
Chapter 5
From Pure State and Input Constraints
to Mixed Constraints in Nonlinear Systems

Willem Esterhuizen and Jean Lévine

Abstract We survey the results on the problem of pure/mixed state and input con-

strained control, with multidimensional constraints, for finite dimensional nonlinear

differential systems with focus on the so-called admissible set and its boundary. The

admissible set is the set of initial conditions for which there exist a control and an

integral curve satisfying the constraints for all time. Its boundary is made of two dis-

joint parts: the subset of the state constraint boundary on which there are trajectories

pointing towards the interior of the admissible set or tangentially to it; and a barrier,

namely a semipermeable surface which is constructed via a generalized minimum-

like principle with nonsmooth terminal conditions. Comparisons between pure state

constraints and mixed ones are presented on a series of simple academic examples.

5.1 Introduction

Though constrained systems, namely with restrictions on the control and the state,

are present in many applications due to actuator limitations and obstacles, they are

not generally studied on their own and are more often studied in the context of opti-

mal control or differential games [8]. We focus here on a fully qualitative approach,

i.e., without any optimisation framework where the aim is the construction of the

set of initial conditions such that the system variables can satisfy the constraints for

all time, called admissible set, and we show how to compute its boundary. Other

approaches based on flow computation, or Lyapunov functions, or other variants,

may be found in [1, 2, 11–14, 16–20].

We first review the results of [6] for pure state and input constraints (Sect. 5.2)

and present a simple example of double integrator. In a second part (Sect. 5.3), we
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review their extension to mixed constraints (see [7]) and show, on the double integra-

tor example, how mixed constraints may modify the previously presented behavior.

Then another simple example of a spring system is presented in two versions with

different mixed constraints and again, we compare their consequences on the respec-

tive solutions.

5.2 Recalls on Pure State and Input Constrained Systems

The material of this section is a summary of [6]. We consider the constrained non-

linear system

ẋ = f (x, u), (5.1)

x(t0) = x0, (5.2)

u ∈  , (5.3)

gi
(
x(t)

)
≤ 0 ∀t ∈ [t0,∞), ∀i ∈ {1,… , p} (5.4)

where x(t) ∈ ℝn
.  is the set of Lebesgue measurable functions from [t0,∞) to U,

where U is a compact convex subset of ℝm
, and not a singleton.

The constraint set is defined by

G ≜ {x ∈ ℝn ∶ gi(x) ≤ 0, i = 1,… , p}

The notation g(x) ≗ 0 indicates that there exists an i ∈ {1,… , p} such that x satisfies

gi(x) = 0 and gj(x) ≤ 0 for all j ∈ {1,… , p}, and 𝕀(x) denotes the set of all indices i ∈
{1,… , p} such that gi(x) = 0. Also, g(x) ≺ 0 (resp. g(x) ⪯ 0) indicates that gi(x) < 0
(resp. gi(x) ≤ 0) for all i ∈ {1,… , p}.

The sets

G0 ≜ {x ∈ ℝn ∶ g(x) ≗ 0}, G− ≜ {x ∈ ℝn ∶ g(x) ≺ 0}. (5.5)

are indeed such that G = G0 ∪ G−.

We further assume (see [6])

(A1) f is at least C2
on ℝn × ̃U where ̃U in an open subset of ℝm

, U ⊂

̃U.

(A2) There exists a positive and finite constant C such that

sup
u∈U

|xT f (x, u)| ≤ C(1 + ‖x‖2), for all x

(A3) The set f (x,U), called the vectogram in [10], is convex for all x ∈ ℝn
.

(A4) For each i = 1,… , p, gi is an at least C2
function from ℝn

to ℝ,

(A5) the set of points given by gi(x) = 0 defines an n − 1 dimensional manifold.
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In the sequel we will denote by x(u,x0) the solution of the differential equation

(5.1) with input u ∈  and initial condition x0, and by x(u,x0)(t) its solution at time t.
We also use the notation xu

and xu(t) when the initial condition is unambiguous or

unimportant.

5.2.1 The Admissible Set

Following [6], we define:

Definition 5.1 (Admissible Set) We say that the point x̄ ∈ G is admissible if, and

only if, there exists at least one input function v ∈  , such that (5.1)–(5.4) are sat-

isfied for x0 = x̄ and u = v. The set of all such x̄ is called the admissible set:

 ≜ {x̄ ∈ G ∶ ∃u ∈  , g
(
x(u,x̄)(t)

)
⪯ 0,∀t ∈ [t0,∞)}. (5.6)

Clearly, if x̄ is admissible, any point of the integral curve, x(v,x̄)(t1), t1 ∈ [t0,∞),
with v ∈  as in the above definition, is also an admissible point.

We now recall from [6] the following results:

Proposition 5.1 Assume that (A1)–(A4) are valid. The set  is closed.

Denote by 𝜕 the boundary of the admissible set and define

[𝜕]0 = 𝜕 ∩ G0, [𝜕]− = 𝜕 ∩ G−. (5.7)

We indeed have 𝜕 = [𝜕]0 ∪ [𝜕]−.

5.2.2 The Barrier

We next consider the subset [𝜕]− of the boundary of the admissible set.

Definition 5.2 The set [𝜕]− is called the barrier of the set .

Still following [6], [𝜕]− is “fibered” by arcs of integral curves:

Proposition 5.2 Assume that (A1)–(A4) hold. The barrier [𝜕]− is made of points
x̄ ∈ G− for which there exists ū ∈  and an arc of integral curve x(ū,x̄) entirely con-
tained in [𝜕]− until it intersects G0 at a point x(ū,x̄)(̄t) for some ̄t ∈ [t0,+∞).

Corollary 5.1 (Semi-permeability) From any point on the boundary [𝜕]−, there
cannot exist a trajectory penetrating the interior of , denoted by 𝗂𝗇𝗍(), before
leaving G−.
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The intersection of 𝖼𝗅([𝜕]−), the closure of [𝜕]−, with G0 is remarkable:

Proposition 5.3 (Ultimate Tangentiality Condition [6]) Assume that (A1)–(A5) hold
and consider x̄ ∈ [𝜕]− and ū ∈  as in Proposition 5.2, i.e., such that x(ū,x̄)(t) ∈
[𝜕]− for all t in some time interval until it reaches G0. Then, there exists a point
z = x(ū,x̄)(̄t) ∈ 𝖼𝗅([𝜕]−) ∩ G0 for some finite time ̄t ≥ t0 such that

min
u∈U

max
i∈𝕀(z)

Lf gi(z, u) = 0. (5.8)

where Lf gi(x, u) ≜ Dgi(x).f (x, u) is the Lie derivative of gi along the vector field f (⋅, u)
at the point x.

Let H(x, 𝜆, u) = 𝜆

T f (x, u) denote the Hamiltonian.

Theorem 5.1 (Minimum-like principle [6]) Under the assumptions of Proposi-
tion 5.3, every integral curve xū on [𝜕]− ∩ 𝖼𝗅(𝗂𝗇𝗍()) and the corresponding control
function ū, as in Proposition 5.2, satisfies the following necessary condition.

There exists a (nonzero) absolutely continuous maximal solution 𝜆

ū to the adjoint
equation

̇

𝜆

ū(t) = −
(
𝜕f
𝜕x

(xū(t), ū(t))
)T

𝜆

ū(t), 𝜆

ū(̄t) =
(
Dgi∗ (z)

)T
(5.9)

such that the Hamiltonian is minimized

min
u∈U

{
(𝜆ū(t))T f (xū(t), u)

}
= (𝜆ū(t))T f (xū(t), ū(t)) = 0 (5.10)

at every Lebesgue point t of ū (i.e., for almost all t ≤ ̄t).
In (5.9), ̄t denotes the time at which z is reached, i.e., xū(̄t) = z, with z ∈ G0 sat-

isfying the ultimate tangentiality condition

gi(z) = 0, i ∈ 𝕀(z), min
u∈U

max
i∈𝕀(z)

Lf gi(z, u) ≜ Lf gi∗ (z, ū(̄t)) = 0. (5.11)

We illustrate this result by the next particularly simple example (double integrator).

5.2.3 Double Integrator, Pure State Constraint

Let us consider the double integrator subjected to a pure state constraint

ẋ1 = x2, ẋ2 = u, |u| ≤ 1, x1 − 1 ≤ 0 (5.12)
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Fig. 5.1 Admissible set and barrier for system (5.12)

The ultimate tangentiality condition reads min|u|≤1 Dg(z).f (z, u) = z2 = 0 with z ≜
(z1, z2) = (xū

1(̄t), x
ū
2(̄t)) = (1, 0), ̄t indicating the time of tangential arrival on G0 and

ū denoting the control associated to the barrier trajectory. The costate satisfies

̇

𝜆 =
(

0 0
−1 0

)
𝜆, 𝜆

ū(̄t) = (1, 0)

and we deduce 𝜆

ū
1(t) ≡ 1 and 𝜆

ū
2(t) = −t + ̄t > 0 for all t ∈ (−∞,

̄t]. We find that the

control is given by ū(t) = −𝗌𝗂𝗀𝗇(𝜆2(t)) ≡ −1. Integrating backwards from z with ū
gives the parabola-shaped barrier in Fig. 5.1.

5.3 Dynamical Control Systems with Mixed Constraints

The material of this section is borrowed from [7]. We now consider the following

constrained nonlinear system:

ẋ = f (x, u), (5.13)

x(t0) = x0, (5.14)

u ∈  , (5.15)

gi
(
x(t), u(t)

)
≤ 0 for 𝑎.𝑒. t ∈ [t0,∞) i = 1,… , p (5.16)

where x(t) ∈ ℝn
.

As before,  is the set of Lebesgue measurable functions from [t0,∞) to U, with

U a given compact convex subset of ℝm
, expressible as
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U ≜ {u ∈ ℝm ∶ 𝛾j(u) ≤ 0, j = 1,… , r}

with r ≥ m, the functions 𝛾j being convex and of class C2
.

Let us stress that the constraints (5.16), called mixed constraints [3, 9], depend

both on the state and the control. We denote by g(x, u) the vector-valued function

whose i-th component is gi(x, u). As before, by g(x, u) ≺ 0 (resp. g(x, u) ⪯ 0) we

mean gi(x, u) < 0 (resp. gi(x, u) ≤ 0) for all i and by g(x, u) ≗ 0, we mean gi(x, u) = 0
for at least one i.

We define the following sets:

G ≜

⋃

u∈U
{x ∈ ℝn ∶ g(x, u) ⪯ 0} (5.17)

G0 ≜ {x ∈ G ∶ min
u∈U

max
i∈{1,…,p}

gi(x, u) = 0} (5.18)

G− ≜

⋃

u∈U
{x ∈ ℝn ∶ g(x, u) ≺ 0} (5.19)

U(x) ≜ {u ∈ U ∶ g(x, u) ⪯ 0} ∀x ∈ G. (5.20)

Given a pair (x, u) ∈ ℝn × U, we denote by 𝕀(x, u) the set of indices, possibly

empty, corresponding to the “active” mixed constraints, namely

𝕀(x, u) = {i1,… , is1} ≜ {i ∈ {1,… , p} ∶ gi(x, u) = 0}

and by 𝕁(u) the set of indices, possibly empty, corresponding to the “active” input

constraints:

𝕁(u) = {j1,… , js2} ≜ {j ∈ {1,… r} ∶ 𝛾j(u) = 0}.

The integer s1 ≜ #(𝕀(x, u)) ≤ p (resp. s2 ≜ #(𝕁(u)) ≤ r) is the number of elements of

𝕀(x, u) (resp. of 𝕁(u)). Thus, s1 + s2 represents the number of “active” constraints,

among the p + r constraints, at (x, u).
In addition to (A1)–(A4) of the previous section, we assume

(A6) For all i = 1,… , p, the mapping u ↦ gi(x, u) is convex for all x ∈ ℝn
.

(A7) The (row) vectors

{
𝜕gi

𝜕u
(x, u),

𝜕𝛾j

𝜕u
(u) ∶ i ∈ 𝕀(x, u), j ∈ 𝕁(u)

}
(5.21)

are linearly independent at every (x, u) ∈ ℝn × U for which 𝕀(x, u) or 𝕁(u) is

non empty.
1

We say, in this case, that the point x is regular with respect to u
(see e.g., [9, 15]).

Given u ∈  , we say that an integral curve xu
of Eq. (5.13) defined on [t0,T] is

regular if, and only if, at each Lebesgue point, or shortly L-point, t of u, xu(t) is

1
Note that this implies that s1 + s2 ≤ m, with s1 = #(𝕀(x, u)) and s2 = #(𝕁(u)).
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regular in the aforementioned sense w.r.t. u(t), and, if t is a point of discontinuity

of u, xu(t) is regular in the aforementioned sense w.r.t. u(t−) and u(t+), with u(t−) ≜
lim

𝜏↗t,t∉I0 u(𝜏) and u(t+) ≜ lim
𝜏↘t,t∉I0 u(𝜏), I0 being a suitable zero measure set of

ℝ.

Since system (5.13) is time-invariant, the initial time t0 may be taken as 0. When

clear from the context, “∀t” or “for a.e t” will mean “∀t ∈ [0,∞)” or “for a.e.
t ∈ [0,∞)”. Note that throughout this paper a.e. is understood with respect to the

Lebesgue measure.

5.3.1 The Admissible Set in the Mixed Case: Topological
Properties

Definition 5.1 (Admissible States, Mixed Case) We say that the point x̄ ∈ G is

admissible if, and only if, there exists v ∈  , such that (5.13)–(5.16) are satisfied

for x0 = x̄ and u = v:

 ≜ {x̄ ∈ G ∶ ∃u ∈  , g
(
x(u,x̄)(t), u(t)

)
⪯ 0, for 𝑎.𝑒. t}. (5.22)

As before, any point of the integral curve, x(v,x̄)(t′), t′ ∈ [0,∞), is also an admissible

point.

We assume that both  and 
𝖢

contain at least one element to discard the trivial

cases  = ∅ and 
𝖢 = ∅.

We use the notations 𝗂𝗇𝗍(S) (resp. 𝖼𝗅(S)) (resp. 𝖼𝗈(S)) for the interior (resp. the

closure) (resp. the closed and convex hull) of a set S.

Proposition 5.4 Assume that (A1)–(A5) are valid. The set  is closed.

5.3.2 Boundary of the Admissible Set (Mixed Case)

5.3.2.1 Geometric Description of the Barrier

As before, we define the barrier as [𝜕]− = 𝜕 ∩ G−.

Proposition 5.5 Assume (A1)–(A4) and (A6) hold. [𝜕]− is made of points x̄ ∈
G− for which there exists ū ∈  and an integral curve x(ū,x̄) entirely contained
in [𝜕]− until it intersects G0, i.e., at a point z = x(ū,x̄)(̃t), for some ̃t, such that
minu∈U maxi=1,…,p gi(z, u) = 0.

The “fibered” nature of the barrier thus extends to the mixed case. Note however

that G0 is now modified: it is not defined as the set of x for which there exists u ∈ U
such that g(x, u) ≗ 0 but is given by (5.18). Note that ̃t may be infinite, in which case
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the barrier does not intersect G0 as shown in the next double integrator with mixed

constraint example.

Corollary 5.2 (Semi-permeability) Assume (A1)–(A4) and (A6) hold. Then from
any point on the boundary [𝜕]−, there cannot exist a trajectory penetrating the
interior of  before leaving G−.

5.3.2.2 Ultimate Tangentiality

We now characterize the intersection of [𝜕]− with G0 at the point z defined in

Proposition 5.5. We define

g̃(x) ≜ min
u∈U

max
i∈{1,…,p}

gi(x, u). (5.23)

Comparing to (5.18) we readily see that G0 = {x ∈ G ∶ g̃(x) = 0}. According to a

result of Danskin [5], g̃ is locally Lipschitz and thus absolutely continuous and almost

everywhere differentiable, on every open and bounded subset of ℝn
.

We now recall basic notions from nonsmooth analysis [4] that are used in the

next proposition. Consider h ∶ ℝn → ℝ Lipschitz near a given point x ∈ ℝn
. The

generalized directional derivative of h at x in the direction v is defined as follows:

h0(x; v) ≜ lim sup
y→x, t→0+

h(y + tv) − h(y)
t

. (5.24)

We also need to introduce the generalized gradient of h at x, labeled 𝜕h(x). It is

well-known that the generalized gradient of a locally Lipschitz function h ∶ ℝn → ℝ
is the compact and convex set

𝜕h(x) = 𝖼𝗈{lim
i→∞

Dh(xi) ∶ xi → x, xi ∉ 𝛺1 ∪𝛺2} (5.25)

where Dh(x) denotes the row vector Dh(x) at x, 𝛺1 is a zero measure set where h is

nondifferentiable and 𝛺2 is an arbitrary zero measure set.

The relationship between the generalized directional derivative and the general-

ized gradient is given by

h0(x; v) = max
𝜉∈𝜕h(x)

𝜉v. (5.26)

Proposition 5.6 (Ultimate Generalized Tangentiality Condition [7]) Assume
(A1)–(A4) and (A6)–(A7) hold. Consider x̄ ∈ [𝜕]− and ū ∈  as in Proposi-
tion 5.5, i.e., such that the integral curve x(ū,x̄)(t) remains in [𝜕]− for all t in
some time interval until it reaches G0 at some finite time ̄t ≥ 0. Then, the point
z = x(ū,x̄)(̄t) ∈ 𝖼𝗅([𝜕]−) ∩ G0, satisfies

0 = max
𝜉∈𝜕g̃(z)

𝜉f (z, ū(̄t)) = min
v∈U(z)

max
𝜉∈𝜕g̃(z)

𝜉f (z, v) = max
𝜉∈𝜕g̃(z)

min
v∈U(z)

𝜉f (z, v). (5.27)
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Moreover, if the function g̃ is differentiable at z, then (5.27) reduces to

0 = Lf g̃(z, ū(̄t)) = min
u∈U(z)

Lf g̃(z, u). (5.28)

Remark 5.1 Note that (5.28) significantly differs from (5.8) on several aspects: in

(5.28), U(z) replaces U, where z is such that g̃(z) = 0; moreover, in (5.28), if gi effec-

tively depends on u for i ∈ 𝕀(z), Lf g̃(z, u) is not generally equal to maxi∈𝕀(z) Lf gi(z, u).

5.3.3 The Barrier Equation (Mixed Case)

The next necessary conditions are essential to construct the integral curves running

along the barrier.

Theorem 5.2 (Minimum-like Principle (Mixed Case) [7]) Under the assumptions
of Proposition 5.6, consider an integral curve xū on [𝜕]− ∩ 𝖼𝗅(𝗂𝗇𝗍()) and assume
that the control function ū is piecewise continuous. Then ū and xū satisfy the follow-
ing necessary conditions.

There exists a nonzero absolutely continuous adjoint 𝜆ū and piecewise continuous
multipliers 𝜇ū

i ≥ 0, i = 1,… , p, such that

̇

𝜆

ū(t) = −
(
𝜕f
𝜕x

(xū(t), ū(t))
)T

𝜆

ū(t) −
p∑

i=1
𝜇

ū
i (t)

𝜕gi

𝜕x
(xū(t), ū(t)) (5.29)

with the “complementary slackness condition”

𝜇

ū
i (t)gi(xū(t), ū(t)) = 0, i = 1,… , p (5.30)

and final conditions
𝜆

ū(̄t)T ∈ arg max
𝜉∈𝜕g̃(z)

𝜉.f (z, ū(̄t)) (5.31)

where z = xū(̄t) with ̄t such that z ∈ G0, i.e., minu∈U maxi=1,…,p gi(z, u) = 0, 𝜕g̃(z)
being the generalized gradient of g̃, defined by (5.23), at z.

Moreover, at almost every t, the Hamiltonian

H(𝜆ū(t), xū(t), u) =
(
𝜆

ū(t)
)T f (xū(t), u)

is minimized over the set U(xū(t)) and equals zero

min
u∈U(xū(t))

𝜆

ū(t)T f (xū(t), u) = min
u∈U

[
(
𝜆

ū(t)
)T f (xū(t), u) +

p∑

i=1
𝜇

ū
i (t)gi(xū(t), u)

]

= 𝜆

ū(t)T f (xū(t), ū(t)) = 0
(5.32)
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Remark 5.2 If g̃ is differentiable at the point z, condition (5.31) indeed reduces to

its smooth counterpart, i.e., 𝜆
ū(̄t)T = Dg̃(z)

Remark 5.3 The assumption that x(ū,x̄) ∈ [𝜕]− ∩ 𝖼𝗅(𝗂𝗇𝗍()) means that we possibly

miss isolated trajectories which are in ⧵ 𝖼𝗅(𝗂𝗇𝗍()). The existence and computation

of such trajectories, if they exist, are open questions.

5.4 Examples

5.4.1 Double Integrator, Mixed Constraint

Let us go back to the double integrator introduced in Sect. 5.2.3, the pure state con-

straint x1 ≤ 1 being now replaced by the mixed constraint x1 ≤ u

ẋ1 = x2, ẋ2 = u, |u| ≤ 1, x1 − u ≤ 0 (5.33)

We will show that this apparently innocuous change dramatically modifies the admis-

sible set and its barrier since, in the mixed case, the latter does not intersect G0 any-

more (compare Figs. 5.1 and 5.2).

We readily get g̃(x) = x1 − 1 and G0 = {(x1, x2) ∶ x1 = 1}. The ultimate tangen-

tiality condition reads minu∈U(z) Dg̃(z).f (z, u) = z2 = 0, or z ≜ (z1, z2) = (1, 0). Note

that, at this point, U(z) = {1} is reduced to a single element. The minimal Hamil-

tonian is given by

min
u∈U(x)

𝜆1x2 + 𝜆2u = 0, a.e. t.

Thus:

if 𝜆2(t) < 0, ū(t) = 1 if x1 ∈]∞, 1]

if 𝜆2(t) > 0, ū(t) =
{

x1 if x1 ∈ [−1, 1]
−1 if x1 ∈] −∞,−1[

if 𝜆2(t) = 0, ū(t) = arbitrary.

The costate equations are given by

̇

𝜆 =
(

0 0
−1 0

)
𝜆

with 𝜆(̄t) = Dg̃(z) = (1, 0)T . From here we deduce that 𝜆2(t) = −t + ̄t for all t ∈
(−∞,

̄t], and thus 𝜆2(t) > 0 for all t ∈ (−∞,
̄t]. Integrating backwards from the point

z = (1, 0), we find that the integral curve immediately leaves G, and so this curve

cannot be part of the barrier.
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However, let us show that the barrier indeed exists and that it remains in G− for

all time.

When the control û(t) = x1(t) is applied to (5.33), the analytic solution initiating

at t = 0 from x0 ≜ (x1,0, x2,0) is given by

x(û,x0)1 (t) =
x1,0 + x2,0

2
et +

x1,0 − x2,0
2

e−t

x(û,x0)2 (t) =
x1,0 + x2,0

2
et −

x1,0 − x2,0
2

e−t
.

It is thus immediately seen that, with this control, the origin is a saddle point, the

line x1 + x2 = 0 being the associated stable manifold, and x1 − x2 = 0 the unstable

one.

We now prove that the line segment  ≜ {(x1, x2) ∶ x1 + x2 = 0,−1 ≤ x1 < 1} is

a subset of [𝜕]−.

Clearly,  is positively invariant and every integral curve starting on it asymptoti-

cally approaches the origin. Moreover, g(x(û,x0)(t), û(t)) = x(û,x0)1 (t) − û(t) = 0 for all t
such that −1 ≤ x(û,x0)1 (t) < 1. Let h(x) ≜ x1 + x2 and denote xi(t) ≜ x(û,x0)i (t), i = 1, 2,

for simplicity’s sake. If at a suitable time t1, the state satisfies x(t1) ∈ , i.e. with

h(x(t1)) = 0, using any other admissible control v > û(t1) = x1(t1), with |v| ≤ 1, we

get

Dh(x(t1)).f (x(t1), v) = x2(t1) + v > −x1(t1) + x1(t1) = 0.

Therefore, any other admissible control results in the state entering the set  ≜

{h(x) = x1 + x2 > 0}. Moreover, in , all trajectories are such that h is non-

decreasing for all admissible control v: Lf h(x, v) = x2 + v > −x1 + x1 = 0 as long as

x1 ≤ 1, which implies that all trajectories starting from  cross the constraint x1 = 1
and hence are not admissible, i.e.,  ⊂ 

𝖢
. Moreover, starting from any point in the

complement, i.e., such that x1 + x2 ≤ 0, denoted by  in Fig. 5.2, it is straightforward

to verify that û ensures that the corresponding integral curve remains in G for all time

which proves the assertion that  is a subset of [𝜕]−.

We now prove that the barrier extends, for x2 > 1, by the integral curve starting

backwards from the point (x1, x2) = (−1, 1), with the control ū(t) ≡ −1 for all t ∈
] −∞,

̄t].
By Theorem 5.2, assuming that ū is piecewise continuous, any trajectory run-

ning along the barrier, generated by ū, satisfies Eqs. (5.29), (5.30) and (5.32) with

absolutely continuous costate 𝜆

ū
and piecewise continuous multipliers 𝜇

ū
.

Consider the end point of , denoted by 𝜉, of coordinates 𝜉1 = −1, 𝜉2 = 1. The

set U(𝜉) at that point is equal to [−1, 1]. By (5.32) we must have

min
u∈U(𝜉)

𝜆

ū(t)T f (𝜉, u) = min
u∈[−1,1]

𝜆

ū
1(t) + 𝜆

ū
2(t)u = 0

and, by continuity of the Hamiltonian on , since we had ū = x1, considering the

limit of the Hamiltonian for x → 𝜉, x ∈ , we deduce that the costate (𝜆ū
1(t), 𝜆

ū
2(t))

T
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Fig. 5.2 Figure showing some of the sets referred to in Sect. 5.4.1, along with a curve obtained by

backward integration from the point (−1, 1) which we have shown to be the backward extension of

the barrier

is orthogonal to the vector (1,−1)T , i.e., 𝜆(̄t) = k(1, 1)T , with k a positive constant,

and the minimizing ū is thus ū(t) = −𝗌𝗂𝗀𝗇(𝜆2(t)) = −1. Therefore, in [𝜕]− ⧵ ,

since x1 < −1, the constraint x1 − u is nowhere active and 𝜇

ū = 0 by (5.30). Thus

the costate equation reads

̇

𝜆 =
(

0 0
−1 0

)
𝜆, 𝜆(̄t) = k(1, 1)

from which we deduce that 𝜆1(t) ≡ k and 𝜆2(t) = −k(t − ̄t) + k, t ∈ (−∞,
̄t] and

ū(t) = −𝗌𝗂𝗀𝗇(𝜆2(t)) ≡ −1. Note that this solution indeed satisfies the piecewise con-

tinuous assumption of ū in Theorem 5.2. The barrier is thus further extended back-

wards as in Fig. 5.2. We have also included a few of the vectograms along the exten-

sion of the barrier in order to emphasize that this is indeed an “extremal” trajectory

and that as we approach the point (−1, 1), the vectogram points towards the set ,

which we have shown to be a subset of 
𝖢

.
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5.4.2 Constrained Spring I

Consider the following constrained mass–spring–damper model:

(
ẋ1
ẋ2

)
=
(

0 1
−2 −2

)(
x1
x2

)
+
(
0
1

)
u, |u| ≤ 1, x2 − u ≤ 0

where x1 is the mass’s displacement. The spring stiffness is here equal to 2 for a

mass equal to 1 and the friction coefficient is equal to 2. u is the force applied to the

mass.

We identify g(x, u) = x2 − u, U = [−1, 1] and g̃(x) = x2 − 1. We also identify the

following sets: G = {x ∈ ℝ2 ∶ x2 ≤ 1}, G0 = {x ∈ G ∶ x2 = 1} and U(x) = {u ∈
U ∶ x2 ≤ u ≤ 1}. Note that if z ≜ (z1, z2) ∈ G0, i.e. z2 = 1, then U(z) is the singleton

U(z) = {1}.

We have 𝜕g̃(z) = {(0, 1)} = Dg̃(z) (g̃ being indeed differentiable everywhere) and

the ultimate tangentiality condition reads

min
u∈U(z)

Dg̃(z)f (z, u) = 0

which gives

min
u∈U(z)

−2z1 − 2z2 + u = −2z1 − 2 + 1 = 0

Thus z = (−1
2
, 1).

The final costate 𝜆(̄t), according to (5.31), which here reduces to (5.28), is given

by 𝜆

T (̄t) = Dg̃(z) = (0, 1).
The Hamiltonian being here H(x, 𝜆, u) = 𝜆1x2 + 𝜆2(−2x1 − 2x2 + u), condition

(5.32) reads

min
x2≤u≤1

𝜆1x2 + 𝜆2(−2x1 − 2x2 + u) = 0 (5.34)

which gives the control ū associated with the barrier

if 𝜆2(t) < 0, ū(t) = 1

if 𝜆2(t) > 0, ū(t) =
{

x2 if x2 ∈] − 1, 1]
−1 if x2 ∈] − ∞,−1]

if 𝜆2(t) = 0, ū(t) = arbitrary

We note from condition (5.29) that if the constraint is active (i.e., g(x, u) = 0), the

costate differential equation is given by

̇

𝜆

ū = −
𝜕f
𝜕x

T
𝜆

ū − 𝜇

ū 𝜕g
𝜕x

=
(

0 2
−1 2

)
𝜆

ū − 𝜇

ū
(
0
1

)
(5.35)
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and is otherwise (when g(x, u) < 0) given by

̇

𝜆

ū = −
𝜕f
𝜕x

T
𝜆

ū =
(

0 2
−1 2

)
𝜆

ū
. (5.36)

Recall that 𝜆2(̄t) > 0 and x2(̄t) = z2 = 1 > 0. Therefore, because 𝜆 and x are con-

tinuous, ū(t) = x2(t) over an interval before ̄t. We can show that ū(t) ≠ 1 over this

interval: if x2 = 1 and u = 1 over an interval before ̄t, then we get ẋ2 = −2x1 −
2 + 1 = 0, or x1 = −1

2
, meaning that x1 remains constant over the same interval.

Thus ẋ1 = 0 for all t ∈]̄t − 𝜂,
̄t], 𝜂 > 0, which contradicts the fact that ẋ1 = 1 over

t ∈]̄t − 𝜂,
̄t].

Therefore, only the constraint g can be active over an interval before ̄t, and by

(5.32), we obtain 𝜇 over this interval

𝜕H
𝜕u

+ 𝜇

𝜕g
𝜕u

= 𝜆2 − 𝜇 = 0

thus 𝜆2 = 𝜇 and the adjoint equation (5.35) reads

̇

𝜆 =
(

0 2
−1 1

)
𝜆, ∀t ∈]̄t − 𝜂,

̄t] (5.37)

Let us next analyze the switching condition of ū, or more precisely the change of

signum of 𝜆2. We know that, in an interval ]̄t − 𝜂,
̄t] with 𝜂 > 0, we have 𝜆2 > 0 and

we want to characterize 𝜂 such that 𝜆2(t) < 0 for t ≤ ̄t − 𝜂 and 𝜆2(̄t − 𝜂) = 0. Note

that 𝜆2 cannot vanish over a nonempty open interval since then, according to (5.36)

or (5.37), we would also get 𝜆1 = 0 which is impossible since the vector 𝜆 cannot

vanish. Thus, since 𝜆2 is locally increasing in a neighborhood of ̄t − 𝜂, we must have

̇

𝜆2(̄t − 𝜂) > 0, which is equivalent to 𝜆1(̄t − 𝜂) < 0. Thus, expressing (5.34) at time

̄t − 𝜂, we get x2(̄t − 𝜂) = 0 and ū(t) = 1 for t < ̄t − 𝜂.

As long as 𝜆2 remains different from zero we keep ū = 1. As seen on Fig. 5.3, x2
crosses for a second time the x1 axis and it can be checked that, at this time, 𝜆2 also

vanishes. Therefore, the last section of the barrier is made of the trajectory generated

by ū = x2 from this time.

Remark 5.4 Note that Assumption (A7) does not hold true at the final point z since

there are two active constraints for only one control. However, since this condition

is violated only at this point, we may conclude by continuity that condition (5.31)

still holds.

5.4.3 Constrained Spring II

Consider the same mass–spring–damper system with the same constants as in the

previous example, but with a richer constraint
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Fig. 5.3 Admissible set of

the constrained spring from

Sect. 5.4.2

(
ẋ1
ẋ2

)
=
(

0 1
−2 −2

)(
x1
x2

)
+
(
0
1

)
u, |u| ≤ 1, x2(x2 − u) ≤ 0 (5.38)

We identify g̃(x) = x22 − |x2|, and G0 = {x ∶ x2 = 0 or x2 = ±1}. g̃ is differen-

tiable for x2 ≠ 0 and from (5.31) and (5.32) we identify, in same manner as in the pre-

vious example, two points of ultimate tangentiality, namely z = (−1
2
, 1) along with

𝜆(̄t) = (0, 1), and z = (1
2
,−1) along with 𝜆(̄t) = (0,−1). We defer the treatment of

the x1 axis, which is also in G0, to the discussion below.

From the minimisation of the Hamiltonian, which is the same as in the previous

example except that U(x) now corresponds to u ≥ x2 if x2 ≥ 0 and u ≤ x2 if x2 ≤ 0,

we find the control ū

if 𝜆2(t) < 0 ū(t) =
{

1 if x2 ∈]0, 1]
x2 if x2 ∈] − 1, 0[

if 𝜆2(t) > 0 ū(t) =
{

x2 if x2 ∈]0, 1]
−1 if x2 ∈] − 1, 0[

if 𝜆2(t) = 0 ū(t) = arbitrary

If we now integrate backwards from the points (−1
2
, 1) and ( 1

2
,−1) with the con-

trol ū(t) we obtain the barrier as in Fig. 5.4. It turns out that ū(t) = x2(t) all along

both curves: the reader may easily check that, the necessary condition
𝜕H
𝜕u

+ 𝜇

𝜕g
𝜕u

= 0
yields 𝜆2 − 𝜇x2 = 0 and, since

𝜕g
𝜕x

= (0, 2x2 − u)T , we get the same adjoint equation

as (5.37) when ū = x2, and conclude that 𝜆2(t) is positive as long as x2(t) is positive,

which implies that ū = x2, and 𝜆2(t) must be negative as long as x2(t) is negative,

which again implies that ū = x2, hence the result.



140 W. Esterhuizen and J. Lévine

G0

Fig. 5.4 Admissible set of the constrained spring from Sect. 5.4.3

Let us now turn to the x1 axis, where g̃ = x22 − |x2| is non-differentiable. For any

z on the x1 axis, we have U(z) = [−1, 1] and 𝜕g̃(z) = 𝖼𝗈
(
(0,−1)T , (0, 1)T

)
= {0} ×

[−1, 1] and we must have

min
u∈[−1,1]

max
𝜉∈𝜕g̃(z̃)

𝜉.f (z̃, u) = 0 = min
u∈[−1,1]

max
𝜉2∈[−1,1]

𝜉2(−2x1 + u) (5.39)

For each−1
2
≤ z1 ≤

1
2

Eq. (5.39) has a solution given by 𝜉 = (0, 𝗌𝗂𝗀𝗇(−2z1 + u)) from

which we deduce that ū = 2z1. However, one can directly verify that the integral

curves of (5.38) with endpoints in the set [−1
2
,

1
2
] × {0} with the control u = x2 all

correspond to admissible curves (integrated backwards) and therefore do not belong

to the barrier, but that they make the constraint g(x(ū,x̄)(t), ū(t)) equal to 0 for ū =
x2 for all x̄ ∈ [−1

2
,

1
2
] × {0} and for all t. This attests that our conditions are only

necessary and far from being sufficient.

Remark 5.5 Note that, as in Sect. 5.4.2, Assumption (A7) does not hold true at the

final points z ∈ G0 since there are two active constraints for only one control. Again,

we conclude by a continuity argument that condition (5.31) still holds.

5.5 Conclusion

In this paper, we have demonstrated on elementary examples of systems subject to

pure or mixed constraints, the effectiveness of the results obtained in [6, 7], which

allowed us to give a complete construction of their barriers and admissible sets. We

also pointed out some significant differences in these constructions. In particular,

we have shown, in the mixed constrained case, that the barrier does not need to

intersect the boundary G0 of the constraint set; that, according to the feedback nature
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of the control, due to the state dependence of the control set, the equilibria and their

stability could be modified to be repelled from G0; that the nonsmooth version of the

necessary ultimate tangentiality condition, though useful, is far from being sufficient;

and that Assumption (A7) is, even in simple examples, not everywhere satisfied.

Higher dimensional examples are presently under investigation and will be published

elsewhere.
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