actors are
clients of the cloud environment, CB are the set of autonomous cloud bus entities
with prespecified functions and Relation is the set of semantic association and
interactions among the cloud bus entities.

In the context of multi-cloud environment, the cloud bus (CB) will comprehend
the occurrences of events automatically and response toward the environment with
a set of cloud services. Moreover, any agent or component of CB acts on the cloud
resources Res and is able to function over the web services provided by various
cloud service providers. Further, enterprise cloud bus system (ECBS) can be defined
as

ECBS = {CB, COL, I}, where, CB is the set of Cloud Bus.
Thus, 8i, CBi 2 CB. COLij identifies a set of Collaborations among CBi and CBj.
Thus, 8i, j, COLij 2 COL, if i ≠ j. The set Iij determines the interaction path

between any two Cloud Bus CBi and CBj in the ECBS system.
Thus, 8i, j, Iij 2 I, if i ≠ j.

6.3.3 Conceptualization of ECBS in MAS Architecture

Conceptual architecture of ECBS defines a set of building blocks and their inter
relationship to conceptualize the environmental elements, agents, related events,
collaborations, and interactions among the CESBs. A conceptual architecture of
ECBS deals with high-level representation of the agent and other component in
inter-cloud architecture.

This section describes the conceptual definition of multi-agent-based enterprise
cloud Bus system (ECBS). The concept of MAS definition in the proposed archi-
tecture is an extension of research works in [10, 11]. Agent-based system is the de
facto paradigm to handle the dynamicity of multi-cloud architecture like ECBS.

The dynamicity of CBi in the environment multi-CloudEnv are handled using
three agents {PA, SA, CA} and other components relevant to single cloud archi-
tecture as described in Fig. 6.1.

126 G. Khan et al.

Formally, the dynamic model of any CloudBus (CBi) can be defined as

CBi ¼ CAi; PAi; SAif g ð6:3Þ

Each of the agents within the CloudBus (CBi) will be invoked if the following
conditions hold by different agents;

ESB ∧ CESB ∧ HUDDI ∧ RES → CAi

CLIENT ∧ CUDDI ∧ RES → PAi

CUDDI ∧ HUDDI ∧ MAPPER ∧ LOGGER ∧ SCHEDULER ∧ RES → SAi

Since, agents are the architectural basis of the (CBi). Therefore, the dynamic
model of the CBi is a multi-agent-based system and can be defined as a multi-agent
definition as follows:

(a) CBi. Ai = [Role, E, C, R, PR, K, S, I] where, Ai2 {PAi, SAi, CAi}.
(b) Each agent in the CBi plays a specific set of Roles in the environment

Multi-CloudEnv; E is the set of cloud events which occur during various states
of the cloud service transitions.

(c) C is a set of environmental conditions in cloud to be checked in order to
response on some event in Cloud Bus;

(d) R is a set of environmental cloud resources that are available and necessary for
fulfillment of the goal of agents within the CBi. Formally, (R � Res);

(e) PR is the properties of agents within the CBi which will hold the state of the
cloud bus and also will maintain the state of the cloud resources R on which the
agents is acting;

Fig. 6.1 Enterprise Cloud Bus System Framework (ECBS)

6 Formal Modeling of Enterprise Cloud Bus System … 127

(f) K is the set of information that forms the main knowledge base. Initially, it
comprises of the states of available cloud resources that the agents within the
CBi will use to response on some event. The K can be update dynamically.

(g) S is the set of cloud services that the agents within the CBi can provide and
conceptualize this will determine the capability of the cloud bus components;

(h) I is a set of interactions between the agents reside inside the CBi.

6.3.4 Structural Analysis of ECBS

The structural analysis of the ECBS system can be studied using Eqs. (6.1), (6.2),
and (6.3) as described in the earlier section. The analysis states that, CAi exists if for
all i, ESB, CESB, HUDDI, and RES components exist. This also implies that for any
CloudBus i, any change in CAi will affect the state of ESB, CESB, HUDDI, and RES
only. Similarly, PAi exists if for all i, CLIENT, CUDDI, and RES exist, which
implies for any CloudBus i, any change in PAi will affect the state of CLIENT,
CUDDI, and RES only. Similarly, SAi exists if for all i, CUDDI, HUDDI, MAPPER,
LOGGER, SCHEDULER, and RES components exist. That implies, for any
CloudBus i, change in SAi will affect the state of CUDDI, HUDDI, MAPPER,
LOGGER, SCHEDULER, and RES only.

6.3.5 ECBS Elements in MAS Architecture

The roles, events and related services along with the respective resources, prop-
erties, and knowledge base of each agents present within the CBi is summarized in
Table 6.1.

Provider Agent (PA) starts working with the minimal set of knowledge of the
environment to render the request, service, and resource token.

The set of Roles R as shown in Table 6.1 to be played by the PA will be
R = {R0: Request Transmitter, R1: Service Provider, R2: Request Provider, R3:

Resource Seeker}.
The set of Events E for the PA will be
E = {E0: Request Transmitted, E1: Service Provided, E2: Request Registered,

E3: Resource used & Released}.
These set of events will be performed after satisfying possible environmental

constraints C.
The set of Resources RS = {RS1: Web Service, RS2: Registries, RS3:

Timestamp}.
Now the PA will use several properties to hold the state of the resources and the

states of itself.

128 G. Khan et al.

Hence, the set of Properties PR = {PR1: status of Request type which can have
various statuses, PR2: status of Service type which can have various statuses, PR3:
status of Resource type which can have various statuses}.

PA starts working with the minimal set of knowledge of the environment to
render the services. The knowledge base can be updated dynamically once the
component of CloudBus starts working.

The set of knowledge
K = {K0: Details of request, K1: Details of service, K2: Details of resource}.
With all these and with some defined set of Interactions I PA will be performing

some services
S = {S0: SendRequest, S1: ProvideService, S2: GetRequest, S3: GetResource,

S4: ReleaseResource}.
Cloud Agent (CA) starts working with the minimal set of knowledge of the

environment to render the request, service, and resource token.
The set of Roles R as shown in Table 6.2 to be played by the CA will be
R = {R4: Service Invoker, R5: Service Collector, R6: Service Transmitter, R7:

Resource Seeker}.

Table 6.1 Role collaboration templates of ECBS

Role Event Service Cloud bus
component

Agent: Provider Agent (PA)

R0: Request Transmitter
R1: Service Provider

E0: Request Transmitted
E1: Service Provided

S0: SendRequest
S1: ProvideService

CLIENT

R2: Request Provider E2: Request Registered S2: GetRequest CUDDI

R3: Resource Seeker E3: Resource used &
Released

S3: GetResource
S4: ReleseResource

RES

Agent: Cloud Agent (CA)

R4: Service Invoker E4: Service Invoked S5: InvokeService ESB

R5: Service Collector E5: Service Collected S6: CollectService CESB

R6: Service Transmitter E6: Service Registered S7: PublishService HUDDI

R7: Resource Seeker E7: Resource used &
Released

S8: GetResource
S9: ReleseResource

RES

Agent: Scheduler Agent (SA)

R8: Service Matcher E8: Service Matched S10: MatchService CUDDI

R9: Service Seeker E9: Service Discovered S11:GetService HUDDI

R10: Service Mapper E10: Service Mapped S12: MapService MAPPER

R11: Service Scheduler E11: Service Scheduled S13: ScheduleService SCHEDULER

R12: Service Logger E12: Service Logged S14: LogService LOGGER

R13: Service Dispatcher E13: Service Dispatched S15: DispatchService CLIENT

R14: Resource Seeker E14: Resource used &
Released

S16: GetResource
S17: ReleseResource

RES

6 Formal Modeling of Enterprise Cloud Bus System … 129

The set of events E for the CA will be
E = {E4: Service Invoked, E5: Service Collected, E6: Service Registered, E7:

Resource used & released}.
These set of events will be performed after satisfying possible environmental

constraints C.
The set of Resources RS = {RS1: Web Service, RS2: Registries, RS3:

Timestamp}.
Now the CA will use several properties to hold the state of the resources and the

states of itself.
Hence the set of Properties PR = {PR4: status of Request type which can have

various statuses, PR5: status of Service type which can have various statuses, PR6:
status of Resource type which can have various statuses}.

CA starts working with the minimal set of knowledge of the environment to
render the services. The knowledge base can be updated dynamically once the
component of CloudBus starts working.

The set of knowledge K = {K3: Details of request, K4: Details of service, K5:
Details of resource}.

With all these and with some defined set of Interactions I, CA will be performing
some services S = {S5: InvokeService, S6: CollectService, S7: PublishService, S8:
GetResource, S9: ReleaseResource}.

Scheduling Agent (SA) starts working with the minimal set of knowledge of the
environment to render the request, service, and resource token.

The set of Roles R as shown in Table 6.2 to be played by the SA will be
R = {R8: Service Matcher, R9: Service Seeker, R10: Service Mapper, R11: Service
Scheduler, R12: Service Scheduler; R13: Service Logger; R14: Resource Seeker}.

The set of Events E for the SA will be E = {E8: Service Matched, E9: Service
Discovered, E10: Service Mapped, E11: Service Scheduled, E12: Service Logged,
E13: Service Dispatched E14: Resource used & Released}.

Table 6.2 Mapping from ECBS Conceptual Architecture to HECBP

S.
No.

Concepts in ECBS Concept in HECBP

1 Properties, Knowledge, Cloud Services, Roles of
(CLIENT, PA, CUDDI, ESB, CESB, CA, HUDDI, SA,
MAPPER, LOGGER, RES)

Place, P

2 Events of (CLIENT, PA, CUDDI, ESB, CESB, CA,
HUDDI, SA, MAPPER, LOGGER, RES)

Transitions, T

3 Collaborations among (PA, SA, CA) Set of Arcs, N

4 Elements of (PA, SA, CA) Color Function, Cf

5 Constraints of (PA, SA, CA) Guard Function, G

6 Interactions among (PA, SA, CA) Arc Expression, Exp

7 Users Initialization Function, I

130 G. Khan et al.

These set of events will be performed after satisfying possible environmental
constraints C.

The set of Resources RS = {RS1: Web Service, RS2: Registries, RS3:
Timestamp}.

Now the SA will use several properties to hold the state of the resources and the
states of itself.

Hence the set of Properties PR = {PR7: status of Request type which can have
various statuses, PR8: status of Service type which can have various statuses, PR9:
status of Resource type which can have various statuses}.

SA starts working with the minimal set of knowledge of the environment to
render the services. The knowledge base can be updated dynamically once the
component of CloudBus starts working.

The set of knowledge K = {K6: Details of request, K7: Details of service, K8:
Details of resource}. With all these and with some defined set of Interactions I SA
will be performing some services S = {S10: MatchService, S11: GetService, S12:
MapService, S13: ScheduleService, S14: LogService, S15: DispatchService, S16:
GetResource, S17: ReleaseResource}.

6.4 High-Level Enterprise Cloud Bus Petri-Net (HECBP)

High-level enterprise cloud bus petri-nets (HECBP) is a graphical representation of
ECBS system that allows visualization and analysis of the system dynamics and
behavioral properties such as safeness, boundedness and liveliness, etc. Proposed
HECBP is a colored petri-net (CPN)-based approach, which is capable to represent
the interactions between agents and other cloud components within the cloud bus.

6.4.1 Definition: High-Level Enterprise Cloud Bus Petri-Net
(HECBP)

A high-level Petri-net is defined as a directed bipartite graph that has two types of
nodes namely places and transitions). The arcs are connector between these nodes that
represents state of a transition of the given node. Hence in a formal manner, high-level
enterprise cloud bus Petri-net, HECBP, is defined by the 8—tuples as follows:

(a) The various elements of the proposed HECBP is defined as
Σ = [Color set for Request token, Color set for Service token, Color set for
Resource token]. Cf is the color function where, Cre = {blue for request},
Cs = {red for service}, Cr = {black for resource token}.

(b) Σ is a finite set of non-empty types, also called color sets. The set of types
determines the data values of CloudBus components, resources, the operations,
and functions that can be used in the net expressions (i.e., arc expressions,
guards, and initialization expressions), Σ = . Cs [Cre [Cr [G[E[I;

6 Formal Modeling of Enterprise Cloud Bus System … 131

(c) P is a non-empty finite set of places. It comprises of all the CloudBus and their
environmental resources. Formally, P = CBi [Res

(d) The CloudBus place contains all the agents, components, tokens, except events,
of a CloudBus. T is a non-empty finite set of transitions include all events of
any CloudBus, CBi, and resource Ri, along with the interactions between the
cloud bus present in environment,

(e) T = CBi [I[Ri*ei. N is the finite set of arcs that map into a pair where the
first element is the source node and the second the destination node. The two
nodes have to be of different kind. If we say that T = e U I, then it can be said
that, T × P (CBi) U (P × T), because arc from T to P is not valid in case of
resources. Hence,

(f) Cf is the color function. Formally, Cf → Cb. The color function Cf maps each
place P to a type C. C is the color function for CloudBus that contains various
tokens of different colors. Cb = Cs[Cre[Cr, Cs is the color function for
Service token, Cre, is the color function for Request token, and Cr is the color
function for resources. Different tokens have different colors in the Net.

(g) The guard function G maps each transition, T into a Boolean expression where
all variables have types that belongs to Σ. The arc expression function E maps
each arc ‘a’ in the node function into an expression of type Cf (p).This means
that each arc expression must evaluate to multi-set over the type of the adjacent
place, P. The initialization function I map each place, P, into a closed
expression which must be of type Cf (p).

An agent within the cloud bus of ECBS consists of various elements namely
roles, events, constraints, resources, properties, knowledge, interactions, and ser-
vices which together make ECBS successful to achieve the prespecified goal.
Mapping of conceptual architectural to HECBP has been summarized in Table 6.2.
A component will request for a resource. Once a resource is allocated to a com-
ponent, it will hold the resource until the next transition is fired from that place.

Formally, CBi → RES. The graphical notation of place and transition are rep-
resented as usual notation of CPN and those are Circle and Bar, respectively.

6.4.2 HECBP Elements: Places and Transitions

The details of the places P, transitions T, and tokens t have been illustrated in
Tables 6.3 and 6.4, respectively. In this Petri-net model, three types of tokens are
considered. They are service, request, and resource token. In Table 6.4, the color set
value of token is considered as (P = 1; Q = 2; R = 3) to distinguish among
themselves.

132 G. Khan et al.

6.5 Analysis of ECBS Based on HECBP

High-level enterprise cloud bus Petri-net (HECBP) is a suitable tool to model the
behavior of ECBS system. Moreover, several features of dynamic system like,
occurrence of finite number of events, deadlock free operations, achievement of
goals through firing of events, etc., can be analyzed through the analysis of HECBP
properties like, safeness, boundedness, liveness, reachability, etc. Further, the
HECBP-based analysis will give detail insight about the internal behavior of the
system.

6.5.1 HECBP-Based Analysis of ECBS

Figure 6.2 shows the HECBP net of the ECBS system.
The process starts from a place P0 which is the client and after a transition T0

will reach a place P10 from, which the scheduling agent of place P7 will collect the
service for delivering it to the client. The process continues further on and we
finally arrive at the place P7. Serially as the transitions occur, the process moves on
to each of the places as explained in the tables.

The place P11 is the places for the resources RS1, RS2, and RS3, respectively. All
the cloud bus components will request each of the resources as andwhen required and
once the transition is fired will release it updating the knowledge base. In this system,
a place have token such that Token → C × K × PR × S × R × I. From theHECBP
net, the corresponding reachability graph is obtained and shown in Fig. 6.3.

Some of the crucial behavioral properties have been analyzed using the HECBP
model. They are as follows:

Table 6.3 Places and transitions with its descriptions based on Table 6.1

Places Component of places Transitions Events

P0 Client T0 E0, E3

P1 PA T1 E2, E3

P2 CUDDI T2 E4, E7

P3 ESB T3 E5, E7

P4 CESB T4 E6, E7

P5 CA T5 E8, E14

P6 HUDDI T6 E9, E14

P7 SA T7 E10, E14

P8 MAPPER T8 E11, E14

P9 SCHEDULER T9 E12, E14

P10 LOGGER T10 E13, E14

P11 RESOURCE (RS1, RS2, RS3)
RS1: Web Services; RS2: Registries; RS3: Timestamp

T11 E1, E14

6 Formal Modeling of Enterprise Cloud Bus System … 133

Table 6.4 Token and its descriptions

Places Token Description of tokens token parameters Color set value of token

P0 t0 Request Sent 1

P1 t0 Request Provide 1

P2 t0
t1

Request
Service

Register
Register

1
2

P3 t1 Service Published 2

P4 t1 Service Provide 2

P5 t1 Service Collect 2

P6 t1 Service Register 2

P7 t1
t1

Service
Service

Register
Dispatch

2
2

P8 t1 Service Discover 2

P9 t1 Service Map 2

P10 t1 Service Schedule 2

P11 t2
t2

Resource
Resource

Request
Release

3
3

Fig. 6.2 Enterprise Cloud Bus Petri-net (HECBP)

134 G. Khan et al.

(a) Reachability: Reachability property is a fundamental artifact for analyzing the
dynamic properties of any MAS-based cloud architecture. However in this
section, it has been established from Fig. 6.3 that all the markings in the
HECBP net are reachable starting from any marking in the net, and hence
reachability exists. This guarantee that the HECBP net modeled the ECBS that
will meet the prespecified goal;

(b) Home Properties: A marking in the HECBP is said to be a home marking if it
is a home space. It tells us about the markings to which it is possible to return.
In the proposed HECBP, the initial marking M0 is a Home marking and a
marking M0 2 M and a set of markings Z � M be given as: M0 is a home
marking
if: 8 M′2 [M0] > : M 2 [M′]; and Z is a home space if: 8 M′ 2 [M0] > : Z \
[M′] > ≠ ∅]. In this context, M is a home marking if {M} is a home space.

(c) Boundedness: The boundedness property states that after considering all
reachable markings, the number, and type of tokens a place may hold in the net.
It can be concluded after analyzing the HECBP net that there is no unbound-
edness at any stage once the process starts and goes from place P0 to P7 via
P10, and thus the boundedness of the HECBP net is guaranteed and safe;

Fig. 6.3 Reachability graph corresponding to Fig. 6.2

6 Formal Modeling of Enterprise Cloud Bus System … 135

(d) Liveness: The liveness properties of a HECBP model shows a continuous
dynamic operation of the proposed net model and ensure that the system is live
once transitions are fired. In the proposed HECBP net as the component of the
cloud bus process starts from P0 transitions T0 through T10 are fired and place
P7 is reached. The net is continuous and hence the liveness property is ensured.
Thus the proposed net is live:

(e) Fairness: The net HECBP is said to be bounded-fairness because at a time
single transition are fired. It can also be termed as unconditional fairness
because every transition appears infinitely in a firing sequence. Here the net is
B-Fair.

(f) Safeness: Any place in a HECBP is declared as safe, as the number of tokens at
that place is either 0 or 1 and there is no deadlock present in the net. Also all the
place in the concerned net is safe therefore the net as a whole is declared safe.

6.5.2 Simulation of HECBP

There are various tools to analyze Petri-net-based system behavior. In this section,
HECBP Net is analyzed using CPN tools to study the behavioral aspects of
multi-cloud architecture defined using proposed conceptual model of ECBS. Here,
three colors sets namely red, blue, and black have been used to depict the three
types of tokens namely request, service and resource token, respectively.

Thus few restrictions have been imposed for simulation of the HECBP Net using
CPN simulation and are summarized as follows:

(a) Before and after Transitions the data types of Tokens have to be same or else
transition will not be fired/enabled;

(b) During the simulation process, at any point of time, it cannot be clearly
expressed which component is enabled after a Transition is fired;

(c) Multitoken pass can be done but only one single token is being passed at a time.

The advantage of using the concept of high-level Petri-net along with CPN
simulator tool for analyzing dynamism of multi-cloud behavior is as follows:

(a) The dynamic component (PA, CA, SA) can be handled with ease.
(b) Validation of the agent-based multi-cloud architecture can be done.

The declarations for the generated HECBP net corresponding to Fig. 6.2 can be
expressed as:

colset BOOL=bool;
colset INTINF = intinf;
colset TIME = time;
colset REAL = real;
colset UNIT = unit timed;

136 G. Khan et al.

colset STR = with S timed;
var x: STR;
colset IN = with P | Q | R timed;
var i: IN;
colset PRO = product STR * IN timed;
var p: PRO;

6.5.3 HECBP Simulation Through CPN Tool

In this section, the HECBP net is simulated using CPN tool and the corresponding
simulation results before and after transitions are shown. Figure 6.4 shows the
simulation before resource is allocated to the place P0. Once the requested
resources are allocated to the place P0, the relevant transition T0 is fired and place
P1 is reached. The resources are held up by the place P1. They will be returned to
the resource pool and only then the next transition will be enabled.

Figure 6.5 shows the simulation after resource is allocated to the required place.
Once these resources are released, as shown in Fig. 6.6, next transition T1 will be
enabled and place P2 will be reached. Hence, it can be seen that the resources are
allocated and released dynamically. It is dynamicity of the cloud bus component
properties that is very smoothly analyzed with the help of the proposed model.

This process of resource allocation and returning back after use will further
continue and finally the place P10 is reached from which the token moves to the P7
from where the service are delivered. Once the simulation is executed, the place P0
will send a request signal for the resources RS3. The request signal is accepted. It
can be seen that the net is waiting for transition T0 to be enabled.

Once the resources are allocated it can be seen in Fig. 6.4 that transition T0 is
fired. Place P1 is reached and resources are now within place P1. The next transition
T1 will be enabled only when the held up resources are freed or released. Further in
Fig. 6.7 the service are discovered once the request token in CUDDI are matched
with the service token by the SA. Thereafter, service is dispatched and resources are
released.

6.5.4 State Space Analysis

Simulation conducts a finite number of executions of the model that is being
analyzed. On conducting state-space analysis of the model, the simulation tool
usually generates a state-space report that provides the details of the state space and
standard behavioral properties of the proposed net. The report also gives a clear idea
about the beat upper and lower bounds. After simulation of the HECBP net, the
corresponding state-space reports are shown.

6 Formal Modeling of Enterprise Cloud Bus System … 137

The state-space report (Fig. 6.8) gives the state-space statistics. The bounded-
ness properties are shown in Fig. 6.9 that tells the number of tokens a place may
hold after considering all reachable markings. The best upper and lower bounds
results are shown in Fig. 6.10. These reports exhibit that the proposed HECBP is
bounded and safe.

The next part of the state-space report, Fig. 6.11, specifies the home properties,
liveness properties, and fairness properties. In Home properties, the home marking
is node P12. Even in liveness property node P12 is regarded as dead because the
execution of the process ends at that node namely P12 from which scheduling agent
(P7) takes the services and dispatch it to the end-users.

Fig. 6.4 CPN simulation—before resource allocation

138 G. Khan et al.

It is observed that the HECBP net is live because there are no dead transitions.
Similarly, we proved that the fairness property also is true since there is no infinite
occurrence sequence in the net.

In the theoretical analysis, a discussion was made on ECBS and further using
formalized and conceptual definition of the proposed ECBS a corresponding
HECBP model and its reachability graph was obtained and through which basic
dynamic behavioral properties like liveness, safeness, and boundedness were
proved.

It was observed and established from the theoretical analysis that all the dynamic
properties of ECBS were true for the ECBS considered as discussion. CPN tool was

Fig. 6.5 CPN simulation—after resource allocation

6 Formal Modeling of Enterprise Cloud Bus System … 139

used to successfully simulate and design the HECBP model. Once the HECBP is
simulated successfully, the state-space analysis generates the state-space reports,
which show that all the dynamic behavioral properties of the HECBP are suc-
cessfully demonstrated and verified. Thus, the simulation results of the HECBP
model strongly validate the theoretical analysis.

6.6 Future Research Directions

With the advancement of requirements engineering for service and cloud com-
puting technology, the enterprise software application has become a prevailing
domain focusing on integration and automatic composition of web services over
distributed cloud computing environment. Various potential research works still
exist for the field of requirements engineering for service and cloud computing
system design. In this context, several research proposals are there in literatures for
meeting the increasing demands for distributed software as a service and making
the software more accessible, scalable, configurable (over a distributed large-scale
global network), and shareable. Several researchers have work on conceptual model

Fig. 6.6 CPN simulation—resource used and released

140 G. Khan et al.

of multi-cloud architecture in order to address the problem of interoperability,
dynamic provisioning, deployment, and adaptation of dynamic multi-cloud
behavior systems.

Many of those approaches [24, 25] are also included with MAS based mecha-
nism in inter-cloud architecture that exhibits the dynamism of internal behavior of
the system. To handle the dynamicity of such large-scale computing system,
Petri-net-based approach [26] are a most acceptable formal modeling tool nowa-
days. However, none of those proposals are still accepted as standard. Most of those
proposals [27–29] are varied in the modeling and analyzing the dynamic behavior
of the system. So, more researches are required toward the conceptual level

Fig. 6.7 CPN simulation—service discovered by SA

6 Formal Modeling of Enterprise Cloud Bus System … 141

modeling using high-level Petri-net-based approach of MAS-based multi-cloud
architecture with the aim of realizing the facets of such system more
comprehensively.

Besides this, several other research directions are as follows:

(a) Modeling and Analysis of Service Composition Pattern through HECBP
Net: Multi-agent system [24–27] based Inter-cloud architecture [33–36]
requires formal modeling and analysis of service selection and composition

Fig. 6.8 State space report

Fig. 6.9 Boundedness properties

142 G. Khan et al.

Fig. 6.10 Upper and lower bounds

Fig. 6.11 State space report of other behavioral properties

6 Formal Modeling of Enterprise Cloud Bus System … 143

pattern. Verification and validation of service composition in Inter-cloud
architecture using high-level Petri-net is shown in [30–32]. The Petri-net-based
approach of modeling and analysis of multi-agent system is addressed in [37–
42]. But the proposed approach is less expressive when compared to the
high-level Petri-net-based approach, which is applicable across majorly on
large complex system. Moreover, many researchers have expressed the mod-
eling and analysis using high-level Petri-net approach in [43–45]. Many of the
research work are done using color Petri-net (CPN) tool that is further used for
constructing and analyzing such multi-cloud system [46]. The work in [47, 48]
reveals about the behavioral analysis of multi-cloud architecture using colored
Petri-net. However, it does not have any formal background of service selection
and composition design pattern. However, both of these proposals lack from the
validation with the standard like high-level Petri-net. On the other hand, [49] is
a formal methods of integrating high-level Petri-net with Z notation. Both [48,
49] are rigorously formal modeling techniques.

The HECBP model can be taken as a standard modeling, to select, compose,
identify, and schedule the services during its run time. Service selection and
composition modeling of such system is one of the challenging research issues.
Compare to the existing methodologies of such modeling, very few method-
ologies are there based on high-level Petri-net-based approach. Using HECBP
approach is one of the most prevailing modeling techniques to identify, define,
visualize, and specify customer’s requirements for formal modeling of service
composition pattern. The approach will help to cater the state-of-the-art
research and practice relating to requirements engineering for service and cloud
computing.

More research directions are required toward the tools and techniques for
customer’s service requirement engineering and modeling and analysis of
service composition pattern in the latest research field. The HECBP approach
helps to cater the functional requirements of service composition for the needs
of the industry. The analysis of the Service Composition Framework can be
done based on the degree of heterogeneity of the cloud services. Further, the
service composition analysis can be proposed under various categories like
service choreography, orchestration, and hybrid.

(b) Verification and Validation of the Service Composition Pattern using
HECBP Net: Few of the proposed models [50, 51] validate the composition
pattern through high-level Petri-net-based approach using tools like CPN. The
author in the papers [52, 53] has expressed the verification strategy for web
services composition using enhanced stacked automata model. Thus for vali-
dation of the service composition pattern of any cloud-based system, the
HECBP model can be used to validate properties like correctness and com-
pleteness of the system pattern.

Further, the verification and validation can be done by comparing the sim-
ulation result of HECBP model with the theoretical results. Large research

144 G. Khan et al.

initiative is required toward the validation of the composition pattern in cloud
computing environment using high-level Petri-net.

(c) Service Scheduling using HECBP Net based on QoS parameters: Very few
proposals like [54–56] supported the modeling of service scheduling on quality
of service (QoS) parameters using high-level Petri-net based approach.
Moreover, those proposals also are at cognitive levels. Further, researches are
required toward the proposal of scheduling approach using high-level Petri-net
model for further validation. The HECBP Net can be used for scheduling of
cloud services as per user’s requirement. This approach helps to identify the
functional requirement and enhance the requirement engineering for service
and cloud computing paradigm.

(d) Quality Evaluations of HECBP model: It is necessary to evaluate the quality
metrics of the HECBP model of Inter-cloud Architecture. According to research
work [57–59], the quality evaluation techniques along with metrics, such as
operability, performance, scalability, reliability, etc., are measured based on
customer’s requirement toward service in cloud computing domain. These
concepts are abstracts and cannot be measured directly, but the evaluation of
quality metrics at early design phase is important to make the cloud bus system
more robust and reliable in service requirements engineering field.

In view of this, there is a necessity of a set of objective quality measurements
at the conceptual level design phase of such system to assess the quality metrics
in terms of reusability. The scalability factor of the HECBP model is another
issue that also influences the quality of early design of such system. Thus
research effort is required to devise suitable framework for quality evaluation of
MAS-based Inter-cloud architecture.

6.7 Conclusion

Multi-agent-based Inter-cloud Architecture represents dynamic and complex system
that consists of heterogeneous autonomous entities (CA, PA, SA) and other com-
ponents present inside the cloud bus. These autonomous entities play some specific
roles in the system. Based on these roles, collaborations occur between the par-
ticipating agents and components in ECBS. Participating agents in ECBS are
proactive and thus interact with the multi-cloud environment or with some other
components in the system.

Thus, collaborations and interactions among the participating agents and com-
ponents are the key factors to design the dynamics of ECBS effectively. As a result
of this dynamicity of ECBS, there are various behavioral properties exist in the
ECBS. For the purpose, a high-level enterprise cloud bus Petri-net (HECBP) has
been proposed to analyze and model the behavioral aspects of ECBS using a tool
called CPN for service requirements engineering. The dynamicity of the proposed
enterprise cloud bus system benefits the enterprise applications in optimizing the

6 Formal Modeling of Enterprise Cloud Bus System … 145

performance, cost, elasticity, flexibility, high reliability, and availability of the
computing resource.

Further, a set of mapping rules have been described for representing the elements
of the proposed conceptual framework of the ECBS into the HECBP net. The
proposed requirements engineering methods capture the state-of-the-art research
and practice relating to requirements engineering for service and cloud computing.
The key benefits of using the proposed mechanism are the capability to represent
study and analyze the interactions among the multiple agents present inside the
Cloud Bus. Using HECBP concepts and corresponding reachability graph, the
behavioral properties of an ECBS like reachability, safeness, Boundedness, liveness
can be analyzed formally. Moreover, simulation of the proposed HECBP with CPN
tool and generated results strongly validate the proposed claims. Interested readers
may refer the Additional References for further concepts on cloud-based system and
service-oriented system

Future work includes the quality analysis of ECBS dynamics from the proposed
concepts of HECBP. Development of a dedicated simulation tool for the conceptual
architecture of ECBS and HECBP is also a prime future objective. Simulation with
CPN tool and generated state-space reports will strongly validate the said claims.
We hope that this chapter will provide a comprehensive source of information
regarding formalization of MAS-based inter-cloud architecture and study its
behavioral properties.

References

1. Alexandros, K., Aggelos, G., Vassilis, S., Lampros K., Magdalinos P., Antoniou E.,
Politopoulou Z., 2014, A cloud-based Farm Management System: Architecture and
implementation, In Journal Computers and Electronics in Agriculture, Vol no. 100,
pp. 168–179.

2. Ardagna, D., Nitto, E.D., Casale, E., P, P., Mohagheghi, S., Mosser, P., Matthews, A.,
Gericke, C., Balligny, F. D., Nechifor, C.S, C, Sheridan., 2012. MODACLOUDS, A
Model-Driven Approach for the Design and Execution of Applications on Multiple Clouds,
International Workshop on Modelling in Software Engineering. pp. 50–56.

3. Brandtzæg, E., M. Parastoo, Mosser, E., 2012. Towards a Domain-Specific Language to
Deploy Applications in the Clouds, 3rd International Conference on Cloud Computing,
GRIDs, and Virtualization. IARIA, pp. 213–218.

4. Cavalcante, E., 2013. Architecture Driven Engineering of Cloud-Based Applications,
IFIP/Springer-Verlag, Germany, Vol no. (22). pp. 175–180.

5. Divyakant, A., Abbadi, A., Das, S., Elmore, A.J., 2011. Database scalability, elasticity, and
autonomy in the cloud, In Journal of Database Systems for Advanced Applications, Vol no.
(2), pp. 2–15.

6. Buyya, R., Ranjan, R., Rodrigo, N., 2010. Intercloud: Utility-oriented federation of cloud
computing environments for scaling of application services, In Algorithms and architectures
for parallel processing, LNCS Springer Vol no. (6081). pp. 13–31.

146 G. Khan et al.

7. Elmroth, E., Tordsson, J., Hernández, F., Ali-Eldin, A., Pette R, 2011. Self-management
challenges for multi-cloud architectures, Lecture Notes in Computer Science Towards a
Service-Based Internet, Vol no. 6994, pp. 38–49.

8. Ferry, N., Alessandro Rossini, Franck Chauvel, Brice Morin, and Arnor Solberg, 2013.
Towards model-driven provisioning, deployment, monitoring, and adaptation of multi-cloud
systems, In 2013 IEEE Sixth International Conference on cloud computing, pp. 887–894.

9. Saggar, R., Saggar, S., Khurana, N., 2014. Cloud Computing: Designing Different System
Architecture Depending On Real-World Examples, International Journal of Computer Science
and Information Technologies, Vol. 5 (4), pp. 5025–5029.

10. Sarkar, A., Debnath, N.C., 2012. Measuring Complexity of Multi- Agent System
Architecture, 10th IEEE Conference on Industrial Informatics, pp. 998 – 1003.

11. Sarkar, A., 2013. Modeling Multi- agent system dynamics: Graph semantic based approach,
10th International Conference on Service Systems and Service Management. pp. 664–669.

12. Djamel, B., 2013. An agent-based approach for hybrid multi-cloud applications, In Journal of
Scalable Computing: Practice and Experience 14, Vol no. 2.pp. 95– 109.

13. Khan, G., Sengupta, S., Sarkar, A., Debnath, N.C., 2014. Modeling of Inter-Cloud
Architecture using UML 2.0: Multi- agent Abstraction based Approach, 23rd International
Conference on Software Engineering and Data Engineering, pp 149–154.

14. Khan, G., Sengupta, S., Sarkar, A., 2014. WSRM: A Relational Model for Web Service
Discovery in Enterprise Cloud Bus (ECB), 3rd International Conference on Eco-friendly
Computing and Communication System, India, pp. 117–122.

15. Khan, G., Sengupta, S., Sarkar, A., 2015. Modelling of Services and their Collaboration in
Enterprise Cloud Bus (ECB) using UML 2.0, 2015. International Conference on Advances in
Computer Engineering and Applications, India, pp. 207–213.

16. Khan, G., Sengupta, S., Sarkar, A., Debnath, N.C., 2015. Web Service Discovery in
Enterprise Cloud Bus Framework: T Vector Based Model, 13th IEEE International
Conference on Industrial Informatics, pp. 1672–1677.

17. Sofiane, B., Bendoukha, H., Moldt, H., 2015. ICNETS: Towards Designing Inter-Cloud
Workflow Management Systems by Petri-nets, In Enterprise and Organizational Modeling
and Simulation, 198. Springer International Publishing. pp. 187– 198.

18. Chatterjee, A.K., Sarkar, A., Bhattacharya, S., 2011. Modeling and Analysis of Agent
Oriented System: Petri-net Based Approach, 11th Intl. Conf. on Software Engineering
Research and Practice (SERP 11), Vol. 1, PP 17 – 23.

19. Khan, G., Sengupta, S., Sarkar, A., 2015. Modeling and Analysis of Enterprise Cloud Bus
using a Petri-net Based Approach, 3rd International Doctoral Symposium on Applied
Computation and Security Systems (ACSS 2016), Kolkata, India.

20. Jensen, K., Kristensen, L.M., Wells, L.M., 2007. Coloured Petri-nets and CPN tools for
modeling and validation of concurrent systems, International Journal on Software Tools for
Technology Transfer, Vol no. 05. pp. 213 – 254.

21. Bhuvaneswari, A., Uma, S., Sakthitharan, S., Srinivasan, G., 2014. Assessment of Service
Composition Plan using Colored Petri-nets, International Journal of Engineering And
Computer Science, Vol no. 3(1), pp. 3736 – 3742.

22. Fitch, D., Xu, H., 2013. A Raid-Based Secure And Fault-Tolerant Model for Cloud
Information Storage, International Journal of Software Engineering and Knowledge
Engineering 23, Vol no. 05, pp. 627 – 654.

23. Chatterjee, R., Neha, Sarkar, A., 2015. Behavioral Modelling of Multi-agent System: High
Level Petri-net Based Approach, International Journal of Agent Technologies and Systems,
Vol no. 7(1), pp. 55 – 78.

6 Formal Modeling of Enterprise Cloud Bus System … 147

Additional References

24. Zambonelli, F., Omicini, A., (2004). Challenges and Research Directions in Agent-Oriented
Software Engineering, Journal of Autonomous Agents and Multi- agent Systems, Vol. 9,
PP 253–283.

25. Bauer, B., Mulller, J. P., Odell, J., (2001). Agent UML: A Formalism for Specifying
Multiagent Software Systems, International Journal of Software Engineering and Knowledge
Engineering, Vol 11, No. 3, pp. 1– 24.

26. Far, B. H., Wanyama,T., (2003).Metrics for agent-based software development, Canadian
Conference on Electrical and Computer Engineering (IEEE CCECE 2003), Volume 2,
PP 1297–1300.

27. Wille, C., Brehmer, N., Dumke, R.R., (2004). Software measurement of agent based systems -
an evaluation study of the agent academy, Technical Report Preprint No. 3, Faculty of
Informatics, University of Magdeburg.

28. G´omes-Sanz, J. J., Pav´on, J., Garijo, F., (2005). Estimating cost for agent oriented
software”, In M¨uller, J. and Zambonelli, F., editors, Agent oriented software engineering V.
5th International Workshop, AOSE 2005, Utrecht, The Netherlands, July 2005, Revised
Selected Papers, number 3950 in LNCS, pages 218–230, 2006.

29. Klügl, F., (2008). Measuring Complexity of Multi- agent Simulations – an Attempt using
Metrics”, Booktitle: Languages, Methodologies and Development Tools for Multi- agent
Systems, Springer-Verlag Berlin, Heidelberg.

30. Dhavachelvan, P., Saravanan, S., Satheskumar, K., (2008).Validation of Complexity Metrics
of Agent-Based Systems Using Weyuker’s Axioms, International Conference on Information
Technology (ICIT ‘08), PP 248– 251, 2008.

31. Mala, M., Cil, I., (2011). A taxonomy for measuring complexity in agent based systems, IEEE
2nd International Conference on Software Engineering and Service Science (ICSESS’11),
pp. 851–854.

32. Cetnarowicz, K., Cetnarowicz, E., (2000). Multi-agent decentralized system of medical help,
Management and control of production and logistics. AGH-University of Mining and
Metallurgy, Krakow, Poland.

33. Tsai, W. T. (2005, October). Service-oriented system engineering: a new paradigm. In IEEE
International Workshop on Service-Oriented System Engineering (SOSE’05) (pp. 3–6). IEEE.

34. Huhns, M. N., & Singh, M. P. (2005). Service-oriented computing: Key concepts and
principles. IEEE Internet computing, 9(1), 75–81.

35. Arsanjani, A. (2004).Service oriented modeling and architecture. IBM developer works, 1–15.
Zheng, Z., & Lyu, M. R. (2010, May). Collaborative reliability prediction of service-oriented
systems. In Proceedings of the 32nd ACM/IEEE International Conference on Software
Engineering-Volume 1 (pp. 35-44). ACM.

36. Papazoglou, M. P., Van Den Heuvel, W. J. (2003). Service-Oriented Computing:
State-of-the-Art and Open Research Issues. IEEE Computer.

37. P. Gruer, V. Hilaire, A. Koukam and K. Cetnarowicz, “A Formal Framework for Multi- agent
Systems Analysis and Design”, Journal of Expert Systems with Applications, Vol. 23, No. 4,
pp. 349–355, 2002.

38. B. Marzougui, K. Hassine, K. Barkaoui, “A New Formalism for Modeling a Multi-agent
Systems: Agent Petri-nets”, Journal of Software Engineering and Applications, Vol. 3,
No. 12, pp 1118–1124, 2010.

39. Tadao Murata, “Petri-nets: Properties, Analysis and Applications”, Proceedings of the IEEE,
Vol. 77, No. 4, pp 541–580, April 1989.

40. J. R. Celaya, A. A. Desrochers, R. J. Graves, “Modeling and Analysis of Multi- agent
Systems using Petri-nets”, Jnl. of Comp., Academy Press, Vol. 4 (10), PP 981–996, 2009.

41. W. Chainbi, “Multi- agent Systems: A Petri-net with Objects Based Approach”,
IEEE/WIC/ACM International Conference on Intelligent Agent Technology, 2004.

148 G. Khan et al.

42. S. Pujari, S. Mukhopadhyay, “Petri-net: A Tool for Modeling and Analyze Multi- agent
Oriented Systems”, Intl. Jnl. Intelligent Sys. and Appls., Vol. 10, 103–112, 2012.

43. ISO/IEC. (2002). High-level Petri-nets–Concepts, definitions, and graphical notation. Final
Draft International Standard 15909, version 4.7.1.

44. Zhou, Y., Murata, T., and DeFanti, T. (2000). Modeling and performance analysis using
extended fuzzy-timing Petri-nets for networked virtual environments. IEEE Transactions on
Systems, Man, and Cybernetics 30(5), 737–756.

45. Zhou, Y., and Murata, T. (2001). Modeling and analysis of distributed multimedia
synchronization by extended fuzzy-timing Petri-nets, Journal of Integrated Design and
Process Science 4(4), 23–38.

46. Q. Bai, M. Zhang, K. T. Win, “A Colored Petri-net Based Approach for Multi- agent
Interactions”, 2nd Intl. Conf. on Autonomous Robots and Agents, PP 152–157, 2004.

47. Z. Jun, H. W. Ngan; L. Junfeng, W. Jie, Y Xiaoming, “Colored Petri-nets Modeling of Multi-
agent System for Energy Management in Distributed Renewable Energy Generation System,”
Asia-Pacific Power and Energy Engineering Conference (APPEEC), pp. 1,5, 28–31, 2010.

48. Haas, P. (2002). Stochastic Petri-nets: Modeling, stability, simulation, Springer-Verlag.
49. He, X. (2001). PZ nets—A formal method integrating Petri-nets with Z. Information and

Software Technology. 43, 1–18.
50. Dong, W. L., Yu, H., & Zhang, Y. B. (2006, October). Testing bpel-based web service

composition using high-level Petri-nets. In 2006 10th IEEE International Enterprise
Distributed Object Computing Conference (EDOC’06) (pp. 441–444). IEEE.

51. Chemaa, S., Bouarioua, M., & Chaoui, A. (2015). A high-level Petri-net based model for web
services composition and verification. International Journal of Computer Applications in
Technology, 51(4), 306–323.

52. Nagamouttou, D., Egambaram, I., Krishnan, M., & Narasingam, P. (2015). A verification
strategy for web services composition using enhanced stacked automata model. Springer Plus,
4(1), 1.

53. Chen, C. S., Lin, C. H., & Tsai, H. Y. (2002). A rule-based expert system with colored
Petri-net models for distribution system service restoration. IEEE Transactions on Power
Systems, 17(4), 1073–1080.

54. Azgomi, M. A., & Entezari-Maleki, R. (2010). Task scheduling modelling and reliability
evaluation of grid services using coloured Petri-nets. Future Generation Computer Systems,
26(8), 1141–1150.

55. Shen, W. (2002). Distributed manufacturing scheduling using intelligent agents. IEEE
intelligent systems, 17(1), 88–94.

56. Yan, H. S., Wang, N. S., Zhang, J. G., & Cui, X. Y. (1998). Modelling, scheduling and
simulation of flexible manufacturing systems using extended stochastic high-level evaluation
Petri-nets. Robotics and Computer-Integrated Manufacturing, 14(2), 121–140.

57. Kim, H., Lee, H., Kim, W., & Kim, Y. (2010). A trust evaluation model for QoS guarantee in
cloud systems. International Journal of Grid and Distributed Computing, 3(1), 1–10.

58. Ardagna, D., Di Nitto, E., Casale, G., Petcu, D., Mohagheghi, P., Mosser, S., … & Nechifor,
C. S. (2012, June). Modaclouds: A model-driven approach for the design and execution of
applications on multiple clouds. In Proceedings of the 4th International Workshop on
Modeling in Software Engineering (pp. 50–56). IEEE Press.

59. Gustafsson, J., Paakki, J., Nenonen, L., & Verkamo, A. I. (2002). Architecture-centric
software evolution by software metrics and design patterns. In Software Maintenance and
Reengineering, 2002. Proceedings. Sixth European Conference on (pp. 108–115). IEEE.

6 Formal Modeling of Enterprise Cloud Bus System … 149

Chapter 7
Requirements to Services: A Model
to Automate Service Discovery
and Dynamic Choreography
from Service Version Database

Swapan Bhattacharya, Ananya Kanjilal, Sabnam Sengupta,
Jayeeta Chanda and Dipankar Majumdar

Abstract As the software industry is gradually moving toward the cloud com-
puting in a fast pace, Service oriented architecture (SOA) is increasingly becoming
more and more important, as far as the Software As a Service (SAAS) is concerned.
As SOA applications are maturing, it becomes imperative to maintain the various
versions of services published in the Enterprise Service Bus (ESB). However, for
implementing a particular requirement, it may not always be cost-efficient, to use
the latest version of the services. If a previous version matches the requirement,
then that might be a cost-effective solution and enabling “reuse” to a larger extent
can be a very useful method in cloud computing domain where pay per use is the
accepted norm. In this chapter, we devise a comprehensive framework that models
requirements in a formal manner and automatically extracts verbs to generate an
activity model, which is then translated into BPMN notation based on a set of
transformation rules. The BPMN nodes are mapped to services and an algorithm for
dynamic discovery of appropriate service version is conceived. Thereafter we also
verify the entire transformation process and ensure correctness by developing a
traceability model and generate trace table to trace from requirements till services
and apply it for a case study for substantiation of our approach.

S. Bhattacharya
Jadavpur University, Kolkata, India
e-mail: bswapan2000@yahoo.co.in

A. Kanjilal � S. Sengupta (&) � J. Chanda
B. P. Poddar Institute of Management & Technology, Kolkata, India
e-mail: sabnam_sg@yahoo.com

A. Kanjilal
e-mail: ag_k@rediffmail.com

J. Chanda
e-mail: jayeeta.chanda@gmail.com

D. Majumdar
RCC Institute of Information Technology, Kolkata, India
e-mail: dipankar.majumdar@gmail.com

© Springer International Publishing AG 2017
M. Ramachandran and Z. Mahmood (eds.), Requirements Engineering
for Service and Cloud Computing, DOI 10.1007/978-3-319-51310-2_7

151

Keywords Service-oriented architecture (SOA) � BPMN � Natural language �
Systems modeling language (SysML) � Enterprise service bus � Requirements
traceability

7.1 Introduction

As the software industry is making a paradigm shift toward cloud computing,
developing a cost-efficient solution for requirement engineering is becoming more
and more relevant. With the development of newer versions of software compo-
nents with added functionality and features, designing software with appropriate
and cost-effective version based on the requirement specified is becoming the need
of the day. This approach enhances reusability of software components maintained
in software engineering database and hence enhances the cost-effectiveness. Formal
modeling of requirements and model-based testing play key roles in that context.

In this chapter, therefore, we focus on aspects of requirement engineering, for-
mal modeling, model-based testing and reusability with an engineering database.
We develop a framework that can automatically translate the requirements to
business models. The requirements are based on a formal syntax named EARS [1],
which consists of various constructs to represent many different types of require-
ments. A Requirements Parser and Analyzer analyzes the requirements and maps
the verbs to form the processes/activities in the activity diagram. A set of trans-
formation rules and two algorithms are defined to translate activity diagram into a
BPMN model (Business Process Model Notation) by the generation of BPMN
nodes and then flows between the nodes based on activity diagram.

Subsequently, the BPMN processes are realized/ implemented in services that are
published enterprise service bus (ESB) (ESB). We envisage that an engineering
database would be required to store all the service version information. In all realistic
situations a BPMN process may be satisfied using multiple versions of a service but
optimally the version that just suits the requirements should be chosen to promote
reusability and reduce usage price on a cloud environment where services are hosted.
We present new additions to the UDDI (Universal Description, Discovery and
Integration) standard [2] for publishing services that caters to version details and
differences in the services offered in each version. The UDDI registry format is
enhanced to store the service version details as well map to a Service Version
Database (SVD). The concept of SVD is based on the classical paper on software
evolution by Luqi [3]. Our novel methodology helps in discovering correct service
version matches based on the business functions extracted from the requirements and
matching with the service version details stored in SVD. The version, which opti-
mally satisfies the requirements, is chosen. Higher versions, with extra functionality
are ignored. These service versions are then discovered in the ESB and an algorithm
for choreography of the discovered services dynamically is presented.

Finally, the Requirements to Services framework can be tested and verified
based on the concept of model based testing. We present a traceability framework

152 S. Bhattacharya et al.

that maps requirements to business processes to services to ensure verification of
the overall software system. A graphical model that maps the various artifacts from
requirements to verbs, verbs to processes, and processes to services is used for
traceability. Algorithms to navigate the graph for forward and backward traceability
of requirements to services complete the overall requirement engineering, service
discovery and verification process.

The chapter is organized as follows—The next section discusses review of
literature in the direction of requirement formalization, service versioning and
dynamic service discovery followed by the Scope of work in Sect. 7.3. This work
consists of three parts. Section 7.4 deals with the first part, which presents a re-
quirement parser and analyzer, and using a formal specification it extracts functions
from requirements and generate activity model. Section 7.5 translates the activity
model into BPMN based on a set of transformation rules. The algorithms for node
generation and flow generation between BPMN nodes are formulated. In Sect. 7.6
we focus on discovery of appropriate service versions from SVD based on the
BPMN model. Section 7.7 presents a traceability model that establishes a
rule-based trace table generation from requirements to services and vice versa,
followed by conclusion in Sect. 7.8.

7.2 Review of Literature

The objective of our work is to provide a framework for unambiguous represen-
tation & interpretation of functional requirements and automated support for
derivation of design models and selection of appropriate services so as to ensure
verification of the entire process starting from requirements elicitation to imple-
mentation. This is only possible through the use of formal techniques. The review is
done based on the three aspects of our work namely requirement formalization,
service versioning & service discovery and finally traceability in software systems.

7.2.1 Requirement Formalization

Although there are several proposals to transform a more formal representation into
use cases diagrams. Formalizations of Textual Requirements to UML Diagrams [4]
is however scarce. Hence we here review the research works in the domain of
formal specification of requirements.

Mavin et al. in [1, 5] put forward the three common forms of ambiguity in
requirement specification: lexical, referential and syntactical. To overcome such
problems that arise because of the association with Natural Language (NL), usage of
other notations has been advocated for the specification of user requirements. Z [6],

7 Requirements to Services: A Model to Automate Service Discovery … 153

and graphical notations such as Unified Modeling Language (UML) [7] and Systems
Modeling Language (SysML) [8] are worth mentioning in this domain of work.

There are also numerous scenario-based approaches [9], tabular approaches such
as Table-Driven Requirements [10] and pseudocode. However, use of any of these
nontextual notations often requires complex translation of the source requirements,
which can introduce further errors. There are also many research works specifically
about how to write better requirements like [11, 12] that focus on the characteristics
of well-formed requirements and the attributes that should be included. Despite this
large body of research works, there seems to be little simple, practical advice for the
practitioner. A set of simple requirement structures would be an efficient and
practical way to enhance the writing of high-level requirements. Previous work in
the area of constrained natural language includes Simplified Technical English [13],
Attempto Controlled English (ACE) [14], Easy Approach to Requirements Syntax
(EARS) in [1] and Event Condition Action (ECA) [15]. In ECA, the event specifies
the signal that triggers the rule and the condition is a logical test that (if satisfied)
causes the specified system action.

We have applied the EARS framework conceived in [1] for specifying
requirement syntax and defined a context-free grammar so as to automatically parse
the EARS-based requirements to identify verbs that is used to generate the activity
diagram.

7.2.2 Service Versioning and Dynamic Service Discovery

Web services are generally registered based on the UDDI which has become the de
facto standard for registering services. UDDI stands for Universal Description,
Discovery and Integration of web services, which is an XML (eXtended Markup
Language) based registry to list services over the web. Generally, discovery of a
service is done by searching based on the functional description in the UDDI
registry.

As web services are used more frequently, their evolutionary changes pose a
challenge in identifying changes and synchronizing those changes with the
dependent services [2]. A service dependency model is presented in [10] for the
synchronization of multiple service versions by relating the base service model with
the dependent service versions to construct a service dependency graph and
dependency matrices. However, these services are not evolved from or traced back
to requirements, which forms the basis of our paper.

Authors in [16] present a new web services discovery model that takes into
account functional and nonfunctional requirements like QoS (Quality of Service)
for dynamically discovering services and extend the UDDI model to achieve the
same. Taking cue from this, here we extend the UDDI to maintain information
about various versions of services so that our framework can discover appropriate
service versions while implementation.

154 S. Bhattacharya et al.

Authors in [9] introduce model-aware services that work with models at runtime.
These services are supported using a service environment, called Morse. Hiding the
complexity of implicit versioning of models from users while respecting the prin-
ciple of Universally Unique Identifiers (UUIDs), it realizes a novel transparent
UUID-based model versioning technique. It uses the model-driven approach to
automatically generate and deploy Morse services that are used by the model-aware
services to access models in the correct version. We follow similar unique
identifier-based service versioning scheme in our approach while discovering and
choreographing services.

In [17] the authors describe a framework for dynamic service discovery that
supports the identification of service during the execution time of service-based
systems. In the framework, services are identified based on structural, behavioral,
quality and contextual characteristics of a system represented in query languages. In
our previous work [12], we have presented a context-aware dynamic service
choreography framework that provides an optimized search in a subset of services
retrieved based on contextual information. This paper also focuses on dynamic
service discovery and choreography but for generic requirement scenarios by
functionally mapping requirements and service version offerings.

The lack of standards-based guidance for service versioning is a major risk
associated with the web service adoption. In [18] authors classify versioning ser-
vices as message versioning and contract versioning. In this work, we typically
focus on the versions of contracts. Contract versioning deals with addition of new
operation, data structure and data types, new interface for an existing operation, etc.

In [19, 20] the authors discuss the issue of versioning of services in an SOA
framework. They classify between different request types, operations, response
types and present arguments as to how the version number should be managed to
optimize the management of changes in services.

There has been some research work in the direction of dynamic service dis-
covery. At the same time, very few research works are there to address the
version-related considerations for web services. It is imperative to connect these
two domains to provide an integrated methodology to enable dynamic service
discovery of appropriate service versions.

We present a novel methodology to discover appropriate versions of services
based on a requirement scenario and subsequently choreograph the services based
on the order of requirements.

7.2.3 Traceability of Requirements

One of the biggest challenges in the software industry is to ensure that a software
product meets all user specifications. Requirements traceability is one way to ensure
confidence in the customer that all requirements have been correctly and consis-
tently implemented.

7 Requirements to Services: A Model to Automate Service Discovery … 155

Review of literature in this direction reveals that some of the works focus on
recovering traceability information between two types of artifacts, e.g., design/code,
code/documentation, requirements/design. Antoniol et al. discuss a technique for
automatically recovering traceability links between object-oriented design models
and code based on determining the similarity of paired elements from design and
code in [21] and in [22] they propose an approach to recover trace information
between code and documentation. In another work [23], Arlow et al. emphasize the
need to establish and maintain traceability between requirements and UML design
and present Literate Modeling as an approach to ease this task while Pohl et al.
describe an approach based on scenarios and metamodels to bridge requirements
and architectures in [24].

In contrast to many theoretical works on requirement traceability [25] follows an
empirical approach and compares a wide range of traceability practices in industry
and identifies four kinds of traceability link types. Grünbacher et al. discuss the
CBSP approach that improves traceability between informal requirements and
architectural models by developing an intermediate model based on architectural
dimensions [26].

As discussed in this section, some of the existing works do provide solutions in
various aspects like requirement formalization, service discovery and traceability
separately but our work encompasses a larger scope in the sense that it consists of
all of them. The next section discusses the scope of work in detail.

7.3 Scope of Work

We present a framework that can automatically translate the requirements to
business models. It starts with formalization of requirements, identifying different
categories and automatically identifying verbs that may qualify to be processes in
an activity model. The activity model is then mapped to BPMN and the business
processes are implemented through services that are stored in the service version
database. We optimize and use the concept of reusability in selecting the correct
service version that matches the functional needs. Finally, the entire process is
verified through a traceability model.

The requirements are first parsed and activity model is generated from which a
BPMN model is generated based on transformation rules. To achieve this we have
developed a requirement parser that is based on the EARS syntax for requirement
specification [1]. It is a formal model for requirements elicitation, which can be parsed
for extracting verbs, which qualify as possible business process or functionality.

The BPMN processes are realized/implemented in services that are published in
ESB. We present an engineering database that would be required to store all the
service version information. In all realistic situations, a BPMN process may be
satisfied using multiple versions of a service but optimally the version that just suits
the requirements should be chosen to promote reusability and reduce usage price on
a cloud environment where services are hosted. We present new additions to the

156 S. Bhattacharya et al.

UDDI standard for publishing services that caters to version details and differences
in the services offered in each version. The UDDI registry format is enhanced to
store the service version details as well map to a service version database (SVD).
The concept of SVD is based on the classical paper on software evolution by Luqi
[13]. Our novel methodology helps in discovering correct service version matches
based on the business functions extracted from the requirements and matching with
the service version details stored in SVD.

Finally, we present a traceability framework that maps requirements to business
processes to services ensuring verification of the overall software system. The
Requirement to Services framework can be tested and verified based on the concept
of model-based testing. A graphical model that maps the various artifacts from
requirements to verbs, verbs to processes, processes to services is used for trace-
ability. Algorithms to navigate the graph for forward and backward traceability of
requirements to services complete the overall requirement engineering, service
discovery and verification process.

Figure 7.1 gives a diagrammatic representation of our work.

Choreographed
Services

Requirements
Document

SVD

UDDI

Service Registry

S1.V2 S2.V5 Sn.V1

Service 1 (S1) Service n (Sn)

Doing

Activity

BPMN Model

Requirement
Parser

Model
Generator

Transformation
Framework

Service
Discovery
Module

Traceability
Framework

Trace Table

V2 V2V1 V3 .…... V1 V3 .…...

Fig. 7.1 Requirements to services framework

7 Requirements to Services: A Model to Automate Service Discovery … 157

7.4 Requirement Parser and Analyzer

In this section, we describe a formal model based on EARS for elicitation and
classification of functional requirements of the software system. We present a
context-free grammar to validate the requirements structurally. Next, the validated
requirements document is parsed to automatically extract functional verbs or “Doing
verbs” as defined in [19]. These doing verbs may be thought of as business processes
at a micro level that are implemented as operations in services. A requirement
scenario comprises of a set of such “verbs” or functional processes at micro level
operating in a particular sequence to realize a requirement at a macro level.

7.4.1 Requirement Classification

In order to move toward structured analysis and engineering of Functional
Requirements available as text in Natural Language, the first step needs always to be
the elimination of the problems like ambiguity, vagueness, complexity, omission,
duplication, wordiness, inappropriate implementation and untestability as mentioned
in [1], and consequently their approach toward the expression of requirements in such
a way that they may be parsed by a requirements parser named EARS [1]. The Parser
may be generated using the Context-Free Grammar as shown in [1]. The output of the
parser may be used for the analysis of Requirements and possible automation of the
requirements engineering phase of the software development life cycle.

Taking the cue from the above, we had made certain advancements in the same
track with our work making the EARS Syntaxes more versatile so that it may work
with varied kinds of requirements. Consequently, the corresponding parser gener-
ated can address a wider range and variety of functional requirements. The output of
the parser so generated is processed for the generation of the Activity Diagrams as
discussed in the subsequent sections of the chapter.

For the sake of automating the process of Requirements Engineering, we adopt
the EARS [1] based Requirements Syntax as the basis. The EARS syntax has
placed the Requirements under various classification heads namely:

• Ubiquitous
• Unwanted Behavior
• Event-Driven and
• State-Driven.

The principal objective of this paper is to decompose the phrases identified in
EARS [1] further with an aim to identify the involved Entities and functional
processes. We have made slight modifications by adding few sentence constructs so
that it becomes better suited for use for formal requirement definition.

158 S. Bhattacharya et al.

We use the following codes for the different types of requirements syntax, which
are defined in Table 7.1. Few more additional constructs are defined to capture
parallel flow of events and exclusive-OR events. These are highlighted in Table 7.1.

UB: Ubiquitous, EV: Event-driven, UW: Unwanted Behavior, ST: State driven,
OP: Optional features, HY: Hybrid (Event-Driven and Conditional).

Table 7.1 Requirement types of EARS

Req. type Definition in EARS
(Additions are in bold)

UB The <entity> shall <functionality> |
The <entity> shall <functionality> the
<entity> for <functionality>

EV When <optional preconditions> the <entity> shall <functionality> |
When <optional preconditions> the <entity> shall perform <functionality> |
When <entity><functionality> the <entity> shall <functionality> |
When the <entity><functionality> the <entity> shall <functionality1> AND the
<entity> shall <functionality2> |
[This indicates a parallel execution of functionality1 and functionality2
simultaneously]
When the <entity><functionality> the <entity> shall <functionality1> OR the
<entity> shall <functionality2>
[This indicates an either-or execution of functionality1 and functionality2, i.e.,
either functionality1 or functionality2 is executed]

UW IF <preconditions> THEN the <entity> shall <functionality> |
IF <preconditions> THEN the <entity> shall <functionality1> AND the
<entity> shall <functionality2> |
[This indicates a parallel execution of functionality1 and functionality2
simultaneously]
IF <preconditions> THEN the <entity> shall <functionality1> OR the <entity>
shall <functionality2>
[This indicates an either-or execution of functionality1 and functionality2, i.e.,
either functionality1 or functionality2 is executed]
IF <preconditions> THEN the <functionality> of <functionality> shall
<functionality> |
IF <preconditions>THEN the <functionality> of <functionality> shall
<functionality> to <functionality>
|IF<preconditions> THEN the
<functionality> of <functionality> shall <functionality> to <functionality> and
<functionality>

ST WHILE <in a specific state> the <entity> shall <functionality> |
WHILE <in a specific state> the <functionality> shall <functionality>|

OP WHERE <feature is included> the <entity> shall <functionality> |
WHERE <preconditions> the <functionality> shall <functionality> |
WHERE <preconditions> the <functionality> of <functionality> shall
<functionality> to <functionality>

HY <While-in-a-specific-state> if necessary the <functionality> shall <functionality> |
<While-in-a-specific-state> if necessary the <entity> shall perform <functionality> |
<While-in-a-specific-state> if <preconditions> the <functionality> shall
<functionality>

7 Requirements to Services: A Model to Automate Service Discovery … 159

7.4.2 Context-Free Grammar

We have defined a CFG (Context-Free Grammar) for the requirements formatted in
EARS syntax [1]. Our CFG, as shown below, when implemented using “lex” and
“yacc” programs available with Red Hat Enterprise Linux 5.0, generates a parse tree
at its runtime. Such a parse tree unveils the potential functions/processes at a micro
level of the system and their interrelationships. In this section, we extend the CFG
further to handle the additional constructs, which are indicated in bold.

%token The shall as a an word When operation
% token trigger then While Where if necessary
%start translation_unit
%%
translation_unit: requirement_def

| translation_unit requirement_def; requirement_def:
The <entity> shall <functionality>
| The <entity> shall <functionality> the <entity> for <functionality>
| When <preconditions> the <entity> shall <functionality>
|When <preconditions> the <entity> shall perform <functionality>
| When the <entity> <functionality> the <entity> shall <functionality1> AND the <entity> shall
<functionality2>

| When the <entity> <functionality> the <entity> shall <functionality1> AND the <entity> shall
<functionality2>

| When the <entity> shall <functionality>
|When <entity><functionality> the <entity> shall <functionality>
| IF <preconditions> THEN the <entity> shall <functionality>
|IF <preconditions> THEN the <entity> shall <functionality1> AND the <entity> shall
<functionality2>

|IF <preconditions> THEN the <entity> shall <functionality1> OR the <entity> shall
<functionality2>

|IF <preconditions> THEN the <functionality> of <functionality> shall <functionality>
| IF <preconditions> THEN the <functionality> of <functionality> shall <functionality> to
<functionality>

| IF <preconditions> THEN the <functionality> of <functionality>shall <functionality> to
<functionality> and <functionality>

| WHILE <in-a-specific-state> the <entity> shall <functionality>
| WHILE <in-a-specific-state> the <functionality> shall <functionality>
| WHERE <feature-is-included> the <entity>shall <functionality>
| WHERE <preconditions> the <functionality> shall <functionality>
| WHERE <preconditions> the <functionality> of <functionality> shall <functionality> to
<functionality>

| WHILE <in-a-specific-state> if necessary the <functionality> shall <functionality>
| WHILE <in-a-specific-state> if <preconditions> the <functionality> shall <functionality>
text: word | text word;
entity: word;
system: text;
functionality: text;
remainder-text: text;
preconditions: text;
in-a-specific-state: text;
feature-is-included: text;
%%

160 S. Bhattacharya et al.

7.4.3 Requirement Parser

Here we consider a case study of a “Order Processing” system. The requirements
for this system are written in EARS format, and their corresponding types are
shown in Table 7.2. The Requirement Parser module parses the verbs from the
requirements. The <functionality> based on the EARS model qualify to be possible
“doing verbs” which may correspond to possible business process functions [12].
The requirements are shown in Table 7.2.

Based on the order of elicitation in requirements document (in EARS format)
[1], we can derive the verb dataset automatically. The preceding and succeeding
verbs are also extracted to maintain the flow of information in requirements
scenario.

The verb dataset that is generated is shown in Table 7.4 corresponding to the
requirements in Table 7.3.

We also identify the parallel flow and exclusive-OR flow of events in the
requirement scenario. The significance of the symbols “&” and “or” used are as
follows:

• v1 & v2—This indicates that functions denoted by verbs v1 and v2 is executed
in parallel

• v1 or v2—This indicates that either of the functions denoted by verbs v1 and v2
is executed but not both.

The Verbs extracted from requirements are stored in a table in a format shown in
Table 7.5.

Table 7.2 List of requirements of “Place Order” system

Sl. No. Requirements Type

1 The Customer shall Place Order UB

2 When Customer shall Place Order the System shall Receive Order EV

3 When System Receive Order the Accounts shall Send Invoice AND Inventory
shall Fill Order

EV

4 When Send Invoice is complete the System shall Receive Payment EV

5 If the order is “Priority” then the Shipment shall use overnight delivery UW

6 If the order is “Regular” then the Shipment shall use regular delivery UW

7 When Receive Payment is complete and Delivery Done the System shall Close
Order

EV

Table 7.3 Requirements
table

Sl. No. Attr_Name Description

1. req_id Unique identifier for each
requirement

2. req_desc Description of the requirement

7 Requirements to Services: A Model to Automate Service Discovery … 161

This verb dataset forms the basis of the Model generator module which auto-
matically generates an activity model corresponding to the flow of events/activities
for a requirement (Fig. 7.2).

The resulting graphical representation may be as shown in Fig: A.

Table 7.4 List of verbs for order processing system

Sl. No. Verbs Pre-verb Post-verb

1 Place Order – 1

2 Receive Order 1 3 & 5

3 Send Invoice 2 4

4 Receive Payment 3 8

5 Fill order 2 6 or 7

6 Use overnight delivery 5 8

8 Close Order 4, 6, 7 –

Table 7.5 Verb_Dataset table

Sl. No. Attr_Name Description

1. req_id Unique identifier for each requirement

2. verb_id Unique identifier for each verb extracted from the requirement.
There can be many verbs corresponding to one requirement

3. verb_desc Description of the verb/function. This maps with the activity state
of activity diagram

Fig. 7.2 Verb dataset graph

162 S. Bhattacharya et al.

Few of the observations that comes up obviously from the diagrammatic rep-
resentation is that the

• system is strongly connected
• starting node is node: 1
• terminating nodes is node: 8
• nodes 3 and 5 are succeeding node: 2 in Parallel Mode
• nodes 6 and 7 are succeeding node: 5 in EX-OR Mode.

This verb dataset forms the basis of the Model generator module, which auto-
matically generates an activity model corresponding to the flow of events/activities
for a requirement.

The corresponding adjacency matrix for VerbDataset_Graph is as follows:

1 2 3 4 5 6 7 8

1 1

2 A A

3 1

4 1

5 1 1

6 1

7 1

8

Visited
(Boolean)

7.4.4 Model Generator: Generation of Activity Model
for a Requirement Scenario

An Activity model is generated from the order of the verbs in the SRS document to
model the flow of processes to implement the requirement. The different constructs
of the Activity_Model is shown in Table 7.4. The activity_state is associated with
an act_id (Table 7.6).

The Algorithm for Activity Model generation is given below.

7 Requirements to Services: A Model to Automate Service Discovery … 163

Input : VerbDataSet_Graph(V, E)
Output : Activity_Model
Algorithm ModelGeneration

Begin
Insert the Start State of the AcƟvity Model;
Set FROM Node = Start State;

Find v є V | column(v) = Ø AND visited(v) = FALSE
Insert the AcƟvity-State for v
Set TO Node = v
Set the Visited Bit of v to TRUE
Join (FROM Node, TO Node) with a TransiƟon-Edge
Lookup Row(v);
if(row is empty)
begin

Join v with TerminaƟng Node using a TransiƟon State;
end;
else if(alphabeƟcal character exists) then
begin

{C1, C2, … CN} = cluster the corresponding columns based on character.
For All 1<=j<=N

For All i, Join v with cij | cij є Cj such that separately using separate fork
states;

end;
else if (only numeric character exist) then
begin

Join v with each non zero columns using TransiƟon States.
end;

End;

Table 7.6 Activity_Model Sl. No. Construct Symbol

1. start_state

2. activity_state*

3. fork_state

4. join_state

5. decision_state

6. end_state

7. transition

*activity_state is associated with an act_id

164 S. Bhattacharya et al.

The activity model of the “Order Processing” system is shown in Fig. 7.3. The
generated activity model may be represented in a tabular format as given in
Table 7.7.

Fig. 7.3 Activity model of the “Place Order” system

7 Requirements to Services: A Model to Automate Service Discovery … 165

7.5 Activity Model to BPMN Transformation

After all the services that are necessary to satisfy the requirements of the consumer,
are discovered, they are dynamically choreographed in accordance with the activity
generated from the requirements based on the scenario modeled by activity models.

7.5.1 Transformation Rules

For deriving the choreographed services (business processes) from the activity
models used for modeling requirements, we present a set of Transformation rules as
given below:

Rule1
The activity whose node is marked as “start_state” is be assigned as Start Event of
the BPMN node. The BPMN node is labeled as Activity ID (act_ID) of the activity
node.
Rule 2
The activity whose node is marked as “end_state” is assigned as End Event of the
BPMN node. The BPMN node is labeled as Activity ID (act_ID) of the activity
node.
Rule 3
The activity whose node is marked as “action/decision” is assigned as Intermediate
Event of the BPMN node. The BPMN node is labeled as Activity ID (act_ID) of the
activity node.
Rule 4
The activity whose node is marked as “fork” is assigned as Parallel Gateway of the
BPMN node if both the postElement of the activity node are of the type “basic”.
The BPMN node is l labeled as Activity ID (act_ID) of the activity node.
Rule 5
The activity whose node is marked as “fork” is assigned as Exclusive-OR Gateway
of the BPMN node if one the postElement of the activity node is of the type “basic”
and the other is of the type “alternate”. The BPMN node is labeled as Activity ID
(act_ID) of the activity node.

Table 7.7 Activity model

Sl. No. Attr_Name Description

1. act_id Unique identifier for each activity

2. act_node Represents the activity state within the activity diagram

3. act_desc Description of the activity state/process. This maps with the “doing”
verbs of requirements

4. verb_id Foreign key referencing the verb dataset

166 S. Bhattacharya et al.

These rules are realized using two algorithms namely NodeGeneration and
FlowGeneration.

7.5.2 Algorithm NodeGeneration to Generate BPMN Node

In this section, we present an algorithm to generate BPMN nodes from corre-
sponding activity model depicting the sequence of operation of the “doing verbs”.
The following Table 7.8 lists the notations used and the mapping of the corre-
sponding elements.

The algorithm NodeGeneration generates the BPMN nodes.
We define the transformation using the tuple relational calculus. The corre-

sponding queries given below.
Query 1:

This is the realization of rule 1. It generates the Start of the BPMN node.

$ d (d.act_ID | ActivityState (d) ^ d.activity_node = t.activity_node ^ t.label = d.act_ID ^

Query 2:

This is the realization of rule 2.It generates the End of the BPMN node.
{t. BPMN

$d(d.act_ID | ActivityState(d) ^ d.activity_node = t.activity_node ^ t.label = d.act_ID ^

Table 7.8 Activity nodes
and BPMN notation

ID Name Activity
Node

BPMN
notation

1 Start event Start

2 End event End

3 Intermediate
event

Action,
decision

4 Parallel
gateway

Fork,
join

5 Exclusive-OR
gateway

Fork,
join

7 Requirements to Services: A Model to Automate Service Discovery … 167

Query 3:

The following query is the realization of rule 3. It generates the #Intermediate of the BPMN node.
{t. BPMN _notation | BPMN_node(t) ^ t.ID = 3 ^
$d(d.act_ID | ActivityState(d) ^ d.activity_node = t.activity_node ^ t.label = d.act_ID ^
(d.activ

Query 4:

The following query is the realization of rule 4. It generates the graphical #notation for Parallel
Gateway.
{t. BPMN _notation | BPMN_node(t) ^ t.ID = 4 ^
$ q(q.act_ID | ActivityState(q) ^ q.activity_node = t.activity_node ^ t.label = q.act_ID ^

ActivityState(s) ^ s.act_ID = r.postElement ^$ p(p.event_ID | Usecase(p) ^ p.event_ID = s. event_ID

Query 5:

The following query is the realization of rule 5. It generates the graphical #notation for Exclusive-OR
Gateway.
{t. BPMN _notation | BPMN_node(t) ^ t.ID = 5 ^
$ q(q.act_ID | ActivityState(q) ^ q.activity_node = t.activity_node ^ t.label = q.act_ID ^

ActivityState(s) ^ s.act_ID = r.postElement ^ $ p(p.event_ID | Usecase(p) ^ p.event_ID = s. event_ID

The outputs of this algorithm are different BPMN nodes. This output along with
the Array Activity _Flow is fed as input to the second algorithm named
FlowGeneration. The FlowGeneration algorithm generates the BPMN design
elements.

7.5.3 Algorithm FlowGeneration to Generate the Flow
Between BPMN Nodes

We use an array representation Activity_flow to represent the flow between dif-
ferent activity nodes.

The array Activity_Flow is an [n, 3] array where n is the number of flows in the
formalized analysis model.

168 S. Bhattacharya et al.

Activity _Flow[0][i] lists the source activity node of the flow for i = 0 to n
Activity _Flow [1] [i] lists the destination activity node of the flow i = 0 to n
Activity _Flow [2] [i] lists the types of flow between A[0][i] and A [1] [i] for i = 0
to n.

Entries in Activity _Flow [2] [i] are of the following types:

(1) S indicates Sequential flow
(2) D indicates Default flow
(3) C indicates Conditional flow
(4) I indicates Iterative flow.

The different types of Array flow are listed in Table 7.9 and BPMN flow are
listed in Table 7.10.

Table BPMN_Flow stores different graphical notations of BPMN flow and are
assigned with unique ID.

The BPMN model that depicts the choreography of the services is shown in
Fig. 7.4.

The algorithm FlowGeneration is presented as follows:

Input: Output of Nodegeneration algorithm, Activity _Flow[n,3] , Table BPMN_Flow
Output: BPMN model showing different flows between BPMN design elements.
Algorithm:

for(m=0 ; m<=n-1;m++)
{ flow. from = Activity _flow[m][0] ;
 flow. to = Activity _flow [m][1] ;
 If Activity _flow [m][2] = ‘S’
 Flow.type = Select BPMN_Flow.Graphical_notation where BPMN_Flow.ID=1
 If Activity _flow [m][2] = ‘D’
 Flow.type = Select BPMN_Flow.Graphical_notation where BPMN_Flow.ID=2
 If Activity _flow [m][2] = ‘C’

Flow.type = Select BPMN_Flow.Graphical_notation where BPMN_Flow.ID=3
If Activity _flow [m][2] = ‘I’
 Flow.type = Select BPMN_Flow.Graphical_notation where BPMN_Flow.ID=4
 }

Table 7.9 Array Activity_Flow

A[] [] 0 1 2 3 4 5 … n−1

0(=ACi) AC1 AC2 AC3 AC3 AC4 AC5

1(=ACj) AC2 AC3 AC4 AC5 AC6 AC2

2(=value) S S D S S I

7 Requirements to Services: A Model to Automate Service Discovery … 169

7.6 Service Version Discovery Based on BPMN Model

In order to satisfy the functionalities expressed in the Requirement document, the
services are needed to be discovered from the Enterprise Service Bus (ESB). For
each of the business processes of the BPMN model in Fig. 7.4, we need to discover
the services that are available to be used. Additionally each service may have
several versions with different sets of operations/functionalities to choose from. In
this section, we present a methodology for automatic service version discovery.

7.6.1 Service Version Database (SVD)—ER Mapping

In this section, we design a Service Version Database (SVD) that stores the
information of all the services available and published in the ESB. It is unique in the
sense that it maintains a repository of all versions of services in a structured manner.
This helps in efficient discovery of services based on the requirements.

Each service has a unique identifier, a list of business processes that are offered
as service and a version number. Each version differs from its previous version due

Table 7.10 BPMN_Flow ID Name Graphical_notation

1 Sequential flow

2 Default flow

3 Conditional flow condition

4 Iterative flow

Receive Order

Send InvoiceFill Order

Receive Payment

Overnight Delivery Regular Delivery

Close Order

Fig. 7.4 BPMN model depicting choreography of services (appropriate versions) for the “Order
Processing”

170 S. Bhattacharya et al.

to new functional processes added to the newer version or older processes being
deleted from the previous version.

Service = {serv_id, BusinessProcess*, version, versionDiff}
where serv_id = unique service identifier
BusinessProcess = {process_id, process_desc}
process_id = unique process identifier
process_desc = process/function description
version = version number
versionDiff = {BusinessProcess*}

where, BusinessProcess refers to business processes or functionalities available in
addition to the immediate previous version.

For a particular version, the list of process_id available within BusinessProcess
are different. We model the structure of SVD using the ER model as shown in
Fig. 7.5. Please note that the relationship “offers” between Version and
BusinessProcess is true for the first version only. For subsequent versions, the other
relationship “Differernce” is used to model the additional Business Processes pre-
sent with respect to the previous version.

The corresponding table structures are shown in Tables 7.11, 7.12, and 7.13,
respectively.

The table Service_Version models the Business_Process and the Version entity
together. This holds the version number, service id and the business processes that
are new to this version. So for the first version all the processes are new and hence
present. For subsequent versions, only the additional business processes occur in
this table.

Fig. 7.5 ER model depicting the structure of Service Version Database (SVD)

7 Requirements to Services: A Model to Automate Service Discovery … 171

7.6.2 Discovery of Services from ESB Based on SVD

We have modified the UDDI with the version information for the services that the
version information gets available at the service registry. This enables the service
consumers to discover services from the ESB with the version information and use
relevant versions. The enhanced model is shown in Fig. 7.6.

Based on the business processes retrieved as discussed in the earlier section, we
discover the possible service version matches from the service version database.
Based on the version information, the consumers may choose the appropriate
version, based on the requirement, as shown in Fig. 7.7.

The algorithm for this discovery of “appropriate” service version is given below:

Input: “Verb” dataset (Table 7.5)
Output: List of services of format sv_id.pr_id.ver_no

where sv_id = Service id
and pr_id = business process id
and ver_no = version number

Algorithm: DiscoverService
Open Verb_Dataset
String verb = Read an instance from Verb_Dataset

Table 7.11 Service table

Sl. No. Attr_Name Description

1. serv_id Unique identifier for each service. This is same for all versions of a
particular service

2. serv_desc Description or name of a service

3 Process_id Foreign key referencing the Business_Process table

Table 7.12 Business_Process table

Sl. No. Attr_Name Description

1. process_id Unique identifier representing a business process

2. process_desc Description of the business function/ process. This maps with the
activity node of activity diagram

3. act_id Foreign key referencing the Activity table

Table 7.13 Service_Version table

Sl. No. Attr_Name Description

1. Serv_id Foreign key referencing the Service table

2. process_id Foreign key referencing the Business_Process table
3. ver_No Unique number indicating version number for a particular service

172 S. Bhattacharya et al.

Fig. 7.6 UDDI model enhanced with the version information

Fig. 7.7 Selection of appropriate service version

7 Requirements to Services: A Model to Automate Service Discovery … 173

while (!end_of_file)
{T1 = {sv.serv_id, sv.process_id, sv.ver_no | Service_Version(sv) ^ $bp (bp.pro-
cess_id | Business_Process(bp) ^ bp.serv_id = sv.serv_id ^ bp.process_desc =
‘verb’)}
}

Please note that in the condition—“(bp.process_desc = ‘verb’), a partial
matching is done with all the words present in the verb.

7.7 Service Version Discovery Based on BPMN Model

In this section, we ensure correctness of our transformation framework by defining a
traceability model. We have defined a traceability graph to establish traceability
from service version to the requirement. A set of traceability rules is defined between
different elements from requirement to service version. A trace table is generated to
ensure correctness of the implementation from requirements to services.

7.7.1 Traceability Graph (TG)

A traceability graph (TG) is defined that depicts the relationship between various
artifacts that are involved in the implementation of requirements in the form of
services. Requirements (R), verbs (V’), activity nodes (AC), business processes
(BP), services (S), service version (SV) form the different types of nodes in the
graph. Directed edges connect the nodes based on how the transformation process
occurs from requirements till services (Fig. 7.8).

TG = (V, E), where TG is a traceability graph;

V is the set of nodes; V ε {R | AC | BP | S | SV}
E is the set of edges between V

7.7.2 Traceability Rules

In this section, we define a set of traceability rules based on the traceability graph
defined in the previous section. These rules form the basis for the traceability model
and a relational model-based query to generate a trace table in the next section.

174 S. Bhattacharya et al.

Rule 1: Each requirement of requirement document may consist of one or many
verbs. Each verb has a unique identifier and description

R = {v* | v is a verb defined in the requirement}
 and v = (verb_id, verb_desc)

Rule 2: Each verb extracted from Requirements document should have a one-to-
one mapping to an activity node.

R

VnV1

AC

BP

SnS1

R = Requirement

V1 …Vn = Verbs extracted from

AC = Ac vity nodes

BP = Business Process

S1 …Sn = Service versionsS

SVD = Service Version Database

Consists

Mapped

Mapped

S = ServiceMapped

Appropriate version chosen from

Fig. 7.8 Traceability graph

 v = (verb_id, verb_desc) and
 AC = {ac_state* | where ac_state is an activity state in the activity model AC}
 and ac_state = (act_id, act_desc)
 such that
 verb_desc = act_desc

7 Requirements to Services: A Model to Automate Service Discovery … 175

Rule 3: There should be one-to-one mapping between Activity node and BPMN
node.

 AC = {ac_state* | where ac_state is an activity state in the activity model AC}
 and ac_state = (act_id, act_desc)
 and
 BP = {bp* | where bp is a business process node in BPMN model BP}
 and bp = (process_id, process_desc)
 such that
 act_desc = process_desc

Rule 4: There should be a one-to-one mapping between a BPMN node and a
service.

 BP = {bp* | where bp is a business process node in BPMN model BP}
 and bp = (process_id, process_desc)
 and
 S = {s* | where s is a service in service table S}
 and s = (serv_id, serv_desc)
 such that
 process_desc = serv_desc

Rule 5: The service which maps with a BPMN must exist in the SVD.

 S = {s* | where s is a service in service table S}
 and s = (serv_id, serv_desc)
 and
 SV = {sv* | where sv is a specific service version in SVD)
 and sv = (serv_id, ver_no, sv_desc)
 such that
 serv_desc = sv_desc

7.7.3 R2S: Traceability from Requirements to Services

In order to generate the Trace Table for traceability from Service Version to
Requirement the following query is triggered:

{t.Req_id, t.Verb_id, t.Verb_desc, d.Act_id, p.Process_id, s.Serv_id, v.Ver_no |
Service(s) (s.Serv_id AND v.Ver_no = Input ˄ 9 p(p.Process_id | Business_Process
(s) ˄ s.Process_id = p.Process_id 9t(t t.Req_id, t.Verb_id, t.Verb_desc) |
Verb_DataSet(t) ˄ t.Process_id = p.Process_id) }

176 S. Bhattacharya et al.

The schema of the trace table for tracing Requirements to version would be
TRSV = {Req_id, Verb_id, Verb_desc, Act_id, Process_id, Serv_id, Ver_no}
The partial trace table for the “Place Order” system is shown in Table 7.14.
Once the trace table is generated, it is easy to verify if all requirements have been

correctly implemented based on service version descriptions.

7.8 Conclusion

Our approach helps in discovering correct service version matches based on the
business functions extracted from the requirements automatically. A formal
approach to categorize and document requirements helps in automatic generation of
activity models. Moreover, the business process flows realized using activity
models are used to dynamically choreograph the discovered services and generate
corresponding BPMN model using a set of service versions. Our work helps in
managing changes and maintain version repository for SOA. An automatic
approach toward service discovery and choreography based on requirements helps
in ensuring traceability of requirements.

References

1. Mavin, A., Wilkinson, P., Harwood, A., Novak, M., “Easy Approach to Requirements Syntax
(EARS), 17th IEEE International Requirements Engineering Conference, RE ‘09, Aug.
31 2009–Sept. 4 2009.

2. Hogg, Jason, Don Smith, Fred Chong, Dwayne Taylor, Lonnie Wall, and Paul Slater. Web
Service Security: Scenarios, Patterns, and Implementation Guidance for Web Services
Enhancements (WSE) 3.0. Redmond, WA: Microsoft Press, 2005.

3. Luqi, “A Graph Model for Software Evolution”, IEEE Transactions on Software Engineering,
Vol. 16, Issue 8, pp. 917–927, August 1990.

Table 7.14 Trace table for “Place Order”

Req_id Verb_id Verb_desc Act_id Process_Id Serv_id Ver_no

R1 V1 Receive order A1 P1 S1 V1

V2 A2 P2 S2 V1

V3 A3 P3 S3 V2

R2 V4 Fill order A4 P4 S4 V3

V5 A5 P5 S5 V2

… … … … … …

R3 V11 Send order A11 P11 S11 V5

7 Requirements to Services: A Model to Automate Service Discovery … 177

4. Iam Graham, Requirements Modeling and Specification for Service Oriented Architecture,
Wiley Publishers, ISBN: 978-0-470-77563-9, October 2008.

5. A. Mavin and P. Wilkinson, “Big Ears (The Return of “Easy Approach to Requirements
Engineering”),” 2010 18th IEEE International Requirements Engineering Conference,
Sydney, NSW, pp. 277–282, 2010.

6. Bernhard Beckert, “The Z Specification Language”, http://formal.iti.kit.edu/*beckert/
teaching/Spezifikation-SS04/11Z.pdf.

7. Grady Booch, The Unified Modeling Language User Guide, Pearson Education; 1 edition
(2002).

8. Alan Moore, Rick Steiner, and Sanford Friedenthal, A Practical Guide to SysML: The
Systems Modeling Language, Elsevier, 22-Nov-2011.

9. Holmes, T., Zdun, U., Dustdar, S., Automating the Management and Versioning of Service
Models at Runtime to Support Service Monitoring, 16th IEEE International Enterprise
Distributed Object Computing Conference, September 10–September 14, 2012.

10. Shuying Wang, Capretz, L. F., A service dependency model for multiple service version
synchronization, 2009 11th IEEE International Symposium on Web Systems Evolution
(WSE), 25–26 Sept. 2009.

11. Jayeeta Chanda, Sabnam Sengupta, Ananya Kanjilal and Swapan Bhattacharya, “FAM2BP:
Transformation Framework of UML Behavioral Elements into BPMN Design Element”,
Proceedings of COSIT 2011, Bangalore, India, January 2–4, 2011.

12. Swapan Bhattacharya, Jayeeta Chanda, Sabnam Sengupta, Ananya Kanjilal, “Dynamic
Service Choreography using Context Aware Enterprise Service Bus”, proceedings of 23rd
International Conference on Software Engineering and Knowledge Engineering (SEKE
2011), Miami, July 7–9, pp. 319–324, 2011.

13. Herbert Kaiser, A close look at Simplified Technical English, tcworld, magazine for the
international information management, Sept 2013.

14. Norbert E. Fuchs, Uta Schwertel, Rolf Schwitter, “Attempto Controlled English
(ACE) Language Manual Version 3.0”, Technical Report 1999, University of Zurich ©1999.

15. G. Papamarkos, A. Poulovassilis, P. T. Wood, Event-condition-action rule languages for the
semantic Web, in: Proceedings of the 1st International Workshop on Semantic Web and
Databases, Berlin, Germany, 2003, pp. 309–327.

16. Shuping Ran, “A Model for Web Services discovery with QoS”, ACM SIGecom Exchanges,
Volume 4, Iss 1, pp 1–10, Spring 2003.

17. Zisman A., A Framework for Dynamic Service Discovery, 23rd IEEE/ACM International
Conference on Automated Software Engineering, ASE 2008.

18. Evdemon, John. “Principles of Service Design: Service Versioning.” Microsoft Developer
Network, August 2005.

19. Brown, Kyle, and Michael Ellis. “Best Practices for Web Services Versioning.” IBM
Developer Works, January 2004.

20. Lhotka, Rocky. “A SOA Version Covenant.” Enterprise.NET Community, April 2005.
21. Antoniol, G., Caprile, B., Potrich, A., Tonella, P., DesignCode Traceability Recovery:

Selecting the Basic Linkage Properties, Science of Computer Programming, vol. 40, issue
2–3, pp. 213–234, July 2001.

22. Antoniol, G., Canfora, G., De Lucia, A., Casazza, G. Information Retrieval Models for
Recovering Traceability Links between Code and Documentation Proceedings of the
International Conference on Software Maintenance, 2000.

23. Arlow, J., Emmerich, W., Quinn, J., Literate Modelling—Capturing Business Knowledge
with the UML, UML’98: Beyond the Notation 1998.

24. Gotel O. C. Z., Finkelstein A. C. W., An Analysis of the Requirements Traceability Problem.
1st International Conference on Rqts. Eng., pp. 94–101, 1994.

178 S. Bhattacharya et al.

http://formal.iti.kit.edu/%7ebeckert/teaching/Spezifikation-SS04/11Z.pdf
http://formal.iti.kit.edu/%7ebeckert/teaching/Spezifikation-SS04/11Z.pdf

25. Balasubramaniam Ramesh, Matthias Jarke, “Toward Reference Models for Requirements
Traceability”, IEEE Transactions on Software Engineering, Vol 27, No. 1, pp 58–93, January
2001.

26. Grünbacher P., Egyed A., Medvidovic N., Reconciling Software Requirements and
Architectures: The CBSP Approach, In: Proceedings 5th IEEE International Symposium on
Requirements Engineering (RE01), Toronto, Canada, 2001.

7 Requirements to Services: A Model to Automate Service Discovery … 179

Chapter 8
Architecturally Significant Requirements
Identification, Classification and Change
Management for Multi-tenant
Cloud-Based Systems

Muhammad Aufeef Chauhan and Christian W. Probst

Abstract Involvement of numerous stakeholders in cloud-based systems’ design
and usage with varying degrees of nonfunctional requirements makes
Architecturally Significant Requirements (ASRs) identification and management a
challenge undertaking. The aim of the research presented in this chapter is to
identify different types of design-time and run-time ASRs of the cloud-based sys-
tems, provide an ASRs classification scheme and present a framework to manage
the requirements’ variability during life cycle of the cloud-based systems. We have
used a multifaceted research approach to address the ASRs identification, classi-
fication, and change management challenges. We have explored findings from
systematic as well as structured reviews of the literature on quality requirements of
the cloud-based systems including but not limited to security, availability, scala-
bility, privacy, and multi-tenancy. We have presented a framework for requirements
classification and change management focusing on distributed Platform as a Service
(PaaS) and Software as a Service (SaaS) systems as well as complex software
ecosystems that are built using PaaS and SaaS, such as Tools as a Service (TaaS).
We have demonstrated applicability of the framework on a selected set of the
requirements for the cloud-based systems. The results of the research presented in
this chapter show that key quality requirements of the cloud-based systems, for
example, multi-tenancy and security, have a significant impact on how other quality
requirements (such as scalability, reliability, and interoperability) are handled in the
overall architecture design of a cloud-based system. It is important to distinguish
tenant-specific run-time architecturally significant quality requirements and corre-
sponding cloud-based systems’ components so that run-time status of the

M.A. Chauhan (&) � C.W. Probst
Department of Applied Mathematics and Computer Science (DTU Compute),
Technical University of Denmark, Kongens Lyngby, Denmark
e-mail: muac@itu.dk

C.W. Probst
e-mail: cwpr@dtu.dk

M.A. Chauhan
Software and Systems Section, IT University of Copenhagen, Copenhagen, Denmark

© Springer International Publishing AG 2017
M. Ramachandran and Z. Mahmood (eds.), Requirements Engineering
for Service and Cloud Computing, DOI 10.1007/978-3-319-51310-2_8

181

tenant-specific architecture quality requirements can be monitored and system
configurations can be adjusted accordingly. For the systems that can be used by
multiple tenants, the requirements change management framework should consider
if the addition or modification (triggered by a specific tenant) of a quality
requirement can impact quality requirements of other tenants, and whether or not a
trade-off point should be introduced in the architecture (corresponding to the
requirements). The trade-off point can also be referred as a variability point, that is,
a compromise has to be made among the number of quality requirements and only
some of the requirements can be satisfied. System analysts and software architects
can use the proposed taxonomy and the management framework for identifying
relevant quality requirements for multi-tenant cloud-based systems, for analyzing
impact of changes in the requirements on the overall system architecture, and for
managing variability of the architecturally significant requirements.

Keywords Cloud computing � Platform as a service (PaaS) � Software as a service
(SaaS) � Architecturally significant requirements (ARSs) � Requirements classifi-
cation � Requirements change management � Architecture quality

8.1 Introduction

Cloud computing’s utility and service provisioning model offers on-demand scal-
ability and flexible acquisition of computing and storage resources [6]. The cloud
resources are offered as Infrastructure as a Service (IaaS), Platform as a Service
(PaaS), and Software as a Service (SaaS) [18]. IaaS provides virtualization of
underlying hardware infrastructure, whereas PaaS and SaaS utilize IaaS for pro-
viding platforms for cloud-enabled software development or on-demand software
systems for end users. Cloud computing adoption can be broadly classified into
three categories: (i) Utilizing Infrastructure as a Service (IaaS) [43] cloud envi-
ronments (as a hosting platform) to deploy software applications. (ii) Migrating
existing applications to the cloud to offer the applications as Software as a Service
(SaaS) following pay-per-use model [7, 16, 17]. (iii) Developing new SaaS appli-
cations using IaaS and PaaS [43] cloud resources.

Development of the cloud-based systems for each of the above-mentioned pur-
poses have associated challenges in terms of Architecturally Significant
Requirements (ASRs) identification, analysis and management. Nonfunctional
requirements that can have a significant impact on architecture of a software system
are referred as ASRs [29]. Each cloud-based system can have a specific set of ASRs,
which are more relevant to that system. In the cloud-based systems that use IaaS as a
mean to acquire flexible and on-demand infrastructure resources, requirements such
as scalability, elasticity, and security are important. For the systems that are to be
migrated from old infrastructure to the cloud, the requirements such as interoper-
ability, security, and privacy are more important [16]. The ability of the selected IaaS
and PaaS clouds to support the future enhancements in the system are critical for

182 M.A. Chauhan and C.W. Probst

developing new applications as well as migrating existing applications on the cloud
[7, 17]. Some of the ASRs are equally important for different types of the cloud-based
systems. For example, as cloud-based systems are aimed to serve many tenants, a
characteristic that is referred as multi-tenancy [10] is critical for each of the IaaS,
PaaS, and SaaS systems. Moreover, each tenant of the system can have its specific
design-time and run-time architecturally significant requirements, including but not
limited to security, privacy, availability, scalability, elasticity, and portability [18,
47]. Hence, managing different quality requirements for different tenants is also
important. Specific types of cloud-based systems can have additional ASRs, for
example, the systems that provision Tools as a Service (TaaS) need to support
semantic and process-centric integration [19, 45]. Furthermore, as the data and ser-
vices are hosted on geographically distributed locations, the cloud-based systems
have to comply with additional constraints and regulatory requirements that can
directly or indirectly impact architecture of the systems. Last, but not the least, the
ASRs can change during life cycle of a cloud-based system. The changes can be
either because of involvement of the new stakeholders or modifications in the
requirements of the existing stakeholders.

To adequately address the above-mentioned challenges, there is a need to have a
specialized approach for identification, classification, analysis, and management of
the design-time and run-time architecturally significant requirements of the
cloud-based systems and for variability management of the requirements. In par-
ticular, we aim to address the following objectives:

• Discuss important Architecturally Significant Requirements (ASRs) of the
cloud-based systems, different dimensions of the requirements and the impact
that the requirements can have on difference life cycle phases of the cloud-based
systems (i.e., system design, system instantiation, system operation, and system
evolution). The discussion on ASRs and their respective dimensions can facil-
itate analysis of the run-time and design-time architecture quality of a
cloud-based system.

• Provide a classification scheme to group the ASRs into different categories
based upon their impact on the life cycle phases of the cloud-based systems. The
classification scheme can help to identify the requirements that should be
focused during each phase (including the systems’ deployment and operational
phases with respect to the multi-tenancy configurations).

• Propose a quality requirements management approach so that the requirements
corresponding to the specific tenants can be managed and their impact on each
other can be analyzed when existing requirements are changed or modified, or
the new requirements are added. The proposed management approach can
facilitate to keep track of the changes in the requirements and to control the
architecture quality of a cloud-based system in terms of inclusion of the desired
ASRs in a specific cloud-based system.

This chapter is organized as follows. Section 8.2 provides an insight to the ASRs for
the cloud-based systems. Section 8.3 explores the relation of the ASRs with

8 Architecturally Significant Requirements Identification … 183

multi-tenancy quality of the cloud-based systems. Section 8.4 describes a classification
scheme that can be used for classifying the ASRs into different groups using the
presented classification parameters. Section 8.5 presents a probabilistic analysis
method to analyze the impact of the includedASRsonoverall architecture quality of the
systems. Section 8.6 describes the related work and Sect. 8.7 concludes this chapter.

8.2 Architecturally Significant Requirements
of the Cloud-Based Systems

Architecturally Significant Requirements (ASRs) play a critical role in architecture
design, development, and adoption of a software system [29]. The ASRs’ impact on
a software system raises the need to incorporate the ASRs at early stages of the
software architecture design. If the ASRs are not analyzed and anticipated during
initial phases of architecture design, a major architecture refactoring may be needed
during later stages, which can result in multifold increase in development cost of a
software system [29]. Hence, it is important to analyze different types of the ASRs
(that can be important for the cloud-based systems) and their impact on different
parts of the systems. A summarized view of the ASRs for the cloud-based systems
is presented in Fig. 8.1. The details of the ASRs critical for the cloud-based systems
are discussed in the following subsections.

Fig. 8.1 An overview of Architecturally Significant Requirements (ASRs) for the cloud-based
systems

184 M.A. Chauhan and C.W. Probst

8.2.1 Scalability

Scalability is one of the fundamental quality requirements of the cloud-based
systems. Scalability supports on-demand provisioning of a cloud-based system by
acquiring additional resources, as the number of users using the system grow [18].
Scalability needs for the cloud-based systems can be classified into two main
groups. (i) Scalability requirements associated with identifying the system usage
and bottlenecks so that a prediction (an estimation) can be made for the needed
resources [35]. (ii) Autonomous resource acquisition requirements along with
resource acquisition rules so that the resources from the public, private, or hybrid
clouds can be acquired on-demand [5, 67].

The most commonly used system monitoring metrics are active profiling of CPU
and identification of bottlenecks associated with response time using heuristics
algorithms [35]. The cloud resources can be acquired from private, hybrid, or public
clouds depending upon constraints on the data and the service. For more compet-
itive and cost-effective resource acquisition approaches, different auction schemes
such as Modified Vickery Auction (MVA) and Continuous Double Auction
(CDA) can be adopted for sufficient resource availability and unsufficient resources
availability, respectively [67]. Vertical scaling (when scalability patterns are
adopted in multiple layers of a cloud-based system) and horizontal scaling (when
scalability patterns are adopted in only one layer of a cloud-based system) can also
be adopted in the cloud-based systems using private, hybrid, and public IaaS clouds
[5]. Therefore, the scalability requirements for the cloud-based systems should
consider all the above-mentioned factors.

8.2.2 Elasticity

While scalability handles acquisition of additional resources, elasticity deals with
optimizing the resource acquisition process so that the extra IaaS resources can be
disposed off when not needed [39, 41]. The elasticity requirements can be asso-
ciated with different types of Quality of Service (QoS) parameters. Observing a time
lapse between a request for a particular operation and response of the request is one
of the frequently used QoS parameters [39]. Throughput of the layers and data
retrieval time is another QoS parameter that is considered for elasticity [51].
Minimizing execution cost of a cloud-based system is also an important parameter
to measure elasticity of the system [30]. Last but not the least, providing lowcost
computing cycles is an important dimension to consider for achieving elasticity in a
PaaS system [52].

8 Architecturally Significant Requirements Identification … 185

8.2.3 Availability

Availability quality requirements guarantee that a cloud-based system and its
constituting services are available for utilization as specified in a Service Level
Agreement (SLA) [18]. Availability quality characteristics in the cloud-based
systems can be achieved in the following ways: (i) Acquiring additional infras-
tructure resources for hosting the system’s services and data for redundant
deployment to avoid complete system failures [26]. (ii) Avoiding overloading of the
system’s resources by replicating the components and services to distribute load
among the replicated resources [66]. (iii) Achieving increased application perfor-
mance by replicating the computing resources to distribute computing intensive
tasks and workflows [4, 37].

There are a number of additional constraints that need to be examined corre-
sponding to the availability requirements. The specific location constraints on the
IaaS cloud resources that can be used for hosting the system’s components (e.g.,
computing and storage resources available on the IaaS cloud nodes or geographical
regions where the physical infrastructure is available) should be examined [26]. The
nature of the required availability approaches, i.e., active or passive approaches
should be considered [4]. Moreover, the requirements associated with the questions
such as whether to make the cloud monitoring mechanism an integral part of the
system or to carry out the monitoring via external monitoring agents should also be
considered [37].

8.2.4 Security

As the cloud-based systems are accessible via Internet, security becomes an
essential quality requirement of the cloud-based systems [18]. The security quality
characteristics of the cloud-based systems can be classified into four categories:
(i) Access to the cloud-hosted data and services. (ii) Security of the persisted data
on the cloud. (iii) Security of the APIs through which the cloud services are
exposed to the external world. (iv) Security liabilities of the cloud providers and
cloud-hosted Virtual Machines (VMs).

Each of the security quality requirements categories can be further broken down
into a number of sub-quality requirements with respect to the nature and types of
security attacks that can target a cloud-based system. To restrict the users so that
they can have access to the system only according to the desired privileges, different
types of the authorization requirements can be incorporated, such as authorization
based upon users’ roles (e.g., if a specific user is authorized to perform certain
operations in the system or can have access to a specific type of data) or users’
hierarchy in the users access tree structure (e.g., administrators and super users have
more privileges than normal users) [18]. Quality requirements associated with data
persistence on the cloud deal with data confidentiality and integrity [55].

186 M.A. Chauhan and C.W. Probst

The confidentiality requirements for the persisted data deal with threats to the stored
data, undesired use of the stored data and availability of the stored data. There can
also be data encryption requirements for using different types of encryption algo-
rithms [25, 32], e.g., using ElGamal public key cryptosystems [23]. The require-
ments for protection against undesired or illegal use of data can require embedding
certain types of auditing schemes for data usage history [21, 63]. The requirements
concerning the security of the Application Programable Interfaces (APIs) encom-
pass protection from code-centric or SQL injection attacks, hijacking of user ses-
sions, and XML/SOAP wrapping or flooding attacks (the attacks in which huge
volume of XML data are sent to APIs to fail the access control and authentication
mechanisms) [1]. The requirements for cloud providers security liabilities include
handling of plausible service deniability, anonymizing data, and service indexes,
introducing intermediate security services to protect direct access to the
cloud-hosted data and catering oblivious routing of the data [14]. Protecting the
internal application services and providing standards-based end point abstractions
for secured communication among the services are also important security con-
siderations [59]. The integrity requirements encompass inclusion of Byzantine Fault
Tolerance approaches in the persistence services of the cloud-based systems [3].

8.2.5 Privacy

Privacy requirements of the cloud-based systems are closely related to the security
requirements. Privacy on the cloud means that the data is stored and processed on
the cloud as defined in privacy specifications. The privacy quality requirements can
be classified into three categories: (i) The requirements for specifying trusted cloud
parameters and identifiers (that can be used to capture stakeholders’ privacy con-
straints and to select the cloud resources according to the specified constraints).
(ii) The requirements for data storage and service placement strategies corre-
sponding to the privacy constraints. (iii) The privacy requirements to comply with
legal and regulatory constraints.

The requirements for identification of parameters that can characterize trusted
cloud services (and when the services should be opened to remote users) and trusted
external services are derived from further refinements of the privacy requirements
[8]. Similarly, the privacy specific location parameters that specify where the data
and services can be hosted (and which can be driven by legal or regulatory con-
straints) are a critical part of the privacy requirements [8]. The requirements for
services matching process (to facilitate service composition) are a core factor that
can influence the design of a cloud-based system. For example, if the end users are
allowed to specify their privacy parameters and select the services that are to
process the data, a market-oriented cloud-broker infrastructure can be helpful. The
cloud-broker can facilitate the users to interact with a cloud market in which the
users can specify their privacy constraints and the cloud-broker selects the services
with optimal match to the privacy constraints [11]. Hence, in order to incorporate

8 Architecturally Significant Requirements Identification … 187

the security in a cloud-based system, the requirements for the brokerage infras-
tructure should be considered.

8.2.6 Interoperability

Cloud interoperability enables multiple cloud-enabled systems to collaborate with
each other [15]. Cloud interoperability can be classified into multiple dimensions as
follows: (i) Interoperability of the data persistence layer so that the data can be
stored on the cloud resources satisfying location, security, and privacy constraints
on the data. (ii) Interoperability among different layers of the cloud service model
(i.e., IaaS, PaaS, and SaaS) so that the underlying cloud infrastructure satisfying
location, security, and privacy constraints can be selected. (iii) Interoperability of
the cloud-hosted services so that the services can be composed at runtime according
to the desired Quality of Service (QoS) parameters.

The requirements for the above-mentioned interoperability dimensions can be
broken down further into multiple sub-requirements. Cloud services and persistence
interoperability requirements deal with how to handle multiple collaborative cloud
services, how to select the appropriate persistence store of the data, details on the
mechanisms of storing and retrieving the data from the data persistence units, and
on-the-fly migrating of the data and services among heterogeneous clouds [31, 57].
The requirements for the brokerage process among the clouds deal with defining
and executing the mechanisms for selection of the desired cloud resources via cloud
brokerage [64]. Defining interlayer mappings among the cloud resources to cate-
gorize the resources that can be replaces with one another is vital for interoper-
ability [15]. The requirements of defining, identifying, and selecting interoperable
cloud services can facilitate not only service selection process but also run-time
composition of the services [56]. Decentralized deployment of the cloud infras-
tructure can facilitate satisfaction of the security and privacy constraints on the data
and the services, hence the cloud-based systems’ requirements for the decentralized
deployment should be matched with the infrastructure support of the underlying
cloud [50]. The requirements for autonomous selection and composition of the
underlying cloud resources and the hosted cloud-based systems’ services explore
different parameters needed for resources or services identification and the attributes
for which the search queries can be run [48]. The selection and composition
requirements can also facilitate the resources and services matching and portability
of the services among the clouds [49]. These requirements can also be used for
discovering and composing heterogeneous cloud services on the fly [68].

188 M.A. Chauhan and C.W. Probst

8.2.7 Service Level Agreement (SLA) Compliance

The compliance of the cloud-hosted data and services with Service Level Agreements
(SLA) between the cloud-resource providers and the cloud-resource consumers is
vital; especially when a large number of tenants with varying service quality needs are
being served [40]. Hence, the requirements related to SLAs compliance focus on the
following dimension: (i) Monitoring requirements for the cloud resources and
cloud-hosted services to monitor the quality attributes of interest. (ii) Resources’
adaptability and management requirements corresponding to the monitoring
parameters. (iii) Service composition requirements for satisfying SLAs. (iv) Billing
requirements for managing pricing variability with respect to the SLAs.
(v) Requirements for predicting the system’s behavior with respect to the run-time
quality requirements in order to enable the SLA compliance for unforeseen scenarios.

For the cloud-resource providers to comply with SLAs, the providers have to
monitor the resources for quality attributes of interest such as scalability [38]. The
monitoring requirements need to be focused on key performance indicators of the
system (e.g., elasticity, scalability, and performance) and the monitoring should be
nonintrusive so that the monitoring mechanism do not affect normal operations of
the system [34]. Adaptability requirements should be focused on quality of service
parameters for services transmission and communication environments, and should
focus on key performance indicators [34]. SLA requirements should also include
requirements associated with availability of the qualified candidate services [53],
optimal service composition approaches to be adopted for QoS specific services’
composition [46] and requirements for license management of the virtualized cloud
resources [12].

For services and data management in the cloud-based systems, the focus of the
requirements engineering and management effort should be on characterizing SLA
compliance and regulatory requirements for data retention, intercloud migration of
the services and data, and confidentiality constraints on the data and the services
[42, 60]. The requirements for run-time management of the SLAs (including
enforcement of fine-grained SLA compliance policies for managing data and han-
dling run-time services operations, enforcement of data retention policies on data
persistence objects, and management of billing corresponding to the run-time
quality requirements) are also critical [11]. Moreover, the requirements for resource
discovery and monitoring in accordance with SLAs are also important. To con-
clude, the SLA compliance requirements need to focus on consistency, scalability
[20], workload management driven by applications and users behavior [40],
monitoring of the resources deployed on different platforms [70], anticipation of the
system behavior for desired QoS parameters [27], customization of the monitoring
parameters for different types of the systems following users’ specifications [13],
and optimization of profit margins while satisfying SLAs [9].

8 Architecturally Significant Requirements Identification … 189

8.3 Relationship of the Architecturally Significant
Requirements with Multi-tenancy Quality
Characteristics

Multi-tenancy quality characteristic (requirement) of the cloud-based systems
facilitates secured sharing of the resources among multiple tenants and adoption of
the systems with respect to tenant-specific configurations [62]. Multi-tenancy
characteristic affects the design of the cloud-based systems from two-different
perspectives. First, multi-tenancy determines security to provide isolation among
different services belonging to different tenants in a cloud-based system. Services’
isolation is also referred as security dimension of multi-tenancy. Second,
multi-tenancy determines a specific configuration of a cloud-based system for a
specific tenant with respect to the quality requirements discussed in Sect. 8.2. The
security requirements of the multi-tenancy can be classified into three broad cate-
gories: (i) Isolation among the data and services belonging to different tenants.
(ii) Monitoring of the resources for their compliance with QoS parameters and their
usage (so that the tenants can be billed accordingly). (iii) Safe termination of the
resources once tenant-specific operations are completed so that run-time state of
tenant-specific configuration of the system cannot be exploited via a cross tenant
attack. Specification and management of the run-time quality requirements for
different tenants are determined by the nature of the run-time system’s operations
and constraints on the data processing services and need for exposure of the data to
external systems.

Security requirements of the multi-tenancy focus on the following dimensions.
To control access to the multi-tenant systems, the requirements focus on hierar-
chical Role-Based Access Control (hRBAC) mechanisms or conditional
Role-Based Access Control (cRBAC) mechanisms [10]. For hRBAC mechanisms,
different users and external systems are grouped into hierarchical clusters of users,
and access rights are determined based upon the position of a user or an external
system in the hierarchy. For cRBAC mechanisms, the users and systems are granted
access to the system to perform a specific operation if all the preconditions are
satisfied. The preconditions include not only authentication and authorization but
also if the prerequisite operations have been completed and the data needed for the
current operations (to be performed) is available. To have a centralized security
control mechanism for all the system provided by a particular cloud platform, an
aspect-oriented security mechanism can be adopted [2]. The requirements for the
aspect-based security control mechanism focus on database requirements to
maintain architecture description of the hosted systems and security constraints
desired by different tenants, management system requirements to define and inte-
grate security in the hosted systems, and interface requirements through which the
security aspects can be integrated in the hosted systems.

The focus of handling generic quality requirements for multi-tenant cloud-based
systems is on feature-based resource management, cost-based resource optimiza-
tion, tenant distribution over the resources, and monitoring of the services and

190 M.A. Chauhan and C.W. Probst

hosted platforms for their compliance with SLAs. The requirements associated with
feature-based resource management focus on models that can be used to share
instances of the services among the tenants with similar quality requirements [44].
These requirements also focus on resource allocation model to analyze failure cost
of wrong service placement strategy and cost of successful service placement
strategy in terms of energy footprint and price of the used resources. For dis-
tributing tenant-specific resources on hybrid clouds to satisfy the privacy and
security constraints, the scheduling and routing algorithms should focus on context
of the operations and data requests [24]. For monitoring the deployed resources on
the hybrid clouds, observers on all layers of the cloud service and deployment
model can be needed [28]. Moreover, to satisfy the run-time performance param-
eters for SLA compliance, the multi-tenancy requirements should focus on moni-
toring, scheduling, load balancing and provisioning of the components, and services
and data according to available computing resources for each specific tenant [61].

8.4 A Classification Scheme for Management
of Architecturally Significant Requirements

Traditionally, architecturally significant quality requirements are classified into two
broad categories: (i) design-time quality requirements and (ii) run-time quality
requirements [29]. However, in order to organize the requirements for complex
software systems, such as cloud-enabled systems, the requirements need to be
further classified into sub-groups. The sub-groups facilitate to establish the rela-
tionship among different types of the requirements’ classes and analyze the impact
of changes in the requirements across the sub-groups. In this section, we identify
different attributes that can be used to classify the architecturally significant quality
requirements of the cloud-based systems into different groups and discuss a selected
set of the requirements to explain the classification approach. An overview of the
requirements classes and the classification parameters is shown Fig. 8.2 and the
details of the sub-classes along with description of the classification parameters are
summarized in Table 8.1.

8.4.1 System Management Requirements for Hosted
Services and Data

The requirements that can be classified into this group are associated with provi-
sioning of the cloud-hosted services following the desired run-time quality
parameters, providing communication among the hosted services, and handling the
security and privacy constraints. In the following subsections, we describe the
details on classification parameters for different dimensions of the system man-
agement requirements.

8 Architecturally Significant Requirements Identification … 191

8.4.1.1 Quality Specific Provisioning

The requirements of the cloud-enabled systems can be classified into Quality
Specific Provisioning group if the requirements satisfy to the following conditions:

• The requirements defining the parameters for initialization and deployment of
the services, data, or a combination of these on the cloud.

• The requirements that can have an impact on run-time behavior of a cloud-based
system.

• The requirements that either specify the parameters for SLAs management or
deal with the system compliance with the SLAs.

• The requirements classifying the nature and types of the client systems or ser-
vices that are to interact with a cloud-based system.

• The requirements specifying the nature and type of the end user devices that are
to interact with the system.

8.4.1.2 Interoperability and Integration Requirements

The Interoperability and Integration Requirements group encapsulates the
requirements satisfying the following conditions:

• The requirements that deal with specifying system interfaces. For example,
REST-based interfaces, SOAP-based interfaces, or translucent callback
interfaces.

Fig. 8.2 Architecturally
Significant Requirements
classes and key classification
parameters for the
cloud-based systems

192 M.A. Chauhan and C.W. Probst

• The requirements that handle specification, management, and governance of the
federated cloud. That is, what kind of cloud resources should be combined to
form a federated cloud, when the cloud federation should take place, and under
which conditions specific services from a federated cloud should be selected.

• The requirements which deal with nature and type of the data that should be
exchanged among the services. For example, whether XML-based data struc-
tures or a language-specific data structures are to be used for interoperability and
integration among the services.

Table 8.1 Requirements classes and parameters used for classification

Requirement classes Classification parameters

Quality specific
provisioning

Controlling initialization and deployment

Effecting run-time system behavior

Facilitating SLAs achievement

Dealing with nature and type of client systems and services

Dealing with end-user devices

Interoperability and
integration

Enabling translucent system interfaces

Governing cloud federation

Specifying interoperability of the hosted services

Security and privacy Accessing data and services

Dealing with multi-tenancy

Specifying data encryption requirements

Trusting cloud and the hosted services

Complying with legal and regulatory requirements

Handling data and service placement strategies

Managing liabilities of the cloud-hosted services

Communication and
collaboration

Enabling communication and interaction with heterogeneous cloud
environments and externally services

Securing inter service communication

Providing services interface facades

Abstracting service end points

Monitoring Checking compliance with respect to dynamically changeing
quality characteristics

Adapting run-time quality parameters

Monitoring quality parameters

Managing run-time quality conflicts

Optimizing system configuration with respect to quality
characteristics

Enabling autonomous services selection and composition

Managing services distribution and scheduling mechanisms

Enabling dynamic cloud resource discovery

Handling redundant service deployments

8 Architecturally Significant Requirements Identification … 193

8.4.1.3 Security and Privacy Requirements

The Security and Privacy group includes the requirements dealing with one or more
of the following specifications.

• The requirements dealing with access to the cloud-hosted data and services.
These requirements include both authentication and authorization requirements.

• The requirements handling different aspects of the multi-tenancy characteristic
of a cloud-based system. For example, whether the tenant-specific service
instances should be isolated from each other or not, what quality of service
parameters are desired by each tenant, and how multiple services can be com-
posed to meet QoS constraints of a specific tenant.

• The requirements associated with security of the data. For example, whether the
data should be encrypted or not, what kind of encryption algorithm should be
applied on the data, and how the data should be persisted.

• The requirements specifying constrains on the trusted execution of the services
on the cloud. These requirements can include the characteristics of the trusted
cloud environments and the parameters to be used for the selection of a trusted
cloud environment.

• The requirements specifying legal and regulatory constrains on the systems. For
example, for how long the data history of a system should be maintained before
permanently deleting the data.

• The requirements specifying the strategies for hosting the services and persisting
the data on different cloud environments. For example, a constraint specifying
that sensitive data should always be stored on a private cloud in an encrypted
format.

• The requirements specifying system liabilities and penalties for cases in which a
cloud-based system fails to comply with desired operational conditions. These
requirements can also include how to handle the exceptional cases in which
desired security and privacy constraints could not be satisfied.

8.4.2 Communication and Collaboration Requirements

Communication and collaboration among the services and hosting cloud environ-
ments, when a cloud-based system is operational, are a critical run-time property of
the cloud-based systems. The requirements associated with communication and
collaboration group can be classified based upon the following properties.

• The requirements that specify the parameters for communication and interaction
among heterogeneous cloud environments as well as interaction among the
services hosted on the heterogeneous cloud environments.

• The requirements defining nature and type of the communication. For example,
whether the communication is to be encrypted or not, or whether a specific

194 M.A. Chauhan and C.W. Probst

communication protocol (e.g., publisher subscriber pattern) should be followed
to exchange the notifications and data.

• The requirements defining services’ facade.
• The requirements defining types of interfaces and signatures of interfaces for

services’ end points.

8.4.3 Monitoring Requirements

Services monitoring requirements handle observation of the run-time system
behavior and adaptation based on the analysis of the monitoring parameters. The
requirements can be classified into this category based upon the following
properties.

• The requirements monitoring system compliance with respect to the dynami-
cally changing architecture quality attributes. For example, security and privacy
requirements of the data can be different for different types of tenants and can
vary according to the nature and type of the data.

• The requirements dealing with monitoring of specific run-time quality attributes
of a cloud-based system.

• The requirements specifying mechanisms to handle conflicting run-time quality
requirements.

• The requirements associated with optimization methods based upon the sys-
tems’ monitoring metrics.

• The requirements specifying concrete methods to achieve the quality attributes.
For example, services distribution and scheduling mechanisms.

• The requirements specifying details of resource discovery and composition.

8.5 A Probabilistic Analysis Method to Analyze Impact
of Changes in Architecturally Significant
Requirements

The different types of the architecturally significant requirements discussed in
Sects. 8.2 and 8.3 can be classified into different groups as discussed in Sect. 8.4.
A change in one of the requirements can impact one or more of the related or
dependant requirements. As a result, to manage and track changes in the require-
ments, a systematic approach is required that can be used to analyze the impact of
the changes with reference to the nature and type of relationships that exist among
different requirements and the degree of impact that the requirements can have on
each other. In this section, we describe a probabilistic analysis method to analyze
impact of the changes in architecturally significant requirements.

8 Architecturally Significant Requirements Identification … 195

The requirements can be related to each other with different types of relations to
represent dependency, composition, complementation, contradiction, and propor-
tionality relationships. These relationships are explained as follows:

• Dependency relation represents a relationship among the architecturally sig-
nificant requirements such that a requirement B is dependent upon a require-
ment. In other words, in order to satisfy the requirement B, the system first has
to satisfy the requirement A.

• Composition relation represents a relationship among the architecturally sig-
nificant requirements such that the composition of a number of sub-requirements
is needed in order to satisfy a higher order requirement.

• Complementation relation represents a relationship among the architecturally
significant requirements such that incorporation of a requirement A in the
system can complement a requirement B, i.e., incorporating the requirement A
in the system can make it easy to incorporate the requirement B.

• Contradiction relation represents a relationship among the architecturally sig-
nificant requirements such that a requirement A is contradictory to a requirement
B, i.e., it is not possible to completely satisfy both the requirements (A and B) in
the system at the same time. In other words, either the requirements A and B are
mutually exclusive or a trade-off has to be made for degree of satisfaction of
each requirement in the system.

• Inverse proportionality relation represents a relationship among the architec-
turally significant requirements such that the degree of achieving a requirement
A can have an inverse impact on the degree of achieving a requirement B. For
example, if a cloud-based system satisfies a requirement A 90% of the time, the
requirement B can only be satisfied 10% of the time, and vice versa.

Each of the defined relationships has a probabilistic value, which represents the
degree of strength of the relationship between two requirements. For example, a
probabilistic value of 50% with dependency relation between the requirements A
and B shows that the requirement B is at least 50% dependent on the requirement
A. Figure 8.3 shows the symbolic representation of the relationships that can exist
among the requirements and describes an example scenario. The relationships can
be used for not only to establish a link among the requirements of the cloud-based
systems but also to analyze impact of changes in one of the requirements on the
other system requirements.

Figure 8.3 shows the details of the proposed approach for the analysis of two
types of high-level Architecturally Significant Requirements (ASRs), i.e., high
response time and security of a cloud-based system. The probability score associ-
ated with the different relations in the diagram is based upon the expert opinion of
the authors of this chapter. An alternative approach to the expert opinion can be to
seek input from the stakeholders of the system and calculate the probability score
using weighted averages (e.g., for cases in which some of the stakeholders have
more control on the requirements engineering and management than others). The
relations to achieve the change management shown in Fig. 8.3 are linked to each

196 M.A. Chauhan and C.W. Probst

other in the following manner. The requirement R2 for optimization of the resource
utilization is dependant on the requirement R1, which deals with avoidance of the
performance bottlenecks of the systems. A probability value score of 0.50 is
assigned, indicating that R2 is 50% dependent upon R1. To avoid system over-
loading, the requirement R4 is composed of R2 (for optimization of the resource
utilization) and R3 (for autonomous resource acquisition). Each of the requirements
R2 and R3 complement 25% to the achievement of R4, whereas remaining 50% is
handled by the requirement R4 itself. The requirement R6 is associated with
resource adaptability and management. R6 can be complemented by R4 by dele-
gating system overloading avoidance capability to R4. The probability score of 0.30
is assigned, which indicate that 30% of the R6 responsibility can be handled by R4.
Similarly, the requirement R5 handling resource monitoring contributes 40% to R6
and subsequently R6 contributes 50% to the requirement R9. R9 describes that high
response time is of higher priority for the system than security. The requirements R7
and R8 deal with security in terms of tenants specific security constraints checking
and encryption of persisted data, respectively. R7 and R8 are inversely proportional
to R9 because incorporating more security measures in the system decreases
response time. The probability values associated with inverse proportionality
relationships have negative contributions, i.e., R7 decreases response time by 20%
and R8 decreases response time by 50%. The requirement R10 described that higher
system security is desired. R7 and R8 have positive contribution to R10 and can
facilitate to incorporate R10 in the system by the factor of 20% and 50%, respec-
tively. As shown in Fig. 8.3, R9 and R10 are contradictory requirements and both
cannot be fully satisfied at the same time, hence a trade-off has to be made to decide
to which extend each of R9 and R10 should be incorporated in the system.

Fig. 8.3 Relationships of the probabilistic analysis method and an example application scenario

8 Architecturally Significant Requirements Identification … 197

The quality of architecture in terms of ASR can be calculated in the following
manner. A maximum score 1 can be assigned to each quality requirement indicating
that it can be completely incorporated in the system. For dependency, composition
and complementation relations, probability value assigned with the relation is added
to the target requirement’s score (for the requirements incorporation into the sys-
tem). For example, in Fig. 8.3 the requirement R1 contributes to the requirement R2
with value 0.50. This means 50% of R2 can be achieved by incorporating R1 in the
system. Similarly, the requirements R4 is composed of the requirements R2 and R3
each with a factor of 0.25. This means that each of R2 and R3 contributes 25% for
incorporation of R4 in the system. For inverse proportionality, the probability value
score with the relation is subtracted from the target requirement’s score. For
example, in Fig. 8.3, the requirements R7 and R8 are inversely related with the
requirement R9 by factors of 0.20 and 0.50, respectively. As a result, if R7 and R8
are incorporated in the system, the probability for satisfaction of R9 is the system is
only 0.30 (1–0.20–0.50). Only of the requirements associated with each other with
a contradiction relation cannot be fully satisfied by the system. As a result, either
only one of the requirements should be considered to be part of the system or a
trade-off has to be made among the requirements for their respective degree of
incorporation in the system. Table 8.2 lists the relations that can exist between the
requirements versus their contributions to a system’s architecture quality.

The probability value scores associated with the relations (as shown in Fig. 8.3)
can be calculated in the following manner: (i) If there is a consensus among the
stakeholders on the probability score of a relation, the agreed probability score can
be assigned directly. (ii) If the stakeholders cannot reach a consensus, then the
weighted averages for a relation k can be taken according to the following formula,
in which k corresponds to identifier of each relation and N corresponds to the total
number of stakeholders involved in the decision making process of the relation k.

Probability ScoreðkÞ ¼
PN

i¼1 WeightðkÞi � ScoreðkÞi
N

The values of each of the Weight(k)i and Score(k)i can range between 0 and 1,
depending upon the value of a specific stakeholder’s weight for a specific relation
and the probability score assigned by the stakeholder to the relation. The weighted
average of a relation k specifies probability score value of the relation k between
two requirements. For example, let us assume that there are two stakeholders of the

Table 8.2 Contribution of the relations between ASRs to overall system quality

Relation Relation’s contribution

Dependency Positive

Composition Positive

Complementation Positive

Contradiction Mutually exclusive (trade-off required)

Inverse proportionality Negative

198 M.A. Chauhan and C.W. Probst

requirements R1 and R2 and they cannot reach a consensus on the probability score
of the dependency relation between R1 and R2. If first stakeholder has 0.75 weight
(stakes on the requirements) and choose a probability value score of 0.80 for the
relation, and second stakeholders has 0.50 weight and choose a probability value
score of 0.25. The probability score of the dependency relation between the
requirements R1 and R2 can be calculated as follows:

0:75ðWeight1Þ � 0:80ðScore1Þþ 0:50ðWeight2Þ � 0:25ðScore2Þ
2ðNÞ ¼ 0:36

The weighted averages for all the relations among the requirements in case of
disagreements can be calculated in the similar manner.

The relations and probabilities assigned with the relations (as shown in Fig. 8.3)
can also be used to analyze impact of the changes in the requirements on overall
architecture quality of a cloud-based system. Addition of new requirements or
removal of existing requirements from the probabilistic analysis model can result in
addition or removal of the relations and changes in the respective probabilities of
the relations. Modification in the requirements can require reanalysis of the prob-
abilities assigned to the relations. Addition, removal or modification in some of the
requirements can require recalculation of the whole probabilistic analysis model.
Hence, the probabilistic analysis method presented in this section provides not only
the traces among different types of the requirements but also the types of the traces
(in terms of the relations) and strength of the traces (in terms of the probability
values), which in turn provides a mechanism to evaluate overall requirements
quality of a cloud-based system.

8.6 Related Work

A number of studies have focused on requirements for cloud-based system and
variability management of the requirements. Ramachandran [54] has proposed a
business-oriented requirements engineering approach for the cloud-based systems.
The proposed approach takes market requirements as a baseline for requirements
engineering and cloud business strategy. In subsequent stages, the requirements are
elicited, and cloud services are designed and tested. The business analysis is con-
sisted of tasks, knowledge, and techniques that can be used to identify business
needs and solution to the business needs. Dey and Lee [22] have proposed a
requirements elicitation and variability management approach. The presented
approach proposed that the requirements elicitation should focus on the social,
environmental, and economic context. The proposed variability management
approach focused on recording and analyzing identified conflicts, identifying key
changes for the system redesign, identifying users expected behavior for different
states of the system and identifying most feasible set of requirements for the
cloud-based systems. Iankoulova and Daneva [33] have presented a systematic

8 Architecturally Significant Requirements Identification … 199

review of the studies discussing cloud computing security requirements. The review
has identified access control, integrity, auditing, privacy, and nonrepudiation as
commonly reported security requirements. Kalloniatis et al. [36] have analyzed the
cloud deployment scenarios with respect to security and privacy requirements. The
authors have argued that the security analysis should be performed with respect to
organizational needs and cloud-deployment models.

Rimal et al. [58] have described the architecture requirements for the
cloud-based systems in terms of provider requirements, enterprise requirements,
and user requirements. The requirements describe cloud-service models, cloud
deployment models, cloud quality characteristics, and billing requirements. Wind
and Schrodl [65] have provided a comparison framework of the requirements
engineering models for the cloud-based systems. Four well-known software
development models including V Model, Rational Unified Process, Extreme
Programming, and Volere are explored in terms of their suitability for requirements
engineering to analyze cloud offerings with respect to suppliers and customers
viewpoints, orchestration, and application components. Zardari and Bahsoon [69]
have presented a goal oriented requirements engineering approach to support cloud
adoption. The presented approach focuses on matching-desired goals with features
of the cloud service providers. After features selection, matches are analyzed for
risks and finally cloud services with least risks are selected for utilization.

The related work discussed in this section focus on higher level enterprise and
business requirements for the cloud-based systems, and describe approaches to
match the requirements with available cloud services. On the contrary, the research
presented in this chapter focuses on multiple dimensions of the architecturally
significant requirements for the cloud-based systems, relations among the
requirements and an approach to manage changes in the requirements.

8.7 Conclusions

A clear understanding of the Architecturally Significant Requirements (ASRs) and
relation among different dimensions of the ASRs is critical to achieve quality in
architecture of the cloud-based systems. The biggest challenge for architecting
quality in the cloud-based systems is to have an understanding of the details to
which the ASRs should be explored and how the changes in one type of the ASRs
can impact the other ASRs. In this chapter, we have presented a set of core ASRs of
the cloud-based systems and have explored the requirements’ relationships with the
multi-tenancy quality characteristic of the cloud-based systems. The ASRs are
classified into three classes including system management requirements, commu-
nication and collaboration requirements, and monitoring requirements. We have
identified key classification attributes for each of the requirements classes. For
example, monitoring requirements handle dynamic monitoring of the quality
parameters, identification of the run-time quality conflicts, and dynamic discovery
and composition of the system services (or components) to maintain the run-time

200 M.A. Chauhan and C.W. Probst

quality of a cloud-based system. We have also presented a probabilistic analysis
method to analyze the impact of the ASRs on each other as well as to analyze
impact of change in one of the requirements on other related and dependant
requirements. The presented analysis method utilizes five different types of the
relations (i.e., dependency, composition, complementation, contradiction, and
inverse proportionality) to evaluate impact of the changes.

We foresee that the presented research can be used by the researchers and
practitioners to identify core quality characteristics of the cloud-based systems and
to use the identified dimensions of the ASRs to elicit the requirements’ details. The
presented probabilistic analysis method can be used to control run-time system
configuration to achieve desired quality in a cloud-based system. In future, we tend
to explore the presented research for its suitability for managing SaaS product lines.
We also plan to extend the presented research to provide the traces among the live
components of the cloud-based systems so that the quality of on-the-fly system
composition for multi-tenant cloud-based systems can be determined.

Acknowledgements Part of the research leading to these results has received funding from the
European Union Seventh Framework Program (FP7/2007-2013) under grant agreement no.
318003 (TRESPASS). This publication reflects only the authors’ views and the Union is not liable
for any use that may be made of the information contained herein.

References

1. Al-Aqrabi, H., Liu, L., Xu, J., Hill, R., Antonopoulos, N., Zhan, Y.: Investigation of it
security and compliance challenges in security-as-a-service for cloud computing. In:
Object/Component/Service-Oriented Real-Time Distributed Computing Workshops
(ISORCW), 2012 15th IEEE International Symposium on. pp. 124–129. IEEE (2012).

2. Almorsy, M., Grundy, J., Ibrahim, A.S.: Tossma: A tenant-oriented saas security management
architecture. In: Cloud computing (cloud), 2012 ieee 5th international conference on. pp. 981–
988. IEEE (2012).

3. AlZain, M.A., Soh, B., Pardede, E.: A byzantine fault tolerance model for a multi-cloud
computing. In: Computational Science and Engineering (CSE), 2013 IEEE 16th International
Conference on. pp. 130–137. IEEE (2013).

4. An, K., Shekhar, S., Caglar, F., Gokhale, A., Sastry, S.: A cloud middleware for assuring
performance and high availability of soft real-time applications. Journal of Systems
Architecture 60(9), 757–769 (2014).

5. Ardagna, C.A., Damiani, E., Frati, F., Rebeccani, D., Ughetti, M.: Scalability patterns for
platform-as-a-service. In: Cloud Computing (CLOUD), 2012 IEEE 5th International
Conference on. pp. 718–725. IEEE (2012).

6. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G., Patterson,
D., Rabkin, A., Stoica, I., et al.: A view of cloud computing. Communications of the ACM 53
(4), 50–58 (2010).

7. Babar, M.A., Chauhan, M.A.: A tale of migration to cloud computing for sharing experiences
and observations. In: Proceedings of the 2nd international workshop on software engineering
for cloud computing. pp. 50–56. ACM (2011).

8. Belimpasakis, P., Moloney, S.: A platform for proving family oriented restful services hosted
at home. Consumer Electronics, IEEE Transactions on 55(2), 690–698 (2009).

8 Architecturally Significant Requirements Identification … 201

9. Beloglazov, A., Abawajy, J., Buyya, R.: Energy-aware resource allocation heuristics for
efficient management of data centers for cloud computing. Future generation computer
systems 28(5), 755–768 (2012).

10. Bernabe, J.B., Perez, J.M.M., Calero, J.M.A., Clemente, F.J.G., Perez, G.M., Skarmeta, A.F.
G.: Semantic-aware multi-tenancy authorization system for cloud architectures. Future
Generation Computer Systems 32, 154–167 (2014).

11. Buyya, R., Pandey, S., Vecchiola, C.: Cloudbus toolkit for market-oriented cloud computing.
In: Cloud Computing, pp. 24–44. Springer (2009).

12. Cacciari, C., Mallmann, D., Zsigri, C., D’Andria, F., Hagemeier, B., Rumpl, A., Ziegler, W.,
Martrat, J.: Sla-based management of software licenses as web service resources in distributed
computing infrastructures. Future Generation Computer Systems 28(8), 1340–1349 (2012).

13. Calero, J.M.A., Aguado, J.G.: Monpaas: an adaptive monitoring platformas a service for
cloud computing infrastructures and services. IEEE Transactions on Services Computing 8(1),
65–78 (2015).

14. Vera-del Campo, J., Pegueroles, J., Herna´ndez-Serrano, J., Soriano, M.: Doccloud: A
document recommender system on cloud computing with plausible deniability. Information
Sciences 258, 387–402 (2014).

15. Celesti, A., Tusa, F., Villari, M., Puliafito, A.: How to enhance cloud architectures to enable
cross-federation. In: Cloud Computing (CLOUD), 2010 IEEE 3rd International Conference
on. pp. 337–345. IEEE (2010).

16. Chauhan, M.A., Babar, M.A.: Migrating service-oriented system to cloud computing: An
experience report. In: Cloud Computing (CLOUD), 2011 IEEE International Conference on.
pp. 404–411. IEEE (2011).

17. Chauhan, M.A., Babar, M.A.: Towards process support for migrating applications to cloud
computing. In: Cloud and Service Computing (CSC), 2012 International Conference on.
pp. 80–87. IEEE (2012).

18. Chauhan, M.A., Babar, M.A., Benatallah, B.: Architecting cloud-enabled systems: a
systematic survey of challenges and solutions. Software: Practice and Experience (2016).

19. Chauhan, M.A., Babar, M.A., Sheng, Q.Z.: A reference architecture for a cloud-based tools as
a service workspace. In: Services Computing (SCC), 2015 IEEE International Conference on.
pp. 475–482. IEEE (2015).

20. Chen, T., Bahsoon, R., Tawil, A.R.H.: Scalable service-oriented replication with flexible
consistency guarantee in the cloud. Information Sciences 264, 349–370 (2014).

21. Daniel, W.: Challenges on privacy and reliability in cloud computing security. In: Information
Science, Electronics and Electrical Engineering (ISEEE), 2014 International Conference on.
vol. 2, pp. 1181–1187. IEEE (2014).

22. Dey, S., Lee, S.W.: From requirements elicitation to variability analysis using repertory grid:
A cognitive approach. In: 2015 IEEE 23rd International Requirements Engineering
Conference (RE). pp. 46–55. IEEE (2015).

23. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms.
In: Advances in cryptology. pp. 10–18. Springer (1984).

24. Fehling, C., Leymann, F., Mietzner, R.: A framework for optimized distribution of tenants in
cloud applications. In: Cloud Computing (CLOUD), 2010 IEEE 3rd International Conference
on. pp. 252–259. IEEE (2010).

25. Fernandes, D.A., Soares, L.F., Gomes, J.V., Freire, M.M., Ina´cio, P.R.: Security issues in
cloud environments: a survey. International Journal of Information Security 13(2), 113–170
(2014).

26. Frˆıncu, M.E.: Scheduling highly available applications on cloud environments. Future
Generation Computer Systems 32, 138–153 (2014).

27. Garc´ıa, A.G., Espert, I.B., Garc´ıa, V.H.: Sla-driven dynamic cloud resource management.
Future Generation Computer Systems 31, 1–11 (2014).

28. Goldschmidt, T., Murugaiah, M.K., Sonntag, C., Schlich, B., Biallas, S., Weber, P.: Cloud-
based control: A multi-tenant, horizontally scalable soft-plc. In: Cloud Computing (CLOUD),
2015 IEEE 8th International Conference on. pp. 909–916. IEEE (2015).

202 M.A. Chauhan and C.W. Probst

29. Gorton, I.: Essential software architecture. Springer Science & Business Media (2006).
30. Han, R., Ghanem, M.M., Guo, L., Guo, Y., Osmond, M.: Enabling cost-aware and adaptive

elasticity of multi-tier cloud applications. Future Generation Computer Systems 32, 82–98
(2014).

31. Hassan, M.M., Song, B., Huh, E.N.: A market-oriented dynamic collaborative cloud services
platform. Annals of telecommunications-annales des te´le´communications 65(11–12), 669–
688 (2010).

32. Huang, W., Ganjali, A., Kim, B.H., Oh, S., Lie, D.: The state of public infrastructure-as-a-
service cloud security. ACM Computing Surveys (CSUR) 47(4), 68 (2015).

33. Iankoulova, I., Daneva, M.: Cloud computing security requirements: A systematic review. In:
2012 Sixth International Conference on Research Challenges in Information Science (RCIS).
pp. 1–7. IEEE (2012).

34. Inzinger, C., Hummer, W., Satzger, B., Leitner, P., Dustdar, S.: Generic event-based
monitoring and adaptation methodology for heterogeneous distributed systems. Software:
Practice and Experience 44(7), 805–822 (2014).

35. Iqbal, W., Dailey, M.N., Carrera, D., Janecek, P.: Adaptive resource provisioning for read
intensive multi-tier applications in the cloud. Future Generation Computer Systems 27(6),
871–879 (2011).

36. Kalloniatis, C., Mouratidis, H., Islam, S.: Evaluating cloud deployment scenarios based on
security and privacy requirements. Requirements Engineering 18(4), 299–319 (2013).

37. Kanso, A., Lemieux, Y.: Achieving high availability at the application level in the cloud. In:
Cloud Computing (CLOUD), 2013 IEEE Sixth International Conference on. pp. 778–785.
IEEE (2013).

38. Katsaros, G., Kousiouris, G., Gogouvitis, S.V., Kyriazis, D., Menychtas, A., Varvarigou, T.:
A self-adaptive hierarchical monitoring mechanism for clouds. Journal of Systems and
Software 85(5), 1029–1041 (2012).

39. Kaur, P.D., Chana, I.: A resource elasticity framework for qos-aware execution of cloud
applications. Future Generation Computer Systems 37, 14–25 (2014).

40. Kerte´sz, A., Kecskemeti, G., Brandic, I.: An interoperable and self-adaptive approach for
sla-based service virtualization in heterogeneous cloud environments. Future Generation
Computer Systems 32, 54–68 (2014).

41. Kirschnick, J., Alcaraz Calero, J.M., Goldsack, P., Farrell, A., Guijarro, J., Loughran, S.,
Edwards, N., Wilcock, L.: Towards an architecture for deploying elastic services in the cloud.
Software: Practice and Experience 42(4), 395–408 (2012).

42. Li, J., Stephenson, B., Motahari-Nezhad, H.R., Singhal, S.: Geodac: A data assurance policy
specification and enforcement framework for outsourced services. Services Computing, IEEE
Transactions on 4(4), 340–354 (2011).

43. Louridas, P.: Up in the air: Moving your applications to the cloud. IEEE software 27(4), 6
(2010).

44. Moens, H., Truyen, E., Walraven, S., Joosen, W., Dhoedt, B., De Turck, F.: Cost-effective
feature placement of customizable multi-tenant applications in the cloud. Journal of Network
and Systems Management 22(4), 517–558 (2014).

45. Moser, T., Biffl, S.: Semantic integration of software and systems engineering environments.
Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on 42
(1), 38–50 (2012).

46. Nae, V., Prodan, R., Iosup, A.: Sla-based operations of massively multiplayer online games in
clouds. Multimedia Systems 20(5), 521–544 (2014).

47. Nidd, M., Ivanova, M.G., Probst, C.W., Tanner, A., Ko, R., Choo, R.: Tool-based risk
assessment of cloud infrastructures as socio-technical systems. The cloud security ecosystem.
Syngress (2015).

48. Paik, I., Chen, W., Huhns, M.N.: A scalable architecture for automatic service composition.
IEEE Transactions on Services Computing 7(1), 82–95 (2014).

8 Architecturally Significant Requirements Identification … 203

49. Paraiso, F., Merle, P., Seinturier, L.: socloud: A service-oriented component-based paas for
managing portability, provisioning, elasticity, and high availability across multiple clouds.
Computing 98(5), 539–565 (2016).

50. Peifeng, S., Chuan, S., Xiang, Z.: Intelligent server management framework over extensible
messaging and presence protocol. Communications, China 10(5), 128–136 (2013).

51. Perez-Sorrosal, F., Patin˜o-Martinez, M., Jimenez-Peris, R., Kemme, B.: Elastic si-cache:
consistent and scalable caching in multi-tier architectures. The VLDB Journal—The
International Journal on Very Large Data Bases 20(6), 841–865 (2011).

52. Prodan, R., Sperk, M.: Scientific computing with google app engine. Future Generation
Computer Systems 29(7), 1851–1859 (2013).

53. Qi, L., Dou, W., Zhang, X., Chen, J.: A qos-aware composition method supporting
cross-platform service invocation in cloud environment. Journal of Computer and System
Sciences 78(5), 1316–1329 (2012).

54. Ramachandran, M.: Business requirements engineering for developing cloud computing
services. In: Software Engineering Frameworks for the Cloud Computing Paradigm, pp. 123–
Springer (2013).

55. Ren, K., Wang, C., Wang, Q.: Security challenges for the public cloud. IEEE Internet
Computing (1), 69–73 (2012).

56. Rezaei, R., Chiew, T.K., Lee, S.P., Aliee, Z.S.: A semantic interoperability framework for
software as a service systems in cloud computing environments. Expert Systems with
Applications 41(13), 5751–5770 (2014).

57. Ribeiro, L.S., Viana-Ferreira, C., Oliveira, J.L., Costa, C.: Xds-i outsourcing proxy: ensuring
confidentiality while preserving interoperability. IEEE journal of biomedical and health
informatics 18(4), 1404–1412 (2014).

58. Rimal, B.P., Jukan, A., Katsaros, D., Goeleven, Y.: Architectural requirements for cloud
computing systems: an enterprise cloud approach. Journal of Grid Computing 9(1), 3–26 (2011).

59. Ryan, J.: Rethinking the esb: building a secure bus with an soa gateway. Network Security
2012(1), 14–17 (2012).

60. Serrano, D., Bouchenak, S., Kouki, Y., Ledoux, T., Lejeune, J., Sopena, J., Arantes, L., Sens,
P.: Towards qos-oriented sla guarantees for online cloud services. In: Cluster, Cloud and Grid
Computing (CCGrid), 2013 13th IEEE/ACM International Symposium on. pp. 50–57. IEEE
(2013).

61. Sousa, F.R., Machado, J.C.: Towards elastic multi-tenant database replication with quality of
service. In: Proceedings of the 2012 IEEE/ACM Fifth International Conference on Utility and
Cloud Computing. pp. 168–175. IEEE Computer Society (2012).

62. Takabi, H., Joshi, J.B., Ahn, G.J.: Security and privacy challenges in cloud computing
environments. IEEE Security & Privacy (6), 24–31 (2010).

63. Tari, Z., Yi, X., Premarathne, U.S., Bertok, P., Khalil, I.: Security and privacy in cloud
computing: Vision, trends, and challenges. Cloud Computing, IEEE 2(2), 30–38 (2015).

64. Villegas, D., Bobroff, N., Rodero, I., Delgado, J., Liu, Y., Devarakonda, A., Fong, L.,
Sadjadi, S.M., Parashar, M.: Cloud federation in a layered service model. Journal of Computer
and System Sciences 78(5), 1330–1344 (2012).

65. Wind, S., Schro¨dl, H.: Requirements engineering for cloud computing: a comparison
framework. In: International Conference on Web Information Systems Engineering. pp. 404–
415. Springer (2010).

66. Wu, L., Garg, S.K., Buyya, R.: Sla-based admission control for a software-as-a-service
provider in cloud computing environments. Journal of Computer and System Sciences 78(5),
1280–1299 (2012).

67. Wu, X., Liu, M., Dou, W., Gao, L., Yu, S.: A scalable and automatic mechanism for resource
allocation in self-organizing cloud. Peer-to-Peer Networking and Applications 9(1), 28–41
(2016).

204 M.A. Chauhan and C.W. Probst

68. Xu, Z., Mei, L., Liu, Y., Hu, C., Chen, L.: Semantic enhanced cloud environment for
surveillance data management using video structural description. Computing 98(1–2), 35–54
(2016).

69. Zardari, S., Bahsoon, R.: Cloud adoption: a goal-oriented requirements engineering approach.
In: Proceedings of the 2nd International Workshop on Software Engineering for Cloud
Computing. pp. 29–35. ACM (2011).

70. Zhang, Y., Zhou, Y.: Transparent computing: spatio-temporal extension on von neumann
architecture for cloud services. Tsinghua Science and Technology 18(1), 10–21 (2013).

8 Architecturally Significant Requirements Identification … 205

Part III
Requirements Validation, Evaluation, and

QoS for Service and Cloud Computing

Chapter 9
Cyber Security Requirements Engineering

Christof Ebert

Abstract Virtually every connected system will be attacked sooner or later. This
holds specifically for cloud-based services and systems. A 100% secure solution is
not feasible. Therefore, advanced risk assessment and mitigation is the order of the
day. Risk-oriented security engineering helps in both designing for robust systems
as well as effective mitigation upon attacks or exploits of vulnerabilities. Security
must be integrated early in the design phase to understand the threats and risks to
expected functionality. The security analysis provides requirements and respective
test vectors so that adequate measures can be derived for balancing security costs
and efforts. This book chapter provides experience and guidance concerning how
information security can be successfully achieved with a security requirements
engineering perspective. Our experiences from embedded security in critical IT
systems show that security is only successful with a systematic understanding and
handling of security requirements and their interaction with functional require-
ments. Four requirements engineering-related levers for achieving security are
addressed: security requirements elicitation, security analysis, security design, and
security validation. We will show for each of these levers how security is analyzed
and implemented. A case study from automotive systems will highlight concrete
best practices. Only systematic and disciplined security requirements engineering
will ensure that security needs are met end to end from concept to architecture to
verification and test and—most relevant—operations, service, and maintenance.

Keywords Cloud-based systems � Cyber security � Embedded systems � Quality
requirements � Validation � Systems engineering

C. Ebert (&)
Vector Consulting Services, Stuttgart, Germany
e-mail: christof.ebert@vector.com

© Springer International Publishing AG 2017
M. Ramachandran and Z. Mahmood (eds.), Requirements Engineering
for Service and Cloud Computing, DOI 10.1007/978-3-319-51310-2_9

209

9.1 Introduction

IT evolution is driven by five forces: Collaboration, Comprehension, Connectivity,
Cloud, and Convergence (Fig. 9.1):

• Collaboration, i.e., consumer Internet, social network interaction, single cus-
tomer segmentation, configurators for products and services, digital money,
computer-assisted collaboration tools, crowdsourcing;

• Comprehension, i.e., augmented reality, semantic search, big data handling,
smart data, data analytics, data economy, online data validation, data quality;

• Connectivity, i.e., ubiquitous mobile computing, mobile services,
cyber-physical systems, industry 4.0, machine-to-machine (m2m) communica-
tion, sensor networks, multisensor fusion;

• Cloud, i.e., applications and services in the cloud, location-based networks, new
license models for software and application, sustainability, energy efficiency;

• Convergence, i.e., mobile enterprise, bioinformatics, Internet of things, perva-
sive sensing, autonomous systems.

The five forces all relate to cyber security and will not work adequately without
end-to-end cyber security engineering. Coupled with the underlying complexity and
scale these drivers demand new solutions for cyber security. Examples include new
IT architectures that facilitate seamless connectivity, robust infrastructures for
cyber-physical systems in safety-critical environments, or data analytics to predict
choices and behaviors to improve overall customer experience. Such
software-driven solutions can create nontraditional market entry points and

Collaboration

Comprehension

Connectivity

Cloud

Convergence

Fig. 9.1 Cyber security is impacted by five forces: collaboration, comprehension, connectivity,
cloud, and convergence

210 C. Ebert

consequently entirely new mechanisms to address a single customer with
time-specific and location-specific services.

New technologies not only create numerous opportunities but also introduce
complexity. Thereby, these solutions introduce new challenges, for instance, with
respect to information security, robustness, and usability.

Security and robustness have tremendous impact on business decisions. The
more we share and network, the more we are exposed to attacks of all kinds. The
exploding need for secure software and protection schemes for our business pro-
cesses, end to end, indicate this impact. Imagine automotive suppliers working on
multisensor fusion connected to GPS and vehicle-to-vehicle communication to
predict critical situations and foresee appropriate measures at situations where even
the driver might not even be aware of what will happen. Another example is service
companies who leverage their sales channels to flexibly provide related services
such as door-to-door transportation, or firms that offer a single service card for
identification, payment, and access to services of various providers both physical
and in the cloud.

Complexity and scale demand focus on usability. We already face situations
where users without adequate training are forced to operate systems which they do
not understand sufficiently to meaningfully assess risks and stay in control across
normal day-to-day scenarios. Insufficient usability today is a major source of critical
failures caused by humans in health care, transportation, and production plants.

For embedded software–hardware systems complexity and technology will grow
fast. The resulting competence gap will lead to even stronger fight for skills. From
the survey and interviews, we can see that companies will continue to invest in
growth through innovation by developing new products and solutions, because this
determines their market position. They are aware of the volatile market situation
and want their development teams across the world to be as lean and innovative as
possible.

The IT industry deals already since years with strategies for data protection and
to provide secured networks to prevent them against unauthorized access. Wide
experiences are available here that, with special considerations, can be adapted and
are useful for different industries. This allows, for instance, taking over the proven
software architecture of Ethernet, so that a number of approved protocols are
available as well for a secured data transmission. Essentially, they are based on
cryptography, software algorithms based on more or less complex mathematics.
The algorithms itself are not the secret and are available to the public, but keys
provide the secret and they must be created, distributed, and maintained carefully.
A popular key management system used by the IT industry is the PKI (Public Key
Infrastructure). It contains a hierarchical certificate management with associated
keys and builds the basis for an authenticated communication between partners.

We will look in this book chapter to key elements of security requirements
engineering, namely requirements elicitation and security requirements analysis.

Our examples mostly come from automotive systems, because unlike any other
industry, automotive connects three relevant drivers of modern IT systems, namely
the following:

9 Cyber Security Requirements Engineering 211

• Systems Engineering with a combination and integration of mechanics, hard-
ware, and software;

• Embedded real-time systems with safety-critical requirements;
• IT systems with huge computing power and distributed cloud services.

On this basis technology transfer to other industries is easily feasible.

9.2 Cyber Security Requirements

Security is a quality attribute which heavily interacts with other such attributes,
such as availability, safety, or robustness. It is the sum of all attributes of an
information system or product which contributes toward ensuring that processing,
storing, and communicating of information sufficiently protects confidentiality,
integrity, and authenticity. Cyber security implies that it is not possible to do
anything with the processed or managed information which is not explicitly
intended by the specification of the embedded system [1, 2].

Based on the specific challenges of cyber security, system, and service suppliers
have to realize an effective protection against manipulations of IT and embedded
electronic and electric systems. Key points in the development of protected systems
are the proper identification of security requirements, the systematic realization of
security functions, and a security validation to demonstrate that security require-
ments have been met. The following items need to be considered to achieve security
in the development process:

• Standardized process models for a systematic approach which is anchored in the
complete development process. This starts in the requirements analysis through
the design and development to the test and integration of components and the
network.

• Quick software updates to close vulnerabilities in installed operational software,
be it in the cloud or embedded in systems.

• Reliable governance that is state of the art and meets long-term security
demands, such as key management and updates of crypto algorithms.

• Robust networks and system architecture that provides flexibility and scalability
and are designed under consideration of security aspects.

Based on our experiences in many cyber security projects, we show which
security engineering activities are necessary to create secure systems and how these
activities can be performed efficiently. In the following discussion, we want to
examine each of these topics, the current activities, and provide suggestions con-
cerning how to mitigate the security risks.

Traditionally systems and electronics requirements are function driven. But, by
defining functionalities alone, there is nothing said about the correlation of features
which is where security risks typically show up (see our introductory example). We

212 C. Ebert

will start with explicit security requirements, as they have emerged in IT systems
over time [1–5]:

• Confidentiality demands for information being unavailable for unauthorized
entities. Note that data may be gathered by unauthorized entities without losing
confidentiality, as long as the information contained in the data is not revealed.

• Integrity requires information remaining unchanged by unauthorized entities.
• Authenticity necessitates that the origin of information or the identity of a

communication partner can be satisfactorily proven.
• Availability hardens that the system to be protected by making it highly reliable,

including all necessary cyber security mechanisms.
• Governance ensures that agreed policies and protection mechanisms both hard

and soft, specifically those being people oriented, are used and part of the
culture, independent of time pressure or budget impacts.

Security requirements encountered in IT, cloud services, and embedded systems
development typically target its dependability. Such systems are embedded into a
technical process, thus dependability is imperative to prevent failures of the tech-
nical process itself or its environment. Dependability demands that system func-
tionality, determined by its functional requirements, is delivered correctly—
considering feature correlations and disturbances from the outside. Besides accurate
realization of the functionality, information needs to be correctly processed during
operations of the embedded system, i.e., without being distorted during transmis-
sion or storage. Additionally to the need for correct information processing,
embedded systems interact with real-world objects, which means they are subject to
real-time requirements of these real-world objects. Information must not only be
processed correctly, but also within determined time limits.

Both cyber security requirements and embedded systems’ reliability require-
ments have one thing in common: They aim to deflect unauthorized manipulation of
information inside of computer systems—be it interferences with the system
environment or intentional manipulations of unauthorized entities (i.e., attacks).

9.3 Risk-Oriented Security

Over the past decade trends like IoT, connected service workflows and driver
assistance systems among others have led to software and connectivity playing an
increasingly important part in developing critical systems and also for business
models of OEMs and suppliers likewise.

Devastating impact of security issues is already known from industrial sectors
like IT-infrastructure, aviation, information technology and telecommunications,
industrial control systems, and energy and financial payments. Virtually every
connected system will be attacked sooner or later. A 100% secure solution is not
feasible. Therefore, advanced risk assessment and mitigation is necessary to protect

9 Cyber Security Requirements Engineering 213

assets. Consequently, the typical solution to security in these industries relies on
suitable risk assessment that projects threats on assets of interests. Thereby cost of
implementing specific security measures can be compared with the probability of a
particular threat that they counter.

Security in a complex system cannot be achieved by applying countermeasures
on single items. It requires an analysis of the complete functionality or system as a
whole and to apply countermeasures as an integral part. First, you need to identify
what are the assets I want to protect. Besides financial aspects also confidentiality
and safety functions must be considered carefully. The next step would be a threat
analysis: who has access to my assets, what are potential attackers, and where are
my access points. A typical approach to this is the construction of a data flow
diagram in which the assets are identified. It provides an overview of all connec-
tions and access points, where attacks and manipulations can be achieved. From the
material above a risk assessment can be done to obtain the measurements and
results in a classification of the risk. An example of such a risk assessment can be
found in the picture below. Here, as an example, the classification was defined in
three categories: Low, medium, and high (Fig. 9.2).

This process provides systematic means to deal with the subject and results in a
balanced trade-off for cost and efforts. Depending on the determined security level,
countermeasures can be defined on system level and further derived as security
input requirements. The analysis phase provides now also requirements for hard-
ware extensions, e.g., if hardware acceleration is needed for authentication or if a
specific key management is required for higher security measures. The requirements
are also an input to define test vectors on functional (e.g., for an ECU) and system
level (e.g., for the vehicle). These tests, together with standard penetration tests,
then will help to provide evidence for successful application of the security to the
function and system.

Asset-based risk assessment is a suitable tool for companies to steer efforts for
security engineering in a systematic and comprehensive way and thereby involve all
relevant stakeholders in the organization. For example, a CEO may not find it very
helpful to have a long exhaustive list with every attack vector or potential threat—
they need to be provided with a ranked listing and useful decision-support tools
which clearly shows alternatives and consequences. From the view of a system

Fig. 9.2 Definition of
security level derived from
threat analysis and risk
assessment

214 C. Ebert

developer, a flat listing of potential threats might not help to improve the system. To
really help, they need to be able to map security threats, countermeasures and
requirements to system/architecture elements in their scope of the project.

The systematic management of security threats and associated security goals is
essential to actually providing safe and competitive products, and to protect valu-
able assets and business models.

But what makes security engineering so complex?
Developers face the challenge of securing a system against attackers whose

capabilities and intentions are at best partially known. Some attacks might today
appear infeasible, but today’s impossible attacks might become more likely in the
near future. An example of this is attacking a vehicle simply by exploiting wireless
interfaces, 20 years ago would have been extremely unlikely; however, today a
cheap software-defined radio accomplishes these types of attacks with little effort.
On the other hand, an attacker might invest more effort into launching an attack the
more valuable a successful attack is to him. Some attacks represent more effort to
the attacker than others given the specific potential of the attacker. It is this
risk/reward payoff that is analyzed in security engineering.

Likewise during testing and verification, suitable methods to verify that the
vehicle has the required security level and process goals like test strategy and
coverage need to be chosen.

Furthermore, the assets to be protected from attacks are decided by stakeholders
involved, e.g., drivers would indicate different assets of their vehicle to be protected
compared with what a developer considers an asset. However, customers/drivers
need to be satisfied with their vehicle in order to buy another one from the same
company. Consequently, security engineering must seek trade-offs between cost of
security measures and benefit to assets in order to make sustainable decisions.

Security concepts must balance the cost of not having enough security and thus
being successful attacked with all damaging consequences and the cost spent to
implement appropriate security mechanisms and keep them updated along the life
cycle—covering service workflows as well (Fig. 9.3).

To summarize, the relationship between assets, attackers and threatsis complex
and dynamic (e.g., attacks are more probable the less effort is required and the more

Asset Attack Threat

Attack Potential Security Goal

is performed
against risk is

reduced by
requires

causes

has
value for

Threat Agent
(e.g. hacker)

Stakeholders
(e.g., owner,
driver, OEM)

has

Security
Engineering

is achieved
by

Fig. 9.3 Overview of cyber security analysis process

9 Cyber Security Requirements Engineering 215

value successful attacks represent; attack vectors and effort change over time).
Furthermore, common understanding of assets among all stakeholders of security
engineering is mandatory in order to provide information for steering the security
engineering.

Choosing the right set of security engineering methods for analysis, concept, and
testing is challenging but required in order to enable goal-oriented and manageable
security engineering.

Risk-based Security Engineering combines state-of-the-art methods for cyber
security risk assessment in a practical framework and supports all involved stake-
holders to develop “secure-enough” products. The method and our approach for
proposing a concrete technical security concept is based upon security best prac-
tices such as the following:

• ISO 15408 (Evaluation criteria for IT security) with its focus on IT systems,
specifically the seven evaluation assurance levels (EAL) for security require-
ments and guidance on common criteria.

• ISO 27001 (Information security management systems) with its governance
requirements for security engineering across the entire value chain.

• IEC 62443 (Industrial communication network security) with its strong view on
distributed systems and necessary security technologies and governance.

The Vector Security Check and our security engineering method adopt the state
of the art not only from standards mentioned above but also from significant
research work. For example, several research projects like “E-safety vehicle
intrusion protected applications” (EVITA) funded by European Union and
HEAVENS, proposed solutions for security risk assessment (Fig. 9.4).

We will further on show by examples how to use the risk-oriented security
concept covering the entire security life cycle with focus on the upper left activities,
namely

Fig. 9.4 EVITA classification for the hardware security module (HSM)

216 C. Ebert

• Asset Definition and Threat and Risk analysis
• Security Goals
• Security Concept.

9.4 Industry Case Study

To better illustrate evolving cyber security needs we will look to modern auto-
motive systems. Figure 9.1 shows the interaction of functions in their distributed
networks being an essential part for our today’s modern infrastructures with their
needs for safety and comfort. Besides the further development of innovative sensors
like radar and camera systems and the analysis of the signals in highly complex
systems, the connected cars will be a driving factor for tomorrow’s innovation.
Internet connections will not only provide the need for information to the
passenger.

Cloud-based functions like eCall or communication between cars or car to
infrastructure (vehicle2x) shows high potential to revolutionizing the individual
traffic. This includes the improvement of the traffic flow controlled by intelligent
traffic lights, warnings from roadside stations, or brake indication of adjacent cars.
This builds the basis for enhanced driver assistant systems and automated driving.
But the connection to the outer world also bears also the risk for attacks to the car.

Figure 9.5 shows interworking for vehicle2x and external communication that
are already available today or will become available in the near future. Each con-
nection to the car has a potential risk for an attack, regardless whether it is wireless

Fig. 9.5 Car with remote connections

9 Cyber Security Requirements Engineering 217

or wired. Just the threat is different. The access through a connector is only possible
for a limited amount of cars, whereas a far field connection can be accessed from
anywhere in the world. But also near field connections play an important role, such
as tire pressure monitoring system, Bluetooth, and wireless LAN. Security and
reliability of these connections will be essential for the acceptance and success of
these systems. With the introduction of this technology precautions must be taken
to increase the reliability and to reduce the vulnerability to the system.

We will show security engineering with the example of a connected car. The car
is connected to an external cloud from which it receives secured updates and
diagnosis support. The car itself has numerous controllers (so-called ECU, elec-
tronic control units) which are connected by secured bus systems (see also
Fig. 9.1).

As an example, we utilize the simplified functionality of an Automotive
embedded control unit (ECU) that controls the automatic opening and closing of the
roof of a convertible. Security impacts are manifold with this example, from getting
access to the car and its contents to inserting a safety hazard to the driver if the roof
opens during driving. The top level functional requirements are presumed to be (the
abbreviation FR denominates functional requirements and SR security
requirements):

• The roof is to be opened, if the open roof button is pressed (FR 1).
• The roof is to be closed, if the close roof button is pressed (FR 2).
• When the roof is completely opened or closed, feedback is given to the driver

(FR 3).
• Additionally, two-top level safety requirements are supposed:
• The roof is not allowed to move, if the speed of the car is greater than 10 km/h

(SR 1).
• If an obstacle is detected in the direction of movement of the roof, the roof has to

stop the movement within 0.1 s (SR 2).

To conduct the security analysis, we assume the following system situation.
A controller receives the following information to execute its functionality: “open
roof button pressed,” “close roof button pressed,” “vehicle velocity,” and “obstacle
detected.” The following information is sent by the ECU: “roof completely opened”
and “roof completely closed.”

All information is received or sent via the embedded network, implemented by
bus systems such as CAN and Flexray, which are controlled by the AUTOSAR
base software. The ECU actuates the roof motor by controlling the electric current
to the motor. Obstacles are detected by a smart sensor, which is also connected to
the CAN bus. The system functionality is realized as software on one microcon-
troller inside the ECU. The microcontroller features internal nonerasable memory.
Figure 9.6 depicts the system.

218 C. Ebert

9.5 Security Requirements Elicitation

A first step is setting the security objectives. When considering above requirements,
it becomes clear that the detail level of such information is not sufficient for security
analysis. Possible security threats emerge from unauthorized information gathering
and manipulation. To judge these possible attack vectors, more detailed knowledge
of the embedded system in question is required. To discuss security threats, the
communication transactions of the system must be known as well as the effect of
these transactions.

Knowledge of the communication technology to be employed is equally
important, because different communication standards imply different vulnerabili-
ties, where an attacker can mount an attack. The same holds true for determination
of security threats against device software. The distribution of functions on different
devices is to be known as well as underlying hardware details. The device hardware
constitutes, which (hardware) interfaces can be used by attackers and if stored
information can be deleted or modified.

9.6 Security Analysis

To understand vulnerabilities and determine security risks we apply misuse cases.
Similar to use cases, misuse cases show a specific way to use a system. Misuse
cases describe sequences of events that, taken together, lead to a system doing
something that is not intended or even unwanted. Misuse cases that imply an
unacceptable risk are taken to deduce concrete security requirements which are

ECU

M

CAN

ECU Software

Motor

Electric
connection

Roof moving
state sensor

Fig. 9.6 Assumed system layout

9 Cyber Security Requirements Engineering 219

subsequently translated into functional requirements. Here is additional concrete
guidance: Each identified security requirement must be linked to at least one
functional requirement that is linked to design artifacts and test cases and monitored
until closure—from design to validation and service.

9.6.1 Threat Analysis

In the first step, we will discuss the possibilities of an attack on the convertible’s
roof. First, the information that are received by the roof ECU and used to act
accordingly are to be considered. Second, the ECU software program, which
implements the ECU functionality, needs to be regarded. Both information entities,
transmitted via communication systems or stored as a program, can, in principle, be
tampered with by an attacker.

Different transmitted information is used by the roof ECU:

• Information that the roof is to be opened or closed (from FR 1, FR 2)
• Information on vehicle velocity (from SR 1)
• Information if an obstacle is detected (from SR 2).

As depicted in Sect. 9.3, there are different ways to attack communication. The
network, which is used to transmit information concerning the roof ECU, shows
vulnerabilities against all these ways of attack. Thus, the following functionalities
need to be considered to protect such distributed communication:

• Protection of confidentiality to prevent acquisition of information by attackers
• Protection of content integrity to detect manipulation of messages by attackers
• Protection of authenticity to detect broadcasting of messages by attackers
• Protection of temporal integrity to detect delay or replay of messages by

attackers.

The program controlling the ECU is verified by means of checksums, making it
difficult for an attacker to change it. Attack paths thus need to consider software
updates starting from the code creation and its validation up to its delivery in a
repair shop anywhere in the world. Determining attacker motivation is difficult in
the given case. Generally, it seems unlikely in the example that someone would
manipulate functionality as the one depicted above. However, we will look into
possible impacts of manipulations to determine which protection functionalities
need to be realized and which can be disregarded.

9.6.2 Risk Assessment

Possible hacker motivations may include curiosity or sabotage. Thus, we quantify
attacker motivation with “3,” meaning a medium motivation to attack.

220 C. Ebert

Because of the high degree of publicity of bus specifications, its vulnerabilities
to attacks, and the availability of hardware/software tools for manipulation, attacker
capabilities need to be judged at least to be “4,” meaning the attacker possesses
advanced capabilities to manipulate the bus.

Effects of attacks depend on the information to be manipulated. Misuse cases
related to the functional requirements presented result in malfunctions that may be
inconvenient but are essentially harmless. A forged request to open or close the roof
would result in the opening or closing of the roof, without the driver requesting this
operation. Here we have a security requirement with clear safety impacts. If the
messages containing information about vehicle velocity or obstacle detection are
manipulated, the roof could be opened at high speed or the closing roof would not
be interrupted despite an obstacle in the path of the roof. Both incidents can result in
the mentioned effects, so the cost effect is assigned to be “5,” resulting in a risk
priority number of 60.

Assuming an acceptable residual risk of 50, one would define the following
security requirements:

• Vehicle velocity data communication must be protected
• Obstacle detection data communication must be protected.

We see that dependability requirements are a good starting point to identify
relevant security requirements and to guide elicitation of further functional
requirements that will mitigate security risks. The same technique as outlined here
can be applied for other scenarios—always starting with attacker motivation or
functional risks due to the system architecture. Our guidance: Do not limit exposure
to known incidents and defects as some textbooks suggest. Security analysis is not a
checklist approach. It has to consider attack motivations of persons thinking dif-
ferent than the usual engineer. However with an engineering mind, we can easier
identify vulnerabilities in our architectures.

9.7 Security Design

Although one might argue that design is not much related to security requirements
engineering, we will elaborate some of the techniques to show how traceability
from security requirements to their implementation is achieved. Without such
traceability not only the validation is impossible but also there would be no way to
prove—after an incident—that the necessary cautions had been taken.

9.7.1 Security Functionality with Minimal Resource Impact

Different mechanisms exist to realize protection of communication: encryption for
protection of confidentiality, message authentication codes for protection of content

9 Cyber Security Requirements Engineering 221

integrity, digital signatures for protection of authentication, and time stamps as well
as sequence numbers for temporal integrity protection. Since these mechanisms
need to be deployed to embedded systems at field level, the realization of the
mechanisms must strive for minimal resource (especially memory) consumption.
Therefore, the notion is to avoid the use of monolithic protective mechanisms, such
as digital signatures, but to identify more fine-grained mechanisms instead, which
provide protection functionalities by combination of one or more of such smaller
mechanisms. Ideally, these protective mechanisms can be used to provide different
protection functionalities, while being implemented only once.

To provide confidentiality, encryption is the mechanism of choice. For content
integrity, cryptographic hash functions exist, but an attacker, who is able to change
the content of a message, will also be able to compute the hash value and change it,
pretending the integrity being intact. Therefore, keyed hash functions exist, which
secure message integrity against purposeful manipulation by incorporating
encryption into the hash value. If encryption already has been selected to realize
confidentiality, it can be reused in conjunction with hashing to provide content
integrity consequently saving resources.

Likewise, authenticity can be provided by digital signatures, which can also be
constructed using an ID and keyed hash functions. It is then realized with a non-
ambiguous identifier of a device and the reuse of hash and encryption functions.
Finally, temporal integrity can be verified with time stamps and sequence numbers,
but for these mechanisms to work, it is required that an attacker is not able to
manipulate time stamps/sequence numbers or pretend to be the origin of the
message. This requires the aforementioned mechanisms. The delineated depen-
dencies yield a layered structure where major implementations are linked with
security requirements thus facilitating semi-automatic consistency checks
(Fig. 9.7).

To manipulate functionality, attackers with physical access to devices can flash
the device memory with new programs, which fulfill the attackers’ requirements.
Examples for this kind of attack are manipulations of mileage indicators or
unlocking of programmed limitations (e.g., maximum speed) of motorized vehicles.
Modern microcontrollers can usually be flashed using defined interfaces, such as

Confidentiality

Content Integrity

Authenticity

Temporal Integrity

Encryption

Hash

ID

Time/Sequence

Requires

Requires

Requires

Realized by

Realized by

Realized by

Realized by

Functionalities MechanismsFig. 9.7 Protection
functionalities and
mechanisms for
communication

222 C. Ebert

JTAG or SPI. In consequence, surveillance functionality is required to monitor the
integrity of device functionality, i.e., the program code. A complete deletion of the
device memory would also eradicate the surveillance functionality. Therefore,
surveillance functionality must be distributed to different devices, which then
monitor the functional integrity of other devices.

In case of detection of irregularities, e.g., manipulated code or unreachable
devices, the monitoring devices can vote for counter measures (assumed, there is
more than one device monitoring the manipulated one) and react in an appropriate
way, for instance, by ignoring messages of the manipulated device or by trans-
ferring the technical process into a safe state.

For distributed surveillance and voting, communication is required. This com-
munication must be protected against manipulation. Otherwise, an attacker might
exploit this functionality to simulate manipulated devices. Thus, the layered
structure can be extended with a fifth layer (Fig. 9.8).

9.7.2 Composition of the Layers

The layers, i.e., the mechanisms to realize the desired functionalities, each provide a
service. Every service specifies what activities are to be realized on a certain layer,
but not how the activities are realized. To satisfy real-time requirements, the real-
ization, i.e., the selected algorithms must be deterministic. This is the case for most
cryptographic algorithms, making it possible to calculate an execution time for the
algorithms. To meet the demands of timing constraints, efficient algorithms ought to
be selected.

This composition offers a high degree of adaptability and flexibility. It is pos-
sible to adapt to three different conditions, which need to be determined during the
risk analysis phase of security engineering:

• Parts of the system are secured by physical protection. Thus, only unprotected
parts need to be protected by software-based mechanisms. If, e.g., a field device
is physically protected, it is not necessary to implement functional integrity

Temporal Integrity Time/SequenceRealized by

Functionalities Mechanisms

Functional Integrity Surveillance/Voting

Requires

Realized by

.

.

.

.

.

.

Fig. 9.8 Protection of
functional integrity and
communications security

9 Cyber Security Requirements Engineering 223

checks. Thus, the lower four layers need to be realized with software-based
mechanisms, the fifth layer is then realized as a physical mechanism.

• Certain system elements are not vulnerable to specific attacks, because they
already include security mechanisms or there are intrinsic features that prevent
or detect these attacks. In that case, the respective layer can be a “dummy” layer,
which does not contain a software-based protective mechanism.

• Even if a system is susceptible to attacks, it might be the case that there are only
minimal resources available in a controller. It is then possible to select mech-
anisms that consume few resources (which might result in reduced protection
strength). Another possibility is to realize only a “base” protection, using only
lower layers.

While these adaptations can be made during development time, it is also possible
that ambient conditions change during run time. During the long life span of field
level system elements, it is probable that specific protective mechanisms are
compromised, which has been the case with several cryptographic algorithms
during the last years. Thus, it is necessary to be able to exchange protective
mechanisms, even when cars are already on the road. The ability to flexibly
exchange protective mechanisms during run time depends on the implementation of
the mechanisms, which is depicted in the next section.

9.7.3 Implementing Security Functionality

When implementing protective mechanisms, the limited resources of embedded
systems need to be considered. Additionally, implementations of these mechanisms
should be tested and well proven. Otherwise, vulnerabilities due to faulty code
could be inserted into the system. On this account, reuse of existing software
components is a promising approach. Therefore, a software component technology
has been selected, which allows for implementation in structured programming
languages. Such structured components for embedded systems are implemented in
“structured C.”

Figure 9.9 shows the assembly of one layer. The layer component
(“SecurityLayerX”) can access different interfaces (“ISecurityMechanismA,” “-B,”
“-C”) of protective mechanisms (“SecurityMechanismA,” “-B,” “-C”). So, multiple
mechanisms can be used on every layer, e.g., to provide different kinds of
encryption. The interface “ISecurityLayerX” is used to make the service of layer X
available to the upper layer X + 1 in a uniform way. Likewise, the layer component
uses the interface “ISecurityLayerX − 1” to access the service of the lower layer X
− 1 (Fig. 9.9).

To realize protection, the required protection functionalities need to be selected.
All layers, which provide required services, are to be set in. Furthermore, the
concrete mechanisms are to be chosen, which fulfill the given requirements (e.g.,
integration into an existing system that requires asymmetric encryption). The

224 C. Ebert

chosen layer components (“SecurityLayerX,” “-X-1,” …) need to be connected to
each other in order to be able to access the lower layer services and to the selected
mechanism components, which implement the services of the layer. With the ability
to dynamically exchange components during run time (given the underlying
hardware platform supports modification of software at run time, e.g., by flashing),
there is a high degree of flexibility of the concept. With this flexibility, it is possible
to update implementation failures as well as compromised algorithms. Modern
security modeling tools allows tracing security requirements (and their functional
counterparts) down to the code-level as requested when security certification should
be done before release.

9.8 Security Validation

Security validation is conducted on two different tiers. To ensure the quality of the
software components, every component is subject to a rigid review process looking
for typical design errors and manually checking adherence to security requirements.
Additionally, comprehensive unit and system tests are made. Like all other software
components, the test cases themselves may contain errors as well and should be
checked before use. Such quality ensuring procedures are imperative for security
functionality, because these are often targeted by attackers to manipulate the pro-
tected system.

Automatic regression testing of security requirements is absolutely mandatory
due to the many changes to the code during the product life cycle. To automate
testing of security requirements, an automatic penetration test tool for embedded
systems has been created and used in real-world embedded systems. This pene-
tration test tool makes it possible to define attacks against embedded systems based
on the identified security requirements. The prototype allows for automatic exe-
cution of these attacks and detection of attack results, i.e., if an attack was suc-
cessful or has been neutralized by the security functionality.

«PassiveComponent»
SecurityLayerX

«PassiveComponent»
SecurityMechanismA

«ServiceInterface»
ISecurityMechanismA

«ServiceInterface»
ISecurityLayerX

«ServiceInterface»
ISecurityLayerX-1

Adapter
«PassiveComponent»
SecurityMechanismB

«ServiceInterface»
ISecurityMechanismB

«PassiveComponent»
SecurityMechanismC

«ServiceInterface»
ISecurityMechanismC

… …

Fig. 9.9 Assembly of a layer

9 Cyber Security Requirements Engineering 225

Abstraction is a commonly used and important method for handling complexity
in software development and system design. Abstraction on the signal level is a
common way to test ECU functionality. In a common distributed network system,
for example, an interaction layer in the ECU provides the signal abstraction.
Abstraction layers in ECU and test environment must utilize the same abstractions
to allow same reference signals, authentication checks, and even sandboxing of
unknown signal patterns. Simultaneously, signal abstraction also represents—at
least on the protocol level—the remaining bus simulation. For example, it ensures
that periodic signals are actually transmitted periodically. This allows using security
test pattern also for real-signal load and overload or DOS-attacks. When a change is
made to the system’s communication matrix, such test patterns and associated test
cases are reused thus ensuring consistency during the life of a component.

Figure 9.10 shows security validation on the basis of security test patterns. Tools
such as PREEvision are used to model the system, its embedded components, the
network (both sensors and actuators) to the level, where the control algorithm is
detailed in a controller model.

9.9 Relevance and Outlook

Security is thus of growing relevance to all industry areas. Both advanced IT
systems as well as embedded systems increasingly utilize cloud-based networked
software components based upon standardized open architectures. Due to their long
lifetime within changing environments, different versions and configurations are
combined in different variants over time with software or hardware upgrades.

Currently used concepts, such as proprietary subsystems, the protection of
components, firewalls between components and the validation of specific features
are insufficient to ensure security on a systems level [5]. Intelligent attack scenarios
evolve from different directions, such as attacks on unprotected networks, intro-
duction of dangerous code segments through open interfaces, changes to configu-
rations, and prove that security has to become a topic throughout the entire
organization and with high management attention.

Fig. 9.10 Automated security validation based on specific security test patterns

226 C. Ebert

Systematically ensuring security from requirements to service of systems

• protects against manipulations,
• increases the safety and reliability of users, and
• facilitates even more software-driven services, applications and business

models.

Security demands an end-to-end requirements engineering perspective. The
article with its many practical examples underlines that security of IT and
embedded systems can be achieved with clear and systematic focus and limited
extra effort on the basis of disciplined requirements engineering. Security engi-
neering in embedded systems has to start with a clear focus on security require-
ments and related critical quality requirements, such as safety, footprint, or
performance and how they map to functional requirements.

Software suppliers and integrators first define the key functional requirements.
These requirements are then analyzed on their security risks and impacts. Security
requirements are expanded into further functional requirements or additional
security guidelines and validation steps. Requirements engineering security con-
cepts are subsequently and consistently (i.e., traceable) implemented throughout the
development process. Finally, security is validated on the basis of previously
defined security requirements and test cases.

We practically showed how security requirements engineering is mastered along
the entire system life cycle. Many security attacks are the result of poorly managed
software updates and uncontrolled complexity growth. Architectures, systems, and
protocols have to be developed with security in mind (i.e., design for security).
Competences have to be developed around security engineering, and employees
have to be trained how to design, verify, and sustain security throughout the pro-
duct’s life cycle. Most important it is that before-mentioned methods and processes
are implemented consistently, systematically, and rigorously with traceable effects.
Only with continuous measurements on their effectiveness the value of security
measures improves.

Traditional embedded software engineering ignored security for various reasons,
such as having isolated components, dealing with heavily constrained resources,
and being unable to handle the computational overheads. Today however,
embedded security is in the foreground due to safety, legislative, and intellectual
property concerns [5].

With our described product life cycle-oriented security requirements engineer-
ing, the good news is that different from Internet security securing embedded
systems is likely to succeed in the next 5 years. By doing so, embedded system
suppliers and integrators are increasingly in a position that allows marketing and
selling security as part of an overall quality concept. It will help to master liability
risks and to ultimately increase revenues.

9 Cyber Security Requirements Engineering 227

References

1 Cyber Security and Functional Safety white papers and practice guides: www.vector.
com/security, www.vector.com/safety

2. Ebert, C.: Systematic Requirements Engineering. Dpunkt, Heidelberg, Germany, 5. edition,
2014.

3. Firesmith, D. G.: Engineering Security Requirements. Journal of Object Technology, Vol. 2,
pp. 53–68, 2003.

4. Giorgini, P., F. Massacci, and N. Zannone: Security and Trust Requirements Engineering. In
Foundations of Security Analysis and Design III—Tutorial Lectures, LNCS 3655, pages
237–272. Springer, 2005.

5. Haley, C.B., J.D. Moffett, R. Laney, B. Nuseibeh: A framework for security requirements
engineering. Proc. SESS 2006, 2006.

6. ISO/IEC 15446:2004. Information technology—security techniques—Guide for the produc-
tion of protection profiles and security targets. 2004.

7. ISO/IEC 15408:2005. Information technology—Security techniques—Evaluation criteria for
IT security (Common Criteria v3.0), 2005.

8. ISO 27001:2006, Information Security Management—Specification With Guidance for Use.
International Or-ganization for Standardization, 2006.

9. Mead, N.R.: How to compare the security quality requirements engineering (SQUARE)
method with other methods. Software Eng. Inst., CMU/SEI-2007-TN-021, Aug. 2007.

10. Poulsen, K.: Slammer worm crashed Ohio nuke plant network. SecurityFocus, http://www.
securityfocus.com /news/ 6767, 19.08.2003.

11. Ramachandran, M: Software Security Engineering: Design and Applications. Nova Science
Publishers, New York, USA. ISBN: 978-1-61470-128-6, https://www.novapublishers.
com/catalog/product_info.php?products_id=26331, 2012.

12. Ramachandran, M : Software Security Requirements Engineering and Management as an
Emerging Cloud Service, International Journal of Information Management, Vol. 36, No. 4,
pp 580–590, 2016. doi:10.1016/j.ijinfomgt.2016.03.008.

13. S. Myagmar, A. J. Lee W. Yurcik: Threat Modeling as a Basis for Security Requirements,
National Center for Supercomputing Applications (NCSA), University of Illinois

14. Sindre, G. and A. L. Opdahl: Eliciting security requirements with misuse cases. Requirements
Engineering, No. 10, pp. 34–44, 2005.

15. Wired: Hackers remotely killed a Jeep—with me in it. www.wired.com/2015/07/hackers-
remotely-kill-jeep-highway, July 2015

16. Whitman, M., Mattord, H., Principles of Information Security, Course Technology, Boston,
2007.

17. Yoshioka, N., S.Honiden, A.Finkelstein: Security Patterns: A Method for Constructing Secure
and Efficient Inter-Company Coordination Systems. IEEE Int. Conf. on Enterprise Distributed
Object Computing, 2004.

228 C. Ebert

http://dx.doi.org/10.1016/j.ijinfomgt.2016.03.008

Chapter 10
Appraisal and Analysis of Various
Self-Adaptive Web Service Composition
Approaches

Doaa H. Elsayed, Eman S. Nasr, Alaa El Din M. El Ghazali
and Mervat H. Gheith

Abstract Service-Oriented Requirements Engineering (SORE) plays a significant
role in eliciting, specifying, and validating service requirements that will be
developed by Web service technology. With the increasing complexity of users’
requirements, Web services need to be combined together to fulfill them. The
process of building new value-added services by integrating sets of existing Web
services to satisfy users’ requirements is called Web Service Composition (WSC).
The main objective of WSC is to develop composite services to satisfy users’
requirements, which does not only include Functional Requirements (FR), but also
Non-Functional Requirements (NFR). One of the main challenges of WSC is how it
deals with dynamic environments. Since the Web service properties and compo-
sition requirements are frequently changeable, this demands that SORE activities
must be equipped with a self-adaptation mechanism to provide the most appropriate
composite services and satisfy users’ requirements emerged. Self-adaptation occurs
in either a proactive or reactive manner. In this chapter, we appraise and analyze
existing reactive adaptation research that deals with the problem of WSC in a
dynamic environment in order to identify the research gaps in this field. These
approaches are classified into three categories: used of variability models,
context-awareness, and multi-agent approaches. Most of these approaches are not
able to deal with continuous and unanticipated changes in complex uncertain
contexts because they need to define the contexts in design time. It is usually

D.H. Elsayed (&) � M.H. Gheith
Institute of Statistical Studies and Research, Cairo University, Cairo, Egypt
e-mail: doaa.hani@hotmail.com

M.H. Gheith
e-mail: mervat_gheith@yahoo.com

E.S. Nasr
Independent Researcher, Cairo, Egypt
e-mail: nasr.eman.s@gmail.com

A.E.D.M. El Ghazali
Sadat Academy for Management Sciences, Cairo, Egypt
e-mail: a.elghazali@gmail.com

© Springer International Publishing AG 2017
M. Ramachandran and Z. Mahmood (eds.), Requirements Engineering
for Service and Cloud Computing, DOI 10.1007/978-3-319-51310-2_10

229

difficult to predict all of the possible situations that might arise in an uncertain
environment.

Keywords Web service composition � Reactive adaptation � User requirement

10.1 Introduction

Service-Oriented Architecture (SOA) is an architectural approach to design and
develop distributed systems in the form of interoperable services. Interoperability is
the ability of two or more systems to work together to achieve a common goal
[1, 2]. A Web service is a technology that implements SOA [3]. Web services
achieve interoperability between applications using three major Web technologies
to provide an industrial standard for deploying, publishing, discovering, and
invoking enterprises’ services. The standard technologies for implementing Web
services are Web Services Description Language (WSDL), Universal Description,
Discovery and Integration (UDDI), and Simple Object Access Protocol (SOAP) [4].
With the increasing complexity of users’ requirements, Web services need to be
combined together to fulfill them [5]. The process of developing a composite
service that satisfies users’ requirements is called Web Service Composition
(WSC). The ultimate objective of WSC is to develop composite services to satisfy
users’ requirements, and hence Requirements Engineering (RE) could be consid-
ered the most critical phase of WSC [6]. RE establishes the goals and objectives of
the system in consultation with all relevant stakeholders. RE could be divided into
Functional Requirements (FR) and Non-Functional Requirements (NFR) [7]. FR
represent functionality in a system or component (i.e., what the system does). NFR
are treated as requirements on quality of the system, such as Quality of Services
(QoS), cost, scalability, usability, maintainability, etc. FR are represented by
task/function, while NFR are operationalized by quality constraints. If FR and NFR
are not defined correctly in the beginning, the resulting WSC will not fully satisfy a
user’s request.

RE has evolved from classical methods to object-oriented methods and finally to
Service-Oriented Requirements Engineering (SORE) [8]. SORE defines method-
ologies to elicit, specify, and validate the services’ requirements from two different
standpoints: the service consumer and the service provider [8]. The service provider
needs to understand the functional and non-functional parts of the service being
offered. For the service consumers, the challenge is to find the best-matched service
for the requirements while making a tradeoff among cost, FR, and NFR. One of the
key research challenges of WSC is how WSC deals with dynamic environments. In
dynamic composition environments, the change occurs during design and runtime,
such as the availability of Web services, a composition of requirements, and
changes in QoS (e.g., price, reputation, etc.) [9]. Therefore, WSC should be
equipped with self-adaptation mechanisms to ensure the ability to adapt to meet
changing requirements, and seek to minimize user interventions in order to provide

230 D.H. Elsayed et al.

the most appropriate composite services and satisfy user’s requirements [9]. SORE
activities need to be performed at design time with more explicit constructs to
specify requirements for Self-Adaptation Software (SAS), and are also needed for
runtime adaptation for adaptable WSC approaches to deal with contextual changes
in a dynamic environment [9]. SAS supports adaptation in either a proactive or
reactive manner [10]. Proactive adaptation is able to predict the need for adaptation
before the problem occurs [10]. Moustafa and Zhang [7] propose a proactive
adaptation approach in WSC, which uses Markov Decision Process (MDP) to
model WSC process and uses Q-learning for Reinforcement Learning (RL) tech-
nique to adapt to dynamic change in the WSC environments proactively. This
approach monitors the WSC to determine proactive adaptation via analyzing the
historical data in the Web service execution log. Aschoff and Zisman [11] also
propose a ProAdapt framework for proactive adaptation in WSC. This framework
triggers proactive adaptation in case of changes in response times of service
operation or unavailability of operations in services and providers. It uses
Exponentially Weighted Moving Average (EWMA) technique to predict response
times of operations. The adaptation process occurs during the execution of WSC.
Moustafa and Zhang [7] and Aschoff and Zisman [11] need to extend to support
adaptive WSC in other types of QoS aspects and other circumstances, for example,
the availability of new (better) service operations in comparison to the ones used in
a composition, and changes in the structure of the WSC’s workflow. Contrary to
proactive adaptation, reactive adaptation is able to react to change; this means that
adaptation occurs after an event which causes the need for adaptation [12].

This chapter presents various reactive adaptation WSC approaches to deal with
the changes that might occur within and outside the dynamic composition envi-
ronment; approaches are analyzed and compared. These approaches are classified
into three categories: variability model, context-aware WSC, and multi-agent
approaches. To the best of our knowledge, no survey on reactive adaptation WSC in
the dynamic environment has been published yet. The rest of this chapter is
organized as follows. Section 10.2 presents adaptation aspect and self-adaptation
properties in WSC. Section 10.3 presents levels and challenges for RE for
self-adaptive systems; Sect. 10.4 presents requirement specification models in
WSC. Various self-adaptive WSC approaches are classified in Sect. 10.5; the
comparison and limitation of approaches are presented in Sect. 10.6. Finally,
Sect. 10.7 gives the conclusion and future work.

10.2 Self-Adaptive WSC

WSC needs to provide adaptive capabilities in order to respond to evolving
demands and changes without compromising operational and financial efficiencies
[13]. Avila [14] presents five of the main aspects that are considered parts of
adaptation in WSC as shown in Fig. 10.1. The first aspect is the adaptation goal,
which defines the adaptation purpose based on FR and/or QoS needs. Some

10 Appraisal and Analysis of Various Self-Adaptive … 231

approaches such as Deng et al. [15] deal with single QoS optimization, while Liu
et al. [16], Shanshan et al. [17], and Qiqing et al. [18] deal with multi QoS criteria.
The second aspect is the adaptation level. These levels are identified differently in
the literature. Raik [19] classifies them into three levels: infrastructure, service, and
process. Various approaches concerned with process level are focused on in this
chapter. The third aspect is adaptation action, which is used to solve an adaptation
problem. This action can involve service replacement, workflow redesign, and
service recall. The fourth aspect is the adaptation mechanism, which means the
approaches that could be applied to execute an adaptation action such as
agent-based, rule-based, policy-based, or feedback approaches. We focus on three
adaptation mechanisms, namely variability model, context-aware, and multi-agent.
The fifth aspect is the stage of adaptation, which means the time when the adap-
tation occurs. An adaptation could be triggered in a proactive or reactive way as
explained before. Reactive approaches are focused on in this chapter.

Self-adaptation (self-*) properties are important in adaptive WSC too. Self-*
properties enable WSC to deal with dynamic WSC execution environment.
Figure 10.2 shows self-* properties applied to WSC. These self-* properties are
self-healing, self-optimizing, self-configuring, and self-aware [14]. Self-healing is
automatic discovery and correction of the failure of WSC by itself due to changes in
QoS and/or FR without any human intervention and without stopping the WSC [20].
As WSC is done dynamically, they need to balance themselves with the changing
environment. If the Web service cannot balance itself, then it leads to several faults
such as incorrect order, misunderstood behavior, QoS service failure such as poor
response and service unavailability, etc. [21]. Incorrect order occurs due to message
flow through SOAP [22]. When the packets arrive in an order different on receiver
side from sender side, this leads to incorrect order [22]. Misunderstood behavior
occurs when the requester receives a service different from what he expects [22]. For
example, if the requester requests a service for stock exchange quotes, and the
provider returns a service supplying exchange rate quotes. This type of fault occurs if
the description of a service is incorrect, or if the service provider misinterpreted the
request from the requester [22]. QoS service failures occur during runtime [21].

Self-optimizing aims to select services at runtime, in order to maintain the
expected QoS of the entire WSC [23]. The main objective of self-optimization
WSC is to find the best Web service for each abstract service to achieve the FR as
well as optimize QoS requirements. An abstract service is a set of Web service

Fig. 10.1 The main aspects of adaptation in WSC

232 D.H. Elsayed et al.

instance nodes in the WSC model that describes the functionality of the corre-
sponding service [3]. Service selection for each abstract service is based on local or
global QoS requirements. In the local optimization approach, service selection for
each abstract service is based on the QoS of individual service. These approaches
are useful in decentralized and dynamic environments. Local optimization
approaches are the best in case there is no requirement to identify global constraints.
This approach is suitable when the global QoS constraints are decomposed into
local QoS constraints. The global optimization approach considers QoS constraints
and preferences as a whole, e.g., when the whole response time is constrained.

Self-configuring aims to search for an optimal configuration of WSC compo-
nents based upon the initial constraints [23]. Self-configuring WSC indicates that
the WSC is able to discover and select services automatically. Self-awareness
enables services to be aware of the system structure and platform execution.
Self-awareness also enables the service to predict the impact of changes in their
behavior and the effects of adaptation actions [14]. Self-awareness is aimed to
ensure that the proactive adaptation of QoS requirements is satisfied [14].

10.3 RE for Self-Adaptive Systems

RE for dynamic adaptive systems is defined in the fourth level [10] as shown in
Fig. 10.3. Level one is a general definition of the system and its reaction by
developers. Level two is RE at runtime for achieving adaptation. Level three is

Fig. 10.2 Self -* properties in adaptive WSC

10 Appraisal and Analysis of Various Self-Adaptive … 233

decision of developers about adaptation mechanisms. Level four is research
regarding adaptation mechanisms. RE for self-adaptive systems must deal with
uncertainty because the execution environment information is unknown, and
therefore the requirements for system behavior may need to change at run time in
response to changes in the environment [24]. Requirement for self-adaptive system
is specified as “incomplete” [24]. Chang [24] highlights research challenges for RE
for self-adaptive systems. These challenges are new requirements language, map-
ping requirements language to architecture, managing uncertainty, requirements
reflection, and traceability from requirements to implementation.

The traditional RE models such as i* and KAOS are not supported adaptivity or
uncertainty. Various approaches are proposed to include runtime capabilities for
RE. Baresi et al. [25] propose FLAGS, a goal model-based approach that gener-
alizes the KAOS model, for modeling requirements at runtime. Pasquale et al. [26]
present a FLAGS infrastructure to support requirements at runtime. Tropos 4AS is
an agent-based methodology to model SAS requirement based on Tropos [27].
CARE is also modeling SAS requirement based on Tropos but it focuses on
service-based applications for modeling [27].

The basic characteristics of the system become self-awareness and
context-awareness to achieve adaptive behavior. Self-awareness describes the
ability of a system to be aware of itself [10]. Context-awareness means that the
system adapts its behavior based on the context of the application and the user [28].
Context is defined as “any information that can be used to characterize the situation
of an entity. An entity is a person, place, or object that is considered relevant to the
interaction between a user and an application, including the user and applications
themselves” [10]. Bucchiarone et al. [29] propose a framework for adaptively of
service-based applications according to context changing. This framework utilizes
the concept of process fragments as a way to model processes. Business processes

Fig. 10.3 Four levels to define RE for dynamic adaptive systems

234 D.H. Elsayed et al.

and fragments are modeled as Adaptable Pervasive Flows (APFs). APFs add
annotating activities with preconditions and effects besides classical workflow
language. This makes business processes and fragments suitable for adaptation and
execution in dynamic environments. At design time, abstract activities are specified
for each fragment in terms of the goal it needs to achieve. Different adaptation
mechanisms and strategies are used to handle dynamicity of context-aware perva-
sive systems. Adaptation mechanisms are refinement mechanism, local adaptation
mechanism, and compensation mechanism. The adaptation strategies are one-shot
adaptation, re-refinement strategy, and backward adaptation strategy; other
context-aware approaches are founded in Sect. 10.5.2.

10.4 Requirements Specification Models in WSC

Li [6] classifies requirement models in WSC into three categories: WSC based on
workflow, WSC based on Artificial Intelligent (AI) planning technique, and
model-driven WSC as shown in Fig. 10.4. In WSC based on workflow, the logic of
WSC can be captured using workflow pattern of Web service. In this approach,
users’ requirements are modeled in terms of workflow which refers to the logical
execution order of action [6]. When implementing a WSC, atomic Web services are
selected and invoked according to each action defined in the workflow, after that,
the WSC is executed according to the predefined execution orders [6]. Workflow is
generated in either a static or dynamic manner [30]. Static WSC workflow means
that users are required to describe all the necessary actions and all possible exe-
cution orders among these actions. The selection of Web service is done auto-
matically. In dynamic WSC workflow, creating business workflow or model and
selecting Web service is done automatically.

WSC based on AI planning requires an algorithm to translate WSC problem to
AI planning technique problem such as Planning Domain Definition Language
(PDDL) [31], Hierarchical Task Network (HTN) [32], and graph plan [33]. This
approach requires users to specify their composition requirements in different
technical languages, which includes the descriptions of initial state, goal state,

Fig. 10.4 Requirements models for WSC

10 Appraisal and Analysis of Various Self-Adaptive … 235

possible domain states, and different actions that can be performed. For further
information about WSC based on AI planning, it can be found in [34].

Model-driven approach for WSC uses models to describe user requirement (FR
and NFR), business processes, abstract Web services, and dependence between
Web services. The models are separated from executable WSC specifications. WSC
can be modeled using Unified Modeling Language (UML) [35–37], MDP [38, 39],
and Business Process Model and Notation (BPMN) [40, 41].

10.5 Classification of Self-Adaptive WSC Approaches

SAS modifies its own behavior in response to changes in the WSC environment.
These environments are classified into the dynamic environment or static envi-
ronment. In the dynamic environment, new WSC behavior and adaptation plans can
be introduced during runtime. Contrary to the dynamic environment, the static
environment is self-contained and not able to support the addition of new behaviors.
In this section, approaches for reactive adaptation are classified into three cate-
gories: used of variability models, context-awareness, and multi-agent approaches.

10.5.1 Used of Variability Models

Variability is the ability of a service to change its behavior efficiently in the
dynamic configurations [42]. The two important concepts concerning variability are
variation points and variants. Variation points are located in a software system in
which variation will occur, and variants are the alternatives that can be selected at
those variation points [42]. Modeling and managing variability in a process can be
classified into an architectural level and an implementation level. In an architectural
level, variants are modeling inside software architecture such as BPMN and UML.
In an implementation level, variants are modeling inside WSC language.

10.5.1.1 Architecture Level

Alférez et al. [41], Sun et al. [43], Yua et al. [40], and Xiao et al. [44] model
variants in the architecture level to accommodate for changes that occur in FR. By
changes in FR, we mean that the changes occur in a business logic or business
requirement. Alférez et al. [41] create variability models and adaptation policies at
design time to support the dynamic adaptive WSC. The composition model and
variability model are separated. The dynamic adaptive WSC is described in
adaptation policies in terms of the activation or deactivation of features in the
variability model. The activation and deactivation of features in the variability
model result in changes that occur in the WSC by adding or removing fragments of

236 D.H. Elsayed et al.

Business Process Execution Language (WS-BPEL) code, that are deployed at
runtime. The variability model and its possible configurations are verified at design
time using Constraint Programming (CP). Sun et al. [43] extended ConIPF
Variability Modeling Framework (COVAMOF) to allow it to configure the vari-
ability in a WSC. COVAMOF is a variability management framework that is used
with software product families. COVAMOF variability concepts are modeled using
UML diagrams and Variation point Interaction Diagram (VID). COVAMOF-VS
tool suite is used to automated variability management in WSC at runtime.

Yua et al. [40] and Xiao et al. [44] propose model-driven based approaches for
WSC. Yua et al. [40] propose an approach called the Model-Driven Development
of Dynamically Adaptive Service-Oriented Systems with Aspects and Rules
(MoDAR) to support the development of dynamically adaptive WS-BPEL-based
systems. MoDAR includes the base model, the variable model, and the weave
model. The base model follows the flow logic of the system. Variable model is used
to take the decision aspect of a business requirement, which is changeable at
runtime. Variable model is specified by business rule. Weave model is the
aspect-oriented approach used to integrate the base model and the variable model.
Xiao et al. [44] present model-driven variability-based WSC approach. Variability
is defined within VxUML that is a UML extension. Class diagram, activity dia-
gram, sequence diagram, and deployment diagram are extending to specify the
variation points and variants. Variation point Interaction Diagram (VID) defines the
dependencies between variation points and variants. Rule-based transformation
language is used to transform VxUML to VxBPEL. VxBPEL is a BPEL extension
to support variability at the implementation level.

Yua et al. [40], Alférez et al. [41], and Sun et al. [43] approaches are modeled to
adapt the changes in the business process but these changes are fully known at
design time to model the variability model. Furthermore, these approaches are not
suitable for use in the dynamic environment because they are not able to deal with
continuous and unanticipated changes in complex uncertain contexts.

10.5.1.2 Implementation Level

Imed et al. [45] solve the variability of QoS (vQoS) by introducing three variability
operators: replicate, delete, and replace. Replicate and delete operators are used to
adding and removing service instance in WSC, while the replace operator is used to
change some faulty Web services. These operators are used to reconfigure auto-
matic WSC when the SLA contract is violated. WSC reconfiguration (variability
model) is modeling and verifying using Event-B. ProB model checker is used to
trace possible design errors. Variability model is not required to define all at design
time but variability operators that are used to adapt WSC are not enough to solve
correctly vQoS problem. Koning et al. [46] propose VXBPEL language which is an
extension of the standard BPEL language to adapt the changes in the business
process. VXBPEL adds XML extension elements that store variability information
inside the process definition BPEL which result in their being time-consuming,

10 Appraisal and Analysis of Various Self-Adaptive … 237

tedious, difficult to manage, and error-prone. This approach is very complex in the
case of having a large number of variation points. Furthermore, this approach is not
working in the dynamic environment like those approaches at the architecture level.
Sun et al. [47] also adapt the changes in the business process by executing
VXBPEL WSC using VxBPEL ODE engine. The performance of VxBPEL_ODE
is compared with VxBPEL_ActiveBPEL. From the experimental result,
VxBPEL_ODE shows a comparable performance of VxBPEL_ActiveBPEL.

10.5.2 Context-Awareness

Alférez and Pelechano [48] present a runtime model to guide the dynamic evolution
of context-aware WSC to deal with unforeseen QoS events in the dynamic envi-
ronment. Tactics are used to preserve the requirements that can be negatively
affected by unknown context events. These tactics are known at design time, but
they are used to tackle unknown context events. The negative effect of selected
tactics to other expected goals is not taken into consideration. Bucchiarone et al.
[49] and Cubo et al. [50] focus on changes that occur in FR. Bucchiarone et al. [49]
define a formal framework that uses a planning technique to adapt the execution of
the WSC at runtime in case of context changes. At design time, the context
properties and their evolution are modeled by defined context property diagrams.
Context property diagrams present the possible values of the property as the dia-
gram states and the changes of the property values as transitions. The changes of the
service are annotated with the effects on the context properties. The business policy
over the service is annotated with preconditions on the context property values to
determine in which context setting the service may be executed. Adaptation
activities are not explicitly represented inside context change. They are dynamically
derived from the currently observed context, the state of a business process, and
business goals. This framework is implemented and validated using a scenario from
the logistics domain. Cubo et al. [50] extend Discovery, Adaptation and Monitoring
of Context-Aware Services and Components (DAMASCo) framework with feature
models to represent the variability and self-adaptive WSC according to context
change situations. This approach is implemented in the Intelligent Transportation
Systems (ITS) domain. This approach is not supported self-adaptive of the service
to context change at runtime. This means that DAMASCo execution plan does not
support the switching from one running configuration to another.

Li et al. [51], Cao et al. [52], andWang and Tang [53] propose approaches that deal
with changes that occur in FR and QoS. Li et al. [51] present case-based reasoning for
self-healing ability in WSC. Previous failure instances as cases are stored in a case
base. When a new fault occurs, the closest cases in the case base are retrieved. Cao
et al. [52] present context-aware adaptive WSC framework that contains five main
functionmodules. Thefirstmodule is the design of BPELprocess. The secondmodule
is the parse and execution of the BPEL document. The third module is the search
agent. The fourth module is a context-aware agent. The fifth module is an update

238 D.H. Elsayed et al.

agent. All of these modules are implemented using WSIG technology and Java lan-
guage. The first three modules are used to execute BPEL process. The context-aware
WSC is classified into service contexts and service composition contexts. Service
context is responsible for gathering and checking context information before service
establishment. Service composition contexts work while a composite service is per-
formed. When perceiving the changes of contexts value, service composition may
need to make some adjustment such as adding, deleting, or replacing a service, or
fundamentally changing the whole combination process. When receiving a message
about a variation of context value from a context-aware agent, update agentwill search
the most suitable policy from a policy library and send it to BPEL execution engine
which will change the composition process according to chosen policy. Wang and
Tang [53] present an architecture for self-adaption WSC. This architecture contains a
context module that is responsible for adapting WSC to the changing at QoS and
satisfies the service consumer’s requirements. The context is categorized into service
context, user context, and device context. Service context describes the properties of
the service and the required execution environment of a service. These properties and
preferences for services are written by a service provider and updated by user ratings.
User context describes requirements and the environment that the service consumer
can provide. Device context describes the real execution environment, including
hardware and software environment. Changing contexts are handled according to
user-defined personalized policies. Recomposition in Web services is made in a case
where input and output changed only. Otherwise, changing contexts are handled
according to user-defined personalized policies. This approach is not suitable for the
dynamic environment because the contexts are predefined and other undefined con-
texts are not supported. It is difficult to predict all the possible situations arising in an
uncertain environment.

10.5.3 Multi-Agent Approaches

Wang et al. [54] present self-adaptive WSC framework based on RL. MDP is used in
this framework to model WSC. Workflows and alternative services are integrated
into a single WSC. At runtime, the concrete workflows and services selection are
specified based on the environment and the status of services. Q-Learning is used to
find an optimal policy to follow up the dynamic environment. Wang et al. [55]
extend the RL framework that was introduced in Wang et al. [54]. This study
presents a Multi-Agent Reinforcement Learning (MARL) mechanism to enable
adaptive WSC. The WSC process is modeled as MDP to adapt dynamic evolution of
user requirements. The Q-learning algorithm is used to find an optimal policy to
follow up the dynamic environment. This mechanism introduces a sharing strategy
in the composition process to share information with an agent that make agent use
the policies explored by the others. The MDP model needs complete knowledge and
observation about the environment, which may be difficult to achieve in practical
application. WSC may contain some failure services that can reach to a complete

10 Appraisal and Analysis of Various Self-Adaptive … 239

disability of this WSC workflow. This case is not taken into consideration. Wang
et al. [56] also proposed a new model for large-scale and adaptive WSC based on
MARL. This model integrates State-Action-Reward-State-Action (SARSA) learning
algorithm and same theory. Multi SARSA algorithm which is extended from
single-agent SARSA is utilized to find the optimal solution. Team Markov Games
(TMG) is used to model multi-agent WSC. This algorithm does not take into con-
sideration the case of some failure service that can reach complete disability of this
WSC workflow. Wang et al. [57] also use TMG to model multi-agent WSC like in
Wang et al. [56] but it used Q-learning instead of multi SARSA algorithm.

Moustafa and Zhang [58] design two algorithms to fulfill data efficiency by
saving experience data and using it to make updates to the learned policy. The first
algorithm introduces an offline learning scheme for WSC. Offline learning scheme
avoids the limitation of online reinforcement learning algorithms. This limitation is
the time which is taken to achieve convergence which may exceed the limits
imposed by service consumers. The second algorithm presents a coordination
mechanism in order to enable MARL to learn the WSC task cooperatively.
A collaborative learning algorithm is a group of independent agents who learn to
organize their action selection strategies and each agent notifies other agents with its
action selections to make WSC collaboratively. Q-table is used to connect and
communicate with each agent directly. This shared Q-table records the most recent
QoS information of Web services and the rate with which these services have been
chosen by other agents. Hsieh and Lin [1] use Holonic Multi-agent System
(HMS) architecture to design SAS systems. A Workflow Adaptation Problem
(WAP) is formulated and an interaction mechanism between agents is proposed
based on Contract Net Protocol (CNP) to find a WAP solutions. Self-* scheme is
proposed to respond to the structural and non-structural change workflow.
Structural changes refer to changes in FR, which means changes in a business
process. Non-structural changes refer to changes in NFR such as changes in pro-
cessing time, the number of available resources, and available time slots of
resources. When the change occurs, an affected agent will apply CNP to determine
the best services provided by the existing downstream agents.

10.6 Comparison and Limitations of Self-Adaptive
WSC Approaches

In this section, we compare between the approaches we presented in Sect. 10.5 and
present the limitations of some of these approaches. The comparison between these
approaches is given in Table 10.1. We compare between these approaches
according to

• Category of these approaches according to classification in Sect. 10.5;
• RE classification according to changes in FR, changes in QoS, and changes in

both FR and QoS;

240 D.H. Elsayed et al.

• Adaptation mechanism which described in Sect. 10.2;
• Composition model which described in Sect. 10.4.

The limitations are summarized in Table 10.2. Most of the approaches, e.g.,
Alférez et al. [41], Sun et al. [47], Yua et al. [40], Xiao et al. [44], Imed et al. [45],
Koning et al. [46], Wang and Tang [53], Wang et al. [54, [55], and Wang et al. [57],
are not suitable for use in dynamic environments because they are not able to deal
with continuous and unanticipated changes in complex uncertain contexts. A study
by Imed et al. [45] is suitable for use in a dynamic environment through the use of
variability operators, but they are not enough to solve correctly vQoS problem.
Imed et al. [45], Koning et al. [46], and Sun et al. [47] store variability information

Table 10.1 Analysis and comparison between self-adaptive WSC approaches

Approaches Category RE
classification

Adaptation
mechanism

Composition
model

Alferez et al. [41] Used of variability models FR Feature model BPMN

Sun et al. [43] Used of variability models FR COVAMOF,
UML and
VID

BPEL

Yua et al. [40] Used of variability models FR Business rule BPMN

Xiao e1 al. [44] Used of variability models FR VxUML Not defined

Imed et al. [45] Used of variability models QoS VxBPEL Not defined

Koning et al. [46] Used of variability models FR Event-B Not defined

Sun et al. [47] Used of variability models FR VxBPE Not defined

Alferez and
Pelechauo [48]

Context-awareness QoS Tactics
strategies

BPMN

Bucchiarone et al.
[49]

Context-awareness FR Planning
techniques

Not defined

Cubo et al. [50] Context-awareness FR Extend
DAMASCo
framework
with feature
models

BPEL and
windows
workflow
foundation(WF)

Li et al. [51] Context-awareness FR and QoS Case-based
reasoning

WS-BPEL

Cao et al. [52] Context-awareness FR and QoS Not defined BPEL

Wang and Tang [53] Context-awareness FR and QoS Personalized
policies

SHOP2 as Al
planning
technique

Wang et al. [54] Multi-agent approach QoS MARL MDP

Wang et al. [55] Multi-agent approach QoS MARL TMG-WSC

Wang et al. [56] Multi-agent approach QoS MARL TMG-WSC

Wang et al. [57] Multi-agent approach QoS RL MDP

Moustafa and Zhang
[58]

Multi-agent approach QoS RL MDP

MARL

10 Appraisal and Analysis of Various Self-Adaptive … 241

inside language which result in their being time-consuming, tedious, difficult to
manage, and error-prone. Therefore, their approaches are very complex in the case
of a large number of variation points.

Alférez and Pelechano [48] use tactics to tackle unknown context events. The
selected tactics strategies may be negative effective to other expected goals. Cubo
et al. [50] approach does not support the switching from one running configuration
to another at runtime. Wang et al. [54] and [55] model WSC process as a MDP
model. WSC process is modeled as a MDP model. This model needs complete
knowledge and observation about environment, which may be difficult to achieve in
practical application. Wang et al. [54], [55], and Wang et al. [57] do not take into
consideration the case of some failure service that can reach complete disability of
this WSC workflow.

Table 10.2 Some WSC adaptation approach limitations

Approaches Limitations

Alferez et al. [41], Sun et al. [43], Yua
et al. [40] and Xiao et al. [44]

These approaches are not able to deal with
continuous and unanticipated changes in complex
uncertain contexts. This means that they are not
suitable for use in dynamic environments

Imed et al. [45], Koning et al. [46] and
Sun et al. [47]

These approaches store variability information
inside languages which result in their being
time-consuming, tedious, difficult to manage, and
error-prone. They are very complex in the case of a
large number of variation points. In addition, they do
not work in dynamic environments

Alférez and pelechano [48] The selected tactics strategies that are used to adapt
the changes may be negative effective to other
expected goals

Cubo et al. [50] This approach is not supported self-adaptation of the
service to context change at runtime. This means
that DAMASCo execution plan does not support the
switching from one running configuration to another

Imed et al. [45] Variability operators that are used to adapt WSC are
not enough to solve correctly the vQoS problem

Wang and Tang [53] This approach is not suitable for the dynamic
environment because the contexts are predefined and
other undefined contexts are not supported. It is
difficult to predict all the possible situations arising
in an uncertain environment

Wang et al. [54, [57] WSC process is modeled as a MDP model. This
model needs complete knowledge and observation
about environment, which may be difficult to
achieve it in practical application

Wang et al. [54], [56, 57] These algorithms are not taken into consideration the
case of some failure service that can reach to a
complete disability of this WSC workflow

242 D.H. Elsayed et al.

10.7 Conclusion and Future Work

WSC is a key issue in SOA. The objective of this chapter is to analyze and compare
various self-adaptive WSC approaches to deal with the changes that may occur
within and outside the dynamic composition environment. These approaches are
classified into three categories: used of variability models, context-awareness, and
multi-agent approaches. These approaches have some limitations. One of the lim-
itations is that the approaches, which deal with changes that occur in QoS, adapt the
WSC process based on changes in local and single QoS criteria. Another limitation
is that most of these approaches are not able to deal with continuous and unan-
ticipated changes in complex uncertain contexts because they need to define the
contexts in design time and other undefined contexts are not supported. It is usually
difficult to predict all of the possible situations that might arise in an uncertain
environment. In future work, we intend to overcome these limitations by combining
QoS-aware WSC approaches such as ant colony optimization or genetic algorithm
with multi-agent approaches to obtain an optimal policy in case of multi QoS
criteria. Partially Observable Markov Decision Process (POMDP) is used to model
composition requirement instead of MDP because POMDP does not need the full
knowledge observation of environment.

References

1. F.-S. Hsieh and J.-B. Lin, “A Self-adaptation Scheme for Workflow Management in
Multi-agent Systems,” Journal of Intelligent Manufacturing, vol. 27, no. 1, p. 131–148, 2016.

2. N. Ide and J. Pustejovsky, “What Does Interoperability Mean, Anyway? Toward an
Operational Definition of Interoperability for Language Technology,” in Proceedings of the
2nd International Conference on Global Interoperability for Language Resources (ICGL),
2010.

3. B. Rohallah, M. Ramdane and S. Zaidi, “Agents and Owl-s based Semantic Web Service
Discovery with User Preference Support,” International Journal of Web & Semantic
Technology (IJWesT), vol. 4, no. 2, pp. 57–75, April 2013.

4. I. sommerville, Software Engineering (9th Edition), 2011, p. 509.
5. L. Wang and J. Shen, “A Systematic Review of Bio-Inspired Service Concretization,” IEEE

Transactions on Services Computing, vol. PP, no. 99, p. 3, 2014.
6. W. Li, “Towards a Resilient Service Oriented Computing based on Ad-hoc Web Service

Compositions in Dynamic Environments(Doctoral Dissertation),” Institut d’Optique
Graduate School, 2014.

7. A. Moustafa and M. Zhang, “Towards Proactive Web Service Adaptation,” in Proceedings of
the 24th International Conference Advanced Information Systems Engineering (CAiSE),
2012.

8. P. v. Eck and R. Wieringa, “Requirements Engineering for Service-Oriented Computing: A
Position Paper,” in Proceedings of the 1st International Workshop on e-Services at ICEC,
2003.

9. N. B. Mabrouk, S. Beauche, E. Kuznetsova, N. Georgantas and V. Issarny, “QoS-aware
Service Composition in Dynamic Service Oriented Environments,” in Proceedings of the 10th
International Middleware Conference, 2009.

10 Appraisal and Analysis of Various Self-Adaptive … 243

10. C. Krupitzer, F. M. Roth, S. VanSyckel, G. Schiele and C. Becker, “A Survey on Engineering
Approaches for Self-adaptive Systems,” Pervasive and Mobile Computing, vol. 17, pp. 186,
Part B, February 2015.

11. R. Aschoff and A. Zisman, “QoS-driven Proactive Adaptation of Service Composition,” in
Proceedings of the 9th International Conference on Service Oriented Computing (ICSOC),
2011.

12. S. Vansyckel, D. Schäfer, G. Schiele and C. Becker, “Configuration Management for
Proactive Adaptation in Pervasive Environments,” in Proceedings of the IEEE 7th
International Conference on Self-Adaptive and Self-Organizing Systems, 2013.

13. C. Pahl, “Dynamic Adaptive Service Architecture—Towards Coordinated Service
Composition,” in Proceedings of the 4th European Conference Software Architecture
(ECSA), 2010.

14. S. D. G. Avila, “QoS Awareness and Adaptation in Service Composition(Doctoral
Dissertation),” The University of Leeds, pp. 34–38, 2014.

15. D. Shuiguang, L. Huang, W. Tan and Z. Wu, “Top- Automatic Service Composition: A
Parallel Method for Large-Scale Service Sets,” IEEE Transactions on Automation Science
and Engineering, vol. 11, no. 3, pp. 891–905, 2014.

16. J. Liu, J. Li, K. Liu and W. Wei, “A Hybrid Genetic and Particle Swarm Algorithm for
Service Composition,” in Proceedings of the 6th International Conference on Advanced
Language Processing and Web Information Technology (ALPIT), 2007.

17. Z. Shanshan, W. Lei, M. Lin and W. Zepeng, “An Improved Ant Colony Optimization
Algorithm for QoS-aware Dynamic Web Service Composition,” in Proceedings of the
International Conference on Industrial Control and Electronics Engineering, 2012.

18. F. Qiqing, P. Xiaoming, L. Qinghua and H. Yahui, “A Global QoS Optimizing Web Services
Selection Algorithm based on MOACO for Dynamic Web Service Composition,” in
Proceedings of the 2009 International Forum on Information Technology and Applications,
2009.

19. H. Raik, “Service Composition in Dynamic Environments: From Theory to Practice (Doctoral
Dissertation),” University of Trento, p. 40, 2012.

20. S. Poonguzhali, R. Sunitha and G. Aghila, “Self-Healing in Dynamic Web Service
Composition,” International Journal on Computer Science and Engineering (IJCSE), vol. 3,
no. 5, p. 2055, 2011.

21. S. Poonguzhali, L. JerlinRubini and S. Divya, “A Self-Healing Approach for Service
Unavailability in Dynamic Web Service Composition,” International Journal of Computer
Science and Information Technologies, vol. 53, p. 4381, 2014.

22. K. May Chan, J. Bishop, J. Steyn, L. Baresi and S. Guinea, “A Fault Taxonomy for Web
Service Composition,” in Proceedings of the International Conference on Service-Oriented
Computing (ICSOC), 363–375.

23. S. D. G. Avila and K. Djemame, “A QoS Optimization Model for Service Composition,” in
Proceedings of the 4th International Conference on Adaptive and Self-Adaptive Systems and
Applications, 2012.

24. B. H. Cheng, R. d. Lemos, H. Giese, P. Inverardi and J. Magee, “Software Engineering for
Self-Adaptive Systems: A Research Roadmap,” in Software Engineering for Self-Adaptive
Systems, 2009, pp. 1–26.

25. L. Baresi, L. Pasquale and P. Spoletini, “Fuzzy Goals for Requirements-driven Adaptation,”
in Proceedings of the 18th IEEE International Requirements Engineering Conference, 2010.

26. L. Pasquale, L. Baresi and B. Nuseibeh, “Towards Adaptive Systems through
Requirements@Runtime,” in Proceedings of the 6th International Workshop on
MODELS@Runtime, 2011.

27. K. Angelopoulos, V. E. S. Souza and J. Pimentel, “Requirements and Architectural
Approaches to Adaptive Software Systems: A Comparative Study,” in Proceedings of the 8th
International Symposium on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS), 2013.

244 D.H. Elsayed et al.

28. G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith and P. Steggles, “Towards a
Better Understanding of Context and Context-Awareness,” in Proceedings of the 1st
International Symposium Handheld and Ubiquitous Computing (HUC), 1999.

29. A. Bucchiarone, A. Marconi, M. Pistore and H. Raik, “Dynamic Adaptation of
Fragment-based and Context-aware Business Processes,” in Proceedings of the IEEE 19th
International Conference on Web Services, 2012.

30. S. G. H. Tabatabaei, W. M. N. W. Kadir and S. Ibrahim, “A Review of Web Service
Composition Approaches,” in Proceedings of the 1st International Conference on Computer
Science and Information Technology (CCSIT), 2011.

31. O. Hatzi, D. Vrakas, M. Nikolaidou, N. Bassiliades, D. Anagnostopoulos and I. Vlahavas,
“An Integrated Approach to Automated Semantic Web Service Composition through
Planning,” IEEE Transactions on Services Computing, vol. 5, no. 3, pp. 319–332, 2011.

32. X. Yihong, Z. Xianzhong and H. Xiaopeng, “Automated Semantic Web Service Composition
Based on Enhanced HTN,” in Proceedings of the 5th IEEE International Symposium on
Service Oriented System Engineering, 2010.

33. Y. Bo and Q. Zheng, “Semantic Web Service Composition using Graphplan,” in Proceedings
of the 4th IEEE Conference on Industrial Electronics and Applications, 2009.

34. J. Rao and X. Su, “A Survey of Automated Web Service Composition Methods,” in
Proceedings of the 1st International Conference on Semantic Web Services and Web Process
Composition (SWSWPC), 2005.

35. B. Orriens, J. Yang and M. P. Papazoglou, “Model Driven Service Composition,” in
Proceedings of the 1st International Conference Service-Oriented Computing (ICSOC), 2003.

36. Q. Z. Sheng and B. Benatallah, “ContextUML: A UML-Based Modeling Language for
Model-driven Development of Context-aware Web Services,” in Proceedings of the
International Conference on Mobile Business (ICMB), 2005.

37. C. C. Dumez, A. Nait-sidi-moh, J. Gaber and M. Wack, “Modeling and Specification of Web
Services Composition using UML-S,” in Proceedings of the 4th International Conference on
Next Generation Web Services Practices, 15–20.

38. V. Uc-Cetina, F. Moo-Mena and R. Hernandez-Ucan, “Composition of Web Services using
Markov Decision Processes and Dynamic Programming,” The Scientific World Journal, vol.
2015, 2015.

39. A. Gao, D. Yangx, S. Tang and M. Zhang, “Web Service Composition using Markov
Decision Processes,” in Proceedings of the 6th International Conference Advances in
Web-Age Information Management (WAIM), 2005.

40. J. Yua, Q. Z. Shengb, J. K. Sweeb, J. Hanc, C. Liuc and T. H. Noorb, “Model-driven
Development of Adaptive Web Service Processes with Aspects and Rules,” Journal of
Computer and System Sciences, vol. 81, no. 3, p. 533–552, May 2015.

41. G. Alférez, V. Pelechano, R. Mazo, C. Salinesi and D. Diazca, “Dynamic Adaptation of
Service Compositions with Variability Models,” The Journal of Systems and Software, vol.
91, pp. 24–47, 2014.

42. M. Svahnberg, J. v. Gurp and J. Bosch, “A Taxonomy of Variability Realization Techniques:
Research Articles,” Journal of Software:Practice & Experience, vol. 35, no. 8, pp. 705–754,
2005.

43. C.-A. Sun, R. Rossing and M. Sinnema, “Modeling and Managing the Variability of Web
Service-based Systems,” The Journal of Systems and Software, vol. 83, no. 3, p. 502–516,
2010.

44. H. Xiao, F. Yanmei, S. Chang-Ai, M. Zhiyi and S. Weizhong, “Towards Model-driven
Variability-based Flexible Service Compositions,” in Proceedings of the IEEE 39th Annual
International Computers, Software & Applications Conference (COMPSAC), 2015.

45. A. Imed, M. Graiet, S. Boubaker and N. B. Hadj-Alouane, “A Formal Approach for Verifying
QoS Variability in Web Services Composition using EVENT-B,” in Proceedings of the 2015
IEEE International Conference on Web Services., New York, 2015.

46. M. Koning, C.-a. Sun and M. Sinnema, “VxBPEL: Supporting Variability for Web Services
in BPEL,” Information and Software Technology, vol. 51, no. 2, p. 258–269, 2009.

10 Appraisal and Analysis of Various Self-Adaptive … 245

47. C.-A. Sun, P. Wang, X. Zhang and M. Aiello, “VxBPEL_ODE: A Variability Enhanced
Service Composition Engine,” in Web Technologies and Applications, 2014, pp. 69–81.

48. G. H. Alférez and V. Pelechano, “Facing Uncertianty in Web Service Compositions,” in
Proceedings of the IEEE 20th Internatinal Conference on Web Services (ICWS), 2013.

49. A. Bucchiarone, R. Kazhamiakin, M. Pistore and H. Raik, “Adaptation of Service-based
Business Processes by Context-aware Replanning,” in Proceedings of the IEEE International
Conference on Service-Oriented Computing and Applications (SOCA), 2011.

50. J. Cubo, N. Gamez, L. Fuentes and E. Pimentel, “Composition and Self-Adaptation of
Service-based Systems with Feature Models,” in Proceedings of the 13th International
Conference on Software Reuse (ICSR), 2013.

51. G. Li, L. Liao, D. Song, J. Wang, F. Sun and G. Liang, “A Self-healing Framework for
QoS-aware Web Service Composition via Case-Based Reasoning,” in Proceedings of the 15th
Asia-Pacific Web Conference (APWeb), 2013.

52. Z. Cao, X. Zhang, W. Zhang, X. Xie, J. Shi and H. Xu, “A Context-aware Adaptive Web
Service Composition Framework,” in Proceedings of the 2015 IEEE International
Conference on Computational Intelligence & Communication Technology, 2015.

53. B. Wang and X. Tang, “Designing a Self-adaptive and Context-aware Service Composition
System,” in Proceedings of the IEEE Computers, Communications and IT Applications
Conference (ComComAp), 2014.

54. H. Wang, Q. Wu, X. Chen, Q. Yu, Z. Zheng and A. Bougu, “Adaptive and Dynamic Service
Composition Using Q-Learning,” in Proceedings of the 22nd International Conference on
Tools with Artificial Intelligence, 2010.

55. H. Wang, X. Wang, X. Hu, X. Zhang and M. Gu, “A Multi-Agent Reinforcement Learning
Approach to Dynamic Service Composition,” Journal of Information Sciences, vol. 363,
pp. 96–119, 2016.

56. H. Wang, Q. Wu, X. Chen, Q. Yu, Z. Zheng and A. Bougu, “Integrating On-policy
Reinforcement Learning with Multi-agent Techniques for Adaptive Service Composition,” in
Proceedings of the 12th International Conference Service Oriented Computing (ICSOC),
2014.

57. H. Wang, Q. Wu, X. Chen, Q. Yu, Z. Zheng and A. Bougu, “Adaptive and Dynamic Service
Composition via Multi-agent Reinforcement Learning,” in Proceedings of the IEEE
International Conference on Web Services, 2014.

58. A. Moustafa and M. Zhang, “Learning Efficient Compositions for QoS-aware Service
Provisioning,” in Proceedings of the IEEE International Conference on Web Services, 2014.

246 D.H. Elsayed et al.

Chapter 11
Transition from Information Systems
to Service-Oriented Logical Architectures:
Formalizing Steps and Rules with QVT

Nuno Santos, Nuno Ferreira and Ricardo J. Machado

Abstract Specifying functional requirements brings many difficulties namely
when regarding the cloud services. During the analysis phase, the alignment
between the process-level requirements (information systems) with the
product-level requirements (service-based software) may not be properly achieved
or even understood. In this chapter, we describe an approach that supports the
creation of the intended requirements, beginning in a process-level and evolving to
a product-level perspective, to elicit requirements for specifying services that
execute in a cloud computing environment. The transition between perspectives are
supported by UML model transformations, encompassing a set of transition rules
using QVT, from one perspective to the other, in order to assure that process- and
product-level requirements are aligned.

Keywords Information systems design � Logical architectures � Requirement
analysis � Model transformation � Service-oriented logical architecture � UML use
cases � Transition rules

N. Santos (&) � R.J. Machado
CCG/ZGDV Institute, University of Minho, Guimarães, Portugal
e-mail: nuno.santos@ccg.pt

R.J. Machado
e-mail: rmac@dsi.uminho.pt

N. Santos � R.J. Machado
ALGORITMI Research Centre, University of Minho, Guimarães, Portugal

N. Ferreira
I2S – Insurance Software Systems, Porto, SA, Portugal
e-mail: nuno.ferreira@i2s.pt

© Springer International Publishing AG 2017
M. Ramachandran and Z. Mahmood (eds.), Requirements Engineering
for Service and Cloud Computing, DOI 10.1007/978-3-319-51310-2_11

247

11.1 Introduction

The “generalized” adoption of cloud computing paradigm in software industry,
together with the industry’s high competitiveness, results in a highly demand for
new releases that make use of cloud computing platforms with quality but devel-
oped in lesser time. It is a common problem in software projects that the final
product is misaligned with the stakeholders’ needs. The stakeholders are respon-
sible for the business model development, and the development team is responsible
for implementing it in software. However, in many cases, there is no stable context
for eliciting requirements in Cloud Computing projects, and requirements engi-
neering (RE) for Software-as-a-Service (SaaS) [1] and Service-Oriented
Architecture (SOA) [2] are major challenging. A proper alignment is not always
easy and bad requirements are one of the main reasons of projects’ failure [3]. The
elicitation of product-level (service-based software) requirements is achievable by
using a process-level perspective to elicit process or (business process) needs and
then use the resulting artifacts, like an information system logical architecture, as
inputs for modeling of software functional needs. The first effort should be to
specify the requirements of the overall system in the physical world; then to
determine necessary assumptions about components of that physical world; and
only then to derive a specification of the computational part of the control system
[4]. There are similar approaches that tackle the problem of aligning
domain-specific needs with software solutions. For instance, goal-oriented
approaches are a way of doing so, but they do not encompass methods for deriv-
ing a logical representation of the intended system processes with the purpose of
creating context for eliciting product-level requirements.

Our main problem, and the main topic this chapter addresses, is assuring that
product-level (IT-related, in the software engineering domain) requirements are
perfectly aligned with process-level requirements (in the information systems
domain), and hence, are aligned with the organization’s business requirements. The
process-level requirements express the need for fulfilling the organization’s busi-
ness needs, and we detail how they are characterized within our approach further in
Sect. 11.2. These requirements may be supported by analysis models, that are
implementation agnostic [5]. According to [5], the existing approaches for trans-
forming requirements into an analysis model (i) do not require acceptable user effort
to document requirements, (ii) are efficient enough (e.g., one or two transformation
steps), (iii) are able to (semi-)automatically generate a complete (i.e., static and
dynamic aspects) consistent analysis model, which is expected to model both the
structure and behavior of the system at a logical level of abstraction. For that,
requirements are modeled by successive derivation (for more details, please refer to
our approach of a V-Model [6, 7]) using UML models, first in process-level per-
spective, and then in product-level perspective.

Our proposal is to provide context for RE for cloud computing projects, by using
a process-level approach for the initial eliciting of business needs, in order to give
context to the product-level functionalities elicitation. Our product-level approach

248 N. Santos et al.

includes the use of models to define functional and nonfunctional requirements for
SaaS and SOA solutions, initially in form of UML use cases, and in deriving a
service-oriented logical architecture by executing the Four-Step-Rule-Set (4SRS)
method [6–8]. This paper intends to detail the steps and rules required to perform
the transition between the process- and product-level perspectives within the V+V
Model (presented in [9]) using Query/View/Transformation (QVT) [10] in order to
achieve that transition between UML models. This way, we formalize the transition
between perspectives that is required in order to align the requirements of both
V-Models. In comparison with [9], besides the use of QVT transformations, we
include additional contributes to support of the rules, like a formalization of a UML
metamodel extension. In addition, we strengthen the state-of-the-art section. The
result is an integrated approach, beginning in information system architecture and
ending in a service-oriented logical architecture.

This chapter will be structured as follows: Sect. 11.2 briefly presents the
macro-process for information systems development based on both process- and
product-level V-Model approaches; Sect. 11.3 describes the transition steps and
detail the model transformations required for applying the transition rules between
both perspectives; in Sect. 11.4 we present a real industrial cloud-based demon-
stration case on the adoption of transition steps between process- and product-level
perspectives; in Sect. 11.5 we compare our approach with other related work; and
in Sect. 11.6 we present the conclusions.

11.2 The V+V Model

The V+V Model [11] is an approach for information systems development. The
entire V+V Model is not presented in this paper, since it is already detailed in [11]
and its composing artifacts presented in [6, 7]. Rather, in Fig. 11.1 is depicted the
main artifacts, and those artifacts are the ones involved in the transition process.
The transition process is presented in [9]. The main difference from our proposed
approach to other information system development approaches is that it is appli-
cable for eliciting product-level requirements in cases where there is no clearly
defined context for eliciting product requirements within a given specific domain,
by first eliciting process-level requirements and then evolving to the product-level
requirements, using a transition approach that assures an alignment between both
perspectives. Other approaches (described further in Sect. 11.5) typically apply to a
single perspective.

The first V-Model (in which the most important artifacts are depicted in the left
side of Fig. 11.1, the remaining models are out of the scope of this paper) is
executed at a process-level perspective performing the identification of business
needs and then, by successive artifact derivation, transiting from business-level
artifacts (i.e., process-level use case diagrams) to an IT-level artifact (i.e., infor-
mation system logical architecture) that is assured by the execution of the Four-Step
Rule-Set (4SRS) method. For the scope definition of our work, we characterize our

11 Transition from Information Systems to Service-Oriented … 249

process-level perspective by: (i) being related to real-world activities (including
business); (ii) when related to software, those activities encompass the typical
software development lifecycle.

Our process-level approach is characterized by using refinement (as one kind of
functional decomposition) and integration of system models. Activities and their
interface in a process can be structured or arranged in a process architecture [12].
The process-level 4SRS method execution (see [6–8] for details about the
process-level 4SRS method) assures the transition from the problem to the solution
domain by transforming process-level use cases into process-level logical archi-
tectural elements, and results in the creation of a validated architectural model
which allows creating context for the product-level requirements elicitation and in
the uncovering of hidden requirements for the intended product design. Use cases
are mandatory to execute the 4SRS method.

The second V-Model (in which the most important artifacts are depicted in the
right side of Fig. 11.1) is executed at a product-level perspective. By product-level,
we refer as the typical software requirements. The second execution of the V-Model
is performed by gathering information from the process-level V-Model in order to
create a new model referred as Mashed UCs (preliminary product-level use case
models). The creation of this model is detailed in the next section of this paper as
transition steps and rules. Mashed UC model is then used as input for successive
artifact derivation until requirements are modeled in product-level use case dia-
grams that gather typical software user requirements. The remaining models from
Fig. 11.1 are out of the scope of this paper. Like in the first V-Model, use cases are
input for the 4SRS method (but in its product-level perspective, detailed in [13–
15]), which then outputs a service-oriented logical architecture that depict system
requirements derived from the original user requirements. The resulting architecture
is then considered a design artifact that contributes for the creation of context for
product implementation (CPI) as information required by implementation teams.
Note that the design itself is not restricted to that artifact, since in our approach it

Fig. 11.1 V+V process framed in the development macro-process (from [11])

250 N. Santos et al.

also encompasses behavioral aspects and nonfunctional requirements
representation.

As depicted in Fig. 11.1, the result of the first V-Model (process-level) execution
is the information system logical architecture. The architectural elements that
compose this architecture are derived (by performing transition steps) into
product-level use cases (Mashed UC models). The result of the second V-Model
(product-level) execution is the service-oriented logical architecture. The Mashed
UC model is the output of the model transformations presented in the next section.

11.3 Steps and QVT Rules for Transition Between
V-Models

The V+V process is useful for both stakeholders, organizations and technicians, but
it is necessary to assure that they properly reflect the same system. This section
begins by presenting a set of transition steps whose execution is required to create
the initial context for product-level requirements elicitation, referred to as
Mashed UC model. The purpose of the transition steps is to assure an aligned
transition between the process- and product-level perspectives in the V+V process,
that is, the passage from the first V-Model to the second one. By defining these
transition steps, we assure that product-level use cases (UCpt’s) are aligned with the
architectural elements (AEpc’s) from the information system logical architecture
diagram; i.e., software use case diagrams are reflecting the needs of the information
system logical architecture. The application of these transition rules to all the par-
titions of an information system logical architecture gives origin to a set of Mashed
UC models. To allow the recursive execution of the 4SRS method [13, 15–17], the
transition from the first V-Model to the second V-Model must be performed by a set
of steps. The output of the first V-Model must be used as input for the second
V-Model; i.e., we need to transform the information system logical architecture into
product-level use case models. The transition steps to guide this mapping must be
able to support a business to technology changing. These transition steps (TS),
presented in [9], are depicted in Fig. 11.2 and are structured as follows:

TS1—Architecture Partitioning: By applying collapsing and filtering techniques
as detailed in [13], it is possible to identify major groups of elements in the
information system logical architecture that must be computationally supported by
software. In this transition step, the AEpc’s under analysis are classified by their
computation execution context with the purpose of defining software boundaries to
be transformed into UCpt’s. The final software boundary is represented after the
execution of filtering and collapsing techniques in the AEpc’s. Each of the iden-
tified major groups of elements is subject to a separate execution in the following
transition steps.

TS2—Use Case Transformation: This transition step is applied to each partition
defined in the previous transition step (i.e., to each major groups of elements) with

11 Transition from Information Systems to Service-Oriented … 251

the purpose of transforming elements of the information system logical architecture
(AEpc’s) into software use cases and actors. In this transition step, AEpc’s are
transformed into software use cases and actors that represent the system under
analysis. This is the most critical transition step of the transition process and, as
such, we have devised a set of transition patterns that must be applied as rules that
are later described in this section.

TS3—Original Actors Inclusion: For each defined partition, the original actors
that were related to the use cases from which the architectural elements of the
process-level perspective are derived (in the first V-Model execution) must be
included in the representation. The purpose of this transition step is to introduce
into the product-level perspective the necessary information regarding the skills and
stakeholders of the originally defined processes. The traceability between the
process-level use cases and the AEpc’s is assured by the process-level 4SRS
execution [6–8].

TS4—Redundancy Elimination: In the previous transition steps there is a pos-
sibility of including redundancy in the model in the form of actors and use cases
generated by the transition rules. For each partition defined in the first transition
step, it is important to remove such redundancy by explicitly removing the
unnecessary actors and use cases from the model.

TS5—Gap Filling: This final transition step intents to create, in the form of use
cases to be added to the model, the necessary information of any requirement that is
intended to be part of the design and that is not yet present. Typical missing use

Fig. 11.2 Process- to product-level transition

252 N. Santos et al.

cases are connections between existing use cases that were automatically created by
the transition rules.

During the execution of these transition steps, a specific stereotype of use cases,
called transition use cases (UCtr’s), bridge the AEpc’s and serve as basis to elicit
UCpt’s. UCtr’s also provide traceability between process- and product-level per-
spectives using tags and annotations associated with each representation. The
identification of each partition is first made using the information that results from
the packaging and aggregation efforts of the previous 4SRS execution (step 3 of the
4SRS method execution as described in [6, 7]). Nevertheless, this information is not
enough to properly identify the partitions. Information gathered in scenarios that
were elicited in early models in the first V-Model must also be accounted.
A partition is created by identifying all the relevant architectural elements that
belong to a given organizational configuration scenario. The rules to support the
execution of the TS2 are applied in the form of transition rules and must be applied
in accordance to the stereotype of the envisaged architectural element. There are
three stereotyped architectural elements: d-type, which refer to generic decision
repositories (data), representing decisions not supported computationally by the
system under design; c-type, which encompass all the processes focusing on
decision-making that must be supported computationally by the system (control);
and i-type, which refer to process’ interfaces with users, software, or other pro-
cesses. The full descriptions and specifications of the three stereotypes are available
in [6].

The proposed process not only includes activities for perspective transition (as it
is performed by the application of transition rules in TS2) but it also concerns to
obtain a stable model (by performing TS3-5). By analyzing the perspectives on
which the steps from the transition process are performed, the steps are easily
classified.

The transition process naturally starts in the process-level perspective with
AEpc’s. In Table 11.1 it is possible to realize that after TS1 the transition is still
dealing with AEpc’s as input; the execution of TS2 results in the perspective
transition, since it is in this TS that UCtr’s are introduced and they relate to
product-level; in the remaining transition steps, naturally they relate to
product-level perspective. The purpose of the remaining transition steps is to pro-
mote completeness and reliability in the model. The model is complete after adding
the associations that initially connected actors (the ones who trigger the AEpc’s)
and the AEpc’s, and then by mapping those associations to the UCtr’s. The model
is reliable since the enforcement of the rules eliminates redundancy and assures that
there are no gaps in the UCtr’s associations and related actors. Only after the
execution of all the TS we consider the resulting model as containing product-level
(software) use cases (UCpt’s), which will compose the Mashed UC model. In
summary, in TS1 the artifact regards AEpc’s, in TS2-5 the focus is in UCtr’s and
only when the Mashed UC model is finished UCtr’s become UCpt’s.

11 Transition from Information Systems to Service-Oriented … 253

For the sake of understandability we present in Fig. 11.3 an excerpt of the UML
extension that supports the creation of AEpc’s, UCtr’s and partitions (please note
that UCpt’s regard the traditional use cases). We consider that a partition is a
container of AEpc’s or UCtr’s and acts as a border delimiter for the combinations of
possible systems candidates to be analyzed.

After delimiting all the partitions, it is necessary to focus on a particular one
(called inbound partition) and execute the required transformations considering all
the remaining neighbor partitions (outbound partitions).

Table 11.1 Transition steps overview

Transition
step

Description Perspective

TS1 The AEpc’s under analysis are classified by their computation
execution context

Process-level

TS2 AEpc’s are transformed into software use cases and actors that
represent the system under analysis through a set of transition
patterns that must be applied as rules

Product-level

TS3 The original actors that were related to the use cases from
which the architectural elements of the process-level
perspective are derived (in the first V execution) must be
included in the representation

Product-level

TS4 The model is analyzed for redundancies Product-level

TS5 The necessary information of any requirement that is intended
to be part of the design and that is not yet present is added, in
the form of use cases

Product-level

Fig. 11.3 Excerpt of AEpc and UCtr extension

254 N. Santos et al.

Aproper way of defining the transformations betweenmodels is bymeans of using
OMG’s QVT [10]. QVT is a set of languages (QVT-Operational, QVT-Relations,
and QVT-Core) that enables models transformations. QVT-Operational enables
unidirectional transformations of a given model into another. QVT-Relations allow
bi-directional transformations. QVT-Core can be considered a subset of
QVT-Relations. All the QVT set of languages are associated with model-driven
approaches. These model-driven approaches are usually associated with design and
implementation models and lack support to requirements and analysis models. The
requirements specification (in any perspective) is a crucial task in any software
development process. As such, models that support requirements specification should
be integrated into model-driven methods.

In our proposed approach we have chosen QVT as a mean to transform AEpc’s
models into UCtr’s models, or being more specific, transforming information
system logical architectural models into Mashed UC models. This relates to inte-
grating models that support requirements specifications into a model-driven
approach. In [9], the steps and rules were already described, but without techno-
logical formalization. Associated with the transition rules, we present a subset of the
QVT-Operational (-like) code that supports the transformation intended by a given
rule. The defined transition rules, from the logical architectural diagram to the
Mashed UC diagram, are presented in [9] and are as follows:

TR1—an inbound c-type or i-type AEpc is transformed into an UCtr of the same
type (see Fig. 11.4). By inbound we mean that the element belongs to the partition
under analysis.

The QVT-like specification that supported the transformation for TR1 is as
follows:

if (AEpc.Partition=inbound) and
(AEpc.4SRSstereotype=cType or
AEpc.4SRSstereotype=iType) then { UCtr.name:=Aepc.name;
UCtr.4SRSstereotype:=AEpc.4SRSstereotype}
endif;

TR2—an inbound d-type AEpc is transformed into an UCtr and an associated
actor (see Fig. 11.5). This is due to the fact that d-type AEpc’s correspond to
decisions not computationally supported by the system under design and, as such, it
requires an actor to activate the depicted process.

UCtr

{c, i}
AEpc

{c, i}

Fig. 11.4 TR1—transition
rule 1 (from [9])

11 Transition from Information Systems to Service-Oriented … 255

TR2 is supported by the following:

if (AEpc.Partition=inbound) AND
(AEpc.4SRSstereotype=dType) then {
UCtr.name:=AEpc.name;
UCtr.4SRSstereotype:=AEpc.4SRSstereotype;
Actor.name:=self.name;
Actor.association:=UCtr}
endif;

Rules TR1 and TR2 are the most basic ones and the patterns they express are the
most used in the transition step 2. The remaining rules regard more specific situ-
ations, however require equal attention from the analyst. The remaining rules are as
follows:

TR3—an inbound AEpc, with a given name x, which also belongs to an out-
bound partition, is transformed into an UCtr of name x, and an associated actor, of
name y, being responsible for outbound actions associated with UCtrx (Fig. 11.6).

The specification for TR3 is:

if (AEpc.Partition=multiple) and
(AEpc.4SRSstereotype=cType) then {
UCtr.name:=AEpc.name;
UCtr.4SRSstereotype:=AEpc.4SRSstereotype;
Actor.name:=self.name;
Actor.association:=UCtr }
endif;

The connections between the use cases and actors produced by the previous rules
must be consistent with the existing associations between the AEpc’s. The focus of
this analysis is UCtr’s and is addressed by the following two transition rules.

UCtr

{d}
AEpc

{d}

Fig. 11.5 TR2—transition
rule 2 (from [9])

AEpcxP1 P2 UCtrx

Actor try

Fig. 11.6 TR3—transition
rule 3 (from [9])

256 N. Santos et al.

TR4—an inbound d-type UCtr of name x with connections to an (any type) UCtr
of name y and to an actor z, gives place to two UCtr’s, x and y, maintaining the
original types (see Fig. 11.7). Both are connected to the actor z. This means that all
existing connections on the original d-type AEpc that were maintained during
execution of TR2 or TR3 are transferred to the created actor must be consistent with
the existing associations between the AEpc’s. The focus of this analysis is UCtr’s
and is addressed by the following two transition rules.

The previous rule is executed after TR1, TR2, or TR3, so it only needs to set the
required association between the UCtr’s and the actors, that is to say, after all
transformations are executed (TR1, TR2, and TR3), a set of rules are executed to
establish the correct associations to the UCtr’s.

Regarding TR4, the necessary specification is

if (UCtr.Partition=inbound) and
(UCtr.4SRSstereotype=dType) and
(Actor.associations().FilterByPartition(UCtr).Count >
1) then {
Actor.Association:= Ac-
tor.associations().FilterByPartition(UCtr).GetUCtr())
}
endif;

TR5—an inbound UCtr of name x with a connection to an outbound AEpc of
name y (note that this is still an AEpc, since it was not transformed into any other
concept in the previous transition rules) gives place to both an UCtr named x and to
an actor named y (see Fig. 11.8). AEpc’s that were not previously transformed are
now transformed by the application of this TR5; this means that all AEpc’s which
exist outside the partition under analysis having connections with inbound UCtr’s
will be transformed into actors. These actors will support the representation of

Fig. 11.7 TR4—transition
rule 4 (from [9])

Actor try

P1 AEpcy P2UCtrx UCtrx

Fig. 11.8 TR5—transition rule 5 (from [9])

11 Transition from Information Systems to Service-Oriented … 257

required external inputs to the inbounds UCtr’s created during application of TR1,
TR2, or TR3.

For TR5, the supporting specification is

if (AEpc.Partition=outbound) then {
Actor.name:=Aepc.name
Actor.Association:= Ac-
tor.associations().FilterByPartition(UCtr).GetUCtr()) }
endif;

A special application of TR5 (described as TR5.1) can be found in Fig. 11.9
where we can see an UCtr with a connection to an outbound AEpc and another
connection to an actor. In this case, TR5 is applied and the resulting UCtr is also
connected to the original actor. Note that an UCtr belonging to multiple partitions is
first and foremost, an inbound UCtr due to being under analysis.

The application of these transition steps and rules to all the partitions of the
information system logical architecture gives origin to a set of Mashed UC models.
In the next section, we present a demonstration case study an information system
logical architecture is transformed into a product-level Mashed UC model by
executing the transition steps.

11.4 Demonstration Case on the Transition Process

The applicability of the proposed approach was assessed with a real project that is
analyzed in this manuscript as a case study: the ISOFIN project (Interoperability in
Financial Software) [18]. This project aimed to deliver a set of coordinating services
in a centralized infrastructure, enacting the coordination of independent services
relying on separate infrastructures. The resulting ISOFIN platform allows for the
semantic and application interoperability between enrolled financial institutions,
e.g., Banks, Insurances, and others.

The global ISOFIN architecture relies on two main service types: Interconnected
Business Service (IBS) and Supplier Business Service (SBS). In this context, there
are two external business domain entities with access to the ISOFIN Platform:

UCtrx Actor try

Actor trx

Actor trx P1 AEpcy P2UCtrx

Fig. 11.9 TR5.1—transition rule 5.1 (from [9])

258 N. Santos et al.

ISOFIN Customers and ISOFIN Suppliers. An ISOFIN Customer is an entity
whose domain of interactions resides in the scope of consuming, for economic
reasons, the functionalities exposed by IBSs. An ISOFIN Supplier is a company
that interacts with the ISOFIN SaaS Platform by supplying the platform with
functionalities (SBSs) that reside in their private clouds. IBS’s concern a set of
functionalities that are exposed from the ISOFIN core platform to ISOFIN
Customers. An IBS interconnects one or more SBS’s and/or IBS’s exposing
functionalities that relate directly to business needs. SBS’s are a set of function-
alities that are exposed from the ISOFIN Suppliers production infrastructure. SBSs
are made available in the ISOFIN Supplier private cloud by the use of generators
and are composed, in the public cloud where the ISOFIN SaaS Platform resides
implement an IBS. Composition of basic SBSs into IBSs give origin to more
powerful functionalities that are exposed by the platform.

The requirements elicitation of activities in the ISOFIN project resulted in a
model composed by 39 use cases (i.e., the process-level use cases from Fig. 11.1).
From the demonstration case, we first present a subset of the information system
logical architecture in Fig. 11.10, that resulted from the execution of the 4SRS
method at a process-level perspective [6–8]; i.e., the execution of the first
(process-level) V-Model. The information system logical architecture is composed
by architectural elements that represent processes executed within the ISOFIN
platform. The first V-Model execution ended with 74 documented architectural
elements (not counting associations). This means that we added more details to the
problem description. All of these architecture elements from the logical architecture
were input for the transition process.

The logical process-level architecture of the ISOFIN project has embedded
design decisions that are initially injected in the processes descriptions. The design
decisions concern the deployment of the system in a public cloud environment and

Fig. 11.10 Subset of the ISOFIN information system logical architecture (from [9])

11 Transition from Information Systems to Service-Oriented … 259

its interoperability with several other private clouds as defined in the project
objectives.

The resulting logical model of the system architecture, based on the processes
that are intended to be executed, shows a software solution able to be deployed in
IaaS layer. That layer will support the execution of a set of services that will allow
suppliers to specify the behavior of the services they intend on supplying, in a PaaS
layer. This will allow customers, or third-parties, to use the platform’s services, in a
SaaS layer and be billed accordingly. Additionally, processes regarding the pro-
vider perspective (e.g., infrastructure management) were also considered.

In Fig. 11.11, we depict the execution of TS1 to a subset of the entire infor-
mation system logical architecture, i.e., the partitioning of the information system
logical architecture, by marking its architectural elements in partition areas, each
concerning the context where services are executed, which resulted in two parti-
tions: (i) the ISOFIN platform execution functionalities (in the area marked as P1);
(ii) the ISOFIN supplier execution functionalities (in the area marked as P2).

The identification of the partitions will enable the application of the transition
steps to allow the application of the second V-Model to advance the macro-process
execution into the product implementation. Presenting the information that sup-
ported the decisions regarding the partitions in the case of the ISOFIN project is out
of the scope of this paper.

TS1 ends with the collapsing of AEpc’s from outside the boundaries and without
any associations to inbound AEpc’s. In the subset of Fig. 11.11, such only applied
to {AE3.7.2.i} Local SBS Publishing Interface. Thus, this AEpc is immediately
excluded from the remaining steps.

<<interface>>
{AE3.7.2.i} Local SBS
Publishing Interface

{P1.3} SBS
Generator

<<interface>>
{AE3.6.i} Generate SBS

Code

<<control>>
{AE2.1.c} Access Remote

Catalogs

<<control>>
{AE2.3.1.c} IBS Internal
Structure Specifica on

<<control>>
{AE2.11.c} Global

Publishing Integra on
Decisions

<<interface>>
{AE2.11.i} Execute

Publishing Info
Integra on

<<data>>
{AE3.7.1.c} Remote SBS
Publishing Informa on

<<interface>>
{AE3.7.1.i} Remote SBS

Publishing Interface

{P2.2} IBS Analysis
Decisions

{P2.3} IBS Generator

<<interface>>
{AE2.6.1.i} Generate IBS

Code

<<interface>>
{AE2.6.2.i} IBS

Deployment Process

<<control>>
{AE2.7.c} IBS Publica on

Decisions

<<interface>>
{AE2.7.i} Execute IBS
Publica on in Catalog

<<data>>
{AE2.6.2.d} IBS

Deployment Decisions

P1

P2

Fig. 11.11 Partitioning of the information system logical architecture (TS1) (from [9])

260 N. Santos et al.

In Fig. 11.12, we depict the final Mashed UC model (the first product-level
artifact in the second V-Model), resulting from the execution of TS2-5. Due to
space restrictions, we only show the result of the execution of these four transition
steps altogether. The resulting mashed use cases are the result of the application of
the transition rules in TS2.

Table 11.2 summarizes the application of QVT transformations to the AEp’cs
from Fig. 11.11. It is possible to objectively recognize the effect of the application
of some transition rules previously described. TR1 was the most applied transition
rule and one example is the transformation of the AEpc named {AE2.1.c} Access
Remote Catalogs into one UCtr named {U2.1.c} Access Remote Catalogs. One
example of the application of TR2 is the transformation of the AEpc named
{AE2.6.2.d} IBS Deployment Decisions into the UCtr named {U2.6.2.d} Define IBS
Deployment and the actor named IBS Developer. TR3 was applied, for instance, in
the transformation of the AEpc named {AE3.7.1.c} Define SBS Information into the
UCtr named {U3.7.1.c} Define SBS Information and the actor named SBS
Publisher. Finally, we can recognize the application of TR5.1 in the transformation
of the AEpc named {AE3.6.i} Generate SBS Code into the actor named SBS
Developer. All the other actors result from the execution of TS3. We must refer, for
instance, that the actor SBS Developer results from the execution of TS4, since the
original actor and the actor resulting from an application of TR2 and TR5.1 and also
the inclusion of the original actor in TS3, result in the same actor which brings the
need to eliminate the generated redundancy. The resulting model allows to identify
potential gaps in use cases or actors (in the execution of TS5), but in this case such
wasn’t required.

After the execution of the transition steps, the resulting Mashed UC model is the
first artifact that composes the product-level V-Model and that is then used as
starting point for the rest of the V-Model execution. Thus, after performing the

SBS Publisher

{U3.7.1.c} Define
SBS Informa on

{U3.7.1.i} Publish
SBS Informa on

{U2.7.c} Define IBS
Informa on

{U2.7.i} Publish IBS
Informa on

{U2.6.1.i}
Generate IBS Code

{U2.6.2.d} Define
IBS Deployment

{U2.6.2.i} Deploy
IBS

{U2.11.c} Define
Global Publishing

Integra on

{U2.11.i} Integrate
Publishing

Informa on

{U2.3.1.c} Define
IBS Internal

Structure

{U2.1.c} Access
Remote Catalogs

SBS Developer

IBS Business Analyst

IBS Developer

Fig. 11.12 Mashed UC model resulting from the transition from process- to product-level (from
[9])

11 Transition from Information Systems to Service-Oriented … 261

transition process, the Mashed UC model was used for deriving a new set of
artifacts, this time regarding a product-level perspective, in a new V-Model exe-
cution. Like in the process-level perspective, the process ends with the 4SRS
method execution, where a service-oriented logical architecture was derived.

The derivation of this architecture is out of the scope of this paper, so this
demonstration case skips directly from the Mashed UC model to the software
system logical architecture. We depict in the second architecture of Fig. 11.13 the
entire software system logical architecture obtained after the execution of the V+V
process, derived by transforming product use cases in architectural elements using
product-level 4SRS method, having as input the information system logical
architecture (the first architecture of Fig. 11.13) previously presented.

The software system logical architecture is composed by architectural elements
(depicted in the zoomed area) that represent services that are executed in the
platform. The alignment between the architecture elements in both perspectives is
supported by the transition steps. It would be impossible to elicit requirements for a
service-oriented logical architecture as complex as the ISOFIN platform (the overall

Table 11.2 Executed QVT transformations to the model

QVT
rule

Process-level (transformation source) Output Product-level (transformation
target)

TR1 AEpc {AE2.1.c} Access Remote
Catalogs

UCtr {U2.1.c} Access Remote
Catalogs

AEpc {AE2.3.1.c} IBS Internal
Structure Specification

UCtr {U2.3.1.c} Define IBS Internal
Structure

AEpc {AE2.6.1.i} Generate IBS Code UCtr {U2.6.1.i} Generate IBS Code

AEpc {AE2.6.2.i} IBS Deployment
Process

UCtr {U2.6.2.i} Deploy IBS

AEpc {AE2.7.i} Execute IBS
Publication in Catalog

UCtr {U2.7.i} Publish IBS
Information

AEpc {AE2.7.c} IBS Publication
Decisions

UCtr {U2.7.c} Define IBS
Information

AEpc {AE2.11.i} Execute Publishing
Info Integration

UCtr {U2.11.i} Integrate Publishing
Information

AEpc {AE2.11.c} Global Publishing
Integration Decisions

UCtr {U2.11.c} Define Global
Publishing Information

TR2 AEpc {AE2.6.2.d} IBS Deployment
Decisions

UCtr {U2.6.2.d} Define IBS
Deployment

Actor IBS Developer

TR3 AEpc {AE3.7.1.i} Remote SBS
Publishing Interface

UCtr {U3.7.1.i} Publish SBS
Information

Actor SBS Developer

TR3 AEpc {AE3.7.1.c} Remote SBS
Publishing Information

UCtr {U3.7.1.c} Define SBS
Information

Actor SBS Publisher

TR5.1 AEpc {AE3.6.i} Generate SBS Code Actor SBS Developer

262 N. Santos et al.

F
ig
.
11

.1
3

Su
bs
et

of
th
e
IS
O
FI
N

se
rv
ic
e-
or
ie
nt
ed

lo
gi
ca
l
ar
ch
ite
ct
ur
e
ba
se
d
on

th
e
in
fo
rm

at
io
n
sy
st
em

lo
gi
ca
l
ar
ch
ite
ct
ur
e
(f
ro
m

[9
])

11 Transition from Information Systems to Service-Oriented … 263

information system logical architecture was composed by near 80 architectural
elements, and the resulting service-oriented logical architecture by near 100) by
adopting an approach that only considers the product-level perspective.

Our V+V process allows to perform RE activities in an integrated approach, and
the ISOFIN project demonstration case (namely the service-oriented logical
architecture) demonstrated that this approach is suitable for Cloud Computing
projects. The services that compose this SOA-based platform were identified, by
performing sequential RE-related tasks and requirements modeling. It is also pos-
sible to depict in Fig. 11.13 the alignment (supported by the transition steps and
QVT rules) between the architecture elements in both perspectives.

11.5 Comparison with Related Work

There are many approaches that allow deriving at a given level a view of the
intended system to be developed. Our approach clearly starts at a process-level
perspective, and by successive models derivation creates the context for trans-
forming the requirements expressed in information system logical architecture into
product-level context for requirements specification. Other approaches provide
similar results at a subset of our specification.

For instance, KAOS, a goal-oriented requirement specification method, provides
a specification that can be used in order to obtain architecture requirements [19].
This approach uses two step-based methods, which output a formalization of the
architecture requirements for each method. Since it uses two methods, each of the
derived architectures provides a different view of the system. It is acknowledged in
software engineering that a complete system architecture cannot be represented
using a single perspective [20]. Using multiple viewpoints, like logical diagrams,
sequence diagrams, or other artifacts, contributes to a better representation of the
system and, as a consequence, to a better understanding of the system. An important
view considered in our approach regards the architecture. The organization’s pro-
cesses can be represented by an enterprise architecture, as proposed in [21], and
representation extended by including in the architecture modeling concerns as
business goals and requirements [22]. However, such proposals do not intend to
provide information for implementation teams during the software development
process, but instead to provide to stakeholders with business strategic requirements.
Most agree that an architecture concerns both structure and behavior, with a level of
abstraction that only regards significant decisions, is influenced by its stakeholders
and the environment where it is intended to be instantiated and also encompasses
decisions based on some rationale or method. Some architecture views can be seen
in [20, 23–25]. Krutchen’s work [20] refers that the description of the architecture
can be represented into four views: logical, development, process, and physical.
The fifth view is represented by selected use cases or scenarios. Our stereotyped
usage of sequence diagrams adds more representativeness value to the specific
model. Additionally, the use of this kind of stereotyped sequence diagrams at the

264 N. Santos et al.

first stage of analysis phase (user requirements modeling and validation) provides a
friendlier perspective to most stakeholders, easing them to establish a direct cor-
respondence between what they initially stated as functional requirements and what
the model describes. Ullah and Lai [26] models business goals and derives system
requirements, but it outputs a UML state chart. Our approach outputs system
requirements in an architectural diagram and stereotyped sequence diagrams.

The relation between what the stakeholders want and what implementation teams
need requires an alignment approach to assure that there are no missing specifications
on the transition between phases. Tarafdar and Qrunfleh [27] argues that an alignment
between business and IT can be “strategic” and “tactical,” and [28] presents an
alignment approach also based on architectural models. An approach that enacts the
alignment between domain-specific needs and software solutions, is the GQM +
Strategies (Goal/Question/Metric+Strategies) [29]. This approach uses measurement
to explicitly link goals and strategies from business objectives to project operations.
Another goal-oriented approach is the Balanced Scorecard (BSC) [30]. BSC links
strategic objectives and measures through a scorecard in four perspectives: financial,
customer, internal business processes, and learning and growth. It is a tool for defining
strategic goals frommultiple perspectives beyond a purely financial focus, and can be
properly aligned with four key elements of IT-business alignment (integrated plan-
ning, effective communication, active relationship management, and institutionalized
culture of alignment) [31], as well as for information security management [32].
Another approach, COBIT [33], is a framework for governing and managing enter-
prise IT. It provides a comprehensive framework that assists enterprises in achieving
their objectives for the governance andmanagement of enterprise IT. It is based onfive
key principles: (1) meeting stakeholder needs; (2) covering the enterprise end-to-end;
(3) applying a single, integrated framework; (4) enabling a holistic approach; and
(5) separating governance from management. As far as the authors of this paper are
concerned, none of the previous approaches encompasses processes for deriving a
logical representation of the intended system processes with the purpose of creating
context for eliciting product-level requirements. Those approaches have a broader
specification concerning risk analysis, auditing, measurement, or best practices in the
overall alignment strategy.

The 4SRS method is used for transforming functional user requirements into
logical architectural models representing system requirements. It can be executed
either in a process-level [7–9] and in a product-level perspective [13–15] but the
method executed alone does not allow to transit between perspectives. Tan et al.
[34] presents an approach to transform a functional analysis model (in a data flow
diagram) into object-oriented design and implementation. This approach is exe-
cuted in a product-level perspective and, like 4SRS, the transformation only regards
a single perspective. In a product-level perspective, there are several approaches
that support model transformations to software architectures based on requirements,
like the work in [34], the Component-Oriented Platform Architecting Method for
product family engineering (COPA) [35], the Reuse-driven Software Engineering
Business (RSEB) [36], the Family-Oriented Abstraction, Specification and
Translation (FAST) [37], the Feature-Oriented Reuse Method (FORM) [38], the

11 Transition from Information Systems to Service-Oriented … 265

Komponentenbasierte Anwendungsentwicklung (german for component-based
product line engineering—KobrA) [39], or the Quality-driven Architecture
Design and Analysis (QADA) [40]. In a process-level perspective, Tropos [41] is a
methodology that uses notions of actor, goal, and (actor) dependency as a foun-
dation to model early and late requirements, architectural and detailed design;
afterwards, the SIRA approach describes a software requirements and architectural
models from the perspective of an organization in the context of Tropos, using i*
models (a goal-oriented approach to describe both the system and its environment
in terms of strategic actors and social dependencies among them) [42], in [43] is
presented a process to generate Acme ADL [44] architectural models from i*
models; and in [45] is described a method for obtaining architectural models based
in KAOS requirements models. None of these presented approaches support pro-
cess- to product-level transition.

There are many approaches that allow deriving at a given level a view of the
intended system to be developed. Our approach clearly starts at a process-level
perspective, and by successive models derivation creates the context for trans-
forming the requirements expressed in an information system logical architecture
into product-level context for requirements specification. Other approaches provide
similar results at a subset of our specification.

In [46] it is specified a mapping technique and an algorithm for mapping
business process models, using UML activity diagrams, and use cases, so functional
requirements specifications support the enterprise’s business process. In our
approach, we use information system logical architecture diagram instead of an
activity diagram, since an information system logical architecture provides a fun-
damental organization of the development, creation, and distribution of processes in
the relevant enterprise context [47].

In literature, model transformations are often related to the Model-Driven
Architecture (MDA) [48] initiative from OMG. An MDA-based approach uses
model transformations in order to transform a high-level model
(Platform-Independent Model—PIM) to a lower level model (Platform-Specific
Model—PSM). MDA-based model transformations are widely used but, as far as
the authors know, the supported transformations do not regard perspective transi-
tion, i.e., are perspective agnostic since they concern model transformations within
a single perspective (typically the product-level one). Model-driven transformation
approaches were already used for developing information systems in [49]. In [50]
business process models are derived from object-oriented models.

The existing approaches for model transformation attempt to provide an auto-
mated or automatic execution. Yue et al. [5] provides a systematic review and
evaluation of existing work on automating of transforming requirements into an
analysis model and, according to the authors, none of the compared approaches
provide a practical automated solution. The transition steps and rules presented in
this work intent to provide a certain level of automation into our approach and
improve the efficiency, validation, and traceability of the overall V+V process. The
transitions depicted in the present work are able to be fully implemented in devel-
opment tools that support QVT transformations, like the well-known Eclipse IDE.

266 N. Santos et al.

11.6 Conclusions

We have described the transition steps and rules for assuring an alignment between
process- and product-level requirements within the execution of the V+V process.
This approach is adopted to create context for software implementation teams in
Cloud Computing projects where requirements cannot be properly elicited. The V
+V process is based on successive models construction and recursive derivation of
logical architectures (first an information system one and then for a service-oriented
one), and makes use of model derivation for creating use cases, based on high-level
representations of desired system interactions.

We presented a real industry demonstration case in order to elicit requirements
for developing a platform that provides interoperability between financial institu-
tions by providing services in a cloud environment. Our approach is supported on a
set of transition steps and QVT-based transition rules in order to execute the
transition from process- to product-level perspective. These transition steps use as
basis an information system logical architecture to output a product-level use case
model. The product-level requirements are specified in a software system logical
architecture, having as basis the information system logical architecture.

It is a common fact that domain-specific needs, namely business needs, are fast
changing. Information system architectures must be in a way that potentially
changing domain-specific needs are local in the architecture representation. Our
approach enables requirements traceability within three stages of its process,
namely within the derivation of both process- (information system) and
product-level (service-oriented) logical architectures and during the transition
between perspectives. Each V-Model uses software engineering techniques, such as
operational model transformations to assure the execution of a process that begins
with business needs and ends with a logical architectural representation of a system.
Each V-Model from our proposed V+V process encompasses the derivation of a
logical architecture representation that is aligned with domain-specific needs by
executing the 4SRS method and any change made to those domain-specific needs is
reflected in the logical architectural model, and the transformation and traceability
is properly assured by the 4SRS method. Since the Mashed UC model (and, con-
sequently, the perspective transition) is derived from a model transformation based
on QVT mappings (from AEpc’s to UCtr’s), traceability between AEpc’s and
UCpt’s is guaranteed, thus any necessary change on product-level requirements due
to a change on a given business needs is easily identified and propagated alongside
the models that comprise the V+V process.

Since we are designing SOA and Cloud Computing solutions, using SOA
Modeling Language (SoaML) diagrams, an instantiation of UML models for SOA
contexts, instead of UML diagrams, may be more adequate. Within SoaML dia-
grams, 4SRS was already used to derive participants, requests, services, and
properties by using UML use cases as input. As future work, we intend to include in
our approach the derivation of other SoaML diagrams, like Service Contracts,
Service Architectures, Interfaces, Service Choreographies, amongst others, in order

11 Transition from Information Systems to Service-Oriented … 267

to improve our process, since we believe that using additional diagrams will
improve the specification of the SOA and cloud services. However, SoaML nota-
tion should be used throughout the entire V-Model, in order to obtain information
regarding services at the end of the requirements elicitation phase. We intend to
develop this V-Model in future work, as we believe that the rationale regarding the
RE-tasks present in the V-Model as described in this paper will be similar for
developing a SoaML variation of the V-Model.

References

1. Mell, P., Grance, T.: The NIST Definition of Cloud Computing. (2009).
2. Bianco, P., Kotermanski, R., Merson, P.: Evaluating a service-oriented architecture. (2007).
3. Standish Group: CHAOS Report 2014. (2014).
4. Maibaum, T.: On specifying systems that connect to the physical world. New Trends Softw.

Methodol. Tools Tech. (2006).
5. Yue, T., Briand, L.C., Labiche, Y.: A Systematic Review of Transformation Approaches

between User Requirements and Analysis Models. Requir. Eng. Vol. 16, (2011).
6. Ferreira, N., Santos, N., Machado, R., Fernandes, J.E., Gasević, D.: A V-Model Approach for

Business Process Requirements Elicitation in Cloud Design. In: Bouguettaya, A., Sheng, Q.
Z., and Daniel, F. (eds.) Advanced Web Services. pp. 551–578. Springer New York (2014).

7. Santos, N., Teixeira, J., Pereira, A., Ferreira, N., Lima, A., Simões, R., Machado, R.J.: A
demonstration case on the derivation of process-level logical architectures for ambient
assisted living ecosystems. In: Garcia, N.M. and Rodrigues, J.J.P.C. (eds.) Ambient Assisted
Living Book. pp. 103–139. CRC Press (2015).

8. Salgado, C., Teixeira, J., Santos, N.: A SoaML Approach for Derivation of a Process-Oriented
Logical Architecture from Use Cases. Explor. Serv. …. (2015).

9. Ferreira, N., Santos, N., Soares, P., Machado, R., Gašević, D.: A Demonstration Case on
Steps and Rules for the Transition from Process-Level to Software Logical Architectures in
Enterprise Models. In: Grabis, J., Kirikova, M., Zdravkovic, J., and Stirna, J. (eds.) The
Practice of Enterprise Modeling. pp. 277–291. Springer Berlin Heidelberg (2013).

10. OMG: Meta Object Facility (MOF) 2.0 Query/View/Transformation (QVT), http://www.omg.
org/spec/QVT/1.1.

11. Ferreira, N., Santos, N., Soares, P., Machado, R.J., Gasevic, D.: Transition from Process- to
Product-level Perspective for Business Software, (2012).

12. Browning, T.R., Eppinger, S.D.: Modeling impacts of process architecture on cost and
schedule risk in product development. IEEE Trans Eng. Manag. 49, 428–442 (2002).

13. Machado, R.J., Fernandes, J., Monteiro, P., Rodrigues, H.: Refinement of Software
Architectures by Recursive Model Transformations, http://dx.doi.org/10.1007/11767718_38,
(2006).

14. Machado, R.J., Fernandes, J.M., Monteiro, P., Rodrigues, H.: Transformation of UML
Models for Service-Oriented Software Architectures, (2005).

15. Fernandes, J., Machado, R., Monteiro, P., Rodrigues, H.: A Demonstration Case on the
Transformation of Software Architectures for Service Specification. In: Kleinjohann, B.,
Kleinjohann, L., Machado, R., Pereira, C., and Thiagarajan, P.S. (eds.) From Model-Driven
Design to Resource Management for Distributed Embedded Systems. pp. 235–244.
Springer US (2006).

16. Azevedo, S., Machado, R.J., Muthig, D., Ribeiro, H.: Refinement of Software Product Line
Architectures through Recursive Modeling Techniques, http://dx.doi.org/10.1007/978-3-642-
05290-3_53, (2009).

268 N. Santos et al.

http://www.omg.org/spec/QVT/1.1
http://www.omg.org/spec/QVT/1.1
http://dx.doi.org/10.1007/11767718_38
http://dx.doi.org/10.1007/978-3-642-05290-3_53
http://dx.doi.org/10.1007/978-3-642-05290-3_53

17. Azevedo, S., Machado, R., Maciel, R.: On the Use of Model Transformations for the
Automation of the 4SRS Transition Method. In: Bajec, M. and Eder, J. (eds.) Advanced
Information Systems Engineering Workshops. pp. 249–264. Springer Berlin Heidelberg
(2012).

18. ISOFIN: ISOFIN Research Project. http://isofincloud.i2s.pt/, (2010).
19. Jani, D., Vanderveken, D., Perry, D.: Experience Report: Deriving architecture specifications

from KAOS specifications. (2003).
20. Kruchten, P.: The 4+1 View Model of Architecture. IEEE Softw. 12, 42–50 (1995).
21. The Open Group: TOGAF—The Open Group Architecture Framework, http://www.

opengroup.org/togaf/.
22. Engelsman, W., Quartel, D., Jonkers, H., van Sinderen, M.: Extending enterprise architecture

modelling with business goals and requirements. Enterp. Inf. Syst. 5, 9–36 (2010).
23. Clements, P., Garlan, D., Little, R., Nord, R., Stafford, J.: Documenting software

architectures: views and beyond, (2003).
24. Hofmeister, C., Nord, R., Soni, D.: Applied software architecture. Addison-Wesley

Professional (2000).
25. Chen, D., Doumeingts, G., Vernadat, F.: Architectures for enterprise integration and

interoperability: Past, present and future. Comput. Ind. 59, 647–659 (2008).
26. Ullah, A., Lai, R.: Modeling business goal for business/it alignment using requirements

engineering. J. Comput. Inf. Syst. 51, 21 (2011).
27. Tarafdar, M., Qrunfleh, S.: IT-Business Alignment: A Two-Level Analysis. Inf. Syst. Manag.

26, 338–349 (2009).
28. Strnadl, C.F.: Aligning Business and It: The Process-Driven Architecture Model. Inf. Syst.

Manag. 23, 67–77 (2006).
29. Basili, V.R., Lindvall, M., Regardie, M., Seaman, C., Heidrich, J., Munch, J., Rombach, D.,

Trendowicz, A.: Linking Software Development and Business Strategy Through
Measurement. Computer (Long. Beach. Calif). 43, 57–65 (2010).

30. Kaplan, R.S., Norton, D.P.: The balanced scorecard–measures that drive performance. Harv.
Bus. Rev. 70, 71–79 (1992).

31. Huang, C.D., Hu, Q.: Achieving IT-business strategic alignment via enterprise-wide
implementation of balanced scorecards. Inf. Syst. Manag. 24, 173–184 (2007).

32. Herath, T., Herath, H., Bremser, W.G.: Balanced Scorecard Implementation of Security
Strategies: A Framework for IT Security Performance Management. Inf. Syst. Manag. 27, 72–
81 (2010).

33. Information Technology Governance Institute (ITGI): COBIT v5—A Business Framework
for the Governance and Management of Enterprise IT. ISACA (2012).

34. Tan, H.B.K., Yang, Y., Bian, L.: Systematic Transformation of Functional Analysis Model
into OO Design and Implementation. IEEE Trans. Softw. Eng. Vol. 32, (2006).

35. Obbink, H., Müller, J., America, P., van Ommering, R., Muller, G., van der Sterren, W.,
Wijnstra, J.G.: COPA: A component-oriented platform architecting method for families of
software-intensive electronic products. In: Tutorial for the First Software Product Line
Conference., Denver, Colorado. (2000).

36. Jacobson, I., Griss, M., Jonsson, P.: Software Reuse: Architecture, Process and Organization
for Business Success. Addison Wesley Longman (1997).

37. Weiss, D.M.: Software Product-Line Engineering: A Family-Based Software Development
Process. Addison-Wesley Professional (1999).

38. Kang, K.C., Kim, S., Lee, J., Kim, K., Shin, E., Huh, M.: FORM: A feature-oriented reuse
method with domain-specific reference architectures. Ann. Sw Eng. (1998).

39. Bayer, J., Muthig, D., Göpfert, B.: The library system product line. A KobrA case study.
Fraunhofer IESE. (2001).

40. Matinlassi, M., Niemelä, E., Dobrica, L.: Quality-driven architecture design and quality
analysis method, A revolutionary initiation approach to a product line architecture. VTT
Technical Research Centre of Finland (2002).

11 Transition from Information Systems to Service-Oriented … 269

http://isofincloud.i2s.pt/
http://www.opengroup.org/togaf/
http://www.opengroup.org/togaf/

41. Castro, J., Kolp, M., Mylopoulos, J.: Towards requirements-driven information systems
engineering: the Tropos project. Inf. Syst. (2002).

42. Yu, E.: Modelling strategic relationships for process reengineering. In: Yu, E., Giorgini, P.,
Maiden, N., and Mylopoulos, J. (eds.) Social Modeling for Requirements Engineering.
pp. 11–152. The MIT Press (2011).

43. Lucena, M., Castro, J., Silva, C., Alencar, F., Santos, E., Pimentel, J.: A model transformation
approach to derive architectural models from goal-oriented requirements models. In: OTM
Confederated International Conferences“ On the Move to Meaningful Internet Systems.”
pp. 370–380. Springer Berlin Heidelberg. (2009).

44. Garlan, D., Monroe, R., Wile, D.: Acme: an architecture description interchange language.
CASCON First Decad. High Impact Pap. (2010).

45. Lamsweerde, A. Van: From system goals to software architecture. Form. Methods Softw.
Archit. (2003).

46. Dijkman, R.M.: Deriving use case diagrams from business process models. Tech. report,
CTIT Tecnhical Rep. (2002).

47. Winter, R., Fischer, R.: Essential Layers, Artifacts, and Dependencies of Enterprise
Architecture, (2006).

48. OMG: MDA Guide Version 1.0.1, (2003).
49. Iribarne, L., Padilla, N., Criado, J., Asensio, J.-A., Ayala, R.: A Model Transformation

Approach for Automatic Composition of COTS User Interfaces in Web-Based Information
Systems. Inf. Syst. Manag. 27, 207–216 (2010).

50. Redding, G., Dumas, M., Hofstede, A.H.M. ter, Iordachescu, A.: Generating Business Process
Models from Object Behavior Models. Inf. Syst. Manag. 25, 319–331 (2008).

270 N. Santos et al.

Chapter 12
Improving the QoS of a Composite Web
Service by Pruning its Weak Partners

Kuljit Kaur Chahal, Navinderjit Kaur Kahlon
and Sukhleen Bindra Narang

Abstract Quality of Service (QoS)-aware web service composition is based on
nonfunctional properties of component (or partner) web services. In a dynamic
environment, these properties of partner web services change on the fly. There exist
several research proposals that take into account QoS degradation of partner web
services at run-time, and propose solutions to maintain the optimality of the service
composition in such circumstances. In this paper, we focus on the problem from a
different perspective. We take into account the situation when quality (QoS values)
of some of the partner web services improves, but for some others it remains the
same. With the passage of time, if the quality of these web services does not
improve, they act as bottlenecks or the weakest links in an otherwise efficient
process. We simulate a framework which identifies such web services, and expands
the search domain by sending a selective query to remote/premium service
registries/brokers for finding better alternatives of such services. The proposed
approach is effective, efficient, and scalable as well.

Keywords Service computing � SOA � Service composition � Web services �
Supply-Chain network � Quality of Service � Weakest link

12.1 Introduction

In the Service-Oriented Architecture, a Composite Web Service (CWS) is created to
serve functionality which the existing web services are not able to provide. In
addition to the functionality, a CWS is also supposed to fulfill the expected non-
functional requirements of its end users. QoS attributes of a web service describe its

K.K. Chahal (&) � N.K. Kahlon
Department of Computer Science, Guru Nanak Dev University, Amritsar, India
e-mail: kuljitchahal@yahoo.com

S.B. Narang
Department of Electronics Technology, Guru Nanak Dev University, Amritsar, India

© Springer International Publishing AG 2017
M. Ramachandran and Z. Mahmood (eds.), Requirements Engineering
for Service and Cloud Computing, DOI 10.1007/978-3-319-51310-2_12

271

nonfunctional properties. It encompasses a number of performance metrics of a web
service such as availability, reputation, price, execution time, response time, etc.
A CWS depends upon its partner web services to fulfill functional as well as
nonfunctional requirements of its end users. Successful execution of partner web
services contributes to meet user’s expected QoS of the CWS. Inability to do so
may lead to loss of current as well as future business of the CWS, though the cause
of the deficient service lies outside the ambit of the CWS provider.

Several methods have been proposed in the research literature to accurately
estimate aggregate QoS value of a CWS given the QoS values of its partner
(component) web services [4]. A web composition can be static in which partner
web services are decided at design-time [8]. However, such a composition is not
suitable for a dynamic environment in which partner web services are controlled by
third parties and may become unavailable or their QoS values degrade during
run-time [1]. We need solutions which are dynamic as well as proactive to manage
QoS degradation of partner web services in such a way that aggregate quality level
of the CWS can be maintained.

We conjecture that a suboptimal (QoS aware) solution may not always be due to
QoS degradation of some of the partner web services of a CWS. A solution may
also become suboptimal when quality of most of the services improves barring a
few. In such a situation, there is need to look into the web services whose QoS
value is worst and stable (i.e., neither degrades nor improves).

Performance (in terms of QoS) of a CWS is dependent on the performance of its
partner web services (in combination). We define weakest link of a CWS as a
partner web service that limits the web service in attaining higher efficiency beyond
a certain threshold. Therefore, identification and penalization (i.e., substitution) of
weakest links becomes imperative to improve performance of the CWS. The idea of
identifying a weakest link in a CWS (when comprehended as a value chain) is akin
to identification of bottlenecks in a supply-chain network.

We propose to use log analysis of the previous CWS execution traces to identify
a weakest link in its execution. A weakest link, in a CWS execution process, is a
web service whose QoS value contributes the maximum (or minimum) to the global
(aggregate) QoS value of the process to deviate it from attaining a better value. For
example, a set of partner web services of a CWS has the following values for the
Execution Time (ET) QoS attribute (in ms): {w1 = 0.3, w2 = 0.4, w3 = 0.6, w4 = 0.7,
w5 = 2.5}. If ET for the CWS is calculated using the aggregation formula for a serial
workflow (i.e., sum of all the values), it is 4.5 ms. In this aggregate value, maxi-
mum contribution is of the web service W5. It has the maximum value for the ET,
and the value is significantly different from the corresponding values of the other
web services. Now W5’s ET value may be high due to the nature of the task it
performs. For a complex task, ET will be high. If nature of the task is not complex,
then high ET indicates low quality level of the web service in comparison to other
web services in the value chain. Then, such a web service is identified as the
weakest link.

We suggest that search space can be expanded on demand. When all other
services in a web service composition improve, we should be able to identify a web

272 K.K. Chahal et al.

service which proves to be a weakest link in the configuration. Such web services
can be replaced with alternative web services by exploring remote and/or premium
repositories to look for alternatives.

The remainder of the paper is organized as follows: Next section defines the
problem with the help of a motivating example. Section 12.3 presents the related
work. Section 12.4 explains the research methodology. Section 12.5 shows eval-
uation of the proposed framework. Section 12.6 mentions limitations of the study.
Last section concludes the paper followed by the references.

12.2 Problem Definition

Consider a situation in which execution time of some of the partner web services of
a CWS improves over a period of time. There is a partner web service, for example,
whose ET neither improves nor degrades. Had its ET degraded, it would have got
substituted with a better alternative. Therefore, it continues to be a part of the
configuration. With the passage of time, its ET is significantly different from the
execution times of other web services in the CWS. As no degradation happens in its
execution time over the period of time, it cannot be identified by a framework that
may have been used to manage QoS degradation of partner web services [16].
There is need to identify this bottleneck service and find alternatives of this service
(may be from global/premium service repositories). However, to the best of our
knowledge, there does not exist any proposal that tackles the issues in a dynamic
environment of a service oriented solution from this point of view

In an ideal situation, the best web service for a task, wherever it exists on the
planet should be searched and included in the composition. But reality is very
different from this. A number of service registries exist. It is not possible for a
service discovery module to look into all the possible service registries in real time
to get the best services in a time-efficient manner when a composite web service is
configured from scratch. There is a tradeoff between finding the best services and
time complexity of a service discovery process [2, 7]. Moreover, some registries are
public, and some are private and available at a premium. Therefore, for time and
cost efficiency, a service discovery module should expand the search to premium
registries only in exigent cases. Previous work in the service discovery domain [6]
acknowledges the need for creating registry federations to carry out the discovery
process in multiple registries [3]. Such an approach gives more useful results than a
centralized repository. Among the numerous efforts to improve the efficiency of the
service discovery module in SOA, Sivashanmugam et al. [17] propose a crawler
engine that searches the web services information from multiple registries and other
heterogeneous resources and creates a centralized large database called Web
Service Storage (WSS). The large data set needs to be updated regularly by the
crawler as changes occur in the services in their base locations. Changes in the web
services are very frequent in the dynamic Internet based environment. Hence, such

12 Improving the QoS of a Composite Web Service … 273

solutions are inefficient. As they not only require high maintenance to reflect latest
updates, but also suffer from single point of failure syndrome, and are not scalable
as well. In distributed or decentralized approaches of web service registry man-
agement, a locally maintained registry is searched first. If the search request is not
satisfied by the local registry, then it is sent to global registries. We also propose to
involve global registries selectively as retrieval of web service information from
global repositories is not cost effective for routine searching in the beginning of the
web service composition process [2]. It takes time in tens of seconds [19]. We
suggest that search space can be expanded on demand during the web service life
cycle. When all other services in a web service composition improve, we should be
able to identify a web service which proves to be a weakest link in the configu-
ration. Then explore remote and/or premium repositories to look for an alternative.

We propose, in this paper, to start with a CWS (may be created with local
optimization approach criteria alone or along with a global optimization approach)
and then improve the solution in the dynamic environment. It is not (economically)
feasible to create a CWS with global optimization criteria for every user request
especially when the CWS is a long-term solution, and is invoked frequently. Once a
CWS is created, it should be self-optimizing after that. We propose a framework
which can identify partner web services, not in sync with other web services in the
execution plan of the CWS. Such web services can be replaced with alternative web
services. The premise of our proposal is that a discovery algorithm is able to search
a subset of service repositories for web services required for a CWS. Searching in
all the possible (under the sky) service repositories is not cost effective. A CWS
may be created with whatever is available at the first instance in a local repository.
It can be later improved by expanding the search scope to find alternatives for a few
web services which are not in sync with others in the combination. This expanded
search scope may encompass service repositories which are remote or are available
at a premium.

Next, we analyze the weakest link approach for managing QoS of a CWS with a
long life span. There exist a few web service composition approaches that consider
life span of a CWS as well to decide the composition process to follow [12, 15].
A CWS with a short life span responds to a few requests for a short period of time.
As soon as the business goal is fulfilled, the CWS ceases to exit. For every request,
the CWS is created from scratch. In case of a CWS with long life span, configu-
ration of the CWS is created once and then used many times. Jiang et al. [12]
distinguish between two composition approaches as one time query, and continuous
query. One time query corresponds to a CWS with short span, and is created from
scratch for a new request. In continuous query, an old instance of a CWS is (re)used
with some adaptation (if required) for the new requests. Liu et al. [15] define a
long-term composed service (LCS) as a web service with long-term business goal
(or an open-ended life time). It has a stable relationship with its partner web
services to serve a continuous stream of requests. In such a situation, creating a
CWS from scratch for every request is not right from efficiency point of view.

274 K.K. Chahal et al.

12.2.1 Motivating Example

An analysis of previous traces of the CWS on client side (see Table 12.1), shows
that web service WS42 is spending maximum time in execution (measured in ms),
and thus delays the overall process. This service is also not being replaced (in the
following traces) as its ET remains the same (i.e., does not degrade). We assume
that a better alternative of the web service is not available in the primary set of
registries that the service discovery module explores while searching for new ser-
vices. So there is need to extend the search boundary to include a distant repository
(may be of a premium category).

Our proposed work contributes in the following ways:

• We define a strategy to identify those web services in a value chain which
contribute in making the CWS sluggish. A web service is defined as a weakest
link if its QoS values are worst and stable for a long period of time.

• We make a case for the service discovery module to look for candidate web
services in premium/remote service repositories only in exigent cases. The
search space should expand as per demand, only if a better alternative is not
available in the local repository.

• The proposed framework is applied on two types of CWS––one with short term
use, and second with long term use.

12.3 Related Work

Major issue in the web service composition process has been to find a QoS-aware
optimal solution for the service composition problem. Researchers proposed several
methods to search for an optimal solution such as exact algorithms [5], heuristic
algorithms (e.g., [14], and meta-Heuristic algorithms [20] using local optimization

Table 12.1 Example of a typical scenario

Trace Service bindings Remarks

1 WS = {WS11, WS21, WS34, WS42, WS53,
WS61}
ET = {1000, 1200, 1300, 2000, 1300, 1400}

WS42 has the maximum execution time in the
set

2 WS = {WS11, WS21, WS34, WS42, WS53,
WS63}
ET = {1000, 1200, 1300, 2000, 1300, 1200}

WS63 replaces WS61 as WS61’s ET increases

3 WS = {WS11, WS21, WS34, WS42, WS53,
WS63}
ET = {1000, 1200, 1300, 2000, 1300, 1200}

=no change=

4 WS = {WS11, WS25, WS34, WS42, WS53,
WS61}
ET = {1000, 1100, 1300, 2000, 1300, 1200}

WS25 replaces WS21 as WS21’s ET increases

12 Improving the QoS of a Composite Web Service … 275

or global optimization as the criteria. These solutions look for an optimal or near
optimal solution by focusing on two perspectives: reducing time complexity of the
algorithm, and limiting the search space. Most of the solutions are applicable in
static environments only. However, web services-based solutions are realized using
the Internet. The Internet being a dynamic entity, a web service composition
configuration should remain optimal in the dynamic environment otherwise the
optimal solution is limited to a few instances only. As soon as the environment
changes, the solution goes below the optimum level.

Keeping the dynamism of the operating environment in mind, researchers in the
past have focused on handling QoS degradation of web services to maintain the
optimality of the solution in a dynamic environment. Research in this area has
handled QoS degradation of partner web services, and proposed solutions to adapt
the configuration of a CWS by replacing the degraded partner web service with a
better alternative [16].

We also work toward realizing an optimal solution for the web service com-
position problem. But we look at this problem from a different point of view. We
monitor not only degradation of the (partner) web services, but also the web ser-
vices which do not degrade themselves but become bottlenecks when all other
services in a configuration improve in their QoS values. The questions that we
aspire to answer are: what if (rather than degrading) some of the partner web
services improve in their quality except a few of them? Would not it lead to the web
services (whose quality does not improve) acting as bottlenecks or weakest links in
the value chain? As better alternatives for these services are not available in the
registries explored by the service-oriented application in routine, solution lies in
expanding the search space to include more repositories. We observe that this
improves the solution quality in a time-efficient manner as search in this case is for
selective web services (a subset of the total set of services) only.

In a dynamic environment, managing QoS degradation of the partner web ser-
vices requires querying the service resources for latest information about their QoS
values. Keeping in mind the running time overhead that is incurred for collecting
this information, Harney and Doshi [9] propose to use a selective query approach.
In this, full information is not requested from the resource providers for all the
services at one time. Only those services whose QoS values may have changed are
queried for the information. We also use selective querying, but in a different
context. They use selective querying, from monitoring point of view, to collect
latest information at the execution time. We too use this approach during execution
phase of the CWS but from discovery point of view. Their target of the query is a
service registry/broker that is already supporting the application. We target the
query at a service registry/broker which has not been yet explored by the appli-
cation for the service discovery task.

Finding the weakest link in a supply-chain network is of interest for every
business. But we could not find any solution from this domain that can be adopted
for finding the weakest link in a service network in the context of SOA for

276 K.K. Chahal et al.

managing the solution in an automated way. We chose a statistical approach to
identify the web service which contributes maximum to the aggregate QoS value of
the CWS. For the sake of simplicity, we have assumed only one dimension of the
QoS value, e.g., execution time. Execution time is a QoS attribute with a negative
dimension, i.e., lower is the value, better is the quality. Multiple attributes can also
be incorporated easily in this approach by using approaches like Simple Additive
Weighting to find a utility score for a web service.

During exploration of the related research literature, we could find only one
other research paper which focuses on the same issue of finding a weakest link in a
CWS configuration. Research work in [10] focuses on the weak points in a QoS
composition to improve it. The approach to identify weak point is similar to ours––
a service with biggest impact on the composition with respect to a QoS attribute.
Unlike our statistical approach, the authors suggest two approaches for doing so––
in brute force method all the services are tried one by one to identify the web
service with the biggest impact, and in branch and bound method a branch (in a
parallel workflow pattern) with the highest execution time is followed to identify
the weak point web service. Unlike our framework, they assume that a better
alternative of the weak point web service does not exist in the service repository.
Therefore, the solution to replace the weak web service with a set of alternatives is
limited to the available web services in the local repository. The solution is then
another combination of existing web services realized after analyzing various
arrangements for different workflow composition patterns.

We premise that such a solution is more relevant for a CWS with an open-ended
life time. A few solutions already exist which focus on managing partner web
services of a CWS created for long-term use [12, 15].

Jiang et al. [12] perceive the requirement of a mechanism to support execution of
a CWS which responds to a continuous stream of requests. For a one time com-
position request, a CWS is created from scratch, and it ceases to exist as soon as the
response is generated. However, when there is continuous flow of requests for a
CWS on the service network, an old CWS instance can be (re)used to respond to the
requests. In case of dynamic changes in the partner services of the CWS, only
affected services are replaced and not the whole web service space. The continuous
query-based approach has good scalability, and is more efficient than creating a
CWS from scratch for every request.

Liu et al. [15] propose a solution to manage changes that pertain to top level
view of a LCS (Long Composed composite web Service). For example, owners of
the LCS may have different functionality (due to business changes) or QoS (due to
new competitors in the market) requirements. Therefore, changes are introduced
from the top. As requirements change, web services may be added to or removed
from the LCS configuration. Unlike them, we manage changes in a LCS from
bottom to top. We detect web services whose QoS values are stable but worst in the
configuration, then change the LCS configuration by pruning such web services,
and replace them with better alternatives.

12 Improving the QoS of a Composite Web Service … 277

12.4 Research Methodology

We propose to analyze execution trace of a CWS periodically. Duration of peri-
odicity can be determined by the service owner on the basis of cost/benefit tradeoff
of executing the analysis. The execution trace records every partner web service’s
QoS value (e.g. Execution Time). Web services advertise their processing time or
provide methods to inquire about it. Kahlon et al. [13] propose publish-subscribe
mechanism based solution to provide web service QoS values to its clients.

12.4.1 The Statistics

This study explores analysis of the extreme values in an execution trace using
Interquartile Ranges and Tukey Fences [18] as the statistics. Interquartile range is
the statistic to measure variability in a data set. It is the difference between the first
Quartile, Q1, and the third Quartile, Q3. It gives the range of the middle 50% values
in a data set. The formula to calculate is

InterQuartile Range ðIQR) ¼ Q3 � Q1 ð12:1Þ

The Quartiles Q1, and Q3 represent respectively the least 25%, and the largest
25% of the values of a data set.

Tukey Fences is a popular method of identifying extreme values in a data set.
After calculating the first and third Quartiles for a data set, the Tukey Fences are
calculated as follows:

Lower limit ¼ Q1 � 1:5 ðIQR) ð12:2Þ

Upper limit ¼ Q3 þ 1:5 ðIQR) ð12:3Þ

12.4.2 Identifying the Outlier(s)

In the present case, the data set consists of QoS values of partner web services of a
composite web service. A QoS attribute can have a positive or a negative
dimension.

For identifying an outlier in the case of a negative QoS attribute, first find the
maximum value in the data set. If the maximum value is greater than the upper limit
(defined in Eq. 12.3), then the corresponding data item is an extreme value in the
data set. Similarly for finding an outlier in the case of a positive attribute, if the
minimum value is lower than the lower limit (Eq. 12.2), then that is the extreme
value in the data set. For a given data set regarding ET of 7 partner web services
that constitute a CWS, let us examine the statistics in Table 12.2.

278 K.K. Chahal et al.

As per the given values, the maximum value in the data set (i.e., 2200) is greater
than the upper limit of the Tukey Fences (i.e., 1301). Therefore, it is an extreme
value. We know that a better web service is not available in the service repositories
being explored by the service discovery module in the normal routine (otherwise
this web service would have got replaced already). There is need to expand the
search boundary to find a better web service.

12.4.3 Analyze the Influence of the Outlier

A workflow in a service composition may follow serial, cyclic, or parallel, or a
combination of the three execution patterns of partner web services. Aggregate
value of a QoS attribute for a CWS is calculated using different formulae for the
different workflow patterns [11]. In this paper, we consider that service composition
follows a serial workflow pattern. In a serial pattern, the partner web services
execute one after another. Output of one web service becomes input of another in a
serial order. Aggregate value of the Execution Time QoS for a CWS is the sum of
Execution Times of all its partner web services. In our context, the model is an
aggregate function Sum, it takes ET values of various web services and gives ET of
the CWS as output. We assume the workflow pattern as a simple sequence of
service executions. Here, the aggregate (global) value for the QoS attribute ET is
sum of the ET value of each partner service.

The influence of a data point on the aggregate is calculated by first finding the
difference between the original aggregate (which included the said data point) and
the modified aggregate (excluding the said data point). The influence is defined as a
ratio between this difference and the number of data points contributing to this
change. When there is more than 1 outlier, influence values can be used to order the
pruning actions. An outlier with maximum influence is pruned first.

12.5 Results and Analysis

The weakest link analysis approach is analyzed for a CWS with short span of life
(in Experiment 1), as well as for a CWS with long span of life (in Experiment 2).
A CWS, with short life, is created from scratch for every new request. Whereas a
CWS, with long life, is (re)used to respond to forthcoming requests. We use a
synthetic data set in the experiment. Values for the QoS attribute ET are generated
using a uniform random process. The solution is implemented in C++ using

Table 12.2 Statistics for an example data set

Data set Median Q1 Q3 IQR Upper limit

{70, 200, 400, 560, 756, 832, 2200} 560 300 794 494 1301

12 Improving the QoS of a Composite Web Service … 279

CodeBlocks 11.0 IDE with gcc as the compiler on an Intel machine with Core 2
Duo CPU, 2 GB RAM, and Windows XP as the operating system.

12.5.1 Experiment 1

Here, we consider a simple situation in which a CWS is created from scratch for
every request. A new configuration for the CWS is created by searching the
local/global repositories and then executed. Our proposed solution is to analyze
execution trace of a CWS to identify the partner web services that contributed the
maximum in QoS (parameters with negative dimension such as Execution Time) of
that instance of the CWS.

This section presents the evaluation of the framework by comparing it with other
two naïve approaches. We use local optimization as the criteria for selecting web
services from the candidate set of services.

We create three different cases to analyze the results of the proposed approach.
First two cases model two different base (benchmark) situations. In the first case,
service discovery is limited to a local repository. By using an exhaustive strategy,
best service for each task is selected from the candidate web services in the local
repository. In the second case, service discovery is expanded to a global repository,
and selection strategy is exhaustive again. In the third case (the proposed approach),
service composition is created using candidate web services from the local repos-
itory, and then service discovery is expanded to global repository only when the
need is felt to manage web services with worst QoS value in the configuration.

In order to compare the cases, we measure

• Efficiency, i.e., the time taken to generate the CWS configuration,
• Quality of the solution in terms of aggregate QoS value of the resultant CWS.

Before we compare the proposed approach with the two basic approaches, we
discuss the effectiveness (i.e., the usefulness) of the proposed approach in the next
paragraph.

12.6 Effectiveness

Figure 12.1 shows results of the simulation in which ET of all the partner web
services improves except one service. ET is increased at different rates at 10% in the
second run, at 25% in the third run. Then the web service which does not see any
improvement in its ET QoS attribute in the first two runs is identified by the
framework as the weakest link. When it is substituted with an alternate web service
(with 25% better ET) from a distant repository in the fourth run, aggregate ET of the
CWS improves by 33%. It improves only by 5 and 8% in the earlier two runs. It
shows that the proposed approach is promising.

280 K.K. Chahal et al.

12.7 Efficiency

We simulated one service repository at the local machine, and one global repository
on a different machine. Network latency value of 101 ms between the two sites was
taken on the basis of the monitoring information available on the Dotcom-Monitor
cloud network (https://www.dotcom-tools.com/internet-backbone-latency.aspx) on
June 10, 2016. The Dotcom-monitor provides standard baseline network latency
between different locations that it monitors across the globe. We selected Mumbai
(India), and Hongkong (China) as the two locations for simulating the process.
Mumbai has the least network latency with Hongkong.

Both the repositories were populated with web services with similar function-
alities. A few web services with better QoS values (than the local repositories) were
made available in the distant repository only.

For the first case, only the local repository was used in the discovery process.
Local optimization was used to create the initial composition configuration. Here,
the running time increases at a polynomial rate of growth when number of tasks is
five (Fig. 12.2). The best fit equation in this case is y = 13.45x2 − 133.8x + 345.6
with R2 = 0.833 for five tasks. However, as the situation becomes more complex
with a higher number of tasks, running time starts following an exponential growth
rate (Fig. 12.3). Here, the best fit equation is found to be y = 41.10e0.251x with R2 =
0.740.

In the second case, the local as well the global repository was searched during
the service discovery process. This approach is very poor in scalability as the
running time curve follows an exponential rise as the number of candidate web
services in the registry increases. The best fit equation is y = 0.347e0.596x for 5 tasks
with coefficient of determination R2 = 0.975. Similarly, y = 0.289e0.685x for 10 tasks

Fig. 12.1 Improvement in CWS ET after pruning and substituting its weakest link WS

12 Improving the QoS of a Composite Web Service … 281

https://www.dotcom-tools.com/internet-backbone-latency.aspx

with R2 = 0.985. It happens in both the cases: when number of tasks is five (see
Fig. 12.4), or is increased to ten (see Fig. 12.5).

The third case corresponds to the proposed work in this paper. A configuration
was analyzed to identify the weakest link in the service sequence, and the global
repository was searched only when there was a weakest link to find an alternative
web service for the weakest link web service only. In this case, running time follows
a polynomial rate of growth represented by the equation y = 12.71x2 − 126.7x +
333.1 with R2 = 0.852 for 5 tasks (Fig. 12.6). When number of tasks was increased to
ten, even then the running time followed a polynomial growth rate (Fig. 12.7) with
the best fit equation as y = 31.42x2 − 315.4x + 673.1, and coefficient of

Fig. 12.2 Using local repository with local optimization for number of tasks = 5

Fig. 12.3 Using local repository with local optimization for number of tasks = 10

282 K.K. Chahal et al.

determination R2 = 0.801. We analyzed the results for increasing the number of tasks
to 20 (Fig. 12.8). The running time is still with polynomial growth rate represented
by y = 54.11x2 − 533.9x + 1049 with R2 = 0.867 as the best fit equation.

12.8 Quality of the Solution

We measure quality of solution in terms of the aggregate QoS value for the
Execution Time of the CWS. It can be observed (see CWS QoS value in Figs. 12.2,
12.3, 12.4, 12.5, 12.6, 12.7 and 12.8) that quality of the solution improves as the

Fig. 12.4 Using local as well as global repository with 5 tasks

Fig. 12.5 Using local as well as global repository with 10 tasks

12 Improving the QoS of a Composite Web Service … 283

Fig. 12.6 Results for the proposed solution using local as well as a global repository with 5 tasks

Fig. 12.7 Results for the proposed solution using local as well as a global repository with 10 tasks

Fig. 12.8 Results for the proposed solution using local as well as a global repository with 20 tasks

284 K.K. Chahal et al.

search space is expanded in all the cases. Aggregate value of the Execution Time of
a CWS decreases as more and more number of services are added to the search
domain. As the number of tasks in a CWS increases, the aggregate ET values also
increases, and intuition also implies the same. However, the cost of improvement is
the least in case of the proposed solution.

12.8.1 Experiment 2

Analysis of the proposed framework for a CWS with long span of life is presented
in this section. This section presents the evaluation of the framework by comparing
it with a solution that does not use any policy to analyze a CWS execution plan to
identify partner web services posing as weakest links in the value chain. In the first
case, service discovery is limited to a local repository. By using an exhaustive
strategy, best service for each task is selected from the candidate web services in the
local repository. In the second case (or for the proposed approach), service com-
position is created using candidate web services from the local repository, and then
service discovery is expanded to global repository only when the need is felt to
manage web services with worst QoS value in the configuration.

In order to compare the approaches, we measure

• Quality of the solution in terms of aggregate QoS value of the CWS.
• Efficiency, i.e., the time taken to generate the CWS configuration
• Scalability, i.e., the response of the proposed approach as the problem size

scales up.

We use a synthetic data set in the experiment. Values for the QoS attribute ET
are generated using a uniform random process. The solution is implemented in C++
using CodeBlocks 11.0 IDE with gcc as the compiler on an Intel machine with Core
2 Duo CPU, 2 GB RAM, and Windows XP as the operating system.

12.9 Quality of the Solution

We measure quality of solution in terms of the aggregate QoS value for the
Execution Time of the CWS. In the first case, only the local repository was used in
the discovery process. Local optimization was used to create the initial composition
configuration. In a static environment, a CWS is created only once, and responds to
all the requests that it gets after that. Figure 12.9a shows the CWS QoS value for
first and the subsequent requests in case of static composition. It stays almost the
same for the 20 requests the CWS was run for. When the proposed framework is
used to analyze the CWS execution process for weakest link web services in a static
environment, CWS QoS value improves (for request number 2 in the Fig. 12.9).

12 Improving the QoS of a Composite Web Service … 285

We use NF for No Framework, and WLF for the Weakest Link Framework pro-
posed in this paper.

For the proposed solution, we simulated one service repository at the local
machine, and one global repository on a different machine. Network latency value
of 101 ms between the two sites was taken on the basis of the monitoring infor-
mation available on the Dotcom-Monitor cloud network (https://www.dotcom-
tools.com/internet-backbone-latency.aspx) on June 10, 2016.

In the second case, we considered a dynamic environment in which QoS values
of the partner web services change (improve) randomly. The experiment results (in
Fig. 12.10a) show that CWS QoS values improve consistently in both the cases
(without as well as with the framework). However, improvement in case of the
Weakest Link Framework (WLF) is far better than the case when no framework is
used.

12.10 Efficiency

Figures 12.9b and 12.10b present the running time of composing a CWS in static
and dynamic environments respectively. The running time of the naïve approach
(no framework) is better than the proposed approach in the static environment. With

Fig. 12.9 Experimental results for a static environment

286 K.K. Chahal et al.

https://www.dotcom-tools.com/internet-backbone-latency.aspx
https://www.dotcom-tools.com/internet-backbone-latency.aspx

the framework, running time is considerably high for the first request. But with
support for the weakest link analysis and replacement with a better alternative, the
running time decreases significantly for the subsequent requests.

In the dynamic environment, as QoS of the partner web services improve a few
web services become weakest links. We can see spikes in the running time for the
proposed framework. Otherwise, the running time for the proposed framework is
better than the naïve approach.

12.11 Scalability

Figure 12.11a, b gives a comparison of the average CWS QoS value, and average
running time for both the approaches. When we scale up the number of requests that
invoke the CWS, the average CWS QoS value improves in case the proposed
framework is employed. However, it remains almost at the same level throughout
for the naïve approach. The average running time is also better (than the naïve

Fig. 12.10 Experimental results for a dynamic environment

12 Improving the QoS of a Composite Web Service … 287

approach) for the proposed framework as the number of requests scale up from 50
to 80,000. In this case running time is almost constant. Actually, extra overhead to
deal with the weakest link web services gets distributed in multiple requests.

12.12 Limitations of the Study

Three factors determine optimization of a web service composition problem:
number of tasks of the CWS, number of candidate web services for the tasks, and
number of QoS factors to watch for optimization. This study focuses on only the
first two. For the third one, we assumed a simple QoS model with only one
dimension.

The proposed approach follows local optimization as the evaluation criteria for
service selection. It does not consider global constraints on the solution. Though
improvements in global QoS value are appreciated and given preference.

Fig. 12.11 Experiment results to show scalability of the approach

288 K.K. Chahal et al.

12.13 Conclusions

This paper proposes an approach to improve QoS of a composite web service when
some of its partner web services become weakest links in the workflow. The
weakest links are identified, and then pruned from the configuration of the com-
posite web service. Alternatives of such web services do not exist in the service
registry that the service discovery module explores in routine. Therefore, the search
space is expanded to bring some distant/premium service repositories/brokers in the
ambit of the service discovery module. Simulation results show that the proposed
approach is effective and efficient as well. In the present case, a web service
composition configuration is created from scratch for every request. Such an
approach is not efficient when requests for the same CWS are pouring at a con-
tinuous rate (called a long term composed service). In the second experiment, CWS
QoS analysis in static as well as dynamic environments shows that the proposed
framework gives better quality of the solution. At the same time, running time
(computation cost) of the proposed solution is better. Scalability of the proposed
framework is tested for running it for 50 requests to 80,000 requests. Its running
time is stable as the number of requests scales up. At present, we are working on a
prototype to implement the proposed solution in a real-world application.

References

1. Alamri, A. et al. (2006). Classification of the State-of-the-Art Dynamic Web Services
Composition Techniques, International Journal of Web and Grid Services, vol. 2, pp. 148–
166, Sept. 2006.

2. Al-Masri, E., Mahmoud, Q. (2007). Crawling Multiple UDDI Business Registries, WWW
2007(poster paper), May 8–12, 2007, Banff, Alberta, Canada, pp. 1255–1256.

3. Baresi, L., Miraz, M. (2006). A Distributed Approach for the Federation of Heterogeneous
Registries, (Eds.) A. Dan, W. Lamersdorf Proceedings 4th International Conference
Service-Oriented Computing ICSOC 2006:, Chicago, IL, USA, December 4–7, 2006.
Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 240-251.

4. Cardoso, J. et al. (2004). Quality of Service for Workflows and Web Service Processes,
Journal of Web Semantics, vol. 1, pp. 281–308.

5. Chen, M., Yan, Y. (2014). QoS-aware service composition over graphplan through graph
reachability, in Proceedings of the 2014 IEEE International Conference on Services
Computing, pp. 544–551.

6. Crasso, M., Zunino, A., Campo, M. (2011). A Survey of Approaches to Web Service
Discovery in Service-Oriented Architectures, J. Database Management. Vol 22, issue 1,
pp. 102–132.

7. Deng, S., Wu, Z., Wu, J. (2012). An Efficient Service Discovery Method and its Application
in (Eds.) Zhang, L. Innovations, Standards, and Practices of Web Services: Emerging
Research Topics. Information Science Reference, IGI Global.

8. Dustdar, S., Schreiner, W. (2005). A Survey on Web Services Composition, International
Journal on Web and Grid Services, vol. 1, pp. 1–30, Aug 2005.

12 Improving the QoS of a Composite Web Service … 289

9. Harney, J., Doshi, P. (2008). Selective querying for adapting web service compositions using
the value of changed information, IEEE Transactions on Services Computing, 1 (3), pp. 169–
185.

10. Jaeger, M., Ladner, H. (2006). A Model for the Aggregation of QoS in WS Compositions
Involving Redundant Services, Journal of Digital Information Management, 2006, Digital
Information Research Foundation.

11. Jaeger, M., Rojec-Goldmann, G., Muehl, G. (2004). QoS Aggregation for Web Service
Composition using Workflow Patterns, Proceedings of the 8th International Enterprise
Distributed Object Computing Conference (EDOC 2004), Monterey, California, USA,
IEEE CS Press, pp. 149–159.

12. Jiang, W., Hu, S., Lee, D., Gong, S., Liu, Z. (2012). Continuous Query for QoS-Aware
Automatic Service Composition. IEEE International Conference Web Services (ICWS), 2012.

13. Kahlon, N.K., Chahal, K. K., Kapoor, S.V., Narang, S.B. (2015). Managing Availability of
Web Services in Service Oriented Systems, Proceedings of 2015 Asia-Pacific Software
Engineering Conference (APSEC), New Delhi, pp. 316–321.

14. Li, J., Zhang, X., Chen, S., Song, W., Chen, D. (2014). An Efficient and Reliable Approach
for QoS aware service composition, Information Sciences, vol. 269, pp. 238–254, June 2014.

15. Liu, X., Bouguettaya, A., Wu, X. and Zhou, Li. (2013). Ev-LCS: A System for the Evolution
of Long-Term Composed Services. IEEE Trans. Serv. Comput. 6, 1 (January 2013), 102–115.

16. Ma, H., Bastani, F., Yen, I., Mei H. (2013). QoS-Driven Service Composition with
Reconfigurable Services, IEEE Transactions on Services Computing, 6(1):20–34.

17. Sivashanmugam, K., Verma, K., Sheth, A. (2012). Discovery of Web Services in a Federated
Registry Environment, Proceedings of the Second International Conference on Computer
Science, Engineering and Applications (ICCSEA 2012), May 25–27, 2012, New Delhi, India,
Volume 1.

18. Tukey, J. (1977). Exploratory Data Analysis, Addison-Wesley, 1977, pp. 43–44.
19. Zeng, L., Benatallah, B., Ngu, A., Dumas, M., Kalagnanam, J. and Chang, H. (2004).

QoS-Aware Middleware for Web Services Composition, IEEE Transactions on Software
Enggineering. 30(5): 311–327, 2004.

20. Zhou, X., Shen, J., Li, Y. (2013). Immune based chaotic artificial bee colony multiobjective
optimization algorithm, in Proceedings of the 4th International conference on Swarm
Intelligence, vol. 7928, pp. 387–395.

290 K.K. Chahal et al.

Chapter 13
Using Distributed Agile Patterns
for Supporting the Requirements
Engineering Process

Maryam Kausar and Adil Al-Yasiri

Abstract This chapter discusses the challenges practitioners face while choosing
to develop their projects at offshore locations. As offshore development introduces
new challenges in the software development process such as trust, socio-cultural,
communication and coordination and knowledge transfer issues, it has been
observed that these challenges affect how requirements are defined and managed
while using agile practices in offshore software development. Using the notions of
Distributed Agile Patterns we discuss how they can facilitate the requirements
engineering process in offshore software development. We present a catalogue of
the complete set of patterns, but only gave details of selective patterns from the
catalogue that are related to the requirements engineering process. The whole
catalogue is available online for anyone interested in it. At the end we developed a
process flow showing the distributed agile patterns mapped onto the traditional
requirements engineering process to show how these patterns address and improve
the requirements engineering process for agile offshore projects.

Keywords Distributed agile patterns � Global software engineering �
Requirements engineering

13.1 Introduction

The process of requirements elicitation is one of the most challenging tasks in
software development. In traditional software development methodologies, the
client would predefine all their requirements to the development team before the
start of subsequent phases. The team would then analyse the requirements and
finalise a software requirements specification (SRS) document. Once the client has
approved the document, they would start the development phase. This process of
requirements elicitation has problems such as; a long time is spent in preparing this

M. Kausar � A. Al-Yasiri (&)
School of CSE, University of Salford, M5 4WT Salford, Greater Manchester, UK
e-mail: a.al-yasiri@salford.ac.uk

© Springer International Publishing AG 2017
M. Ramachandran and Z. Mahmood (eds.), Requirements Engineering
for Service and Cloud Computing, DOI 10.1007/978-3-319-51310-2_13

291

documentation, which causes issues in dealing with future requirements change
requests from the client once the actual development phase starts. Over decades of
software development we have learnt that requirements change is inevitable during
the development stage, because neither the client nor the developers are 100% sure
of all the requirements of the system at the start of the project.

In agile software development, this problem is solved with the use of story cards,
which is a lighter process for the definition of very high-level requirements and is
an artefact of methods such as SCRUM and XP. They contain just enough infor-
mation for the developer to be able to estimate how much effort and time will be
required to develop them and can handle change requests with little effort. There is
also an agile requirements change management process to control changing
requirements throughout the software development lifecycle. Based on this process,
new requirements can be added and reprioritized based on the client’s request [1].
Figure 13.1 illustrates the agile requirements change management process:

However, in distributed agile software development, as the team is distributed
over different time zones, the process of gathering and documenting requirements
becomes more complex. As any change in the requirements need to be commu-
nicated over different locations and due to cultural and language differences,
requirements can be misunderstood.

Fig. 13.1 Agile requirements change management process

292 M. Kausar and A. Al-Yasiri

In this chapter we will discuss how agile methods are used in offshore software
development, what are the challenges facing the requirements elicitation process in
agile offshore software development and how we can use distributed agile patterns
to overcome these challenges.

13.2 Agile Offshore Software Development

Since the creation of the agile manifesto it has brought unprecedented changes to how
software is being developed [2]. The manifesto focuses on four points, which are:

i. Individuals and interaction over processes and tools
ii. Working software over comprehensive documentation
iii. Customer collaboration over contract negotiation and
iv. Responding to change over following a plan.

Nowadays many companies are using agile for developing their offshore projects
[3]. However, the use of agile methods on offshore projects is not a straightforward
process. Taylor et al. [4] claim that projects that use agile for offshore development
go through many problems because of the differences in the development practices
and the complex development environments. Table 13.1 shows a characteristic
comparison of agile and offshore development, done by Šmite et al. [5], showing
the differences in the development styles.

Table 13.1 shows that the application of agile methods is not a straightforward
process in offshore development. Based on extensive literature review on offshore
software development four key challenges have been identified that affect the
adoption of agile practices. Table 13.2 shows the results of how these challenges
affect agile practices.

Table 13.2 summarises the agile practices that cannot be used as they are in
offshore software development and that the requirements engineering process is
affected in offshore development. In the next section we have identified how these
challenges affect the requirements engineering process in agile offshore
development.

Table 13.1 Comparison of agile development versus offshore development [5]

Characteristics Agile development Offshore development

Communication Informal
Face-to-face
Synchronous
Many-to-many

Formal
Computer-mediated
Often synchronous
Tunnelled

Coordination Change-driven
Mutual adjustment,
Self management

Plan-driven
Standardisation

Control Lightweight
Cross-functional team

Command-and-control
Clear separation of roles

13 Using Distributed Agile Patterns for Supporting … 293

13.3 Challenges in Requirements Engineering Process
in Agile Offshore Development

This section discusses the challenges and effect of agile offshore development on
the process of gathering and documenting requirements. Table 13.3 shows the
effect of agile offshore development challenges on the requirements elicitation
process. As the table demonstrates the four challenges identified in our study have
direct impact on the gathering, analysis and change management of requirements.

13.4 Distributed Agile Patterns

Based on the previous section we can see that applying agile on offshore project is
not a straightforward process. We studied over 200 cases from the literature and
interviewed practicing professionals involved in distributed teams, which resulted
in observing a number of solutions addressing common agile issues in offshore
software development settings, which we presented as Distributed Agile Patterns.

Table 13.2 Agile practices affected by offshore challenges

No. Offshore
challenge

Agile practice Affect of challenge on agile practice

1. Trust Collective
ownership

Dispute over code ownership among the
onshore and offshore team members

Sustainable pace Difficulties in maintaining a sustainable pace of
project development

2. Socio-cultural Iterative and
incremental
development

Delays in frequent delivery of code

Self-organising
teams

Problems in understanding each other’s cultural
and social values can cause a barrier in the
formation of self-organising teams

3. Communication
and coordination

Sprint planning As the team is distributed, due to lack of
sufficient communication, it can cause problems
is designing a correct sprint

Continuous
integration

Multiple versions of code developed at different
location can cause any build to break due to
errors being integrated in the code

4. Knowledge
transfer

Product backlog Any change in the product backlog not
documented correctly can cause a project to fail

Sprint review As the sprint is being developed at multiple
locations it causes problems in determining the
progress of the work done

294 M. Kausar and A. Al-Yasiri

The term “pattern” is commonly referred to as a reusable solution for a recurring
problem within a given context [6]. Based on this definition, we defined
Distributed Agile Patterns as, adaptation of an agile practice that is being
repeatedly applied in order to solve a recurring challenge in a distributed project
scenario.

Generally a pattern has four essential elements [6]:

• The pattern name: to give a high level of abstract to the pattern. It gives us the
idea of what problem the pattern is providing a solution for in a word or two.
Giving a name to a pattern makes it easy for us to talk about it with people and
for documentation.

• The problem: helps in describing when the pattern can be applied. It provides
details of the problem and its context. It may include lists of conditions or
scenarios, which must be met in order to apply the pattern.

• The solution: describes the elements that make up the agile patterns, their
relationships and responsibilities. The solution does not describe a particular
concrete agile practice or implementation, because a pattern is like a template
that can be applied in many different scenarios. A pattern does provide an

Table 13.3 Requirements engineering process affected by challenges of agile offshore
development

No. Challenges in agile
offshore development

Affect on requirements engineering process in agile
offshore development

1. Trust Establishing correct user story estimates as onshore team
does not have clear understanding of the skills of the
offshore team

Getting the main objective and core functional
requirements of the project clear to all the team members
located at different sites

2. Socio-cultural Differences in cultural values and language can cause
misunderstanding of requirements

As at the beginning of the project the client is not sure of
all the requirements, which can result in vague
requirements, which need to be later clarified to the teams
who are not on-site

3. Communication and
coordination

Changes in the requirements, needs to be communicated
to all the distributed teams. Any mistake in recording the
change can cause problems in the development of the
system

4. Knowledge transfer As the project is being developed at different locations,
there can be inconsistencies in the work done and
documented user stories

Maintaining bidirectional traceability of requirements
across different sites is difficult as each site is working on
different use stories

Managing requirements, on-site customer and daily
meetings become difficult with distributed teams

13 Using Distributed Agile Patterns for Supporting … 295

abstract description of an agile practice problem and how a general arrangement
of elements/practices can solve it.

• The consequence: describes the outcome of applying the pattern. They are
critical for evaluating a pattern and for understanding the benefit of applying a
pattern to see if it helped in solving the problem and if yes, up to what extent.
For software the consequence often refer to space and time trade-offs. In dis-
tributed agile patterns, the consequence includes flexibility, extensibility and
team coordination and collaboration.

The Distributed Agile Pattern’s catalogue is developed based on literature and
interviews and adopted Gamma’s pattern template in order to preserve familiarity,
as they are perceived as the first pattern catalogue documented by the software
community. A customised template was then developed to capture the specific
findings related to distribute agile practices. The distributed agile patterns template
contains the following sections:

• Pattern Name: As patterns represent generic knowledge it is vital to give a
good name that would make it recognisable and reusable. A good name also
helps in facilitating communication among practitioners about the pattern.

• Intent: A short statement that highlights the issues and problems that are
required to be solved by applying the pattern.

• Also known As: The pattern’s other well-known names, if any are mentioned in
this section.

• Category: Based on the similarities of the patterns we grouped them into dif-
ferent categories to be able to provide an abstract view of all the patterns.

• Motivation: It consists of the description of the problem and why the pattern
should be used in order to avoid the problem from recurring. It provides sce-
narios that help understand the abstract description of the pattern.

• Applicability: Under what conditions the pattern can be applied.
• Participants: The participants are those people that are required in applying the

pattern.
• Collaboration: How participants will coordinate with each other in order to

fulfil their responsibilities that are required to complete the projects.
• Consequences: Discuss the trade-offs of applying the patterns such as advan-

tages and difficulties faced when applying it.
• Known uses: Examples of real scenarios found that follow the pattern in order

to provide clarity of how the pattern can be used.
• Related Pattern: List of similar patterns in order to identify which patterns can

be used together to improve a particular situation.

Following is the summary of list of the identified distributed agile patterns [7]:

1. Distributed Scrum of Scrum Pattern: To apply scrum, sub-teams are formed
based on location. Each team has its own scrum. Scrum of scrum meetings are
arranged to discuss the progress of the project, which is attended by key people.

296 M. Kausar and A. Al-Yasiri

2. Local Standup Meetings Pattern: To discuss daily updates on work done,
each local team will conduct their own stand-up meetings.

3. Follow the Sun Pattern: Onshore and offshore teams will work 9 a.m–5 p.m
according to their own time zones.

4. Onshore Review Meeting: The onshore team will present the demo as they are
located where the client is.

5. Collective Project Planning: Both the onshore team and the offshore team will
collectively work in the project planning phase.

6. Project Charter Pattern: Before starting the project planning activity, agile
teams use project charter in order to have a central document between the
onshore and offshore team that defines the project.

7. Collaborative Planning Poker: Only Key people will hold this activity from
onshore and offshore team.

8. Global Scrum Board: There will be an online-shared Scrum board, which,
both onshore and offshore team can use to view product backlog, storyboard,
task board, burn down charts and other agile artefacts using online tools such as
wikis.

9. Local Sprint Planning: Each team will have their own sprint planning
meetings.

10. Local Pair Programming: Make pair programming teams from the same
location.

11. Central Code Repository: The whole team will maintain a central code
repository so that both team can see each other’s code and see the progress of
the work done.

12. Asynchronous Retrospective Meetings: Teams conduct separate retrospective
meetings based on location and share the key information via email. The Scrum
Masters discuss possible improvements with the team based on the feedback
from the client.

13. Asynchronous Information Transfer: Due to the time difference between the
onshore and offshore team use online tools to exchange information with each
other. Each team should response to queries within 12 h.

14. Synchronous Communication: In order to discuss issues the teams used
synchronous tools for voice, video conferencing, document sharing, application
sharing, etc.

15. Visit onshore–offshore Teams: Both onshore and offshore teams should
quarterly/annually visit each other in order to build trust, exchange cultural
values and improve team coordination.

Fifteen distributed agile patterns were identified and organised into four cate-
gories based on the type of problem they solve, which are management, com-
munication, collaboration and verification patterns. Table 13.4 shows the 15
distributed agile patterns according to their categories.

13 Using Distributed Agile Patterns for Supporting … 297

• Management patterns help in managing the onshore and offshore team
members and their activities to effectively apply agile in a distributed
environment.

• Communication patterns focus on providing solutions to how distributed team
members can maintain an effective communication channel in an agile setting
using different online tools which provide both synchronous and asynchronous
method for communication.

• Collaboration patterns provide solutions regarding which activities the
onshore and offshore team members should conduct together to improve team
coordination and project progress.

Table 13.4 Categories of distributed agile pattern

Category

Management
patterns

Communication
patterns

Collaboration
patterns

Verification
patterns

Pattern
names

Distributed scrum
of scrum

Global scrum board Collaborative
planning poker

Project charter

Local stand-up
meeting

Central code
repository

Follow-the-sun Onshore review
meeting

Local sprint
planning

Asynchronous
information transfer

Collective project
planning

Local pair
programming

Synchronous
communication

Visit onshore–
offshore

Asynchronous
retrospective

Fig. 13.2 Distributed agile patterns application of software development lifecycle

298 M. Kausar and A. Al-Yasiri

• Verification patterns focuses on how efficiently the clients can get a distributed
project developed according to their requirements and monitor the progress of
what has been developed.

The identified distributed agile patterns are spread across the Scrum software
development lifecycle as shown in Fig. 13.2. In this chapter we have only presented
the patterns that map to the requirements engineering process, however, the full
catalogue is available online [8].

13.5 Distributed Agile Patterns Used for Requirements
Engineering Process

In this section we present the selective Distributed Agile Patterns that are used in
the Requirements engineering process, which are further explained in the following
section showing how they are used to gather and document requirements.

13.5.1 Project Charter Pattern

In project management, a project charter is a statement that defines the scope,
objectives and participants of a project. It is used to explain the roles and
responsibilities, outline of the project objectives and identify main stakeholders. It
has been observed that while starting a distributed project using agile many
organisation use project charter to clarify the goals and objectives of the project to
both onshore and offshore team [8] (Table 13.5).

13.5.2 Collective Project Planning Pattern

Agile focuses on individuals and interactions over processes and tools. While
planning for the project the whole team is present. Unlike the traditional devel-
opment where a project manager hands a project plan to the team, in agile the whole
team takes part in the planning activity in order to determine when and how the
project will be developed. It has been observed that even if the project is of a
distributed nature it is better to co-locate the onshore and offshore teams for the
project planning activity. The motivation of this pattern is to address the trust,
socio-cultural, communication and coordination and knowledge transfer challenges.
For example, consider a team that is divided into sub-teams that are located on

13 Using Distributed Agile Patterns for Supporting … 299

different time zones and both the teams at the beginning of the project come to one
location to do the project planning activity; this helps the team members to
understand each other and establish working standards for the project. The detail
table for this pattern can be found in Appendix 1.

Table 13.5 Project charter pattern

No. Pattern
element

Detail

1. Pattern name Project charter pattern

2. Intent Before starting the project planning activity, agile teams use project
charter in order to have a central document between the onshore and
offshore team that defines the project

3. Also known
as

Project definition or project statement

4. Category Verification category, as this pattern helps the onshore and offshore team
to have a central document clarifying the project goals and objectives,
which is written by the product owner/client

5. Motivation The motivation of this pattern is to address the trust, communication and
coordination and knowledge transfer challenges. For example when a
project is distributed to a team that is divided over different time zones, a
central document is written known as the project charter, which clarifies
the onshore and offshore goals and objectives of the project. It also
identifies the roles and responsibilities of the onshore and offshore team.
The purpose of this activity is to have a document that helps the team in
the project planning task

6. Applicability Use project charter pattern when:
• Team is distributed over different time zones

7. Participants • Distributed onshore and offshore agile team
• Client

8. Collaboration The client gives the project charter to the onshore team and offshore
team to clarify the goals of the project

9. Consequences The project charter pattern has the following benefits:
1. It allows the onshore and offshore teams to understand the

project. This helps overcome communication and coordination, and
knowledge transfer challenges

2. Since it is a single document stating the goals and objectives of the
project it helps establish trust between the onshore and offshore team
members

3. It is intended to clearly set the stage for the project by aligning the
team and settings goals and expectations

10. Known uses IONA technologies used project charter for their distributed projects in
order to have a central document that clarifies the goals of the project to
both onshore and offshore team members [17]. Similarly in a case study
conducted by Brown [18] on Agile-at-Scale Delivery it was observed
that organisations use project charter

11. Related
patterns

Project charter pattern is often used with visit onshore–offshore team
pattern

300 M. Kausar and A. Al-Yasiri

13.5.3 Local Sprint Planning Meeting Pattern

In agile, a scrum consists of many sprints. The duration of a sprint varies from 1 to
4 weeks depending on the size of the project. At the start of every sprint the team
has a sprint planning meeting in which the team defines the goal of the sprint and
prepare the sprint backlog. When the team is divided and is working on different
modules of the project it has been observed that the onshore team members and
offshore team members conduct their own separate sprint planning meetings. The
motivation of this pattern is to address the communication and coordination and
knowledge transfer challenges. For example when a project is distributed to a team
that is divided over different time zones, it is better that each location has their own
sprint planning as it helps each team to decided their own tasks without having to
wait for the other teams to be present. The detail table for this pattern can be found
in Appendix 2.

13.5.4 Collaborative Planning Poker Pattern

An agile team plays a planning poker to put point estimation on each story card.
The product owner also takes part in this activity. He/She tells the team the intent
and value of a story card based upon which development team assigns estimation
on the card. Based on the points assigned, the team members who assigned the
lowest and highest estimation will justify their reasons. The team will have a brief
discussion on each story and assign a fresh estimation upon which the whole team
agrees on.

It has been observed that even when the team is distributed the planning poker
activity is conducted when both teams are co-located for the project planning
activity. The motivation of this pattern is to address the trust, socio-cultural,
communication and coordination and knowledge transfer challenges. For example
when a project is distributed over different locations, team members located at
different locations, do not know each other’s skill set so with the help of collab-
orative planning poker, each member can assign estimation points according to their
skills. The detail table for this pattern can be found in Appendix 3.

13.5.5 Global Scrum Board Pattern

Agile has many artefacts such as product backlog, sprint backlog, storyboard, task
board, team velocity and burndown charts which help the team in managing the
project. It has been observed that when the team is divided to different locations
they maintain an online record of all these artefacts so that they can share them with
each other using online tools such as Wiki’s, Rally and Jira [9–11]. The motivation

13 Using Distributed Agile Patterns for Supporting … 301

of this pattern is to address the trust, socio-cultural, communication and coordi-
nation and knowledge transfer challenges. As the team is distributed over different
time zones, any change in the requirements and sprint can be viewed in real time
with the help of the global scrum board. The detail table for this pattern can be
found in Appendix 4.

13.5.6 Central Code Repository Pattern

In agile, when a team is using Scrum and XP, the team members are divided in pairs
of two and are working on different tasks during a sprint. When a task is completed
the team members commit their code to a share repository for continuous inte-
gration of the code. It is observed that even when the team members are geo-
graphically apart they still use a share code repository where they commit their code
so that all the team members can see the code as well as determine the progress of
the project. The motivation of this pattern is to address the communication and
coordination and knowledge transfer challenges. As the team members are dis-
tributed over different locations, with the help of the central code repository, all the
team members can see the progress of the project. The detail table for this pattern
can be found in Appendix 5.

13.5.7 Asynchronous Information Transfer Pattern

Agile emphases on close face-to-face communication between the team members
rather than detailed documentation. When a team is distributed on different time
zones it has been observed that the teams adopted asynchronous tools for sharing
information with each other such as emails, Wikis, SharePoint. The motivation of
this pattern is to address the communication and coordination and knowledge
transfer challenges. Due to different time zones, the team members can use asyn-
chronous communication methods to share information with each other. The detail
table for this pattern can be found in Appendix 6.

13.5.8 Synchronous Communication Pattern

Agile emphases on close face-to-face communication between the team members
rather than detailed documentation. When a team is distributed on different time
zones it has been observed that the teams adopted asynchronous tools for sharing
information with each other such as emails, Wikis, SharePoint. The motivation of
this pattern is to address the trust, socio-cultural, communication and coordination
and knowledge transfer challenges. For example, in case of any confusion, team

302 M. Kausar and A. Al-Yasiri

members can communicate with each other using real time synchronous tools for
communication. The detail table for this pattern can be found in Appendix 7.

13.5.9 Visit Onshore–Offshore Team Pattern

As agile emphases on close face-to-face communication between the team members
it has been observed that when the team is divided on different time zones, the team
members travel quarterly or annually to visit each other. This activity helps build
trust among the team members and helps them understand each other’s cultural
differences [12–15]. The motivation of this pattern is to address the trust,
socio-cultural, communication and coordination and knowledge transfer challenges.
For example, in order to establish trust and understand each other’s culture, team
members should quarterly/annually travel and do team activities. The detail table
for this pattern can be found in Appendix 8.

13.6 Use of Distributed Agile Patterns in Requirements
Engineering Process in Agile Offshore Development

In order to verify and validate the identified distributed agile patterns, we conducted
a reflection workshop based on Norm Kerth [16], ‘The keep/try reflection
workshop’. Based on the workshop we designed Table 13.6, which shows how
Distributed Agile Patterns address requirements engineering challenges in offshore
development, which were mentioned in Table 13.3, to the relevant distributed agile
pattern addressing them.

13.7 Mapping Distributed Agile Patterns
on the Requirements Engineering Lifecycle

In this section we map the distributed agile patterns onto the traditional require-
ments engineering lifecycle, to show how these patterns facilitate the requirements
engineering process. As shown in Fig. 13.3, the four key features of this process are
as following:

• Feasibility Study: In this process, we decide whether or not the proposed
system is worthwhile. By writing down the Project Charter document in the
beginning of the project, we can achieve this. As stated in the Project Charter we
define the aim, objectives and core functional requirements of the proposed
system.

13 Using Distributed Agile Patterns for Supporting … 303

Table 13.6 Using distributed agile patterns to address requirements engineering challenges in
agile offshore development

No. Requirements challenge
in agile offshore
development

Distributed
agile
pattern

Solution

1. User story estimation Collective
planning
poker

By doing the planning poker activity
together all team members will get a better
understanding of each other’s skills

2. Objective and core
functional requirements

Project charter Having a project charter document written
at the start of the project, will give all the
team members a clear understanding of the
project’s objective and core functional
requirements

3. Misunderstanding of
requirements

Collective
project
planning

Since the whole team will be part of the
planning activity, the chances of
misunderstanding a requirement will be
reduced

Asynchronous
information
transfer

In case of any misunderstanding, the team
members can communicate with each other
using asynchronous tools

Synchronous
communication

For a real time response to any
misunderstanding, the team members can
use synchronous methods for
communication

4. Vague requirements Visit onshore–
offshore

To clarify vague requirements, onshore
team members should visit offshore team
members and vice versa to discuss the
requirements in order to avoid defects

5. Changes in the
requirements

Global scrum
board

Any change in the requirements will be
updated on the global scrum board, which
is accessible by all team members in real
time.

6. Inconsistencies Central code
repository

To avoid any inconsistency between the
work done and the user stories, all the team
members use a central code repository,
which is accessible by the whole team. All
the code is committed in that repository,
enabling the whole team to see what work
is done and what is remaining

7. Bidirectional traceability
of requirements

Central code
repository

With the help of a central code repository,
we can map each requirement with its code,
allowing traceability of all the requirements
being developed at different locations

Global scrum
board

Status of all requirements being developed
can be recorded using a global scrum board,
which helps in maintaining traceability of
requirements

8. Managing requirements Local sprint
planning

Each site can manage their requirements
and daily meetings using local sprint
planning

304 M. Kausar and A. Al-Yasiri

• Requirements Elicitation and Analysis: The purpose of this process is to
identify the application domain; the services it will provide and what are the
limitations. Three distributed agile patterns are applied in these phases.
Collaborative project planning helps the team to find out what the requirements
of the application to be developed. Local sprint planning helps team members in
their respective locations to discuss in detail the user stories allocated to them
and determine the constrains associated with them. Collaborative Planning
Poker, allows the team members to discuss the services that the system will
provide and estimate how much effort is required to develop them.

• Requirements Specification: Once the requirements have been identified, we
document them in the SRS document. As in agile software development,
requirements are documented using user stories, in distributed agile software
development; we use a Global Scrum Board, where all the story cards are
placed. Hence any change or modification in the requirements will be updated
on the Global Scrum Board, which is accessible by all the team in real time.

• Requirements Validation: In this process, the requirements are validated by
reviewing them to make sure that the identified requirements are in accordance
with what the client wants. Four distributed agile patterns make sure that the
correct requirements are identified. Central CodeRepository helps the client verify
that the code being developed is according to requirements. Asynchronous
Information Transfer provides a platform to the team members and the clients to
communicate and coordinate the progress of the system being developed and in
case of any confusion, the team can either use asynchronous or synchronous tools
for communication, according to the communication standards defined using

Fig. 13.3 Mapping distributed agile patterns on traditional requirements engineering process

13 Using Distributed Agile Patterns for Supporting … 305

Synchronous Communication Pattern. For further clarification of requirements,
distributed agile patterns suggest that both onshore and offshore team members
should visit each other.

13.8 Conclusions

In this chapter we have discussed the requirements engineering process and high-
lighted the issues practitioners face in agile offshore development such as incorrect
user story estimation, problems in identifying the core functional requirements and
vague requirements. Based on our observation and literature, we found that these
challenges affect the whole requirements engineering process. Using distributed
agile patterns, practitioners can avoid these challenges. They can use them at the
beginning of their offshore projects and make informed decisions about how to adopt
agile approaches to gather and document requirements, as generalised patterns make
it easier for other companies to reflect on and to apply the results to their own cases.

Appendix 1: Collective Project Planning Pattern

See Table 13.7.

Table 13.7 Detail of collective project planning pattern

No. Pattern
element

Detail

1. Pattern name Collective project planning pattern

2. Intent Both the onshore team and the offshore team will collectively work in
the project planning phase. Once both teams have engaged in the project
planning activity, the team will prepare the project backlog

3. Also known
as

Project planning or agile project planning

4. Category Coordination category, as this pattern helps the onshore and offshore
team to work together and come up with a project plan

5. Motivation The motivation of this pattern is to address the trust, socio-cultural,
communication and coordination and knowledge transfer challenges. For
example consider a team that is divided into sub-teams that are located
on different time zones and both the teams come to one location to do the
project planning activity. In the beginning of any distributed project, the
offshore team is invited to the onshore location so that they may work
together and understand each other’s requirements.

(continued)

306 M. Kausar and A. Al-Yasiri

Appendix 2: Local Sprint Planning Meeting Pattern

See Table 13.8.

Table 13.8 Detail of local sprint planning meeting pattern

No. Pattern
element

Detail

1. Pattern name Local sprint planning meeting pattern

2. Intent Each team will have their own sprint planning meetings

3. Also known
as

Sprint planning meeting or iteration meeting

4. Category Management category, as this pattern helps the onshore and offshore
teams work on their separate modules and conduct independent scrum
and sprint planning meetings

(continued)

Table 13.7 (continued)

No. Pattern
element

Detail

While the teams are co-located they worked on preparing the product
backlog and they spend at least one or two sprints together before the
offshore team leaves and starts working on the project [9, 15]. This helps
the onshore team by making the offshore team understand their working
style and work standard

6. Applicability Use collective project planning pattern when:
• Team is distributed over different time zones

7. Participants Distributed onshore and offshore agile team

8. Collaboration Onshore team and offshore team work together to make a product
backlog

9. Consequences The collective project planning pattern has the following benefits and
liabilities:
1. It allows the onshore and offshore teams to work together and

understand each other. This helps build trust among the team
members and overcome communication and coordination challenges

2. Onshore team works with the offshore team and makes them
understand what type of work they want. This helps overcome the
socio-cultural and knowledge transfer challenges

3. It adds additional cost of travel and stay of the offshore team at the
onshore location

10. Known uses FAST, a search company with headquarters in Norway while building a
search application on top of their core search platform used collective
project planning to co-locate the team and make them work together in
project planning activities [10]. Siemens also used collaborative
planning for their distributed projects [19, 20] in which team members
from multiple sites got involved in the early stages of the project in order
to create an open communication channel and high level of trust among
the distributed team members [21]

11. Related
patterns

Collective project planning pattern is often used with Project charter
pattern as it provides a central document that consists of the goal and
objectives of the project written by the client

13 Using Distributed Agile Patterns for Supporting … 307

Appendix 3: Collaborative Planning Poker Pattern

See Table 13.9.

Table 13.9 Detail of collaborative planning poker pattern

No. Pattern
element

Detail

1. Pattern name Collaborative planning poker pattern

2. Intent Only key people will hold this activity from onshore and offshore teams

3. Also known as Planning poker or scrum poker
(continued)

Table 13.8 (continued)

No. Pattern
element

Detail

5. Motivation The motivation of this pattern is to address the communication and
coordination and knowledge transfer challenges. For example when a
project is distributed to a team that is divided over different time zones,
and are working on different modules of the project and are conducting
their own scrums. As the onshore and offshore teams conduct their
separate scrums, they also conduct separate sprint planning meetings to
decide what they will develop during a sprint. Both teams prepare their
sprint backlogs, which are shared using online tools

6. Applicability Use local sprint planning meeting pattern when:
• Team is distributed over different time zones and is working on
different modules/subsystems of the project

7. Participants Distributed onshore and offshore agile team

8. Collaboration The onshore team and offshore team share sprint backlog with each other
to show the work they will be doing over the next sprint

9. Consequences The local sprint planning meeting pattern has the following benefits:
1. It allows both teams to work independently without having to wait

for the onshore team to be available to conduct the meeting, which
helps overcome the communication and coordination challenges

2. It provides control to both onshore and offshore team to work on
their scrum and conduct their own sprint planning meetings, which
avoids the offshore team from having to adjust working hours based
on the onshore team availability. This helps overcome the
communication and coordination challenges

3. Both teams can share their sprint backlog with each other, which
provides visibility of the project progress and helps overcome the
knowledge sharing challenges

4. As both the teams are working independently, it can cause the teams
to feel, as they are not part of one team, rather create an effect that
they are two separate teams

10. Known uses When CheckFree decided to move their work to an Indian offshore
consulting firm they used local sprint planning meetings to plan their
sprint activities [9]

11. Related
patterns

Local sprint planning pattern is often used with global scrum board
pattern as the meetings minutes of the planning meeting are shared with
both onshore and offshore team members

308 M. Kausar and A. Al-Yasiri

Appendix 4: Global Scrum Board Pattern

See Table 13.10.

Table 13.10 Detail of global scrum board pattern

No. Pattern
element

Detail

1. Pattern name Global scrum board pattern

2. Intent An online-shared Scrum board, will be used by, both onshore and offshore teams to
view the product backlog, storyboard, task board, burn down charts and other agile
artefacts using online tools

(continued)

Table 13.9 (continued)

No. Pattern
element

Detail

4. Category Collaborative category, as this pattern helps the onshore and offshore teams to
discuss the duration of a story card

5. Motivation The motivation of this pattern is to address the trust, socio-cultural,
communication and coordination, and knowledge transfer challenges. For
example when a project is distributed to a team that is divided over different
time zones, it is important that all the team members agree on the time
duration of a feature before they start developing the project. This helps
estimate the duration of the project completion as well as it provides visibility
of project progress. For this purpose the onshore and offshore team members
play planning poker in order to collectively agree on the estimation of a story
card. Once the estimation is decided they write it down and approved by the
product owner/client and move on to the next story card, till all the story
cards are estimated

6. Applicability Use planning poker pattern when:
• Team is distributed over different time zones and will be working on
different story cards in a sprint

7. Participants • Distributed onshore and offshore agile team
• Product owner/Client

8. Collaboration The client approves the estimation made by the team members

9. Consequences The planning poker pattern has the following benefits:
1. It allows the onshore and offshore teams to agree on a story card

estimation, which helps the team establish their team velocity. Since
members from both locations are present during this activity, this helps
overcome trust and socio-cultural challenges

2. It provides the product owner/client with estimation of project
completion, which helps overcome the communication and coordination,
and knowledge transfer challenges

3. If all team members do not agree on estimation on a story card it can lead
to a long discussion, resulting the planning poker to prolong

10. Known uses US hardware has development centres across North America, South America
and Asia. When transitioning to distributed agile environment they used
planning poker for estimating their story cards [22]

11. Related
patterns

Planning poker pattern is often used with Collective Project Planning as its
better to conduct this pattern when the whole team is co-located. The
estimated story cards are then shared on the Global Scrum board so that
whole team can view them during the project

13 Using Distributed Agile Patterns for Supporting … 309

Appendix 5: Central Code Repository Pattern

See Table 13.11.

Table 13.10 (continued)

No. Pattern
element

Detail

3. Also known
as

Scrum Board or Agile Story Board

4. Category Communication category, as this pattern helps the onshore and offshore team
communicate with each other using an online tool to view each other’s work and
understand the progress of the overall project

5. Motivation The motivation of this pattern is to address the trust, socio-cultural, communication
and coordination, and knowledge transfer challenges. For example when a project is
distributed to a team that is divided over different time zones, and are working on
different modules of the project, to share their work they use an online tool to display
agile artefacts. Based on the work done by both teams it is easier to see the progress
of the project and it helps understand if there is a problem with a team

6. Applicability Use global scrum board pattern when:
• Team is distributed over different time zones

7. Participants Distributed onshore and offshore agile team

8. Collaboration The onshore team and offshore team share agile artefacts with each other to show
their progress

9. Consequences The Global Scrum board pattern has the following benefits:
1. It allows the whole team to discover the requirements, which creates visibility of

the project and helps in overcoming trust challenges. The scrum board is
designed keeping the socio-cultural differences in mind

2. It allows the onshore and offshore teams to understand the progress of the
project, which helps overcome the communication and coordination challenges

3. It increases the visualisation of the work done by each team, which helps
overcome knowledge transfer challenges

10. Known uses FAST, a search company with headquarters in Norway while building a search
application on top of their core search platform experimented with a couple of online
tools to keep both teams updated with the progress of the project. They tired
XPlanner and Jira and settled for Jira, which is a web-based tool that allowed the
remote team members to view the backlog and update tasks whenever they wanted
[10]. Similarly in a study done by Cristal et al. [33] on an organisation that has
development centres across North America, South America and Asia concluded with
that the use of a global scrum board can help improve the productivity of global agile
teams. Similarly companies like Valtech [11], Telco [12], BNP Paribas [23],
Aginity LLC [24] and SirsiDynix [25] used online tools to share agile artefacts with
their offshore team members

11. Related
patterns

Global scrum board pattern is often used with central code repository pattern as the
team shares all the agile artefacts and code using an online tool

Table 13.11 Detail of central code repository pattern

No. Pattern
element

Detail

1. Pattern name Central code repository

2. Intent The whole team will maintain a central code repository so that both teams can
see each other’s code and view the progress of the work done

3. Also known
as

Source code repository or global build repository

(continued)

310 M. Kausar and A. Al-Yasiri

Appendix 6: Asynchronous Information Transfer Pattern

See Table 13.12.

Table 13.12 Detail of asynchronous information transfer pattern

No. Pattern
element

Detail

1. Pattern name Asynchronous information transfer

2. Intent Due to the time difference between the onshore and offshore teams, they use
online tools to exchange information with each other. Each team should
respond to queries within 12 h

3. Also known
as

Information transfer or knowledge sharing

(continued)

Table 13.11 (continued)

No. Pattern
element

Detail

4. Category Communication category, as this pattern helps the onshore and offshore team
members to write code and share it on a central code repository where all team
members can review the code and edit it if required

5. Motivation The motivation of this pattern is to address the communication and
coordination, and knowledge transfer challenges. For example when a team is
divided over different time zones and are working on different
modules/subsystems of a project they use a central code repository to share
their work with all team members. They can use online tools such as GitHub
for committing their code and maintain versions of the project [26]. This helps
the whole team to see the code and provides visibility of the project progress

6. Applicability Use central code repository when:
• Team is distributed over different time zones and is working on different
modules/subsystem of the project

7. Participants Distributed onshore and offshore agile team members

8. Collaboration The onshore team and offshore team members share a keyboard with a fellow
team member from their respective location and once they have finished a task
they commit their code to a central code repository

9. Consequences The central code repository pattern has the following benefits:
1. It allows the onshore and offshore team members to review each other’s

code, which helps overcome communication and coordination challenges
2. It helps in determining the progress of the project, which helps overcome

knowledge transfer challenges
3. As all the team is committing to a central repository, if a team commits

code with errors it can affect the whole build of the project

10. Known uses WDS global is a leading global provider of knowledge-based services to
mobile operators, manufacturers and application and sales channels. In 2004
they combined their developments, which were located in UK, USA and
Singapore. They shared their code on a central code repository to minimise
duplications and reduce cost of maintenance [27]. Many companies use central
code repository for their distributed projects such as Valtech [11], Manco [12].
Aginity LLC [24], SirsiDynix [25], Extol International [28], CE Informant
[29] and ABC Bank [30]

11. Related
patterns

Central code repository pattern is often used with Global Scrum Board Pattern

13 Using Distributed Agile Patterns for Supporting … 311

Appendix 7: Synchronous Communication Pattern

See Table 13.13.

Table 13.13 Detail of asynchronous information transfer pattern

No. Pattern
element

Detail

1. Pattern name Synchronous communication pattern

2. Intent In order to discuss issues the teams use synchronous tools for voice, video
conferencing, document sharing, application sharing, etc.

3. Also known
as

Synchronous knowledge transfer

(continued)

Table 13.12 (continued)

No. Pattern
element

Detail

4. Category Communication category as this pattern helps the onshore and offshore team
members to answer each other’s queries within 12 h

5. Motivation The motivation of this pattern is to address the communication and
coordination, and knowledge transfer challenges. For example when a team is
divided over different time zones they may have queries about work but due to
the time difference they cannot get a direct reply at that time so they use emails
to communicate queries, which are then answered within 12 h max.
Organisations have set standards for response time in order to avoid delays in
work [31]

6. Applicability Use asynchronous information transfer when:
• Team is distributed over different time zone

7. Participants Distributed onshore and offshore agile team members

8. Collaboration The onshore and offshore team members share information and ask queries
using asynchronous tools

9. Consequences The asynchronous information transfer pattern has the following benefits:
1. It allows the onshore and offshore team members to exchange information

when synchronous communication cannot be conducted due to working
hour’s time difference. This helps overcome the knowledge transfer
challenges

2. It frees team members from waiting for an onshore team member
availability to ask a query. This helps overcome the communication and
coordination challenges

3. If the team members do not respond timely it can cause delays in the project

10. Known uses VTT Technical Research Centre of Finland and National University of Ireland
conducted a research on two organisations that were developing a system
together. One organisation was a customer organisation in U.S and the other
organisation was a development organisation located in Ireland. Based on their
findings the companies used asynchronous tools for communication. They used
Wikis for storing documents and meeting minutes and used Emails for
decisions and queries [32]. Similarly Valtech used Twiki for asynchronous
communication [11]

11. Related
patterns

Asynchronous information transfer pattern is often used with global scrum
board and synchronous communication pattern

312 M. Kausar and A. Al-Yasiri

Appendix 8: Visit Onshore–Offshore Team Pattern

See Table 13.14.

Table 13.14 Detail of visit onshore–offshore pattern

No. Pattern
element

Detail

1. Pattern name Visit onshore–offshore team pattern

2. Intent Both onshore and offshore teams should quarterly/annually visit each
other in order to build trust, exchange cultural values and improve team
coordination

(continued)

Table 13.13 (continued)

No. Pattern
element

Detail

4. Category Communication category, as this pattern helps the onshore and offshore team
members to answer each other’s queries within 12 h

5. Motivation The motivation of this pattern is to address the trust, socio-cultural,
communication and coordination and knowledge transfer challenges. For
example, when a team is divided over different time zones they may have
queries about work but due to the time difference they cannot get a direct reply
at that time so they use emails to communicate queries, which are then
answered within 12 h max. Organisations have set standards for response time
in order to avoid delays in work [31]

6. Applicability Use synchronous communication pattern when:
• Team is distributed over different time zones

7. Participants Distributed onshore and offshore agile team members

8. Collaboration The onshore team and offshore team members share information and ask
queries using asynchronous tools

9. Consequences The synchronous communication pattern has the following benefits:
1. It allows onshore and offshore team members to exchange information

when synchronous communication cannot be conducted due to working
hour time difference. This helps overcome knowledge transfer,
communication and coordination challenges

2. Team members can ask each other questions which build trust and help
understand each other’s socio-cultural differences, which helps overcome
trust and socio-cultural challenges

3. It frees team members from waiting for an onshore team member
availability to ask a query. This helps overcome the communication and
coordination challenges

4. If the team members do not respond timely it can cause delays in the
project

10. Known uses CampusSoft is a UK based company that used synchronous communication
when they moved to agile with their offshore suppliers in India and Romania.
They used video conferencing facilities for planning sessions and later shifted
to WebEx sessions and Go To Meeting so that they could share desktops with
the remote team members. For daily Scrum meetings they preferred to use
Skype call and made everyone wear headsets to make the meeting easier. For
sprint review meetings they used sharing desktop tools as well as conference
phones so that members from both end could talk with each other [13]

11. Related
patterns

Synchronous communication pattern is often used with global scrum board
and asynchronous information transfer pattern

13 Using Distributed Agile Patterns for Supporting … 313

Table 13.14 (continued)

No. Pattern
element

Detail

3. Also known
as

Travel onshore–offshore

4. Category Collaboration category, as this pattern helps the onshore and offshore
team members to co-locate and understand each other and build a
relationship, which improves team coordination

5. Motivation The motivation of this pattern is to address the trust, socio-cultural,
communication and coordination, and knowledge transfer challenges.
For example when a team is divided on different time zones they do not
feel that they are both part of one team and they do not trust each other.
They do not understand each other’s cultural values and work ethics. In
order to solve these issues the onshore and offshore teams visit each
other to develop the feeling of trust and understand each other’s cultural
and working values. During these visits they attend training together as
well as engage with informal activities to better understand each other.
This helps build a bond between the team members, which results in
good team coordination

6. Applicability Use visit onshore–offshore team when:
• Team is distributed over different time zones

7. Participants Distributed onshore and offshore agile team members

8. Collaboration The onshore and offshore team members visit each other to improve
team coordination

9. Consequences The visit onshore–offshore Team pattern has the following benefits and
limitations:
1. It allows onshore and offshore team members to exchange cultural

values with each other and work ethics. This helps overcome
socio-cultural and communication and coordination challenges

2. It helps team members to feel they are part of one team, which
develops trust among onshore and offshore team members. This
helps overcome trust and knowledge transfer challenges

3. The travelling adds additional cost to the project budget

10. Known uses Ericsson is a Swedish multinational provider of communications
technology and services. To build a XaaS platform and a set of services
they used agile software development methodologies. The development
team was distributed over 5 sites located in 3 countries. Four of the sites
were located in Europe and one was located in Asia. They conducted
workshops, which were attended by team members from different
locations. The purpose of these workshops was to create a common
vision for the whole organisation by setting common values as well also
to improve the collaboration between the sites, thus build trust [14]

11. Related
patterns

Visit onshore–offshore team pattern is often used with collective project
planning pattern as planning is better done when the whole team is
co-located

314 M. Kausar and A. Al-Yasiri

References

1. Agile Requirements Change Management [Accessed on: 24th Oct 2016] http://agilemodeling.
com/essays/changeManagement.htm.

2. Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M.,… &
Thomas, D. (2001). Manifesto for agile software development.

3. Abrahamsson, Pekka, Juhani Warsta, Mikko T. Siponen, and Jussi Ronkainen (2003). “New
directions on agile methods: a comparative analysis.” In Software Engineering, 2003.
Proceedings. 25th International Conference on, pp. 244–254. IEEE.

4. Taylor, Philip S., Des Greer, Paul Sage, Gerry Coleman, Kevin McDaid, and Frank Keenan
(2006). “Do agile GSD experience reports help the practitioner?.” In Proceedings of the 2006
international workshop on Global software development for the practitioner, pp. 87–93.
ACM.

5. Šmite, Darja, Nils Brede Moe, and Pär J. Ågerfalk (2010). “Fundamentals of Agile
Distributed Software Development.” In Agility Across Time and Space, pp. 3–7. Springer
Berlin Heidelberg.

6. Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994). Design patterns: elements of
reusable object-oriented software. Pearson Education.

7. Kausar, Maryam and Adil Al-Yasiri. “Distributed Agile Patterns for Offshore Software
Development” 12th International Joint Conference on Computer Science and Software
Engineering (JCSSE), IEEE 2015.

8. Distributed Agile Patterns. [Accessed on: 24th Oct 2016] http://stp872.edu.csesalford.com/
distributedagilepatterns.html.

9. Cottmeyer, Mike. “The good and bad of Agile offshore development.” In Agile, 2008.
AGILE’08. Conference, pp. 362–367. IEEE, 2008.

10. Berczuk, Steve. “Back to basics: The role of agile principles in success with an distributed
scrum team.” In Agile Conference (AGILE), 2007, pp. 382–388. IEEE, 2007.

11. Danait, Ajay. “Agile offshore techniques-a case study.” In Agile Conference, 2005.
Proceedings, pp. 214–217. IEEE, 2005.

12. Ramesh, Balasubramaniam, Lan Cao, Kannan Mohan, and Peng Xu. “Can distributed
software development be agile?.” Communications of the ACM 49, no. 10 (2006): 41–46.

13. Summers, Mark. “Insights into an Agile adventure with offshore partners.” In Agile, 2008.
AGILE’08. Conference, pp. 333–338. IEEE, 2008.

14. Paasivaara, Maria, Sandra Durasiewicz, and Casper Lassenius. “Using scrum in distributed
agile development: A multiple case study.” In Global Software Engineering, 2009. ICGSE
2009. Fourth IEEE International Conference on, pp. 195–204. IEEE, 2009.

15. Therrien, Elaine. “Overcoming the Challenges of Building a Distributed Agile Organization.”
In AGILE, pp. 368–372. 2008.

16. Kerth, Norm. “Project Retrospectives: A Handbook for Reviews.” Dorset House Publishing
(2001).

17. Poole, Charles J. “Distributed product development using extreme programming.” In Extreme
Programming and Agile Processes in Software Engineering, pp. 60–67. Springer Berlin
Heidelberg, 2004.

18. Brown, Alan W. “A case study in agile-at-scale delivery.” In Agile Processes in Software
Engineering and Extreme Programming, pp. 266–281. Springer Berlin Heidelberg, 2011.

19. Avritzer, Alberto, and Daniel J. Paulish. “A comparison of commonly used processes for
multi-site software development.” In Collaborative Software Engineering, pp. 285–302.
Springer Berlin Heidelberg, 2010.

20. Avritzer, Alberto, William Hasling, and Daniel Paulish. “Process investigations for the global
studio project version 3.0.” In Global Software Engineering, 2007. ICGSE 2007.
Second IEEE International Conference on, pp. 247–251. IEEE, 2007.

13 Using Distributed Agile Patterns for Supporting … 315

http://agilemodeling.com/essays/changeManagement.htm
http://agilemodeling.com/essays/changeManagement.htm
http://stp872.edu.csesalford.com/distributedagilepatterns.html
http://stp872.edu.csesalford.com/distributedagilepatterns.html

21. Avritzer, Alberto, Francois Bronsard, and Gilberto Matos. “Improving Global Development
Using Agile.” In Agility Across Time and Space, pp. 133–148. Springer Berlin Heidelberg,
2010.

22. Wildt, Daniel, and Rafael Prikladnicki. “Transitioning from Distributed and Traditional to
Distributed and Agile: An Experience Report.” In Agility Across Time and Space, pp. 31–46.
Springer Berlin Heidelberg, 2010.

23. Massol, Vincent. “Case Study: Distributed Agile Development.” TheServerSide.com (2004).
24. Armour, Phillip G. “Agile… and offshore.” Communications of the ACM 50, no. 1 (2007):

13–16.
25. Sutherland, Jeff, Anton Viktorov, Jack Blount, and Nikolai Puntikov. “Distributed scrum:

Agile project management with outsourced development teams.” In System Sciences, 2007.
HICSS 2007. 40th Annual Hawaii International Conference on, pp. 274a–274a. IEEE, 2007.

26. Räty, Petteri, Benjamin Behm, Kim-Karol Dikert, Maria Paasivaara, Casper Lassenius, and
Daniela Damian. “Communication Practices in a Distributed Scrum Project.” CoRR (2013).

27. Yap, Monica. “Follow the sun: distributed extreme programming development.” In Agile
Conference, 2005. Proceedings, pp. 218–224. IEEE, 2005.

28. Kussmaul, Clifton, Roger Jack, and Barry Sponsler. “Outsourcing and offshoring with agility:
A case study.” In Extreme Programming and Agile Methods-XP/Agile Universe 2004,
pp. 147–154. Springer Berlin Heidelberg, 2004.

29. Bose, Indranil. “Lessons learned from distributed agile software projects: A case-based
analysis.” Communications of the Association for Information Systems 23, no. 1 (2008): 34.

30. Modi, Sunila, Pamela Abbott, and Steve Counsell. “Negotiating common ground in
distributed agile development: A case study perspective.” In Global Software Engineering
(ICGSE), 2013 IEEE 8th International Conference on, pp. 80–89. IEEE, 2013.

31. Vax, Michael, Stephen Michaud, “Distributed Agile: Growing a Practice Together,” AGILE
Conference, pp. 310–314, Agile 2008, 2008.

32. Korkala, Mikko, Minna Pikkarainen, and Kieran Conboy. “Combining agile and traditional:
Customer communication in distributed environment.” In Agility Across Time and Space,
pp. 201–216. Springer Berlin Heidelberg, 2010.

33. Cristal, Mauricio, Daniel Wildt, and Rafael Prikladnicki (2008). “Usage of Scrum practices
within a global company.” In Global Software Engineering, 2008. ICGSE 2008. IEEE
International Conference on, pp. 222-226. IEEE, 2008.

316 M. Kausar and A. Al-Yasiri

http://TheServerSide.com

Index

A
Access control, 33, 40, 53, 55, 58, 187
Access rate, 74
Accountability, 37
Actors, 126
Adaptability requirements, 189
Agile, 291–296, 298–305
API security, 186
Architectural elements (process-level)

(AEpc’s), 251–256, 258, 260, 261
Architecturally significant requirements

(ASRs), 184
Architecture

minimum viable, 17
partitioning, 251, 260
requirements and, 16

ARSM approach, 67, 71, 79, 80, 83, 85
ASR classification, 191
ASRs’ change impact analysis, 195
Assurance, 37
Asynchronous information transfer pattern,

302, 311
Attackers and threats, 215
Automated security validation based on

specific security test patterns, 226
Automotive embedded control unit (ECU), 218
Autonomic requirements, 55
Availability, 37, 75, 84

constraints, 186
requirements, 186

B
Behavioral analysis, 122, 124, 144
Billing

account, 29, 39
frequency, 29
requirements, 189

Bounce access rate, 74

Boundedness, 121, 123, 131, 133, 135, 138,
146

Business process model and notation (BPMN),
152, 153, 156, 166, 168, 169, 174, 176,
177, 236

Business paradigm, 48
Business process execution language

(WS-BPEL), 237

C
Central code repository pattern, 302, 310
Centralized repository, 273
Change management, 155
Cloud

agent (CA), 125, 129
bus (CB), 125, 127
checklist, 115
computing, 91, 92, 94, 100, 121–123, 248,

264, 267
computing community, 49
-enabled software application, 92, 99, 108
enterprise service bus (CESB), 125
-hosted services interoperability, 188
infrastructure management, 95, 113
-native software application, 92, 108
requirements, 46–50, 53, 54, 57, 60
resources, 182
systems management requirements, 191
universal description discovery and

integration (CUDDI), 125, 127–130,
133, 137

Collaborative planning poker pattern, 301, 308
Collective project planning pattern, 299, 306
Communication and collaboration

requirements, 194
Communication and coordination, 294, 295
Compliance dimension, 27, 29, 31–33, 40, 41,

58, 60
Consumers, 65–71, 73, 76, 77, 80, 83, 85

© Springer International Publishing AG 2017
M. Ramachandran and Z. Mahmood (eds.), Requirements Engineering
for Service and Cloud Computing, DOI 10.1007/978-3-319-51310-2

317

Consumer’s perspective, 66, 68, 69
Containerization, 93, 97, 99, 109, 110
Context-free grammar, 158, 160
Contractual dimension, 27, 28, 39, 41, 57, 60
Cyber security analysis process, 215

D
Data and services isolation requirements, 190
Data location, 33
Data security, 186
Default priority constraints, 65, 71, 85
Different workflow patterns, 279
Distributed agile patterns, 291, 294, 295, 298,

299, 303–305
Dotcom-monitor

network latency, 281
Dynamic

composition, 272
requirements, 47, 60
service choreography, 152, 155, 169, 177

E
EARS, 152, 154, 156, 158, 160, 161
Effective service access time, 76
Elasticity, 35, 38, 40, 42

requirements, 185
Emergent architecture, 8
Enterprise cloud bus petri-net (ECBP), 124,

131
Enterprise cloud bus system (ECBS), 121, 125,

126
Enterprise service bus (ESB), 125, 152, 170,

156, 170, 172
Enterprise software applications, 122, 123
Execution

duration, 67
trace, 280

External quality, 12

F
Failure access rate, 74
Feasibility study, 303
Feature creep, 19
Financial dimension, 27, 29–31, 39, 41, 58, 60
Flowgeneration algorithm, 168
Four-Step-Rule-Set (4SRS), 249, 250, 252,

259, 262, 265
Functional requirements (FR), 111, 113, 230

G
Gap filling, 252
Global scrum board pattern, 301, 309

H
Hierarchical task network (HTN), 235
Hierarchical universal description discovery

and integration (HUDDI), 125, 127–130
High-level Enterprise Cloud Bus Petri-net

(HECBP), 121, 124, 131, 133, 145
Human communication, 16
Hypervisors, 99

I
Identity management, 33
Incident management, 35
Information system logical architecture, 248,

249, 251, 259, 260, 266
Infrastructure as a Service, 46, 48
Internal quality, 12
Interoperability requirements, 188

J
Jurisdiction, 33, 35, 40, 58

K
Knowledge transfer, 294, 295

L
Legal compliance, 31, 33
Life span of a CWS, 274
Listening, 19
Liveness, 121, 123, 131, 133, 136, 138, 146
Local sprint planning meeting pattern, 301, 307
LOGGER, 125, 127, 129, 130, 133

M
MAPPER, 125, 127, 129, 130
Markov decision process (MDP), 231, 236,

239, 242, 243
Mashed UCs, 250, 253, 255, 258, 261
Measurement, 37
Model

generator, 162
transformations, 249

Monitoring
metrics, 185
requirements, 189, 195

Multi-agent system (MAS), 123, 126, 128, 141
Multi-cloud architecture, 121, 122
Multi-CloudEnv, 126, 127
Multi-tenancy requirements, 190

N
Negative QoS attribute, 278
Non-functional

318 Index

parameters, 65–69, 71, 73, 76–80, 83, 85
properties, 272
requirements (NFR), 90, 111, 113, 114,

230, 236, 240

O
One time query, 274
Operational dimension, 27, 34, 35, 40, 41, 58,

60
Organization’s culture, 15
Original actors inclusion, 252, 254, 261
Overall aggregated effective quality of service,

65, 76

P
Payment type, 30
PCB-QoS classification, 65–67, 71, 79, 85
PCB-QoS parameters, 74, 77
Performance, 37, 38
Performance metrics, 272
Persistence layer interoperability, 188
Planning domain definition language (PDDL),

235
Platform as a service, 46, 48, 54
Policy-centred metamodel, 68
Premium registries, 273
Privacy, 48, 51, 53, 55, 58
Privacy requirements, 187
Probability score formula, 198
Process-level architectural elements (AEpc’s),

251–253, 255–257, 260, 267
Process-level requirements, 248, 249, 252, 259,

262, 265
Product-level requirements, 248, 249, 252,

261, 265, 266
Product-level use cases (UCpt’s), 251, 253
Project charter pattern, 297, 299, 300
Provider agent (PA), 125, 128

Q
Quality of service (QoS), 65, 230–233,

237–240, 243
-aware middleware, 67
-aware optimal solution, 275
broker, 67
classification, 65–67, 69, 71, 73, 74, 79, 85
evaluation and monitoring, 69
model extendibility, 69, 70
parameters, 65–69, 71, 73, 77–79, 81, 83,

85
Quality attribute, 212
Query/View/Transformation (QVT), 249, 255,

261, 262, 264, 266, 267

R
Ranking, 65–67, 69–71, 73, 79, 80, 83, 85
Reachability, 133, 135, 139
Reactive adaptation, 231, 236
Redundancy elimination, 252, 253
Reinforcement learning (RL), 231, 239
Relation, 126
Reliability, 75, 84
Reputation, 67, 70, 73, 83
Request for

information, 7
for proposal, 7
for quotation, 7

Requirement
ambiguous, 6
analysis, 48
architecturally significant, 8
assumptions in, 8
classification, 158
domain or system specific, 6
elicitation, 11, 89–92
elicitation and analysis, 305
engineering (RE), 230, 231, 233, 234, 248,

264, 267, 294, 295, 299, 303, 305
functional and nonfunctional, 6
IEEE 830 format, 7
main problem areas, 10
management, 48
parser, 153, 156, 158, 161
parser and analyser, 152, 158
specification, 48, 305
true, 6
validation, 48, 305
volatility, 11

Resource (RES), 125
monitoring requirements, 190
termination safety requirements, 190

Response time, 75
Risk analysis, 35
Runtime property, 35
Runtime QoS aggregation, 69, 70

S
SaaS, 3, 4, 6, 8, 10, 14, 15
Safeness, 121, 123, 131, 133, 136, 139, 146
Scalability, 35, 38
Scalability requirements, 185
Scheduling agent (SA), 125, 130
Search for an optimal solution

exact algorithms, 275
Search space, 272
Security

compliance, 31, 32

Index 319

liabilities, 186
requirements, 55, 186
validation, 225

Selective query approach, 276
Self-adaptation (self-*), 232
Self-adaptation Software (SAS), 231, 234, 236,

240
Service

broker’s perspective, 73
composition requirements, 189
contract, 29, 37
description, 29, 34–36, 40
discovery module, 273
layer interoperability, 188
level agreement, 29, 35, 36, 39
level agreement requirements, 189
-oriented architecture (SOA), 73, 122, 230,

248, 249, 264, 267
-oriented computing, 122
-oriented logical architecture, 249, 250,

262–264, 267
-oriented requirements engineering

(SORE), 229–231
providers’ perspective, 73
registry/broker, 276
version database, 152, 154, 156, 157, 170,

172, 176
version discovery, 170, 174

SLA, 66
Small and medium-sized enterprises, 48
Socio-cultural, 294, 295
Software

-as-a-Service (SaaS), 46, 48, 54, 121, 122,
140, 248, 249, 259, 260

-defined data center (SDDC), 93
-defined environments (SDEs), 98, 99, 107,

117
-defined infrastructures (SDI), 98, 99
-defined networking (SDN), 102–104, 110,

115
-defined storage (SDS), 104–107

Static composition, 272
Successful access rate, 75
Support for forensic, 33

Synchronous communication pattern, 302, 306,
312

T
Technical dimension, 27, 36, 40, 41, 59
Traceability, 152, 155, 157, 174, 176

graph, 174
rules, 174

Transition (between perspectives), 249, 265,
266
rules, 251, 252, 255, 256
steps, 251, 260, 261, 266
use cases (UCtr’s), 253–257, 267

Trust, 294, 295
Tukey fences, 278

U
UDDI registry, 152, 154, 157
Unified modeling language (UML), 236, 237,

248, 265–267
Usability, 38
Use case

(diagrams), 249, 250, 266
(Product-level) (UCpt’s), 250–253
(Transition) (UCtr’s), 252, 261
transformation, 251, 254

Utility function, 66

V
V+V Model, 249
Variability of QoS (vQoS), 237, 241
Virtualization, 93, 94, 97–101, 104, 105, 109,

110, 116
Visit onshore–offshore team pattern, 303
V-Model, 248–251, 259–261, 267
Vulnerabilities, 224
VxBPEL, 237, 238

W
Weakest link, 272
Web service, 65–69, 71, 74, 77, 78, 81, 83,

229–232, 235
Web service composition (WSC), 67, 230–233,

235–243

320 Index

	Preface
	Overview
	Objectives
	Organization
	Target Audiences

	Acknowledgements
	Contents
	About the Editors

	Other Springer Books by the Editors
	Requirements Elicitation for Service and Cloud Computing
	1 What We Say We Want and What We Really Need: Experiences on the Barriers to Communicate Information System Needs
	Abstract
	1.1 Introduction
	1.2 The Challenging Role of the Requirements
	1.3 What We Say We Want and Why
	1.4 What We Truly Need
	1.4.1 Problems of Scope
	1.4.2 Problems of Volatility
	1.4.3 Problems of Observed Quality
	1.4.4 Problems of Expected Quality
	1.4.5 Problems of Quantity

	1.5 Barriers to Communication
	1.5.1 Barriers at the Customer Interface
	1.5.2 Internal Barriers
	1.5.3 Human Barriers

	1.6 Requirements and Architecture
	1.7 Guidelines for the Transformation
	1.8 Conclusions
	References

	2 Cloud Dimensions for Requirements Specification
	Abstract
	2.1 Introduction
	2.2 Background
	2.3 Cloud Dimensions, Requirements, and Capabilities
	2.3.1 Contractual Dimension
	2.3.2 Financial Dimension
	2.3.3 Compliance Dimension
	2.3.4 Operational Dimension
	2.3.5 Technical Dimension

	2.4 Sample Scenario: The Security Guard Company
	2.5 Conclusions
	References

	3 Analyzing Requirements Engineering for Cloud Computing
	Abstract
	3.1 Introduction
	3.2 Background
	3.3 Literature Review
	3.4 Discussions
	3.5 Sample Scenario: Sales Company
	3.6 Conclusions
	References

	4 Classification of Non-functional Requirements of Web Services from Multiperspective View
	Abstract
	4.1 Introduction
	4.2 Literature Review
	4.3 Comparison of Various QoS Models
	4.4 PCB-QoS Classification
	4.4.1 Perspectives of PCB-QoS Classification
	4.4.2 PCB-QoS Parameters
	4.4.3 Monitoring and Evaluation Algorithm for PCB-QoS Parameters

	4.5 ARSM Approach
	4.5.1 Scaling QoS Parameters Value
	4.5.2 Assigning Default Priority Constraints
	4.5.3 Computation of OQS

	4.6 Implementation
	4.7 Experimental Evaluation
	4.8 Summary
	References

	5 The Requirements Elicitation Approaches for Software-Defined Cloud Environments
	Abstract
	5.1 Recollecting the Requirements Engineering Process
	5.2 The Literature Survey
	5.3 Reflecting the Cloud Journey
	5.4 Elucidating the Cloudification Process
	5.5 The IT Commoditization and Compartmentalization
	5.6 The Emergence of Software-Defined Infrastructures (SDI)
	5.7 The Major Building Blocks of Software-Defined Clouds (SDCs)
	5.8 Network Functions Virtualization (NFV)
	5.9 Accentuating Software-Defined Storage (SDS)
	5.10 The Key Benefits of Software-Defined Clouds (SDCs)
	5.11 The Requirements Gathering Steps for Software-Defined Clouds
	5.12 Integration Requirements
	5.13 Conclusion
	References

	Requirements Specification for Service and Cloud Computing
	6 Formal Modeling of Enterprise Cloud Bus System: A High Level Petri-Net Based Approach
	Abstract
	6.1 Introduction
	6.2 Related Research
	6.3 Multi-agent Based Inter-cloud Architecture (ECBS)
	6.3.1 Building Blocks of ECBS
	6.3.2 Formalization of ECBS
	6.3.3 Conceptualization of ECBS in MAS Architecture
	6.3.4 Structural Analysis of ECBS
	6.3.5 ECBS Elements in MAS Architecture

	6.4 High-Level Enterprise Cloud Bus Petri-Net (HECBP)
	6.4.1 Definition: High-Level Enterprise Cloud Bus Petri-Net (HECBP)
	6.4.2 HECBP Elements: Places and Transitions

	6.5 Analysis of ECBS Based on HECBP
	6.5.1 HECBP-Based Analysis of ECBS
	6.5.2 Simulation of HECBP
	6.5.3 HECBP Simulation Through CPN Tool
	6.5.4 State Space Analysis

	6.6 Future Research Directions
	6.7 Conclusion
	References
	Additional References

	7 Requirements to Services: A Model to Automate Service Discovery and Dynamic Choreography from Service Version Database
	Abstract
	7.1 Introduction
	7.2 Review of Literature
	7.2.1 Requirement Formalization
	7.2.2 Service Versioning and Dynamic Service Discovery
	7.2.3 Traceability of Requirements

	7.3 Scope of Work
	7.4 Requirement Parser and Analyzer
	7.4.1 Requirement Classification
	7.4.2 Context-Free Grammar
	7.4.3 Requirement Parser
	7.4.4 Model Generator: Generation of Activity Model for a Requirement Scenario

	7.5 Activity Model to BPMN Transformation
	7.5.1 Transformation Rules
	7.5.2 Algorithm NodeGeneration to Generate BPMN Node
	7.5.3 Algorithm FlowGeneration to Generate the Flow Between BPMN Nodes

	7.6 Service Version Discovery Based on BPMN Model
	7.6.1 Service Version Database (SVD)—ER Mapping
	7.6.2 Discovery of Services from ESB Based on SVD

	7.7 Service Version Discovery Based on BPMN Model
	7.7.1 Traceability Graph (TG)
	7.7.2 Traceability Rules
	7.7.3 R2S: Traceability from Requirements to Services

	7.8 Conclusion
	References

	8 Architecturally Significant Requirements Identification, Classification and Change Management for Multi-tenant Cloud-Based Systems
	Abstract
	8.1 Introduction
	8.2 Architecturally Significant Requirements of the Cloud-Based Systems
	8.2.1 Scalability
	8.2.2 Elasticity
	8.2.3 Availability
	8.2.4 Security
	8.2.5 Privacy
	8.2.6 Interoperability
	8.2.7 Service Level Agreement (SLA) Compliance

	8.3 Relationship of the Architecturally Significant Requirements with Multi-tenancy Quality Characteristics
	8.4 A Classification Scheme for Management of Architecturally Significant Requirements
	8.4.1 System Management Requirements for Hosted Services and Data
	8.4.1.1 Quality Specific Provisioning
	8.4.1.2 Interoperability and Integration Requirements
	8.4.1.3 Security and Privacy Requirements

	8.4.2 Communication and Collaboration Requirements
	8.4.3 Monitoring Requirements

	8.5 A Probabilistic Analysis Method to Analyze Impact of Changes in Architecturally Significant Requirements
	8.6 Related Work
	8.7 Conclusions
	Acknowledgements
	References

	Requirements Validation, Evaluation, and QoS for Service and Cloud Computing
	9 Cyber Security Requirements Engineering
	Abstract
	9.1 Introduction
	9.2 Cyber Security Requirements
	9.3 Risk-Oriented Security
	9.4 Industry Case Study
	9.5 Security Requirements Elicitation
	9.6 Security Analysis
	9.6.1 Threat Analysis
	9.6.2 Risk Assessment

	9.7 Security Design
	9.7.1 Security Functionality with Minimal Resource Impact
	9.7.2 Composition of the Layers
	9.7.3 Implementing Security Functionality

	9.8 Security Validation
	9.9 Relevance and Outlook
	References

	10 Appraisal and Analysis of Various Self-Adaptive Web Service Composition Approaches
	Abstract
	10.1 Introduction
	10.2 Self-Adaptive WSC
	10.3 RE for Self-Adaptive Systems
	10.4 Requirements Specification Models in WSC
	10.5 Classification of Self-Adaptive WSC Approaches
	10.5.1 Used of Variability Models
	10.5.1.1 Architecture Level
	10.5.1.2 Implementation Level

	10.5.2 Context-Awareness
	10.5.3 Multi-Agent Approaches

	10.6 Comparison and Limitations of Self-Adaptive WSC Approaches
	10.7 Conclusion and Future Work
	References

	11 Transition from Information Systems to Service-Oriented Logical Architectures: Formalizing Steps and Rules with QVT
	Abstract
	11.1 Introduction
	11.2 The V+V Model
	11.3 Steps and QVT Rules for Transition Between V-Models
	11.4 Demonstration Case on the Transition Process
	11.5 Comparison with Related Work
	11.6 Conclusions
	References

	12 Improving the QoS of a Composite Web Service by Pruning its Weak Partners
	Abstract
	12.1 Introduction
	12.2 Problem Definition
	12.2.1 Motivating Example

	12.3 Related Work
	12.4 Research Methodology
	12.4.1 The Statistics
	12.4.2 Identifying the Outlier(s)
	12.4.3 Analyze the Influence of the Outlier

	12.5 Results and Analysis
	12.5.1 Experiment 1

	12.6 Effectiveness
	12.7 Efficiency
	12.8 Quality of the Solution
	12.8.1 Experiment 2

	12.9 Quality of the Solution
	12.10 Efficiency
	12.11 Scalability
	12.12 Limitations of the Study
	12.13 Conclusions
	References

	13 Using Distributed Agile Patterns for Supporting the Requirements Engineering Process
	Abstract
	13.1 Introduction
	13.2 Agile Offshore Software Development
	13.3 Challenges in Requirements Engineering Process in Agile Offshore Development
	13.4 Distributed Agile Patterns
	13.5 Distributed Agile Patterns Used for Requirements Engineering Process
	13.5.1 Project Charter Pattern
	13.5.2 Collective Project Planning Pattern
	13.5.3 Local Sprint Planning Meeting Pattern
	13.5.4 Collaborative Planning Poker Pattern
	13.5.5 Global Scrum Board Pattern
	13.5.6 Central Code Repository Pattern
	13.5.7 Asynchronous Information Transfer Pattern
	13.5.8 Synchronous Communication Pattern
	13.5.9 Visit Onshore–Offshore Team Pattern

	13.6 Use of Distributed Agile Patterns in Requirements Engineering Process in Agile Offshore Development
	13.7 Mapping Distributed Agile Patterns on the Requirements Engineering Lifecycle
	13.8 Conclusions
	Appendix 1: Collective Project Planning Pattern
	Appendix 2: Local Sprint Planning Meeting Pattern
	Appendix 3: Collaborative Planning Poker Pattern
	Appendix 4: Global Scrum Board Pattern
	Appendix 5: Central Code Repository Pattern
	Appendix 6: Asynchronous Information Transfer Pattern
	Appendix 7: Synchronous Communication Pattern
	Appendix 8: Visit Onshore–Offshore Team Pattern
	References

	Index

