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Preface

During the 20 years that I have spent working in the close vicinity of Laurent Praly
at the Centre Automatique et Systèmes, first as a student, then as colleague, and
eventually as his boss, I feel that I have come to understand his philosophy.

Throughout the years, which have recently seen the emergence of a strong trend
in project-oriented research and fashionable topics, the style of Laurent’s scientific
work has remained unchanged. You do not change something that works. While
this might appear to explain such consistency reasonably well, the underlying
rationale is much more sound.

Laurent belongs to the long tradition of French engineers with a solid back-
ground in mathematics. To his colleagues and friends, Laurent’s approach to
problems is uniquely his own, and thus it is like a signature: he considers the
possible usefulness of the intended results, finds obvious counterexamples that
would discourage most people from trying to prove the general properties, refor-
mulates the whole question in the most concise and clear manner, and eventually
delivers the mathematical proof. This process does not take him days or weeks, but
rather it takes him tens of minutes. The rest of his time is simply spent in the careful
intellectual construction of the perfect proof: the shortest, with the fewest
assumptions and the least elaborate arguments.

This book celebrates the outstanding career of Laurent, which some people may
not be aware began in the field of industrial research and development during the
early days of adaptive control and model predictive control at the ADERSA
company headed by J. Richalet. This rich journey surely explains how he has
become such an iconic ideas-man, puzzle-solver, and pusher of frontiers, as is often
heard about Laurent.

Together with Laurent, who is certainly too modest to put his name to such a
statement, I hope that this book will encourage young generations, as they begin
their careers in academia or in industry, to work toward long-term goals. Indeed, in
my own experience, having finally isolated the hard theoretical question at the core
of an industrial problem after months of difficult work, I usually found that Laurent
had already worked on it and he could give me several solutions, ranging from
(in his own words) “totally useless” to “stupid”, or sometimes “possibly working”,
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In fact, the truth was usually much more than that, and Laurent’s was the definitive
answer to the problem.

The works and achievements of Laurent Praly should encourage researchers to
address difficult fundamental problems, while always remaining open to new
approaches, emerging ideas, and new people. Laurent Praly has given much help to
many individuals throughout his career. It is a great honor for his colleagues at the
Centre Automatique et Systèmes at MINES ParisTech to see contributions from
these individuals in this book.

Paris Nicolas Petit
March 2017
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Synopsis

This book is a tribute to Prof. Laurent Praly on the occasion of his sixtieth birthday.
Laurent Praly has been an active member of the control community for over

35 years. Throughout his sustained and influential scientific career, he has devel-
oped several breakthrough results and contributed towards the foundation of non-
linear control theory.

His full commitment to solve problems of true engineering value with advanced
tools that he and his co-workers have developed and his dedication to teach this
material at various levels has served as an enlightening example for a generation of
colleagues. His lectures, at numerous international workshops and schools, have
inspired a great number of students and researchers. His role as mentor to aspiring
researchers has nurtured numerous junior researchers and helped many graduate
students.

The volume collects contributions written by prominent individuals of the
control community. Each author in this list was chosen among researchers who
have worked with Laurent Praly, shared ideas or have had the honor of being his
Ph.D. students. The contributions presented in this volume address a rich collection
of topics: emerging theories, advanced applications, and theoretical concepts. The
diversity of the areas covered provides another evidence of the global impact of
Laurent Praly in our community.

The reader will find renewed and unified visions on the numerous problems that
Prof. Laurent Praly has been working on in his prolific carrier: adaptive control,
output feedback and observers, stability, and stabilization. His main contributions
are the central points of this book.

The book is organized in three sections. The first section covers the field of
adaptive control where Laurent Praly started his carrier. The second section gathers
contributions on stabilization and output feedback, which is the topic of the second
half of Laurent Praly’s carrier. Finally, the third section presents emerging research
built on Laurent Praly’s scientific legacy.

Nicolas Petit
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Chapter 1
Lyapunov Functions Obtained from First
Order Approximations

Vincent Andrieu

Abstract We study the construction of Lyapunov functions based on first order

approximations. We first consider the (transverse) local exponential stability of an

invariant manifold and largely rephrase [3]. We show how to construct a Lyapunov

function with this framework that characterizes this local stability property. We then

consider global stability of an equilibrium point, and show that the first order approx-

imation along solutions of the system allows to construct a global Lyapunov func-

tion. This result can be regarded as a new inverse Lyapunov theorem arising from

Riemannian metric.

Notation:

∙ For a vector in ℝn
and a matrix in ℝn×n

, | ⋅ | means the usual 2 norm.

∙ For a positive definite matrix,P, 𝜇max{P} and 𝜇min{P} are, respectively, the largest

and smallest eigenvalues.

1.1 Introduction

The use of Lyapunov functions in the study of the stability of solutions or invariant

sets of dynamical systems has a long history. It can be traced back to Lyapunov

himself who has introduced this concept in his dissertation in 1892 (see [18] for an

English translation). The primary objective of a Lyapunov function is to analyze the

behavior of trajectories of dynamical systems and how this behavior is preserved

after perturbations. However, this tool is also very efficient to synthesize control

algorithms, such as stabilizing control laws, regulators, and asymptotic observers

(see for example [14, 15, 21, 26]).

V. Andrieu (✉)

CNRS UMR 5007 LAGEP, Université Lyon 1, Lyon, France
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4 V. Andrieu

Hence, the study of converse Lyapunov theorems have received a considerable

attention from the nonlinear control community. One of the first major

contributions to the problem of a Lyapunov function existence can be attributed to

Massera [19]. This result has been improved over the years (see for example [16,

20]) and Teel-Praly who established an existence theorem for a Lyapunov functions

in a very general framework in [27]. However, despite the development of a very

complete theory to infer Lyapunov function existence, its construction in practice

appears to be a very difficult task.

On another hand, using a first order approximation to analyze the local stability of

the origin of a nonlinear system is the most commonly used approach. Indeed, a first

order analysis deals intrinsically with linear systems tools and it provides a simple

way to construct local Lyapunov functions for a nonlinear system.

In this note, the linearization approach is extended in two directions. The first

extension is the case in which the stability studied concerns a simple manifold rather

than an equilibrium. This extension was first published by [1, 3] and we briefly

rephrase these results. The second extension is to show that when dealing with equi-

librium points, a global property may be characterized from first order approxima-

tions along solutions.
In order to introduce these results and aiming at allowing to get a full grip on the

key points of the approach the following simpler framework is first considered and

some very classical results are rephrased in the following paragraph.

Consider a nonlinear dynamical system defined on ℝne with the origin as equilib-

rium.

ė = F(e) , F(0) = 0 , (1.1)

with state e in ℝne , and a C1
vector field F ∶ ℝne → ℝne . Solutions initiated from e

in ℝne evaluated at time t are denoted E(e, t).
The origin of system (1.1) is said to be locally exponentially stable (LES) if there

exist three positive real numbers k, 𝜆, and r such that

|E(e, t)| ≤ k exp(−𝜆t)|e| , ∀(e, t) ∈ ℝne ×ℝ
≥0 , |e| ≤ r . (1.2)

As well-known, LES of the origin of system (1.1) can be checked from the first

order approximation around “0”. Indeed, it is well-known (see [15, Theorem 4.15,

p. 165]) that LES of the origin of (1.1) is equivalent with exponential stability of the

origin of the linear dynamical system defined in ℝne as

̇̃e = 𝜕F
𝜕e

(0) ẽ . (1.3)

Constructing a Lyapunov function for the linear system (1.3) is relatively simple.

If
𝜕F
𝜕e
(0) is Hurwitz, and given a positive definite matrix Q in ℝne×ne , then the matrix

P in ℝne×ne ,
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P =
∫

+∞

0
exp

(
𝜕F
𝜕e

(0)s
)⊤

Q exp
(
𝜕F
𝜕e

(0)s
)

ds , (1.4)

is well defined, positive definite, and satisfies the Lyapunov algebraic equality

𝜕F
𝜕e

(0)⊤P + P𝜕F
𝜕e

(0) = −Q. (1.5)

Equation (1.5) implies that the mapping ẽ ↦ ẽ⊤Pẽ is a Lyapunov function for system

(1.3), since it yields along its trajectories .

Moreover, the quadratic function V(e) = e⊤Pe is also a Lyapunov function for the

nonlinear system (1.1) since

holds along its trajectories. This implies that there exists r > 0 and 𝜆 > 0 such that,

for all e such that |e| ≤ r, . This characterizes local exponential

stability of the origin of (1.1).

In rephrasing of the simplest framework, the following assertions have been

obtained:

Assertion 1 Exponential stability for the origin of the nonlinear system implies

exponential stability for the origin of the linearized system.

Assertion 2 Exponential stability of the origin of the linearized system can be char-

acterized by a quadratic Lyapunov function.

Assertion 3 The Lyapunov function associated with the linearized system may be

used directly on the origin of the nonlinear system to characterize its

stability.

In Sect. 1.2, we show that this is also the case when considering exponential sta-

bility of a simple invariant manifold, based on [3]. This allows the introduction of a

Lyapunov function that characterizes the local exponential stability of an invariant

manifold.

Section 1.3 considers global properties. We show that these three assertions also

hold when considering the global attractivity of an equilibrium. Finally, in Sect. 1.4,

we discuss some difficulties faced when considering the global stability of an invari-

ant manifold. This gives a glimpse of the results obtained in [2].
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1.2 Local Transverse Exponential Stability of a Manifold

1.2.1 Transverse Local Uniform Exponential Stability

Throughout this section, rather than (1.1), we consider a system.

ė = F(e, x) , ẋ = G(e, x) , F(0, x) = 0 , (1.6)

where e is in ℝne , x is in ℝnx and the functions F ∶ ℝne ×ℝnx → ℝne and G ∶ ℝne ×
ℝnx → ℝnx are C2

. We denote (E(e, x, t),X(e, x, t)) as the (unique) solution which

goes through (e, x) in ℝne ×ℝnx at time t = 0. It is assumed that these solutions are

defined for all positive times, i.e., the system is forward complete.

For this system, E = {(e, x), e = 0} is an invariant manifold. The purpose of this

section is to show that the properties that characterize the exponential stability of

an equilibrium as discussed in Sect. 1.1 (i.e., Assertions 1–3) remain valid when

considering the stability of this manifold.

The local exponential stability of an equilibrium becomes the local exponential

stability of the transverse manifold.

Definition 1.1 (Transversal uniform local exponential stability (TULES-NL)) Sys-

tem (1.6) is forward complete and there exist strictly positive real numbers r, k, and

𝜆 such that, for all (e0, x0, t) in ℝne ×ℝnx ×ℝ
≥0 with |e0| ≤ r,

|E(e0, x0, t)| ≤ k|e0| exp(−𝜆t) . (1.7)

That is, System (1.6) is said to be TULES-NL if manifold E ∶= {(e, x) ∶ e = 0}
is exponentially stable for system (1.6), locally in e and uniformly in x.

1.2.2 Assertion 1: Exponential Stability of a Linearized
System

As discussed in Sect. 1.1, a linearized system around the invariant manifold must

first be considered. In this case, the system is defined as

̇̃e = 𝜕F
𝜕e

(x)̃e , ẋ = G̃(x) , (1.8)

where G̃(x) = G(0, x).
If we wish to show that Assertion 1 also holds in this context, we need to establish

that manifold Ẽ ∶= {(x, ẽ) ∶ ẽ = 0} is exponentially stable for the linearized system

transverse to E (i.e., System (1.8)). The following proposition, proved in [3], shows

this is indeed the case.
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Proposition 1.1 ([3] Assertion 1 holds) IfTULES-NL holds and there exist positive
real numbers 𝜌, 𝜇, and c such that, for all x in ℝnx ,

|
|
|
|

𝜕F
𝜕e

(0, x)
|
|
|
|
≤ 𝜇 ,

|
|
|
|

𝜕G
𝜕x

(0, x)
|
|
|
|
≤ 𝜌 (1.9)

and, for all (e, x) in Be(kr) ×ℝnx ,

|
|
|
|

𝜕
2F

𝜕e𝜕e
(e, x)

|
|
|
|
≤ c ,

|
|
|
|

𝜕
2F

𝜕x𝜕e
(e, x)

|
|
|
|
≤ c ,

|
|
|
|

𝜕G
𝜕e

(e, x)
|
|
|
|
≤ c , (1.10)

then System (1.8) is forward complete and there exist strictly positive real numbers k̃
and 𝜆̃, such that any solution (Ẽ(̃e0, x0, t),X(x0, t)) of the transversally linear system
(1.8) satisfies, for all (̃e0, x0, t) in ℝne ×ℝnx ×ℝ

≥0,

|Ẽ(̃e0, x, t)| ≤ k̃ exp(−𝜆̃t)|̃e0| . (1.11)

The proof of this proposition given in [3] is based on the comparison between a

given e-component of a solution Ẽ(̃e0, x0, t) of (1.8) with pieces of e-component of

solutions E(̃ei, xi, t − ti) of solutions of (1.6) where ẽi, xi are sequences of points in

{(Ẽ(̃e0, x0, t),X(x0, t)), t ∈ ℝ
≥0}. Thanks to the bounds (1.9) and (1.10), it is possible

to show that Ẽ and E remain sufficiently closed so that Ẽ inherits the convergence

property of the solution E.

In [3], the exponential stability of manifold Ẽ ∶= {(x, ẽ) ∶ ẽ = 0} of the lin-

earized system transversal to E in (1.8) is called UES-TL.

1.2.3 Lyapunov Matrix Inequality

The ẽ components of System (1.8) is a parametrized time varying linear system.

Hence, the solutions Ẽ(e, x, t), can be expressed

Ẽ(̃e, x, t) = 𝛷(x, t)̃e ,

where 𝛷 is the transition matrix defined as a solution to the ℝne×ne dynamical system

An important point that has to be noticed is that, due to Eq. (1.11), each element

of the (matrix) time function t ↦ 𝛷(x, t) is in L2([0,+∞)). Consequently, for all

positive definite matrices Q in ℝne , the matrix function
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P(x) = lim
T→+∞∫

T

0
𝛷(x, s)⊤Q𝛷(x, s)ds (1.12)

is well defined.

By computing the Lie derivative of the matrix P given in (1.12), it is possible

to show that this one satisfies a particular partial differential equation which shows

that this function may be used to construct a quadratic Lyapunov function of the

linearized system.

Proposition 1.2 ([3] Assertion 2 holds) Assume UES-TL holds, i.e., there exist k̃
and 𝜆̃ such that any solution (Ẽ(̃e0, x0, t),X(x0, t)) of the transversally linear system
(1.8) satisfies, (1.11). Assume also that there exists a positive real number 𝜇 such
that |

|
|
|

𝜕F
𝜕e

(0, x)
|
|
|
|
≤ 𝜇 ∀x ∈ ℝnx . (1.13)

Then for all positive definite matrices Q, there exists a continuous function P ∶
ℝnx → ℝne×ne and strictly positive real numbers p and p such that P has a deriv-
ative 𝔡G̃P along G̃ in the sense

𝔡G̃P(̃x) ∶= lim
h→0

P(X̃(̃x, h)) − P(̃x)
h

, (1.14)

and, for all x̃ in ℝnx ,

𝔡G̃P(̃x) + P(̃x)𝜕F
𝜕e

(0, x̃) + 𝜕F
𝜕e

(0, x̃)′P(̃x) ≤ −Q , (1.15)

p I ≤ P(̃x) ≤ p I . (1.16)

The time derivative of (̃e, x) ↦ ẽ⊤P(x)̃e along the solution of system (1.8) yields

Hence, (̃e, x) ↦ ẽ⊤P(x)̃e is a Lyapunov function for the ẽ component of the linearized

system (1.8). In other words, Assertion 2 remains valid when considering transverse

exponential stability.

Assumption (1.13) is used to show that P satisfies the left inequality in (1.16).

Nevertheless this inequality holds without (1.13) provided the function

s ↦ |
|
|
𝜕Ẽ
𝜕ẽ
(0, x̃, s)||

|
does not go too fast to zero.

1.2.4 Construction of a Lyapunov Function

We may define a Lyapunov function that characterizes local exponential stability of

E from P obtained above.
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Proposition 1.3 ([3] Assertion 3 holds) If ULMTE holds and there exist positive
real numbers 𝜂 and c such that, for all (e, x) in Be(𝜂) ×ℝnx ,

|
|
|
|

𝜕P
𝜕x

(x)
|
|
|
|
≤ c , (1.17)

|
|
|
|

𝜕
2F

𝜕e𝜕e
(e, x)

|
|
|
|
≤ c ,

|
|
|
|

𝜕
2F

𝜕x𝜕e
(e, x)

|
|
|
|
≤ c ,

|
|
|
|

𝜕G
𝜕e

(e, x)
|
|
|
|
≤ c , (1.18)

then TULES-NL holds.

This is a direct consequence of V(e, x) = e′P(x)e being a Lyapunov function.

Bounds (1.17) and (1.18) are used to show that, with Eq. (1.15), the time deriva-

tive of this Lyapunov function is negative in a (uniform) tubular neighborhood of

manifold {(e, x), e = 0}.

In conclusion, Propositions 1.1, 1.2 and 1.3 show that Assertions 1–3, obtained

in the analysis of local exponential stability of an equilibrium remain valid in the

context of local exponential stability of a transverse manifold. In [3] the previous

framework has been employed as a design tool in different contexts:

∙ To construct a Lyapunov function that characterizes exponential incremental sta-

bility.

∙ To show that a detectability property introduced in [24] is a necessary condition

for the existence of an exponential full order observer.

∙ To derive necessary and sufficient conditions to achieve synchronization (see also

in [4, 5]).

All results so far concern local properties. The following section considers global

properties of an equilibrium point. Similar strategy allows to construct global Lya-

punov functions.

1.3 Global Stability Properties

1.3.1 Local Exponential Stability and Global Attractivity

In Sect. 1.2 we studied the case of local asymptotic stability of a manifold or an

equilibrium point. In this Section, another property is assumed: the global attractivity

of the origin. Consider again system (1.1), and assume that for all e in ℝne ,

lim
t→+∞

|E(e, t)| = 0 . (1.19)

Global attractivity in combination with local asymptotic stability of the origin implies

that the system is globally and asymptotically stable. However, it is not globally expo-

nentially stable in the usual sense (see [15, Definition 4.5 p. 150]) . Nevertheless, the

following property can be obtained.
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Proposition 1.4 Assume the origin of (1.1) is LES and globally attractive. Then
there exist a positive real number 𝜆 and a continuous strictly increasing function
k ∶ ℝ

≥0 → ℝ
≥0, such that

|E(e, t)| ≤ k(|e|) exp(−𝜆t)|e| . (1.20)

Proof The origin being LES, there exist three positive real numbers 𝜆1, k1 and r1
such that equality (1.2) holds. Consider the mapping c ∶ ℝne ×ℝ → ℝ

≥0 defined by

c(e, t) = |E(e, t)|
|e| exp(−𝜆t)

,

where 0 < 𝜆 < 𝜆1. Since inequality (1.2) holds, this is a continuous function. More-

over, the global attractivity and the LES of the origin of system (1.1) implies that

lim
t→+∞

c(e, t) = 0 , ∀e ∈ ℝne .

Consider the function c̄ ∶ [r1,+∞) → ℝ
≥0 ∪ {+∞}, defined as

c̄(s) = sup
r1≤|e|≤s,t≥0

{c(e, t)} .

We first show this function takes finite values for all s. Assume this is not the case

for a given s, i.e., c̄(s) = +∞. This implies that there exists a sequence (ei, ti)i∈ℕ with

r1 ≤ |ei| ≤ s such that c(ei, ti) ≥ i. However, since (ei)i∈ℕ is a sequence in a compact

set, it is possible to extract a sub-sequence (eij )j∈ℕ such that eij → e∗ with r1 ≤ |e∗| ≤
s, which implies tij → +∞. Moreover, from global attractivity of the origin, there

exists t∗ such that |E(e∗, t∗)| ≤ r1
2

. Continuity of the solutions implies that there exists

j∗ such that |E(eij , t
∗)| ≤ r1 for j > j∗. Without loss of generality, we may assume that

tij ≥ t∗ for j > j∗, and LES of the origin implies for all j > j∗,

ij < c(eij , tij ) =
|E(eij , tij )|

|eij | exp(−𝜆t)
≤

k1 exp (−𝜆1(tij − t∗))|E(eij , t
∗)|

|eij | exp(−𝜆tij )
≤

ks exp(𝜆1t∗)
r1

.

Hence, we have a contradiction, and so, all s ≥ r1, c̄(s) is bounded and increasing.

Therefore it is possible to select k ∶ ℝ
≥0 → ℝ

≥0 as any continuous function such that

k(s) ≥
{

k1 s ≤ r1
c̄(s) s ≥ r1

.

It is clear from its definition that (1.20) is satisfied. □
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Example 1.1 A very simple example of such a property is the scalar system:

ė = − e
1 + e2

. (1.21)

Solutions of this ordinary differential equation satisfy

E(e, t)2 exp
(
E(e, t)2

)
= e2 exp(e2) exp(−2t) , ∀e ∈ ℝ .

Which implies

E(e, t)2 ≤ E(e, t)2 exp
(
E(e, t)2

)
≤ e2 exp(e2) exp(−2t) ,

and global attractivity and LES of the origin of (1.21) hold since (1.20) is satisfied

with k(s) = s exp
(

1
2
s2
)

and 𝜆 = 1.

1.3.2 Global Lyapunov Functions Based on First Order
Approximations

1.3.2.1 Assertion 1: Stability of the Origin of the Linearized System
Along the Solutions

A natural question is whether if LES and global attractivity of the origin can be char-

acterized from a first order approximation. In contrast to the local study of Sect. 1.1,

the linearized system around the equilibrium cannot describe solutions away from

the origin. Hence, the linearized system along all solutions must be considered.

Assuming that F is C1
everywhere, the linearized system along trajectories is

̇̃e = 𝜕F
𝜕e

(e)̃e , ė = F(e) , (1.22)

with (e, ẽ) in ℝne ×ℝne . This system is also called the lifted system in [10] or the

variational system in [9].

The ẽ-components of this system may be expressed as

̇̃e = 𝜕F
𝜕e

(0)̃e
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

(LES)⇒goes exp. to zero

+
[
𝜕F
𝜕e

(e) − 𝜕F
𝜕e

(0)
]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

(Glob. Attract.)⇒ goes to zero

ẽ (1.23)

The following proposition shows that if the e components go exponentially to zero,

then so do the ẽ components.

Proposition 1.5 (Assertion 1 globally) Let F be C1 inℝne and C2 around the origin.
Assume the origin of (1.1) is locally exponentially stable and globally attractive, then
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there exist a positive real number 𝜆 and a strictly increasing function k̃ ∶ ℝ
≥0 →

ℝ
≥0, such that

|Ẽ(e, t)| ≤ k̃(|e|) exp(−𝜆t)|̃e| . (1.24)

Proof Since the origin is locally exponentially stable, we can define P as in (1.4).

From the algebraic Lyapunov equation (see (1.5)), the following equality holds

(1.25)

along the solution of system (1.1), where 𝛾 ∶ ℝne → ℝ
≥0 is the continuous function

defined as

𝛾(e) = 2
𝜇max{P}
𝜇min{P}

|
|
|
|

𝜕F
𝜕e

(e) − 𝜕F
𝜕e

(0)
|
|
|
|

2
.

Since F is C2
around the origin, 𝛾 is locally Lipschitz around the origin. Hence, there

exist two positive real number r and L such that

𝛾(e) ≤ L|e| , ∀|e| ≤ r . (1.26)

From the Grönwall lemma, Eq. (1.25) implies

|Ẽ(̃e, e, t)| ≤

√

Ẽ(̃e, e, t)⊤PẼ(̃e, e, t)
𝜇min{P}

,

≤

√
𝜇max{P}
𝜇min{P}

exp
(
1
2 ∫

t

0
𝛾(E(e, s))ds

)

exp
(

−
𝜇min{Q}
2𝜇max{P}

t
)

|̃e| .

(1.27)

Let t∗ be the continuous function defined as

t∗(e) = max
⎧
⎪
⎨
⎪
⎩

0,
− ln

(
r

k(|e|)|e|

)

𝜆

⎫
⎪
⎬
⎪
⎭

.

Note that if k(|e|)|e| ≤ r, t∗(e) = 0. Moreover, if k(|e|)|e| > r, t∗(e) > 0,

k(|e|) exp(−𝜆t∗(e))|e| ≤ r .
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Hence, due to local exponential stability and global attractivity property of the origin,

(1.20) yields for all e,

|E (e, t∗(e))| ≤ k(|e|) exp (−𝜆t∗(e)) |e| ≤ r .

Employing (1.20) again, and (1.26), the following inequalities are obtained for t ≥
t∗(e):

∫

t

0
𝛾(E(e, s))ds ≤

∫

t∗(e)

0
𝛾(E(e, s))ds +

∫

t

t∗(e)
𝛾(E(e, s))ds ,

≤
∫

t∗(e)

0
𝛾(E(e, s))ds + Lk(|e|)|e|

∫

t

t∗(e)
exp(−𝜆s)ds ,

≤
∫

t∗(e)

0
𝛾(E(e, s))ds + Lr

𝜆
∶= c(e) .

This inequality is also true for t ≤ t∗(e). Consequently, using the previous approxi-

mation in (1.27) the proof ends since (1.24) is obtained with

𝜆 =
𝜇min{Q}
2𝜇max{P}

, k̃(s) =

√
𝜇max{P}
𝜇min{P}

exp
(
1
2
max
|e|≤s

c(e)
)

.

□

Example 1.2 Returning to the previous example in (1.21), the linearized system is

given as:

̇̃e = −1 − e2

1 + e2
ẽ ,

which gives

|
|
|
Ẽ(̃e, e, t)||

|
= exp

(

−t +
∫

t

0

2E(e, s)2

1 + E(e, s)2
ds
)

|̃e| ,

≤ exp
(

−t +
∫

t

0
2k(|e|)2 exp(−s)ds

)

|̃e| ,

≤ exp
(
−t + 2k(|e|)2(1 − exp(−t))

)
|̃e| .

This gives (1.24) with

k̃(s) = exp
(
2k(s)2

)
= exp

(

2s2 exp
(
s2
) )

, 𝜆 = 1 .
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1.3.2.2 Assertion 2: Lyapunov Matrix Inequality

From linearity the ẽ components of linearized system (1.22) can be expressed as

Ẽ(̃e, e, t) = 𝛷(e, t)̃e ,

where 𝛷 is the transition matrix, defined as the solution of the ℝne×ne dynamical

system

An important point is that Eq. (1.24) means each element of the (matrix) time func-

tion t ↦ 𝛷(e, t) is in L2([0,+∞)). Consequently, for all positive definite matrices Q
in ℝne×ne ,

P(e) = lim
T→+∞∫

T

0
𝛷(e, s)⊤Q𝛷(e, s)ds , (1.28)

is well defined. Moreover, the following proposition holds.

Proposition 1.6 (Assertion 2 globally) Assume that there exist a function (k, k̃)
and positive real numbers (𝜆, 𝜆) such that (1.20) and (1.24) are satisfied. Then,
P ∶ ℝne → ℝne×ne defined in (1.28) is well defined, continuous, and there exist a non-
increasing function, p, and a nondecreasing function, p̄, such that

0 < p(|e|)I ≤ P(e) ≤ p̄(|e|)I , ∀ e ∈ ℝne . (1.29)

Moreover,1

𝔡FP(e) + P(e)𝜕F
𝜕e

(e) + 𝜕F
𝜕e

(e)⊤P(e)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=LFP(e)

≤ −Q , ∀ e ∈ ℝne . (1.30)

Finally, if F is C3 then P is C2.
Proof From (1.24), for all (e, t) in ℝne ×ℝ

≥0

|𝛷(e, t)| ≤ k̃(|e|) exp(−𝜆̃t) .

Thus, we may claim that, for all symmetric positive definite matrices, Q, P ∶ ℝne →
ℝne×ne from (1.28) is well defined, continuous, and satisfies

𝜇max{P(e)} ≤
k̃(|e|)2

2𝜆̃
𝜇max{Q} = p(|e|) , ∀e ∈ ℝne .

1
See the notation (1.14).
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Let c be a continuous mapping which satisfies

|
|
|
|

𝜕F
𝜕e

(e)
|
|
|
|
≤ c(|e|) .

Moreover, for all (t, v) in (ℝ ×ℝne )

𝜕

𝜕t
(
v′ [𝛷(e, t)]−1

)
= −v′ [𝛷(e, t)]−1 𝜕F

𝜕e
(E(e, t)) .

However since from (1.20)

|
|
|
|

𝜕F
𝜕e

(E(e, t))
|
|
|
|
≤ c(|k(e)| |e|) ,

it yields the following estimate

|
|
|
v′𝛷(e, t)−1||

|
≤ exp

(

c(k(|e|)|e|)t
)

|v| , ∀(t, v) ∈ (ℝ ×ℝne ) .

This implies, for all (t, v) in (ℝ ×ℝne ),

[v′v]2 ≤ |
|
|
v′𝛷(e, t)−1||

|

2
|𝛷(e, t)v|2 ,

≤
1

𝜇min{Q}
|
|
|
v′𝛷(e, t)−1||

|

2
v′𝛷(e, t)′Q𝛷(e, t)v ,

≤

|v|2 exp
(

2c(k(|e|)|e|)t
)

𝜇min{Q}
v′𝛷(e, t)′Q𝛷(e, t)v .

Which yields

v′𝛷(e, t)′Q𝛷(e, t)v ≥ 𝜇min{Q} exp
(

− c(k(|e|)|e|)t
)

|v|2 , ∀(t, v) ∈ (ℝ ×ℝne ) .

Consequently

p(|e|) =
𝜇min{Q}

2c(k(|e|)|e|)
≤ 𝜆min{P(e)} ∀ẽ ∈ ℝne .

Finally, to obtain (1.30), we exploit the semi group property of the solutions. For

all (̃e, e) in ℝne ×ℝne , and all (t, r) in ℝ2
≥0

Ẽ(Ẽ(̃e, e, t),E(e, t), r) = Ẽ(̃e, e, t + r) .

Differentiating with respect to ẽ the previous equality yields
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𝜕Ẽ
𝜕ẽ

(Ẽ(̃e, e, t),E(e, t), r)𝜕Ẽ
𝜕ẽ

(̃e, e, t) = 𝜕Ẽ
𝜕ẽ

(̃e, e, t + r) .

Hence,

𝛷(E(e, t), r)𝛷(e, t) = 𝛷(e, t + r) .

Substituting into the previous equality,

e ∶= E(e, h) , h ∶= −t , s ∶= t + r ,

for all e in ℝne and all (s, h) in ℝ2

𝛷(e, s + h)𝛷(E(e, h),−h) = 𝛷(E(e, h), s) .

Consequently,

P(E(e, h)) = = lim
T→+∞∫

T

0
𝛷(E(e, h), s)′Q𝛷(E(e, h), s)ds ,

= lim
T→+∞

(𝛷(E(e, h),−h))′
[

∫

T

0
(𝛷(e, s + h))′ Q𝛷(e, s + h)ds

]

𝛷(E(e, h),−h) .

However,

lim
h→0

𝛷(E(e, h),−h) − I
h

= −𝜕F
𝜕e

(e) ,

lim
h→0

𝛷(e, s + h) −𝛷(e, s)
h

= 𝜕

𝜕s
(𝛷(e, s)) ,

and

∫

T

0

𝜕

𝜕s
(𝛷(e, s))′ Q (𝛷(e, s)) ds +

∫

T

0
(𝛷(e, s))′ Q 𝜕

𝜕s
(𝛷(e, s)) ds =

𝛷(e,T)′Q𝛷(e,T) − Q .

Since limT and limh commute because 𝛷(e, s) exponentially converges to 0, (1.30)

is satisfied.

The last assertion of the proposition holds since if F isC3
then the matrix function

𝛷(e, t) is C2
in e. Moreover, the first and second derivatives of its coefficient also

belong to L2[0,+∞). □
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Example 1.3 Following the scalar example given in (1.21),

p(e) = 1
2
, p(e) ≤ k̃(e)2 lim

T→+∞∫

T

0
exp(−2s)ds =

exp
(

4e2 exp(e2)
)

2
.

1.3.2.3 Assertion 3: Construction of a Lyapunov Function

With P as defined for in (1.28) which Lie derivative satisfies inequality (1.30), it

yields that along the solution of linearized system (1.22)

In other words, the mapping (̃e, e) ↦ ẽ⊤P(e)̃e is a global Lyapunov function for the

ẽ components of linearized system (1.28).

However, e ↦ e⊤P(e)e is not a global Lyapunov function for the nonlinear system

(1.1) since

is negative definite if F(e) − 𝜕F
𝜕e
(e)e is small only and there is no guarantee that this

is case away from the origin.

Nevertheless, it is still possible to construct a Lyapunov function for system (1.1).

Indeed, the matrix functionPmay be used to define a Riemanian metric onℝne which

may be used as a Lyapunov function. Precisely, if P is a C2
function with values

that are symmetric matrices satisfying (1.29), then length of any piece-wise C1
path

𝛾 ∶ [s1, s2] → ℝne between two arbitrary points e1 = 𝛾(s1) and e2 = 𝛾(s2) in ℝne is

L(𝛾)|s2s1 = ∫

s2

s1

√
d𝛾
ds

(𝜎)′P(𝛾(𝜎))d𝛾
ds

(𝜎) d𝜎 . (1.31)

Minimizing along all such paths we obtain the distance dP(e1, e2).
From the well established relation between (geodesically) monotone vector field

(semi-group generator) (operator) and contracting (non-expansive) flow (semi-

group) (see, for example [7, 12, 13, 17]), if P is C2
and the metric space is complete,

this distance between any two solutions of (1.1) exponentially decreases to 0 if (1.30)

is satisfied with Q a positive definite symmetric matrix. For a proof, see for example

[17, Theorem 1], [13, Theorems 5.7 and 5.33] or [22, Lemma 3.3] (replacing f (x) by

x + hf (x)).
Thus, a candidate Lyapunov function is the Riemannian distance to the origin.

Hence, we introduce V ∶ ℝne → ℝ
≥0
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V(e) = dP(e, 0) . (1.32)

In the following proposition we show that this is indeed a good Lyapunov function

candidate and moreover that it admits an upper Dini derivative along the solution of

system (1.1) which is negative definite.

Proposition 1.7 (Assertion 3 globally) Assume F is C2 and that there exists a C2

matrix function, P, such that (1.29) and (1.30) hold and p satisfies

lim
r→+∞

p(r)r2 = +∞ . (1.33)

Then V, defined in (1.32), is a Lyapunov function for system (1.1). More precisely V
admits an upper Dini derivative along the solutions of system (1.1) defined as

D+
FV(e) ∶= lim sup

h↘0

V(E(e, h)) − V(e)
h

,

which satisfies

D+
FV(e) ≤ −

𝜇min{Q}
p̄(|e|)

V(e) .

Hence, the origin is locally exponentially stable and globally attractive.

Proof Given an initial point e in ℝne , and a direction v also in ℝne , geodesics are

given as solution to the geodesic equation

d2𝛾𝓁
ds2

(s)(s) =
n∑

i,j
𝔡𝓁ij

d𝛾i
ds

(s)
d𝛾j
ds

(s) , 𝛾(0) = e ,
d𝛾
ds

(0) = v , (1.34)

where the (𝔡𝓁ij ) are Christoffel symbols associated to P which are C1
if P is C2

. Since

the right hand side of (1.34) is C1
solutions

(

𝛾(s), d𝛾
ds
(s)

)

of (1.34) exist at least for

small s, and are unique and C1
. Hence, 𝛾(⋅) is C2

on its domain of existence.

From [24, Lemma A.1] and the assumption of (1.33), it yields that these geodesics

can be maximally extended to ℝ. From the Hopf–Rinow Theorem, this implies that

the metric space (ℝne ,P) is complete. Moreover, for any e in ℝne there exists 𝛾
∗ ∶

[0, se] → ℝne a C2
curve (a geodesic) such that

dP(e, 0) = L(𝛾∗)|se0 .

Without loss of generality, it is assumed that the geodesics are normalized, and so

d𝛾∗

ds
(s)⊤P(𝛾∗(s))d𝛾

∗

ds
(s) = 1 .
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Hence V satisfies

V(e) =
∫

se

0

√
d𝛾∗
ds

(s)⊤P(𝛾∗(s))d𝛾
∗

ds
(s) ds =

∫

se

0

d𝛾∗

ds
(s)⊤P(𝛾∗(s))d𝛾

∗

ds
(s) ds = se .

Let us first show that V is a positive definite and proper function. Since 𝛾
∗ ∶ [0, se]

is a continuous path from e to zero, this implies that there exists s0 in [0, se] such that

|𝛾∗(s0)| = |e| , |𝛾∗(s)| ≤ |e| , ∀s ∈ [s0, se] . (1.35)

Since

V(e) =
∫

se

0

√
d𝛾∗
ds

(s)⊤P(𝛾∗(s))d𝛾
∗

ds
(s)ds ,

≥
∫

se

s0

√
d𝛾∗
ds

(s)⊤P(𝛾∗(s))d𝛾
∗

ds
(s)ds ,

≥

√
p(|e|)

∫

se

s0

√
d𝛾∗
ds

(s)⊤ d𝛾
∗

ds
(s)ds ,

and since minimal geodesic for an Euclidean metric are straight lines s ↦ s𝛾∗(s0)
se−s0

,

then

∫

se

s0

√
d𝛾∗
ds

(s)⊤ d𝛾
∗

ds
(s)ds ≥

∫

se

s0

√
𝛾∗(s0)⊤𝛾∗(s0)
(se − s0)2

ds = |𝛾∗(s0)| .

Hence, from (1.35),

V(e) ≥
√

p(|e|)|e| .

Moreover,

V(e) ≤
∫

se

0

e⊤
se
P
(
se⊤
se

)
e
se
ds ,

≤ p(|e|)
∫

se

0

e⊤
se

e
se
ds ,

≤
p(|e|)
se

|e|2 .

Since V(e) = se, the two previous inequalities imply

√
p(|e|)|e| ≤ V(e) ≤

√
p(|e|)|e| . (1.36)

From (1.33), this implies that V is positive definite and proper.
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Let 𝛤 (s, t) be the mapping defined by

𝜕𝛤

𝜕t
(s, t) = F(𝛤 (s, t)) , 𝛤 (s, 0) = 𝛾

∗(s) .

Since F is C2
and the mapping 𝛾

∗
is C2

, then 𝛤 is C2
. Note that 𝛤 (s, h) is a C2

path

such that

𝛤 (se, h) = E(e, h) , 𝛤 (0, h) = 0 .

This implies, for all h ≥ 0

V(E(e, h)) ≤
∫

se

0

√
𝜕𝛤

𝜕s
(s, h)⊤P(𝛤 (s, h))𝜕𝛤

𝜕s
(s, h)ds .

Thus,

D+
FV(e) ≤ lim sup

h→0 ∫

se

0

√
𝜕𝛤

𝜕s
(s, h)⊤P(𝛤 (s, h)) 𝜕𝛤

𝜕s
(s, h) −

√
𝜕𝛾∗

𝜕s
(s)⊤P(𝛾∗(s)) 𝜕𝛾∗

𝜕s
(s)

h
ds .

Hence, with Fatou’s lemma, it yields

D+V(e) ≤
∫

se

0
lim sup

h→0

√
𝜕𝛤

𝜕s
(s, h)⊤P(𝛤 (s, h)) 𝜕𝛤

𝜕s
(s, h) −

√
𝜕𝛾∗

𝜕s
(s)⊤P(𝛾∗(s)) 𝜕𝛾∗

𝜕s
(s)

h
ds .

Since the mapping h ↦
√

𝜕𝛤

𝜕s
(s, h)⊤P(𝛤 (s, h)) 𝜕𝛤

𝜕s
(s, h) is C1

(since 𝛤 and P are C2
),

it yields

D+V(e) ≤
∫

se

0

𝜕

𝜕h

{√
𝜕𝛤

𝜕s
(s, ⋅)⊤P(𝛤 (s, ⋅))𝜕𝛤

𝜕s
(s, ⋅)

}

h=0

ds ,

= −
∫

se

0

1
2

d𝛾∗

ds
(s)⊤Qd𝛾∗

ds
(s)

√
𝜕𝛾∗

𝜕s
(s)⊤P(𝛾∗(s)) 𝜕𝛾∗

𝜕s
(s)

ds ,

≤ −1
2
𝜇min{Q}

∫

se

0

d𝛾∗

ds
(s)⊤ d𝛾

∗

ds
(s)ds ,

where the last inequality employs the fact that the geodesics are normalized. From

the Cauchy–Schwartz inequality,

D+V(e) ≤ −1
2
𝜇min{Q}

(

∫

se

0

√
d𝛾∗
ds

(s)⊤ d𝛾
∗

ds
(s)ds

)2

,
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and since minimal geodesics for a Euclidean metric are straight lines,

D+V(e) ≤ −1
2
𝜇min{Q}

∫

se

0

√
e
se

⊤ e
se
ds ,

≤ −
𝜇min{Q}

2
√
p(|e|) ∫

se

0

√

e
se

⊤

P
(
se
se

)
e
se
ds ,

≤ −
𝜇min{Q}

2
√
p(|e|)

V(e) .

Together with (1.36), this implies global asymptotic stability of the origin. Since

0 < p(0) < p(0), it also implies that the origin is locally exponentially stable. □

An interesting property of the considered Lyapunov function is that, given two

points e1 and e2 both in ℝne , if dP(e1, e2) is the Riemmanian distance between these

two points and 𝛾
∗

is the minimal (and normalized) geodesic, this yields, following

the previous proof, that there exists s0 such that

|𝛾∗(s0) − e2| = |e1 − e2| , |𝛾∗(s) − e2| ≤ |e1 − e2| , ∀s ∈ [s0, s2] .

Thus,

dP(e1, e2) ≥
∫

s2

s0

√
d𝛾∗
ds

(s)⊤P(𝛾∗(s))d𝛾
∗

ds
(s)ds ,

and, for all s in [s0, s2], |𝛾∗(s)| ≤ |𝛾∗(s) − e2| + |e2| ≤ |e1 − e2| + |e2|. Hence,

dP(e1, e2) ≥
√

p(|e1 − e2| + |e2|)
∫

s2

s0

√
d𝛾∗
ds

(s)⊤ d𝛾
∗

ds
(s)ds ,

≥

√
p(|e1 − e2| + |e2|)|𝛾∗(s0) − e2| ,

≥

√
p(|e1 − e2| + |e2|)|e1 − e2| .

Moreover,

dP(e1, e2) ≤
p(|e1 − e2| + |e2|))

dP(e1, e2)
|e1 − e2|2 .

The two previous inequalities imply

√
p(|e1 − e2| + |e2|))|e1 − e2| ≤ dP(e1, e2) ≤

√

p(|e1 − e2| + |e2|))|e1 − e2| ,

and
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D+
F,FdP(e1, e2) ≤ −

∫

s2

s1
𝛾̇
∗(s)Q𝛾̇∗(s)ds ≤ −

𝜇min{Q}

2
√

p(|e1 − e2| + |e2|)
dp(e1, e2) ,

where

D+
F,FdP(e1, e2) ∶= lim sup

h↘0

dP(E(e1, h)),E(e2, h))
h

.

In other words, there exists a strictly decreasing distance between any two points.

Consequently, there is exponential convergence of the euclidean distance between

any two trajectories toward zero. Hence, broadly speaking, we have shown that when

the origin is locally exponentially stable and globally attractive, there exists a strictly

decreasing distance between any two trajectories. However, this convergence is not

uniform in e1 and e2. This is a strong contrast with the incremental stability previ-

ously reported in, for example, [6] or [8]. Note moreover that it is shown in [23] that

the asymptotic stability property and incremental stability property are different.

Note that as mentioned in [3], when p and p are lower and upper bounded by

a nonzero constant, respectively, then the convergence is uniform. In this case, the

usual definition of incremental stability is recovered.

1.3.2.4 Discussions About the Requirement (1.33)

Requirement (1.33) is essential to ensure that ℝne endowed with the Riemannian

metric, P, is complete and that the obtained Lyapunov function is proper. It imposes

that mapping p does not vanish too quickly as |e| goes to infinity. Returning to the

definition of mapping p obtained in the proof of Proposition 1.6, if F is globally

Lipschitz then p is a constant. In other words, this assumption is trivially satisfied in

the globally Lipschitz context.

Another solution to ensure this assumption is satisfied is to modify P to make sure

that this one is lower bounded by a positive real number. Indeed, the trajectories of

system

ė = F(e)

1 + |
|
|
𝜕F
𝜕e
(e)||

|

3 , ̇̃e =
𝜕F
𝜕e
(e)

1 + |
|
|
𝜕F
𝜕e
(e)||

|

3 ẽ

are the same as those of lifted system (1.22) (obtained after time rescaling). Con-

sequently, the origin is globally attractive. Moreover, it is not difficult to show that

its origin is also locally exponentially stable. Finally, if F is C4
then the vector field

e ↦ F(e)

1+||
|
𝜕F
𝜕e
(e)||

|

3 is C3
. Let 𝛷̃ be the transition matrix solution of the following ℝne×ne

dynamical system
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d
dt
𝛷̃ (e, t) =

𝜕F
𝜕e
(E(e, t))

1 + |
|
|
𝜕F
𝜕e
(E(e, t))||

|

3 𝛷̃(e, t) , 𝛷̃(e, 0) = I ,

where each element of the (matrix) time function t ↦ 𝛷̃(e, t) is in L2([0,+∞)). Con-

sequently, for all positive definite matrix Q in ℝne×ne ,

P̃(e) = lim
T→+∞∫

T

0
𝛷̃(e, s)⊤Q𝛷̃(e, s)ds , (1.37)

is well defined. With this mapping, the following property may be obtained.

Proposition 1.8 (Lower bounded P) Assume that there exist function (k, k̃) and pos-
itive real numbers (𝜆, 𝜆) such that (1.20) and (1.24) are satisfied. Then, P ∶ ℝne →
ℝne×ne defined in (1.37) is well defined, continuous, and there exists a positive real
number, p, and a nondecreasing function, p̄, such that

0 < pI ≤ P̃(e) ≤ p̄(|e|)I , ∀ e ∈ ℝne . (1.38)

Moreover,

𝔡FP̃(e) + P̃(e)𝜕F
𝜕e

(e) + 𝜕F
𝜕e

(e)⊤P̃(e) ≤ −Q
(

1 +
|
|
|
|

𝜕F
𝜕e

(e)
|
|
|
|

3)

, ∀ e ∈ ℝne . (1.39)

Finally, if the vector field F is C4 then P is C2.
Proof The proof is similar to the one of Proposition 1.6. For all (e, t) in ℝne ×ℝ

≥0
there exists

|
|𝛷̃(e, t)|| ≤ k̃(|e|) exp(−𝜆̃t) .

Thus for every symmetric positive definite matrix, Q, P ∶ ℝnx → ℝne×ne given by

(1.28) is well defined, continuous, and satisfies:

𝜇max{P(e)} ≤
k̃(|e|)2

2𝜆̃
𝜇max{Q} = p(|e|) , ∀e ∈ ℝne .

Moreover, for all (t, v) in (ℝ ×ℝne )

𝜕

𝜕t
(
v′ [𝛷(e, t)]−1

)
= −v′ [𝛷(e, t)]−1

𝜕F
𝜕e
(E(e, t))

1 + |
|
|
𝜕F
𝜕e
(E(e, t))||

|

3 .

However,
|
|
|
|
|
|
|

𝜕F
𝜕e
(E(e, t))

1 + |
|
|
𝜕F
𝜕e
(E(e, t))||

|

3

|
|
|
|
|
|
|

≤ 1 ,
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then
|
|
|
v′𝛷(e, t)−1||

|
≤ exp(t) |v| , ∀(t, v) ∈ (ℝ ×ℝne ) ,

Following the proof of Proposition 1.6,

p =
𝜇min{Q}

2
≤ 𝜆min{P(e)} ∀ẽ ∈ ℝne .

The following inequality may also be obtained

𝔡 F
1+| 𝜕F

𝜕e (e)|3
P̃(e) + P̃(e)

𝜕F
𝜕e
(e)

1 + |
𝜕F
𝜕e
(e)|3

+
𝜕F
𝜕e
(e)⊤

1 + |
𝜕F
𝜕e
(e)|3

P̃(e) ≤ −Q , ∀ e ∈ ℝne .

Multiplying the former equation by 1 + |
𝜕F
𝜕e
(e)|3 yields the result. □

Since P is lower bounded, we can define a Lyapunov function following Propo-

sition 1.7. Broadly speaking, we have established the following Lyapunov inverse

result: Assuming some regularity on the system, if the origin is locally exponentially
stable and globally attractive then there exists a strictly decreasing Lyapunov func-
tion given as a Riemannian distance to the origin.

Of course, the local exponential stability of the origin is essential. Note that in

[11], is shown that up to a change of coordinates (which is not a diffeomorphism

since it is not smooth at the origin) it is possible to transform any asymptotically

stable system in an exponentially stable system. This implies that up to a change

of variable, it is always possible to consider a Lyapunov function arising from a

Riemannian distance.

1.3.3 Stabilization

We have shown that a linearization approach provides constuction of global Lya-

punov functions in the case of local exponential stability and global attractivity of

the origin. It may be interesting to know if this type of Lyapunov function may be

used in control design.

Consider a controlled nonlinear system on ℝn
,

ẇ = f (w) + g(w)u , (1.40)

where f ∶ ℝn → ℝn
and g ∶ ℝn → ℝn

are smooth vector fields, and u the controlled

input is in ℝ.

Our objective is to construct a control u = 𝜙(w) that achieves local exponential

stabilization and global attractivity of the origin. Based on the former analysis, a

sufficient condition based on the use of a Riemannian–Lyapunov function may be
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obtained. However, these assumptions inspired from [9] and [1] are very conserva-

tive.

Proposition 1.9 Assume there exists a mapping P ∶ ℝn → ℝn×n such that

1. P is C3, satisfies conditions (1.29), (1.33), and there exists a positive real number
𝜆 and a positive definite matrix Q such that the following matrix inequality holds

𝔡f P(w) + P(w)
𝜕f
𝜕w

(w) +
𝜕f
𝜕w

(w)⊤P(w) − 𝜆 |P(w)g(w)|2 ≤ −Q , ∀ w ∈ ℝn
.

(1.41)

2. g is a Killing vector field on ℝn endowed with the Riemannian metric P, i.e., for
all w in ℝn

LgP(w) = 𝔡gP(w) + P(w)
𝜕g
𝜕w

(w) +
𝜕g
𝜕w

(w)⊤P(w) = 0 .

3. There exists a mapping U ∶ ℝn → ℝ such that:

𝜕U
𝜕w

(w) = P(w)g(w)⊤ . (1.42)

Then the control law u = −𝜆U(w) achieves local exponential stability and global
attractivity of the origin of system (1.40) in closed loop.

Proof The proof follows from Proposition 1.7. The closed loop system may be

expressed as

F(w) = f (w) − 𝜆g(w)U(w) .

The Lie derivative of the tensor P is

LFP(w) = Lf P(w) − 𝜆LgP(w)U(w) − P(w)g(w)𝜕U
𝜕w

(w)

which implies

LFP(w) = Lf P(w) − 𝜆 |P(w)g(w)|2 ≤ −Q .

From Proposition 1.7, this implies the result. □

Following [3], it is possible to slightly relax these assumptions by introducing a scal-

ing factor, 𝛼(w), which multiply g and by rewriting these assumptions accordingly.

1.4 Conclusion and Final Remark

We have shown that a first order approximation leads to the construction of Lyapunov

functions that characterize the local exponential stability of a transverse manifold. A

global Lyapunov function may be constructed from first order approximation in the
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context of local exponential stability and global attractivity of an equilibrium point.

For this case, one may consider a Riemannian length to the origin as a Lyapunov

function.

Some problematic effects arise when considering global transverse exponential

stability for a manifold as shown in the following simple example.

Consider the planar system defined on ℝ2
,

ė = −𝜙(x)e , ẋ = 𝜇xx , 𝜙(x) = 𝜆 + x sin(x) , (1.43)

with solution for all t in ℝ,

E(e0, x0, t) = exp
(

−𝜆t +
cos(1) − cos(e𝜇xtx0)

𝜇x

)

e0 , X(e0, x0, t) = e𝜇xtx0 .

This implies that manifold {(e, x), e = 0} is (transversally) locally exponential stable

and globally attractive uniformly in x. Indeed, we have for all (e0, x0) in ℝ

|E((e0, x0), t)| ≤ exp
(
cos(1) + 1

𝜇x

)

exp(−𝜆t)|e0| .

The transversally linear system is

which gives (with Ẽ(t) = Ẽ(̃e0, x̃0, e0, x0, t))

Ẽ(t) = exp
(

∫

t

0
𝜙(e𝜇xsx0)ds

)

ẽ0 +
∫

t

0
exp

(

∫

t

s
𝜙(e𝜇x𝜈x0)d𝜈

)

𝜙
′(e𝜇x𝜈x0)

× E(w0, s)e𝜇xsx̃0ds ,

= exp
(

∫

t

0
𝜙(e𝜇xsx0)ds

)[

ẽ0 +
∫

t

0
𝜙
′(e𝜇xsx0)e𝜇xse0x̃0ds

]

.

Hence, this yields if x0 ≠ 0,

Ẽ(t) = exp
(

∫

t

0
𝜙(e𝜇xsx0)ds

)[

ẽ0 +
𝜙(e𝜇xtx0) − 𝜙(x0)

𝜇x

e0x̃0
x0

]

.
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With 𝜙 as previously defined,

Ẽ(t) = exp
(cos(x0) − cos(e𝜇xtx0)

𝜇x

)

×
[

e−𝜆t ẽ0 +
e(𝜇x−𝜆)t sin(e𝜇xtx0) − sin(x0)e−𝜆t

𝜇x
e0x̃0

]

.

which does not converge to zero if 𝜆 < 𝜇x if for example e0 = 1, x0 = 1, x̃0 = 1.

Thus study of the linearized systems must be undertaken with care and this implies

that Assertion 1 from Sect. 1.1 is no longer valid in this context. More precisely,

exponential convergence to the origin of the e dynamics, does not imply that the ẽ
component of the linearized system along solutions converges to zero.

In [2], it has been shown that when the convergence rate to the manifold is larger

then the expansion rate in the manifold, Assertion 1 may hold. In this case, it is

possible to construct a Lyapunov function based on first order approximation.

The construction of a matrix function which satisfies Eqs. (1.15), (1.30), or (1.41)

is a crucial step to make this framework practical. Preliminary results aiming at solv-

ing a differential Riccati equation (e.g., (1.41)) are given in [25]. Backstepping-based

approaches are also a possible research area (see [28, 29] or [5]). Methods following

numerical approximation of the partial differential equation should also be consid-

ered.
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Chapter 2
A Review on Model Reduction by Moment
Matching for Nonlinear Systems

Giordano Scarciotti and Alessandro Astolfi

Abstract The model reduction problem for nonlinear systems and nonlinear time-

delay systems based on the steady-state notion of moment is reviewed. We show how

this nonlinear description of moment is used to pose and solve the model reduc-

tion problem by moment matching for nonlinear systems, to develop a notion of

frequency response for nonlinear systems, and to solve model reduction problems in

the presence of constraints on the reduced order model. Model reduction of nonlin-

ear time-delay systems is then discussed. Finally, the problem of approximating the

moment of nonlinear, possibly time-delay, systems from input/output data is briefly

illustrated.

2.1 Introduction

The model reduction problem has been widely studied for the prediction, analysis,

and control of a wide class of physical behaviors. For instance, reduced order mod-

els are used to simulate or design weather forecast models, very large scale inte-

grated circuits or networked dynamical systems [1]. The model reduction problem

consists in finding a simplified description of a dynamical system maintaining at

the same time specific properties. For linear system, the problem has been exten-

sively studied exploiting a variety of techniques, some of them based on the singular

value decomposition, see, e.g., [2–4] which make use of Hankel operators or, e.g.,

[5–8] which exploit balanced realizations, and some based on the Krylov projec-
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tion matrices, see, e.g., [9–15], also called moment matching methods. The addi-

tional difficulties of the reduction of nonlinear systems carry the need to develop

different or “enhanced” techniques. The problem of model reduction for special

classes of systems, such as differential-algebraic systems, bilinear systems, and

mechanical/Hamiltonian systems has been studied in [16–19]. Energy-based meth-

ods have been proposed in [7, 20, 21]. Other techniques, based on the reduction

around a limit cycle or a manifold, have been presented in [22, 23]. Model reduc-

tion methods based on proper orthogonal decomposition have been developed for

linear and nonlinear systems, see, e.g., [24–28]. Finally, note that some computa-

tional aspects have been investigated in [23, 26, 29, 30]. In addition, the problem of

model reduction of time-delay systems is a classic topic in control theory. The opti-

mal reduction (in the sense of some norm) is listed as an unsolved problem in systems

theory in [31] and several results have been given using rational interpolations, see,

e.g., [32–34], see also [35–41]. Recent results include model order reduction tech-

niques for linear time-delay systems, see, e.g., [42–44], and for infinite dimensional

systems, see, e.g., [45, 46] in which operators are used to provide reduced order mod-

els for linear systems. The goal of this chapter is to review the model reduction

techniques for nonlinear, possibly time-delay, systems based on the “steady-state”

notion of moment. We start introducing the interpolation approach to moment match-

ing, which is how moment matching has been classically interpreted and applied to

linear systems. We then move to the steady-state approach introduced in [47]. We

present some results on the model reduction problem by moment matching for non-

linear systems, as given in [48], and develop a notion of frequency response for non-

linear systems. These techniques are extended to nonlinear time-delay systems [49]

and the problem of obtaining a family of reduced order models matching two (non-

linear) moments is solved for a special class of signal generators. Finally the problem

of approximating the moment of nonlinear (time-delay) systems, without solving the

partial differential equation that defines it, is presented and solved [50, 51].

Notation. We use standard notation. ℝ
>0 denotes the set of positive real numbers;

ℂ
<0 denotes the set of complex numbers with negative real part; 𝔻

<1 denotes the set

of complex numbers with modulo smaller than one; 𝜄 denotes the imaginary unit.

Given a set of delays {𝜏j}, the symbol ℜn
T = ℜn

T ([−T , 0],ℝn), with T = maxj{𝜏j},

indicates the set of continuous functions mapping the interval [−T , 0] into ℝn

with the topology of uniform convergence [52]. The symbol I denotes the iden-

tity matrix, 𝜎(A) denotes the spectrum of the matrix A ∈ ℝn×n
and ⊗ indicates the

Kronecker product. The vectorization of a matrix A ∈ ℝn×m
, denoted by vec(A), is

the nm × 1 vector obtained by stacking the columns of the matrix A one on top of

the other, namely vec(A) = [a⊤

1 , a
⊤

2 ,… , a⊤

m]
⊤

, where ai ∈ ℝn
are the columns of A

and the superscript ⊤ denotes the transposition operator. The superscript ∗ indi-

cates the complex conjugate transposition operator. Let s̄ ∈ ℂ and A(s) ∈ ℂn×n
. Then

s̄ ∉ 𝜎(A(s)) means that det(s̄I − A(s̄)) ≠ 0. 𝜎(A(s)) ⊂ ℂ
<0 means that for all s̄ such

that det(s̄I − A(s̄)) = 0, s̄ ∈ ℂ
<0. Lf h denotes the Lie derivative of the smooth func-

tion h along the smooth vector field f , as defined in [53, Chapter 1].
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2.2 The Interpolation Approach

In this section we briefly recall the notion of moment and the related model reduction

techniques as presented in [1]. We refer to this family of methods as “interpolation-

based” methods. The key element to understand this framework is that the moment

matching problem is interpreted as a problem of interpolation of points in the com-

plex plane, which has been solved by the Nevanlinna-Pick theory (see, e.g., [54]).

Definition 2.1 Let {si} be a sequence of distinct points in Z ⊂ ℂ and let {wi} be an

arbitrary sequence of points in ℂ. Given a space W of functions on Z, the interpo-
lation problem consists in determining a function W ∶ Z ↦ ℂ such that W(si) = wi,

for all i = 1,… , 𝜈.

Consider a linear, single-input, single-output, continuous-time, system described by

the equations

ẋ = Ax + Bu, y = Cx, (2.1)

with x(t) ∈ ℝn
, u(t) ∈ ℝ, y(t) ∈ ℝ, A ∈ ℝn×n

, B ∈ ℝn×1
and C ∈ ℝ1×n

. Let

W(s) = C(sI − A)−1B

be the associated transfer function and assume that (2.1) is minimal, i.e., controllable

and observable. The k-moment of system (2.1) at si is defined as the k-th coefficient

of the Laurent series expansion of the transfer function W(s) in a neighborhood of

si ∈ ℂ (see [1, Chapter 11]), provided it exists.

Definition 2.2 Let si ∈ ℂ ⧵ 𝜎(A). The 0-moment of system (2.1) at si is the complex

number 𝜂0(si) = W(si). The k-moment of system (2.1) at si is the complex number

𝜂k(si) =
(−1)k

k!

[
dk

dsk W(s)
]

s=si

,

with k ≥ 1 integer.

In the interpolation approach to moment matching, a reduced order model is such

that its transfer function (and, possibly, derivatives of this) takes the same values of

the transfer function (and, possibly, derivatives of this) of system (2.1) at si. This

is graphically represented in Fig. 2.1 in which the magnitude (top) and phase (bot-

tom) of the transfer function of a reduced order model (dashed/red line) matches the

respective quantities of a given system (solid/blue line) at the point si = 30𝜄. Since

a minimal system can be entirely described by its transfer function, such a system

can be effectively reduced using this technique. In this framework, the problem of

model reduction by moment matching can be formulated as the problem of finding

the correct Petrov-Galerkin projectors V ∈ ℝn×𝜈
and W ∈ ℝn×𝜈

, with W∗V = I, such

that the model described by the equations
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Fig. 2.1 Diagrammatic illustration of the interpolation approach. Magnitude (top graph) and phase

(bottom graph) plot of a given system (solid/blue line) and of a reduced order model (dashed/red
line). The green circle represents the interpolation point

𝜉̇ = F𝜉 + Gu, 𝜓 = H𝜉, (2.2)

with 𝜉(t) ∈ ℝ𝜈
, u(t) ∈ ℝ, 𝜓(t) ∈ ℝ, F ∈ ℝ𝜈×𝜈

, G ∈ ℝ𝜈×1
, H ∈ ℝ1×𝜈

, and

F = W∗AV , G = W∗B, H = CV , (2.3)

matches the moments of the given system at a set of points si. The problem of model

reduction by moment matching using the Petrov-Galerking projectors is thoroughly

described in [1] and it is the subject of intensive research, see, e.g., [9–15]. Herein

we report a few results which are instrumental for the aims of the chapter. We invite

the reader to refer to [1] for additional detail.

Proposition 2.1 [1] Consider 𝜈 distinct points sj ∈ ℂ ⧵ 𝜎(A), with j = 1,… , 𝜈. The
transfer function of the reduced order model (2.2), with

V =
[
(s1I − A)−1B ⋯ (s

𝜈
I − A)−1B

]
(2.4)

a generalized reachability matrix and W any left inverse of V, interpolates the trans-
fer function of system (2.1) at the points sj, with j = 1,… , 𝜈.

Proposition 2.2 [1] Consider the point s0 ∈ ℂ ⧵ 𝜎(A). The transfer function of the
reduced order model (2.2), with

V =
[
(s0I − A)−1B (s0I − A)−2B ⋯ (s0I − A)−𝜈B

]
(2.5)
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a generalized reachability matrix and W any left inverse of V, interpolates the trans-
fer function of system (2.1) and its 𝜈 − 1 derivatives at the point s0.

The techniques which result from these propositions are called rational interpolation
methods by projection, or Krylov methods. We note that the matrix W is a free para-

meter since it has to satisfy only a “mild” constraint, namely that it is a left inverse of

V . However, the selection of W such that the reduced order model exhibits specific

properties is in general a difficult problem. The results presented to exploit the free

parameters of the matrix W play, with different aims, on the possibility of interpolat-

ing more, somewhat special, points. The first of these results, which we recall here,

provides a method for the so-called two-sided interpolation.

Proposition 2.3 [1] Consider sj ∈ ℂ ⧵ 𝜎(A), with j = 1,… , 2𝜈, the generalized
reachability matrix

V̄ =
[
(s1I − A)−1B ⋯ (s

𝜈
I − A)−1B

]
, (2.6)

and the generalized observability matrix

W̄ =
[
(s

𝜈+1I − A∗)−1C∗ ⋯ (s2𝜈I − A∗)−1C∗ ]
. (2.7)

Assume that det(W̄∗V̄) ≠ 0, then the transfer function of the reduced order model
(2.2) with and V = V̄ and W = W̄(V̄∗W̄)−1 interpolates the transfer function of sys-
tem (2.1) at the points sj, with j = 1,… , 2𝜈.

Exploiting this result, the problem of preservation of passivity and stability has been

solved in [55, 56], as reported here.

Lemma 2.1 [1] If the interpolation points in Proposition 2.3 are chosen so that sj,
with j = 1,… , 𝜈, are stable spectral zeros, i.e., they are such that W∗(−si) + W(si) =
0, and sj+𝜈 = −sj, with j = 1,… , 𝜈, i.e., the interpolation points are chosen as zeros
of the spectral factors and their mirror images, then the projected system is both
stable and passive.

We can now indicate the following drawbacks in the Krylov methods.

∙ There is no systematic technique to preserve important properties of the system,

for instance maintaining prescribed eigenvalues, relative degree, zeros, L2-gain,

or preserving compartmental constraints.

∙ When a method capable of preserving some of these properties (such as stability

and passivity) is presented, it usually implies that specific moments are matched.

Hence, the designer cannot chose arbitrary moments. Moreover, there is a lack

of system theoretic understanding behind why a particular interpolation point is

related to a property like passivity.

∙ In Lemma 2.1 all the free parameters (the matrix W) are used and no additional

property can be preserved.

∙ Finally, the interpolation-based methods cannot be applied to nonlinear systems

(or more general classes of systems), since for these we cannot define a transfer

function.
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A possible solution to these issues is offered by the “steady-state-based” approach

to moment matching. While the first three points are addressed in [48], we focus the

rest of the chapter on the last problem: the model reduction of general classes of

nonlinear systems.

2.3 The Steady-State Approach

As just observed the interpolation approach cannot be extended to nonlinear sys-

tems for which the idea of interpolating points in the complex plane partially loses

its meaning (see, however, [57, 58] for some results on the interpolation problem for

nonlinear systems). In [48] (see also [14, 59]) a characterization of moment for sys-

tem (2.1) has been given in terms of the solution of a Sylvester equation as follows.

Lemma 2.2 [48] Consider system (2.1), si ∈ ℂ ⧵ 𝜎(A), for all i = 1,… , 𝜂. There
exists a one-to-one1 relation between the moments 𝜂0(s1), …, 𝜂k1−1(s1), …, 𝜂0(s𝜂),
…, 𝜂k

𝜂
−1(s𝜂), and the matrix C𝛱 , where 𝛱 is the unique solution of the Sylvester

equation
A𝛱 + BL = 𝛱S, (2.8)

with S ∈ ℝ𝜈×𝜈 any non-derogatory2 matrix with characteristic polynomial

p(s) =
𝜂∏

i=1
(s − si)ki , (2.9)

where 𝜈 =
∑𝜂

i=1 ki, and L is such that the pair (L, S) is observable.

The importance of this formulation, which has resulted in several developments in

the area of model reduction by moment matching, see, e.g., [60, 61] and [49–51, 62–

66], is that it establishes, through the Sylvester equation (2.8), a relation between the

moments and the steady-state response of the output of the system. Before proceed-

ing further we provide a formal definition of steady-state response. With abuse of

notation, we indicate the state of a (linear, nonlinear, or more general) dynamical

system as x(t, x0) to highlight the dependency on time and on the initial condition.

Definition 2.3 ([67, 68]) Let B ⊂ ℝn
and suppose x(t, x0) is defined for all t ≥ 0

and all x0 ∈ B. The 𝜔-limit set of the set denoted by w(B), is the set of all points x
for which there exists a sequence of pairs {xk, tk}, with xk ∈ B and limk→∞ tk = ∞
such that limk→∞ x(tk, xk) = x.

1
The matrices A, B, C, and the zeros of (2.9) fix the moments. Then, given any observable pair

(L, S) with S a non-derogatory matrix with characteristic polynomial (2.9), there exists an invertible

matrix T ∈ ℝ𝜈×𝜈
such that the elements of the vector C𝛱T−1

are equal to the moments.

2
A matrix is non-derogatory if its characteristic and minimal polynomials coincide.
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Fig. 2.2 Diagrammatic illustration of Theorem 2.1. The term denoting the steady-state response

is circled

Definition 2.4 ([67, 68]) Suppose the responses of the system, with initial condi-

tions in a closed and positively invariant set X , are ultimately bounded. A steady-
state response is any response with initial condition x0 ∈ w(B).
Exploiting the notion of steady-state response we can introduce the following result,

which is illustrated in Fig. 2.2.

Theorem 2.1 [48] Consider system (2.1), si ∈ ℂ ⧵ 𝜎(A), for all i = 1,… , 𝜂, and
𝜎(A) ⊂ ℂ

<0. Let S ∈ ℝ𝜈×𝜈 be any non-derogatory matrix with characteristic polyno-
mial (2.9). Consider the interconnection of system (2.1) with the system

𝜔̇ = S𝜔, u = L𝜔, (2.10)

with L and 𝜔(0) such that the triple (L, S, 𝜔(0)) is minimal. Then there exists a one-
to-one relation between the moments 𝜂0(s1), …, 𝜂k1−1(s1), …, 𝜂0(s𝜂), …, 𝜂k

𝜂
−1(s𝜂),

and the steady-state response of the output y of such interconnected system.

Remark 2.1 [69] The minimality of the triple (L, S, 𝜔(0)) implies the observability

of the pair (L, S) and the “controllability” of the pair (S, 𝜔(0)). This last condition,

called excitability of the pair (S, 𝜔(0)), is a geometric characterization of the property

that the signals generated by (2.10) are persistently exciting, see [70].

Remark 2.2 By one-to-one relation we mean that the moments are uniquely deter-

mined by the steady-state response of y(t) and vice versa. Exploiting this fact, in

[50] the problem of computing the moments of an unknown linear systems from

input/output data has been addressed. Therein an algorithm that, given the signal 𝜔

and the output y, retrieves the moments of a system for which the matrices A, B, and

C are not known is devised.

The reduction technique based on this notion of moment consists in the interpolation

of the steady-state response of the output of the system: a reduced order model is

such that its steady-state response is equal to the steady-state response of the output

of system (2.1) (provided it exists). Thus, the problem of model reduction by moment

matching has been changed from a problem of interpolation of points to a problem

of interpolation of signals. The output of the reduced order model has to behave

as the output of the original system for a class of input signals, a concept which

can be translated to nonlinear systems, time-delay systems, and infinite dimensional

systems, [48, 49]. This fact also highlights how important for the moment matching

techniques is to let the designer choose the interpolation points, which are related to

the class of inputs to the system.
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2.4 Model Reduction by Moment Matching for Nonlinear
Systems

We can now extend the steady-state description of moment to nonlinear systems.
3

Consider a nonlinear, single-input, single-output, continuous-time system described

by the equations

ẋ = f (x, u), y = h(x), (2.11)

with x(t) ∈ ℝn
, u(t) ∈ ℝ, y(t) ∈ ℝ, f and h smooth mappings, a signal generator

described by the equations

𝜔̇ = s(𝜔), u = l(𝜔), (2.12)

with 𝜔(t) ∈ ℝv
, s and l smooth mappings, and the interconnected system

𝜔̇ = s(𝜔), ẋ = f (x, l(𝜔)), y = h(x). (2.13)

In addition, suppose that f (0, 0) = 0, s(0) = 0, l(0) = 0, and h(0) = 0. Similarly, to

the linear case the interconnection of system (2.11) with the signal generator cap-

tures the property that we are interested in preserving the behavior of the system

only for specific input signals. The following assumptions and definitions provide a

generalization of the notion of moment.

Assumption 2.1 The signal generator (2.12) is observable, i.e., for any pair of ini-

tial conditions 𝜔a(0) and 𝜔b(0), such that 𝜔a(0) ≠ 𝜔b(0), the corresponding output

trajectories l(𝜔a(t)) and l(𝜔b(t)) are such that l(𝜔a(t)) − l(𝜔b(t)) ≢ 0, and Poisson

stable
4

with 𝜔(0) ≠ 0.

Assumption 2.2 The zero equilibrium of the system ẋ = f (x, 0) is locally exponen-

tially stable.

Lemma 2.3 [48] Consider system (2.11) and the signal generator (2.12). Suppose
Assumptions 2.1 and 2.2 hold. Then there is a unique mapping 𝜋, locally defined in
a neighborhood of 𝜔 = 0, which solves the partial differential equation

𝜕𝜋

𝜕𝜔
s(𝜔) = f (𝜋(𝜔), l(𝜔)). (2.14)

Remark 2.3 Lemma 2.3 implies that the interconnected system (2.13) possesses an

invariant manifold described by the equation x = 𝜋(𝜔).

Definition 2.5 Consider system (2.11) and the signal generator (2.12). Suppose

Assumption 2.1 holds. The function h◦𝜋, with 𝜋 solution of equation (2.14), is the

moment of system (2.11) at (s, l).

3
Note that the results of this section are local.

4
See [53, Chapter 8] for the definition of Poisson stability.
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Fig. 2.3 Diagrammatic illustration of Theorem 2.2. The term denoting the steady-state response

is circled

Theorem 2.2 [48] Consider system (2.11) and the signal generator (2.12). Suppose
Assumptions 2.1 and 2.2 hold. Then the moment of system (2.11) at (s, l) coincides
with the steady-state response of the output of the interconnected system (2.13).

The result is illustrated in Fig. 2.3 which represents the nonlinear counterpart of

Fig. 2.2.

Remark 2.4 [48] If the equilibrium x = 0 of the system ẋ = f (x, 0) is unstable, it is

still possible to define the moment of system (2.11) at (s, l) in terms of the function

h◦𝜋, provided the equilibrium x = 0 is hyperbolic and the system (2.12) is Poisson

stable, although it is not possible to establish a relation with the steady-state response

of the interconnected system (2.13).

Remark 2.5 [48] While for linear systems it is possible to define k-moments for

every si ∈ ℂ and for any k ≥ 0, for nonlinear systems it may be difficult, or impos-

sible, to provide general statements if the signal u, generated by system (2.12), is

unbounded. Therefore, we assume that the signal generator generates bounded sig-

nals. For linear systems this assumption implies that we consider only points si ∈ ℂ
that are distinct and with zero real part.

2.4.1 The Frequency Response of a Nonlinear System

In [48], see also [71, 72], a nonlinear enhancement of the notion of frequency

response of a linear system has been derived exploiting the steady-state descrip-

tion of moment. Note that this result is loosely related to the analysis in [66] where

a generalization of the phasor transform based on the notion of moment is proposed.

Consider system (2.11) and the signal generator (2.12). Let the signal generator

(2.12) be such that

s(𝜔) =
[

0 𝜔̄

−𝜔̄ 0

]

𝜔, l(𝜔) =
[

L1 L2
]
𝜔,

with 𝜔(0) ≠ 0, 𝜔̄ ≠ 0, and L2
1 + L2

2 ≠ 0. Then, under Assumptions 2.1 and 2.2 the

output of the interconnected system (2.13) converges toward a locally well-defined

steady-state response, which, by definition, does not depend upon the initial condi-
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tion x(0). Moreover, such a steady-state response is periodic, hence, if it has the same

period of l(𝜔(t)), it can be written in Fourier series as h(𝜋(𝜔(t))) =
∑∞

k=−∞ cke𝜄k𝜔̄t
,

with ck ∈ ℂ. Consider now the operator P+ which acts on a Fourier series as follows

P+

( ∞∑

k=−∞
cke𝜄k𝜔̄t

)

=
∞∑

k=0
𝛼ke𝜄k𝜔̄t

,

with 𝛼k ∈ ℂ. With this operator we can define the frequency response of the nonlin-

ear system (2.11) as

F(t, 𝜔(0), 𝜔̄) =
P+(h(𝜋(𝜔(t))))
P+(l(𝜔(t))

.

This function depends upon the frequency 𝜔̄, just as in the linear case, and, unlike

the linear case, upon the initial condition 𝜔(0) of the signal generator and time. Note

finally that if the system (2.11) were linear, hence described by the Eq. (2.1), then

F(t, 𝜔(0), 𝜔̄) would be constant with respect to t and equal to |W(𝜄𝜔̄)|e𝜄∠W(𝜄𝜔̄)
, where

W(s) = C(sI − A)−1B, | ⋅ | indicates the absolute value operator and ∠ the phase

operator.

2.4.2 Moment Matching

We are now ready to introduce the notion of reduced order model by moment match-

ing for nonlinear systems.

Definition 2.6 [48] Consider the signal generator (2.12). The system described by

the equations

𝜉̇ = 𝜙(𝜉, u), 𝜓 = 𝜅(𝜉), (2.15)

with 𝜉(t) ∈ ℝ𝜈
, is a model at (s, l) of system (2.11) if system (2.15) has the same

moment at (s, l) as (2.11). In this case, system (2.15) is said to match the moment

of system (2.11) at (s, l). Furthermore, system (2.15) is a reduced order model of

system (2.11) if 𝜈 < n.

Lemma 2.4 Consider system (2.11), system (2.15) and the signal generator (2.12).
Suppose Assumptions 2.1 and 2.2 hold. System (2.15) matches the moments of (2.11)
at (s, l) if the equation

𝜙(p(𝜔), l(𝜔)) =
𝜕p
𝜕𝜔

s(𝜔) (2.16)

has a unique solution p such that

h(𝜋(𝜔)) = 𝜅(p(𝜔)), (2.17)

where 𝜋 is the (unique) solution of equation (2.14).
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In other words, we have to determine mappings 𝜙, 𝜅, and p such that Eqs. (2.16) and

(2.17) hold. We introduce the following assumption to simplify the problem.

Assumption 2.3 There exist mappings 𝜅 and p such that 𝜅(0) = 0, p(0) = 0, p is

locally continuously differentiable, Eq. (2.17) holds and det 𝜕p(𝜔)
𝜕𝜔

|
|
|𝜔=0

≠ 0, i.e., the

mapping p possesses a local inverse p−1
.

Remark 2.6 [48] Similar to the linear case, Assumption 2.3 holds selecting p(𝜔) = 𝜔

and k(𝜔) = h(𝜋(𝜔)).

Finally, as shown in [48], the system described by the equations

𝜉̇ = s(𝜉) − 𝛿(𝜉)l(𝜉) + 𝛿(𝜉)u, 𝜓 = h(𝜋(𝜉)), (2.18)

where 𝛿 is any mapping such that the equation

𝜕p
𝜕𝜔

s(𝜔) = s(p(𝜔)) − 𝛿(p(𝜔))l(p(𝜔)) + 𝛿(p(𝜔))l(𝜔), (2.19)

has the unique solution p(𝜔) = 𝜔, is a family of reduced order models of (2.11) at
(s, l).

2.4.3 Model Reduction by Moment Matching with Additional
Properties

We can determine the conditions on the mapping 𝛿 such that the reduced order model

satisfies additional properties. The proofs are omitted and can be found in [48].

2.4.3.1 Matching with Asymptotic Stability

Consider the problem of determining a reduced order model (2.18) which has an

asymptotically stable zero equilibrium. This problem can be solved if it is possible to

select the mapping 𝛿 such that the zero equilibrium of the system 𝜉̇ = s(𝜉) − 𝛿(𝜉)l(𝜉)
is locally asymptotically stable. To this end, for instance, it is sufficient that the pair(

𝜕l(𝜉)
𝜕𝜉

|
|
|𝜉=0

,
𝜕s(𝜉)
𝜕𝜉

|
|
|𝜉=0

)

is observable.

2.4.3.2 Matching with Prescribed Relative Degree

The problem of constructing a reduced order model which has a given relative degree

r ∈ [1, 𝜈] at some point 𝜉 can be solved selecting 𝛿 as follows.
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Theorem 2.3 [48] For all r ∈ [1, 𝜈] there exists a 𝛿 such that system (2.18) has
relative degree r at 𝜉 if and only if the codistribution

dO
𝜈
(𝜉) = span{dh(𝜋(𝜉)),⋯ , dL𝜈−1

s h(𝜋(𝜉))} (2.20)

has dimension 𝜈 at 𝜉.

2.4.3.3 Matching with Prescribed Zero Dynamics

Consider system (2.18) and the problem of determining the mapping 𝛿 such that

the model has zero dynamics with specific properties. If 𝜉 is an equilibrium of sys-

tem (2.18), the problem is solved selecting 𝛿 such that the codistribution (2.20) has

dimension 𝜈 at 𝜉 [48]. Then there is a 𝛿 such that the zero dynamics of system (2.18)

have a locally exponentially stable equilibrium and there is a coordinate transfor-

mation, locally defined around 𝜉, such that the zero dynamics are described by the

equations

ż1 = z2 + 𝛿1(z)z1,
ż2 = z3 + 𝛿2(z)z1,

⋮
ż
𝜈−r = f̂ (z) + 𝛿

𝜈−r(z)z1,

(2.21)

where the 𝛿i are free functions and

f̂ (z) = f̃ (Z )|Z =[0,…,0,z1,…,z
𝜈−r]⊤ ,

with Z = 𝛯(𝜉) and f̃ (Z ) = L𝜈

s h(𝜋(𝛯−1(Z ))).

2.4.3.4 Matching with a Passivity Constraint

Consider now the problem of selecting the mapping 𝛿 such that system (2.18) is

lossless or passive. For such a problem the following fact holds.

Theorem 2.4 [48] The family of reduced order models (2.18) contains, locally
around 𝜉, a lossless (passive, respectively) system with a differentiable storage func-
tion if there exists a differentiable function V, locally positive definite around 𝜉, such
that equation5

V
𝜉
s(𝜉) = h(𝜋(𝜉))l(𝜉), (V

𝜉
s(𝜉) ≤ h(𝜋(𝜉))l(𝜉) respectively), (2.22)

holds locally around 𝜉 and

5V
𝜉

and V
𝜉𝜉

denote, respectively, the gradient and the Hessian matrix of the scalar function V ∶
𝜉 ↦ V(𝜉).
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V
𝜉𝜉
(𝜉) > 0. (2.23)

2.4.3.5 Matching with L𝟐-gain

We now consider the problem of selecting the mapping 𝛿 such that system (2.18) has

a given L2-gain.

Theorem 2.5 [48] The family of reduced order models (2.18) contains, locally
around 𝜉, a system with L2-gain not larger than 𝓁 > 0, and with a differentiable
storage function if there exists a differentiable function V, locally positive definite
around 𝜉, such that Eq. (2.23) holds and

V
𝜉
s(𝜉) + (h(𝜋(𝜉)))2 ≤ 𝓁2l2(𝜉), (2.24)

holds locally around 𝜉.

2.5 Model Reduction for Nonlinear Time-Delay Systems

Exploiting the steady-state notion of moment an extension of the model reduction

method for nonlinear time-delay systems is given. To keep the notation simple we

consider, without loss of generality, only delays (discrete or distributed) in the state

and in the input, i.e., the output is delay-free. The neutral case is briefly discussed at

the end of the section.

2.5.1 Definition of 𝝅: Nonlinear Time-Delay Systems

Consider a nonlinear, single-input, single-output, continuous-time, time-delay sys-

tem described by the equations

ẋ = f (x
𝜏0
,… , x

𝜏
𝜍

, u
𝜏
𝜍+1
,… , u

𝜏
𝜇

), y = h(x),
x(𝜃) = 𝜙(𝜃), −T ≤ 𝜃 ≤ 0, (2.25)

with x(t) ∈ ℝn
, u(t) ∈ ℝ, y(t) ∈ ℝ, 𝜙 ∈ ℜn

T , 𝜏0 = 0, 𝜏j ∈ ℝ
>0 with j = 1,… , 𝜇 and

f and h smooth mappings. Consider a signal generator (2.12) and the interconnected

system

𝜔̇ = s(𝜔), ẋ = f (x
𝜏0
,… , x

𝜏
𝜍

, l(𝜔
𝜏
𝜍+1
),… , l(𝜔

𝜏
𝜇

)), y = h(x). (2.26)

Suppose that f (0,… , 0, 0,… , 0) = 0, s(0) = 0, l(0) = 0 and h(0) = 0.
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Assumption 2.4 The zero equilibrium of the system ẋ = f (x
𝜏0
,… , x

𝜏
𝜍

, 0,… , 0) is

locally exponentially stable.

Lemma 2.5 [49, 53] Consider system (2.25) and the signal generator (2.12). Sup-
pose Assumptions 2.1 and 2.4 hold. Then there exists a unique mapping 𝜋, locally
defined in a neighborhood of 𝜔 = 0, which solves the partial differential equation

𝜕𝜋

𝜕𝜔
s(𝜔) = f (𝜋(𝜔̄

𝜏0
),… , 𝜋(𝜔̄

𝜏
𝜍

), l(𝜔̄
𝜏
𝜍+1
),… , l(𝜔̄

𝜏
𝜇

)), (2.27)

where 𝜔̄
𝜏i
= 𝛷

s
𝜏i
(𝜔), with i = 0,… , 𝜇, is the flow of the vector field s at −𝜏i.

Remark 2.7 Lemma 2.5 implies that the interconnected system (2.26) possesses an

invariant manifold, described by the equation x = 𝜋(𝜔). Note that the partial differ-

ential equation (2.27) is independent of time (as (2.14) in the delay-free case), e.g.,

if s(𝜔) = S𝜔 then 𝜔̄
𝜏i
= e−S𝜏i𝜔.

Definition 2.7 Consider system (2.25) and the signal generator (2.12). Suppose

Assumption 2.1 holds. The function h◦𝜋, with 𝜋 solution of equation (2.27), is the

moment of system (2.25) at (s, l).

Theorem 2.6 [49] Consider system (2.25) and the signal generator (2.12). Suppose
Assumptions 2.1 and 2.4 hold. Then the moment of system (2.25) at (s, l) coincides
with the steady-state response of the output of the interconnected system (2.26).

2.5.2 Reduced Order Models for Nonlinear Time-Delay
Systems

In this section two families of models achieving moment matching are given.

Definition 2.8 Consider system (2.25) and the signal generator (2.12). Suppose

Assumption 2.1 and 2.4 hold. Then the system

𝜉̇ = 𝜙(𝜉
𝜒0
,… , 𝜉

𝜒
𝜌̂

, u
𝜒
𝜌̂+1
,… , u

𝜒
𝜌

), 𝜓 = 𝜅(𝜉), (2.28)

with 𝜉(t) ∈ ℝ𝜈
, u(t) ∈ ℝ, 𝜓(t) ∈ ℝ, 𝜒0 = 0, 𝜒j ∈ ℝ

>0 with j = 1,… , 𝜌, and 𝜙 and 𝜅

smooth mappings, is a model of system (2.25) at (s, l) if system (2.28) has the same

moment of system (2.25) at (s, l).

Lemma 2.6 Consider system (2.25) and the signal generator (2.12). Suppose Assump-
tion 2.1 and 2.4 hold. Then the system (2.28) is a model of system (2.25) at (s, l) if
the equation

𝜕p
𝜕𝜔

s(𝜔) = 𝜙(p(𝜔̄
𝜒0
),… , p(𝜔̄

𝜒
𝜌̂

), l(𝜔̄
𝜒
𝜌̂+1
),… , l(𝜔̄

𝜒
𝜌

)), (2.29)

where 𝜔̄
𝜒i
= 𝛷

s
𝜒i
(𝜔), with i = 0,… , 𝜌, has a unique solution p such that
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h(𝜋(𝜔)) = 𝜅(p(𝜔)), (2.30)

where 𝜋 is the unique solution of (2.27). System (2.28) is a reduced order model of
system (2.25) at (s, l) if 𝜈 < n, or if 𝜌̂ < 𝜍, or if 𝜌 < 𝜇.

Similarly to the delay-free case we use part of the free mappings to obtain a simpler

family of models.

Assumption 2.5 There exist mappings 𝜅 and p such that 𝜅(0) = 0, p(0) = 0, p is

locally continuously differentiable, Eq. (2.30) holds and p has a local inverse p−1
.

Consistently with Lemma 2.6, a family of models that achieves moment matching at

(s, l) is described by

𝜉̇= 𝛷(𝜉, 𝜉
𝜒1
,… , 𝜉

𝜒
𝜌̂

) + 𝜕p(𝜔)
𝜕𝜔

𝛾(𝜉
𝜒1
,… , 𝜉

𝜒
𝜌̂

) + 𝜕p(𝜔)
𝜕𝜔

∑𝜌

j=𝜌̂+1 𝛿j(𝜉)u𝜒j
,

𝜓= 𝜅(𝜉),
(2.31)

with

𝛷(𝜉, 𝜉
𝜒1
,… , 𝜉

𝜒
𝜌̂

) =
[
𝜕p(𝜔)
𝜕𝜔

(s(𝜔) − 𝛾(p(𝜔̄
𝜒1
),… , p(𝜔̄

𝜒
𝜌̂

))−

−
∑𝜌

j=𝜌̂+1 𝛿j(p(𝜔))l(𝜔̄𝜒j
))
]

𝜔=p−1(𝜉)
,

where 𝜉
𝜒j
=
[

𝜔̄
𝜒j

]

𝜔=p−1(𝜉)
, 𝜅 and p are such that Assumption 2.5 holds, p is the unique

solution of (2.29) and 𝛿j and 𝛾 are free mappings.

Assumption 2.5 holds with the selection p(𝜔) = 𝜔 and 𝜅(𝜔) = h(𝜋(𝜔)). This yields

a family of models described by the equations

𝜉̇ = s(𝜉) −
𝜌∑

j=𝜌̂+1
𝛿j(𝜉)l(𝜉𝜒j

) − 𝛾(𝜉
𝜒1
,… , 𝜉

𝜒
𝜌̂

) + 𝛾(𝜉
𝜒1
,… , 𝜉

𝜒
𝜌̂

) +
∑𝜌

j=𝜌̂+1 𝛿j(𝜉)u𝜒j
,

𝜓 = h(𝜋(𝜉)),
(2.32)

where 𝛿j and 𝛾 are arbitrary mappings such that Eq. (2.29), namely

𝜕p
𝜕𝜔

s(𝜔) = s(p(𝜔)) −
∑𝜌

j=𝜌̂+1 𝛿j(p(𝜔))l(p(𝜔̄𝜒l
)) − 𝛾(p(𝜔̄

𝜒1
),… , p(𝜔̄

𝜒
𝜌̂

))
+
∑𝜌

j=𝜌̂+1 𝛿j(p(𝜔))l(𝜔𝜒j
) + 𝛾(p(𝜔

𝜒1
),… , p(𝜔

𝜒
𝜌̂

)),

has the unique solution p(𝜔) = 𝜔.

The nonlinear model (2.32) has several free design parameters, namely 𝛿j, 𝛾 , 𝜒j, 𝜌̂

and 𝜌. We note that selecting 𝛾 ≡ 0, 𝜌̂ = 0, 𝜌 = 1 and 𝜒1 = 0 (in this case we define

𝛿 = 𝛿1), yields a family of reduced order models with no delays. This family coin-

cides with the family (2.18) and all results of Sect. 2.4.3 are directly applicable: the

mapping 𝛿 can be selected to achieve matching with asymptotic stability, matching
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with prescribed relative degree, etc. However, note that the choice of eliminating the

delays may destroy some important dynamics of the model.

Remark 2.8 The results of this section can be extended to more general classes

of time-delay systems provided that, for such systems, the center manifold theory

applies. In particular, one can consider the class of neutral differential time-delay

systems described by equations of the form

d(ẋ
𝜏0
,… , ẋ

𝜏
𝜍1
) = f (x

𝜏
𝜍1+1

,… , x
𝜏
𝜍2
, u

𝜏
𝜍2+1

,… , u
𝜏
𝜇

),
y = h(x),

(2.33)

with x(t) ∈ ℝn
, u(t) ∈ ℝ, y(t) ∈ ℝ, 𝜏0 = 0, 𝜏j ∈ ℝ

>0 with j = 1,… , 𝜇 and d, f , and h
smooth mappings. The center manifold theory does not hold for this class of systems

for a general mapping d. Specific cases have to be considered and we refer the reader

to [73–75] and references therein. Note, however, that for the simple case

ẋ + Dẋ
𝜏1
= f (x

𝜏2
,… , x

𝜏
𝜍1
, u

𝜏
𝜍1+1

,… , u
𝜏
𝜇

),
y = h(x),

(2.34)

with D ∈ ℝn×n
, the center manifold theory holds as for standard time-delay systems

if the matrix D is such that 𝜎(D) ⊂ 𝔻
<1.

2.5.3 Exploiting One Delay to Match h◦𝝅a and h◦𝝅b

In this section we show how to exploit the free parameters to achieve moment match-

ing at two moments h◦𝜋a and h◦𝜋b maintaining the same number of equations

describing the reduced order model. Consider system (2.25) and, to simplify the

exposition, the signal generators described by the linear equation

𝜔̇ = Sa𝜔, u = Lab𝜔, (2.35)

Note that, as highlighted in [48], considering the model reduction problem for non-

linear systems when the signal generator is a linear system is of particular inter-

est since the reduced order models have a very simple description, i.e., a fam-

ily of reduced order models is described by a linear differential equation with a

nonlinear output map. This observation holds true also in the case of time-delay

systems, namely a nonlinear time-delay system can be approximated by a linear time-

delay equation with a nonlinear output map. This structure has two main advantages.

Firstly, the selection of the free parameters that achieve additional goals, such as to

assign the eigenvalues or the relative degree of the reduced order model, is remark-

ably simplified. Secondly, the computation of the reduced order model boils down

to the computation of the output map h◦𝜋. A technique to approximate this mapping
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is proposed in the next section. As a consequence of this discussion, a reduced order

model of system (2.25) at (Sa,Lab) is given by the family

𝜉̇ = F0𝜉 + F1𝜉𝜒 + G2u + G3u
𝜒
,

𝜓= 𝜅0(𝜉) + 𝜅1(𝜉𝜒 ),
(2.36)

with 𝜅0 and 𝜅1 smooth mappings, if there exists a unique matrix Pa such that

F0Pa + F1Pae−Sa𝜒 − PaSa = −G2Lab − G3Labe−Sa𝜒 ,

h(𝜋a(𝜔)) = 𝜅0(Pa𝜔) + 𝜅1(Pae−Sa𝜒𝜔), (2.37)

Consider now another signal generator described by the linear equation

𝜔̇ = Sb𝜔, u = Lab𝜔, (2.38)

and the problem of selecting F0, F1, G2, G3, 𝜅0, and 𝜅1 such that the reduced order

model (2.36) matches the moments of system (2.25) at (Sa,Lab) and (Sb,Lab).

Proposition 2.4 Let Sa ∈ ℝ𝜈×𝜈 and Sb ∈ ℝ𝜈×𝜈 be two non-derogatory matrices such
that 𝜎(Sa) ∩ 𝜎(Sb) = ∅ and let Lab be such that the pairs (Lab, Sa) and (Lab, Sb) are
observable. Let 𝜋a(𝜔) = 𝜋(𝜔) be the unique solution of (2.27), with L = Lab and S =
Sa, and let 𝜋b(𝜔) = 𝜋(𝜔) be the unique solution of (2.27), with L = Lab and S = Sb.
Then system (2.36) with the selection

F1 =(Sb − Sa − G3(e−Sb𝜒 − e−Sa𝜒3 ))(e−Sb𝜒 − e−Sa𝜒 )−1,
F0 =Sa − G2Lab − G3Labe−Sa𝜒 − F1e−Sa𝜒 ,

𝜅0(𝜔)=h(𝜋a(𝜔)) − 𝜅1(e−Sa𝜒𝜔),
(2.39)

and k1 a mapping such that

𝜅1
(
e−Sb𝜒𝜔

)
− 𝜅1

(
e−Sa𝜒𝜔

)
= h(𝜋b(𝜔)) − h(𝜋a(𝜔)),

is a reduced order model of the nonlinear time-delay system (2.25) achieving moment
matching at (Sa,Lab) and (Sb,Lab), for any G2 and G3 such that si ∉ 𝜎(F0 + F1e−s𝜒 ),
for all si ∈ 𝜎(Sa) and si ∈ 𝜎(Sb).

Proof As showed in the proof of Proposition 2.1 of [49], F0 and F1 solve the two

Sylvester equations

F0Pa + F1Pae−Sa𝜒 − PaSa = −G2Lab − G3Labe−Sa𝜒 ,

F0Pb + F1Pbe−Sb𝜒 − PbSb = −G2Lab − G3Labe−Sb𝜒 ,
(2.40)

with Pa = Pb = I. It remains to determine the mappings 𝜅0 and 𝜅1 that solve the

matching conditions



46 G. Scarciotti and A. Astolfi

h(𝜋a(𝜔)) = 𝜅0(𝜔) + 𝜅1
(
e−Sa𝜒𝜔

)
,

h(𝜋b(𝜔)) = 𝜅0(𝜔) + 𝜅1
(
e−Sb𝜒𝜔

)
.

(2.41)

Solving the first equation with respect to 𝛿0 and substituting the resulting expression

in the second yields

𝜅1
(
e−Sb𝜒𝜔

)
− 𝜅1

(
e−Sa𝜒𝜔

)
= h(𝜋b(𝜔)) − h(𝜋a(𝜔)),

from which the claim follows.

The family of linear time-delay systems with nonlinear output mapping character-

ized in Proposition 2.4 matches the moments h◦𝜋a and h◦𝜋b of the nonlinear sys-

tem (2.25). Note that the matrices G2 and G3 remain free parameters and they can

be used to achieve the properties discussed in Sect. 2.4.3. For instance, G2 and G3
can be used to set both the eigenvalues of F0 and F1.

Remark 2.9 Proposition 2.4 can be generalized to 𝜌̂ > 1 delays, obtaining a reduced

order model that match (𝜌̂ + 1)𝜈 moments. The result can also be generalized to

nonlinear generators si(𝜔) assuming that the flow 𝛷
si
𝜒i
(𝜔) is known for all the delays

𝜒i and that 𝛾(𝜉
𝜒1
,… , 𝜉

𝜒
𝜌̂

) in (2.32) is replaced by 𝛾̂1(𝜉𝜒1
) +… + 𝛾̂

𝜌̂
(𝜉

𝜒
𝜌̂

).

Remark 2.10 The number of delays in (2.25) does not play a role in Proposition 2.4.

Thus, this result can be applied to reduce a system with an arbitrary number of delays

always obtaining a reduced order model with, for example, two delays. This fact can

be taken to the “limit” reducing a system which is not a time-delay system. In other

words, a system described by ordinary differential equations can be reduced to a

system described by time-delay differential equations with an arbitrary number of

delays 𝜌̂ achieving moment matching at (𝜌̂ + 1)𝜈 moments.

2.6 Online Nonlinear Moment Estimation from Data

In this section we solve a fundamental problem for the theory we have presented,

namely how to compute an approximation of the moment h◦𝜋 when the solution

of the partial differential equation (2.13) or (2.27) is not known. Note, first of all,

that the results of this section hold indiscriminately for delay-free and time-delay

systems. In the following we do not even need to know the mappings f and h. In

fact we are going to present a method to approximate the moment h◦𝜋 directly from

input/output data, namely from𝜔(t) and y(t). Note that given the exponential stability

hypothesis on the system and Theorem 2.2 (Theorem 2.6 for time-delay systems),

the equation

y(t) = h(𝜋(𝜔(t))) + 𝜀(t), (2.42)

where 𝜀(t) is an exponentially decaying signal, holds for the interconnections (2.13)

and (2.26). We introduce the following assumption.
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Assumption 2.6 The mapping h◦𝜋 belongs to the function space identified by the

family of continuous basis functions 𝜑j ∶ ℝ𝜈 → ℝ, with j = 1,… ,M (M may be ∞),

i.e., there exist 𝜋j ∈ ℝ, with j = 1,… ,M, such that

h(𝜋(𝜔)) =
M∑

j=1
𝜋j𝜑j(𝜔),

for any 𝜔.

Let

𝛤 =
[
𝜋1 𝜋2 … 𝜋N

]
,

𝛺(𝜔(t))=
[
𝜑1(𝜔(t)) 𝜑2(𝜔(t)) … 𝜑N(𝜔(t))

]⊤
,

with N ≤ M. Using a weighted sum of basis functions, Eq. (2.42) can be written as

y(t) =
N∑

j=1
𝜋j𝜑j(𝜔(t)) + e(t) + 𝜀(t) = 𝛤𝛺(𝜔(t)) + e(t) + 𝜀(t), (2.43)

where e(t) =
∑M

N+1 𝜋j𝜑j(𝜔(t)) is the error caused by stopping the summation at N.

Consider now the approximation

y(t) ≈
N∑

j=1
𝜋j𝜑j(𝜔(t)) = 𝛤𝛺(𝜔(t)), (2.44)

which neglects the approximation error e(t) and the transient error 𝜖(t). Let Tw
k =

{tk−w+1,… , tk−1, tk}, with 0 ≤ t0 < t1 < … < tk−w < … < tk < … < tq, with w > 0
and q ≥ w, and 𝛤k be an on-line estimate of the matrix 𝛤 computed at Tw

k , namely

computed at the time tk using the last w instants of time ti assuming that e(t) and 𝜖(t)
are known. Since this is not the case in practice, define 𝛤k =

[
𝜋1 𝜋2 … 𝜋N

]
as the

approximation, in the sense of (2.44), of the estimate 𝛤k. Finally, we can compute

this approximation as follows.

Theorem 2.7 [64] Define the time-snapshots Ũk ∈ ℝw×N and 𝛶k ∈ ℝw as

Ũk =
[
𝛺(𝜔(tk−w+1)) … 𝛺(𝜔(tk−1)) 𝛺(𝜔(tk))

]⊤

and
𝛶k =

[
y(tk−w+1) … y(tk−1) y(tk)

]⊤
.

If Ũk is full rank then
vec(𝛤k) = (Ũ⊤

k Ũk)−1Ũ⊤

k 𝛶k, (2.45)

is an approximation of the estimate 𝛤k.
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To ensure that the approximation is well-defined for all k, we give an assumption in

the spirit of persistency of excitation.

Assumption 2.7 For any k ≥ 0, there exist K̄ > 0 and 𝛼 > 0 such that the elements

of TK
k , with K > K̄, are such that

1
K

Ũ⊤

k Ũk ≥ 𝛼I.

Note that if Assumption 2.7 holds (see [76] for a similar argument), Ũ⊤

k Ũk is full

rank. The next definition is a direct consequence of the discussion we have carried

out.

Definition 2.9 The estimated moment of system (2.11) (or system (2.25)) is defined

as

h̃◦𝜋N,k(𝜔(t)) = 𝛤k𝛺(𝜔(t)), (2.46)

with 𝛤k computed with (2.45).

Equation (2.45) is a classic least-square estimator and an efficient recursive formula

can be easily derived.

Theorem 2.8 [64] Assume that𝛷k = (Ũ⊤

k Ũk)−1 and𝛹k = (Ũ⊤

k−1Ũk−1 + 𝜔(tk)𝜔(tk)⊤)−1

are full rank for all t ≥ tr with tr ≥ tw. Given vec(𝛤r), 𝛷r and 𝛹r, the least-square
estimation

vec(𝛤k) = vec(𝛤k−1) +𝛷k𝜔(tk)
(

y(tk) − 𝜔(tk)⊤ vec(𝛤k−1)
)

−

−𝛷k𝜔(tk−w)
(

y(tk−w) − 𝜔(tk−w)⊤ vec(𝛤k−1)
)

,

(2.47)

with

𝛷k = 𝛹k − 𝛹k𝜔(tk−w)(I + 𝜔(tk−w)⊤𝛹k𝜔(tk−w))−1𝜔(tk−w)⊤𝛹k (2.48)

and

𝛹k = 𝛷k−1 −𝛷k−1𝜔(tk)(I + 𝜔(tk)⊤𝛷k−1𝜔(tk))−1𝜔(tk)⊤𝛷k−1. (2.49)

holds for all t ≥ tr.

Finally, the following result guarantees that the approximation converges to h◦𝜋.

Theorem 2.9 [64] Suppose Assumptions 2.1 (2.1 for time-delay systems), 2.2 (2.4
for time-delay systems), 2.6 and 2.7 hold. Then

lim
t→∞

(

h(𝜋(𝜔(t))) − lim
N→M

h̃◦𝜋N,k(𝜔(t))
)

= 0.
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2.7 Conclusion

In this chapter we have reviewed the model reduction technique for nonlinear, pos-

sibly time-delay, systems based on the “steady-state” notion of moment. We have

firstly recalled the classical interpolation theory and we have then introduced the

steady-state-based notion of moment. Exploiting this description of moment the

solution of the problem of model reduction by moment matching for nonlinear sys-

tems has been given and an enhancement of the notion of frequency response for

nonlinear systems has been presented. Subsequently, these techniques have been

extended to nonlinear time-delay systems and the problem of obtaining a family

of reduced order models matching two moments has been solved for nonlinear

time-delay systems. The review is concluded with a recently presented technique to

approximate the moment of nonlinear, possibly time-delay, systems, without solving

any partial differential equation.
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Chapter 3
Event-Triggered Control of Nonlinear
Systems: A Small-Gain Approach

Tengfei Liu and Zhong-Ping Jiang

Abstract This chapter studies the event-triggered control problem for nonlinear

systems with input-to-state stability (ISS) as the basic notion and the ISS small-gain

theorem as a tool. The contribution of this book chapter is twofold. First, an ISS gain

condition is proposed for event-triggered control of nonlinear uncertain systems. It

is proved that infinitely fast sampling can be avoided with an appropriately designed

event-triggering mechanism if the system is input-to-state stabilizable with measure-

ment error as the external input and the resulted ISS gain is Lipschitz on compact

sets. No assumption on the existence of known ISS-Lyapunov functions is made in

the discussions. Moreover, the forward completeness problem with event-triggered

control is studied systematically by ISS small-gain arguments. Self-triggered control

designs for systems under external disturbance are also developed in the ISS-based

framework. Second, this chapter introduces a new design method for input-to-state

stabilization of nonlinear uncertain systems in the strict-feedback form. It is particu-

larly shown that the ISS gain with the measurement error as the input can be designed

to satisfy the proposed condition for event-triggered control.

3.1 Introduction

Tremendous efforts have been made for improved performance of control systems.

As an alternative to the periodic data-sampling in traditional sampled-data control

systems, the aperiodic event-triggered data-sampling depends on the real-time sys-

tem state, and in this way, takes into account the system behavior between the sam-

pling time instants. Such new data-sampling strategy has been proved to be quite
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useful in reducing the waste of computation and communication resources in feed-

back control systems. Early results in this direction include [5, 15, 31, 40, 51].

Due to the increasing popularity of networked control systems, recent years have

seen a renewed interest in event-triggered control of linear and nonlinear systems.

Significant contributions have been made to the literature; see, e.g., [3, 4, 6, 8, 12,

18, 19, 37, 42, 49, 56] and the references therein. Specifically, in [4, 19], impul-

sive control methods are developed to keep the states of first order stochastic systems

inside certain thresholds. In [12, 37], prediction of the real-time system state between

the sampling time instants is employed to generate the control signal, and the pre-

diction is corrected by data-sampling when the difference between the true state and

the predicted state is larger than a threshold signal. In [49], the sampling error of the

system state is considered as measurement error, and the system is assumed to be

robustly stabilizable in the presence of the measurement error. Then, the event trig-

ger is designed such that the measurement error caused by data-sampling is bounded

by a specific threshold (depending on the real-time system state) for convergence of

the system state. Reference [38] proposes a universal formula for event-based sta-

bilization of general nonlinear systems affine in the control by extending Sontag’s

result for continuous-time stabilization [45]. Reference [50] proposes a Lyapunov

condition for tracking control of nonlinear systems. The designs have been extended

to distributed control [9, 14, 43, 54], decentralized control [6, 8], systems with quan-

tized measurements [11], and periodic event-triggered control [16], to name a few.

In the process of event-triggered control, the real-time system state should be contin-

uously monitored. As an alternative, a self-triggered controller computes the control

signal as well as the next sampling time instant such that continuous monitoring

of system state is not needed [52]. Recent results on self-triggered control can be

found in [1, 2, 7, 39, 41, 53, 54]. See also [17] for a literature review and tutorial

of event-triggered control,

For practical implementation of event-triggered control, infinitely fast sampling

should be avoided, that is, the intervals between all the sampling time instants should

be lower bounded by some positive constant [29]. Note that one special case of infi-

nitely fast sampling is that there is an infinite number of sampling time instants con-

verging to a finite time, which is known as the Zeno behavior [13]. In most of the

existing results, the events of data-sampling are triggered by comparing the real-

time system state and a threshold signal, and the event-triggered control problems

are transformed into problems of choosing appropriate threshold signals to avoid

infinitely fast sampling.

The notion of input-to-state stability (ISS), invented by Sontag, is a powerful

tool to describe the stability property of nonlinear systems with external inputs [46].

For event-triggered control, ISS has been used to describe the influence of data-

sampling to control [2, 39, 49]. In this framework, it is usually assumed that the

plant has an input-to-state stabilizing controller with the measurement error caused

by data-sampling as the external input. The basic idea is to find an appropriate event-

trigger such that the influence of data-sampling is attenuated and the closed-loop

system augmented with the event-triggered sampling is ISS. A special case is that

the system is disturbance-free and asymptotic stability (AS) could be achieved. In the



3 Event-Triggered Control of Nonlinear Systems: A Small-Gain Approach 55

very recent paper [6], the ISS small-gain theorem [23, 32] is applied to guarantee

the stability of the overall system composed of interacting ISS subsystems, and a

parsimonious event-triggering mechanism is developed to avoid the Zeno behavior.

Based on the recent development of the small-gain methods, this chapter aims to

develop a new small-gain approach to event-triggered control of nonlinear systems.

By means of small-gain designs, several event-triggered control problems are solved

for the first time.

∙ ISS has been used to describe the influence of the measurement error caused by

data-sampling to control performance in event-triggered control systems in [2, 39,

49]. In most of the existing results, a known ISS-Lyapunov function is assumed

for event-trigger design. Notice that the construction of ISS-Lyapunov functions

for general nonlinear control systems is generally not easy, except for some spe-

cific classes of nonlinear systems. We relax this requirement by designing event-

triggered controllers without using ISS-Lyapunov functions. With our design, the

closed-loop event-triggered control system can be transformed into an intercon-

nected system, the asymptotic stability of which can be guaranteed by using the

small-gain theorem.

∙ Input-to-state stabilization in the presence of measurement errors plays a criti-

cal role in the designs for event-triggered control of nonlinear systems. Most of

the existing results assume known input-to-state stabilizing controllers a priori.

However, it is well known that small measurement error may cause the perfor-

mance of a nonlinear control system to deteriorate, even if the system with no

measurement error is asymptotically stable [10]. Based on our recent results on

measurement feedback control [34, 35], this chapter develops a novel design for

event-triggered control of nonlinear uncertain systems in the strict-feedback form

and output-feedback form. We employ a novel set-valued map design to cover the

influence of the measurement error caused by data-sampling, and transform the

closed-loop system into a network of ISS subsystems. With the cyclic-small-gain

theorem [24, 32], ISS of the closed-loop system with the measurement error as

the input is guaranteed, and the influence of the measurement error is explicitly

evaluated. More importantly, it is shown that event-triggered control problem is

solvable under mild conditions. It should be noted that the design does not require

the accurate knowledge of the system dynamics.

∙ Event-triggered control with partial-state feedback has been studied for linear sys-

tems; see, e.g., [8, 30] and also [17] for a recent literature review. However, the

corresponding problems with nonlinear systems have not been systematically stud-

ied. With the ISS small-gain theorem as a tool, we develop new event-triggered

control strategies with partial-state feedback to avoid infinitely fast sampling, and

at the same time, achieve asymptotic stabilization. In particular, it is recognized

that the decreasing rate of the threshold signal for the event-trigger should be cho-

sen in accordance with the decreasing rate of the closed-loop system. The problem

is solved by refining the Lyapunov-based ISS small-gain theorem.
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3.2 Preliminaries

In this section, we present some basic notations and review the concept of ISS and

its small-gain results that will be used in this chapter.

A function 𝛼 ∶ ℝ+ → ℝ+ is said to be positive definite if 𝛼(0) = 0 and 𝛼(s) > 0 for

s > 0. A continuous function 𝛼 ∶ ℝ+ → ℝ+ is said to be a class K function, denoted

by 𝛼 ∈ K , if it is strictly increasing and 𝛼(0) = 0; it is said to be a classK∞ function,

denoted by 𝛼 ∈ K∞, if it is a class K function and satisfies 𝛼(s) → ∞ as s → ∞.

For 𝛾1, 𝛾2 ∈ K , 𝛾1◦𝛾2 < Id means 𝛾1(𝛾2(s)) < s for all s > 0. A continuous function

𝛽 ∶ ℝ+ ×ℝ+ → ℝ+ is said to be a class K L function, denoted by 𝛽 ∈ K L , if, for

each fixed t ∈ ℝ+, function 𝛽(⋅, t) is a class K function and, for each fixed s ∈ ℝ+,

function 𝛽(s, ⋅) is decreasing and limt→∞ 𝛽(s, t) = 0.

A function h ∶ X → Y with X ⊆ ℝn
and Y ⊆ ℝm

is said to be Lipschitz con-

tinuous, or simply Lipschitz, onX , if there exists a constant Kh ≥ 0, such that for any

x1, x2 ∈ X , |h(x1) − h(x2)| ≤ Kh|x1 − x2|. A function h ∶ X → Y with X ⊆ ℝn

being open and connected, and Y ⊆ ℝm
is said to be locally Lipschitz on X , if

each x ∈ X has a neighborhood X0 ⊆ X such that h is Lipschitz on X0. A func-

tion h ∶ X → Y with X ⊆ ℝn
and Y ⊆ ℝm

is said to be Lipschitz on compact

sets, if h is Lipschitz on every compact set D ⊆ X . Here, it should be noted that

the notion of Lipschitz on compact sets is used in [49] for Lyapunov-based event-

triggered control design.

3.2.1 Input-to-State Stability

For systems with external inputs, the notion of ISS invented by Sontag has been

proved to be powerful in evaluating the influence of the external inputs.

Consider system

ẋ = f (x, u), (3.1)

where x ∈ ℝn
is the state, u ∈ ℝm

represents the input, and f ∶ ℝn ×ℝm → ℝn
is a

locally Lipschitz function and satisfies f (0, 0) = 0. By considering the input u as a

function of time, assume that u is measurable and locally essentially bounded.

In [44], the original definition of ISS is given in the “plus” form. For convenience

of discussions, we mainly use the equivalent “max”-form definition.

Definition 3.1 System (3.1) is said to be ISS if there exist a 𝛽 ∈ K L and a 𝛾 ∈ K
such that for any initial state x(0) = x0 and any measurable and locally essentially

bounded u, the solution x(t) satisfies

|x(t)| ≤ max{𝛽(|x0|, t), 𝛾(‖u‖∞)} (3.2)

for all t ≥ 0. Here, 𝛾 is called the ISS gain of the system.
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ISS-Lyapunov functions have been used to formulate the notion of ISS. For sys-

tem (3.1), the equivalence between ISS and the existence of ISS-Lyapunov functions

was originally presented in [47].

Theorem 3.1 System (3.1) is ISS if and only if it admits a continuously differentiable
function V ∶ ℝn → ℝ+, for which

1. there exist 𝛼, 𝛼 ∈ K∞ such that

𝛼(|x|) ≤ V(x) ≤ 𝛼(|x|), ∀x, (3.3)

2. there exist a 𝛾 ∈ K and a continuous, positive definite 𝛼 such that

V(x) ≥ 𝛾(|u|) ⇒ ∇V(x)f (x, u) ≤ −𝛼(V(x)), ∀x, u. (3.4)

A function V satisfying (3.3) and (3.4) is called an ISS-Lyapunov function and 𝛾

is called the Lyapunov-based ISS gain.

3.2.2 ISS Small-Gain Theorems

The small-gain theorem developed in [23] has been proved to be very useful in the

analysis and design of interconnected nonlinear systems. In this chapter, the systems

will be considered as interconnected systems in the event-triggered control designs.

Consider system

ẋi = fi(x, ui), i = 1, 2 (3.5)

where x = [xT
1 , x

T
2 ]

T
with x1 ∈ ℝn1 and x2 ∈ ℝn2 is the state, u1 ∈ ℝm1 and u2 ∈

ℝm2 are external inputs, f1 ∶ ℝn1+n2 ×ℝm1 → ℝn1 and f2 ∶ ℝn1+n2 ×ℝm2 → ℝn2 are

locally Lipschitz functions satisfying f1(0, 0) = 0 and f2(0, 0) = 0. For convenience

of notations, denote u = [uT
1 , u

T
2 ]

T
. By considering u as a function of time, assume

that u is measurable and locally essentially bounded.

For i = 1, 2, assume that each xi-subsystem is ISS with x3−i and ui as inputs.

Specifically, for each i = 1, 2, there exist 𝛽i ∈ K L and 𝛾i(3−i), 𝛾
u
i ∈ K such that

for any initial state xi(0) = xi0 and any measurable and locally essentially bounded

inputs x3−i, ui, the solution xi(t) satisfies

|xi(t)| ≤ max{𝛽i(|xi0|, t), 𝛾i(3−i)(‖x3−i‖∞), 𝛾u
i (‖ui‖∞)} (3.6)

for all t ≥ 0.

Reference [23] considers systems in a more general form with the subsystems

interconnected by their outputs and assumed to be input-to-output stable (IOS). Here,

due to space limitation, we just review the special case in which the subsystems are

ISS and are directly interconnected by their states.



58 T. Liu and Z.-P. Jiang

Theorem 3.2 Consider the interconnected system composed of two subsystems in
the form of (3.5) satisfying (3.6). The interconnected system is ISS with u as the input
if the small-gain condition

𝛾12 ◦ 𝛾21 < Id (3.7)

is satisfied.

Remark 3.1 It is obvious that Theorem 3.2 still holds if one of the subsystems, say

the x2-subsystem, satisfies (3.6) with 𝛽2 = 0. This is the case where the x2-subsystem

is memoryless. Also, due to causality, if (3.6) holds for t ∈ [0,Tmax) with 0 < Tmax
≤ ∞, then with (3.7) satisfied, the solution x(t) of interconnected system (3.5) satis-

fies (3.2) for t ∈ [0,Tmax).

Remark 3.2 It is interesting to note that the Lyapunov formulation of the ISS small-

gain Theorem 3.2 was developed in [22] based on the equivalence of ISS and ISS-

Lyapunov function.

Recently, the small-gain result in [23] has been significantly generalized to address

problems arising from large-scale systems in [24]. With the new result called cyclic-

small-gain theorem, the IOS property of a large-scale system composed of IOS sub-

systems can be tested by checking the composition of the IOS gains along every

simple cycle of the network interconnection structure. The Lyapunov formulation of

the ISS cyclic-small-gain theorem has been developed in [32].

Consider system

ẋi = fi
(
x, ui

)
, i = 1,… ,N (3.8)

where x =
[
xT
1 ,… , xT

N

]T
with xi ∈ ℝni is the state, ui ∈ ℝmi represents the external

input of the xi-subsystem, and each fi ∶ ℝn+mi → ℝni with n =
∑N

j=1 nj is a locally

Lipschitz function satisfying fi(0, 0) = 0. The external input u =
[
uT
1 ,… , uT

N

]T
is

a measurable and locally essentially bounded function from ℝ+ to ℝm
with m =

∑N
i=1 mi. Denote f (x, u) = [ f T

1 (x, u1),… , f T
N (x, uN)]T .

Assume that for i = 1,… ,N, each xi-subsystem admits a continuously differen-

tiable ISS-Lyapunov function Vi ∶ ℝni → ℝ+ satisfying

1. there exist 𝛼i, 𝛼i ∈ K∞ such that

𝛼i(|xi|) ≤ Vi(xi) ≤ 𝛼i(|xi|), ∀xi; (3.9)

2. there exist 𝛾ij ∈ K ∪ {0} (j = 1,… ,N, j ≠ i) and 𝛾ui ∈ K ∪ {0} such that

Vi(xi) ≥ max
j≠i

{
𝛾ij(Vj(xj)), 𝛾ui(|ui|)

}

⇒∇Vi(xi)fi(x, ui) ≤ −𝛼i(Vi(xi)), ∀x, ui (3.10)
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where 𝛼i is a continuous and positive definite function.

The functions 𝛾ij, 𝛾
u
i are known as the ISS gains of the subsystems. The following

theorem presents a cyclic-small-gain condition to guarantee the ISS property of the

large-scale system (3.8) with state x and input u = [uT
1 ,… , uT

N]
T
.

Theorem 3.3 [24] Consider the large-scale system (3.8). Assume each xi-subsystem
admits an ISS-Lyapunov function Vi satisfying (3.9) and (3.10). Then, the large-scale
nonlinear system (3.8) is ISS if for r = 2,… ,N,

𝛾i1i2 ◦ 𝛾i2i3 ◦ … ◦𝛾ir i1 < Id (3.11)

where 1 ≤ ik ≤ N and ik ≠ ik′ if k ≠ k′ for 1 ≤ k ≤ r.

By considering the subsystems (3.8) as vertices and the gains as the weights of the

directed connections between the subsystems, the interconnection structure of the

large-scale nonlinear system can be represented with a system digraph. Condition

(3.11) is called cyclic-small-gain condition and means that the composition of the

ISS gains along every simple cycle in the large-scale nonlinear system is less than

the identity function Id.

For the ISS gains 𝛾ij’s (1 ≤ i ≤ N, j ≠ i) satisfying condition (3.11), according

to [22, Lemma A.1], we can find K∞ functions 𝛾̂ij’s (1 ≤ i ≤ N, j ≠ i) which are

continuously differentiable on (0,∞) and slightly larger than the corresponding 𝛾ij’s

such that condition (3.11) still holds by replacing the 𝛾ij’s with the 𝛾̂ij’s. Motivated by

the ISS-Lyapunov function construction in [22], a locally Lipschitz ISS-Lyapunov

function can be constructed for the large-scale system (3.8) as

V(x) = max
i=1,…,n

{𝜎i(Vi(xi))} (3.12)

where 𝜎i’s are specific compositions of the 𝛾̂(⋅)’s [32].

The influence of the external input u can be represented as

𝜃(u) = max
i=1,…,n

{𝜎i◦𝛾
u
i (|ui|)}. (3.13)

Denote f (x, u) = [f T
1 (x, u1),… , f T

N (x, uN)]T . With the Lyapunov-based ISS cyclic-

small-gain theorem presented in [32], we have

V(x) ≥ 𝜃(u) ⇒ ∇V(x)f (x, u) ≤ −𝛼(V(x)) a.e. (3.14)

with 𝛼 being a continuous and positive definite function.

In this chapter, the ISS small-gain result given by Theorem 3.2 will be used in

Sect. 3.3 to develop a new ISS gain condition to avoid infinitely fast sampling for

event-triggered control of nonlinear systems. Theorem 3.2 will also be used for the

designs to handle external disturbances in Sect. 3.4. In Sect. 3.5, we will consider

nonlinear uncertain systems in the strict-feedback form. Through a recursive design,
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we will design a controller by transforming the system into a large-scale system

composed of ISS subsystems, and then use Theorem 3.3 to guarantee the ISS of

the closed-loop system. By means of (3.12), an ISS-Lyapunov function will be con-

structed to evaluate the influence of the measurement error caused by data-sampling.

In Sect. 3.6, the ISS-Lyapunov function will be employed to evaluate the converging

rates of closed-loop event-triggered systems and to design event-triggered control

laws with partial-state feedback.

3.3 An ISS Gain Condition for Event-Triggered Control

An event-triggered control system is a sampled-data system in which the sampling

time instants are determined by events depending on the real-time system state. An

event-triggered state-feedback control system is generally in the following form:

ẋ(t) = f (x(t), u(t)), (3.15)

u(t) = v(x(tk)), t ∈ [tk, tk+1), k ∈ 𝕊, (3.16)

where x ∈ ℝn
is the state, u ∈ ℝm

is the control input, f ∶ ℝn ×ℝm → ℝn
is a locally

Lipschitz function representing system dynamics, v ∶ ℝn → ℝm
is a locally Lipschitz

function representing the control law. It is assumed that f (0, v(0)) = 0. The time

sequence {tk}k∈𝕊 is determined online based on the measurement of the real-time

system state. If there is an infinite number of sampling time instants, then 𝕊 = ℤ+;

otherwise, 𝕊 is in the form of {0,… , k∗} with k∗ ∈ ℤ+ being the last sampling time

instant. For convenience of notations, denote tk∗+1 = ∞.

Define

w(t) = x(tk) − x(t), t ∈ [tk, tk+1), k ∈ 𝕊 (3.17)

as the measurement error caused by data-sampling, and rewrite

u(t) = v(x(t) + w(t)). (3.18)

Then, by substituting (3.18) into (3.15), we have

ẋ(t) = f (x(t), v(x(t) + w(t))) ∶= f̄ (x(t), x(t) + w(t)). (3.19)

If w(t) is not adjustable, then the event-triggered control problem is reduced to the

measurement feedback control problem. The basic idea of event-triggered control is

to adjust w(t) online with an appropriately designed data-sampling strategy, to realize

asymptotic convergence of x(t), if possible. In this chapter, this problem is treated as

a robust control problem. The block diagram of the system is shown in Fig. 3.1.
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event trigger & sampler

ẋ(t) = f (x(t),v(x(t)+w(t)))

+

−

x(t)w(t)

x(tk)

Fig. 3.1 Event-triggered control problem as a robust control problem

Considering the equivalence between ISS and robust stability [47] (see Remark 3.1),

we develop an ISS-based approach for event-triggered control. In this section, we

consider the systems which are input-to-state stabilizable when the measurement

errors caused by data-sampling is considered as the input.

Assumption 3.1 System (3.19) is ISS with w as the input, that is, there exist 𝛽 ∈
K L and 𝛾 ∈ K such that for any initial state x(0) and any piecewise continuous,

locally essentially bounded w, it holds that

|x(t)| ≤ max
{
𝛽(|x(0)|, t), 𝛾(‖w‖∞)

}
(3.20)

for all t ≥ 0.

According to Theorem 3.2, under Assumption 3.1, if the event-trigger is designed

such that |w(t)| ≤ 𝜌(|x(t)|) for all t ≥ 0 with 𝜌 ∈ K satisfying

𝜌◦𝛾 < Id, (3.21)

then x(t) asymptotically converges to the origin. Based on this idea, the event-trigger

considered in this chapter can be defined as follows: if x(tk) ≠ 0, then

tk+1 = inf
{

t > tk ∶ 𝜌(|x(t)|) − |x(t) − x(tk)| = 0
}
. (3.22)

The data-sampling event is not triggered if for some specific k∗ ∈ ℤ+, x(tk∗ ) = 0
or
{

t > tk∗ ∶ H(x(t), x(tk∗ )) = 0
}
= ∅. In this case,𝕊 is in the form of {0,… , k∗}with

k∗ being the last sampling time instant, and we set tk∗+1 = Tmax with 0 < Tmax ≤ ∞
such that x(t) is right maximally defined on [0,Tmax). Note that, under the assumption

of f (0, v(0)) = 0, if x(tk) = 0, then u(t) = v(x(tk)) = 0 keeps the system state at the

origin for all t ∈ [tk,∞).
With the event-trigger proposed above, given tk and x(tk) ≠ 0, tk+1 is the first time

instant after tk such that

𝜌(|x(tk+1)|) − |x(tk+1) − x(tk)| = 0. (3.23)
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Since 𝜌(|x(tk)|) − |x(tk) − x(tk)| = 𝜌(|x(tk)|) > 0 for any x(tk) ≠ 0 and x(t) is con-

tinuous on the time-line,

𝜌(|x(t)|) − |x(t) − x(tk)| > 0 (3.24)

holds for t ∈ [tk, tk+1), k ∈ 𝕊. Recall the definition of w(t) in (3.17). Property (3.24)

implies that

|w(t)| ≤ 𝜌(|x(t)|) (3.25)

holds for t ∈
⋃

k∈𝕊[tk, tk+1).
For physical realization of (3.25) with event-triggered sampling, infinitely fast

sampling should be avoided, that is, inf k∈𝕊{tk+1 − tk} > 0. A special case is the Zeno

behavior, with which, 𝕊 = ℤ+ and limk→∞ tk < ∞.

The objective of this section is to propose an event-triggered sampling strategy to

avoid infinitely fast sampling and at the same time to realize asymptotic stabilization.

We first present a technical lemma, which will be used for the proof of the main

result of this section.

Lemma 3.1 For any a, b ∈ ℝ, if there exist a 𝜃 ∈ K and a constant c ≥ 0 such that

|a − b| ≤ max{𝜃◦(Id + 𝜃)−1(|a|), c}, (3.26)

then |a − b| ≤ max{𝜃(|b|), c}.

Proof We first consider the case of 𝜃◦(Id + 𝜃)−1(|a|) ≥ c, which together with (3.26)

implies

|a − b| ≤ 𝜃◦(Id + 𝜃)−1(|a|). (3.27)

In this case, |a| − |b| ≤ 𝜃◦(Id + 𝜃)−1(|a|), and thus, (Id − 𝜃◦(Id + 𝜃)−1)(|a|) ≤ |b|.
Note that Id − 𝜃◦(Id + 𝜃)−1 = (Id + 𝜃)◦(Id + 𝜃)−1 − 𝜃◦(Id + 𝜃)−1 = (Id + 𝜃)−1.
Then, we have |a| ≤ (Id + 𝜃)(|b|). By using (3.27) again, it can be achieved that

|a − b| ≤ 𝜃(|b|). Next, we consider the case of 𝜃◦(Id + 𝜃)−1(|a|) < c. Clearly, from

(3.26), it follows that |a − b| ≤ c. Therefore, Lemma 3.1 is proved.

Theorem 3.4 presents a condition on the ISS gain 𝛾 to find a 𝜌 for the event-trigger

(3.22) to avoid infinitely fast sampling and asymptotically stabilize the closed-loop

system at the origin.

Theorem 3.4 Consider the event-triggered control system (3.19) with locally Lip-
schitz f̄ satisfying f̄ (0, 0) = 0 and w defined in (3.17). If Assumption 3.1 is satisfied
with a 𝛾 being Lipschitz on compact sets, then one can find a 𝜌 ∈ K∞ such that

∙ 𝜌 satisfies (3.21), and
∙ 𝜌

−1 is Lipschitz on compact sets.
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Moreover, with the sampling time instants triggered by (3.22), it can always be guar-
anteed that

inf
k∈𝕊

{tk+1 − tk} > 0 (3.28)

and, for any specific initial state x(0), the system state x(t) satisfies

|x(t)| ≤ 𝛽(|x(0)|, t) (3.29)

with 𝛽 ∈ K L , for all t ≥ 0.

Proof Using (3.20) and (3.25), by Theorem 3.2, there exists a 𝛽 ∈ K L such that

|x(t)| ≤ 𝛽(|x(0)|, t) (3.30)

for all t ∈
⋃

k∈𝕊[tk, tk+1). Now, we prove (3.28) and

⋃

k∈𝕊
[tk, tk+1) = [0,∞). (3.31)

With a 𝛾 ∈ K being Lipschitz on compact sets, one can always find a 𝛾̄ ∈ K∞
being Lipschitz on compact sets such that 𝛾̄ > 𝛾 . By choosing 𝜌 = 𝛾̄

−1
, we have

𝜌◦𝛾 = 𝛾̄◦𝛾 < 𝛾̄◦𝛾̄−1 < Id, and 𝜌
−1 = 𝛾̄ is Lipschitz on compact sets.

Along each trajectory of the closed-loop system, for each k ∈ 𝕊 with state x(tk)
at time instant tk, define

𝛩1(x(tk)) =
{

x ∈ ℝn ∶ |x − x(tk)| ≤ 𝜌◦(Id + 𝜌)−1(|x(tk)|)
}
, (3.32)

𝛩2(x(tk)) =
{

x ∈ ℝn ∶ |x − x(tk)| ≤ 𝜌(|x|)
}
. (3.33)

Then, the lower bound of tk+1 − tk can be considered as the minimum time needed

for x(t) starting at x(tk) to go outside 𝛩2(x(tk)). By directly using Lemma 3.1, it can

be proved that 𝛩1(x(tk)) ⊆ 𝛩2(x(tk)). An illustration with x = [x1, x2]T ∈ ℝ2
is given

in Fig. 3.2. Now, we estimate the minimum time needed for x(t) starting at x(tk) to

go outside 𝛩1(x(tk)).
Given a 𝜌 ∈ K∞ such that 𝜌

−1
is Lipschitz on compact sets, it can be proved that

𝜌
−1 + Id is Lipschitz on compact sets and there exists a continuous, positive function

𝜌̆ ∶ ℝ+ → ℝ+ such that

(𝜌−1 + Id)(s) ≤ 𝜌̆(s)s ∶= 𝜌̂(s) (3.34)

for s ∈ ℝ+. Note that 𝜌̆(s)s = 𝜌̂(s) implies s =
(
𝜌̆◦𝜌̂−1(s)

)
𝜌̂
−1(s). We have

𝜌̂
−1(s) = s

𝜌̆◦𝜌̂−1(s)
∶= 𝜌̄(s)s. (3.35)
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Fig. 3.2 An illustration of

𝛩1(x(tk)) ⊆ 𝛩2(x(tk))

Here, 𝜌̄ ∶ ℝ+ → ℝ+ is a continuous and positive function as 𝜌̆ is continuous and pos-

itive. Then, by using (3.34) and (3.35), we have 𝜌◦(Id + 𝜌)−1(s) = (𝜌−1 + Id)−1(s) ≥
𝜌̂
−1(s) = 𝜌̄(s)s. This means, if

|x − x(tk)| ≤ 𝜌̄(|x(tk)|)|x(tk)| (3.36)

then x ∈ 𝛩1(x(tk)).
Note that for the locally Lipschitz f̄ as defined in (3.19), there exists a continuous

and positive function Lf̄ such that

|f̄ (x, x(tk))| = |f̄ (x − x(tk) + x(tk), x(tk))|
≤ Lf̄

(
|[xT − xT (tk), xT (tk)]T |

)

× |[xT − xT (tk), xT (tk)]T |. (3.37)

If moreover |x − x(tk)| ≤ 𝜌̄(|x(tk)|)|x(tk)|, then there exists a continuous and positive

function L̄ such that

|f̄ (x, v(x(tk)))| ≤ L̄(|x(tk)|)|x(tk)|. (3.38)

Thus, the minimum time Tmin
k needed for the state of the closed-loop system start-

ing at x(tk) to go outside the region 𝛩1(x(tk)) can be estimated by

Tmin
k ≥

𝜌̄(|x(tk)|)|x(tk)|
L̄(|x(tk)|)|x(tk)|

=
𝜌̄(|x(tk)|)
L̄(|x(tk)|)

, (3.39)

which is well defined and strictly larger than zero for any x(tk). Since 𝛩1(x(tk)) ⊆
𝛩2(x(tk)) and x(t) is continuous on the time-line, the minimum interval needed for

the state starting at x(tk) to go outside 𝛩2(x(tk)) is not less than Tmin
k . Thus, with

(3.39) and (3.30), it is achieved that
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Tmin
k ≥ min

{
𝜌̄(|x|)
L̄(|x|)

∶ |x| ≤ 𝛽(|x(0)|, 0)
}

(3.40)

for all k ∈ 𝕊. Note that the right-hand side of (3.40) only depends on x(0) and is

strictly positive. Property (3.28) is proved.

Property (3.31) is proved by considering the following two cases:

∙ 𝕊 = ℤ+. In this case, (3.31) can be directly proved.

∙ 𝕊 = {0,… , k∗} with k∗ ∈ ℤ+. In this case, since tk∗+1 = Tmax, we have
⋃

k∈𝕊[tk,
tk+1) = [0,Tmax), and thus (3.30) holds for all t ∈ [0,Tmax). This implies that x(t)
is defined for all t ∈ [0,∞), i.e., Tmax = ∞.

This ends the proof.

Remark 3.3 Theoretically, a system is ISS if and only if it has an ISS-Lyapunov

function. To use the recent results in [29, 49, 55], one may need to assume the exis-

tence of known ISS-Lyapunov functions for the system (3.19) with w as the input.

However, even if a nonlinear system has been designed to be ISS, the construction of

an ISS-Lyapunov function may not be straightforward. On the other hand, given an

ISS-Lyapunov function, one can easily determine the ISS characteristics of a system.

By using the relationship between ISS and robust stability, the study in this section

shows that a known ISS-Lyapunov function may not be necessary for event-triggered

control.

Remark 3.4 In [49], the existence of an ISS-Lyapunov function V ∶ ℝn → ℝ+ is

assumed for the system composed of (3.15) and (3.18) with w as the input, i.e.,

∇V(x)f (x, v(x + w)) ≤ −𝛼(|x|) + 𝛾(|w|) with 𝛼 ∈ K∞ and 𝛾 ∈ K . Under this

assumption, the event-trigger can be designed to satisfy (3.23) with 𝜌 ∈ K∞ such

that 𝛼
−1◦𝛾◦𝜌 < Id and 𝜌

−1
is Lipschitz on compact sets. The design in this chapter

also requires that 𝜌
−1

is Lipschitz on compact sets, and is in accordance with the

result in [49].

The proof of Theorem 3.4 naturally leads to a self-triggered sampling strategy,

which does not continuously monitor the trajectory of x(t).

Theorem 3.5 Consider system (3.19) with locally Lipschitz f̄ satisfying f̄ (0, 0) = 0
and w defined in (3.17). If Assumption 3.1 is satisfied with a 𝛾 being Lipschitz on com-
pact sets, then there exist continuous and positive functions 𝜌̄, L̄ ∶ ℝ+ → ℝ+∖{0}
such that with the self-triggered sampling strategy

tk+1 =
𝜌̄(|x(tk)|)
L̄(|x(tk)|)

+ tk, k ∈ ℤ+, (3.41)

the system state satisfies (3.29) for all t ≥ 0.

Proof Following the proof of Theorem 3.4, property (3.39) still holds for the self-

triggered control system, and the self-triggered sampling strategy guarantees that

x(t) ∈ 𝛩2(x(tk)) for t ∈ [tk, tk+1), k ∈ ℤ+, which means that (3.25) holds for all t ≥ 0.

Property (3.29) can then be proved by directly using Theorem 3.2.
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Example 3.1 Assumption 3.1 can be readily satisfied by designing a linear controller

for the linear time-invariant system ẋ = Ax + Bu with x ∈ ℝn
as the state and u ∈ ℝm

as the control input, if the system is controllable. One can find a K such that A − BK
is Hurwitz and design u = −K(x + w) with w being the measurement error caused

by data-sampling. Then, ẋ = Ax − BK(x + w) = (A − BK)x − BKw. With initial state

x(0), the solution of the system is x(t) = e(A−BK)tx(0) − ∫
t
0 e(A−BK)(t−𝜏)BKw(𝜏)d𝜏 for

t ≥ 0. It can be verified that x(t) satisfies property (3.20) with 𝛽(s, t) = (1 + 1∕𝛿)|
e(A−BK)t|s and 𝛾(s) = (1 + 𝛿)

(
∫

∞
0 |e(A−BK)𝜏BK|d𝜏

)
s, where 𝛿 can be selected as any

positive constant. Then, 𝛽 ∈ K L and 𝛾 ∈ K . Moreover, 𝛾 is Lipschitz on compact

sets.

3.4 Event-Triggered Control and Self-Triggered Control
in the Presence of External Disturbances

Theorems 3.4 and 3.5 do not address the presence of external disturbances. In this

section, we consider the systems with external disturbances taking the form:

ẋ(t) = f (x(t), u(t), d(t)) (3.42)

where d(t) ∈ ℝnd represents the external disturbances, and the other variables are

defined as in (3.15). It is assumed that d is piecewise continuous and bounded.

With w defined in (3.17) as the measurement error, the control law (3.16) can be

rewritten as (3.18). By substituting (3.18) into (3.15), we have

ẋ(t) = f (x(t), v(x(t) + w(t)), d(t))
∶= f̄ (x(t), x(t) + w(t), d(t)). (3.43)

Corresponding to Assumption 3.1 for the disturbance-free case, we make the fol-

lowing assumption for system (3.43).

Assumption 3.2 System (3.43) is ISS with w and d as the inputs, that is, there exist

𝛽 ∈ K L and 𝛾, 𝛾
d ∈ K such that for any initial state x(0) and any piecewise con-

tinuous, bounded w and d, it holds that

|x(t)| ≤ max
{
𝛽(|x(0)|, t), 𝛾(‖w‖∞), 𝛾d(‖d‖∞)

}
(3.44)

for all t ≥ 0.

Under Assumption 3.2, if the event-trigger is still capable of guaranteeing (3.24)

with 𝜌 ∈ K such that 𝜌◦𝛾 < Id. Then, by directly using Theorem 3.2, we can prove

that

|x(t)| ≤ max
{
𝛽(|x(0)|, t), 𝛾̆d(‖d‖∞)

}
(3.45)
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with 𝛽 ∈ K L and 𝛾̆
d ∈ K . As x converges to the origin, the upper bound of

|w(t)| = |x(tk) − x(t)| converges to zero according to (3.24). However, due to the

presence of the external disturbance d, the function of system dynamics f (x(t),
v(x(t) + w(t)), d(t)) may not converge to zero as x converges to the origin. This means

that the inter-sample period tk+1 − tk could be arbitrarily small.

3.4.1 Event-Triggered Sampling with 𝜺 Modification

Inspired by the recent result [8], we modify the event-trigger (3.22) as

tk+1 = inf
{

t > tk ∶ max{𝜌(|x(t)|), 𝜀} − |x(t) − x(tk)| = 0
}

(3.46)

with 𝜌 ∈ K satisfying 𝜌◦𝛾 < Id and constant 𝜀 > 0. The modified event-trigger

guarantees

|x(t) − x(tk)| < max{𝜌(|x(t)|), 𝜀} (3.47)

for t ∈ [tk, tk+1), k ∈ 𝕊. With Theorem 3.2, there exist 𝛽 ∈ K L and 𝛾̆ , 𝛾̆
d ∈ K such

that

|x(t)| ≤ max
{
𝛽(|x(0)|, t), 𝛾̆(𝜀), 𝛾̆d(‖d‖∞)

}
(3.48)

for all t ≥ 0. It should be noted that, with 𝜀 > 0, the function 𝜌
−1

is no longer required

to be Lipschitz on compact sets. This result is summarized by Theorem 3.6 without

proof.

Theorem 3.6 Consider the event-triggered control system (3.43) with locally Lip-
schitz f̄ and w defined in (3.17). If Assumption 3.2 is satisfied, with the sampling time
instants triggered by (3.46), for any specific initial state x(0), the system state x(t)
satisfies (3.48) for all t ≥ 0, with 𝛽 ∈ K L and 𝛾̆ , 𝛾̆

d ∈ K , and the inter-sample
periods are lower bounded by a positive constant.

For such event-triggered control system, even if d ≡ 0, only practical conver-

gence can be guaranteed, that is, x(t) can only be guaranteed to converge to within a

neighborhood of the origin {x ∈ ℝn ∶ |x| ≤ 𝛾̆(𝜀)}. It should be mentioned that 𝜀 can

be made arbitrarily small. In the next section, we present a self-triggered sampling

mechanism to overcome this obstacle, under the assumption of an a priori known

upper bound of ‖d‖∞.

3.4.2 Self-Triggered Sampling

In this section, we show that if an upper bound of ‖d‖∞ is known a priori, then we

can design a self-triggered sampling mechanism such that x(t) is practically steered to
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within a neighborhood of the origin with size depending solely on ‖d‖∞. Moreover,

if d(t) converges to zero, then x(t) asymptotically converges to the origin.

Assumption 3.3 There is a known constant Bd ≥ 0 such that

‖d‖∞ ≤ Bd
. (3.49)

Lemma 3.2 presents a property of locally Lipschitz functions and will be used in

the following design procedure.

Lemma 3.2 For any locally Lipschitz function h ∶ ℝn1 ×ℝn2 ×⋯ ×ℝnm → ℝp sat-
isfying h(0,… , 0) = 0 and any 𝜑1,… , 𝜑m ∈ K∞ with 𝜑

−1
1 ,… , 𝜑

−1
m being Lipschitz

on compact sets, there exists a continuous, positive, and nondecreasing function Lh ∶
ℝ+ → ℝ+ such that |h(z1,… , zm)| ≤ Lh

(
maxi=1,…,m{|zi|}

)
maxi=1,…,m{𝜑i(|zi|)} for

all z, where z = [zT
1 ,… , zT

m]
T .

Proof For a locally Lipschitz h satisfying h(0,… , 0) = 0, one can always find a con-

tinuous, positive, and nondecreasing function Lh0 ∶ ℝ+ → ℝ+ such that

|h(z1,… , zm)| ≤ Lh0

(

max
i=1,…,m

{|zi|}
)

max
i=1,…,m

{|zi|} (3.50)

for all z.

Define 𝜑̆(s) = maxi=1,…,m{𝜑−1
i (s)} for s ∈ ℝ+. Then, 𝜑̆ ∈ K∞. Since 𝜑

−1
1 ,… ,

𝜑
−1
m are Lipschitz on compact sets, 𝜑̆ is Lipschitz on compact sets.

From the definition, one has

𝜑̆

(

max
i=1,…,m

{𝜑i(|zi|)}
)

= max
i=1,…,m

{𝜑̆◦𝜑i(|zi|)}

≥ max
i=1,…,m

{𝜑−1
i ◦𝜑i(|zi|)}

= max
i=1,…,m

{|zi|}. (3.51)

With 𝜑̆ being Lipschitz on compact sets, there exists a continuous, positive, and

nondecreasing function L
𝜑̆
∶ ℝ+ → ℝ+ such that

𝜑̆

(

max
i=1,…,m

{𝜑i(|zi|)}
)

≤ L
𝜑̆

(

max
i=1,…,m

{𝜑i(|zi|)}
)

max
i=1,…,m

{𝜑i(|zi|)}. (3.52)

Lemma 3.2 is proved by substituting (3.51) and (3.52) into (3.50), and defining a

continuous, positive, and nondecreasing Lh such that for all z,

Lh

(

max
i=1,…,m

{|zi|}
)

≥ Lh0

(

max
i=1,…,m

{|zi|}
)

L
𝜑̆

(

max
i=1,…,m

{𝜑i(|zi|)}
)

. (3.53)
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Assume that f̄ is locally Lipschitz and f̄ (0, 0, 0) = 0. Then, with Lemma 3.2, for

any specific 𝜒, 𝜒
d ∈ K∞ with 𝜒

−1
,

(
𝜒

d)−1
being Lipschitz on compact sets, one can

find a continuous, positive, and nondecreasing Lf̄ such that

|f̄ (x + w, x, d)| ≤ Lf̄ (max {|x|, |w|, |d|})max
{
𝜒(|x|), |w|, 𝜒d(|d|)

}
(3.54)

for all x,w, d.

By choosing 𝜒, 𝜒
d ∈ K∞ with 𝜒

−1
,

(
𝜒

d)−1
being locally Lipchitz, the self-

triggered sampling mechanism is designed as

tk+1 =
1

Lf̄
(
max

{
𝜒̄(|x(tk)|), 𝜒̄d(Bd)

}) + tk, k ∈ ℤ+ (3.55)

where 𝜒̄(s) = max{𝜒(s), s} and 𝜒̄
d(s) = max{𝜒d(s), s} for s ∈ ℝ+.

Theorem 3.7 provides the main result of this section.

Theorem 3.7 Consider the event-triggered control system (3.43) with locally Lip-
schitz f̄ satisfying f̄ (0, 0, 0) = 0 and w defined in (3.17). If Assumption 3.2 holds with
a 𝛾 being Lipschitz on compact sets, then one can find a 𝜌 ∈ K∞ such that

∙ 𝜌 satisfies

𝜌◦𝛾 < Id, (3.56)

∙ 𝜌
−1 is Lipschitz on compact sets.

Moreover, under Assumption 3.3, by choosing 𝜒 = 𝜌◦(Id + 𝜌)−1 and 𝜒
d ∈ K∞ with

(
𝜒

d)−1 being Lipschitz on compact sets for the self-triggered sampling mechanism
(3.55), for any specific initial state x(0), the system state x(t) satisfies

|x(t)| ≤ max{𝛽(|x(0)|, t), 𝛾̆◦𝜒d(‖d‖∞), 𝛾̆d(‖d‖∞)} (3.57)

for all t ≥ 0, with 𝛽 ∈ K L and 𝛾̆ , 𝛾̆
d ∈ K , and the inter-sample periods are lower

bounded by a positive constant.

Proof Note that 𝜒 = 𝜌◦(Id + 𝜌)−1 implies 𝜒
−1 = Id + 𝜌

−1
. If 𝜌

−1
is Lipschitz on

compact sets, then 𝜒
−1

is Lipschitz on compact sets. Also note that
(
𝜒

d)−1
is chosen

to be Lipschitz on compact sets.

We first prove that the self-triggered sampling mechanism guarantees that

|x(t) − x(tk)| ≤ max{𝜒(|x(tk)|), 𝜒d(‖d‖∞)} (3.58)

for t ∈ [tk, tk+1).
By taking the integration of both the sides of (3.43), one has
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x(t) − x(tk) =
∫

t

tk
f̄ (x(tk) + w(𝜏), x(tk), d(𝜏))d𝜏, (3.59)

and thus,

|x(t) − x(tk)| ≤
∫

t

tk
|f̄ (x(tk) + w(𝜏), x(tk), d(𝜏))|d𝜏. (3.60)

Denote 𝛺(x(tk), ‖d‖∞) as the region of x such that |x − x(tk)| ≤ max{𝜒(|x(tk)|),
𝜒

d(‖d‖∞)}. Then, the minimum time needed for x(t) to go outside the region

𝛺(x(tk), ‖d‖∞) can be estimated by

max{𝜒(|x(tk)|), 𝜒d(‖d‖∞)}
C(x(tk), ‖d‖∞)

≥
max{𝜒(|x(tk)|), 𝜒d(‖d‖∞)}

Lf̄
(
max{𝜒̄(|x(tk)|), 𝜒̄d(‖d‖∞)}

)
max{𝜒(|x(tk)|), 𝜒d(‖d‖∞)}

= 1
Lf̄
(
max{𝜒̄(|x(tk)|), 𝜒̄d(‖d‖∞)}

)

≥
1

Lf̄
(
max{𝜒̄(|x(tk)|), 𝜒̄d(Bd)}

) (3.61)

where 𝜒̄(s) = max{𝜒(s), s} and 𝜒̄
d(s) = max{𝜒d(s), s} for s ∈ ℝ+, and

C(x(tk), ‖d‖∞) = max
{
|f̄ (x(tk) + w, x(tk), d)| ∶

|w| ≤ max{𝜒(|x(tk)|), 𝜒d(‖d‖∞)},
|d| ≤ ‖d‖∞

}
.

Thus, the proposed self-triggered sampling mechanism (3.55) guarantees (3.58).

With Lemma 3.1, (3.58) implies

|w(t)| = |x(t) − x(tk)| ≤ max{𝜌(|x(t)|), 𝜒d(‖d‖∞)} (3.62)

for t ∈ [tk, tk+1), k ∈ ℤ+. With 𝜌◦𝛾 < Id, using Theorem 3.2, one can prove property

(3.57). This ends the proof of Theorem 3.7.

3.5 Event-Triggered Control of Nonlinear Uncertain
Systems

To realize event-triggered control of nonlinear systems by using the results in

Sects. 3.3 and 3.4, control laws should first be designed to guarantee ISS with

respect to the measurement errors caused by data-sampling. Moreover, the ISS gain
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corresponding to the measurement error should be Lipschitz on compact sets to avoid

infinitely fast sampling. This is usually not trivial for nonlinear systems. This section

proposes a new nonlinear control design method for event-triggered control of non-

linear uncertain systems transformable into the strict-feedback form [27].

Consider nonlinear system:

ẋi = xi+1 + 𝛥i(x̄i, d), i = 1,… , n − 1 (3.63)

ẋn = u + 𝛥n(x̄n, d) (3.64)

where [x1,… , xn]T ∶= x is the state, u ∈ ℝ is the control input, 𝛥i’s for i = 1,… , n
are uncertain locally Lipschitz functions, d ∈ ℝnd is the external disturbance, and

x̄i ∶= [x1,… , xi]T . It is assumed that d is piecewise continuous and bounded on the

time line.

The following assumption is made on the functions 𝛥i in system (3.63) and (3.64).

Assumption 3.4 For each i = 1,… , n, there exists a 𝜓
𝛥i
∈ K∞ being Lipschitz on

compact sets such that for all x̄i,

|𝛥i(x̄i, d)| ≤ 𝜓
𝛥i
(|[x̄T

i , d
T ]T |). (3.65)

Remark 3.5 For a locally Lipschitz function 𝛥i, if 𝛥i(0, 0) = 0, then there always

exists a 𝜓
𝛥i
∈ K∞ being Lipschitz on compact sets such that (3.65) holds. Specif-

ically, 𝜓
𝛥i

can be chosen such that 𝜓
𝛥i
(s) = max|[x̄T

i ,dT ]T |≤s |𝛥i(x̄i)| + 𝜀s for s ∈ ℝ+,

where 𝜀 can be an arbitrarily small positive constant.

The basic idea of the control design is to transform the closed-loop system into a

large-scale system composed of n ISS subsystems, and use the cyclic-small-gain the-

orem [24, 32] to guarantee the ISS of the closed-loop system. In this procedure, the

measurement error should be carefully handled such that the corresponding ISS gain

is Lipschitz on compact sets. In Sect. 3.5.1, we present the basic form of the proposed

control law to transform the closed-loop system into a network of ISS subsystems.

Then, we fine tune the ISS gains in Sect. 3.5.2 to guarantee the ISS of the closed-

loop system, and moreover, to satisfy the ISS gain condition to avoid infinitely fast

sampling in event-triggered control.

For convenience of discussions, denote w = [w1,… ,wn]T . In the design, we

assume that for each i = 1,… , n, wi is piecewise continuous and bounded. Denote

w∞
i = ‖wi‖∞ for i = 1,… , n, w̄∞

i = [w∞
1 ,… ,w∞

i ]T and w∞ = w̄∞
n . Also denote d∞ =

‖d‖∞.

3.5.1 Control Design

For nonlinear systems in the form of (3.63) and (3.64), if there is no measurement

error, one may design a control law in the form of
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p̆∗
1 = 𝜅̆1(x1) (3.66)

p̆∗
i = 𝜅̆i(xi − p̆∗

i−1), i = 2,… , n − 1 (3.67)

u = 𝜅̆n(xn − p̆∗
n−1) (3.68)

with appropriately chosen nonlinear functions 𝜅̆k for k = 1,… , n. Then, the achieve-

ment of the control objective can be guaranteed by checking the stability property of

the closed-loop system with new state variables defined as

e1 = x1, (3.69)

ei = xi − p̆∗
i−1, i = 2,… , n. (3.70)

In the presence of measurement errors, we propose a control law in the form of

p∗
1 = 𝜅1(x1 + w1), (3.71)

p∗
i = 𝜅i(xi + wi − p∗

i−1), i = 2,… , n − 1, (3.72)

u = 𝜅n(xn + wn − p∗
n−1). (3.73)

where the 𝜅i are appropriately chosen functions. Clearly, control law (3.71)–(3.73)

uses the measurements xi + wi for i = 1,… , n.

In this case, because of the discontinuity of w caused by data-sampling, the

e2,… , en defined by state transformation (3.69) and (3.70) are discontinuous. This

may lead to difficulties in stability analysis. Instead, we employ a modified state

transformation by using set-valued maps to cover the influence of the measurement

errors. Define

S1(x̄1, w̄∞
1 ) = {𝜅1(x1 + a1w∞

1 ) ∶ |a1| ≤ 1} (3.74)

Si(x̄i, w̄∞
i ) = {𝜅i(xi + aiw∞

i − pi−1) ∶
|ai| ≤ 1, pi−1 ∈ Si−1(x̄i−1, w̄∞

i−1)},
i = 2,… , n. (3.75)

It can be directly checked that p∗
i ∈ Si(x̄i, w̄∞

i ) for i = 1,… , n − 1 and u ∈ Sn(x̄n, w̄∞
n ).

The new state variables are defined as

e1 = x1 (3.76)

ei = d⃗(xi, Si−1(x̄i−1, w̄∞
i−1)), i = 2,… , n, (3.77)

where, for each i = 1,… , n, Si ∶ ℝi ×ℝi ⇝ ℝ is an appropriately designed set-

valued map to cover the influence of the measurement errors, and d⃗(z, 𝛺) ∶= z −
argmin

z′∈𝛺
{|z − z′|} for any z ∈ ℝ and any compact 𝛺 ⊂ ℝ. In the following proce-

dure, we verify the validity of the control law (3.71)–(3.73) by showing that the

closed-loop system with e = [e1,… , en]T is ISS with w as the input.
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For convenience of notations, denote w∞
0 = w̄∞

0 = 0, en+1 = 0, ēi = [e1,… , ei]T
for i = 1,… , n + 1 and e = ēn. Lemma 3.3 shows that, with the set-valued map

design, each ei-subsystem for i = 1,… , n can be represented by a differential inclu-

sion and can be rendered ISS with Vi(ei) = |ei| as an ISS-Lyapunov function by

appropriately choosing 𝜅i.

Lemma 3.3 Consider the nonlinear system (3.63) and (3.64) satisfying Assumption
3.4. With the transformation (3.76) and (3.77) and the control law (3.71)–(3.73), by
choosing each 𝜅i ∶ ℝ → ℝ for i = 1,… , n to be continuously differentiable, odd and
strictly decreasing, when ei ≠ 0, each ei-subsystem can be represented by a differ-
ential inclusion as

ėi ∈ Si(x̄i, w̄∞
i ) + Φi(x̄i, w̄∞

i−1, ei+1, d). (3.78)

Moreover, with specific 𝜅1,… , 𝜅i−1, for any 𝛾
ek
ei
, 𝛾

wk
ei

∈ K∞ (k = 1,… , i − 1) with
their inverse functions being Lipschitz on compact sets, any 𝛾ei+1

ei
, 𝛾

d
ei
∈ K∞ with their

inverse functions being Lipschitz on compact sets, and any constant 0 < ci < 1, one
can find a 𝜅i such that the ei-subsystem is ISS with Vi(ei) = |ei| as an ISS-Lyapunov
function satisfying

Vi(ei) ≥ max
k=1,…,i−1

{
𝛾

ek
ei
(Vk(ek)), 𝛾

ei+1
ei

(Vi+1(ei+1)),
𝛾

wk
ei
(w∞

k ), 𝛾wi
ei
(w∞

i ), 𝛾d
ei
(d∞)

}

⇒ max
fi∈Fi(x̄i,w̄∞

i ,ei+1,d)
∇Vi(ei)fi ≤ −𝓁i(Vi(ei)) a.e. (3.79)

where 𝛾
wi
ei
(s) = s∕ci for s ∈ ℝ+, and Fi(x̄i, w̄∞

i , ei+1, d) = Si(x̄i, w̄∞
i ) + Φi(x̄i, w̄∞

i−1,

ei+1, d).

The proof of Lemma 3.3 is not proved in this chapter due to the space limitation.

The interested reader may consult the gain assignment lemmas in [20, 35] for the

proof.

3.5.2 ISS Cyclic-Small-Gain Synthesis

With Lemma 3.3, we can transform the system (3.63) and (3.64) into a network of ISS

ei-subsystems. The interconnection structure of the e-system is shown in Fig. 3.3.

With Lemma 3.3, for each i = 2,… , n, with 𝜅1,… , 𝜅i−1 designed, one can design

𝜅i such that the following conditions are satisfied at the same time:

(a) the interconnection ISS gains 𝛾
ek
ei
∈ K∞ for 1 ≤ k ≤ i − 1 satisfy the cyclic-

small-gain condition [24, 32]:
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Fig. 3.3 The

interconnection structure

of the e-system

e1 ei ei+1 en· · · · · ·

𝛾
e2
e1 ◦𝛾

e3
e2 ◦𝛾

e4
e3 ◦⋯◦𝛾ei

ei−1
◦𝛾e1

ei
< Id,

𝛾
e3
e2 ◦𝛾

e4
e3 ◦⋯◦𝛾ei

ei−1
◦𝛾e2

ei
< Id,
⋮

𝛾
ei
ei−1

◦𝛾ei−1
ei

< Id,

(3.80)

(b) for each i = 1,… , n − 1, 𝛾
ei+1
ei

is Lipschitz on compact sets, and

(c) for each i = 1,… , n, 𝛾
w1
ei
,… , 𝛾

wi
ei

are Lipschitz on compact sets.

The ISS of the e-system is guaranteed with the satisfaction of condition (3.80). Con-

ditions (b) and (c) are needed to fulfill the requirement for event-triggered control,

as shown in the proof of Theorem 3.8.

The main result in this section is summarized in Theorem 3.8.

Theorem 3.8 Consider nonlinear uncertain system (3.63) and (3.64) satisfying
Assumption 3.4. By choosing 𝜅1,… , 𝜅n according to Lemma 3.3 such that the ISS
gains satisfy conditions (a)–(c), one can design a control law in the form of (3.71)–
(3.73) to make the closed-loop system ISS. Specifically, there exist 𝛽 ∈ K L and
𝛾, 𝛾

d ∈ K such that for any initial state x(0) and any piecewise continuous and
bounded w and d,

|x(t)| ≤ max{𝛽(|x(0)|, t), 𝛾(|w∞|), 𝛾d(d∞)} (3.81)

holds for all t ≥ 0. Moreover, 𝛾 can be designed to be Lipschitz on compact sets.

Proof For specific w∞
, with Lemma 3.3, the closed-loop system has been trans-

formed into a large-scale system of ISS ei-subsystems. With the cyclic-small-gain

condition (3.80) satisfied, by using the technique in [32], we construct an ISS-

Lyapunov function for the closed-loop system as

V(e) = max
i=1,…,n

{𝜎i(Vi(ei))} (3.82)

with 𝜎1 = Id and 𝜎i = 𝛾̂
e2
e1 ◦𝛾̂

e3
e2 ◦⋯◦𝛾̂ei

ei−1
for i = 2,… , n where 𝛾̂

ek+1
ek

∈ K∞ for k =
1,… , n − 1 are chosen such that

∙ each 𝛾̂
ek+1
ek

is slightly larger than 𝛾
ek+1
ek

,

∙ both 𝛾̂
ek+1
ek

and
(
𝛾̂

ek+1
ek

)−1
are Lipschitz on compact sets, and

∙ the cyclic-small-gain condition (3.80) is still satisfied with the 𝛾
ek+1
ek

replaced by

𝛾̂
ek+1
ek

for k = 1,… , n − 1.
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With conditions (a)–(c) satisfied, such 𝛾̂
ek+1
ek

’s for k = 1,… , n − 1 exist. Then, the

functions 𝜎i and 𝜎
−1
i for i = 1,… , n are Lipschitz on compact sets.

From the definition of V in (3.82), one has

𝛼(|e|) ≤ V(e) ≤ 𝛼(|e|) (3.83)

where 𝛼(s) = mini=1,…,n 𝜎i(s∕n) and 𝛼(s) = maxi=1,…,n 𝜎i(s) for s ∈ ℝ+. With the

𝛾̂
ek+1
ek

chosen above, both 𝛼 and 𝛼 are of class K∞ and Lipschitz on compact sets.

The influence of the measurement errors wi for i = 1,… , n can be described by

𝜃 = max
i=1,…,n

{

𝜎i

(

max
k=1,…,i

{

𝛾
wk
ei
(w∞

k )
})

, 𝜎i◦𝛾
d
ei
(d∞)

}

. (3.84)

According to the Lyapunov-based cyclic-small-gain theorem [32], it holds that

V(e) ≥ 𝜃 ⇒ max
f∈F(x,w∞,e,d)

∇V(e)f ≤ −𝛼(V(e)), a.e. (3.85)

where

F(x,w∞
, e, d) =

⎡
⎢
⎢
⎣

F1(x̄1, w̄∞
1 , e2, d)

⋮
Fn(x̄n, w̄∞

n , en+1, d)

⎤
⎥
⎥
⎦

T

.

Note that en+1 = 0.

Define 𝛾0(s) = maxi=1,…,n
{
𝜎i
(
maxk=1,…,i

{
𝛾

wk
ei
(s)
})}

and 𝛾
d
0 (s) = maxi=1,…,n{

𝜎i◦𝛾
d
ei
(s)
}

for s ∈ ℝ+. Then, 𝛾0, 𝛾
d
0 ∈ K∞, and 𝛾0 is Lipschitz on compact sets.

With property (3.85), there exists a 𝛽0 ∈ K L such that

V(e(t)) ≤ max{𝛽0(V(e(0)), t), 𝛾0(|w∞|), 𝛾d
0 (d

∞)} (3.86)

for all t ≥ 0, which together with (3.83) implies

|e(t)| ≤ max
{
𝛼
−1◦𝛽0

(
𝛼(|e(0)|), t

)
, 𝛼

−1◦𝛾0(|w∞|), 𝛼−1◦𝛾d
0 (d

∞)
}

(3.87)

for all t ≥ 0.

According to the definition of ei in (3.77), one has

|ei| ≤ |xi − 𝜅i−1(ei−1)| ≤ |xi| + |𝜅i−1(ei−1)| (3.88)

for i = 2,… , n, where 𝜅i−1 has been chosen to be continuously differentiable. Also

note that e1 = x1. Then, one can find an 𝛼x ∈ K∞ being Lipschitz on compact sets

such that
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|e| ≤ 𝛼x(|x|). (3.89)

Also from the definition of ei for i = 1,… , n in (3.76) and (3.77), one has

|x1| = |e1|, (3.90)

|xi| ≤ max
{
|max Si−1(x̄i−1, w̄∞

i ) + ei|,

|min Si−1(x̄i−1, w̄∞
i ) − ei|

}

, i = 2,… , n. (3.91)

Due to the continuous differentiability of the 𝜅i’s used for the definition of the

set-valued maps Si’s, there exist 𝛼e, 𝛼w ∈ K∞ being Lipschitz on compact sets such

that

|x| ≤ max{𝛼e(|e|), 𝛼w(|w∞|)}. (3.92)

By substituting (3.89) and (3.92) into (3.87), one achieves (3.81) by defining

𝛽(s, t) = 𝛼e◦𝛼
−1◦𝛽0

(
𝛼◦𝛼x(s), t

)
, (3.93)

𝛾(s) = max
{
𝛼e◦𝛼

−1◦𝛾0(s), 𝛼w(s)
}
, (3.94)

𝛾
d(s) = 𝛼e◦𝛼

−1◦𝛾d
0 (s) (3.95)

for s, t ∈ ℝ+. It can be verified that 𝛽 ∈ K L and 𝛾, 𝛾
d ∈ K∞. Since the design of

the control law does not depend on w∞
, (3.81) holds for all w∞

and d∞
. This proves

the ISS of the closed-loop system with w and d as the inputs.

As 𝛼e, 𝛼
−1

, 𝛾0, and 𝛼w are Lipschitz on compact sets, 𝛾 is Lipschitz on compact

sets.

Remark 3.6 Input-to-state stabilization plays a central role in several recent results

on ISS-based event-triggered control [39, 49]. However, there have not been many

previous published results on input-to-state stabilization (and more generally, robust

control) of nonlinear systems with measurement errors. In [10], a class of back-

stepping controllers was developed with set-valued maps and “flattened” Lyapunov

functions such that the closed-loop system is ISS with the measurement error as the

input. Reference [21] considered nonlinear uncertain systems composed of two sub-

systems, one is ISS and the other one is input-to-state stabilizable. In [28], it was

found that, for general nonlinear control systems under persistently acting distur-

bances, the existence of smooth Lyapunov functions is equivalent to the existence

of (possibly discontinuous) feedback stabilizers which are robust to small measure-

ment errors and small additive external disturbances. However, these results study

the general measurement feedback control problem, and may not be directly applica-

ble to event-triggered control as the ISS gain condition may not be satisfied with the

designs. It is our belief that the techniques developed in this chapter should be useful

for event-based control of other classes of nonlinear systems.

Remark 3.7 For specific w∞
, we have constructed an ISS-Lyapunov function V for

the closed-loop system with e as the state. However, the Lyapunov-based event-
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triggered control design may not be applicable, as the definition of each ei depends

on w̄∞
i−1 for i = 2,… , n (cf. (3.77)), which represents the bounds of the measurement

errors and is unavailable. This highlights the necessity of the ISS gain condition for

event-triggered control without using ISS-Lyapunov functions.

3.6 Event-Trigger Design for Interconnected Systems

In this section, we study an event-trigger design problem for interconnected nonlin-

ear systems. The objective is to develop an ISS gain condition for event-triggered

control without infinitely fast sampling.

3.6.1 Problem Formulation

We consider the general case in which a well-designed control system is assumed to

be in the form of

ż(t) = h(z(t), x(t),w(t)) (3.96)

ẋ(t) = f (x(t), z(t),w(t)) (3.97)

where [zT
, xT ]T with z ∈ ℝm

and x ∈ ℝn
is the system state, w ∈ ℝn

represents

the measurement error of x caused by data-sampling, h ∶ ℝm ×ℝn ×ℝn → ℝm
and

f ∶ ℝn ×ℝm ×ℝn → ℝn
represents the system dynamics with h(0, 0, 0) = 0 and

f (0, 0, 0) = 0. Here, z is considered to be unavailable to event-trigger design.

The measurement error w(t) caused by data-sampling is defined as

w(t) = x(tk) − x(t), t ∈ [tk, tk+1), k ∈ 𝕊 (3.98)

where {tk}k∈𝕊 is the sequence of the sampling time instants with 𝕊 being the set of

the indices of all the sampling time instants. If there is a finite number of sampling

time instants, then 𝕊 = {0, 1,… , k∗} with k∗ being the index of the last sampling

time instant; otherwise, 𝕊 = ℤ+. For convenience of notations, if 𝕊 = {0, 1,… , k∗},

we denote tk∗+1 = ∞.
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In event-triggered control, the sampling time instants are generated by the event-

trigger as

tk+1 = inf
t>tk

{|w(t)| = 𝜇(t)} , k ∈ 𝕊 (3.99)

where 𝜇(t) is called threshold signal, and𝕊 is the set of the indices of all the sampling

time instants.

It can be directly observed that w(t) is always bounded by the threshold signal,

i.e.,

|w(t)| ≤ 𝜇(t) (3.100)

for all t ≥ 0.

Then, the problem of event-triggered control is reduced to the problem of finding

an appropriate threshold signal 𝜇(t) for the event-trigger such that

∙ (z, x) asymptotically converges to the origin, and

∙ for any specified (z(0), x(0)), there exists a 𝛥t > 0 such that

tk+1 − tk ≥ 𝛥t (3.101)

for k ∈ 𝕊.

Here, the second objective is to avoid infinitely fast sampling, that is, the sequence

{tk}k∈𝕊 has infinite number of elements, i.e., 𝕊 = ℤ+ and at the same time

limk→∞(tk+1 − tk) = 0. Note that a special case is that limk→∞ tk < ∞, which is

known as the Zeno behavior.

We assume that both the z-subsystem and the x-subsystem are ISS. More pre-

cisely, we make the following assumption on the Lyapunov-based ISS properties of

the subsystems.

Assumption 3.5 Both the z-subsystem and the x-subsystem are ISS with locally

Lipschitz ISS-Lyapunov functions Vz ∶ ℝm → ℝ+ and Vx ∶ ℝn → ℝ+ satisfying

𝛼z(|z|) ≤ Vz(z) ≤ 𝛼z(|z|) (3.102)

Vz(z) ≥ max{𝛾x
z (Vx(x)), 𝛾w

z (|w|)}
⇒∇Vz(z)h(z, x,w) ≤ −𝛼z(Vz(z)), a.e. (3.103)

𝛼x(|x|) ≤ Vx(x) ≤ 𝛼x(|x|) (3.104)

Vx(x) ≥ max{𝛾z
x(Vz(z)), 𝛾w

x (|w|)}
⇒∇Vx(x)f (x, z,w) ≤ −𝛼x(Vx(x)), a.e. (3.105)

where 𝛼z, 𝛼z, 𝛼x, 𝛼x ∈ K∞ and 𝛾
x
z , 𝛾

w
z , 𝛾

z
x , 𝛾

w
x ∈ K ∪ {0}.

We employ Example 3.2 to show how a event-triggered control system can be

transformed into the form of (3.96) and (3.97) satisfying Assumption 3.5. The system



3 Event-Triggered Control of Nonlinear Systems: A Small-Gain Approach 79

in Example 3.2 is also used to show the necessity of a threshold signal which does

not decrease exponentially.

Example 3.2 Consider system

ż(t) = −z3(t) (3.106)

ẋ(t) = u(t) + z(t) (3.107)

where z ∈ ℝ and x ∈ ℝ are the state variables, u ∈ ℝ is the control input. We con-

sider the case where only x is available for feedback.

We employ feedback control law:

u(t) = −x(tk), t ∈ [tk, tk+1), k ∈ 𝕊 (3.108)

where {tk}k∈𝕊 represents the sequence of sampling time instants.

By using (3.98) and (3.108), we have

ẋ(t) = −x(t) − w(t) + z(t). (3.109)

Thus, the controlled system composed of (3.106) and (3.109) is in the form of

(3.96) and (3.97) with h(z, x,w) = −z3 and f (x, z,w) = −x − w + z.

To verify the satisfaction of Assumption 3.5, we define Vz(z) = |z| and Vx(x) =
|x|. Clearly, Vz and Vx are locally Lipschitz. It can be directly checked that Vz and Vx
satisfy (3.102) and (3.104), respectively, with 𝛼z, 𝛼z, 𝛼x, 𝛼x = Id. Also, direct calcu-

lation yields:

∇Vz(z)h(z, x,w) = −|z|3 = −V3
z (z) a.e. (3.110)

∇Vx(x)f (x, z,w) ≤ −|x| + |w| + |z|
= −Vx(x) + Vz(z) + |w|
≤ −Vx(x) + 2max

{
Vz(z), |w|

}
a.e. (3.111)

Then, property (3.111) implies

Vx(x) ≥ 4max
{

Vz(z), |w|
}

⇒ ∇Vx(x)f (x, z,w) ≤ −0.5Vx(x) a.e. (3.112)

Thus, properties (3.103) and (3.105) are also satisfied with 𝛾
x
z (s) = 0, 𝛾

w
z (s) = 0,

𝛼z(s) = s3, 𝛾z
x(s) = 4s, 𝛾

w
x (s) = 4s, and 𝛼x(s) = 0.5s for s ∈ ℝ+.

Under Assumption 3.5, the interconnected system (3.96) and (3.97) is ISS with

w as the input if the small-gain condition [22, 23] is satisfied:

𝛾
z
x◦𝛾

x
z < Id. (3.113)
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Then, with a direct application of the asymptotic gain property of ISS, if w(t) asymp-

totically converges to the origin, then (z(t), x(t)) converges to the origin. See [48] for

the original discussions of the asymptotic gain property.

In [14, 43], the event-triggered control problem is studied in the context of dis-

tributed control and exponentially converging threshold signals are used. Based on

this idea, we may consider the following threshold signal for our problem:

𝜇(t) = 𝜇(0)e−ct
(3.114)

for t ≥ 0, with initial state 𝜇(0) > 0 and constant c > 0. Or equivalently, 𝜇(t) is the

solution of the initial value problem

𝜇̇(t) = −c𝜇(t). (3.115)

However, the discussion above neglects the issue with infinitely fast sampling.

An exponentially converging 𝜇(t) may lead to infinitely fast sampling. Consider

Example 3.3.

Example 3.3 Consider the system composed of (3.106) and (3.109), which is in

the form of (3.96) and (3.97) with h(z, x,w) = −z3 and f (x, z,w) = −x − w + z. It

is shown in Example 3.2 that the system satisfies Assumption 3.5. Moreover, the

system is a cascade connection of the z-subsystem and the x-subsystem, and thus the

small-gain condition (3.113) is satisfied automatically. We show that for some initial

states, one cannot find a constant c for the exponentially converging threshold signal

(3.114) to avoid infinitely fast sampling.

Now, we show that, for any specific z(0), x(0), 𝜇(0) and constant c, there exist

constants m1,m2,m3, c∗ such that

|f (x(t),w(t), z(t))| ≥ m1e−t + m2e−c∗t − m3e−ct
(3.116)

for all t ≥ 0. Moreover, there exist z(0), x(0), 𝜇(0) such that

m1 ≥ 0, m2 > 0, m2 ≥ 2m3, 2c∗ ≤ c, (3.117)

x(t) > z(t) > 0, (3.118)

f (x(t),w(t), z(t)) < 0 (3.119)

for all t ≥ 0.

Define 𝜐 = x − z and v = z3. Then,

𝜐̇(t) = ẋ(t) − ż(t)
= −𝜐(t) − w(t) + z3(t)
≥ −𝜐(t) − 𝜇(t) + v(t), (3.120)
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and

v̇(t) = 3z2(t)ż(t) = −3z5(t) = −3v
5
3 (t). (3.121)

We consider the case of v(0) > 0. In this case, v(t) is strictly decreasing and v(t) ≤
v(0) for all t ≥ 0. Then, one can find a c∗ > 0 such that

v(t) ≥ v(0)e−c∗t ∶= v̆(t) (3.122)

for all t ≥ 0.

Define 𝜐
∗(t) as the solution of the initial value problem

𝜐̇
∗(t) = −𝜐∗(t) − 𝜇(t) + v̆(t) (3.123)

with initial condition 𝜐
∗(0) = 𝜐(0). Then, a direct application of the comparison prin-

ciple yields:

𝜐(t) ≥ 𝜐
∗(t) (3.124)

for all t ≥ 0
With 𝜇(t) defined in (3.114) and v̆(t) defined above, we have

𝜐
∗(t) = 𝜐(0)e−t +

∫

t

0
e−(t−𝜏) (−𝜇(𝜏) + v̆(t)) d𝜏

= 𝜐(0)e−t + e−t
∫

t

0
e𝜏
(
−𝜇(0)e−c𝜏 + v̆(0)e−c∗𝜏) d𝜏

=
(

𝜐(0) + 𝜇(0)
1 − c

− v(0)
1 − c∗

)

e−t + v(0)
1 − c∗

e−c∗t − 𝜇(0)
1 − c

e−ct
. (3.125)

Thus,

|f (x(t),w(t), z(t))| = | − x(t) − w(t) + z(t)|
= |𝜐(t) + w(t)|
≥ 𝜐(t) − 𝜇(t)

≥

(

𝜐(0) + 𝜇(0)
1 − c

− v(0)
1 − c∗

)

e−t

+ v(0)
1 − c∗

e−c∗t − 𝜇(0)
1 − c

e−ct − 𝜇(0)e−ct

∶= m1e−t + m2e−c∗t − m3e−ct
(3.126)
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for all t ≥ 0. Moreover, there exist z(0) > 0, x(0) > 0, 𝜇(0) > 0 such that

m1 ≥ 0, m2 > 0, m2 ≥ 2m3, 2c∗ ≤ c. (3.127)

In this case, it is directly checked that

|f (x(t),w(t), z(t))| ≥ 𝜐(t) − 𝜇(t) ≥
m2
2

e−c∗t
> 0 (3.128)

for all t ≥ 0.

Recall 𝜐(t) = x(t) − z(t). With z(0) > 0 and 𝜇(0) > 0, z(t) > 0, and 𝜇(t) > 0 for all

t ≥ 0. Then, we have

x(t) > z(t) > 0 (3.129)

for all t ≥ 0.

With 𝜐(t) − 𝜇(t) > 0 given by (3.128), we also have

f (x(t),w(t), z(t)) = −x(t) − w(t) + z(t)
= −𝜐(t) − w(t)
≤ −𝜐(t) + 𝜇(t) < 0 (3.130)

for all t ≥ 0.

Properties (3.116) and (3.117) together imply

|f (x(t),w(t), z(t))| ≥
m2
2

e−c∗t
(3.131)

for all t ≥ 0.

Given tk, we give an estimate of the upper bound of 𝛿tk = tk+1 − tk. With property

(3.119), we have

𝜇(tk+1) =
|
|
|
|
|
∫

tk+1

tk
f (x(𝜏),w(𝜏), z(𝜏))d𝜏

|
|
|
|
|

=
∫

tk+1

tk
|f (x(𝜏),w(𝜏), z(𝜏))|d𝜏. (3.132)

Then, by using (3.114) and (3.131), we have

𝜇(0)e−c(tk+𝛿tk) ≥
m2
2

e−c∗(tk+𝛿tk)𝛿tk, (3.133)

which implies
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𝛿tkec∗(tk+𝛿tk) ≤
2𝜇(0)

m2
(3.134)

due to 2c∗ ≤ c.

Recall property (3.118). Suppose 𝕊 = {0, 1,… , k∗} with k∗ being a positive inte-

ger. Then, one can find a t∗ ≥ tk∗ such that

z(t) ≤ 1
2

x(tk∗ ) (3.135)

and thus

ẋ(t) = −x(tk∗ ) + z(t) ≤ −1
2

x(tk∗ ) (3.136)

for all t ≥ t∗. This implies limt→∞ x(t) = −∞ and contradicts with property (3.118).

Thus, 𝕊 = ℤ+.

Now, we consider the following two cases. If limk→∞ tk < ∞, then Zeno behavior

occurs. If limk→∞ tk = ∞, then property (3.134) implies limk→∞ 𝛿tk = 0. In any case,

infinitely fast sampling happens.

Note that we assume that the system dynamics are known in Example 3.3. The

problem would be more complicated for nonlinear uncertain systems.

From the discussions in Example 3.3, it can be observed that the problem is caused

by the nonlinearity z3 of the z-subsystem. The signal z(t) does not converge to the

origin exponentially. Intuitively, the exponential convergence of 𝜇(t) is too fast com-

pared with the converging rate of |f (x(t), z(t),w(t))|, which depends on z(t).
To overcome the limitation of the exponentially decreasing threshold signal, we

consider threshold signals generated by more general dynamic systems

𝜇̇(t) = −𝛺(𝜇(t)) (3.137)

with 𝛺 ∶ ℝ+ → ℝ+ being a positive definite function and initial condition 𝜇(0) > 0.

Clearly, if 𝛺(s) is in the form of ks with constant k > 0, then the 𝜇(t) defined by

(3.137) is reduced to the one defined by (3.115).

Under Assumption 3.5, we develop a condition on the ISS gains of the subsystems

under which event-triggered control can be realized without infinitely fast sampling.

We consider the interconnected system composed of the z-subsystem (3.96), the

x-subsystem (3.97), and the 𝜇-subsystem (3.137). Recall that the measurement error

w satisfies (3.100). Under Assumption 3.5, if w(t) is well defined for all t ≥ 0 and the

small-gain condition (3.113) is satisfied, then the interconnected system is asymp-

totically stable at the origin.

Moreover, we can construct a Lyapunov function for the interconnected system:

V0(z, x, 𝜇) = max
{
𝛾̂

z
x(Vz(z)),Vx(x), 𝛾̂w

x (𝜇), 𝛾̂
z
x◦𝛾̂

w
z (𝜇)

}
. (3.138)
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If 𝛾
(⋅)
(⋅) is nonzero, then the corresponding 𝛾̂

(⋅)
(⋅) in (3.138) is chosen such that 𝛾̂

(⋅)
(⋅) ∈ K∞

and it is continuously differentiable on (0,∞) and slightly larger than its correspond-

ing 𝛾
(⋅)
(⋅) ; if 𝛾

(⋅)
(⋅) = 0, then 𝛾̂

(⋅)
(⋅) = 0. Moreover, 𝛾̂

z
x satisfies 𝛾̂

z
x◦𝛾

x
z < Id. See, e.g., [32]

for the Lyapunov-based ISS cyclic-small-gain theorem for interconnected nonlinear

systems.

Define 𝛾̄
w
x (s) = max{𝛾̂w

x (s), 𝛾̂
z
x◦𝛾̂

w
z (s)} for s ∈ ℝ+. Clearly, 𝛾̄

w
x is a K∞ function

and is continuously differentiable on (0,∞). It is a standard result that

V(z, x, 𝜇) =
(
𝛾̄

w
x
)−1 (V0(z, x, 𝜇))

= max
{(

𝛾̄
w
x
)−1

◦𝛾̂z
x(Vz(z)),

(
𝛾̄

w
x
)−1 (Vx(x)), 𝜇

}

∶= max
{
𝜎z(Vz(z)), 𝜎x(Vx(x)), 𝜇

}
(3.139)

is also a Lyapunov function of the interconnected system.

It is shown in the following discussions that, to guarantee (3.101), the decreasing

rate of 𝜇(t) should be chosen in accordance with the decreasing rate of V(z(t), x(t),
𝜇(t)), which is studied in Sect. 3.6.2.

3.6.2 Decreasing Rate of V(z(t), x(t), 𝝁(t))

According to the definition of V in (3.139), the decreasing rate of V(z(t), x(t), 𝜇(t))
depends the decreasing rates of Vz(z(t)), Vx(x(t)), and 𝜇(t). Lemma 3.4 gives a condi-

tion on 𝛺 under which the decreasing rate of V(z(t), x(t), 𝜇(t)) equals the decreasing

rate of 𝜇(t).

Lemma 3.4 Consider the interconnected system composed of (3.96), (3.97), and
(3.137). Under Assumption 3.5, if (3.113) is satisfied, and if𝛺 is chosen to be positive
definite and satisfies

𝛺(s) ≤ min
{
𝜕𝜎z(𝜎−1

z (s))𝛼z(𝜎−1
z (s)), 𝜕𝜎x(𝜎−1

x (s))𝛼x(𝜎−1
x (s))

}
(3.140)

for all s > 0 with 𝜎z and 𝜎x defined in (3.139), then for any V(z(0), x(0), 𝜇(0)),

V(z(t), x(t), 𝜇(t)) ≤ 𝜂(t) (3.141)

holds for all t ≥ 0, where 𝜂(t) is the solution of the initial value problem

𝜂̇(t) = −𝛺(𝜂(t)) (3.142)

with initial condition 𝜂(0) = V(z(0), x(0), 𝜇(0)).
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Proof Define V̄z(z) = 𝜎z(Vz(z)) and V̄x(x) = 𝜎x(Vx(x)). Since 𝜎z, 𝜎x ∈ K∞, V̄z(z), and

V̄x(x) are also ISS-Lyapunov functions of the z-subsystem and the x-subsystem,

respectively. Based on (3.103) and (3.105), direct calculation yields:

V̄z(z) ≥ max{V̄x(x), |w|}
⇒∇V̄z(z)h(z, x,w) ≤ −𝛼̄z(V̄z(z)) a.e. (3.143)

V̄x(x) ≥ max{V̄z(z), |w|}
⇒∇V̄x(x)f (x, z,w) ≤ −𝛼̄x(V̄x(x)) a.e. (3.144)

where 𝛼̄z(s) = 𝜕𝜎z(𝜎−1
z (s))𝛼z(𝜎−1

z (s)) and 𝛼̄x(s) = 𝜕𝜎x(𝜎−1
x (s))𝛼x(𝜎−1

x (s)) for s ∈ ℝ+.

Now, we prove

D+V(z(t), x(t), 𝜇(t)) ≤ −𝛺 (V(z(t), x(t), 𝜇(t))) (3.145)

for all t ≥ 0, where D+
represents the upper right-hand derivative and is defined by

D+v(t) = lim sup
h→0+

v(t + h) − v(t)
h

(3.146)

for continuous signal v(t).
For convenience of notations, define

𝕋 (z, x, 𝜇) =
{

V̄z(z), V̄x(x), 𝜇
}
. (3.147)

Then,

V(z, x, 𝜇) = max 𝕋 (z, x, 𝜇). (3.148)

Thus,

D+V(z, x, 𝜇) = max
{

D+
𝜃 ∶ 𝜃 ∈ 𝕋 (z, x, 𝜇), 𝜃 = V(z, x, 𝜇)

}
. (3.149)

By using (3.143) and (3.144), for any 𝜃 ∈ 𝕋 (z, x, 𝜇) satisfying 𝜃 = V(z, x, 𝜇), we

have

D+
𝜃 ≤ −𝛼̄

𝜃
(𝜃) (3.150)

where

𝛼̄
𝜃
=
⎧
⎪
⎨
⎪
⎩

𝛼̄z, if 𝜃 = V̄z(z);
𝛼̄x, if 𝜃 = V̄x(x);
𝛺, if 𝜃 = 𝜇.

(3.151)
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If condition (3.140) is satisfied, then

𝛺(s) ≤ min
{
𝛼̄z(s), 𝛼̄x(s)

}
(3.152)

for all s > 0. In this case, we can replace the 𝛼̄
𝜃

in (3.150) with 𝛺. Property (3.145)

is proved.

Then, property (3.142) can be by directly applying the comparison principle; see,

e.g., [26, Lemma 3.4]. This ends the proof of Lemma 3.4.

Remark 3.8 Although Lemma 3.4 only considers the special case with two ISS

subsystems and one asymptotically stable subsystem, the converging rate result can

be easily extended for large-scale dynamic networks, as long as the cyclic-small-

gain condition is satisfied. Due to space limitation, this chapter focuses on the issues

closely related to event-triggered control design, and the extension of the conver-

gence rate result is not provided.

3.6.3 Event-Trigger Design

The main result of this section is given in Theorem 3.9.

Theorem 3.9 Consider the interconnected system composed of (3.96), (3.97), and
(3.137) with Assumption 3.5 and (3.113) satisfied. Then, for any specific initial state
of the system, there exists a 𝛥t > 0 such that (3.101) holds for all k ∈ 𝕊 if

∙ 𝛺 is chosen to be positive definite and Lipschitz on compact sets, and satisfies
(3.140),

∙ there exists a constant 𝛥 > 0 such that 𝛺(s)∕s exists and is nondecreasing for
s ∈ (0, 𝛥], and

∙
(
𝜎z◦𝛼z

)−1 and
(
𝜎x◦𝛼x

)−1 are Lipschitz on compact sets.

Proof Due to the positive definiteness of 𝛺, the 𝜇(t) generated by (3.137) satisfies

0 ≤ 𝜇(t) ≤ 𝜇(0) (3.153)

for all t ≥ 0. Moreover, since 𝛺 is chosen to be Lipschitz on compact sets, there

exists a constant c̄ > 0 such that

𝛺(s) ≤ c̄s (3.154)

for 0 ≤ s ≤ 𝜇(0), and thus

𝜇̇(t) = −𝛺(𝜇(t)) ≥ −c̄𝜇(t) (3.155)
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along the trajectory of𝜇 with initial state𝜇(0). A direct application of the comparison

principle implies

𝜇(t + 𝛿) ≥ 𝜇(t)e−c̄𝛿
(3.156)

for all 𝛿, t ≥ 0.

For any given tk, we prove the lower boundedness of tk+1 − tk ∶= 𝛿tk. By using

the event-trigger (3.99), we have

𝜇(tk+1) = |x(tk+1) − x(tk)|

=
|
|
|
|
|
∫

tk+1

tk
f (x(𝜏), z(𝜏), 𝜇(𝜏))d𝜏

|
|
|
|
|

≤
∫

tk+1

tk
|f (x(𝜏), z(𝜏), 𝜇(𝜏))| d𝜏. (3.157)

If the conditions for Theorem 3.9 are satisfied, then the conditions for Lemma 3.4

are satisfied. Thus, the Lyapunov function V defined in (3.139) has property (3.141)

with 𝜂 generated by (3.142). Due to the positive definiteness of 𝛺, for any initial

condition V(z(0), x(0), 𝜇(0)),

V(z(t), x(t), 𝜇(t)) ≤ V(z(0), x(0), 𝜇(0)) (3.158)

for all t ≥ 0, and moreover, there exists a finite time instant T∗ ≥ 0 such that

V(z(t), x(t), 𝜇(t)) ≤ 𝛥 (3.159)

for all t ≥ T∗
.

In the following procedure, we consider the cases of tk ≤ T∗
and tk > T∗

sepa-

rately.

Case 1: tk ≤ T∗
. Property (3.158) means that there exists a finite𝛥s > 0 depending

on the initial state such that

|
|
|
[zT (t), xT (t), 𝜇(t)]T ||

|
≤ 𝛥s (3.160)

for all t ≥ 0. Thus, there exists a 𝛥f such that

|f (z(t), x(t), 𝜇(t))| ≤ 𝛥f (3.161)

for all t ≥ 0. Then, by also using properties (3.156) and (3.157), we have
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𝜇(0)e−c̄(tk+𝛿tk) ≤
∫

tk+1

tk
|f (x(𝜏), z(𝜏), 𝜇(𝜏))| d𝜏

≤ (tk+1 − tk)𝛥f = 𝛿tk𝛥f , (3.162)

i.e.,

𝛿tkec̄(tk+𝛿tk) ≥
𝜇(0)
𝛥f

. (3.163)

In the case of tk ≤ T∗
, it is concluded that

𝛿tkec̄(T∗+𝛿tk) ≥
𝜇(0)
𝛥f

. (3.164)

Case 2: tk > T∗
. Consider an 𝜂(t) defined by

𝜂̇(t) = −𝛺(𝜂(t)) (3.165)

for t > T∗
with 𝜂(T∗) = V(z(T∗), x(T∗), 𝜇(T∗)). Then, by using Lemma 3.4, we have

V(z(t), x(t), 𝜇(t)) ≤ 𝜂(t) for t > T∗
. Also, by using the definition of V in (3.139), we

have V(z(t), x(t), 𝜇(t)) ≥ 𝜇(t) for all t ≥ 0.

Thus,

𝜇(t) ≤ V(z(t), x(t), 𝜇(t)) ≤ 𝜂(t) (3.166)

for t > T∗
.

With a similar reasoning as for (3.156), it can be proved that the 𝜂(t) defined by

(3.165) is strictly positive for all t > T∗
.

Define

k
𝜇
= 𝜂(T∗)

𝜇(T∗)
. (3.167)

Then, according to (3.166), k
𝜇
≥ 1. We prove that

𝜂(t) ≤ k
𝜇
𝜇(t) (3.168)

for all t > T∗
.

Since 𝛺(s)∕s is nondecreasing for all s ∈ (0, 𝛥],

𝛺(𝜂)
𝜂

≥
𝛺

(
𝜂∕k

𝜇

)

𝜂∕k
𝜇

, (3.169)

which implies 𝛺(𝜂)∕k
𝜇
≥ 𝛺(𝜂∕k

𝜇
) for 𝜂 ∈ (0, 𝛥]. Then, by using (3.165), we have
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1
k
𝜇

𝜂̇(t) = − 1
k
𝜇

𝛺(𝜂(t)) ≤ −𝛺
(

1
k
𝜇

𝜂(t)
)

(3.170)

for t > T∗
. Property (3.168) can then be proved by using the comparison principle

for 𝜂(t)∕k
𝜇

and 𝜇(t).
If
(
𝜎z◦𝛼z

)−1
and

(
𝜎x◦𝛼x

)−1
are Lipschitz on compact sets, then one can find con-

stants kz, kx > 0 such that

𝜂(t) ≥ V(z(t), x(t), 𝜇(t)) ≥ max
{

kz(|z(t)|), kx(|x(t)|)
}
. (3.171)

for all t > T∗
. Then, with property (3.168), we have

𝜇(t) ≥ 1
k
𝜇

max
{

kz(|z(t)|), kx(|x(t)|)
}

(3.172)

for all t > T∗
.

By using the locally Lipschitz property of f , there exists a constant kf > 0 such

that

|f (z, x, 𝜇)| ≤ kf max {|z|, |x|, 𝜇} (3.173)

for all (z, x, 𝜇) satisfying V(z, x, 𝜇) ≤ V(z(T∗), x(T∗), 𝜇(T∗)).
Then, properties (3.157), (3.172), and (3.173) together imply

𝜇(tk+1) ≤ (tk+1 − tk)kf max
tk≤𝜏≤tk+1

{|z(𝜏)|, |x(𝜏)|, 𝜇(𝜏)}

≤ (tk+1 − tk)kf max
tk≤𝜏≤tk+1

{
k
𝜇
𝜇(𝜏)∕kz, k𝜇𝜇(𝜏)∕kx, 𝜇(𝜏)

}

≤ 𝛿tkkf max
{

k
𝜇
∕kz, k𝜇∕kx, 1

}
𝜇(tk). (3.174)

Also note that (3.156) means

𝜇(tk+1) ≥ e−c̄𝛿tk𝜇(tk). (3.175)

Then, we have

e−c̄𝛿tk ≤ 𝛿tkkf max
{

k
𝜇
∕kz, k𝜇∕kx, 1

}
, (3.176)

i.e.,

𝛿tkec̄𝛿tk ≥ kf max
{

k
𝜇
∕kz, k𝜇∕kx, 1

}
. (3.177)

The lower boundedness of 𝛿tk is guaranteed by (3.164) and (3.177) for the two

cases, respectively. This ends the proof of Theorem 3.9.
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Remark 3.9 The first two conditions listed in Theorem 3.9 are for 𝛺. Given specific

𝜕𝜎z(s)𝛼z(𝜎−1
z (s)) and 𝜕𝜎x(s)𝛼x(𝜎−1

x (s)), one can always find a 𝛺 to satisfy the first two

conditions. In the following section, we show how to realize the third condition by

appropriately choosing control laws for event-triggered output-feedback control of a

class of nonlinear uncertain systems.

Example 3.4 The infinitely fast sampling problem arising in Example 3.3 can be

readily solved by Theorem 3.9. By using the Vz and Vx defined in Example 3.2, we

choose 𝛾̂
z
x(s) = 5s, 𝛾̂

w
z (s) = 0, and 𝛾̂

w
x (s) = 5s for s ∈ ℝ+. According to (3.138), we

define

V0(z, x, 𝜇) = max{5Vz(z),Vx(x), 5𝜇}. (3.178)

By choosing 𝛾̄
w
x (s) = 5s for s ∈ ℝ+, we have

V(z, x, 𝜇) = max{Vz(z),Vx(x)∕5, 𝜇}. (3.179)

Thus, 𝜎z(s) = s and 𝜎x(s) = s∕5 for s ∈ ℝ+.

It can be verified that
(
𝜎z◦𝛼z

)−1 (s) = s and
(
𝜎x◦𝛼x

)−1 (s) = 2s for s ∈ ℝ+ are

Lipschitz on compact sets.

We choose

𝛺(s) = min
{
𝜕𝜎z(s)𝛼z(𝜎−1

z (s)), 𝜕𝜎x(s)𝛼x(𝜎−1
x (s))

}

= min{s3, s∕2} (3.180)

for s ∈ ℝ+. Then, 𝛺 is positive definite and Lipschitz on compact sets, and satisfies

(3.140). Also, 𝛺(s)∕s exists and is non-decreasing for s ∈ (0,∞). Intuitively, com-

pared with the 𝛺(s) defined in (3.180), the decreasing rate of 𝜇(t) with 𝛺(s) = cs
with c > 0 is too fast for the nonlinear system.

Remark 3.10 A special case is that both the z-subsystem and the x-subsystem are

linear and there ISS-Lyapunov functions are in the quadratic form. In this case,

Assumption 3.5 can be modified with 𝛼z(s) = azs
2
, 𝛼z(s) = azs2, 𝛼x(s) = axs2, 𝛼x(s) =

axs2, 𝛾x
z (s) = bx

zs, 𝛾
w
z (s) = bw

z s2, 𝛾z
x(s) = bz

xs, 𝛾
w
x (s) = bw

x s2, 𝛼z(s) = azs, and 𝛼x(s) =
axs for s ∈ ℝ+ with az, az, ax, ax, bx

z , b
w
z , b

z
x, b

w
x , az, az being positive constants.

For the linear case, the small-gain condition (3.113) is equivalent to bz
xbx

z < 1.

Assume that the small-gain condition is satisfied. Then, there exists an 𝜀 > 0 such

that (bz
x + 𝜀)bx

z < 1. We choose 𝛾̂
z
x(s) = (bz

x + 𝜀)s ∶= b̂z
xs, 𝛾̂

w
x (s) = (bw

x + 𝜀)s2 ∶= b̂w
x s2,

𝛾̂
w
z (s) = (bw

z + 𝜀)s ∶= b̂w
z s2 for s ∈ ℝ+. Then, 𝛾̄

w
x can be written in the form 𝛾̄

w
x (s) =

b̄w
x s2. It can be calculated that 𝜎z(s) =

√

b̂z
xs∕b̄w

x and 𝜎x(s) =
√

s∕b̄w
x . Then, the right-

hand side of (3.140) equals min
{

az∕b̂z
x, ax

}
b̄w

x s∕2. Thus, one can find a positive

constant c such that 𝛺(s) = cs satisfies (3.140).
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Remark 3.11 With w being the measurement error caused by data-sampling, the

event-trigger design in this section considers the systems which are input-to-state

stabilizable with w as the input. One of the related results can be found in [21],

which considers nonlinear systems composed of two subsystems, one is ISS and the

other one is input-to-state stabilizable with respect to the measurement disturbance.

In [21], the ISS of the closed-loop system is guaranteed by using the ISS small-gain

theorem [22, 23].

A further research direction is to design event-triggered output-feedback con-

trollers for nonlinear uncertain systems, by transforming the closed-loop system into

the form of (3.96) and (3.97).

3.6.4 An Extension

In the discussions above, we consider 𝜇(t) to be generated by system (3.137) with

the system dynamics depending solely on 𝜇(t). A more general case is that 𝜇(t) is

generated by a system

𝜇̇(t) = 𝛺̄(𝜇(t), x(t)) (3.181)

with 𝛺̄ ∶ ℝ+ ×ℝn → ℝ being an appropriately chosen function and 𝜇(0) > 0. In

this case, the structure of the interconnected system composed of (3.96), (3.97), and

(3.181) is shown in Fig. 3.4.

Under Assumption 3.5, the basic idea is to choose 𝛺̄ such that

∙ for all 𝜇 ∈ ℝ+ and all x ∈ ℝn
,

𝛺̄(𝜇, x) ≥ −𝛺(𝜇) (3.182)

where 𝛺 is chosen to satisfy the conditions given in Theorem 3.9;

∙ system (3.181) is ISS with 𝜇 as the state and x as the input, and moreover,

𝜇 ≥ 𝜒
x
𝜇
(|x|) ⇒ 𝛺̄(𝜇, x) ≤ −𝛼

𝜇
(𝜇) (3.183)

where 𝛼
𝜇

is a continuous, positive definite function and 𝜒
x
𝜇

is a K function and

satisfies

𝛾
w
x ◦𝜒

x
𝜇
◦𝛼−1

x < Id. (3.184)

Fig. 3.4 The structure of

the interconnected system

composed of (3.96), (3.97),

and (3.181) z x

µ



92 T. Liu and Z.-P. Jiang

In this case, by using the comparison principle, we have 𝜇(t) > 0 for all t ≥ 0
if 𝜇(0) > 0. Then, the system composed of subsystems (3.96), (3.97), and (3.181)

is an interconnection of ISS subsystems. Conditions (3.113) and (3.184) form the

cyclic-small-gain condition for the interconnected system. If (3.113) and (3.184) are

satisfied, then the interconnected system is ISS.

With 𝜇(t) generated by (3.181), one can still guarantee the boundedness of 𝜇(t)
for t ≥ 0. And with a similar reasoning as for (3.155), one can find a c̄ > 0 such that

𝜇̇(t) ≥ −c̄𝜇(t) (3.185)

for all t ≥ 0. Then, the validity of (3.181) can be proved in the same way as in the

proof of Theorem 3.9. Note that in this case, Lemma 3.4 should also be generalized

with (3.142) replaced by

𝜂̇(t) = 𝛺̄(𝜂(t), x(t)). (3.186)

A detailed proof is not given here due to space limitation.

One realization of the 𝛺̄ in (3.181) to fulfill the requirement of (3.182) and (3.183)

is

𝛺̄(𝜇, x) = −𝛺(𝜇) + 𝜋

(

𝜒0◦𝜒
x
𝜇
(|x|) − 𝜒0(𝜇)

)

(3.187)

where 𝛺 is chosen to satisfy the conditions given in Theorem 3.9, 𝜒0 can be any K
function, and 𝜋 ∶ ℝ → ℝ+ is defined as

𝜋(r) =

{
𝜒
𝜋
(r), if r ≥ 0;

0, otherwise.
(3.188)

where 𝜒
𝜋

can be any K function. Clearly, with such design, condition (3.183) is

satisfied with 𝛼
𝜇
= 𝛺.

3.6.5 A Simulation Example

We use a simulation to verify the theoretical results. Consider the system given in

Example 3.2. The design of an event-trigger (3.99) with the threshold signal 𝜇(t)
generated by (3.137) is given in Example 3.4. We choose initial conditions: z(0) =
−0.2, x(0) = 0.2, and 𝜇(0) = 0.5.

Figure 3.5 shows the convergence of x(t) and the convergence of w(t) bounded by

the threshold signal 𝜇(t). The control signal u(t) and the inter-sampling times 𝛿tk =
tk − tk−1 during the event-triggered control process is shown in Fig. 3.6. According

to the simulation, the minimal inter-sampling time for 0 ≤ t ≤ 500 is 1.028.
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Fig. 3.5 The trajectories of x and w with 𝛺(𝜇) = min
{
𝜇
3
, 𝜇∕2

}

Fig. 3.6 The control signal u and the inter-sampling times 𝛿tk = tk − tk−1 with 𝛺(𝜇) =
min

{
𝜇
3
, 𝜇∕2

}
. The minimal inter-sampling time during the period of simulation is 1.028

For comparison, we also consider event-triggers with exponentially decreas-

ing threshold signals. Figure 3.7 shows the inter-sampling times during the control

process with𝛺(𝜇) = 𝜇∕2 and𝛺(𝜇) = 𝜇∕30, respectively. Clearly, the minimal inter-

sampling time cannot be guaranteed to be strictly positive even if 𝜇(t) decreases very

slowly.
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Fig. 3.7 The inter-sampling times 𝛿tk = tk − tk−1 with𝛺(𝜇) = 𝜇∕2 and𝛺(𝜇) = 𝜇∕30, respectively

3.7 Conclusions

This chapter has studied the event-triggered control problem for nonlinear uncer-

tain systems based on ISS and the nonlinear small-gain theorem. By considering the

problem as a robust control problem, we have developed a new ISS gain condition for

event-trigger design to avoid infinitely fast sampling. No assumption on the existence

of known ISS-Lyapunov functions is made. The basic idea has also been extended

to the systems influenced by external disturbances. Through a well-designed self-

triggered sampling strategy, input-to-state stabilization of nonlinear systems can be

realized by only using the nonperiodic sampled-data. Moreover, asymptotic stabi-

lization can be achieved by means of a self-triggered control algorithm if the exter-

nal disturbances decay to zero. This chapter has also contributed a new nonlinear

control design method for event-triggered control of nonlinear uncertain systems

transformable into the strict-feedback form. Event-triggered control of nonlinear

uncertain systems with partial-state feedback has also been studied in this chapter.

In particular, the event-trigger design problem for the systems that are transformable

into an interconnection of two ISS subsystems is solved for the first time. It is shown

that infinitely fast sampling can be avoided by considering the threshold signal to be

generated by an asymptotically stable system. Based on this result, a more general

class of event-triggers with the threshold signals depending on the real-time system

state has also been proposed.

Based on the achievements in this chapter, several related topics may be studied

in the future:
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∙ Event-triggered control of nonlinear systems with quantized and/or delayed

measurements. In a networked control systems, data-sampling and quantization

usually coexist. Recently, we have developed small-gain methods for quantized

control of nonlinear systems [36]. In the quantized control results, we use ISS

gains to represent the influence of quantization error, while in this chapter, we

employ an ISS gain to represent the influence of data-sampling. This creates an

opportunity to develop a unified framework for event-triggered and quantized con-

trol of nonlinear systems. Time-delays also arise from networked control systems.

Note that the recent paper [11] has studied event-triggered control for linear sys-

tems with quantization and delays. Based on the recent theoretical achievements

for nonlinear systems with time-delays [25], it is of interest to study the event-

triggered control problem for nonlinear systems by taking into account the effects

of time-delays.

∙ Distributed event-triggered control. The idea of small-gain designs also bridge

event-triggered control and our recent distributed control results. In [33], it is

shown that a distributed control problem for nonlinear uncertain systems can ulti-

mately be transformed into a stability problem of a network of ISS subsystems. By

integrating the idea in this chapter, distributed control could be realized through

event-triggered information exchange. Note that such idea has been implemented

for linear systems [9, 14, 43, 54].
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Chapter 4
An ODE Observer for Lyapunov-Based
Global Stabilization of a Bioreactor
Nonlinear PDE

Iasson Karafyllis and Miroslav Krstic

Abstract We solve the stabilization problem of a neutrally stable nonlinear
hyperbolic PDE with in-domain actuation, which models the population dynamics
in a bioreactor, where the “spatial variable” is not the physical space but the age of
the microorganisms being grown. The control challenges arise from (1) the struc-
ture of the plant dynamics in which the full state of the system gets recirculated
back from the PDE domain to the inlet (birth) boundary condition, (2) the fact that
control (harvesting rate across the entire age range) multiplies the state, (3) the fact
that the state (population density distributed by age) must be kept nonnegative, and
(4) the fact that the renewal kernel (the birth rate at different ages) is unknown. We
find a nonlinear infinite-dimensional transformation which reveals that the system’s
relative degree is one and that its zero dynamics are autonomous and exponentially
stable, which we prove using a Lyapunov–Krasovskii functional. We take advan-
tage of this structure and achieve stabilization of a desired measured population
density under a saturated harvesting input and using a finite-dimensional
observer-based feedback, where the observer estimates the harvesting rate set-
point, which depends on the unknown renewal kernel (birth rate).

4.1 Introduction

Many areas of nonlinear control would not be what they are-and some would not
exist-without the ideas and techniques generated by Laurent Praly. From adaptive
robust control and adaptive stabilization, to recursive methodologies such as
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backstepping and forwarding, to robust stabilization approaches, to nonlinear
observers and output feedback-Laurent has seen further ahead than anyone in this
richly talented field on countless occasions. As someone unparalleled in generously
sharing his ideas, Laurent’s legacy exists not only in his papers but also in the
papers of numerous other researchers who were fortunate enough to meet him or
even to read his papers.

This chapter is an example of results that would not have come into existence
without the ways of thinking about nonlinear control, adaptive control, and output
feedback stabilization that Laurent has either instilled or inspired with his work.
The fact that our chapter deals with a problem modeled by a nonlinear partial
differential equation, in a particular application area, testifies to the generality of
concepts through which Laurent has influenced us and many other researchers.

Our chapter deals with continuous-time age structured population dynamics
which are modeled by the so-called McKendrick–von Foerster equation (see [3–5]
and the references therein), which is a first order hyperbolic Partial Differential
Equation (PDE) with a nonlocal boundary condition.

Optimal control problems for age-structured models have been studied (see [3, 8,
24] and the references therein) while the ergodicity theorem (see [11, 12]) has
proved an important tool for the study of the dynamics of continuous-time age
structured models (see also [25] for a study of the existence of limit cycles).

The study of feedback control problems was initiated in the recent work [17],
where a sampled-data output feedback stabilizer was designed for the global sta-
bilization of an equilibrium age profile for an age-structured chemostat model. Just
as in other chemostat feedback control problems described by Ordinary Differential
Equations (ODEs; see [9, 13–15, 20, 21]), the dilution rate was selected to be the
control input while the output was a weighted integral of the age distribution
function. The assumed output functional form was chosen because it is an appro-
priate form for the expression of the measurement of the total concentration of the
microorganism in the bioreactor or for the expression of any other measured
variable (e.g., light absorption) that depends on the amount (and its distribution) of
the microorganism in the bioreactor. The main idea for the solution of the feedback
control problem in [17] was the transformation of the first order hyperbolic PDE to
an Integral Delay Equation (IDE; see [16]) and the application of the strong ergodic
theorem. This feature differentiated the work in [17] from recent works on feedback
control problems for first order hyperbolic PDEs (see [1, 2, 6, 7, 16, 19]).

This work studies the global stabilization problem of an equilibrium age profile
for an age-structured chemostat model by means of a continuously applied feedback
stabilizer (instead of sampled-data feedback stabilizer as in [17]). Moreover, the
present work does not assume knowledge of the equilibrium value of the dilution
rate, which was an important assumption in [17]. In other words, the model is
completely unknown. A family of observer-based (dynamic), output feedback laws
is proposed: the equilibrium value of the dilution rate is estimated by the observer.
Moreover, the dilution rate (control input) takes values in a prespecified bounded
interval and consequently input constraints are taken into account. The main idea
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for the solution of the feedback control problem is the transformation of the PDE to
an ODE and an IDE.

However, instead of simply designing a continuously applied, dynamic, output
feedback law that guarantees global asymptotic stability of an equilibrium age
profile, the present work has an additional goal: the explicit construction of a family
of Control Lyapunov Functionals (CLFs) for the age-structured chemostat model.
Therefore, the present work avoids the application of the strong ergodic theorem
(which does not give formulas for Lyapunov functionals) and provides/uses novel
stability results on linear IDEs, which are of independent interest. In fact, the newly
developed results, provide a Lyapunov-like proof of the scalar, strong ergodic
theorem for special cases of the integral kernel. Stability results for linear IDEs
similar to those studied in this work have been also studied in [22].

Since the state of the chemostat model is the population density of a particular
age at a given time, the state of the chemostat PDE is nonnegative valued.
Accordingly, the desired equilibrium profile (a function of the age variable) is
positive-valued. So the state space of this PDE system is the positive orthant in a
particular function space. We pursue global stabilization of the positive equilibrium
profile in such a state space. This requires a novel approach and even a novel
formulation of stability estimates in which the norm of the state at the desired
equilibrium is zero but takes the infinite value not only when the population density
(of some age) is infinite but also when it is zero, i.e., we infinitely penalize the
population death (the so-called “washout”), as we should. Our main idea in this
development is a particular logarithmic transformation of the state, which penalizes
both the overpopulated and underpopulated conditions, with an infinite penalty on
the washout condition.

The structure of the paper is described next. In Sect. 4.2, we describe the che-
mostat stabilization problem in a precise way and we provide the main result of the
paper (Theorem 4.2.1). Sect. 4.3 provides useful existing results for the uncon-
trolled PDE, while Sect. 4.4 is devoted to the presentation of stability results on
linear IDEs, which allow us to construct CLFs for the chemostat problem. Sec-
tion 4.5 presents a result (similar to Theorem 4.2.1), which uses a reduced order
observer instead of a full-order observer. The concluding remarks of the paper are
given in Sect. 4.6. All proofs are omitted.

Notation. Throughout this paper we adopt the following notation.

• For a real number x∈ℜ , x½ � denotes the integer part of x∈ℜ. ℜ+ denotes the
interval ½0, +∞Þ.

• Let U be an open subset of a metric space and Ω⊆ℜm be a set. By C0ðU; ΩÞ,
we denote the class of continuous mappings on U, which take values in Ω.
When U ⊆ℜn, by C1ðU; ΩÞ, we denote the class of continuously differentiable
functions on U, which take values in Ω. When U = ½a, bÞ⊆ℜ (or
U = ½a, b�⊆ℜ) with a< b, C0ð½a, bÞ; ΩÞ (or C0ð½a, b�; ΩÞÞ denotes all func-
tions f : ½a, bÞ→Ω (or f : ½a, b�→Ω), which are continuous on ða, bÞ and satisfy
lim

s→ a+
f ðsÞð Þ= f ðaÞ (or lim

s→ a+
f ðsÞð Þ= f ðaÞ and lim

s→ b−
f ðsÞð Þ= f ðbÞÞ. When
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U = ½a, bÞ⊆ℜ, C1ð½a, bÞ; ΩÞ denotes all functions f : ½a, bÞ→Ω which are
continuously differentiable on ða, bÞ and satisfy lim

s→ a+
f ðsÞð Þ= f ðaÞ and

lim
h→ 0+

h− 1 f ða+ hÞ− f ðaÞð Þ= lim
s→ a+

f ′ðsÞ.
• K∞ is the class of all strictly increasing, unbounded functions

a∈C0ðℜ+ ;ℜ+ Þ, with að0Þ=0.
• For any subset S⊆ℜ and for any A>0, PC1 ½0,A�; Sð Þ denotes the class of all

functions f ∈C0ð½0,A�; SÞ for which there exists a finite (or empty) set B⊂ð0,AÞ
such that: (i) the derivative f ′ðaÞ exists at every a∈ ð0,AÞ\B and is a continuous
function on ð0,AÞ\B, (ii) all meaningful right and left limits of f ′ðaÞ when
a tends to a point in B∪ f0,Ag exist and are finite.

4.2 Problem Description and Main Result

Consider the age-structured chemostat model:

∂ f
∂ t

ðt, aÞ+ ∂ f
∂ a

ðt, aÞ= − ðμðaÞ+DðtÞÞf ðt, aÞ, for t>0, a∈ ð0,AÞ ð4:2:1Þ

f ðt, 0Þ=
ZA
0

kðaÞf ðt, aÞda, for t≥ 0 ð4:2:2Þ

where DðtÞ∈ ½Dmin,Dmax� is the dilution rate, Dmax >Dmin > 0 are constants, A>0 is
a constant and μ: ½0,A�→ℜ+ , k: ½0,A�→ℜ+ are continuous functions withRA
0
kðaÞda>0. System (4.2.1), (4.2.2) is a continuous age-structured model of a

microbial population in a chemostat. The function μðaÞ≥ 0 is called the mortality
function, the function f ðt, aÞ denotes the density of the population of age a∈ ½0,A�
at time t≥ 0 and the function kðaÞ≥ 0 is the birth modulus of the population. The
boundary condition (4.2.2) is the renewal condition, which determines the number
of newborn individuals f ðt, 0Þ. Finally, A>0 is the maximum reproductive age.
Physically meaningful solutions of (4.2.1), (4.2.2) are only the nonnegative solu-
tions, i.e., solutions satisfying f ðt, aÞ≥ 0, for all ðt, aÞ∈ℜ+ × ½0,A�.

We assume that there exists D* ∈ ðDmin,DmaxÞ such that

1 =
RA
0
kðaÞ exp −D*a−

Ra
0
μðsÞds

� �
da. This assumption is necessary for the exis-

tence of an equilibrium point for the control system (4.2.1), (4.2.2), which is
different from the identically zero function. Any function of the form:
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f *ðaÞ=M exp −D*a−
Za
0

μðsÞds
0@ 1A, for a∈ ½0,A� ð4:2:3Þ

where M ≥ 0 being an arbitrary constant, is an equilibrium point for the control
system (4.2.1), (4.2.2) with DðtÞ≡D*. Notice that there is a continuum of
equilibria.

The measured output of the control system (4.2.1), (4.2.2) is given by the
equation:

yðtÞ=
ZA
0

pðaÞf ðt, aÞda, for t≥ 0 ð4:2:4Þ

where p: ½0,A�→ℜ+ is a continuous function with
RA
0
pðaÞda>0. Notice that the

case pðaÞ≡ 1 corresponds to the total concentration of the microorganism in the
chemostat.

Let y* > 0 be an arbitrary constant (the set point) and let f *ðaÞ be the equilibrium

age profile given by (4.2.3) with M = y*
RA
0
pðaÞ exp −D*a−

Ra
0
μðsÞds

� �
da

� �− 1

.

Consider the dynamic feedback law given by

z1̇ðtÞ= z2ðtÞ−DðtÞ− l1 z1ðtÞ− ln
yðtÞ
y*

� �� �
z2̇ðtÞ= − l2 z1ðtÞ− ln

yðtÞ
y*

� �� �
zðtÞ= ðz1ðtÞ, z2ðtÞÞ′ ∈ℜ2

ð4:2:5Þ

And

DðtÞ=min Dmax, max Dmin, z2ðtÞ+ γ ln
yðtÞ
y*

� �� �� �
ð4:2:6Þ

where l1, l2, γ >0 are constants. Next consider solutions of the initial-value problem
(4.2.1), (4.2.2), (4.2.4), (4.2.5), (4.2.6) with initial condition ðf0, z0Þ∈X ̃×ℜ2,

where X ̃ is the set X ̃= f ∈PC1ð½0,A�; ð0, +∞ÞÞ : f ð0Þ= RA
0
kðaÞf ðaÞda

� �
. By a

solution of the initial-value problem (4.2.1), (4.2.2), (4.2.4), (4.2.5), (4.2.6) a initial
condition ðf0, z0Þ∈X ̃×ℜ2, we mean a pair of mappings
f ∈C0 ½0, TÞ× ½0,A�; ð0, +∞Þð Þ, z∈C1 ½0, TÞ;ℜ2� �

, where T >0, which satisfies
the following properties:
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(i) f ∈C1 Df ; ð0, +∞Þ� �
, where Df = ðt, aÞ∈ ð0, TÞ× ð0,AÞ : ða− tÞ∉B∪f

f0,Ag g and B⊆ ð0,AÞ is the finite (possibly empty) set where the derivative
of f0 ∈X ̃ is not defined or is not continuous,

(ii) ft ∈X ̃ for all t∈ ½0, TÞ, where ðftÞðaÞ= f ðt, aÞ for a∈ ½0,A�,
(iii) Equations (4.2.4), (4.2.5), (4.2.6) hold for all t∈ ½0, TÞ,
(iv) ∂ f

∂ t ðt, aÞ+ ∂ f
∂ a ðt, aÞ= − μðaÞ+DðtÞð Þf ðt, aÞ holds for all ðt, aÞ∈Df , and

(v) zð0Þ= z0 = ðz1, 0, z2, 0Þ, f ð0, aÞ= f0ðaÞ for all a∈ ½0,A�.
The mapping ½0, TÞ ϶ t→ ðft, zðtÞÞ∈X ̃×ℜ2 is called the solution of the closed-

loop system (4.2.1), (4.2.2), (4.2.4) with (4.2.5), (4.2.6) and initial condition
ðf0, z0Þ∈X ̃×ℜ2 defined for t∈ ½0, TÞ.

Define the functional Π:C0ð½0,A�;ℜÞ→ℜ by means of the equation

Πðf Þ: =

RA
0
f ðaÞ RA

a
kðsÞ exp Ra

s
μðlÞ+D*ð Þdl

� �
ds

� �
da

RA
0
akðaÞf *ðaÞda

ð4:2:7Þ

and assume that the following technical assumption holds for the nonnegative

function kð̃aÞ: = kðaÞ exp −D*a−
Ra
0
μðsÞds

� �
that satisfies

RA
0
kð̃aÞda=1 (recall

that 1 =
RA
0
kðaÞ exp −D*a−

Ra
0
μðsÞds

� �
da):

(A) There exists a constant λ>0 such that
RA
0

kð̃aÞ− rλ
RA
a
kð̃sÞds

���� ����da<1, where

r: =
RA
0
akð̃aÞda

� �− 1

and kð̃aÞ: = kðaÞ exp −D*a−
Ra
0
μðsÞds

� �
for all

a∈ ½0,A�.
We are now ready to state the main result of the present work.

Theorem 4.2.1 Consider the age-structured chemostat model (4.2.1), (4.2.2) with
k∈PC1ð½0,A�;ℜ+ Þ under Assumption (A). Then for every f0 ∈X ̃ and z0 ∈ℜ2 there
exists a unique solution of the closed-loop (4.2.1), (4.2.2), (4.2.4) with (4.2.5),
(4.2.6) and initial condition ðf0, z0Þ∈X ̃×ℜ2. Furthermore, there exist a constant
L>0 and a function ρ∈K∞ such that for every f0 ∈X ̃ and z0 ∈ℜ2 the unique
solution of the closed-loop (4.2.1), (4.2.2), (4.2.4) with (4.2.5), (4.2.6) and initial
condition ðf0, z0Þ∈X ̃×ℜ2 is defined for all t≥ 0 and satisfies the following
estimate:
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max
a∈ ½0,A�

ln
f ðt, aÞ
f *ðaÞ

� ����� ����� �
+ z1ðtÞj j+ z2ðtÞ−D*

�� ��≤
exp −

L
4
t

� �
ρ max

a∈ ½0,A�
ln

f0ðaÞ
f *ðaÞ
� ����� ����� �

+ z1, 0j j+ z2, 0 −D*
�� ��� �

, for all t≥ 0

ð4:2:8Þ

Moreover, let p1, p2 > 0 be a pair of constants satisfying
2+ l1p1 − 2l2p2ð Þ2 < 8l1p1 − 4l2p21, p21 < 4p2. Then the continuous functional
W :ℜ2 ×C0ð½0,A�; ð0, +∞ÞÞ→ℜ+ defined by:

Wðz, f Þ: = ln Πðf Þð Þð Þ2 +G
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qðz, f Þ

p
+ βQðz, f Þ ð4:2:9Þ

where β≥ 0 is an arbitrary constant,

Qðz, f Þ: = M
2

max
a∈ ½0,A�

expð− σ aÞ f ðaÞ−Πðf Þf *ðaÞ
f *ðaÞ

��� ���
 �
min Πðf Þ, min

a∈ ½0,A�
f ðaÞ
f *ðaÞ

 �� �

0BB@
1CCA

2

+ z1 − ln Πðf Þð Þð Þ2 − p1 z1 − ln Πðf Þð Þð Þðz2 −D*Þ+ p2ðz2 −D*Þ2

ð4:2:10Þ

σ >0 is a sufficiently small constant and M,G>0 are sufficiently large constants, is
a Lyapunov functional for the closed-loop system (4.2.1), (4.2.2), (4.2.4) with
(4.2.5), (4.2.6), in the sense that every solution ðft, zðtÞÞ∈X ̃×ℜ2 of the closed-loop
system (4.2.1), (4.2.2), (4.2.4) with (4.2.5), (4.2.6) satisfies the inequality for all
t≥ 0:

lim sup
h→ 0+

h− 1 Wðzðt+ hÞ, ft+ hÞ−WðzðtÞ, ftÞð Þ� �
≤ − L

WðzðtÞ, ftÞ
1+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WðzðtÞ, ftÞ

p ð4:2:11Þ

As remarked in the Introduction, the main result of the present work does not
only provide formulas for dynamic output feedback stabilizers that guarantee global
asymptotic stability of the selected equilibrium age profile, but also provides
explicit formulas for a family of CLFs for system (4.2.1), (4.2.2). Indeed, the
continuous functional W :ℜ2 ×C0ð½0,A�; ð0, +∞ÞÞ→ℜ+ defined by (4.2.9),
(4.2.10) is a CLF for system (4.2.1), (4.2.2).

Remark 4.2.2

(i) The family of feedback laws (4.2.5), (4.2.6) (parameterized by l1, l2, γ >0Þ
guarantees global asymptotic stabilization of every selected equilibrium age
profile. Moreover, the feedback law (4.2.5), (4.2.6) achieves a global
exponential convergence rate (see estimate (4.2.8)), in the sense that estimate
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(4.2.8) holds for all physically meaningful initial conditions (f0 ∈X ̃Þ. As
indicated in the Introduction, the logarithmic penalty in (4.2.8) penalizes
both the overpopulated and underpopulated conditions, with an infinite
penalty on zero density for some age. The state converges to the desired
equilibrium profiles from all positive initial conditions, but not from the
zero-density initial condition, which itself is an equilibrium (population
cannot develop from a “dead” initial state).

(ii) The feedback law (4.2.5), (4.2.6) is a dynamic output feedback law. The
subsystem (4.2.5) is an observer that primarily estimates the equilibrium
value of the dilution rate D*. The observer (4.2.5) is a highly reduced order,
since it estimates only two variables, the afore-mentioned constant D* and
the scalar functional of the infinite-dimensional state, Πðf Þ, introduced in
(4.2.7). All the remaining infinitely many states are not estimated. This is the
key achievement of our paper-attaining stabilization without the estimation
of nearly the entire infinite-dimensional state and proving this result in an
appropriately constructed transformed representation of that unmeasured
infinite-dimensional state.

(iii) The family of feedback laws (4.2.5), (4.2.6) does not require knowledge of
the mortality function of the population, the birth modulus of the population
and the maximum reproductive age of the population. It does not require the
knowledge of the equilibrium value of the dilution rate D* (as the
sampled-data controller in [17] did). Instead, the equilibrium value of the
dilution rate D* is estimated by the observer state z2ðtÞ (see estimate (4.2.8)).

(iv) The feedback law (4.2.5), (4.2.6) can work with arbitrary input constraints.
The only condition that needs to be satisfied is that the equilibrium value of
the dilution rate D* must satisfy the input constraints, i.e., D* ∈ ðDmin,DmaxÞ,
which is a reasonable requirement (otherwise the selected equilibrium age
profile is not feasible).

(v) The parameters l1, l2, γ >0 can be used by the control practitioner for the
optimal tuning of the controller (4.2.5), (4.2.6): the selection of the values of
these parameters affects the value of the constant L>0 that determines the
exponential convergence rate. Since the proof of Theorem 4.2.1 is con-
structive, useful formulas showing the dependence of the constant L>0 on
the parameters l1, l2, γ >0 are established in the proof of Theorem 4.2.1.

(vi) It should be noted that for every pair of constants l1, l2 > 0 it is possible to
find constants p1, p2 > 0 satisfying 2+ l1p1 − 2l2p2ð Þ2 < 8l1p1 − 4l2p21,

p21 < 4p2. Indeed, for every l1, l2 > 0 the matrix
− l1 1
− l2 0

� 

is a Hurwitz

matrix. Consequently, there exists a positive definite matrix
1 − p1 ̸2

− p1 ̸2 p2

� 

so that the matrix
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− 2l1 + l2p1 1 + l1p1 ̸2− l2p2
1 + l1p1 ̸2− l2p2 − p1

� 

=

− l1 − l2
1 0

� 

1 − p1 ̸2

− p1 ̸2 p2

� 

+

1 − p1 ̸2
− p1 ̸2 p2

� 

− l1 1

− l2 0

� 

is negative definite. This implies the inequalities p21 < 4p2 and
2+ l1p1 − 2l2p2ð Þ2 < 8l1p1 − 4l2p21.

(vii) The main idea for the construction of the feedback law (4.2.5), (4.2.6) is the
transformation of the PDE problem (4.2.1), (4.2.2) into a system that consists
of an ODE and an IDE along with the logarithmic output transformation

YðtÞ= ln yðtÞ
y*


 �
. The transformations are presented in Fig. 4.1 and are

.

Fig. 4.1 The transformation of the PDE (4.2.1) with boundary condition given by (4.2.2) to an
IDE and an ODE and the inverse transformation
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exploited rigorously in the proof of Theorem 4.2.1. Fig. 4.1 also shows that
the full-order observer (4.2.5) is actually an observer for the system

η ̇ðtÞ=D*ðtÞ−DðtÞ, Ḋ
*ðtÞ=0.

Theorem 4.2.1 assumes that the birth modulus of the population satisfies
Assumption (A). This is not an assumption that is needed for the establishment of
the exponential estimate (4.2.8). Estimate (4.2.8) could have been established
without Assumption (A) by means of the strong ergodic theorem. The role of
Assumption (A) is crucial for the establishment of the CLF, given by (4.2.9),
(4.2.10). However, since Assumption (A) demands a specific property for the

function kð̃aÞ: = kðaÞ exp −D*a−
Ra
0
μðsÞds

� �
that involves the (unknown) equi-

librium value of the dilution rate D*, the verification of the validity of Assumption
(A) becomes an issue. The following proposition provides useful sufficient condi-
tions for Assumption (A).

Proposition 4.2.3 Let k ̃∈C0ð½0,A�;ℜÞ be a function that satisfies the following
assumption:

(B) The function k ̃∈C0ð½0,A�;ℜÞ satisfies kð̃aÞ≥ 0 for all a∈ ½0,A� andRA
0
kð̃aÞda=1. Moreover, there exists ε>0 such that the set

Sε = a∈ ½0, T� : kð̃aÞ≤ ε
� �

, where T : = sup a∈ ½0,A� : kð̃aÞ>0
� �

, has

Lebesgue measure Sεj j< ð2rÞ− 1, where r: =
RA
0
akð̃aÞda

� �− 1

.

Then for every λ∈ ½0, r − 1ε� it holds thatRA
0

kð̃aÞ− rλ
RA
a
kð̃sÞds

���� ����da≤ 1− λ 1− 2r Sεj jð Þ.
Proposition 4.2.3 shows that Assumption (A) is valid for a function that satisfies

Assumption (B). On the other hand, we know that Assumption (B) holds for every

function k ̃∈C0ð½0,A�;ℜ+ Þ satisfying
RA
0
kð̃aÞda=1 and having only a finite number

of zeros in the interval ½0,A�. Since kð̃aÞ: = kðaÞ exp −D*a−
Ra
0
μðsÞds

� �
, we can

be sure that Assumption (A) necessarily holds for all birth moduli
k∈C0ð½0,A�;ℜ+ Þ of the population with only a finite number of zeros in the
interval ½0,A�, no matter what the equilibrium value of the dilution rate D* is and
no matter what the mortality function μ: ½0,A�→ℜ+ is.

The basic tool for the proof of the main result is the transformation shown in
Fig. 4.1. The main idea comes from the recent work [16]: the transformation of a
first order hyperbolic PDE to an IDE. However, if we applied the results of [16] in a
straightforward way, then we would end up with the following IDE:
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vðtÞ=
ZA
0

kðaÞ exp −
Za
0

μðsÞds
0@ 1A exp −

Z t

t− a

DðsÞds
0@ 1Avðt− aÞda, ð4:2:12Þ

where vðtÞ= f ðt, 0Þ and f ðt, aÞ= exp −
Ra
0
μðsÞds

� �
exp −

Rt
t− a

DðsÞds
� �

vðt− aÞ.
However, the IDE is input-dependent. Instead, we would like to describe the effect
of the control input in a more convenient way: this is achieved by introducing one
more state

ηðtÞ= ln ΠðftÞð Þ, ð4:2:13Þ

where Π is given by (4.2.7). The evolution of ηðtÞ is described by the ODE
η ̇ðtÞ=D* −DðtÞ. Then we are in a position to obtain the transformation

ψðt− aÞ= f ðt, aÞ
f *ðaÞΠðftÞ − 1, for all ðt, aÞ∈ℜ+ × ½0,A� ð4:2:14Þ

which decomposes the dynamics of (4.2.12) to the input-independent dynamics of

the IDE ψðtÞ= RA
0
kð̃aÞψðt− aÞda evolving on the subspace described by the

equation
RA
0
ψðt− aÞ RA

a
kð̃sÞdsda=0 and the input-dependent ODE η̇ðtÞ=D* −DðtÞ.

After achieving this objective, the next step is the stability analysis of the zero

solution of the IDE ψðtÞ= RA
0
kð̃aÞψðt− aÞda: this is exactly the point where the

strong ergodic theorem or the results on linear IDEs are used.

4.3 The Uncontrolled PDE

Let A>0 be a constant and let μ: ½0,A�→ℜ+ , k: ½0,A�→ℜ+ be continuous

functions with
RA
0
kðaÞda>0. Consider the initial-value PDE problem:

∂z
∂t
ðt, aÞ+ ∂z

∂a
ðt, aÞ= − μðaÞzðt, aÞ, for t>0, a∈ ð0,AÞ ð4:3:1Þ

zðt, 0Þ=
ZA
0

kðaÞzðt, aÞda, for t≥ 0 ð4:3:2Þ
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with initial condition zð0, aÞ= z0ðaÞ for all a∈ ½0,A�. The following existence and
uniqueness result follows directly from Proposition 2.4 in [11] and Theorems 1.3–
1.4 on pages 102–104 in [23]:

Lemma 4.3.1 (existence/uniqueness):
For each absolutely continuous function z0 ∈C0ð½0,A�;ℜÞ with

z0ð0Þ=
RA
0
kðaÞz0ðaÞda , there exists a unique function z: ½0, +∞Þ× ½0,A�→ℜ with

zð0, aÞ= z0ðaÞ for all a∈ ½0,A� that satisfies: (a) For each t≥ 0, the function zt
defined by ðztÞðaÞ= zðt, aÞ for a∈ ½0,A� is absolutely continuous and satisfies

ztð0Þ=
RA
0
kðaÞztðaÞda for all t≥ 0, (b) the mapping ℜ+ ϶ t→ zt ∈ L1ð½0,A�;ℜÞ is

continuously differentiable, and (c) Eq. (4.3.1) holds for almost all t>0 and
a∈ ð0,AÞ Moreover, if z0ðaÞ≥ 0 for all a∈ ½0,A� then zðt, aÞ≥ 0, for all
ðt, aÞ∈ℜ+ × ½0,A�.

The function z: ½0, +∞Þ× ½0,A�→ℜ is called the solution of (4.3.1), (4.3.2).
When additional regularity properties hold then the solution of (4.3.1), (4.3.2)
satisfies the properties shown by the following lemma.

Lemma 4.3.2 (regularity/relation to IDEs):
If k∈PC1ð½0,A�;ℜ+ Þ, then for every z0 ∈PC1ð½0,A�;ℜÞ satisfying

z0ð0Þ=
RA
0
kðaÞz0ðaÞda the function z: ½0, +∞Þ× ½0,A�→ℜ from Lemma 4.3.1 is C1

on

S= fðt, aÞ∈ ð0, +∞Þ× ð0,AÞ: ða− tÞ∉B∪ f0,Agg

where B is the finite (or empty) set where the derivative of z0 is not defined, satisfies
(4.3.1) on S and Eq. (4.3.2) for all t≥ 0. Also,

zðt, aÞ= exp −
Za
0

μðsÞds
0@ 1Avðt− aÞ, for all ðt, aÞ∈ℜ+ × ½0,A� ð4:3:3Þ

where v∈C0ð½−A, +∞Þ;ℜÞ∩C1ðð0, +∞Þ;ℜÞ is the unique solution of the
Integral Delay Equation (IDE):

vðtÞ=
ZA
0

kðaÞ exp −
Za
0

μðsÞds
0@ 1Avðt− aÞda, for t≥ 0 ð4:3:4Þ

with initial condition vð− aÞ= exp
Ra
0
μðsÞds

� �
z0ðaÞ, for all a∈ ð0,A�.
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Lemma 4.3.2 is obtained by integration on the characteristic lines of (4.3.1). The
solution v∈C0ð½−A, +∞Þ;ℜÞ∩C1 ð0, +∞Þ;ℜð Þ of the IDE (4.3.4) is obtained
as the solution of the delay differential equation

v ̇ðtÞ= kð̃0ÞvðtÞ− kð̃AÞvðt−AÞ+
ZA
0

dk ̃
da

ðaÞvðt− aÞda ð4:3:5Þ

where kð̃aÞ: = kðaÞ exp −
Ra
0
μðsÞds

� �
for a∈ ½0,A�. The differential Eq. (4.3.5) is

obtained by formal differentiation of the IDE (4.3.4) and its solution satisfies (4.3.4)
(the verification requires integration by parts).

It is straightforward to show that the function

f ðDÞ= RA
0
kðaÞ exp −Da−

Ra
0
μðsÞds

� �
da is strictly decreasing with

lim
D→ +∞

f ðDÞ=0 and lim
D→ −∞

f ðDÞ= +∞. Therefore, there exists a unique D* ∈ℜ

such that

1 =
ZA
0

kðaÞ exp −D*a−
Za
0

μðsÞds
0@ 1Ada. ð4:3:6Þ

Equation (4.3.6) is the Lotka-Sharpe condition [4]. The following strong
ergodicity result follows from the results of Sect. 4.3 in [12] and Proposition 3.2 in
[11]:

Theorem 4.3.3 (scalar strong ergodic theorem):
Let D* ∈ℜ be the unique solution of (4.3.6). Then, there exist constants ε>0,

K ≥ 1 such that for every absolutely continuous function z0 ∈C0ð½0,A�;ℜÞ with

z0ð0Þ=
RA
0
kðaÞz0ðaÞda, the corresponding solution z: ½0, +∞Þ× ½0,A�→ℜ of

(4.3.1), (4.3.2) satisfies for all t≥ 0:

ZA
0

exp
Za
0

μðsÞds
0@ 1Azðt, aÞ− exp D*ðt− aÞ� �

Φðz0Þ
������

������da
≤K exp ðD* − εÞt� � ZA

0

exp
Za
0

μðsÞds
0@ 1A z0ðaÞj jda

ð4:3:7Þ

where Φ: L1ð½0,A�;ℜÞ→ℜ is the linear continuous functional defined by:
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Φðz0Þ: =

RA
0
z0ðaÞ

RA
0
kðsÞ exp Ra

s
ðμðlÞ+D*Þdl

� �
dsda

RA
0
akðaÞ exp −

Ra
0
ðμðlÞ+D*Þdl

� �
da

ð4:3:8Þ

4.4 Results on Linear Integral Delay Equations

Consider the system described by the following linear IDE:

xðtÞ=
ZA
0

φðaÞxðt− aÞda ð4:4:1Þ

where xðtÞ∈ℜ , A>0 is a constant and φ∈C0ð½0,A�;ℜÞ.
For every x0 ∈C0ð½−A, 0�;ℜÞ with x0ð0Þ=

RA
0
φðaÞx0ð− aÞda there exists a

unique function x∈C0ð½−A, +∞Þ;ℜ that satisfies (4.4.1) for t≥ 0 and
xð− aÞ= x0ð− aÞ for all a∈ ½0,A�. This function is called the solution of (4.4.1)
with initial condition x0 ∈C0ð½−A, 0�;ℜÞ. The solution is obtained as the solution

of the neutral delay equation d
dt xðtÞ− RA

0
φðaÞxðt− aÞda

� �
=0 (Theorem 1.1 on

page 256 in [10] guarantees the existence of a unique function
x∈C0ð½−A, +∞Þ;ℜÞ∩C1ðð0, +∞Þ;ℜÞ that satisfies

d
dt xðtÞ− RA

0
φðaÞxðt− aÞda

� �
=0 for t≥ 0 and xð− aÞ= x0ð− aÞ for all a∈ ½0,A�Þ.

Therefore, the IDE (4.4.1) defines a dynamical system on

X = x∈C0ð½−A, 0�;ℜÞ: xð0Þ= RA
0
φðaÞxð− aÞda

� �
with state xt ∈X, where

ðxtÞð− aÞ= xðt− aÞ for all a∈ ½0,A�.
The first result of this section provides useful bounds for the solution of (4.4.1)

with non-negative kernel. Notice that the following lemma allows discontinuous
solutions of (4.4.1).

Lemma 4.4.1 Let φ∈C0ð½0,A�;ℜ+ Þ be a given function with
RA
0
φðaÞda≥ 1 and

consider the IDE (4.4.1). Let δ>0 be an arbitrary constant with
Rδ
0
φðaÞda<1.

Then for every x0 ∈ L∞ð½−A, 0Þ;ℜ�Þ the solution x∈ L∞locð½−A, +∞Þ;ℜÞ of (4.4.1)
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with initial condition xðaÞ= x0ðaÞ for a∈ ½−A, 0Þ exists for all t≥ 0 and satisfies
for all t≥ 0 the following inequality:

min inf
−A≤ a≤ 0

ðx0ðaÞÞ, L− c
1− c

� �1+ h− 1t

inf
−A≤ a≤ 0

ðx0ðaÞÞ
 !

≤ inf
−A≤ a≤ 0

ðxðt+ aÞÞ

≤ sup
−A≤ a≤ 0

ðxðt+ aÞÞ≤max
L− c
1− c

� �1+ h− 1t

sup
−A≤ a≤ 0

ðx0ðaÞÞ, sup
−A≤ a≤ 0

ðx0ðaÞÞ
 !

ð4:4:2Þ

where h: =minðδ,A− δÞ, L: = RA
0
φðaÞda≥ 1, c=

Rδ
0
φðaÞda≥ 1.

A direct consequence of Lemmas 4.4.1 and 4.3.2 is that if k∈PC1 ½0,A�;ℜ+ð Þ,
then for every z0 ∈PC1 ½0,A�;ℜð Þ satisfying z0ð0Þ=

RA
0
kðaÞz0ðaÞda and z0ðaÞ>0

for all a∈ ½0,A�, the corresponding solution of (4.3.1), (4.3.2) satisfies zðt, aÞ>0,
for all ðt, aÞ∈ℜ+ × ½0,A�. To see this, notice that ifRA
0
kðaÞ exp −

Ra
0
μðsÞds

� �
da≥ 1 then we may apply Lemmas 4.3.2 and 4.4.1

directly for the IDE (4.3.4). On the other hand, if
RA
0
kðaÞ exp −

Ra
0
μðsÞds

� �
da<1

then we define xðtÞ= expðptÞvðtÞ for all t≥ −A, where p>0. It follows that

xðtÞ= RA
0
kðaÞ exp pa−

Ra
0
μðsÞds

� �
xðt− aÞda for t≥ 0 and that

RA
0
kðaÞ exp pa−

Ra
0
μðsÞds

� �
da≥ 1 for p>0 sufficiently large.

Another direct consequence of Lemmas 4.4.1 and 4.3.2 is that if
k∈PC1 ½0,A�;ℜ+ð Þ, then the quantity f ðt, aÞ

f *ðaÞΠðftÞ − 1 appearing in the right-hand side

of the transformation (4.2.14) is only a function of t− a (and thus (4.2.14) is a valid
transformation). Indeed, it is straightforward to verify that for every piecewise
continuous function D:ℜ+ → ½Dmin,Dmax� and for every f0 ∈PC1 ½0,A�; ð0, +∞Þð Þ
with f0ð0Þ=

RA
0
kðaÞf0ðaÞda, the solution of (4.2.1), (4.2.2) with f ð0, aÞ= f0ðaÞ for

a∈ ½0,A�, corresponding to input D:ℜ+ → ½Dmin,Dmax� satisfies

f ðt, aÞ= zðt, aÞ exp −
Rt
0
DðsÞds

� �
for all ðt, aÞ∈ℜ+ × ½0,A�, where

z: ½0, +∞Þ× ½0,A�→ℜ is the solution of (4.3.1), (4.3.2) with same initial condition
zð0, aÞ= f0ðaÞ for a∈ ½0,A�. Using (4.2.7), (4.2.3), (4.3.3), equation
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f ðt, aÞ= zðt, aÞ exp −
Rt
0
DðsÞds

� �
and the fact that ΠðftÞ>0 for all t≥ 0 (implied

by Lemma 4.4.1), we obtain:

f ðt, aÞ
f *ðaÞΠðftÞ =

vðt− aÞ exp −D*ðt− aÞð Þ RA
0
wkð̃wÞdw

Rt
t−A

vðlÞ exp −D*lð Þ RA
t− l

kð̃sÞds
 !

dl

, for all ðt, aÞ∈ℜ+ × ½0,A�

where kð̃aÞ= kðaÞ exp −D*a−
Ra
0
μðsÞds

� �
for a∈ ½0,A�. Notice that (4.3.4)

implies that d
dt

Rt
t−A

vðlÞ exp −D*lð Þ RA
t− l

kð̃sÞds
 !

dl=0 and consequently, the quan-

tity f ðt, aÞ
f *ðaÞΠðftÞ − 1 is a function of t− a.

Next, we state the strong ergodic theorem (Theorem 4.3.3) in terms of the IDE
(4.4.1). To this goal, we define the operator

G:C0 ½−A, 0�;ℜð Þ→C0 ½0,A�;ℜð Þ

for every v∈C0 ½−A, 0�;ℜð Þ by the relation ðGvÞðaÞ= vð− aÞ for all a∈ ½0,A�.
If μ∈C0 ½0,A�;ℜ+ð Þ, k∈PC1 ½0,A�;ℜ+ð Þ satisfy (4.3.6) for certain D* ∈ℜ ,

then it follows from Lemma 3.2 and Theorem 4.3.3 that there exist constants K, ε>0

such that for every z0 ∈PC1 ½0,A�;ℜð Þ satisfying z0ð0Þ=
RA
0
kðaÞz0ðaÞda, the unique

solution of the IDE (4.3.4) with initial condition vð− aÞ= exp
Ra
0
μðsÞds

� �
z0ðaÞ for

all a∈ ½0,A� satisfies for all t≥ 0 the following estimate:

ZA
0

vðt− aÞ− exp D*ðt− aÞ� �
Φðz0Þ

�� ��da≤K exp ðD* − εÞt� � ZA
0

vð− aÞj jda ð4:4:3Þ

The above property can be rephrased without any reference to the PDE: for every

k∈PC1 ½0,A�;ℜ+ð Þ with 1=
RA
0
kðaÞ exp −D*að Þda there exist constants K, ε>0

such that for every v0 ∈C0 ½−A, 0�;ℜð Þ with v0ð0Þ=
RA
0
kðaÞv0 − að Þda and

ðGv0Þ∈PC1 ½0,A�;ℜð Þ, the unique solution of the IDE vðtÞ= RA
0
kðaÞvðt− aÞda with

initial condition vð− aÞ= v0ð− aÞ, for all a∈ ½0,A� satisfies (4.4.3) for all t≥ 0.
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Using the transformation xðtÞ= exp −D*tð ÞvðtÞ, for all t≥ −A, we obtain a

“one-to-one” mapping of solutions of the IDE vðtÞ= RA
0
kð̄aÞvðt− aÞda to the

solutions of the IDE (4.4.1) with φðaÞ: = kð̄aÞ expð−D*aÞ for all a∈ ½0,A�.
Moreover, estimate (4.4.3) implies the following estimate for all t≤ 0:

ZA
0

xðt− aÞ−Pðx0Þj jda≤K expð− εtÞ exp D*A
� � ZA

0

xð− aÞj jda

Therefore, we are in a position to conclude that the following property holds: for

every φ∈PC1ð½0,A�;ℜ+ Þ with 1=
RA
0
φðaÞda there exist constants eK, ε>0 such

that for every x0 ∈C0ð½−A, 0�;ℜÞ with x0ð0Þ=
RA
0
φðaÞx0ð− aÞda and

ðGx0Þ∈PC1ð½0,A�;ℜÞ, the unique solution of the IDE (4.4.1) with initial condition
xð− aÞ= x0ð− aÞ, for all a∈ ½0,A� satisfies the following estimate for all t≥ 0

ZA
0

xðt− aÞ−Pðx0Þj jda≤ eK expð− εtÞ
ZA
0

xð− aÞj jda ð4:4:4Þ

where the functional P:C0ð½−A, 0�;ℜÞ→ℜ is defined by means of the equation

PðxÞ= r
ZA
0

xð− aÞ
ZA
a

φðsÞdsda ð4:4:5Þ

and r: =
RA
0
aφðaÞda

� �− 1

. Using this property, we obtain the following corollary,

which is a restatement of the strong ergodic theorem (Theorem 4.3.3) in terms of
IDEs and the L∞ norm (instead of the L1 norm). Recall that

X = x∈C0ð½−A, 0�;ℜÞ: xð0Þ= RA
0
φðaÞxð− aÞda

� �
.

Corollary 4.4.2 Suppose that φ∈PC1ð½0,A�;ℜ+ Þ with 1=
RA
0
φðaÞda. Then there

exist constants M, σ >0 such that for every x0 ∈X with ðGx0Þ∈PC1ð½0,A�;ℜÞ, the
unique solution of the IDE (4.4.1) with initial condition xð− aÞ= x0ð− aÞ for all
a∈ ½0,A� satisfies the following estimate for all t≥ 0:
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max
−A≤ θ≤ 0

xðt+ θÞ−Pðx0Þj jð Þ≤M expð− σtÞ max
−A≤ a≤ 0

x0ðaÞj jð Þ ð4:4:6Þ
The problem with Corollary 4.4.2 is that it does not provide a Lyapunov-like

functional, which allows the derivation of the important property (4.4.6). Moreover,
it does not provide information about the magnitude of the constant σ >0. In order
to construct a Lyapunov-like functional and obtain information about the magnitude
of the constant σ >0, we need some technical results. The first result deals with the
exponential stability of the zero solution for (4.4.1). Notice that the proof of the
exponential stability property is made by means of a Lyapunov functional.

Lemma 4.4.3 Suppose that
RA
0
φðaÞj jda<1. Then 0≤X is globally exponentially

stable for (4.4.1). Moreover, the functional V :X→ℜ+ defined by
VðxÞ: = max

a∈ ½0,A�
ðexpð− σaÞ xð− aÞj jÞ, where σ >0 is a constant that satisfies

RA
0
φðaÞj j expðσaÞda<1, satisfies the differential inequality:

lim
h→ 0+

supðh− 1ðVðxt+ hÞ−VðxtÞÞÞ≤ − σVðxtÞ, for all t≤ 0 ð4:4:7Þ

for every solution of (4.4.1).
Lemma 4.4.3 is useful because we next construct Lyapunov functionals of the

form used in Lemma 4.4.3. However, we are mostly interested in kernels

φ∈C0ð½0,A�;ℜÞ with non-negative values that satisfy
RA
0
φðaÞda. We show next

that even for this specific case, it is possible to construct a Lyapunov functional on
an invariant subspace of the state space X = x∈C0ð½−A, 0�;ℜÞ: xð0Þ=�
RA
0
φðaÞxð− aÞdag. We next introduce a technical assumption.

(H1) The function φ∈C0ð½0,A�;ℜÞ satisfies φðaÞ≥ 0 for all a∈ ½0,A� andRA
0
φðaÞda=1. Moreover, there exists λ>0 such that

RA
0

φðaÞ− rλ
RA
a
φðsÞds

���� ����da<1,

where r: =
RA
0
aφðaÞda

� �− 1

.

The following result provides the construction of a Lyapunov functional for
system (4.4.1) under assumption (H1).

Theorem 4.4.4 Consider system (4.4.1), where φ∈C0ð½0,A�;ℜ+ Þ satisfies
assumption (H1). Let λ=0 be a real number for whichRA
0

φðaÞ− rλ
RA
a
φðsÞds

���� ����da<1, where r: =
RA
0
aφðaÞda

� �− 1

. Define the functional

V :X→ℜ+ by means of the equation:
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VðxÞ: = max
a∈ ½0,A�

expð− σ aÞjxð− aÞ−PðxÞjð Þ ð4:4:8Þ

where σ >0 is a real number for which
RA
0

φðaÞ− rλ
RA
a
φðsÞds

���� ���� expðσaÞda<1 and

P:X→ℜ is the functional defined by (4.4.5). Then the following relations hold

PðxtÞ=Pðx0Þ, for all t≥ 0 ð4:4:9Þ

lim sup
h→ 0+

h− 1ðVðxt+ hÞ−VðxtÞÞ
� �

≤ − σVðxtÞ, for all t≥ 0 ð4:10Þ

for every solution of (4.4.1).

Remark 4.4.5 Theorem 4.4.4 is a Lyapunov-like version of the scalar strong
ergodic theorem (compare with Corollary 4.4.2) for kernels that satisfy assumption
(H1). Corollary 4.4.2 does not allow us to estimate the magnitude of the constant
σ >0 that determines the convergence rate. On the other hand, Theorem 4.4.4
allows us to estimate σ >0: the Comparison Lemma on page 85 in [18] and
differential inequality (4.10) guarantee that VðxtÞ≤ expð− σtÞVðx0Þ for all t≥ 0
and for every solution of (4.4.1). Using (4.4.9), definition (4.4.8) and the previous
estimate, we can guarantee that

max
a∈ ½0,A�

xðt− aÞ−PðxtÞj jð Þ= max
a∈ ½0,A�

xðt− aÞ−Pðx0Þj jð Þ

≤ expð− σ ðt−AÞÞ max
a∈ ½0,A�

xð− aÞ−Pðx0Þj jð Þ, for all t≥ 0

Therefore, bounds for σ >0 can be computed in a straightforward way using the

inequality
RA
0

φðaÞ− rλ
RA
a
φðsÞds

���� ���� expðσaÞda<1 (e.g., an allowable value for σ >0

is −A− 1 ln
RA
0

φðaÞ− rλ
RA
a
φðsÞds

���� ����da� �
Þ. Moreover, Corollary 4.4.2 does not pro-

vide a Lyapunov-like functional for Eq. (4.4.1). However, the cost of these features
is the loss of generality: while Corollary 4.4.2 holds for all kernels

φ∈PC1 ½0,A�;ℜ+ð Þ that satisfy φðaÞ≥ 0 for all a∈ ½0,A� and
RA
0
φðaÞda=1,

Theorem 4.4.4 holds only for kernels that satisfy Assumption (H1).
Theorem 4.4.4 can allow us to guarantee exponential stability for the zero

solution of (4.4.1), when the state evolves in certain invariant subsets of the state
space. This is shown in the following result.

Corollary 4.4.6 Consider system (4.4.1), where φ∈C0 ½0,A�;ℜ+ð Þ satisfies
assumption (H1). Let λ>0 be a real number for which
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RA
0

φðaÞ− rλ
RA
a
φðsÞds

���� ����da<1, where r=
RA
0
aφðaÞda

� �− 1

. Let P:X→ℜ be the

functional defined by (4.4.1). Define the functional W :X→ℜ+ by means of the
equation:

WðxÞ: = max
a∈ ½0,A�

expð− σaÞ xð− aÞj jð Þ ð4:4:11Þ

where σ >0 is a real number for which
RA
0

φðaÞ− rλ
RA
a
φðsÞds

���� ���� expðσaÞda<1. Let

S⊆X be a positively invariant set for system (4.4.1) and let C: S′→ ½κ, +∞Þ,
where κ>0 is a constant and S′⊆C0ð½−A, 0�;ℜÞ is an open set with S⊂ S′, be a
continuous functional that satisfies

lim
h→ 0+

sup h− 1ðCðxt+ hÞ−CðxtÞÞ
� �

≤ 0 ð4:4:12Þ

for every t≥ 0 and for every solution xðtÞ∈ℜ of (4.4.1) with xt ∈ S. Then for every
x0 ∈ S with Pðx0Þ=0 and for every b∈K∞ ∩C1ð½0, +∞Þ;ℜ+ Þ, the following hold
for the solution xðtÞ∈ℜ of (4.4.1) with initial condition x0 ∈ S:

lim sup
h→ 0+

h− 1 Cðxt+ hÞbðWðxt+ hÞÞ−CðxtÞbðWðxtÞÞð Þ� �
≤ − σ CðxtÞb′ðWðxtÞÞWðxtÞ, for all t≥ 0

ð4:4:13Þ

PðxtÞ=0, for all t≥ 0 ð4:4:14Þ

4.5 Using a Reduced Order Observer

Instead of using the full-order observer (4.2.5) of the system η̇ðtÞ=D*ðtÞ−DðtÞ,
D

*̇ðtÞ=0, one can think of the possibility of using a reduced order observer that
estimates the equilibrium value of the dilution rate D*. Such a dynamic, output
feedback law will be given by the equations:

z ̇ðtÞ= − l1l− 1
2 zðtÞ+ l21l

− 1
2 ln

yðtÞ
y*

� �
− l1DðtÞ , zðtÞ∈ℜ ð4:5:1Þ

and

DðtÞ=min Dmax, max Dmin, − l− 1
2 zðtÞ+ ðγ + l1l− 1

2 Þ ln yðtÞ
y*

� �� �� �
ð4:5:2Þ
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where l1, l2, γ >0 are constants. In such a case, a solution of the initial-value
problem (4.2.1), (4.2.2), (4.2.4) with (4.5.1), (4.5.2) with initial condition

ðf0, z0Þ∈X ̃×ℜ , where X ̃= f ∈PC1ð½0,A�; ð0, +∞ÞÞ : f ð0Þ= RA
0
kðaÞf ðaÞda

� �
, is

a pair of mappings f ∈C0 ½0, TÞ× ½0,A�; ð0, +∞Þð Þ, z∈C1 ½0, TÞ;ℜð Þ, where
T >0, which satisfies the following properties:

(i) f ∈C1 Df ; ð0, +∞Þ� �
, where Df = ðt, aÞ∈ ð0, TÞ× ð0,AÞ : ða− tÞ∉B∪f

f0,Ag g and B⊆ ð0,AÞ is the finite (possibly empty) set where the derivative
of f0 ∈X ̃ is not defined or is not continuous,

(ii) ft ∈X ̃ for all t∈ ½0, TÞ, where ðftÞðaÞ= f ðt, aÞ for a∈ ½0,A�,
(iii) Equations (4.2.4), (4.5.1), (4.5.2) hold for all t∈ ½0, TÞ,
(iv) ∂ f

∂ t ðt, aÞ+ ∂ f
∂ a ðt, aÞ= − μðaÞ+DðtÞð Þf ðt, aÞ holds for all ðt, aÞ∈Df , and

(v) zð0Þ= z0 , f ð0, aÞ= f0ðaÞ for all a∈ ½0,A�.
The mapping ½0, TÞ ϶ t→ ðft, zðtÞÞ∈X ̃×ℜ is called the solution of the closed-

loop system (4.2.1), (4.2.2), (4.2.4) with (4.5.1), (4.5.2) and initial condition
ðf0, z0Þ∈X ̃×ℜ defined for t∈ ½0,TÞ.

For the reduced order observer case, we are in a position to prove, exactly in the
same way of proving Theorem 4.2.1, the following result.

Theorem 4.5.1 Consider the age-structured chemostat model (4.2.1), (4.2.2) with
k∈PC1ð½0,A�;ℜ+ Þ under Assumption (A). Then for every f0 ∈X ̃ and z0 ∈ℜ there
exists a unique solution of the closed-loop (4.2.1), (4.2.2), (4.2.4) with (4.5.1),
(4.5.2) and initial condition ðf0, z0Þ∈X ̃×ℜ. Furthermore, there exist a constant
L>0 and a function ρ∈K∞ such that for every f0 ∈X ̃ and z0 ∈ℜ the unique
solution of the closed-loop (4.2.1), (4.2.2), (4.2.4) with (4.5.1), (4.5.2) and initial
condition ðf0, z0Þ∈X ̃×ℜ is defined for all t≥ 0 and satisfies the following estimate:

max
a∈ ½0,A�

ln
f ðt, aÞ
f *ðaÞ

� ����� ����� �
+ zðtÞ+ l2D*
�� ��≤

exp −
L
4
t

� �
ρ max

a∈ ½0,A�
ln

f0ðaÞ
f *ðaÞ
� ����� ����� �

+ z0 + l2D*
�� ��� �

, for all t≥ 0
ð4:5:3Þ

Moreover, the continuous functional W :ℜ×C0ð½0,A�; ð0, +∞ÞÞ→ℜ+ defined
by:

Wðz, f Þ: = ln Πðf Þð Þð Þ2 +G
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qðz, f Þ

p
+ βQðz, f Þ ð4:5:4Þ

where β≥ 0 is an arbitrary constant,
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Qðz, f Þ: = z− l1 ln Πðf Þð Þ+ l2D*� �2
+

M
2

max
a∈ ½0,A�

expð− σ aÞ f ðaÞ−Πðf Þf *ðaÞ
f *ðaÞ

��� ���
 �
min Πðf Þ, min

a∈ ½0,A�
f ðaÞ
f *ðaÞ

 �� �

0BB@
1CCA

2

,

ð4:5:5Þ

Π:C0ð½0,A�;ℜÞ→ℜ is given by (4.2.7), σ >0 is a sufficiently small constant and
M,G>0 are sufficiently large constants, is a Lyapunov functional for the closed-
loop system (4.2.1), (4.2.2), (4.2.4) with (4.5.1), (4.5.2), in the sense that every
solution ðft, zðtÞÞ∈X ̃×ℜ of the closed-loop system (4.2.1), (4.2.2), (4.2.4) with
(4.5.1), (4.5.2) satisfies the inequality:

lim sup
h→ 0+

h− 1 Wðzðt+ hÞ, ft+ hÞ−WðzðtÞ, ftÞð Þ� �
≤ − L

WðzðtÞ, ftÞ
1+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WðzðtÞ, ftÞ

p , for all t≥ 0
ð4:5:6Þ

The family of dynamic, bounded, output feedback laws (4.5.1), (4.5.2) presents
the same features as the family (4.2.5), (4.2.6). The only difference lies in the
dimension of the observer.

4.6 Concluding Remarks

Age-structured chemostats present challenging control problems for first order
hyperbolic PDEs that require novel results. We studied the problem of stabilizing an
equilibrium age profile in an age-structured chemostat, using the dilution rate as the
control. We built a family of dynamic, bounded, output feedback laws that ensures
stability under arbitrary physically meaningful initial conditions. Our control does
not require knowledge of the model, in contrast to the sampled-data feedback law
proposed in [17] that required knowledge of the equilibrium value of the dilution
rate. We also provided a family of CLFs for the age-structured chemostat model.
The construction of the CLF was based on novel stability results on linear IDEs,
which are of independent interest. The newly developed results provide a
Lyapunov-like proof of the scalar, strong ergodic theorem for special cases of the
integral kernel.

Since the growth of the microorganism may sometimes depend on the con-
centration of a limiting substrate, it would be useful to solve the stabilization
problem for an enlarged system that has one PDE for the age distribution, coupled
with one ODE for the substrate (as proposed in [25], in the context of studying limit
cycles with constant dilution rates instead of a control). This is going to be the topic
of our future research.
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Chapter 5
From Pure State and Input Constraints
to Mixed Constraints in Nonlinear Systems

Willem Esterhuizen and Jean Lévine

Abstract We survey the results on the problem of pure/mixed state and input con-

strained control, with multidimensional constraints, for finite dimensional nonlinear

differential systems with focus on the so-called admissible set and its boundary. The

admissible set is the set of initial conditions for which there exist a control and an

integral curve satisfying the constraints for all time. Its boundary is made of two dis-

joint parts: the subset of the state constraint boundary on which there are trajectories

pointing towards the interior of the admissible set or tangentially to it; and a barrier,

namely a semipermeable surface which is constructed via a generalized minimum-

like principle with nonsmooth terminal conditions. Comparisons between pure state

constraints and mixed ones are presented on a series of simple academic examples.

5.1 Introduction

Though constrained systems, namely with restrictions on the control and the state,

are present in many applications due to actuator limitations and obstacles, they are

not generally studied on their own and are more often studied in the context of opti-

mal control or differential games [8]. We focus here on a fully qualitative approach,

i.e., without any optimisation framework where the aim is the construction of the

set of initial conditions such that the system variables can satisfy the constraints for

all time, called admissible set, and we show how to compute its boundary. Other

approaches based on flow computation, or Lyapunov functions, or other variants,

may be found in [1, 2, 11–14, 16–20].

We first review the results of [6] for pure state and input constraints (Sect. 5.2)

and present a simple example of double integrator. In a second part (Sect. 5.3), we
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review their extension to mixed constraints (see [7]) and show, on the double integra-

tor example, how mixed constraints may modify the previously presented behavior.

Then another simple example of a spring system is presented in two versions with

different mixed constraints and again, we compare their consequences on the respec-

tive solutions.

5.2 Recalls on Pure State and Input Constrained Systems

The material of this section is a summary of [6]. We consider the constrained non-

linear system

ẋ = f (x, u), (5.1)

x(t0) = x0, (5.2)

u ∈  , (5.3)

gi
(
x(t)

)
≤ 0 ∀t ∈ [t0,∞), ∀i ∈ {1,… , p} (5.4)

where x(t) ∈ ℝn
.  is the set of Lebesgue measurable functions from [t0,∞) to U,

where U is a compact convex subset of ℝm
, and not a singleton.

The constraint set is defined by

G ≜ {x ∈ ℝn ∶ gi(x) ≤ 0, i = 1,… , p}

The notation g(x) ≗ 0 indicates that there exists an i ∈ {1,… , p} such that x satisfies

gi(x) = 0 and gj(x) ≤ 0 for all j ∈ {1,… , p}, and 𝕀(x) denotes the set of all indices i ∈
{1,… , p} such that gi(x) = 0. Also, g(x) ≺ 0 (resp. g(x) ⪯ 0) indicates that gi(x) < 0
(resp. gi(x) ≤ 0) for all i ∈ {1,… , p}.

The sets

G0 ≜ {x ∈ ℝn ∶ g(x) ≗ 0}, G− ≜ {x ∈ ℝn ∶ g(x) ≺ 0}. (5.5)

are indeed such that G = G0 ∪ G−.

We further assume (see [6])

(A1) f is at least C2
on ℝn × Ũ where Ũ in an open subset of ℝm

, U ⊂ Ũ.

(A2) There exists a positive and finite constant C such that

sup
u∈U

|xT f (x, u)| ≤ C(1 + ‖x‖2), for all x

(A3) The set f (x,U), called the vectogram in [10], is convex for all x ∈ ℝn
.

(A4) For each i = 1,… , p, gi is an at least C2
function from ℝn

to ℝ,

(A5) the set of points given by gi(x) = 0 defines an n − 1 dimensional manifold.
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In the sequel we will denote by x(u,x0) the solution of the differential equation

(5.1) with input u ∈  and initial condition x0, and by x(u,x0)(t) its solution at time t.
We also use the notation xu

and xu(t) when the initial condition is unambiguous or

unimportant.

5.2.1 The Admissible Set

Following [6], we define:

Definition 5.1 (Admissible Set) We say that the point x̄ ∈ G is admissible if, and

only if, there exists at least one input function v ∈  , such that (5.1)–(5.4) are sat-

isfied for x0 = x̄ and u = v. The set of all such x̄ is called the admissible set:

 ≜ {x̄ ∈ G ∶ ∃u ∈  , g
(
x(u,x̄)(t)

)
⪯ 0,∀t ∈ [t0,∞)}. (5.6)

Clearly, if x̄ is admissible, any point of the integral curve, x(v,x̄)(t1), t1 ∈ [t0,∞),
with v ∈  as in the above definition, is also an admissible point.

We now recall from [6] the following results:

Proposition 5.1 Assume that (A1)–(A4) are valid. The set  is closed.

Denote by 𝜕 the boundary of the admissible set and define

[𝜕]0 = 𝜕 ∩ G0, [𝜕]− = 𝜕 ∩ G−. (5.7)

We indeed have 𝜕 = [𝜕]0 ∪ [𝜕]−.

5.2.2 The Barrier

We next consider the subset [𝜕]− of the boundary of the admissible set.

Definition 5.2 The set [𝜕]− is called the barrier of the set .

Still following [6], [𝜕]− is “fibered” by arcs of integral curves:

Proposition 5.2 Assume that (A1)–(A4) hold. The barrier [𝜕]− is made of points
x̄ ∈ G− for which there exists ū ∈  and an arc of integral curve x(ū,x̄) entirely con-
tained in [𝜕]− until it intersects G0 at a point x(ū,x̄)(t̄) for some t̄ ∈ [t0,+∞).

Corollary 5.1 (Semi-permeability) From any point on the boundary [𝜕]−, there
cannot exist a trajectory penetrating the interior of , denoted by 𝗂𝗇𝗍(), before
leaving G−.
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The intersection of 𝖼𝗅([𝜕]−), the closure of [𝜕]−, with G0 is remarkable:

Proposition 5.3 (Ultimate Tangentiality Condition [6]) Assume that (A1)–(A5) hold
and consider x̄ ∈ [𝜕]− and ū ∈  as in Proposition 5.2, i.e., such that x(ū,x̄)(t) ∈
[𝜕]− for all t in some time interval until it reaches G0. Then, there exists a point
z = x(ū,x̄)(t̄) ∈ 𝖼𝗅([𝜕]−) ∩ G0 for some finite time t̄ ≥ t0 such that

min
u∈U

max
i∈𝕀(z)

Lf gi(z, u) = 0. (5.8)

where Lf gi(x, u) ≜ Dgi(x).f (x, u) is the Lie derivative of gi along the vector field f (⋅, u)
at the point x.

Let H(x, 𝜆, u) = 𝜆
T f (x, u) denote the Hamiltonian.

Theorem 5.1 (Minimum-like principle [6]) Under the assumptions of Proposi-
tion 5.3, every integral curve xū on [𝜕]− ∩ 𝖼𝗅(𝗂𝗇𝗍()) and the corresponding control
function ū, as in Proposition 5.2, satisfies the following necessary condition.

There exists a (nonzero) absolutely continuous maximal solution 𝜆
ū to the adjoint

equation

𝜆̇
ū(t) = −

(
𝜕f
𝜕x

(xū(t), ū(t))
)T

𝜆
ū(t), 𝜆

ū(t̄) =
(
Dgi∗ (z)

)T
(5.9)

such that the Hamiltonian is minimized

min
u∈U

{
(𝜆ū(t))T f (xū(t), u)

}
= (𝜆ū(t))T f (xū(t), ū(t)) = 0 (5.10)

at every Lebesgue point t of ū (i.e., for almost all t ≤ t̄).
In (5.9), t̄ denotes the time at which z is reached, i.e., xū(t̄) = z, with z ∈ G0 sat-

isfying the ultimate tangentiality condition

gi(z) = 0, i ∈ 𝕀(z), min
u∈U

max
i∈𝕀(z)

Lf gi(z, u) ≜ Lf gi∗ (z, ū(t̄)) = 0. (5.11)

We illustrate this result by the next particularly simple example (double integrator).

5.2.3 Double Integrator, Pure State Constraint

Let us consider the double integrator subjected to a pure state constraint

ẋ1 = x2, ẋ2 = u, |u| ≤ 1, x1 − 1 ≤ 0 (5.12)
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Fig. 5.1 Admissible set and barrier for system (5.12)

The ultimate tangentiality condition reads min|u|≤1 Dg(z).f (z, u) = z2 = 0 with z ≜
(z1, z2) = (xū

1(t̄), x
ū
2(t̄)) = (1, 0), t̄ indicating the time of tangential arrival on G0 and

ū denoting the control associated to the barrier trajectory. The costate satisfies

𝜆̇ =
(

0 0
−1 0

)

𝜆, 𝜆
ū(t̄) = (1, 0)

and we deduce 𝜆
ū
1(t) ≡ 1 and 𝜆

ū
2(t) = −t + t̄ > 0 for all t ∈ (−∞, t̄]. We find that the

control is given by ū(t) = −𝗌𝗂𝗀𝗇(𝜆2(t)) ≡ −1. Integrating backwards from z with ū
gives the parabola-shaped barrier in Fig. 5.1.

5.3 Dynamical Control Systems with Mixed Constraints

The material of this section is borrowed from [7]. We now consider the following

constrained nonlinear system:

ẋ = f (x, u), (5.13)

x(t0) = x0, (5.14)

u ∈  , (5.15)

gi
(
x(t), u(t)

)
≤ 0 for 𝑎.𝑒. t ∈ [t0,∞) i = 1,… , p (5.16)

where x(t) ∈ ℝn
.

As before,  is the set of Lebesgue measurable functions from [t0,∞) to U, with

U a given compact convex subset of ℝm
, expressible as
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U ≜ {u ∈ ℝm ∶ 𝛾j(u) ≤ 0, j = 1,… , r}

with r ≥ m, the functions 𝛾j being convex and of class C2
.

Let us stress that the constraints (5.16), called mixed constraints [3, 9], depend

both on the state and the control. We denote by g(x, u) the vector-valued function

whose i-th component is gi(x, u). As before, by g(x, u) ≺ 0 (resp. g(x, u) ⪯ 0) we

mean gi(x, u) < 0 (resp. gi(x, u) ≤ 0) for all i and by g(x, u) ≗ 0, we mean gi(x, u) = 0
for at least one i.

We define the following sets:

G ≜

⋃

u∈U
{x ∈ ℝn ∶ g(x, u) ⪯ 0} (5.17)

G0 ≜ {x ∈ G ∶ min
u∈U

max
i∈{1,…,p}

gi(x, u) = 0} (5.18)

G− ≜

⋃

u∈U
{x ∈ ℝn ∶ g(x, u) ≺ 0} (5.19)

U(x) ≜ {u ∈ U ∶ g(x, u) ⪯ 0} ∀x ∈ G. (5.20)

Given a pair (x, u) ∈ ℝn × U, we denote by 𝕀(x, u) the set of indices, possibly

empty, corresponding to the “active” mixed constraints, namely

𝕀(x, u) = {i1,… , is1} ≜ {i ∈ {1,… , p} ∶ gi(x, u) = 0}

and by 𝕁(u) the set of indices, possibly empty, corresponding to the “active” input

constraints:

𝕁(u) = {j1,… , js2} ≜ {j ∈ {1,… r} ∶ 𝛾j(u) = 0}.

The integer s1 ≜ #(𝕀(x, u)) ≤ p (resp. s2 ≜ #(𝕁(u)) ≤ r) is the number of elements of

𝕀(x, u) (resp. of 𝕁(u)). Thus, s1 + s2 represents the number of “active” constraints,

among the p + r constraints, at (x, u).
In addition to (A1)–(A4) of the previous section, we assume

(A6) For all i = 1,… , p, the mapping u ↦ gi(x, u) is convex for all x ∈ ℝn
.

(A7) The (row) vectors

{
𝜕gi

𝜕u
(x, u),

𝜕𝛾j

𝜕u
(u) ∶ i ∈ 𝕀(x, u), j ∈ 𝕁(u)

}

(5.21)

are linearly independent at every (x, u) ∈ ℝn × U for which 𝕀(x, u) or 𝕁(u) is

non empty.
1

We say, in this case, that the point x is regular with respect to u
(see e.g., [9, 15]).

Given u ∈  , we say that an integral curve xu
of Eq. (5.13) defined on [t0,T] is

regular if, and only if, at each Lebesgue point, or shortly L-point, t of u, xu(t) is

1
Note that this implies that s1 + s2 ≤ m, with s1 = #(𝕀(x, u)) and s2 = #(𝕁(u)).
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regular in the aforementioned sense w.r.t. u(t), and, if t is a point of discontinuity

of u, xu(t) is regular in the aforementioned sense w.r.t. u(t−) and u(t+), with u(t−) ≜
lim

𝜏↗t,t∉I0 u(𝜏) and u(t+) ≜ lim
𝜏↘t,t∉I0 u(𝜏), I0 being a suitable zero measure set of

ℝ.

Since system (5.13) is time-invariant, the initial time t0 may be taken as 0. When

clear from the context, “∀t” or “for a.e t” will mean “∀t ∈ [0,∞)” or “for a.e.
t ∈ [0,∞)”. Note that throughout this paper a.e. is understood with respect to the

Lebesgue measure.

5.3.1 The Admissible Set in the Mixed Case: Topological
Properties

Definition 5.1 (Admissible States, Mixed Case) We say that the point x̄ ∈ G is

admissible if, and only if, there exists v ∈  , such that (5.13)–(5.16) are satisfied

for x0 = x̄ and u = v:

 ≜ {x̄ ∈ G ∶ ∃u ∈  , g
(
x(u,x̄)(t), u(t)

)
⪯ 0, for 𝑎.𝑒. t}. (5.22)

As before, any point of the integral curve, x(v,x̄)(t′), t′ ∈ [0,∞), is also an admissible

point.

We assume that both  and 𝖢
contain at least one element to discard the trivial

cases  = ∅ and 𝖢 = ∅.

We use the notations 𝗂𝗇𝗍(S) (resp. 𝖼𝗅(S)) (resp. 𝖼𝗈(S)) for the interior (resp. the

closure) (resp. the closed and convex hull) of a set S.

Proposition 5.4 Assume that (A1)–(A5) are valid. The set  is closed.

5.3.2 Boundary of the Admissible Set (Mixed Case)

5.3.2.1 Geometric Description of the Barrier

As before, we define the barrier as [𝜕]− = 𝜕 ∩ G−.

Proposition 5.5 Assume (A1)–(A4) and (A6) hold. [𝜕]− is made of points x̄ ∈
G− for which there exists ū ∈  and an integral curve x(ū,x̄) entirely contained
in [𝜕]− until it intersects G0, i.e., at a point z = x(ū,x̄)(t̃), for some t̃, such that
minu∈U maxi=1,…,p gi(z, u) = 0.

The “fibered” nature of the barrier thus extends to the mixed case. Note however

that G0 is now modified: it is not defined as the set of x for which there exists u ∈ U
such that g(x, u) ≗ 0 but is given by (5.18). Note that t̃ may be infinite, in which case
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the barrier does not intersect G0 as shown in the next double integrator with mixed

constraint example.

Corollary 5.2 (Semi-permeability) Assume (A1)–(A4) and (A6) hold. Then from
any point on the boundary [𝜕]−, there cannot exist a trajectory penetrating the
interior of  before leaving G−.

5.3.2.2 Ultimate Tangentiality

We now characterize the intersection of [𝜕]− with G0 at the point z defined in

Proposition 5.5. We define

g̃(x) ≜ min
u∈U

max
i∈{1,…,p}

gi(x, u). (5.23)

Comparing to (5.18) we readily see that G0 = {x ∈ G ∶ g̃(x) = 0}. According to a

result of Danskin [5], g̃ is locally Lipschitz and thus absolutely continuous and almost

everywhere differentiable, on every open and bounded subset of ℝn
.

We now recall basic notions from nonsmooth analysis [4] that are used in the

next proposition. Consider h ∶ ℝn → ℝ Lipschitz near a given point x ∈ ℝn
. The

generalized directional derivative of h at x in the direction v is defined as follows:

h0(x; v) ≜ lim sup
y→x, t→0+

h(y + tv) − h(y)
t

. (5.24)

We also need to introduce the generalized gradient of h at x, labeled 𝜕h(x). It is

well-known that the generalized gradient of a locally Lipschitz function h ∶ ℝn → ℝ
is the compact and convex set

𝜕h(x) = 𝖼𝗈{lim
i→∞

Dh(xi) ∶ xi → x, xi ∉ 𝛺1 ∪𝛺2} (5.25)

where Dh(x) denotes the row vector Dh(x) at x, 𝛺1 is a zero measure set where h is

nondifferentiable and 𝛺2 is an arbitrary zero measure set.

The relationship between the generalized directional derivative and the general-

ized gradient is given by

h0(x; v) = max
𝜉∈𝜕h(x)

𝜉v. (5.26)

Proposition 5.6 (Ultimate Generalized Tangentiality Condition [7]) Assume
(A1)–(A4) and (A6)–(A7) hold. Consider x̄ ∈ [𝜕]− and ū ∈  as in Proposi-
tion 5.5, i.e., such that the integral curve x(ū,x̄)(t) remains in [𝜕]− for all t in
some time interval until it reaches G0 at some finite time t̄ ≥ 0. Then, the point
z = x(ū,x̄)(t̄) ∈ 𝖼𝗅([𝜕]−) ∩ G0, satisfies

0 = max
𝜉∈𝜕g̃(z)

𝜉f (z, ū(t̄)) = min
v∈U(z)

max
𝜉∈𝜕g̃(z)

𝜉f (z, v) = max
𝜉∈𝜕g̃(z)

min
v∈U(z)

𝜉f (z, v). (5.27)
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Moreover, if the function g̃ is differentiable at z, then (5.27) reduces to

0 = Lf g̃(z, ū(t̄)) = min
u∈U(z)

Lf g̃(z, u). (5.28)

Remark 5.1 Note that (5.28) significantly differs from (5.8) on several aspects: in

(5.28), U(z) replaces U, where z is such that g̃(z) = 0; moreover, in (5.28), if gi effec-

tively depends on u for i ∈ 𝕀(z), Lf g̃(z, u) is not generally equal to maxi∈𝕀(z) Lf gi(z, u).

5.3.3 The Barrier Equation (Mixed Case)

The next necessary conditions are essential to construct the integral curves running

along the barrier.

Theorem 5.2 (Minimum-like Principle (Mixed Case) [7]) Under the assumptions
of Proposition 5.6, consider an integral curve xū on [𝜕]− ∩ 𝖼𝗅(𝗂𝗇𝗍()) and assume
that the control function ū is piecewise continuous. Then ū and xū satisfy the follow-
ing necessary conditions.

There exists a nonzero absolutely continuous adjoint 𝜆ū and piecewise continuous
multipliers 𝜇ū

i ≥ 0, i = 1,… , p, such that

𝜆̇
ū(t) = −

(
𝜕f
𝜕x

(xū(t), ū(t))
)T

𝜆
ū(t) −

p∑

i=1
𝜇

ū
i (t)

𝜕gi

𝜕x
(xū(t), ū(t)) (5.29)

with the “complementary slackness condition”

𝜇
ū
i (t)gi(xū(t), ū(t)) = 0, i = 1,… , p (5.30)

and final conditions
𝜆

ū(t̄)T ∈ arg max
𝜉∈𝜕g̃(z)

𝜉.f (z, ū(t̄)) (5.31)

where z = xū(t̄) with t̄ such that z ∈ G0, i.e., minu∈U maxi=1,…,p gi(z, u) = 0, 𝜕g̃(z)
being the generalized gradient of g̃, defined by (5.23), at z.

Moreover, at almost every t, the Hamiltonian

H(𝜆ū(t), xū(t), u) =
(
𝜆

ū(t)
)T f (xū(t), u)

is minimized over the set U(xū(t)) and equals zero

min
u∈U(xū(t))

𝜆
ū(t)T f (xū(t), u) = min

u∈U

[
(
𝜆

ū(t)
)T f (xū(t), u) +

p∑

i=1
𝜇

ū
i (t)gi(xū(t), u)

]

= 𝜆
ū(t)T f (xū(t), ū(t)) = 0

(5.32)
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Remark 5.2 If g̃ is differentiable at the point z, condition (5.31) indeed reduces to

its smooth counterpart, i.e., 𝜆
ū(t̄)T = Dg̃(z)

Remark 5.3 The assumption that x(ū,x̄) ∈ [𝜕]− ∩ 𝖼𝗅(𝗂𝗇𝗍()) means that we possibly

miss isolated trajectories which are in ⧵ 𝖼𝗅(𝗂𝗇𝗍()). The existence and computation

of such trajectories, if they exist, are open questions.

5.4 Examples

5.4.1 Double Integrator, Mixed Constraint

Let us go back to the double integrator introduced in Sect. 5.2.3, the pure state con-

straint x1 ≤ 1 being now replaced by the mixed constraint x1 ≤ u

ẋ1 = x2, ẋ2 = u, |u| ≤ 1, x1 − u ≤ 0 (5.33)

We will show that this apparently innocuous change dramatically modifies the admis-

sible set and its barrier since, in the mixed case, the latter does not intersect G0 any-

more (compare Figs. 5.1 and 5.2).

We readily get g̃(x) = x1 − 1 and G0 = {(x1, x2) ∶ x1 = 1}. The ultimate tangen-

tiality condition reads minu∈U(z) Dg̃(z).f (z, u) = z2 = 0, or z ≜ (z1, z2) = (1, 0). Note

that, at this point, U(z) = {1} is reduced to a single element. The minimal Hamil-

tonian is given by

min
u∈U(x)

𝜆1x2 + 𝜆2u = 0, a.e. t.

Thus:

if 𝜆2(t) < 0, ū(t) = 1 if x1 ∈]∞, 1]

if 𝜆2(t) > 0, ū(t) =
{

x1 if x1 ∈ [−1, 1]
−1 if x1 ∈] −∞,−1[

if 𝜆2(t) = 0, ū(t) = arbitrary.

The costate equations are given by

𝜆̇ =
(

0 0
−1 0

)

𝜆

with 𝜆(t̄) = Dg̃(z) = (1, 0)T . From here we deduce that 𝜆2(t) = −t + t̄ for all t ∈
(−∞, t̄], and thus 𝜆2(t) > 0 for all t ∈ (−∞, t̄]. Integrating backwards from the point

z = (1, 0), we find that the integral curve immediately leaves G, and so this curve

cannot be part of the barrier.
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However, let us show that the barrier indeed exists and that it remains in G− for

all time.

When the control û(t) = x1(t) is applied to (5.33), the analytic solution initiating

at t = 0 from x0 ≜ (x1,0, x2,0) is given by

x(û,x0)1 (t) =
x1,0 + x2,0

2
et +

x1,0 − x2,0
2

e−t

x(û,x0)2 (t) =
x1,0 + x2,0

2
et −

x1,0 − x2,0
2

e−t
.

It is thus immediately seen that, with this control, the origin is a saddle point, the

line x1 + x2 = 0 being the associated stable manifold, and x1 − x2 = 0 the unstable

one.

We now prove that the line segment  ≜ {(x1, x2) ∶ x1 + x2 = 0,−1 ≤ x1 < 1} is

a subset of [𝜕]−.

Clearly,  is positively invariant and every integral curve starting on it asymptoti-

cally approaches the origin. Moreover, g(x(û,x0)(t), û(t)) = x(û,x0)1 (t) − û(t) = 0 for all t
such that −1 ≤ x(û,x0)1 (t) < 1. Let h(x) ≜ x1 + x2 and denote xi(t) ≜ x(û,x0)i (t), i = 1, 2,

for simplicity’s sake. If at a suitable time t1, the state satisfies x(t1) ∈ , i.e. with

h(x(t1)) = 0, using any other admissible control v > û(t1) = x1(t1), with |v| ≤ 1, we

get

Dh(x(t1)).f (x(t1), v) = x2(t1) + v > −x1(t1) + x1(t1) = 0.

Therefore, any other admissible control results in the state entering the set  ≜

{h(x) = x1 + x2 > 0}. Moreover, in , all trajectories are such that h is non-

decreasing for all admissible control v: Lf h(x, v) = x2 + v > −x1 + x1 = 0 as long as

x1 ≤ 1, which implies that all trajectories starting from  cross the constraint x1 = 1
and hence are not admissible, i.e.,  ⊂ 𝖢

. Moreover, starting from any point in the

complement, i.e., such that x1 + x2 ≤ 0, denoted by  in Fig. 5.2, it is straightforward

to verify that û ensures that the corresponding integral curve remains in G for all time

which proves the assertion that  is a subset of [𝜕]−.

We now prove that the barrier extends, for x2 > 1, by the integral curve starting

backwards from the point (x1, x2) = (−1, 1), with the control ū(t) ≡ −1 for all t ∈
] −∞, t̄].

By Theorem 5.2, assuming that ū is piecewise continuous, any trajectory run-

ning along the barrier, generated by ū, satisfies Eqs. (5.29), (5.30) and (5.32) with

absolutely continuous costate 𝜆
ū

and piecewise continuous multipliers 𝜇
ū
.

Consider the end point of , denoted by 𝜉, of coordinates 𝜉1 = −1, 𝜉2 = 1. The

set U(𝜉) at that point is equal to [−1, 1]. By (5.32) we must have

min
u∈U(𝜉)

𝜆
ū(t)T f (𝜉, u) = min

u∈[−1,1]
𝜆

ū
1(t) + 𝜆

ū
2(t)u = 0

and, by continuity of the Hamiltonian on , since we had ū = x1, considering the

limit of the Hamiltonian for x → 𝜉, x ∈ , we deduce that the costate (𝜆ū
1(t), 𝜆

ū
2(t))

T
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Fig. 5.2 Figure showing some of the sets referred to in Sect. 5.4.1, along with a curve obtained by

backward integration from the point (−1, 1) which we have shown to be the backward extension of

the barrier

is orthogonal to the vector (1,−1)T , i.e., 𝜆(t̄) = k(1, 1)T , with k a positive constant,

and the minimizing ū is thus ū(t) = −𝗌𝗂𝗀𝗇(𝜆2(t)) = −1. Therefore, in [𝜕]− ⧵ ,

since x1 < −1, the constraint x1 − u is nowhere active and 𝜇
ū = 0 by (5.30). Thus

the costate equation reads

𝜆̇ =
(

0 0
−1 0

)

𝜆, 𝜆(t̄) = k(1, 1)

from which we deduce that 𝜆1(t) ≡ k and 𝜆2(t) = −k(t − t̄) + k, t ∈ (−∞, t̄] and

ū(t) = −𝗌𝗂𝗀𝗇(𝜆2(t)) ≡ −1. Note that this solution indeed satisfies the piecewise con-

tinuous assumption of ū in Theorem 5.2. The barrier is thus further extended back-

wards as in Fig. 5.2. We have also included a few of the vectograms along the exten-

sion of the barrier in order to emphasize that this is indeed an “extremal” trajectory

and that as we approach the point (−1, 1), the vectogram points towards the set ,

which we have shown to be a subset of 𝖢
.
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5.4.2 Constrained Spring I

Consider the following constrained mass–spring–damper model:

(
ẋ1
ẋ2

)

=
(

0 1
−2 −2

)(
x1
x2

)

+
(
0
1

)

u, |u| ≤ 1, x2 − u ≤ 0

where x1 is the mass’s displacement. The spring stiffness is here equal to 2 for a

mass equal to 1 and the friction coefficient is equal to 2. u is the force applied to the

mass.

We identify g(x, u) = x2 − u, U = [−1, 1] and g̃(x) = x2 − 1. We also identify the

following sets: G = {x ∈ ℝ2 ∶ x2 ≤ 1}, G0 = {x ∈ G ∶ x2 = 1} and U(x) = {u ∈
U ∶ x2 ≤ u ≤ 1}. Note that if z ≜ (z1, z2) ∈ G0, i.e. z2 = 1, then U(z) is the singleton

U(z) = {1}.

We have 𝜕g̃(z) = {(0, 1)} = Dg̃(z) (g̃ being indeed differentiable everywhere) and

the ultimate tangentiality condition reads

min
u∈U(z)

Dg̃(z)f (z, u) = 0

which gives

min
u∈U(z)

−2z1 − 2z2 + u = −2z1 − 2 + 1 = 0

Thus z = (−1
2
, 1).

The final costate 𝜆(t̄), according to (5.31), which here reduces to (5.28), is given

by 𝜆
T (t̄) = Dg̃(z) = (0, 1).

The Hamiltonian being here H(x, 𝜆, u) = 𝜆1x2 + 𝜆2(−2x1 − 2x2 + u), condition

(5.32) reads

min
x2≤u≤1

𝜆1x2 + 𝜆2(−2x1 − 2x2 + u) = 0 (5.34)

which gives the control ū associated with the barrier

if 𝜆2(t) < 0, ū(t) = 1

if 𝜆2(t) > 0, ū(t) =
{

x2 if x2 ∈] − 1, 1]
−1 if x2 ∈] − ∞,−1]

if 𝜆2(t) = 0, ū(t) = arbitrary

We note from condition (5.29) that if the constraint is active (i.e., g(x, u) = 0), the

costate differential equation is given by

𝜆̇
ū = −

𝜕f
𝜕x

T
𝜆

ū − 𝜇
ū 𝜕g
𝜕x

=
(

0 2
−1 2

)

𝜆
ū − 𝜇

ū
(
0
1

)

(5.35)
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and is otherwise (when g(x, u) < 0) given by

𝜆̇
ū = −

𝜕f
𝜕x

T
𝜆

ū =
(

0 2
−1 2

)

𝜆
ū
. (5.36)

Recall that 𝜆2(t̄) > 0 and x2(t̄) = z2 = 1 > 0. Therefore, because 𝜆 and x are con-

tinuous, ū(t) = x2(t) over an interval before t̄. We can show that ū(t) ≠ 1 over this

interval: if x2 = 1 and u = 1 over an interval before t̄, then we get ẋ2 = −2x1 −
2 + 1 = 0, or x1 = −1

2
, meaning that x1 remains constant over the same interval.

Thus ẋ1 = 0 for all t ∈]t̄ − 𝜂, t̄], 𝜂 > 0, which contradicts the fact that ẋ1 = 1 over

t ∈]t̄ − 𝜂, t̄].
Therefore, only the constraint g can be active over an interval before t̄, and by

(5.32), we obtain 𝜇 over this interval

𝜕H
𝜕u

+ 𝜇
𝜕g
𝜕u

= 𝜆2 − 𝜇 = 0

thus 𝜆2 = 𝜇 and the adjoint equation (5.35) reads

𝜆̇ =
(

0 2
−1 1

)

𝜆, ∀t ∈]t̄ − 𝜂, t̄] (5.37)

Let us next analyze the switching condition of ū, or more precisely the change of

signum of 𝜆2. We know that, in an interval ]t̄ − 𝜂, t̄] with 𝜂 > 0, we have 𝜆2 > 0 and

we want to characterize 𝜂 such that 𝜆2(t) < 0 for t ≤ t̄ − 𝜂 and 𝜆2(t̄ − 𝜂) = 0. Note

that 𝜆2 cannot vanish over a nonempty open interval since then, according to (5.36)

or (5.37), we would also get 𝜆1 = 0 which is impossible since the vector 𝜆 cannot

vanish. Thus, since 𝜆2 is locally increasing in a neighborhood of t̄ − 𝜂, we must have

𝜆̇2(t̄ − 𝜂) > 0, which is equivalent to 𝜆1(t̄ − 𝜂) < 0. Thus, expressing (5.34) at time

t̄ − 𝜂, we get x2(t̄ − 𝜂) = 0 and ū(t) = 1 for t < t̄ − 𝜂.

As long as 𝜆2 remains different from zero we keep ū = 1. As seen on Fig. 5.3, x2
crosses for a second time the x1 axis and it can be checked that, at this time, 𝜆2 also

vanishes. Therefore, the last section of the barrier is made of the trajectory generated

by ū = x2 from this time.

Remark 5.4 Note that Assumption (A7) does not hold true at the final point z since

there are two active constraints for only one control. However, since this condition

is violated only at this point, we may conclude by continuity that condition (5.31)

still holds.

5.4.3 Constrained Spring II

Consider the same mass–spring–damper system with the same constants as in the

previous example, but with a richer constraint
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Fig. 5.3 Admissible set of

the constrained spring from

Sect. 5.4.2

(
ẋ1
ẋ2

)

=
(

0 1
−2 −2

)(
x1
x2

)

+
(
0
1

)

u, |u| ≤ 1, x2(x2 − u) ≤ 0 (5.38)

We identify g̃(x) = x22 − |x2|, and G0 = {x ∶ x2 = 0 or x2 = ±1}. g̃ is differen-

tiable for x2 ≠ 0 and from (5.31) and (5.32) we identify, in same manner as in the pre-

vious example, two points of ultimate tangentiality, namely z = (−1
2
, 1) along with

𝜆(t̄) = (0, 1), and z = (1
2
,−1) along with 𝜆(t̄) = (0,−1). We defer the treatment of

the x1 axis, which is also in G0, to the discussion below.

From the minimisation of the Hamiltonian, which is the same as in the previous

example except that U(x) now corresponds to u ≥ x2 if x2 ≥ 0 and u ≤ x2 if x2 ≤ 0,

we find the control ū

if 𝜆2(t) < 0 ū(t) =
{

1 if x2 ∈]0, 1]
x2 if x2 ∈] − 1, 0[

if 𝜆2(t) > 0 ū(t) =
{

x2 if x2 ∈]0, 1]
−1 if x2 ∈] − 1, 0[

if 𝜆2(t) = 0 ū(t) = arbitrary

If we now integrate backwards from the points (−1
2
, 1) and ( 1

2
,−1) with the con-

trol ū(t) we obtain the barrier as in Fig. 5.4. It turns out that ū(t) = x2(t) all along

both curves: the reader may easily check that, the necessary condition
𝜕H
𝜕u

+ 𝜇
𝜕g
𝜕u

= 0
yields 𝜆2 − 𝜇x2 = 0 and, since

𝜕g
𝜕x

= (0, 2x2 − u)T , we get the same adjoint equation

as (5.37) when ū = x2, and conclude that 𝜆2(t) is positive as long as x2(t) is positive,

which implies that ū = x2, and 𝜆2(t) must be negative as long as x2(t) is negative,

which again implies that ū = x2, hence the result.
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G0

Fig. 5.4 Admissible set of the constrained spring from Sect. 5.4.3

Let us now turn to the x1 axis, where g̃ = x22 − |x2| is non-differentiable. For any

z on the x1 axis, we have U(z) = [−1, 1] and 𝜕g̃(z) = 𝖼𝗈
(
(0,−1)T , (0, 1)T

)
= {0} ×

[−1, 1] and we must have

min
u∈[−1,1]

max
𝜉∈𝜕g̃(z̃)

𝜉.f (z̃, u) = 0 = min
u∈[−1,1]

max
𝜉2∈[−1,1]

𝜉2(−2x1 + u) (5.39)

For each−1
2
≤ z1 ≤

1
2

Eq. (5.39) has a solution given by 𝜉 = (0, 𝗌𝗂𝗀𝗇(−2z1 + u)) from

which we deduce that ū = 2z1. However, one can directly verify that the integral

curves of (5.38) with endpoints in the set [−1
2
,
1
2
] × {0} with the control u = x2 all

correspond to admissible curves (integrated backwards) and therefore do not belong

to the barrier, but that they make the constraint g(x(ū,x̄)(t), ū(t)) equal to 0 for ū =
x2 for all x̄ ∈ [−1

2
,
1
2
] × {0} and for all t. This attests that our conditions are only

necessary and far from being sufficient.

Remark 5.5 Note that, as in Sect. 5.4.2, Assumption (A7) does not hold true at the

final points z ∈ G0 since there are two active constraints for only one control. Again,

we conclude by a continuity argument that condition (5.31) still holds.

5.5 Conclusion

In this paper, we have demonstrated on elementary examples of systems subject to

pure or mixed constraints, the effectiveness of the results obtained in [6, 7], which

allowed us to give a complete construction of their barriers and admissible sets. We

also pointed out some significant differences in these constructions. In particular,

we have shown, in the mixed constrained case, that the barrier does not need to

intersect the boundary G0 of the constraint set; that, according to the feedback nature
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of the control, due to the state dependence of the control set, the equilibria and their

stability could be modified to be repelled from G0; that the nonsmooth version of the

necessary ultimate tangentiality condition, though useful, is far from being sufficient;

and that Assumption (A7) is, even in simple examples, not everywhere satisfied.

Higher dimensional examples are presently under investigation and will be published

elsewhere.
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Chapter 6
Output Regulation via Low-Power
Construction

Daniele Astolfi, Alberto Isidori and Lorenzo Marconi

Abstract The paper deals with the problem of output regulation for the class of
nonlinear systems that have a well-defined relative degree and are minimum-phase.
The goal is to present a design methodology of the internal model-based regulator
that adopts the tools recently proposed in Astolfi and Marconi (IEEE Trans Autom
Control 60:3059–3064, 2015) [1] for the design of nonlinear high-gain observers in
which the power of the high-gain parameter is raised just up to the order 2 regardless
the dimension of the observed system. In this context, we show how to design a
high-gain internal model in which the power of the high-gain is raised up to the order
two regardless the dimension of the internal model. The same methodology is also
used in the dynamic stabilizer in the presence of regulated plants with high relative
degree by presenting backstepping and dirty-derivatives observer techniques with
limited high-gain power.

6.1 Introduction

High-gain techniques are widely adopted for robust stabilization and observation
of nonlinear systems in a global or semiglobal sense. Major contributions to the
field have been developed around early 90s in a very florid research period that
has definitely seen Laurent Praly as one of the main actors. Among the different
contributions it is worth recalling themilestone papers [17, 18] in which very general
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tools for robust stabilization of nonlinear systems by state and output feedback are
presented. Among the different results presented in the paper, the authors develop
a systematic way for stabilising nonlinear systems by output feedback by using a
“dirty-derivative” observer, namely a high-gain observer able to practically estimate
the time-derivates of the output with an arbitrarily fast estimation error dynamics.
High-gain observation tools play, in general, a key role in the problem of stabilization
in the large of nonlinear systems by output feedback by separation principle due to
the distinguishing feature of quickly recovering the ideal stabilising state-feedback
by thus preventing finite escape time. A very general and elegant nonlinear separation
principle that relies on high-gain observers can be found in Chap.6 of [6]. The reader
is also linked to the special issue [13] for an updated and reasoned overview on the
use of high-gain observers in nonlinear control and observation. One of the main
criticisms that is typically raised towards high-gain structures, however, is the fact
that the high-gain parameter, by which the speed of convergence is tuned, is powered
up to the dimension of the observer. This, in turn, makes high-gain observers very
critical in numerical implementation whenever the dimension of the observer is
large. In this respect, recently, a new “low-power” design methodology for high-
gain observers has been proposed in [1]. The observer structure presented in this
paper preserves all the main features of classical high-gain observers in terms of
speed of convergence and practical convergence but with the advantage of having
the power of the high-gain parameter raised just up to the order 2 regardless the
dimension of the observed system, and the (mild) drawback that the dimension of the
observermust be increased to the order 2n − 2 (n being the dimension of the observed
system). Besides substantially overtaking the numerical problems that characterize
the implementation of classical observers, the new structure has also superior features
in terms of sensitivity to measurement noises as detailed in [1]. The use of the new
structure in the context of the nonlinear separation principle of [6] can be found in
[19].

A research area closely related to the one of stabilization overviewed before
is the one of output regulation for nonlinear systems. Compared with a “standard”
stabilization problem, the problem of output regulation amounts tomaking a compact
attractor, on which some regulated variables are zero, asymptotically stable. The
distinguishing feature of the framework is that the attractor is not invariant for the
original uncontrolled plant and has internal dynamics governed by the dynamics
of an autonomous exogenous system (the so-called exosystem) whose state is not
measurable. This, in turn, asks for the design of regulators that include an appropriate
copy of the exosystem dynamics able tomake the desired attractor invariant and leads
to the celebrated internal model-based design strategy. Starting with the contribution
in [10], many improvements have been proposed in the output regulation literature
in the last twenty years or so with the aim of making the framework where internal
model-based regulators could be systematically designed even more general (see,
among others, [7, 15, 16]). To the purpose of the design methodology presented
in this chapter, an interesting framework has been proposed in [3] in which the
so-called “friend”, which is the ideal steady state input able to make the desired
attractor invariant, and a certain number of its time derivatives are assumed to fulfill a
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regression law. The important observationmade in [3] is that, in this framework, tools
typically adopted in the field of nonlinear high-gain observers can be successfully
adopted in order to design internal model-based regulators. This observation opened
an interesting research direction in which high-gain tools are adopted not only for the
design of the stabilizer but also of the internal model. The same framework has been
also taken in [11] in order to design adaptive linear regulators, namely regulators
with adaptive mechanisms able to cope with uncertainties in the exosystem. The
fact that design methodologies typically used in the design of nonlinear observers
could be successfully employed in the design of internal models has been further
investigated and developed in [4] in which the theory of adaptive (not necessarily
high-gain) nonlinear observers has been proposed for this purpose.

The main criticisms that can be done to the high-gain design methodology for
internal models is the same mentioned above in the context of stabilization, namely
the fact that the power of the high-gain parameter is raised up to the order of the
internal model, with the latter than can be large to eventually have the friend and its
time derivatives fulfilling the regression law said before. Motivated by this, in this
chapter,we adapt the tools presented in [1] to develop a “low-power”methodology for
the design of internal models. The low-power construction is, indeed, used not only
for the design of the internal model but also for the design of the high-gain dynamic
output feedback stabilizer needed to deal with systems that do not have unitary
relative degree. Simulation results are also presented to show the effectiveness of the
approach.

6.2 The Framework of Output Regulation by Means of
High-Gain Tools

Weconsider the class of systems innormal formwithunitary relative degreedescribed
by

ż = f (w, z, e)
ė = q(w, z, e) + b(w, z, e)u

(6.1)

in which (z, e) ∈ R
n × R is the state, u ∈ R is the control input and w ∈ R

ρ is a an
exogenous variable that, in the context of output regulation, is thought of as generated
by an autonomous system (typically referred to as exosystem) of the form

ẇ = s(w) (6.2)

whose state ranges in a compact invariant set W ⊂ R
ρ . The state component e

represents the measured output and the regulation error to be steered to zero. It is
assumed that f (·), q(·), b(·), s(·) are smooth enough functions and that the function
b(·) is bounded from below, i.e., there exists a strictly positive real numbers b such
that
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b(w, z, e) ≥ b ∀ (w, z, e) ∈ R
ρ × R

n × R . (6.3)

The initial condition of the system (6.1) is assumed to range in an arbitrary but
known compact set Z × E ⊂ R

n × R. Within this framework the problem of output
regulation amounts to designing a controller of the form

ξ̇ = ψ(ξ, e)
u = γ (ξ, e)

(6.4)

with initial conditions in a compact set�, such that the trajectories of the closed-loop
system originating from W × Z × E × � are bounded and

lim
t→∞ e(t) = 0 (6.5)

uniformly in the initial conditions. Very often asymptotic regulation is difficult to
achieve in a general nonlinear context and it thus makes sense to relax (6.5) into
a practical regulation objective, namely to ask that limt→∞ sup |e(t)| ≤ ε with ε a
small positive number.

The previous problem is addressed under a number of assumptions that are
customary in the literature of output regulation by means of high-gain tools. The
first regards the existence of the solution of the so-called regulator equations. In
this framework, in particular, we assume the existence of a differentiable function
π : R → R

n solution of

Lsπ(w) = f (w, π(w), 0) ∀w ∈ W .

This assumption guarantees that the set A ⊂ W × R
n , defined as

A = {(w, z) ∈ W × R
n : z = π(w)} ,

is invariant for the zero dynamics of the system (6.1) with input u and output e that
are described by

ẇ = s(w)

ż = f (w, z, 0) .
(6.6)

The second assumption asks that system (6.1) is also minimum-phase. In our frame-
work the minimum-phaseness assumption is formalized as follows.

Assumption 6.1 (Minimum-phase) The set A is asymptotically and locally expo-
nentially stable for the system (6.6) with a domain of attraction of the form W × D
where D is an open set of Rn such that Z ⊂ D .

The local exponential stability requirement in the previous assumption is done
just for sake of simplicity and it could be easily removed by properly adapting the
design of the regulator presented in the following, see, for instance, in [12]. In the
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design of the regulator solving the problem of output regulation, a crucial role is
played by the so-called “friend”, which is the function c : W → R defined as

c(w) := − q(w, π(w), 0)

b(w, π(w), 0)
. (6.7)

By bearing in mind (6.1), it turns out that such a function represents the ideal
steady-state input needed to keep the regulation error identically zero, namely the
control input that must be applied to (6.1) to make the set A × {0} invariant. In the
following construction, we do not assume a specific structure for c(·) as typically
done, through the so-called immersion assumption, inmost of thework on the subject
([3, 9] and references therein). Rather, the internal model-based regulator designed
in the following relies on the knowledge of an integer d > 0 and of a function
ϕ : Rd → R fulfilling

Ld
s c(w) = ϕ

(
c(w), Ls c(w), . . . , Ld−1

s c(w)
) + ν(w) ∀w ∈ W (6.8)

for some (unknown) function ν : W → R. In case the previous relation is fulfilled
with ν ≡ 0 asymptotic regulator will be achieved. Practical regulation, with an
asymptotic error that is upper bounded by a function of supw∈W ‖ν(w)‖, is oth-
erwise obtained. The previous framework allows one to regard the parameter d as a
degree-of-freedom by which the designer can tradeoff the dimension of the regulator
(and thus its complexity) and the bound on the asymptotic error. As a matter of fact,
larger values of d allow, in general, to identify a ϕ(·) that makes relation (6.8) fulfilled
with a smaller bound of the residual term |ν(·)|, by thus obtaining a regulator able
to guarantee smaller asymptotic errors.

In the remaining part of the section, we illustrate themain framework under which
a regulator can be designed (see [3]), by highlighting how the theory of nonlinear
observers, and in particular the one of high-gain observers, turns out to be useful in
the regulator construction. The fact of dealing with regulated plant that are affine in
the input suggests to consider regulator structures of the same kind, namely regulators
of the form

ξ̇ = φ(ξ) + Ψ v ξ ∈ R
m

u = γ (ξ) + v

v = −κe
(6.9)

where φ(·) and γ (·) are smooth functions, Ψ is a column vector, and κ is a design
parameter, all to be designed. The resulting closed-loop system, has a normal form
that, having defined the change of variables

ξ �→ χ := ξ − Ψ

∫ e

0

1

b(w, z, s)
ds ,

reads as
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ẇ = s(w)

ż = f (w, z, e)

χ̇ = φ(χ) − Ψ

(
γ (χ) + q(w, z, e)

b(w, z, e)

)
+ Δ(w, z, χ, e)

ė = q(w, z, e) + b(w, z, e)γ (χ) + b(w, z, e)v + L(w, z, χ, e)

(6.10)

where Δ(·) and L(·) are properly defined functions such that Δ(w, z, χ, 0) = 0
and L(w, z, χ, 0) = 0 for all (w, z, χ) ∈ W × R

n × R
m . This system, regarded as

a system with input v and output e, has still unitary relative degree and, as an easy
computation shows, zero dynamics described by

ẇ = s(w)

ż = f (w, z, 0)

χ̇ = φ(χ) − Ψ

(
γ (χ) + q(w, z, 0)

b(w, z, 0)

)
.

(6.11)

Note that these dynamics have a cascade structure with system (6.6) driving the sys-
tem with state χ . In the following, we denote by X ⊂ R

m the compact set of initial
conditions for the new variable χ . The problem of output regulation is then refor-
mulated as a problem of output feedback stabilization of system (6.10). In particular
the problem at hand is solved if one is able to prove the existence of a compact set
of Rρ × R

n × R
m × R, on which the regulation error e is identically zero, that is

asymptotically stable for system (6.10) with a domain of attraction containing the
set of initial conditions. To this purpose high-gain design paradigms for minimum-
phase systems can be successfully adopted ([3]). In particular, the following two
requirements play a role in the design of the stabilizer:

(a) there exists a set B ⊂ R
ρ × R

n × R
m that is asymptotically and locally expo-

nentially stable for system (6.11) with a domain of attraction of the formW × De

with De ⊂ R
n × R

m an open set fulfilling Z × X ⊂ De.
(b) the following holds:

q(w, z, 0) + b(w, z, 0)γ (χ) = 0 ∀ (w, z, χ) ∈ B .

Requirement (a), in turn, asks that system (6.10), regarded as a systemwith inputv and
output e, isminimum-phase.On the other hand, requirement (b) asks that the coupling
term between the zero dynamics (6.11) and the error dynamics is vanishing onB ×
{0}, namely that the latter set is invariant for (6.10) with v = 0. That properties, in
turn, make system (6.10) fitting into frameworks of stabilization of minimum-phase
nonlinear systems in which the choice v = −κe, with κ sufficiently large, succeeds
in asymptotically stabilising the setB × {0}. This is formalized in the next theorem
whose proof can be found in [12].

Theorem 6.1 Assume that the requirements (a) and (b) specified before are fulfilled
for some compact set B. Then, there exists a κ� > 0 such that for all κ ≥ κ� the
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set B × {0} is asymptotically and locally exponentially stable for system (6.1)–
(6.2) controlled by (6.9) with a domain of attraction of the form W × Dcl with
Dcl ⊂ R

n × R
m × R an open set fulfilling Z × X × E ⊂ Dcl .

The high-gain paradigm is indeed robust in case requirement (a) above is only
achieved practically rather than asymptotically. More specifically, requirement (a)
above can be relaxed to the requirement (a’) specified in the following at the price
of achieving just practical instead of asymptotic regulation as claimed in the next
Theorem 6.2.

(a’) There exists a setB ⊂ R
ρ × R

n × R
m such that the trajectories of system (6.11)

originating from W × Z × X fulfill

‖(w(t), z(t), χ(t))‖B ≤ max{c1exp(−c2t)‖(w(0), z(0), χ(0))‖B , ε}
(6.12)

for some positive constants c1, c2 and ε

Theorem 6.2 Assume that the requirements (a’) and (b) specified before are fulfilled
for some compact set B and positive constants c1, c2 and ε. Then, there exist a
κ� > 0 and a c > 0, such that for all κ ≥ κ� the trajectories of the resulting closed-
loop (6.1)–(6.2) and (6.9) originating from the compact set of initial conditions
W × Z × X × E are bounded and

lim
t→∞ sup ‖e(t)‖ ≤ c

κ
ε .

The previous considerations shift the focus of the design on system (6.11) and, in
particular, on the design of the triplet (φ(·), Ψ, γ (·)) fulfilling the requirements (a’)
and (b). In the next section, the problem in question is solved using the high-gain
observer theory.

6.3 Low-Power High-Gain Tools for the Internal-Model
Design

Theproblemof fulfilling requirement (a’) and (b) introduced at the endof the previous
section is now addressed using design tools that are adopted in the literature of high-
gain observers. Our main goal is to show that the “low-power” tools introduced in
[1] can be successfully adopted in order to design the triplet (φ(·), Ψ, γ (·)) fulfilling
the requirements in question. It is argued that it is known a positive d > 0 and a
function ϕ(·) fulfilling (6.8) for some (unknown) function ν(·).

We start by recalling the result presented in [3] in which the standard high-
gain tools typically used for observer design are shown to be successful for the
regulation purposes. To this end, let the dimension of the regulator (6.9) be taken as
m = d and, by bearing in mind the definition in (6.7), let τ : W → R

d be defined as
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τ(w) := (
c(w) Lsc(w) . . . Ld−1

s c(w)
)T

,

and the triplet (φ(·), Ψ, γ (·)) be taken as

φ(ξ) :=

⎛

⎜⎜⎜
⎜⎜⎜
⎝

ξ2
...

ξi+1
...

ϕs(ξ)

⎞

⎟⎟⎟
⎟⎟⎟
⎠

, Ψ :=

⎛

⎜⎜⎜
⎜⎜⎜
⎝

�a1
...

�i ai
...

�dad

⎞

⎟⎟⎟
⎟⎟⎟
⎠

, γ (ξ) := ξ1 (6.13)

where � is a design parameter, the ai ’s are coefficients of an Hurwitz polynomial,
and ϕs(·) is a bounded function that agrees with ϕ(·) on τ(W ). Then, we have
the following proposition whose proof can be obtained by slightly generalizing the
arguments in [3].

Proposition 6.1 Let c(·) in (6.7) be fulfilling (6.8) and let the triplet (φ(·), Ψ, γ (·))
be taken as in (6.13). Then there exist a �� > 0 such that for all � ≥ �� requirements
(a’) and (b) of Sect.6.2 are fulfilled with

B = {(w, z, χ) ∈ W × R
n × R

d , z = π(w) , χ = τ(w)}

and the ε in (6.12) of the form

ε = r

�d
sup
w∈W

‖ν(w)‖

with r a positive number.

By joining the result of Theorem 6.2 and the previous proposition it is then immedi-
ately concluded that there exists a κ� (dependent on �) such that for all κ ≥ κ� the
regulator (6.9) with (φ(·), Ψ, γ (·)) taken as in (6.13) guarantees that the trajectories
of the closed-loop systems originating from the given compact sets are bounded and

lim
t→∞ sup ‖e(t)‖ ≤ r ′

κ�d
sup
w∈W

‖ν(w)‖ (6.14)

for some positive constant r ′. In particular, if the integer d and the function ϕ(·)
can be taken so that relation (6.8) is fulfilled with ν(·) = 0, the proposed controller
guarantees asymptotic regulation. Otherwise, just practical regulation is achieved
with the bound on the asymptotic error that can be arbitrarily decreased by increasing
κ or �d .

The main criticism that can be raised to the previous control structure is that the
power of the high-gain parameter � is raised up to the order d in the expression
of φ(·) and Ψ . This, in turn, makes the practical implementation of the regulator
very hard if the value of d is large. In order to overtake this problem, we present an
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high-gain design methodology, recently proposed in [1] for the design of nonlinear
observers, in which the power of the high-gain parameter is raised just up to the order
2 regardless the dimension of the regulator, at the price of increasing the dimension
of the regulator to the order 2d − 2. More precisely, set

m = 2d − 2

and, let

φ(ξ) :=

⎛

⎜⎜⎜
⎝

φ1(ξ)

φ2(ξ)
...

φd−1(ξ)

⎞

⎟⎟⎟
⎠

, Ψ :=

⎛

⎜⎜⎜
⎝

Ψ1

Ψ2
...

Ψd−1

⎞

⎟⎟⎟
⎠

, γ (ξ) := ξ1,1 , (6.15)

where
ξ = col(ξ1, . . . , ξd−1) ∈ R

2d−2 , ξi = (ξi,1, ξi,2)
T ∈ R

2 ,

the functions φi : R2d−2 → R
2, i = 1, . . . , d − 1, are defined as

φ1(ξ) :=
(

ξ1,2
ξ2,2

)
, φi (ξ) :=

(
ξi,2 + � ai,1 (ξi−1,2 − ξi,1)

ξi+1,2 + �2 ai,2 (ξi−1,2 − ξi,1)

)
, (6.16)

for i = 2, . . . , d − 2,

φd−1(ξ) :=
(

ξd−1,2 + � ad−1,1 (ξd−2,2 − ξd−1,1)

ϕs(Γ ξ) + �2 ad−1,2 (ξd−2,2 − ξd−1,1)

)
(6.17)

in which
Γ := blkdiag

( (
1 0

) (
1 0

) · · · (
1 0

) (
1 1

) )
, (6.18)

(ai,1, ai,2), i = 1, . . . , d − 1, are coefficients to be appropriately chosen, and the
vectors Ψi , i = 1, . . . , d − 1 are defined as

Ψ1 :=
(

� a1,1
�2 a1,2

)
, Ψi :=

(
0
0

)
, i = 2, . . . , d − 1 .

It will be shown that the previous choice of the triplet (φ(·), Ψ, γ (·)) makes the req-
uirements (a’) and (b) fulfilled provided that the coefficients (ai,1, ai,2), i = 1, . . . ,
d − 1, are appropriately chosen and � is taken sufficiently large. As far as the design
of the coefficients (ai,1, ai,2) is concerned, they must be chosen in such a way that
the block tri-diagonal matrix M defined as
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M :=

⎛

⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

L1 N 0 . . . . . . 0

Q2 L2 N
. . .

...

0
. . .

. . .
. . .

. . .
...

...
. . . Q j L j N

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . . Qd−2 Ld−2 N
0 . . . . . . . . . 0 Qd−1 Ld−1

⎞

⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

(6.19)

in which

Li :=
(−ai,1 1

−ai,2 0

)
, Qi :=

(
0 ai,1
0 ai,2

)
, i = 1, . . . , d − 1 , N :=

(
0 0
0 1

)
,

is Hurwitz. To this purpose a procedure for systematically designing those parameters
is presented inAppendix 6.7.1. Themain result is then detailed in the next proposition
in which we refer to the function τe : W → R

2d−2 defined as

τe(w) :=

⎛

⎜⎜
⎜
⎝

τe,1(w)

τe,2(w)
...

τe,d−1(w)

⎞

⎟⎟
⎟
⎠

, τe,i :=
(
Li−1
s c(w)

Li
sc(w)

)
, i = 1, . . . , d − 1 .

Proposition 6.2 Let c(·) in (6.7) be fulfilling (6.8) and let the triplet (φ(·), Ψ, γ (·))
be taken as in (6.15)–(6.17) with the coefficients (ai,1, ai,2), i = 1, . . . , d − 1, fixed
so that the matrix M in (6.19) is Hurwitz. Then there exist a �� > 0 such that for all
� ≥ �� requirements (a’) and (b) of Sect.6.2 are fulfilled with

B = {(w, z, χ) ∈ W × R
n × R

2d−2 , z = π(w) , χ = τe(w)}

and the ε in (6.12) of the form

ε = r

�d
sup
w∈W

‖ν(w)‖

with r a positive number.

The proof of this proposition is presented in Appendix 6.7.2. In view of Theo-
rem 6.2, similarly to the standard high-gain design presented in the first part of the
section, the regulator (6.9) with (φ(·), Ψ, γ (·)) obtained from (6.15)–(6.17) guaran-
tees asymptotic regulation if the function ϕ(·) fulfills (6.8) with ν(·) = 0. Otherwise
just practical regulation is achieved with a bound on the asymptotic error that can be
arbitrarily decreased by increasing κ or �d . With respect to the previous case, how-
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ever, the remarkable feature of the proposed regulator is that the high-gain parameter
� is powered just up to the order 2 by making the design possible even in presence of
large values of d. Note, in particular, that the asymptotic gain relating the term ν(·)
to the regulation error is still proportional to 1/�d notwithstanding the regulator is
implemented only with terms proportional to � and �2.

6.4 Dealing with Higher Relative Degree with Low-Power
Tools

The analysis in the previous section has shown how to design internal model-based
regulators for systems of the form (6.1) under themild assumptions of unitary relative
degree and minimum-phase. In case of systems with relative degree higher than one,
standard tools proposed in the literature can be used to reduce the problem to a
relative degree-one scenario to which the same design methodology presented in
the Sects. 6.2 and 6.3 can be adopted. In particular, the approach that is typically
pursued in literature relies on a two-phase design procedure. In a first phase, a high-
gain backstepping design is used in order to obtain a system having relative degree
one with respect to an output that is a linear combination of the regulation error
and its first r time derivatives (with r the relative degree) and whose zero dynamics
fulfill a minimum-phase assumption of the form presented in Assumption 6.1. To
this system the same procedure proposed in the previous section can be thus applied
by obtaining in this way a regulator solving the problem at hand except the fact
that it processes not only the error but also its first r time derivatives. In the second
phase, then, a high-gain dirty-derivative observer [18] is typically adopted in order
to replace the error time derivatives with appropriate estimates by thus obtaining a
pure error-feedback regulator. The high-gain tools that are typically adopted both in
the backstepping and dirty-derivative observer phase, however are characterized by
the fact that high-gain parameter is powered up to the value of the relative degree, by
thus making the design hard to be implemented in practice in case of systems with
high values of r . For this reason, in the following, we show how the idea of “low-
power” high-gain adopted for the design of the internal model can be successfully
employed also at this stage by thus obtaining a dynamic regulator in which the high-
gain parameters characterizing the control structure are powered just to the order 2
regardless the value of d in (6.8) and of r .

We assume that the regulated plant is a relative degree r system described in the
normal form

ẇ = s(w)

ż = f (w, z, e1)
ėi = ei+1 , i = 1, . . . , r − 1
ėr = q(w, z, e) + b(w, z, e)u

(6.20)

inwhich f (·, ·, ·),q(·, ·, ·) andb(·, ·, ·) are smooth functions,with the high-frequency
gain b(·, ·, ·) fulfilling (6.3), the regulation error to be steered to zero is e1, and the
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zero dynamics (6.6) fulfill Assumption 1 in Sect. 6.2. The compact sets of initial
conditions w(0), z(0) and ei (0) are W ⊂ R

ρ , Z ⊂ R
n and Ei ⊂ R, i = 1, . . . , r ,

with W that is invariant for (6.2). We let E := E1 × · · · × Er . As said before the
design methodology presented in Sects. 6.2 and 6.3 for the relative degree-one case
can be still used provided that a backstepping and dirty-derivative design steps,
developed in the next two subsections, are adopted.

6.4.1 Low-Power Dynamic Backstepping Tools

The idea typically followed in the literature to deal with the case r > 1 is to start
considering the system

ẇ = s(w)

ż = f (w, z, e1)
ė1 = e2

...

ėr−1 = er

(6.21)

regarded as a system with input er and, under the minimum-phase Assumption 6.1,
look for a (virtual) control law for er processing the error and its first r − 1 time
derivatives that make the set A × {0} asymptotically stable for this system with a
domain of attraction containing the compact set of initial conditions. This is usually
done with a static control law er = e�

r of the form

e�
r = −(gr−1b1e1 + gr−2b2e2 + · · · + gbr−1er−1)

in which g is a high-gain parameter and the bi ’s are coefficients of an Hurwitz
polynomial. As a matter of fact, after rescaling the variables ei as ζi := g−(i−1)ei ,
i = 1, . . . r − 1, system (6.21) with er = e�

r reads as

ẇ = s(w)

ż = f (w, z, ζ1)
ζ̇ = gHζ

in which ζ = (
ζ1 . . . ζr−1

)T
and H is an Hurwitz matrix. Standard high-gain tools,

then, can be adopted to show that a large value of g makes the set A × {0} asymp-
totically and locally exponentially stable with a domain of attraction containing the
set W × Z × E1 × · · · × Er−1 set of initial conditions. Motivated by the fact that if
r is large the previous control law can be hard to implement due to the term gr−1,
in the following we propose a different construction for e� in which dynamic, rather
than static, high-gain stabilizers are developed with the feature that the high-gain
parameter is powered just to the order 2 regardless the value of r . We assume that
r > 3, otherwise the usual static control law presented before can be used.
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The proposed dynamic controller has state ϑ = (ϑ1, . . . , ϑr−3)
T ∈ R

r−3

described by the dynamics

ϑ̇1 = e3 + g2b1,1e1 + gb1,2(e2 − ϑ1)

ϑ̇i = ei+2 + g2bi1ϑi−1 + gbi,2(ei+1 − ϑi ) i = 2, . . . , r − 3
e�
r = −(g2br−2,1ϑr−3 + gbr−2,2er−1)

(6.22)

in which g is the high-gain parameter, and the (bi,1, bi,2), i = 1, . . . , r − 2, are coef-
ficients to be appropriately designed.The latter, in turn, must be designed so that the
block tri-diagonal matrix H defined as

H :=

⎛

⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

G1 S 0 . . . . . . 0

R1 G2 S
. . .

...

0
. . .

. . .
. . .

. . .
...

...
. . . Ri−1 Gi S

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . . Rr−4 Gr−3 S
0 . . . . . . . . . 0 Rr−3 Gr−2

⎞

⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

, (6.23)

with

Gi :=
(

0 1
−bi,1 −bi,2

)
, Ri :=

(
bi,1 bi,2
0 0

)
, S :=

(
1 0
0 0

)
,

is Hurwitz. This can be always obtained using the constructive design procedure
presented in Appendix 6.7.1 and noting that M = (T HT )T , with M defined in
(6.19) taking d = r − 1 and the ai ’s equal to the bi ’s, and T = T T defined as the
anti-diagonal identity matrix of dimension r − 2. The main result is stated in the
following proposition whose proof is deferred in Appendix 6.7.3:

Proposition 6.3 Consider system (6.21)–(6.22) with er = e�
r with initial conditions

taken inW × Z × (E1 × · · · × Er−1) × Θ , whereΘ is a compact set ofRr−3. Let the
coefficients (bi,1, bi,2), i = 1, . . . , r − 2, be designed so that the matrix H in (6.23)
is Hurwitz. Then, there exists a g� > 0 such that for all g ≥ g� the set A × {0} ×
{0} is asymptotically and locally exponentially stable with a domain of attraction
containing the set W × Z × (E1 × · · · × Er−1) × Θ .

The previous result is then instrumental to show that the problem of output regula-
tion for systems with higher relative degree can be cast into the relative degree-one
framework of Sects. 6.2 and 6.3. As a matter of fact, by changing the variable er as

er �→ e′
r := er + (g2br−2,1ϑr−3 + gbr−2,2er−1) (6.24)

it is easy to realize that the resulting system reads as
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ẇ = s(w)

ż′ = f ′(w, z′, e′
r )

ė′
r = q̃ ′(w, z′, e′

r ) + b(w, z′, e′
r )u

in which z′ = col(z, e1, . . . , er−1, ϑ) and f ′(·, ·, ·), q ′(·, ·, ·), b′(·, ·, ·) are properly
defined functions with the former such that the system ż′ = f ′(w, z′, 0) coincides
with (6.21)–(6.22) with er = e�

r . This system has relative degree one between the
input u and the output e′

r and, in view of Proposition 6.3, it fulfills Assumption 6.1
with the set A of the assumption replaced by A × {0} × {0}. Hence, the theory of
Sect. 6.3 can be adopted off-the-shelf to obtain a regulator able to solve the problem
for this system. By bearing in mind the theory above such a regulator takes the form

ξ̇ = φ(ξ) − Ψ κe′
r

ϑ̇1 = e3 + g2b1,1e1 + gb1,2(e2 − ϑ1)

ϑ̇i = ei+2 + g2bi1ϑi−1 + gbi,2(ei+1 − ϑi ) i = 2, . . . , r − 3
u = γ (ξ) − κe′

r

(6.25)

with e′
r defined in (6.24) and with the triplet (φ(·), Ψ, γ (·)) having the form (6.15).

This controller is characterized by three high-gain parameters, to be fixed in order:
g, introduced to deal with the high relative-degree case, �, playing the role in the
design of the internal model, and κ characterizing the static stabilizer. Remarkably,
the power of these parameters does not exceed two, regardless the value of the
relative degree (r ) and the dimension of the internal model (d). Such a controller
guarantees that if (6.8) is fulfilled with ν(·) = 0 then the setB × {0} × {0} is asymp-
totically stable with an appropriate domain of attraction (with the setB introduced in
Theorem 6.1). This, by the definition of e′

r , implies that the regulation error e1 con-
verges to zero asymptotically. On the other hand, if (6.8) is fulfilled with ν(·) 
= 0,
then only practical regulation is achieved.

The regulator (6.25) thus solves the problem at hand in the general case with
the drawback that it requires the knowledge of e1, e2, . . ., er , namely of the first
r time derivatives of the regulation error. A pure error-feedback regulator can be
obtained by replacing the error time derivatives with appropriate estimates provided
by a (possibly low-power) dirty derivatives observer as detailed in the next section.

6.4.2 Low-Power Dirty-Derivative Observers

A standard high-gain observer able to provide a (dirty) estimate of the error and its
first r time derivatives takes the form (see [13, 18])

˙̂ei = êi+1 + ci ki (e1 − ê1) , i = 1, . . . , r − 1 ,
˙̂er = cr kr (e1 − ê1)

in which ci , i = 1, . . . , r , are coefficients of an Hurwitz polynomial and k is a high-
gain parameter. The general result that is possible to prove is that, if the r + 1 time
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derivative of e1 is bounded, then the previous observer yields approximate estimates
of the first r time derivatives of e1, with an estimation dynamics that can be rendered
arbitrarily fast by increasing k and with an asymptotic estimation error that can
be arbitrarily decreased by also increasing k. The fact that such a observer can be
successfully used to replace the ei ’s in (6.25) comes from classical arguments of
(nonlinear) output feedback that do not need to be repeated here see for instance [17,
18]. Similarly to the classical high-gain tools presented before, however, the main
criticisms that can be raised to the previous structure is that the high-gain parameter
k is powered up to the order r , which makes the practical implementation of the
observer very hard in case of systems with high relative degree. For this reason, by
following what proposed in [1], we propose a low-power dirty derivatives observer
that takes the form

η̇1,1 = η1,2 + c1,1 k (e1 − η1,1)

η̇1,2 = ηi+1,2 + c1,2 k2 (e1 − η1,1)

η̇i,1 = ηi2 + ci,1 k (ηi−1,2 − ηi,1)

η̇i,2 = ηi+1,2 + ci,2 k2 (ηi−1,2 − ηi,1)

η̇r−1,1 = ηi2 + cr−1,1 k (ηr−2,2 − ηr−1,1)

η̇r−1,2 = cr−1,2 k2 (ηr−2,2 − ηr−1,1)

i = 2, . . . , r − 2 (6.26)

with state η = col(η1, . . . , ηr−1) ∈ R
2r−2, ηi = (ηi,1, ηi,2)

T ∈ R
2, coefficients

(ci,1, ci,2) to be properly designed, and estimated variables ê = col(ê1, . . . , êr ) ∈ R
r ,

given by
ê = Γ η

with Γ defined in (6.18). As in the classical observer, it can be shown (see [1]) that if
the r + 1 time derivative of e1 is bounded, the estimation dynamics of the previous
observer can be rendered arbitrarily fast by increasing k and the variables ê provide
a practical estimation of (e1, . . . , er ) with an asymptotic estimation error that can be
arbitrarily decreased by also increasing k. To this end the coefficients (ci,1, ci,2)must
be fixed so that the matrix J defined as the M in (6.19) with d replaced by r and with
the coefficients (ai,1, ai,2) in the definitions of Li and Qi replaced by (ci,1, ci,2) is
Hurwitz (the procedure in Appendix 6.7.1 can be used to this purpose). If compared
with the classical high-gain dirty derivatives observer, the structure (6.26) has the
remarkable feature of having the high-gain parameter k powered just up to the order
2, regardless the value of r , at the price of extending the dimension of the observer
to 2r − 2.

It turns out that the estimate ê provided by (6.26) and properly saturated can
be used to replace the ei ’s in (6.25) to obtain a pure error-feedback regulator. In
particular, the latter assumes the form
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ξ̇ = φ(ξ) + Ψ v

ϑ̇1 = −ga1,2ϑ1 + ês3 + g2a1,1ês1 + ga1,2ês2
ϑ̇i = −gai,2ϑi + g2ai1ϑi−1 + êsi+2 + gai,2êsi+1 i = 2, . . . , r − 3
u = γ (ξ) + v

v = −κ êsr + g2ar−2,1ϑr−3 + gar−2,2êsr−1

(6.27)

with ês = col(ês1, . . . , ê
s
r ) ∈ R

r defined as

ês = σ̄L(Γ η) (6.28)

in which σ̄L(·) : Rr → R
r is a piecewise linear saturation mapping defined as

σ̄L(s) = col(σ1(s1), . . . , σr (sr )) with σi : R → R defined as σi (si ) = si if |si | ≤ L
and σi (si ) = L sign(si ) otherwise, where L is a positive constant to be fixed. It turns
out that the saturation level L and the high-gain parameter k can be tuned to have the
regulation objective fulfilled as detailed in the next final proposition whose proof is
deferred to Appendix 6.7.4.

Proposition 6.4 Consider the closed-loop system given by (6.20) and (6.26)–(6.27)
with the triplet (φ(·), Ψ, γ (·)) taken as in (6.15)–(6.16), where the function ϕ(·) in
the definition of φ(·) is assumed to fulfill (6.8) with ν = 0. Let the initial conditions of
the system be taken in the compact set W × Z × (E1 × · · · × Er ) × Θ × Σ with Σ

a compact set of R2r−2. Let the coefficients (ai,1, ai,2), i = 1, . . . , d − 1, (bi,1, bi,2),
i = 1, . . . , r − 2, and (ci,1, ci,2), i = 1, . . . , r − 1 be fixed so that the matrices M,
H and J are Hurwitz. Let g, and accordingly � and κ , be fixed according to Propo-
sitions 6.2, 6.3 and Theorem 6.1 so that the set A × {0} × {0} is asymptotically
and locally exponentially stable for (6.20) and (6.25) with domain of attraction
containing W × Z × (E1 × · · · × Er−1) × Θ . Then, there exists a L� and, for all
L ≥ L�, a k� such that for all k ≥ k� the set A × {0} × {0} × {0} is asymptoti-
cally and locally exponentially stable for (6.20) and (6.27) with domain of attraction
containing W × Z × (E1 × · · · × Er ) × Θ × Σ .

For sake of simplicity, the previous proposition has been given in the case of asymp-
totic regulation, namely in case the function ϕ(·) embedded in the internal model
makes (6.8) satisfied with ν(w) = 0. It is not difficult to show that, in case ν(w) 
= 0,
the same error-feedback controller achieves practical regulation with a bound on the
asymptotic error of the form (6.14). It is worth also noting that the overall regulator
has dimension 2d + 3r − 7 (being 2d − 2 the dimension of ξ , r − 3 the dimension
of ϑ , and 2r − 2 the dimension of η) with the high-gain parameters, which are �, g,
k and κ , that are powered at most up to the order 2 regardless the value of d and r .

6.5 Simulation Results

We consider the problem of rejecting a disturbance d acting on the input of the linear
system
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ż = A z + B (u − d)
e = C z

with (A, B,C) a controllable and observable triplet and the disturbance d generated
by the nonlinear Duffing oscillator

ẅ′ = −αw′3 − βw′
d = w′ (6.29)

with α and β uncertain parameters. In this specific case the friend is c(w′) = w′.The
triplet (A, B,C) is taken so that the relative degree is 4, namelyCB = 0,CAB = 0,
CA2B = 0 and CA3B 
= 0. In the simulations, we considered

A =

⎛

⎜
⎜
⎝

0 1 0 0
0 0 1 0
0 0 0 1
0.2 −0.6 −0.5 1

⎞

⎟
⎟
⎠ , B =

⎛

⎜
⎜
⎝

0
0
0
1

⎞

⎟
⎟
⎠ , C = (

1 0 0 0
)
.

Using the arguments in [5], system (6.29) can be shown to be immersed into a system
of the form

ẇ = Fw + Gϕ(w) , d = Hw (6.30)

with w ∈ R
6, (F,G, H) triplet of dimension 6 in prime form, and ϕ(·) defined as

ϕ(w) = −α̂(w)
(
36w2

2w3 + 18w1w
2
3 + 24w1w2w4 + 3w2

1w5
) − β̂(w)w5

(6.31)
with (α̂(w), β̂(w)) defined as

(α̂(w), β̂(w))T = (ϒ(w)Tϒ(w))−1ϒ(w)Tw[3,6]

with

ϒ(w) =

⎛

⎜⎜
⎝

−w3
1 −w1

−3w2
1w2 −w2

−3w3w
2
1 − 6w1w

2
2 −w3

−3w4w
2
1 − 18w1w2w3 − 6w3

2 −w4

⎞

⎟⎟
⎠ , w[3,6] =

⎛

⎜⎜
⎝

w3

w4

w5

w6

⎞

⎟⎟
⎠ .

In fact, it is easy to check that any behavior d(t) generated by (6.29) with initial
condition (w′(0), ẇ′(0)) can be also generated by (6.30) with initial conditions taken
as

w1(0) = w′(0) , w2(0) = ẇ′(0) , w3(0) = −αw′(0)3 − βw′(0)
w4(0) = −3αw′(0)2ẇ′(0) − βẇ′(0)
w5(0) = −6αw′(0)ẇ′(0)2 − 3αw′(0)2w3(0) − βw3(0)
w6(0) = −6αẇ′(0)2 − 18αw′(0)ẇ′(0)w3(0) − 3αw′(0)2w4(0) − βw4(0)
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Table 6.1 Asymptotic norm of the error in the various scenarios normalized with respect to the
value of the asymptotic error when no internal model is present

d 0 2 3 4 5 6

|e|a 1 10−3 10−4 0.5 · 10−4 10−5 0

Furthermore, it turns out that α = α̂(w) and β = β̂(w) for allw ∈ R
6. The stabilizer

with state (ϑ, η) has dimension 7 (with θ having dimension 1 and η having dimension
6) with the coefficients bi and ci that, according to the procedure in Appendix 6.7.1,
have been chosen as b1 = (0.24, 0.5), b2 = (1, 0.5), c1 = (4, 10.6), c2 = (4, 3.5),
c3 = (4, 1.16). Different designs of internal model at increasing dimension have
been then simulated. In particular, we implemented the internal model (6.15)–(6.17)
in six scenarios in which the dimension d has been taken as d = 0 (namely no
internal model is present), d = 2, d = 3, d = 4 and d = 5 with in all cases the
ϕs(·) in the expression of φ(·) taken as ϕs(·) = 0. Practical regulation is expected
in all these cases. We also simulated the case in which d = 6 and the ϕ(ξ) in the
expression of φ(·) is the one in (6.31) saturated at the value L = 50. In this case
exact regulation is expected. In all the scenarios, the coefficients ai of the low-power
internal model have been taken as a1 = (3.8, 16.4), a2 = (3.8, 6.5), a3 = (3.8, 3.2),
a4 = (3.8, 1.6), a5 = (3.8, 0, 6). The high-gain parameters in the simulation have
been taken as g = 3, � = 7, κ = 40, k = 103. The initial conditions have been taken
as (w′(0), ẇ′(0)) = (1, 0), z(0) = (1, 1, 1, 1) and the origin for θ , η and ξ . The
result of the asymptotic error are shown in Table6.1 where we denoted with | · |a the
asymptotic norm of a signal, i.e. |x |a := lim supt→∞ |x(t)|. The values of the errors
are normalized with respect to the value of the output e when the internal model is
not present, namely with d = 0. We can see that by augmenting the dimension of
the internal model the asymptotic norm of the error decreases. In the last scenario
asymptotic regulation is achieved and |e|a = 0.

6.6 Conclusions

The problem of output regulation for the class of nonlinear systems that have a well-
defined relative degree and are minimum-phase has been investigated. The paradigm
of this work follows the main idea of [3] where it has been shown that the theory of
high-gain observers can be used for the design of internal models. In the recent work
[1], it has been shown that it is possible to design, by means of dynamic extension,
a high-gain observer with a high-gain parameter that is raised up to the order two
regardless the dimension of the observed system. Here, by following the idea of [1],
we presented a newdesignmethodology for internalmodel-based regulators based on
“low-power” high-gain tools. Themethodology of [1] has been successfully extended
in two directions. First, we showed that the internal model can be designed by fol-
lowing the high-gain observer paradigm of [3] with the new low-power approach of
[1]. Second, we showed that this methodology can be extended also to the design
of the stabilizer. In particular, for systems having a high relative degree, we showed
that a static state-feedback, which involves a high-gain parameter that is raised up to
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the order of the relative degree, can be transformed into a dynamic state-feedback
which involves a high-gain parameter that is raised up only to order two. A simple
example has been added to show the effectiveness of the new design. We considered,
for the sake of simplicity, the class of single-input single-output nonlinear systems.
However, it is worth noting that the same tools can be easily applied to multi-input
multi-output nonlinear systems which have the same number of inputs and outputs
satisfying a “positivity” condition on the high-frequency gain matrix (see [2]).

6.7 Appendix

6.7.1 Choice of Parameters

With the definitions of Li , Qi and N given in Sect. 6.3, let the matrices Mi ∈ R
2i×2i

be defined as M1 = L1 and

Mi :=

⎛

⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

L1 N 0 . . . . . . 0

Q2 L2 N
. . .

...

0
. . .

. . .
. . .

. . .
...

...
. . . Q j L j N

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . . Qi−1 Li−1 N
0 . . . . . . . . . 0 Qi Li

⎞

⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟⎟
⎠

(6.32)

for i = 2, . . . d − 1. Note that Md−1 = M with M defined in (6.19). Furthermore,
let Gi (s), i = 1, . . . , d − 1, be the transfer functions defined as

Gi (s) := B�
2(i−1)(s I2(i−1) − Mi−1)

−1B2(i−1) ,

in which B2(i−1) is the column vector of dimension 2(i − 1) whose elements are all
zero except the last element that is 1, and and let γi be defined as

γi := max
ω∈R

|Gi ( jω)| . (6.33)

Then we have the following lemma.

Lemma 6.1 Let the coefficients (ai,1, ai,2) be chosen according to the following
recursive algorithm

• Let a11 > 0 and a12 > 0 be any positive real numbers;

• let ai1 = a(i−1)1 and let ai2 > 0 be chosen such that ai2 <
ai1
γi−1

.

Then the matrices Mi , i = 1, . . . , d − 1, are Hurwitz.
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Proof The proof relies on small gain arguments. At the generic step i-th, the matrix
Mi is the state matrix of the system resulting from the feedback interconnection,
obtained by ui = yi−1, and ui−1 = yi , of the following systems

{
ẋi−1

yi−1

=
=

Mi−1xi−1 + B2(i−1)ui−1

B�
2(i−1)xi−1{

ẋi
yi

=
=

Li xi + Kiui
B�xi

in which B = (
0 1

)T
and Ki = (

ai,1 ai,2
)T
. With Hi (s) the transfer function of the

second subsystem, an elementary computation shows that

max
ω∈R

|Hi ( jω)| = ai,2
ai,1

from which the result follows by small gain arguments. �

6.7.2 Proof of Proposition 6.2

Proof By the indicated choices of the triplet (φ(·), Ψ, γ (·)) in (6.15)–(6.17), it turns
out that the χ subsystem in (6.11) reads as

χ̇1 = S χ1 + N χ2 + D2(�) a1

(
q(w, z, 0)

b(w, z, 0)
− C χ1

)

χ̇i = S χi + N χi+1 + D2(�) ai (BT χi−1 − C χi ) , i = 2, . . . , d − 2
χ̇d−1 = S χd−1 + B ϕs(Γ χ) + D2(�) ad−1 (BT χd−2 − C χd−1)

(6.34)

where (S, B,C) is a triplet in prime form of dimension 2, ai = (
ai,1 ai,2

)T
, D2(�) =

diag(�, �2), and N = diag(0, 1). By changing variables as

χi �→ χ̃i := �2−i D2(�)
−1

(
χi − τe,i (w)

)
i = 1, . . . , d − 1 ,

an easy calculation shows that system (6.34) transforms as

˙̃χ = �Mχ̃ + 1

�d−1
B2d−2Δ�(χ̃, w) + 1

�d−1
ν(w) + �L2d−2δ(w, z) (6.35)

in which χ̃ = col (χ̃1 , . . . , χ̃d−1),

Δ�(χ̃, w) := ϕs(D(�)χ̃ + τ(w)) − ϕ(τ(w))

with D(�) = diag( 1
�
, 1, �, . . . , �d−3) ⊕ D2(�), L2d−2 = col

(
a1 0 . . . 0

)
and
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δ(w, z) := q(w, z, 0)

b(w, z, 0)
− c(w) .

Note that, using the fact that ϕ(·) is uniformly Lipschitz on τ(W ) and that ϕs(·) is
bounded, it follows that there exists a constant r > 0 such that

1

�d−1
‖B2d−2Δ�(χ̃, w)‖ ≤ r‖χ̃‖

for all χ̃ ∈ R
2d−2, w ∈ W and � ≥ 1. From this and the fact that M is Hurwitz,

standard Lyapunov arguments can be used to prove that the system (6.35) is Input-
to-State Stable with respect to the inputs ν(·) and δ(·, ·) without restrictions on the
initial state and on the input and with a linear asymptotic gains that depend on 1/�d

for the input ν(·), and not dependent on � for the input δ(·, ·). The claimof Proposition
6.2 then follows by Assumption 6.1 and by the definition of χ̃ . �

6.7.3 Proof of Proposition 6.3

Proof We consider the change of variables

col(e1, . . . , er−1, θ) �→ ẽ = col
(
ẽ1 . . . ẽr−2

) ∈ R
2r−4

in which ẽi ∈ R
2 are defined as

ẽ1 :=
(

e1
e2 − ϑ1

)
, ẽi :=

(
ϑi−1

ei+1 − ϑi

)
, i = 2, . . . , r − 3 , ẽr−2 :=

(
ϑr−3

er−1

)
.

By rescaling ẽ into ẽ′ = col
(
ẽ′
1 . . . ẽ′

r−2

)
with ẽ′

i ∈ R
2 defined as

ẽ′
i :=

(
g1−i 0
0 g−i

)
ẽi

it turns out that the closed-loop system (6.21)–(6.22) reads as

ẇ = s(w)

ż = f (w, z, ẽ11)˙̃e′ = g H ẽ′

by which, using Assumption 6.1, the proof of the result follows by using classical
Lyapunov arguments. �
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6.7.4 Proof of Proposition 6.4

Proof The proof follows standard paradigms in the field of output feedback stabi-
lization for nonlinear systems and it is thus just sketched. Consider system (6.26)
and the change of variables

(
ηi,1
ηi,2

)
�→ η̃i =

(
η̃i,1
η̃i,2

)
:=

(
ηi,1 − ei

ηi,2 − ei+1

)
i = 1, . . . , r − 1.

Furthermore, consider system (6.27) and add and subtract the term ê3 + g2a1,1ê1 +
ga1,2ê2 from the θ̇1 dynamics, the term êi+2 + gai,2êi+1 from the θ̇i dynamics, i =
2, . . . , r − 3, and the term êr + gar−2,2êr−1 from the expression of v. By rescaling
the variables η̃i

η̃i �→ ζi := k2−i D2(k)
−1η̃i i = 1, . . . , r − 1

with D2(k) = diag(k, k2), it turns out that the closed-loop system reads as

ẇ = s(w)

ẋ = F(w, x) + Δk(x, ζ )

ζ̇ = k J ζ + 1

kr−1
B δk(w, x, ζ )

in which x := col(z, ξ, (e1, . . . , er ), ϑ) ∈ R
n+2r+d−3, ζ := col(ζ1 . . . , ζr − 1),

Δk(·) and δk(·) are appropriately defined functions (dependent on k) and F(·, ·)
is such that, by construction, the set B × {0} × {0} is asymptotically and locally
exponentially stable with a domain of attraction containing the set W × � × E1 ×
· · · × Er × Θ . As far as the functions Δk(·) and δk(·) are concerned, it is easy to see
from their definition that for any compact set X ⊂ R

n+2r+d−3 and Z ∈ R
2r−2 there

exist positive constants d1 and d2 (not dependent on k) and a value of L� > 0 such
that for all L ≥ L�

Δk(x, 0) = 0 , ‖Δk(x, ζ )‖ ≤ d1

‖ 1

kr−1
Bδk(, x, ζ )‖ ≤ d2‖ζ‖ ∀x ∈ X , ζ ∈ Z , k > 0 .

From this the result of the proposition follows by standard Lyapunov arguments.
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Chapter 7
Passivity-Based Control
of Mechanical Systems

Romeo Ortega, Alejandro Donaire and Jose Guadalupe Romero

Abstract Stabilization of mechanical systems by shaping their energy function is

a well-established technique whose roots date back to the work of Lagrange and

Dirichlet. Ortega and Spong in 1989 proved that passivity is the key property under-

lying the stabilization mechanism of energy shaping designs and the, now widely

popular, term of passivity-based control (PBC) was coined. In this chapter, we briefly

recall the history of PBC of mechanical systems and summarize its main recent

developments. The latter includes: (i) an explicit formula for one of the free tuning

gains that simplifies the computations, (ii) addition of PID controllers to robustify

and make constructive the PBC design and to track ramp references, (iii) use of PBC

to solve the position feedback global tracking problem, and (iv) design of robust and

adaptive speed observers.

R. Ortega (✉)

Laboratoire des Signaux et Systèmes, CNRS–SUPELEC, Plateau du Moulon,

91192 Gif–sur–Yvette, France

e-mail: ortega@lss.supelec.fr

A. Donaire

PRISMA Lab, Dipartimento di Ingegneria Elettrica e Tecnologie dell’Informazione,

Università di Napoli Federico II, Via Claudio 21, 80125 Naples, Italy

e-mail: alejandro.donaire@newcastle.edu.au

A. Donaire

School of Engineering, The University of Newcastle, Callaghan, Australia

J.G. Romero

Departamento Académico de Sistemas Digitales, Instituto Tecnológico Autónomo de

México-ITAM, Rio Hondo No. 1, 01080 Distrito Federal, Mexico

e-mail: jose.romerovelazquez@itam.mx

© Springer International Publishing AG 2017

N. Petit (ed.), Feedback Stabilization of Controlled Dynamical Systems,

Lecture Notes in Control and Information Sciences 473,

DOI 10.1007/978-3-319-51298-3_7

167



168 R. Ortega et al.

7.1 Background on Passivity-Based Control

7.1.1 General Systems

Passive systems are a class of dynamical systems in which the energy exchanged

with the environment plays a central role. In passive systems, the rate at which the

energy flows into the system is not less than the increase in storage. In other words, a

passive system cannot store more energy than is supplied to it from the outside, with

the difference being the dissipated energy—a feature that is captured by the energy

balance equation of the system. It is clear then that passivity is intimately related with

the stability properties of the system. A far-reaching interpretation of the action of a

controller is to view it as a process of energy exchange between two interconnected

systems [53, 69]. If the overall energy balance is positive, in the sense that the energy

generated by one subsystem is dissipated by the other one, the interconnection will

be stable. This property explains the interest of passivity as a basic building block

for control of dynamical systems. See [45] for an early account of the applications

in control of input–output, and in particular passivity, theory.

The first attempts to use passivity in control theory are due to Fradkov [24] who

gave an answer to the question of feedback passivation of linear time-invariant (LTI)

systems. To the best of our knowledge, the use of feedback passivation for stabi-
lization of nonlinear systems was first reported in [50, 55], where the work of [41]

and the nonlinear Kalman–Yakubovich–Popov lemma of [28] are used as design

tools for adaptive stabilization of non-feedback linearizable, but passifiable, nonlin-

ear systems. It should be pointed out that [41] is the first paper where the fundamental

concepts of stabilization, existence of Lyapunov functions and optimality are shown

to be closely connected via passivity. Stabilization of cascaded systems via feedback

passivation was first proposed in [44] and later generalized
1

in the groundbreaking

paper [10] where the nonlinear version of Fradkov’s result was reported.

7.1.2 Fully Actuated Mechanical Systems: Potential Energy
Shaping

Analyzing the stability of mechanical systems using its total energy function dates

back to Lagrange, Dirichlet, and Lord Kelvin—see [35] for a fascinating review of

this circle of ideas. In the control context this approach was first used by Takegaki

and Arimoto in the seminal paper [65] who proposed to shape the potential energy

and to add damping to solve the point-to-point positioning task for a fully actuated

robot manipulator. This result had a great impact in the robotics community because

the controller resulting from this technique is a simple PD law, which ensures global

asymptotic stability (GAS) of the desired robot position in spite of its highly com-

1
See Remark 5.6 of [10].
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plicated nonlinear dynamics. Interestingly Jonckeere [29], working independently of

Takegaki and Arimoto, suggested also the use of PD-like energy shaping and damp-

ing injection controllers for stabilization of a class of Euler–Lagrange systems, which

includes mechanical, electrical and electromechanical systems.

Not surprisingly, though unknown to the previous authors, the key property under-

lying the success of such a simple scheme is the passivity of the system dynamics. As

proved in Proposition 2.2.5 of [51] a broad class of Euler–Lagrange systems define

passive maps from the external forces to the derivative of the generalized coordi-

nates, which in the case of mechanical systems are the coordinate velocities. Invok-

ing this property the derivative action of the aforementioned PD is assimilated to a

constant feedback around the passive output, while the proportional one adds a term

to the systems potential energy to assign a minimum at the desired equilibrium, mak-

ing the total energy function a suitable Lyapunov function. It should be mentioned

that this energy-shaping plus damping injection construction proposed 34 years ago

is still the basis of most developments in passivity-based control (PBC). This term,

which now enjoys a wide popularity, was coined in [49] to describe a controller

design procedure where the control objective is achieved via passivation.

Although the basic passivity property mentioned above suffices to explain the

action of the PD controller of Takegaki and Arimoto, it is necessary to invoke another

property to analyze from the passivity viewpoint the tracking controller of [62]—

namely the now well known “skew-symmetric” property, which was first reported

by Koditschek in [34]. Using this property it was first established in [31] (see also

[32]) that robot manipulators—without potential energy—define passive maps from

external forces to the filtered tracking error cleverly introduced in [62]. Since gradi-

ent parameter estimators also define passive maps [36] it was then possible to ana-

lyze, using an input–output framework, the adaptive control scheme of [62]. The

skew-symmetric property was defined using the Christoffel symbols in [49], where

the proof of passivity of the (modified) robot dynamics, with the potential energy

term, appeared first.

The skew-symmetric property is the fundamental component of the recent devel-

opments in PBC of network and vision-based robotics [27, 43] as well as the so-

called “Standard PBC” that is elaborated in [51] for a wide range of applications,

including electromechanical systems, power electronic systems and, more recently,

windmill generation systems [14, 40].

7.1.3 Underactuated Mechanical Systems: Total Energy
Shaping

While fully actuated mechanical systems admit an arbitrary shaping of the potential

energy by means of feedback, and therefore stabilization to any desired equilibrium,

this is in general not possible for underactuated systems. In certain cases this prob-

lem can be overcome by also modifying the kinetic energy of the system. This idea
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of total energy shaping was proposed in [2] where the first solution to the problem

of position feedback stabilization of robots with flexible joints was solved modify-

ing both the kinetic and potential energies of the manipulator and adding damping

through the controller. See [46] for an interpretation of this controller as an intercon-

nection of passive dynamical systems—an approach further elaborated in [23, 53].

See also [64] for similar developments and Sect. 3.2 of [51] for the connection with

the approximate differentiation scheme of [33].

Total energy shaping is achieved in [2, 23, 46, 53] viewing the controller as

another dynamical system, with its own energy function, interconnected with the

system to be controlled. If the interconnection is power preserving the energy and

dissipation functions of plant and controller add up—achieving the desired energy

shaping plus damping injection. It is also possible to modify the total energy and

add damping via static state feedback, which is the approach adopted in the method

of controlled Lagrangians (CL) [8] and interconnection and damping assignment

(IDA) PBC [52], see also the closely related work [25]. In both cases stabilization

(of a desired equilibrium) is achieved identifying the class of systems—Lagrangian

for CL and Hamiltonian for IDA-PBC—that can possibly be obtained via feedback.

The conditions under which such a feedback law exists are called matching condi-
tions, and consist of a set of nonlinear partial differential equations (PDEs). In case

these PDEs can be solved the original control system and the target dynamic system

are said to match.

7.1.4 IDA-PBC and the Controlled Lagrangian Methods

Given several erroneous accounts of the history of the CL and the IDA-PBC meth-

ods reported in the literature in this subsection we give precise references to place

them in their right perspective, for further technical details see [7]. In the original

formulation of CL reported in [8] the (mathematically motivated) concern of pre-

serving the symmetry of the system gives rise to two serious problems. First, in

terms of energy shaping, symmetry preservation translates into the modification of

the kinetic energy only, leading to designs where the closed-loop inertia matrix is

negative definite. Leaving aside the fact that this is a rather unnatural situation for

a method that claims the “preservation of the physical structure”, the unavoidable

presence of friction that pushes the state towards a minimum of the energy, renders

the design practically useless, see [70]. A second problem is that it stabilizs relative
equilibria only—for the cart–pendulum system this means that only the pendulum

position is stabilized. The overcome these problems potential energy shaping was

also included in [6] and later adopted under the name “symmetry-breaking poten-

tial” in [9]. It should, however, be mentioned that if the design is carried out using

the so-called simplified matching equations—which were introduced in [8] to avoid

the need to solve PDEs—the first problem is still present, a fact that was recognized

in [5, 6] where the need to solve the PDEs is stressed.
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The class of mechanical Hamiltonian systems considered in IDA-PBC strictly

contains the Lagrangian systems proposed in the CL method of [8, 9]. Hence, it is

not surprising that the latter is a special case of the more general IDA-PBC method.

Indeed, the Hamiltonian formulation of IDA-PBC allows the inclusion of gyro-
scopic forces in the target dynamics, which translates into the presence of a free

skew-symmetric matrix in the matching equation—making simpler their solution.

In Proposition 7 of [7] it shown that the Lagrangian systems considered in the CL

method correspond to a special selection of the aforementioned matrix. In [13], see

also [7], the CL method is extended via the inclusion of external forces into the

closed-loop Lagrangian system, rendering the CL method equivalent to IDA-PBC,

both methods requiring the solution of the same PDEs. Since both methods are equiv-

alent, in the sequel we will restrict our attention to IDA-PBC.

Caveat emptor: Because of space constraints all proofs of the claims are omitted.

The interested reader is referred to the papers where the proofs are given.

Notation: Unless indicated otherwise, all vectors in the paper are column vectors.

For x ∈ ℝn
, S ∈ ℝn×n

, S = S⊤
> 0, we denote |x|2 ∶= x⊤x and ‖x‖2S ∶= x⊤Sx. Given

n,m ∈ ℕ, we let In denote the n × n identity matrix, 0n×m the n × m matrix of zeros

and ei ∈ ℝn
the i–th Euclidean basis vector of ℝn

. Given A ∈ ℝn×m
, we let (A)ij, (A)j

and (A)i denote the ijth element, jth column, and ith row of A, respectively. To sim-

plify the expressions, the arguments of all mappings—that are assumed smooth—

will be explicitly written only the first time that the mapping is defined. For a scalar

function H∶ℝn → ℝ, we define∇xi
H ∶= 𝜕H

𝜕xi
and∇xH ∶=

(
𝜕H
𝜕x

)⊤

—when clear from

the context the subindex in ∇ will be omitted.

7.2 Basic IDA-PBC

7.2.1 Design Procedure

As indicated in the previous section IDA-PBC was introduced in [52] to control

underactuated mechanical systems described in port-Hamiltonian (pH) form by

𝛴 ∶
[

q̇
ṗ

]

=
[
0n×n In
−In 0n×n

]

∇H(q, p) +
[
0n×m
G(q)

]

u, (7.1)

where q, p ∈ ℝn
are the generalized position and momenta, respectively, u ∈ ℝm

is

the control, G∶ℝn → ℝn×m
with rank(G) = m < n, the function H∶ℝn ×ℝn → ℝ,

H(q, p) ∶= 1
2

p⊤ M−1(q) p + V(q) (7.2)
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is the total energy with M∶ℝn → ℝn×n
, the positive definite inertia matrix and

V∶ℝn → ℝ the potential energy. The control objective is to generate a state feed-

back control that assigns to the closed-loop the stable equilibrium (q, p) = (q⋆, 0),
q⋆ ∈ ℝn

. This is achieved in IDA-PBC via a two-step procedure. The first one, called

energy shaping, determines a state feedback to match the pH target dynamics

𝛴d ∶
[

q̇
ṗ

]

=
[

0n×n M−1(q)Md(q)
−Md(q)M−1(q) J2(q, p)

]

∇Hd(q, p) (7.3)

with the new total energy function Hd∶ℝn ×ℝn → ℝ,

Hd(q, p) ∶=
1
2

p⊤ M−1
d (q) p + Vd(q), (7.4)

where Md∶ℝn → ℝn×n
is positive definite, Vd∶ℝn → ℝ verifies

q
⋆
= argminVd(q), (7.5)

and J2∶ℝn ×ℝn → ℝn×n
fulfills the skew-symmetric condition

J2(q, p) = −J⊤2 (q, p).

The forces associated with this matrix are the gyroscopic forces mentioned in

Sect. 7.1.4, which distinguish IDA-PBC from the original CL method proposed in

[8].

It is easy to see that (q⋆, 0) is a stable equilibrium point of (7.3) with Lyapunov

function Hd. To determine the energy-shaping term of the control we equate the

right-hand sides of (7.1) and (7.3) to obtain the so-called matching equations

∇qH − G u = Md M−1 ∇qHd − J2 M−1
d p.

As shown in [52] these equations are equivalent to the solution of the kinetic energy

(KE) PDE

G⟂ {Md M−1 ∇q(p⊤M−1
d p) − 2 J2 M−1

d p
}
= −G⟂∇q(p⊤M−1p), (7.6)

the potential (PE) PDE

G⟂{∇V − Md M−1 ∇Vd} = 0s, (7.7)

and the (univocally defined) control

u𝙴𝚂 = (G⊤ G)−1 G⊤
[
∇qH − Md M−1 ∇qHd + J2 M−1

d p
]
,



7 Passivity-Based Control of Mechanical Systems 173

where G⟂∶ℝn → ℝs×n
, s ∶= n − m is a full rank left annihilator of G, i.e., G⟂G =

0s×m and rank(G⟂) = s. It is interesting to note that all matrices G⟂
can be generated

as G⟂ = UU2, where U ∈ ℝs×s
is an arbitrary full rank matrix and U2 ∈ ℝn×s

is

determined by the singular value decomposition of G as

G =
[

U1 U2
]
[

𝛴 0m×s
0s×m 0s×s

]
[

V1 V2
]⊤

.

The second step, called damping injection, is aimed at achieving asymptotic sta-

bility. This step is carried out feeding back the natural passive output, i.e., adding to

the energy shaping control a term of the form

u𝙳𝙸 ∶= −KPG⊤M−1
d p,

with KP ∈ ℝm×m
positive definite. With this new term we get

Ḣd = −‖G⊤M−1
d p‖2KP

≤ 0.

Asymptotic stability follows if the output G⊤M−1
d p is detectable [66]. The overall

control signal, then, is given as u = u𝙴𝚂 + u𝙳𝙸.

7.2.2 A Formula for the Gyroscopic Forces and the Number
of KE–PDEs

The success of IDA-PBC relies on the possibility of solving the PDEs (7.6) and (7.7).

In this subsection we concentrate our attention on the KE-PDE that, as discussed in

Sect. 7.1.4, is simplified with the inclusion of gyroscopic forces, i.e., the free matrix

J2. In [15] a compact representation of the KE–PDE and an explicit expression for J2
are obtained as follows. First, note that to be consistent with (7.6), whose remaining

terms are quadratic in p, the free matrix J2 must be linear in p. Hence, without loss

of generality we can take J2 of the form

J2(q, p) =
n∑

i=1
e⊤i M−1

d p Si(q), (7.8)

where Si∶ℝn → ℝn×n
verify Si(q) = −S⊤

i (q). To streamline the presentation of the

result of [15] we denote the columns of G⟂
as

G⟂(q) =∶
⎡
⎢
⎢
⎣

v⊤1 (q)
⋮

v⊤s (q)

⎤
⎥
⎥
⎦

,
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where vk ∶ ℝn → ℝn
, k ∈ s̄ ∶= {1,… , s} is given by vk ∶= col(vki). Also, we intro-

duce the mappings

Ak ∶ ℝn → ℝn×n
, Bk ∶ ℝn → ℝn×n

, 𝛤kj ∶ ℝn → ℝ, Wk ∶ ℝn → ℝn×n
.

as

Ak ∶= Md

( n∑

i=1
vki ∇qi

M−1

)

Md, Bk ∶= Md

( n∑

i=1
𝛤ki ∇qi

M−1
d

)

Md, k ∈ s̄

𝛤kj ∶=
n∑

i=1
vki (Md M−1)ij, Wk ∶=

⎡
⎢
⎢
⎣

v⊤k S1
⋮

v⊤k Sn

⎤
⎥
⎥
⎦

+
⎡
⎢
⎢
⎣

v⊤k S1
⋮

v⊤k Sn

⎤
⎥
⎥
⎦

⊤

, k ∈ s̄, j ∈ n̄ ∶= {1,… , n}.

The proof of the Proposition below is given in [15].

Proposition 7.1 The KE–PDE (7.6) is equivalent to the PDEs

Bk(q) − Ak(q) = Wk(q), k ∈ s̄. (7.9)

□□□

Note that the left-hand side of (7.9) is a function of the unknown matrix Md (and

partial derivatives of its components), while the right-hand side of (7.9) is indepen-
dent of the unknown matrix Md (and partial derivatives of its components). Hence

the number of free elements on the right-hand side of (7.9) entirely determines the

number of KE-PDE’s to be solved. It is shown in [15] that this number equals

1
6

s (s + 1) (s + 2), (7.10)

which coincides with the number reported in [11], see also [12], where it is proposed

to consider other forces—besides the gyroscopic ones captured by J2. It is also impor-

tant to underscore that (7.9) gives an explicit formula for J2, that was presented in a

different form in [1]. It should be mentioned that, even though the number of PDEs to

be solved remains unaffected, the inclusion of more general type of forces proposed

in [11] effectively extends the realm of application of IDA-PBC. This issue has been

elaborated in [12, 21], see also [26] where a far more general method is proposed.

7.2.3 Solving the Matching Equations

A lot of research effort has been devoted to the solution of the matching Eqs. (7.6) and

(7.7). In [8] the authors give a series of conditions on the system and the assignable

inertia matrices such that the PDEs can be solved. However, as pointed out in the
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previous subsection these “solutions” lead to negative definite inertia matrices. Ana-

lytical techniques to solve the PDEs have been reported in [6, 7] and some geometric

aspects of the equations are investigated in [37].

The case of underactuation degree one systems, i.e., s = 1, has been studied in

detail in [1, 5]. In [1] it was proved that, if the inertia matrix and the force induced

by the potential energy (on the unactuated coordinate) are independent of the unac-

tuated coordinate, then the PDEs can be explicitly solved. In [39] explicit solutions

are also given for a class of two degrees-of-freedom systems, that includes the inter-

esting Acrobot example. It is important to underscore that the IDA-PBC reported in

[39] ensures asymptotic stability of the upward Acrobot position with a domain of

attraction including a region in the lower half plane. That is, the IDA-PBC can swing

up the Acrobot without switching. To the best of the authors’ knowledge this is the

first such result for any pendular system.

Particularly troublesome is the PDE associated to the kinetic energy which is non-

linear and nonhomogeneous and the solution, that defines the desired inertia matrix,

must be positive definite. In [68] it is shown that we can eliminate or simplify the

forcing term G⟂∇q(p⊤M−1p) in this PDE modifying the target dynamics and intro-

ducing a change of coordinates in the original system. In the paper the examples of

pendulum on a cart and Furuta’s pendulum are used to illustrate the results. Further-

more, it is shown that, in the particular case of transformation to the Lagrangian coor-

dinates, it is possible to simplify the PDEs if and only if the Coriolis and centrifugal

forces of the system enter into the kernel of the input matrix—see Sect. 7.3.3 where

this assumption is invoked to design a robust IDA-PBC for underactuated systems.

7.3 Disturbance Rejection of IDA-PBC via Nonlinear PID

It is widely recognized that IDA-PBC designs are robust against parameter uncer-

tainties and unmodelled dynamics, e.g., passive effects like friction. However, the

(unavoidable) presence of external disturbances degrades its performance, shifting

the equilibrium of the closed-loop and, possibly, inducing instability. For this rea-

son the problem of robustification of IDA-PBC vis-à-vis external disturbances is of

primary importance. In this section we recall some results that have been reported

to address this problem. Not surprisingly the proposed answer is the addition of

an outer-loop integral action. However, the nonlinear nature of the problem makes

nonobvious the choice of the integral action.

7.3.1 Integral Action Around the Passive Output

To broach the subject let us start by recalling a well-known result of disturbance

rejection for general pH systems reported in [47].
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Proposition 7.2 Consider the perturbed pH system

ẋ = F(x)∇H(x) + g(x)(u + d2)
y = g⊤(x)∇H(x) (7.11)

where x ∈ ℝnx , u ∈ ℝm, g ∶ ℝnx → ℝnx×m is the full rank input matrix, d2 ∈ ℝm is a
constant disturbance the matrix F is such that F(x) + F⊤(x) ≤ 0, and H ∶ ℝnx → ℝ
is the energy function verifying

x⋆ = argminH(x).

Introduce an integral control around the passive output y as

𝜂̇ = KIy
u = −𝜂, (7.12)

where KI > 0 is an arbitrary tuning gain.
(i) The equilibrium (x⋆, d2) is stable.

(ii) There exists a (closed) ball, centered in (x⋆, d2) such that for all initial states
(x(0), 𝜂(0)) ∈ ℝn ×ℝm inside the ball the trajectories are bounded and
limt→∞ y(t) = 0.

(iii) If, moreover, y is a detectable output for the closed-loop system (7.11), (7.12),
the equilibrium is asymptotically stable.

The properties (i)–(iii) are global if H(x) is positive definite and radially
unbounded. □□□

The following remarks are in order.

∙ The disturbance is matched, i.e., it enters in the image of the input matrix g.

∙ The integral control only ensures that y(t) → 0 and an additional detectability

requirement is needed to ensure x(t) → x⋆.

Surprisingly, the construction above fails for mechanical systems—even for fully

actuated ones, i.e., when m = n and G = In, contradicting the claim of [16]. Indeed,

in the case of full actuation, there is no need in IDA-PBC to shape the kinetic energy

and we can take Md = M and J2 = 0. Consequently, applying the IDA-PBC con-

troller to (7.1) with an additional input
2

yields the closed-loop system

[
q̇
ṗ

]

=
[
0n×n In
−In −KP

]

∇Hd(q, p) +
[
0n×m

In

]

u +
[

d1
d2

]

(7.13)

where we have added d1 and d2 ∈ ℝn
, which are the matched and unmatched unmea-

surable disturbances—possibly time–varying, but bounded. Note that (q⋆, 0) is an

2
To avoid cluttering the notation we call this additional signal also u.
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asymptotically stable equilibrium of (7.13) when d1 = 0 and d2 = 0. As explained

in Remark 1 of [57] these external signals may represent external forces or an input

measurement bias.

The addition of an integral action on the passive output, i.e., the velocities q̇ =
M−1(q)p, via

u = −𝜂
𝜂̇ = KIM−1(q)p

sufers from the following drawbacks. If d1 is a nonzero constant the system admits

no constant equilibrium, and if d1 = 0 and d2 is constant there is an equilibrium set

given by

E =
{

(q, p, 𝜂) | p = 0, ∇V(q) + 𝜂 = d2
}

.

Moreover, it is easy to see that, if d1 = 0, the foliation

M
𝜅
=
{

(q, p, 𝜂) |KIq − 𝜂 = 𝜅, 𝜅 ∈ ℝn
}

,

is invariant with respect to the flow of the closed-loop system. Consequently, con-

vergence to the desired equilibrium (q⋆, 0, d2) is attained only for a zero measure set

of initial conditions.

Of course, from Proposition 7.2 we have boundedness of trajectories and stability

of the equilibrium, however, the detectability requirement (iii) fails.

7.3.2 Nonlinear PI and PID for Fully Actuated Mechanical
Systems

From the discussion above, it is clear that a more sophisticated approach is required

to reject the disturbances in mechanical systems. This problem was addressed in [57]

where we mimic the construction of the pioneering work [19], extended for general

pH systems in [48].

Interestingly, the resulting controllers are, in general, nonlinear PIDs of the form

u = −KP1(q)∇Vd −KP2(q)p − 𝜂1 − 𝜂2 −KD(q)
d∇Vd

dt
𝜂̇1 = KI1(q)∇Vd

𝜂̇2 = KI2(q)p, (7.14)

with some suitably defined nonlinear gains KPi,KIi,KD ∶ ℝn → ℝn×n
, i = 1, 2. It

should be underscored that one of the proportional, integral and derivative terms are

created feeding back the gravity forces ∇Vd, while the other ones are done feeding
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back momenta. Notice that in the simplest case when Vd is quadratic, i.e.,

Vd(q) = ‖q − q⋆‖2K ,

with K > 0, then u is a standard PID around the position error q − q⋆. This is the

case if the system (7.1) is linear, whence the gains KPi,KD and KIi are constant,

while the use of ∇Vd and nonlinear gains is necessary in the nonlinear case.

An important feature of the controllers proposed in [57] is that, similarly, to the

simple addition of integral action on the passive output discussed in Proposition 7.2,

the pH structure is preserved in closed-loop—in some suitably defined coordinates.

The simplest scenario considered in [57] is for constant inertia matrix M and

constant disturbances, when a LTI PI (around ∇Vd) does the job as indicated below.

Proposition 7.3 Consider the system (7.13) with constant inertia matrix M and con-

stant disturbances (d1, d2) in closed-loop with the PI control

u = −KPz3 − MKI∇Vd

ż3 = KI∇Vd,

with KP > 0 the damping injection gain and KI > 0.

(i) The closed-loop dynamics expressed in the coordinates z = col(z1, z2, z3) with

z1 = q
z2 = p + M(z3 − K−1

P d2), (7.15)

takes the pH form

ż =
⎡
⎢
⎢
⎣

0n×n In −KI
−In −KP 0n×n
KI 0n×n 0n×n

⎤
⎥
⎥
⎦

∇Hz(z),

with energy function

Hz(z) ∶= H(z1, z2) +
1
2
‖z3 − z∗3‖K−1

I
, (7.16)

where z∗3 ∶= d1 + K−1
P d2.

(ii) The desired equilibrium point z⋆ ∶= (q⋆, 0, z∗3), is asymptotically stable. The
stability is almost global if Vd(z1) is proper and has a unique minimum. □□□

One of the main, and rather intriguing, ideas of [19] is the way the closed-loop

energy function is constructed. Indeed, the first right-hand side term of (7.16) is

given by

H(z1, z2) =
1
2

z⊤2 M−1(z1)z2 + V(z1),
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that is the evaluation of the function H given in (7.2) with the replacement (q, p) ←
(z1, z2). That is, of course, different from the composition of the function H with the

change of coordinates defined in (7.15).

For time-varying disturbances we can establish an input-to-state stability (ISS)

property. Towards this end, the inclusion of a derivative term in ∇Vd is needed—in

this case, with a constant derivative gain.
3

Proposition 7.4 Consider the system (7.13) with constant mass matrix M and time–

varying disturbances d(t) ∶= col(d1(t), d2(t)), in closed-loop with the PID control
law

u = −
(

K3R3

)

p − K4∇V − K5z3 − kD∇2VM−1p

ż3 = (M−1 + kDR3)∇V + R3p,

where kD is a positive constant, K3 > 0 and R3 > 0 and

K4 ∶= kDKPM−1 + kDK3R3 + K3M−1

K5 ∶=
(

KPM−1 + MR3

)

K3.

(i) The closed-loop dynamics expressed in the coordinates z = col(z1, z2, z3) with

z1 = q
z2 = p + k1∇V(q) + K3z3,

takes the perturbed pH form

ż =
⎡
⎢
⎢
⎣

−k1M−1 In −M−1

−In −KP −MR3
M−1 R3M −R3

⎤
⎥
⎥
⎦

∇Hz +
⎡
⎢
⎢
⎣

In 0n×n
k1∇2V(z1) In

0n×n 0n×n

⎤
⎥
⎥
⎦

d(t), (7.17)

with new Hamiltonian4 Hz(z) = H(z1, z2) +
1
2
‖z3‖K3

.

(ii) If the potential energy function V is strictly convex with bounded Hessian, then
(7.17) is ISS with respect to the time varying input disturbances (d1(t), d2(t))
with ISS Lyapunov function Hz(z).

(iii) If d1 = 0 and d2 is constant, then the desired equilibrium z⋆ ∶= (q∗, 0,K−1
5 d2)

is asymptotically stable. □□□

When M is not constant it is still possible to robustly the IDA-PBC with nonlinear

PIDs, but the expressions for the controller gains become quite involved, as shown

below.

3
Recall that

d∇Vd

dt
= ∇2VdM−1p.

4
To avoid cluttering we use the same symbol to denote the energy function in all cases.
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Proposition 7.5 Consider the system (7.13) under the action of unmatched and
matched time-varying disturbances d1(t) and d2(t), in closed-loop with the control
law

u = −k1KPM−1∇V − k1∇2VM−1p − K3

[

(M−1 + k1R3)∇V + R3p
]

−
[1
2

n∑

i=1
eip⊤∇qi

M−1 + KPM−1 + F⊤

23

]

K3z3 −
1
k1

[

In + F⊤

12

]

MF12M−1K3z3 + v(q, p)

ż3 =
[

M−1 + k1R3

]

∇V + R3p

where k1 is a positive constant, K3 > 0, the mappings F12,F23 ∶ ℝn ×ℝn → ℝn×n

given by

F12(q, p) ∶= −
k1
2

M−1
n∑

i=1
ei

[

p + k1∇V + K3z3
]⊤

M−1∇qi
M − In

F23(q, p) ∶= − 1
k1

F12 + R3M.

and the mapping v ∶ ℝn ×ℝn → ℝm given as

v(q, p) ∶=
k1
2

n∑

i=1
eip⊤M−1∇qiMM−1∇V −

(

MF12M−1 + F⊤

12

)

∇V

− 1
k1

F⊤

12MF12M−1
[

p + k1∇V
]

,

(i) The closed-loop dynamics expressed in the coordinates z = col(z1, z2, z3) with

z1 = q
z2 = p + k1∇V(q) + K3z3,

takes the perturbed pH form

ż =
⎡
⎢
⎢
⎣

−k1M−1 F12 −M−1

−F⊤

12 −KP −F⊤

23
M−⊤ F23 −R3

⎤
⎥
⎥
⎦

∇Hz +
⎡
⎢
⎢
⎣

In 0n×n
k1∇2V(z1) In

0n×n 0n×n

⎤
⎥
⎥
⎦

[
d1(t)
d2(t)

]

(7.18)

with Hz(z) = H(z1, z2) +
1
2
‖z3‖K3

.

(ii) The closed-loop system is ISS with respect to the disturbances (d1(t), d2(t)), pro-
vided that the Hessian of the potential energy satisfies condition (ii) in Propo-
sition 7.4.

(iii) The unperturbed system (7.18) has an asymptotically stable equilibrium at the
desired state z⋆ = (q∗, 0, 0).

□□□
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In [57] other variations of these PID controllers, that yield simpler expressions

for some particular cases are presented. The interested reader is referred to this paper

for further details.

7.3.3 Nonlinear PI and PID for UnderactuatedMechanical
Systems

Extending the previous robustification results to the case of underactuated systems is

a very challenging problem. Besides the intrinsic difficulty introduced by the under-

actuation on the outer-loop control action, we should take into account that in this

case it is not possible anymore to do an IDA-PBC design with potential energy shap-

ing only. Since the kinetic energy also needs to be changed we cannot take Md = M
and J2 = 0 as in the fully–actuated case. Consequently, the perturbed system that

results from the application of IDA-PBC is now of the form

[
q̇
ṗ

]

=
[

0n×n M−1 Md
−Md M−1 J2 − GKPG⊤

]

∇Hd +
[
0n×m

G

]

(u + d), (7.19)

with Hd as in (7.4) and d ∈ ℝm
. Notice that, in contrast to the fully actuated case,

only matched disturbances are considered that we, furthermore, assume are constant.
To the best of the authors’ knowledge, the first attempt to solve the constant dis-

turbance rejection problem for underactuated mechanical systems was published in

[60]. The authors consider the simplest case of 2DOF mechanical systems with con-

stant mass matrix and underactuation degree one. Although the main idea is inter-

esting, it is shown in [22] that there are several unfortunate errors that invalidate the

claims.

In this subsection we briefly recall some of the recent results of [22] where a class

of mechanical systems for which the problem is solvable has been identified via the

Assumption 7.1. Interestingly, though not surprisingly, the resulting controllers are

again nonlinear PIDs of the form (7.14).

Assumption 7.1 The input matrix G and the desired mass matrix Md are constant
and the mass matrix M(q) is independent of the non–actuated coordinates. Conse-

quently,

G⟂∇q(p⊤M−1p) = 0s×1.

The term G⟂∇q(p⊤M−1p) appears in the KE-PDE (7.7) as a forcing term that

makes it nonhomogeneous and introduces a quadratic term in the unknown Md ren-

dering very difficult its solution. As explained in Sect. 2.3 in [1] it is also assumed

to be zero to provide an explicit solution of the PDE, while in [68] changes of coor-

dinates are introduced to eliminate, or simplify, this term.
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Proposition 7.6 Consider the system (7.19), verifying Assumption 7.1, in closed-
loop with the PID controller

u = −
[

KpG⊤M−1
d GK1G⊤M−1 + K1G⊤ dM−1

dt
+ K2KI

(

K⊤

2 + K⊤

3 G⊤M−1
d GK1

)

×G⊤M−1
]

∇Vd −
[

K1G⊤M−1∇2VdM−1 + (G⊤G)−1G⊤J2M−1
d

+K2KIK⊤

3 G⊤M−1
d

]

p −
(

KPG⊤M−1
d GK2 + K3

)

KIz3

ż3 =
(

K⊤

2 G⊤M−1 + K⊤

3 G⊤M−1
d GK1G⊤M−1

)

∇Vd + K⊤

3 G⊤M−1
d p,

where K1 > 0, KI > 0, K3 > 0 and

K2 ∶= (G⊤M−1
d G)−1.

(i) The closed-loop dynamics in the coordinates z = col(z1, z2, z3) with

z1 = q
z2 = p + GK1G⊤M−1∇Vd(q) + GK2KI(z3 − z∗3),

with z∗3 ∶= K−1
I (KP + K3)−1d, can be written in pH form as follows

⎡
⎢
⎢
⎣

ż1
ż2
ż3

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

−R11 M−1 Md −F13
−Md M−1 −GKPG⊤ −GK3

F⊤

13 K⊤

3 G⊤ −K3

⎤
⎥
⎥
⎦

∇Hz (7.20)

with Hamiltonian

Hz(z) =
1
2

z⊤2 M−1
d z2 + Vd(z1) +

1
2
‖z3 − z∗3‖

2
KI
,

and the mappings R11 ∶ ℝn → ℝn×n and F13 ∶ ℝn → ℝn×m given by

R11(q) ∶= M−1GK1G⊤M−1
, F13(q) ∶= M−1GK2.

(ii) The equilibrium (q, p, z3) = (q⋆, 0, z∗3) is stable.
(iii) If the output

yD3 =
⎡
⎢
⎢
⎣

G⊤M−1∇Vd
G⊤M−1

d z2
KI(z3 − z∗3)

⎤
⎥
⎥
⎦

is a detectable output of the dynamics (7.20), then (q⋆, 0, z∗3) is an asymptoti-

cally stable equilibrium of the closed-loop. □□□
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In [22] two additional controllers, which are simplified versions of the one given

in Proposition 7.6, are presented. These two controllers are obtained setting (K1,K3) =
(0m×m, 0m×m) and (K2,K3) = (0m×m, Im). As seen in (7.20) these modifications still

preserve the pH structure but eliminate some damping terms. Consequently, their

corresponding detectability condition is strictly stronger than (iii) above, reducing

the class of systems for which asymptotic stability is guaranteed. See [22] for fur-

ther details.

7.4 Global Position Feedback Tracking

The IDA-PBC presented above, as well as the CL technique, assume that the full

state is available for the controller design. As is well known, while the measurement

of position is practically feasible, the one of velocity is complicated and sensitive

to noise. Consequently, the design of speed observers and position feedback con-

trollers is a problem of great practical importance that has attracted the attention of

researchers for over 25 years—the reader is referred to [3, 58] for a recent list of ref-

erences. The position feedback regulation problem was solved in [30] for fully actu-

ated rigid manipulators and later extend to flexible joint ones in [2, 33]. However, the

construction of a (smooth) controller that ensures, without velocity measurements,

global tracking of position and velocity for all desired reference trajectories remained

an open problem for a long time.

It should be mentioned that many semi–global results to the aforementioned

position feedback tracking (PFT) problem have been reported. Semiglobal schemes

intrinsically rely on high-gain injection to enlarge the domain of attraction, hence

the interest in global controllers. A major contribution towards the solution of the

PFT problem is due to [4], where invoking the Immersion and Invariance (I&I) tech-

niques developed in [3], the first globally exponentially stable (GES) speed observer

is reported—the result being applicable even for systems with nonholonomic con-

straints. While this contribution essentially solves the speed observation problem,

the lack of a certainty equivalence principle in nonlinear systems, renders far from

obvious the solution of the PFT problem. In [58] we provide the first solution to it.

The design of [58] consists of the redesign of the speed observer of [4] and a new

version of IDA-PBC, which combined in certainty equivalent form yields the desired

result. The various components of this controller and the final result are described

below.

7.4.1 A New Full State Feedback IDA-PBC

Since we are interested in the presence of Coulomb friction terms, we add a positive

semidefinite matrix ℜ ∶ ℝn → ℝn×n
to the system (7.1) to get
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[
q̇
ṗ

]

=
[
0n×n In
−In −ℜ(q)

]

∇H(q, p) +
[
0n×m

In

]

u. (7.21)

Notice that we are considering full actuation. Moreover, in contrast with most exist-

ing results, we do not assume that the inertia matrix is bounded from above.

The design of the new IDA-PBC proceeds in two steps. First, the change of coor-

dinates in momenta proposed in [67] for observer design is used to assign a constant

inertia matrix in the energy function. Second, the change of coordinates used in [57]

to add integral actions to mechanical systems is combined with a new state feedback

PBC to assign a pH structure with a desired energy function.

First, introduce the univocally defined, Cholesky factorization of the inverse iner-

tia matrix

M−1(q) = T(q)T⊤(q), (7.22)

where T ∶ ℝn → ℝn×n
is a lower triangular positive definite matrix. As shown in

[67], defining the new momenta vector 𝐩 ∶= T⊤(q)p, transforms (7.1) into

[
q̇
𝐩̇

]

=
[

0 T(q)
−T⊤(q) S(q,𝐩) − R(q)

]

∇W(q,𝐩) +
[
0
In

]

v, (7.23)

with

v ∶= T⊤(q)u, R(q) ∶= T⊤(q)ℜ(q)T(q) (7.24)

the new control signal and dissipation matrix, respectively, W ∶ ℝn ×ℝn → ℝ

W(q,𝐩) = 1
2
|𝐩|2 + V(q)

the new Hamiltonian function, and the the jk element of the skew-symmetric matrix

S ∶ ℝn ×ℝn → ℝn×n
given by

Sjk(q,𝐩) = −𝐩⊤[(T)j, (T)k], (7.25)

with [⋅, ⋅] the standard Lie bracket. See [4, 67] for its relationship with the Coriolis

and centrifugal forces matrix of the Euler–Lagrange model.

Proposition 7.7 Consider the pH system (7.23). Define the mapping v⋆ ∶ ℝn ×
ℝn ×ℝ

≥0 → ℝn

v⋆(q,𝐩, t) = R(q)𝐩 − d
dt
(T−1(q))R1q̃(t) + 𝐩̇d − S(q,𝐩)𝐩d(t) − T⊤(q)

×
[

q̃(t) − ∇V(q)
]

+
[

S(q,𝐩) − R2

]

T−1(q)R1q̃(t)

−[T−1(q)R1T(q) + R2]𝐩̃(t))
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where we defined 𝐩d ∶= T−1(q)q̇d, with qd(t) the reference trajectory, q̃ ∶= q −
qd, p̃ ∶= 𝐩 − 𝐩d, and R1 > 0,R2 > 0 free damping injection gains.

(i) The closed-loop dynamics obtained setting v = v⋆(q,𝐩, t) expressed in the coor-
dinates

w1 = q̃
w2 = T−1(q)R1q̃ + p̃,

takes the pH form

ẇ =
[

−R1 T(q)
−T⊤(q) S(q,𝐩) − R2

]

∇Hw (7.26)

with Hamiltonian function Hw(w) =
1
2
|w|2.

(ii) The zero equilibrium point of (7.26) is UGES with Lyapunov function Hw(w).
Consequently, (q̃(t), p̃(t)) → 0 exponentially fast.

□□□

Of course, there are many full-state feedback controllers ensuring exponential

tracking [51]. The interest of the IDA-PBC presented above relies on the preserva-

tion of the pH structure and the addition of the positive definite damping matrices

R1,R2—properties that are instrumental for the development of its position feedback

version.

7.4.2 A New Exponentially Convergent I&I Momenta
Observer

In [58] the exponentially convergent speed I&I observer reported in [4] is modified

to estimate directly the (new) momenta 𝐩. An additional modification is introduced

to take into account the presence of friction. Also, motivated by the developments

in [61], we consider an alternative Lyapunov function for the stability analysis and

add some degrees of freedom to robustify the observer design. The latter feature is

essential for the proof of our main result. For the sake of brevity we do not repeat

here all the observer equations but only state its existence. The interested reader is

referred to [58] for further details.

Proposition 7.8 Consider the mechanical system with friction (7.21), and assume
u is such that trajectories exist for all t ≥ 0. There exist smooth mappings.

𝐀 ∶ ℝ3n ×ℝ
≥0 ×ℝn ×ℝn → ℝ3n+1

𝐁 ∶ ℝ3n ×ℝ
≥0 ×ℝn → ℝn

such that the interconnection of (7.21) with
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Ẋ = 𝐀(X, q, v)
p̂ = 𝐁(X, q), (7.27)

ensures the existence of 𝜆 > 0 such that

lim
t→∞

e𝜆t[p(t) − p̂(t)] = 0,

for all initial conditions (q(0), p(0),X(0)) ∈ ℝn ×ℝn ×ℝ3n ×ℝ
≥0. □□□

7.4.3 A Uniformly GES Solution to the PFT Problem

In [58] it is shown that combining the IDA-PBC of Proposition 7.7 with the observer

of Proposition 7.8 yields a solution to the PFT problem with the following properties:

∙ The closed-loop is uniformly GES that, via total stability arguments, ensures

strong robustness properties.

∙ Only a lower bound on the inertia matrix is assumed. Hence, the result is applicable

to a large class of mechanical systems, including robots with prismatic joints.

∙ The strong assumption of existence, exact knowledge and pervasiveness of friction

is conspicuous by its absence. Instead, if friction is present, we assume it is known,

treat it as a disturbance and compensate for it.
5

∙ The stabilization mechanism does not rely on the use of (approximate) differen-

tiators nor the injection of high gain into the loop. Indeed, although the proposed

observer includes a dynamic scaling factor, that might take large values during the

transients, it is shown to actually converge to one—hence, high-gain injection is

not present in steady–state.

To the best of our knowledge, this is the first result enjoying these features reported in

the literature. Again, for the sake of brevity we do not repeat here all the controller

equations but only state its existence. The interested reader is referred to [58] for

further details.

Proposition 7.9 Consider the mechanical system with friction (7.21). Given any
twice differentiable, bounded, reference trajectories qd ∶ ℝ+ → ℝn. There exist two
(smooth) mappings

𝐅 ∶ ℝ3n ×ℝ
≥0 ×ℝn ×ℝ

≥0 → ℝ3n+1

𝐇 ∶ ℝ3n ×ℝ
≥0 ×ℝn ×ℝ

≥0 → ℝn

such that, for all initial conditions (q(t0), p(t0), 𝜛(t0)) ∈ ℝn ×ℝn ×ℝ3n ×ℝ
≥0 the

system (7.1) in closed-loop with

5
See Sect. 7.5.1 for a robust adaptive version of the I&I momenta observer.
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𝜛̇ = 𝐅(𝜛, q, t)
u = 𝐇(𝜛, q, t)

verifies, for all t ≥ t0 ≥ 0,

|
|
|
|
|
|
|

⎡
⎢
⎢
⎣

q(t) − qd(t)
p(t) − pd(t)

𝜛(t)

⎤
⎥
⎥
⎦

|
|
|
|
|
|
|

≤ m exp−𝜆(t−t0)

|
|
|
|
|
|
|

⎡
⎢
⎢
⎣

q(t0) − qd(t0)
p(t0) − pd(t0)

𝜛(t0)

⎤
⎥
⎥
⎦

|
|
|
|
|
|
|

,

for some constants m, 𝜆 > 0 (independent of t0) with pd ∶= M(q)q̇d. □□□

A transformation, similar to the one used in this section, has been presented in

[17, 18], where a change of coordinates that removes the quadratic terms in veloc-

ity is found to solve the PFT problem for surface ships and mobile robots. After

the publication of [58]—whose results were announced in its conference version in

2013—we became aware of [38] where a UGAS solution to the general PFT problem

is reported. The controller is constructed adding an approximate differentiator to the

classical full state feedback PD+ controller of [54]. An upper bound on the norm of

the reference trajectories and their first and second order derivatives is imposed as

a lower bound to the controller gains. Consequently, to track large and—or fast—

varying references, high-gain and a “pure” differentiator are needed. Besides estab-

lishing only asymptotic, as opposed to exponential, stability, no friction is assumed

to be present in the system and an upper bound in the inertia matrix is required.

7.5 Two Robust Adaptive Velocity Observers

The speed observer reported in Proposition 7.8 relies on the assumptions of known

(or no) Coulomb friction and no disturbances. In [56] two extensions of this result

were reported. First, a new globally convergent adaptive speed observer that, besides

rejecting the disturbances, estimates some unknown friction coefficients for a class of

mechanical systems that contains several practical examples. Second, the observer of

Proposition 7.8 is robustified vis-à-vis constant disturbances. These two new results,

which rely on the addition of (nonlinear) integral action similar to the one used in

Sect. 7.3, are summarized in this section.

7.5.1 An Observer for a Class Systems with Unknown
Friction and Disturbances

We consider the mechanical system
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[
q̇
𝐩̇

]

=
[
0n×n In
−In −ℜ

]

∇H(q,𝐩) +
[
0n×m
G(q)

]

u +
[
0n×m

d

]

. (7.28)

The system is subject to two different perturbations.

∙ Unknown constant disturbances d ∈ ℝn
.

∙ Coulomb friction ℜ = diag{ri} ∈ ℝn×n
, with unknown constant ri ≥ 0, i ∈ n̄.

As customary in the observer literature, it is assumed that u(t) is such that trajectories

exist for all t ≥ 0. The problem is to design a globally convergent robust adaptive
observer for the transformed momenta p ∶= T⊤(q)𝐩.

6
It should be noted that the

presence of unknown friction coefficients generates products of unmeasurable states
and unknown parameters, a situation for which very few results are available in the

observer design literature—even for the case of linear systems.

Instrumental for the development of the adaptive observer is the change of coor-

dinates introduced in Sect. 7.4.1. The following key assumption is made regarding

the factor T .

Assumption 7.2 M−1
admits a factorization (7.22) with a factor T whose columns

verify [(

T(q)
)

i
,

(

T(q)
)

j

]

= 0, i, j ∈ n̄. (7.29)

It is well known that Assumption 7.2 is equivalent to the fact that the Riemann

symbols of M are all zero.
7

It is clear from (7.23) and (7.25) that this assumption

implies that the matrix of gyroscopic forces S is equal to zero. Another important

observation is that the factorisation need not be equal to the Cholesky factorization.

As shown in [56] the choice of T is an additional degree of freedom for the solution

of the problem.

To design the robust adaptive observer, besides Assumption 7.2, a restriction on

the friction coefficients is imposed. Namely, we decompose the friction matrix ℜ as

ℜ = ℜ𝐤 +ℜ𝐮, where ℜ𝐤,ℜ𝐮 are n × n diagonal matrices containing the known and

the unknown friction coefficients, respectively. Similarly, with an obvious definition,

we decompose the transformed friction matrix (7.24) into R(q) = Rk(q) + Ru(q).
To streamline the presentation all friction coefficients are grouped in a vector

r ∶= col(ri) ∈ ℝn
with the unknown and known coefficients in vectors ru ∈ ℝ𝓁

and

rk ∈ ℝn−𝓁
, respectively. We also define a set of integers N ⊂ n̄ that contains the

indices of the unknown coefficients of r. Finally, we define a matrix C ∈ ℝn×𝓁
such

that C⊤r = ru, where the matrix C verifies.

∙ rank {C} = 𝓁.

∙ For j ∈ N , (C)j = e𝓁j
, with 𝓁j the j-th element of N .

Assumption 7.3 The i–th row of factor T(q) is independent of q for i ∈ N .

6
The notation for the momenta is different from the one used in Sect. 7.4, but is consistent with the

one used in [56].

7
See Eqs. (6) and (7) of [67] for the definition of these symbols and the proof of this fact.
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A consequence of Assumption 7.3 is the existence of constant matrices Yj ∈
ℝn×𝓁

, j ∈ n̄, such that, for all vectors a ∈ ℝn
we have

Ru(q)a = (
n∑

i=1
Yiai)ru.

In Lemma 4.2 of [56] it is shown that

Yj =
n∑

i=1
Lieje⊤i C, j ∈ n̄, (7.30)

with the constant matrices Li ∈ ℝn×n
defined as

Li ∶= T⊤(q)eie⊤i T(q) , i ∈ n̄. (7.31)

Proposition 7.10 Consider the system (7.28) where the inertia matrix M(q) and
the friction matrix ℜ verify Assumptions 7.2 and 7.3. The 2n + 𝓁 dimensional I&I
adaptive momenta observer

ṗI = −T⊤(q)[∇V − G(q)u − d̂] − (
n∑

i=1
Yip̂i)r̂u − [𝜆Q(q) + Rk(q)]p̂

ṙuI
= (

n∑

i=1
Y⊤

i p̂i)(ṗI + 𝜆p̂)

ḋI = T(q)p̂

p̂ = pI + 𝜆Q(q), r̂u = ruI
+ 1

2𝜆
(

s∑

i=1
p̂⊤Lip̂)ei, d̂ = dI + q

with the constant n × n matrices Li given by (7.31), Q(q) given by

∇Q(q) = T−1(q),

Yi ∈ ℝn×𝓁 given in (7.30) and 𝜆 > 0 a free parameter, ensures boundedness of all
signals and

lim
t→∞

{T−⊤(q(t))[p̂(t) − p(t)]} = 0

for all initial conditions (q(0), p(0)) ∈ ℝn ×ℝn
. □□□

In [56] it is shown that the planar redundant manipulator with one elastic degree

of freedom and the 2D-spider crane gantry cart satisfy the conditions of Proposition

7.10. Consequently, robust adaptive speed observation is possible for them. We note

that for systems with constant inertia matrix Assumption 7.2 is trivially satisfied,
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because the factor T can be taken to be constant and Assumption 7.3 is also satisfied

with N = n̄ and C = In, hence all friction coefficients can be identified.

7.5.2 A Robust Observer for Perturbed Systems with Known
Friction

In [56] the I&I speed observer of Proposition 7.8 is redesigned to ensure its global

convergence in spite of the presence of the unknown disturbances d and known fric-

tion forces in all coordinates.

Proposition 7.11 Consider the system (7.28) with known friction matrix ℜ and
unknown disturbances d. There exist smooth mappings

𝐂 ∶ ℝ4n ×ℝ
≥0 ×ℝn ×ℝn → ℝ4n+1

, 𝐃 ∶ ℝ4n ×ℝ
≥0 ×ℝn → ℝn

such that the interconnection of (7.28) with

Ẋ = 𝐂(X, q, u), p̂ = 𝐃(X, q),

ensures limt→∞[p̂(t) − p(t)] = 0, for all initial conditions (q(0), p(0),X(0)) ∈ ℝn ×
ℝn ×ℝ4n ×ℝ

≥0. □□□

The construction of the observer above follows very closely the one of Proposi-

tion 7.8—first reported in [58]—with the only difference being the inclusion of an

adaptation law for the unknown disturbance parameters d.

7.6 Constructive IDA-PBC: Shaping the Energy with a PID

As indicated in Sect. 7.2 to make the IDA-PBC method really constructive it is nec-

essary to give explicit solutions to the PE-PDE (7.7) and the KE-PDE (7.9), which

may be difficult to solve in applications. In this section we review some recent exten-

sions of IDA-PBC where this step is obviated. Interested readers are referred to the

interesting work of [42] where a dynamic version of IDA-PBC that does not require

the solution of PDEs is proposed.

7.6.1 PID Control of [20]

A key feature of IDA-PBC and the CL methods is that the mechanical structure

of the system is preserved in closed-loop, a condition that gives rise to the match-

ing PDEs, which characterize the assignable Hamiltonian or Lagrangian functions,
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respectively. Recently in [20] it was proposed to relax this constraint, and concen-

trate our attention on the energy shaping objective only. That is, we look for a static

state feedback that stabilizes the desired equilibrium assigning to the closed-loop a

Lyapunov function of the same form as the energy function of the open-loop system

but with new, desired inertia matrix and potential energy function. However, we do
not require that the closed-loop system is a mechanical system with this Lyapunov

function qualifying as its energy function. In this way, the need to solve the matching

equations is avoided.

The controller design of [20] is carried out proceeding from a Lagrangian rep-
resentation of the system and consists of four steps. First, the application of a (col-

located) partial feedback linearization stage, à la [63]. Second, as done in [61], the

identification of conditions on the inertia matrix and the potential energy function

that ensure the Lagrangian structure is preserved. As a corollary of the Lagrangian

structure preservation two new passive outputs are easily identified. Third, a PID

controller around a suitable combination of these passive outputs is applied. Now,

PID controllers define output strictly passive mappings with storage function the sum

of the square of the PIDs input and the square of the integrator state—stemming

from the integral action. Thus, the passivity theorem allows to immediately con-

clude output strict passivity—hence, L2–stability—of the closed-loop system with

storage function the sum of the storage functions of the passive output and the PID.

To achieve the aforementioned equilibrium stabilization objective a fourth step is

required. Namely, to impose some integrability assumptions on the systems inertia

matrix to ensure that the integral of the passive output, i.e., the integrator state, can

be expressed as a function of the systems generalized coordinates and, consequently,

can be added to the systems storage function to generate a bona fide Lyapunov func-

tion by ensuring it has a minimum at the desired position.

7.6.2 Avoiding the Feedback Linearization Step

As explained above the first step in the design procedure of [20] is the use of a

partial linearizing state feedback that transforms the system into Spong’s Normal

Form [63]. It is widely recognized that feedback linearization, which involves the

exact cancelation of nonlinear terms, is intrinsically non–robust. Interestingly, it has

recently been shown in [59] that, for a class of systems strictly larger than the one

considered in [20], it is possible to identify two new passive outputs without the

feedback linearization step. The key modification is the introduction of a change of
coordinates that, for systems verifying the assumption below, directly reveals the

new cyclo-passive outputs around which the PID controller is added.

As done in Sect. 7.4.1 the first step is to introduce the change of coordinates

(q,𝐩) ↦ (q,T⊤(q)p), where T ∶ ℝn → ℝn×n
is a full rank factorization of the inverse

inertia matrix, that is,

M−1(q) = T(q)T⊤(q), (7.32)
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which transforms (7.1) into

[
q̇
𝐩̇

]

=
[

0n×n T(q)
−T⊤(q) S(q,𝐩)

]

∇W(q,𝐩) +
[

0
T⊤(q)G

]

u. (7.33)

Notice that, in contrast with (7.23), the system above is underactuated and lossless.

Now, we introduce the key assumption.

Assumption 7.4 (i) The input matrix G is of the form

G =
[
0s×m
Im

]

. (7.34)

(ii) The potential energy can be written as

V(q) = Va(qa) + Vu(qu),

where q = col(qu, qa), with qa ∈ ℝm
and qu ∈ ℝs

, where s ∶= n − m.

(iii) The inertia matrix depends only on the unactuated variables qu.

(iv) The (2, 2) sub-block of the inertia matrix is constant.

The key observation is that Assumption 7.4 ensures the existence of a factoriza-

tion (7.32) of the form

T(qu) =
[

T1(qu) 0s×m
T2(qu) T3

]

, (7.35)

where T1 ∶ ℝs → ℝs×s
, T2 ∶ ℝs → ℝm×s

and T3 ∈ ℝm×m
is constant.

To streamline the statement of the proposition below we introduce the partition

𝐩 = col(𝐩u,𝐩a) with 𝐩u ∈ ℝs
and 𝐩a ∈ ℝm

.

Proposition 7.12 Consider the underactuated mechanical system (7.33) satisfying
Assumption 7.4 together with the inner-loop control

u = ∇Va(qa) + v. (7.36)

Define the output signals

yu ∶= T2(qu)𝐩u, ya ∶= T3𝐩a.

The operators v ↦ yu and v ↦ ya are cyclo–passive with storage functions

Hu(qu,𝐩u) =
1
2
|𝐩u|

2 + Vu(qu), Ha(𝐩a) =
1
2
|𝐩a|

2
, (7.37)

respectively. More precisely,

Ḣa = v⊤ya ; Ḣu = v⊤yu, (7.38)
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7.6.3 PID Controller Design

Similarly to [20] the controller design is completed in [57] adding the PID

kev = −
(

KPyd + KI
∫

t

0
yd(s)ds + KDẏd

)

, (7.39)

with

yd ∶= kaya + kuyu,

and a suitably chosen initial condition for the integral term. Some simple calcula-

tions, using (7.38) and (7.39), show that the function L ∶ ℝn ×ℝn ×ℝ+ ↦ ℝ

L(q,𝐩, t) ∶= ke[kaHa(𝐩a) + kuHu(qu,𝐩u)] +
1
2
‖
∫

t

0
yd(s)ds‖2KI

+ 1
2
‖yd‖

2
KD
,

verifies

L̇ ≤ −‖yd‖
2
KP
.

Therefore, it only remains to impose the assumptions required to ensure, on the one

hand, the implementation (without singularities nor differentiation) of the control

(7.39) and, on the other hand, guarantee the assignment of a suitable Lyapunov func-

tion. Towards this end, we impose the following assumption.

Assumption 7.5 Given Assumption 7.4, partition the inertia matrix as

M(qu) =
[

muu(qu) m⊤

au(qu)
mau(qu) maa

]

,

where maa ∈ ℝm×m
, mau ∶ ℝs → ℝs×m

, muu ∶ ℝn → ℝs×s
.

(i) The rows of mau satisfy

∇(mau)i = [∇(mau)i]⊤, ∀i ∈ m̄.

Equivalently, there exists a function VN ∶ ℝs → ℝm
such that

V̇N = −mau(qu)q̇u.

(ii) There exist constants ke, ka, ku ∈ ℝ, KD,KI ∈ ℝm×m
, KD,KI ≥ 0, such that the

following holds.

(a) det[K(qu)] ≠ 0, ∀qu ∈ ℝs
, where K ∶ ℝs → ℝm×m

is defined as

K(qu) ∶= keIm + kaKDT3T⊤

3 + kuKDT2(qu)T⊤

2 (qu). (7.40)
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(b) The matrix

M−1
d (qu)=

[
k2uT⊤

2 (qu)KDT2(qu) + kekuIs kakuT⊤

2 (qu)KDT3
kakuT⊤

3 KDT2(qu) kekaIm + k2aT⊤

3 KDT3

]

(7.41)

is positive definite.

(c) The function

Vd(q) ∶= kekuVu(qu) +
1
2
||kaqa + (ku − ka)VN(qu)||2KI

(7.42)

is proper and has an isolated minimum at q∗.

We are in position to present the main result of [57].

Proposition 7.13 Consider the underactuated mechanical system (7.33) verifying
Assumptions 7.4 and 7.5, together with the inner-loop controller (7.36) and the PID
(7.39). The closed-loop system has a globally stable equilibrium at the desired point
(q,𝐩) = (q

⋆
, 0) with Lyapunov function

Hd(q,𝐩) =
1
2
𝐩⊤M−1

d (qu)𝐩 + Vd(q). (7.43)

with Md and Vd defined in (7.41) and (7.42), respectively. The equilibrium is GAS if
the signal yd is a detectable output for the closed-loop system.

The following remarks are in order.

∙ The role of the tuning gains ke, ka, ku and KP,KI in the energy shaping stage is

clear from the expressions of Md and Vd given in (7.41) and (7.42), respectively.

It is important to highlight that there is no sign constraint on the scalar quantities,

which gives a large flexibility to shape the energy functions.

∙ Condition (i) in Assumption 7.5 is imposed to be able to add the new term
1
2
||kaqa + (ku − ka)VN(qu)||2KI

in the desired potential energy function. This moti-

vates the name VN(qu).
∙ Notice that the systems potential energy Vu appears now multiplied by keku, whose

sign can be used to “flip” this function, as done for the cart-pendulum example in

[57].

7.6.4 Tracking Constant Speed Trajectories

In [57] it is shown that the controller methodology presented in Proposition 7.13 can

be directly extended to track constant speed trajectories in the actuated coordinates

with constant positions in the underactuated ones. To formulate this problem we

define the generalized coordinates errors as
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q̃(t) =
[

q̃u(t)
q̃a(t)

]

∶=
[

qu(t) − q∗u
qa(t) − rt

]

, (7.44)

with q∗u ∈ ℝs
and r ∈ ℝm

a constant vector. Consistent with the desired trajectories

we define the errors in momenta as

𝐩̃ =
[
𝐩̃u
𝐩̃a

]

∶=
[

𝐩u
𝐩a − T−1

3 r

]

. (7.45)

The tracking objective is to ensure

lim
t→∞

[
q̃(t)
𝐩̃(t)

]

= 0, (7.46)

and the main result is as follows.

Proposition 7.14 Consider the underactuated mechanical system (7.33) satisfying
Assumptions 7.4 and 7.5 together with

u = ∇Va(qa) + 𝐯

and the PID control

ke𝐯 = −
(

KP𝐲d + KI
∫

t

0
𝐲d(s)ds + KD𝐲̇d

)

, (7.47)

with
𝐲d ∶= kaT3𝐩̃a + kuT2(q̃u + q∗u)𝐩̃u.

All trajectories of the closed-loop system are bounded, the zero equilibrium of
the error system is stable and (7.46) is satisfied if 𝐲d is a detectable output for the
closed-loop system.
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Chapter 8
Asymptotic Stabilization of Some Finite and
Infinite Dimensional Systems by Means of
Dynamic Event-Triggered Output Feedbacks

Christophe Prieur and Aneel Tanwani

Abstract The problem of designing dynamic sampling routines for output feedback

stabilization of controlled plants is considered. Instead of the more conventional peri-

odic sampling, our approach is based on using event-triggered conditions for sam-

pling, which potentially allow for reduced rate of communication between the plant

and the controller. Several classes of control systems, from finite dimensional to infi-

nite dimensional, are considered in this chapter, each within its own problem setup.

Within the setup of finite dimensional systems, we consider plants comprising lin-

ear and nonlinear ordinary differential equations, and controlled via dynamic output

feedback controllers. For such systems, we provide (different) event-based dynamic

algorithms to determine sampling times for outputs and control inputs. In the lin-

ear case, it is further shown that the proposed algorithms are robust with respect to

communication errors due to quantization, and if the parameters of the quantizers are

updated appropriately, then the state of the closed-loop system converges asymptoti-

cally to the equilibrium. For the plants modeled as hyperbolic system of conservation

laws, an event-triggered sampling algorithm of the boundary control results in state

converging to the origin. Together with the asymptotic stabilization of the closed-

loop system, it is also shown that there exists a minimum inter-sampling time and

thus Zeno solutions are avoided in the closed-loop system despite the state-dependent

occurrence of discrete dynamics. For all the considered control problems, Lyapunov

functions are instrumental to define the sampling sequences, the desired robustness

properties of the controller are formalized using input-to-state stability notion, and

the tools from stability of cascaded systems and certainty equivalence principle are

essential for analysis carried out in our work.
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8.1 Introduction

Modern day control systems often involve the interface between a physical plant

and a digital computer through a communication channel. Appropriate exchange

of information between the plant and controller is essential for obtaining desired

performance from such control systems. Due to limited capacity of the communi-

cation channel, control practitioners have to design algorithms that determine how

frequently and accurately, the plant and the control need to transmit data for an

acceptable outcome. For finite dimensional systems, such problems have been stud-

ied under the framework of sampled-data control, quantized control, or more broadly,

within the context of network control systems, see [19, 25] for a survey, and list of

references, on these topics.

The problems studied in this chapter relate to asymptotic stabilization of certain

finite and infinite dimensional dynamical systems using output feedback controllers,

when the information cannot be transmitted continuously and hence the signals need

to be sampled. In addition, we are also interested in dealing with the uncertainties, or

errors in the communication that are typically introduced in digital communication.

The layout of this problem setup is sketched in Fig. 8.1.

The dynamical plants that we consider include finite dimensional linear and non-

linear ordinary differential equations (ODEs), and linear hyperbolic partial differ-

ential equations (PDEs). We are mainly interested in algorithms to determine sam-

pling times for inputs and outputs using the recently revived framework of event-
based strategies [6], where the basic idea is to sample a signal based on its current

value instead of using pre-calculated sampling times as done conventionally. The

class of controllers in the ODE setup comprises dynamic output feedback controllers,

whereas for the hyperbolic PDEs, we restrict ourselves to the static output feedback

boundary controls. For the case of linear ODEs, we also consider added communi-

cation errors due to quantization, and the design of dynamic quantizers which result

in asymptotic stability.

When analyzing control systems in the presence of sampling errors, the con-

trollers are required to be robust with respect to output measurement errors, typi-

cally formalized using input-to-state stability (ISS) notion. The basic idea behind

the event-triggered sampling is to implement such controllers and keep the sampling

error relative to the current value of state sufficiently small to ensure asymptotic sta-

Fig. 8.1 Output feedback control of dynamical systems with perturbations or network
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bility [18, 39]. Various variants of this idea have now appeared in literature [4, 24,

26, 34]. However, the implementation of such schemes in the presence of dynamic

output feedback controllers has remained a challenge. The current literature mostly

addresses linear ODEs and even in that case, the current results either ensure practi-

cal stability of the system, or they build on periodic sampling results [1, 17].

Designing feasible sampling algorithms (based on event-based strategies) for the

plants controlled via dynamic output feedback, and analyzing the closed-loop system

via Lyapunov methods, are the focal points of this chapter. Depending on the plant

under consideration, we study the sampling problem under different setups. Basi-

cally, as we generalize the system class, the related problem context becomes more

specific. Starting with the very specific case of linear ODEs, we consider the most

general problem setup, where in addition to determining sampling times for imple-

mentation of output feedback controllers, we also consider errors in communication

of outputs and inputs that arise due to quantization. In contrast to existing approaches,

the sampling times for outputs and control inputs are not necessarily synchronized.

In addition, these algorithms are shown to be robust with respect to uncertainties in

communication of outputs and inputs. These uncertainties are modeled as quantiza-

tion errors, and algorithms are also provided to design dynamic quantizers where the

quantization error converges to zero as the state of plant gets closer to the origin. As

a result, the overall closed loop is shown to be asymptotically stable for our choice

of sampling and quantization algorithms.

We then move onto plants modeled as nonlinear ODEs, and by now, there exists a

large literature dealing with output feedback stabilization, in particular, those based

on designing the observer and static state feedback control laws separately (see e.g.,

[5, 42]). Building on the ideas developed for the linear case, we now design aux-

iliary dynamical systems which determine the sampling times. The introduction of

discrete dynamics, in addition to the already present continuous dynamics, calls for

the framework of hybrid systems as introduced in [12, 28]; see also the textbook

[13] on this subject. The tools from the theory of stability of cascaded nonlinear sys-

tems, and the hybrid systems, are thus used to analyze the stability of the closed-loop

system (as done in e.g. [32]).

Finally, we move on to the infinite dimensional systems, and in this chapter, we

look at the plants modeled as linear hyperbolic PDEs with boundary control. At this

moment, our result for this system class only comprises (synchronous) sampling

algorithm for static output feedback boundary control laws. However, the sampling

algorithms still use additional dynamics for event-triggered sampling but with cer-

tain differences from finite dimensional setup.

The development of this chapter aims at highlighting the techniques based on

analysis with Lyapunov functions, which were the central ingredient for design and

analysis of the aforementioned problems. The basic idea is to address the problem of

sampled-data control for very general system classes under a unifying framework.

The results presented here are based on authors’ recent work, and for detailed reading

and proofs, we refer the reader to the following papers:
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∙ For linear ODEs, paper [40] studies the problem of designing the sampling

sequences, and quantization schemes for both outputs and control inputs sepa-

rately. These results are summarized in Sect. 8.2.

∙ For nonlinear ODEs controlled via dynamic output feedback, paper [41] suggests

dynamic sampling algorithms for both inputs and outputs; see Sect. 8.3.

∙ For linear hyperbolic PDEs, paper [10] suggests an event-based sampling routine

for the boundary control; see Sect. 8.4.

Let us emphasize that for each of these results, not only the asymptotic stability

of the closed-loop system is obtained, but it is also proven analytically that there

is no accumulation of sampling times over a finite interval, which is important for

implementing event-based algorithms.

8.2 Design of Quantized and Event-Triggered Controllers
for Linear Systems

In this section, we consider linear time-invariant plants described as:

P ∶
{ ẋ(t) = Ax(t) + Bu(t) ,

y(t) = Cx(t),
(8.1)

where x(t) ∈ ℝn
is the state, y(t) ∈ ℝp

is the measured output, and u(t) ∈ ℝm
is the

control input. We are interested in feedback stabilization of the control system (8.1)

by realizing the control architecture proposed in Fig. 8.2. That is, the outputs and

inputs are subjected to zero-order sample and hold and the sampling instants need to

be computed separately for both signals. Furthermore, the sampled outputs and con-

trol inputs cannot be transmitted exactly to the controller and the plant, respectively,

and must be encoded using finitely many alphabets.

Fig. 8.2 Feedback loop with time-sampled and quantized inputs and outputs



8 Asymptotic Stabilization of Some Finite and Infinite Dimensional Systems . . . 205

The proposed dynamic controller C has the following form
1
:

C ∶

{
ż(t) = Az(t) + Bu(t) + Lq

𝜈
(y(tk) − Cz(tk)), t ∈ [tk, tk+1),

u(t) = q
𝜇
(Kz(𝜏j)), t ∈ [𝜏j, 𝜏j+1),

(8.2)

where y(tk), and u(𝜏j), k, j ∈ ℕ, denote the sampled values of output and input,

respectively. The output quantizer q
𝜈
∶ ℝp → Qy, and input quantizer q

𝜇
∶ ℝm →

Qu for some finite sets Qy and Qu, include the design parameters 𝜈 ∶ [t0,∞) → ℝ+,

and 𝜇 ∶ [𝜏0,∞) → ℝ+, respectively, which are piecewise constant and are only

updated at tk and 𝜏j, respectively. For notational convenience, we will often denote

𝜈(tk) by 𝜈k, and 𝜇(𝜏j) by 𝜇j. In writing Eq. (8.2), it must be noted that the discrete

measurements received by the controller have been passed through a sample-and-

hold device, and that the state z(⋅) evolves continuously. This approach is essentially

different from some of the existing techniques adopted in for example, [2, 23], where

the state of the observer/controller is updated in discrete manner whenever the new

measurements are available (periodically). We remark that the stability of dynami-

cal systems with quantized measurements has been studied extensively over the past

decade, see the survey [25] and references therein. Stability using quantized and

periodically sampled output measurements (without asymptotic observer) was con-

sidered in [23], and using asymptotic observers (without sampling) was considered

in [22]. To the best of our knowledge, stability where both the inputs and outputs are

quantized and aperiodically sampled has not been treated. In doing so, we find that

the quantization parameter for control input depends upon the parameter chosen for

output quantization, in order to capture the growth of the estimated state, and that

there is a trade-off between how fast we sample and how precisely we quantize due

to the choice of respective parameters.

The proposed controller (8.2) is based on the principle of certainty equivalence.

In the absence of quantization or sampling errors, such controllers drive the state

estimation error (x − z) to zero, and the control input replicates the full state static

feedback law to drive the plant state to the origin. Thus, the following basic assump-

tions are necessary:

(L-1) The pair (A,B) is stabilizable, and hence for every symmetric positive definite

matrix Qc (denoted as Qc > 0) there exists a matrix Pc > 0 such that

(A + BK)⊤Pc + Pc(A + BK) ≤ −Qc. (8.3)

(L-2) The pair (A,C) is observable, so that for every Qo > 0, there exists a matrix

Po > 0 such that

(A − LC)⊤Po + Po(A − LC) ≤ −Qo. (8.4)

1
Implementing the controller (8.2) requires that the variable z is also known for computing the

output sampling times and choosing the appropriate encoding symbol. Thus, a copy of (8.2) is also

implemented next to the plant output sensors to compute the value of z.
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Now, using Fig. 8.2 as the template for the remainder of the section, we provide

the algorithms to compute the output sampling times tk, and input sampling times

𝜏j, k, j ∈ ℕ in Sects. 8.2.1, and 8.2.2, respectively, along with the encoding strategies

for the respective quantizers.

8.2.1 Output Processing Unit

Our first objective is to provide an algorithm that gives sampling times at which the

plant output must be sent to the controller, followed by an update rule for output

quantization parameters which provide an encoding scheme for the sampled output

measurements. As stated earlier, the controller needs the output information in order

to estimate the state of the plant, and hence the output samples must be sent often

enough so that the state estimation error is always decaying with respect to some

chosen metric. It is thus useful to introduce the estimation error x̃ ∶= x − z. Equa-

tions (8.1) and (8.2) then result in the following equations for error dynamics:

̇̃x(t) = Ax̃(t) − Lq
𝜈k
(ỹ(tk))

ỹ(t) = Cx̃(t).
(8.5)

8.2.1.1 Event-Triggered Sampling of the Output

To provide the basic idea behind calculation of the sampling times, let us momentar-

ily ignore the error due to quantization of the output, and replace the term q
𝜈k
(ỹ(tk))

in (8.5) by ỹ(tk) = ỹ(t) + ỹ(tk) − ỹ(t). If the sampling times tk are chosen such that

|ỹ(t) − ỹ(tk)| ≤ 𝜎o|x̃(t)|

for 𝜎o > 0 sufficiently small, then |x̃(t)| converges to zero.

However, in addition to the quantization errors, the term x̃ remains unknown. But,

using this intuition, we first aim to find an invertible map from x̃(t) to some past-

sampled output values of ỹ measured over the interval [t0, t) using Eq. (8.5), so that

x̃(t) can be directly expressed in terms of a certain number of past output samples.

To do so, it is seen that in (8.5), q
𝜈k
(ỹ(tk)) acts as a known term, and using ỹ as the

output, it is possible under the observability assumption to reconstruct x̃ as a function

of (sufficiently many) sampled values of ỹ over any compact interval. Toward this

end, let

𝜓(s1, s2, s3) ∶= CeAs1
∫

s3

s2
e−AsL ds, s1 ≤ s2 ≤ s3, (8.6)

so that 𝜓 takes values in ℝp
. Now, for t > tk > tk−1 > ⋯ > tk−𝚗𝚜−1 ≥ t0, define the

lower triangular matrix 𝛹k,𝚗𝚜(t) as
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𝛹k,𝚗𝚜(t) ∶=
⎡
⎢
⎢
⎢
⎣

𝜓(tk, tk, t) 0 0 ⋯
𝜓(tk−1, tk, t) 𝜓(tk−1, tk−1, tk) 0 ⋯
𝜓(tk−2, tk, t) 𝜓(tk−2, tk−1, tk)𝜓(tk−2, tk−2, tk−1) ⋯

⋮ ⋮ ⋮,

⎤
⎥
⎥
⎥
⎦

where 𝚗𝚜 ∈ ℕ is some strictly positive integer, and to keep the notation short, it is

noted that 𝛹k,𝚗𝚜(t) depends on (t, tk, tk−1,… , tk−𝚗𝚜−1). Next, introduce the following

notation:

Nk,𝚗𝚜 (t) ∶= col
(
Ce−A(t−tk),Ce−A(t−tk−1),⋯ ,Ce−A(t−tk−𝚗𝚜+1)

)
,

Ỹk,𝚗𝚜 ∶= col
(
ỹ(tk), ỹ(tk−1),⋯ , ỹ(tk−𝚗𝚜+1)

)
,

q
𝜈k,𝚗𝚜

(Ỹk,𝚗𝚜) ∶= col
(

q
𝜈k
(ỹ(tk)), q𝜈k−1

(ỹ(tk−1)),⋯ , q
𝜈k−𝚗𝚜+1

(ỹ(tk−𝚗𝚜+1))
)

.

(8.7)

Applying the variation of constants formula to system (8.5), it is seen that, for any

t > tk > tk−1 > ⋯ > tk−𝚗𝚜+1, we have

Nk,𝚗𝚜(t)x̃(t) = Ỹk,𝚗𝚜 − 𝛹k,𝚗𝚜(t)q𝜈k,𝚗𝚜
(Ỹk,𝚗𝚜). (8.8)

We will use this important relation (8.8) to define the sampling times for output

measurements, but before proceeding to that, let us recall a few well-known results.

An important requirement in our analysis of minimum inter-sampling time is the

invertibility of the matrix Nk,𝚗𝚜(t), for each t > t𝚗𝚜−1, and is achieved due to the fol-

lowing result from [43]:

Lemma 8.1 Let Im(𝜆(A)) denote the imaginary part of the eigenvalue 𝜆 of the
matrix A, and let 𝜔 ∶= max1≤i,j≤n{Im(𝜆i(A) − 𝜆j(A))}. If

𝚗𝚜 > 2(n − 1) +
Ts

2𝜋
𝜔 (8.9)

then the matrix col(CeAs1 ,CeAs2 ,⋯ ,CeAs𝚗𝚜 ) is left invertible for all s1, s2,… , s𝚗𝚜 ∈
[0,Ts].

In the context of Lemma 8.1, 𝚗𝚜 could be interpreted as the number of samples

required for observability of the discretized system (8.5). It is well known from lin-

ear systems theory that for an observable matrix pair (A,C) where A has only real

eigenvalues, it would suffice to take 𝚗𝚜 to be the observability index for invertibility

of Nk,𝚗𝚜(t) for each t ≥ 0. However, in the presence of complex eigenvalues, there

are some isolated points on real line where Nk,𝚗𝚜 (t) may loose rank. It is proved in

[43, Theorem 1] that the number of roots of the determinant of Nk,𝚗𝚜(t) are upper

bounded on any bounded interval, and if one takes 𝚗𝚜 to satisfy the bound (8.9), then

injectivity of Nk,𝚗𝚜 (t) holds for all t ∈ [0,Ts].
To use this lemma for our problem setup, we first fix some integer 𝚗∗𝚜 > 2(n − 1).

Choose t0 < t1 < · · · < t𝚗∗𝚜−1 arbitrarily, and let



208 C. Prieur and A. Tanwani

f (t, Ỹk,𝚗𝚜) = Ỹk,𝚗𝚜 − 𝛹k,𝚗𝚜(t)q𝜈k,𝚗𝚜
(Ỹk,𝚗𝚜), k ≥ 𝚗𝚜 − 1.

The sampling times tk+1, for k ≥ 𝚗∗𝚜, are then defined recursively as follows:

tevent

k+1 ∶= inf
{

t > tk || ‖Nk,𝚗𝚜(t)‖ ⋅ |ỹ(t) − ỹ(tk)| ≥ 𝜎o ⋅ |f (t, Ỹk,𝚗𝚜)|
}

(8.10a)

tsample

k+1 ∶= inf
{

t > tk || t − tk−𝚗∗𝚜+1 > min
{2𝜋

𝜔

(
𝚗∗𝚜 − 2(n − 1)

)
, 𝚗∗𝚜T

}}

(8.10b)

tk+1 ∶= min{tevent

k+1 , tsample

k+1 }, (8.10c)

where 𝜎o ∶= 𝜀o
𝜆min(Qo)
2 ‖PoL‖

, for some 𝜀o ∈ (0, 1) and T > 0 is some prespecified con-

stant, which can be arbitrarily large, but finite. The sampling rule (8.10) guarantees

that the output measurements are transmitted persistently to the controller.

8.2.1.2 Output Quantization

We now define an encoding strategy that is used to transmit ỹ(tk) at each time instant

tk using a string of finite length. The quantization model we use is adopted from [22],

which is a dynamic one. For output measurements, we assume that the quantizer has

a scalable parameter 𝜈 and has the form:

q
𝜈
(y) = 𝜈qy

( y
𝜈

)

, (8.11)

where qy(⋅) denotes a finite-level quantizer with sensitivity parameterized by 𝛥y and

range Ry, that is, if |y| ≤ Ry, then |qy(y) − y| ≤ 𝛥y. This way, the range of the quan-

tizer q
𝜈
(⋅) is Ry𝜈 and the sensitivity is 𝛥y𝜈. Increasing 𝜈 would mean that we are

increasing the range of the quantizer with large quantization errors and decreasing

𝜈 corresponds to finer quantization with smaller range. It will be assumed that the

quantizer is centered around the origin, that is, qy(y) = 0 if |y| < 𝛥y.

We now specify an update rule for the parameter 𝜈, so that the state estimation

error x̃ converges to zero. First, we pick 𝜈0,⋯ , 𝜈𝚗𝚜−1 to be arbitrary. It is assumed

that 𝜈𝚗𝚜 is chosen such that
2 x̃(t𝚗𝚜) is contained in an ellipsoid:

Vo(x̃(t𝚗𝚜)) ≤
𝜆min(Po)R2

y

‖C‖2
𝜈𝚗𝚜

2
, (8.12)

2
If x̃(t0) is known to belong to a known bounded set, then 𝜈𝚗𝚜 satisfying (8.12) is computed from

calculating an upper bound on |x̃(t𝚗𝚜 )| using the differential equation (8.5). One can also use the

relation (8.8) to obtain an upper bound on x̃ at certain time, or use the strategy proposed in [22, 36]

to get a bound on state estimation error. To keep the notation simple, we have used the same index

for sampling times and quantization parameter.
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then |x̃(t𝚗𝚜)| ≤
Ry

‖C‖
𝜈0 and |Cx̃(t𝚗𝚜)| ≤ Ry𝜈0. Suppose that we have chosen 𝜈k such

that (8.12) holds for x̃(tk), for some k ≥ ℕ. We now specify 𝜈k+1 such that (8.12)

holds for x̃(tk+1), for all k ∈ ℕ, and at the same time limk→∞ 𝜈k = 0.

Since the controller receives the quantized measurements only, the observer takes

the following form over the interval t ∈ [tk, tk+1):

ż(t) = Az(t) + Bu(t) + Lq
𝜈k
(y(tk) − Cz(tk)). (8.13)

The dynamics of the state estimation error for the interval [tk, tk+1) are:

̇̃x(t) = Ax̃(t) − Lq
𝜈k
(ỹ(tk)) (8.14a)

= Ax̃(t) − Lỹ(tk) − Lq
𝜈k
(ỹ(tk)) + Lỹ(tk) (8.14b)

= (A − LC)x̃(t) + L(ỹ(t) − ỹ(tk)) − 𝜈kL
(

qy
(

ỹ(tk)
𝜈k

)

−
ỹ(tk)
𝜈k

)

. (8.14c)

Pick Vo(x̃) = x̃⊤Pox̃ as the Lyapunov function, and we see that the measurement

update rule (8.10) leads to the following bound for t ∈ [tk, tk+1), k ≥ 𝚗𝚜:

V̇o(x̃(t)) ≤ −(1 − 𝜀o)𝜆min(Qo)|x̃(t)|2 + 2𝜈k 𝛥y ‖PoL‖ |x̃(t)|. (8.15)

Thus, within two measurement updates, the error converges to a ball parameter-

ized by 𝜈k. In particular, for some 0 < 𝛼o <
(1−𝜀0)𝜆min(Qo)

𝜆max(Po)
, if we let

𝜒o ∶=
2 ‖PoL‖

(1 − 𝜀o)𝜆min(Qo) − 𝛼o𝜆max(Po)
(8.16)

then |x̃(t)| ≥ 𝜒o𝛥y𝜈k implies that

V̇o(x̃(t)) ≤ −𝛼oVo(x̃(t)).

Thus, it follows that, for t ∈ [tk, tk+1), k ≥ 𝚗𝚜:

Vo(x̃(t)) ≤ max{𝜆max(Po)𝜒2
o𝛥

2
y𝜈

2
k , e

−𝛼o(t−tk)Vo(x̃(tk))}.

For each k ≥ 0, letting

𝛩
y
k+1 ∶= max

{

𝜆max(Po)𝜒2
o𝛥

2
y𝜈

2
k , e

−𝛼o(tk+1−tk)
𝜆min(Po)R2

y

‖C‖2
𝜈
2
k

}

,
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it follows that Vo(x̃(tk+1)) ≤ 𝛩
y
k+1, for k ≥ 𝚗𝚜. If we now pick 𝜈k+1, k ≥ 𝚗𝚜, as follows:

𝜈k+1 ∶=
‖C‖
Ry

√
𝛩

y
k+1

𝜆min(Po)
(8.17)

then it is guaranteed that |x̃(tk+1)| ≤
Ry

‖C‖
𝜈k+1 and |Cx̃(tk+1)| ≤ Ry𝜈k+1. To ensure vk

converges to zero as k gets large, we impose a bound on the number of quantization

levels determined by the ratio
𝛥y

Ry
, see (8.22) in the statement of Theorem 8.1.

8.2.2 Input Processing Unit

We can tailor the aforementioned ideas to derive a sampling algorithm and a quan-

tization strategy for the control input.

8.2.2.1 Sampling Algorithms for Inputs

Let 𝜏0 = t𝚗𝚜 , and choose the control input u, so that u(t) = 0, for t ∈ [t0, 𝜏0), and

u(𝜏0) = Kz(𝜏0) = Kz(t𝚗𝚜), and the next update is performed at 𝜏j+1, which, for j ≥ 0,

is defined as follows:

𝜏
event

j+1 ∶= inf
{

t > 𝜏j
|
| |Kz(t) − Kz(𝜏j)| ≥

(

𝜎c|z(t)| + 𝛾c
Ry

‖C‖
𝜈(t)

)}

, (8.18a)

𝜏
pers

j+1 ∶= inf{t > 𝜏j | t − 𝜏j ≥ T}, (8.18b)

𝜏j+1 ∶= min{𝜏event

j , 𝜏
pers

j }, (8.18c)

where 𝜎c ∶= 𝜀c
𝜆min(Qc)
2‖PcB‖

, and 𝛾c ∶= 𝛽𝜎c‖C‖ for some 𝜀c ∈ (0, 1), and 𝛽 > 0.

Note that the term 𝜈(⋅) is only piecewise constant and does not vary continuously

with time. In case there is a time tk > 𝜏j such that |Kz(tk) − Kz(𝜏j)| < 𝜎c|z(tk)| +
𝛾cRy𝜈(t−k )), and due to sudden change in the value of 𝜈 at time tk, it happens that

|Kz(tk) − Kz(𝜏j)| ≥ 𝜎c|z(tk)| + 𝛾cRy𝜈(t+k ), then in that case we assume that 𝜏j+1 = tk,

and hence the control input is updated instantaneously without any delay.

8.2.2.2 Input Quantization

In our setup, the control input cannot be transmitted to the plant with exact precision

and only q
𝜇j
(Kz(𝜏j)), j ∈ ℕ is transmitted to the plant. The quantization model used

for control inputs is similar to the one adopted for outputs, that is,
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q
𝜇
(u) = 𝜇 qu

(
u
𝜇

)

,

where 𝜇 denotes the scaling parameter, and qu
is a finite-level quantizer whose range

is denoted by Ru, and the sensitivity by 𝛥u. We specify an update rule for the parame-

ter 𝜇j associated with the input quantizer such that the resulting closed-loop system

is still globally asymptotically stable. In order to do that, we choose z(𝜏0) such that

Vc(z(𝜏0)) ≤
𝜆min(Pc)R2

u

‖K‖2
𝜇
2
0 .

With quantized inputs and outputs, the dynamical system (8.2) is thus written as:

ż(t) = (A + BK)z(t) + B(u(t) − Kz(t)) + L(q
𝜈k
(y(tk) − Cz(tk))), t, tk ∈ [𝜏j, 𝜏j+1)

= (A + BK)z(t) + BK(z(𝜏j) − z(t)) + 𝜇jB
(

q
(Kz(𝜏j)

𝜇j

)

−
Kz(𝜏j)
𝜇j

)

+ L(q
𝜈k
(y(tk) − Cz(tk))).

With Vc(z) = z⊤Pcz as the Lyapunov function, and the control update rule (8.18),

we observe that

V̇c ≤ −(1 − 𝜀c)𝜆min(Qc)|z(t)|2 + |z(t)|(𝛽𝜀c𝜆min(Qc)Ry𝜈k∗(t) + 2‖PcB‖𝛥u𝜇j)
+2 |z(t)| ‖PcL‖(|ỹ(tk∗(t))| + 𝜈k∗(t)𝛥y), (8.19)

where

k∗(t) ∶= max{k ∈ ℕ ∶ tk ≤ t}.

From our output quantization scheme, we have that |ỹ(tk)| = |Cx̃(tk)| ≤ Ry𝜈k, for

all k ∈ ℕ, and 𝜈k∗(𝜏j) ≥ 𝜈k∗(t), for t ≥ 𝜏j. For a fixed 0 < 𝛼c <
(1−𝜀c)𝜆min(Qc)

𝜆max(Pc)
, we intro-

duce the constants

𝜒c ∶=
2‖PcB‖

(1 − 𝜀c)𝜆min(Qc) − 𝛼c𝜆max(Pc)
(8.20)

and

𝜉1 ∶=
𝛽𝜀c𝜆min(Qc) + 2‖PcL‖

(1 − 𝜀c)𝜆min(Qc) − 𝛼c𝜆max(Pc)
, 𝜉2 ∶=

2‖PcL‖
(1 − 𝜀c)𝜆min(Qc) − 𝛼c𝜆max(Pc)

.

It is note that if |z(t)| ≥ 𝜒 j ∶= 𝜒c𝛥u𝜇j + (𝜉1Ry + 𝜉2𝛥y)𝜈∗k,j, then

V̇c(z(t)) ≤ −𝛼cVc(z(t)).

Assuming that z(𝜏j) is contained in an ellipsoid defined as:
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Vc(z(𝜏j)) ≤
𝜆min(Pc)R2

u

‖K‖2
𝜇
2
j ,

we let

𝛩
u
j+1 ∶= max

{

𝜆max(Pc)𝜒
2
j , e

−𝛼c(𝜏j+1−𝜏j)
𝜆min(Pc)R2

u

‖K‖2
𝜇
2
j

}

.

Choose 𝜇j+1 such that

𝜇
2
j+1 =

‖K‖2𝛩u
j+1

R2
u𝜆min(Pc)

(8.21)

then it is guaranteed that |z(𝜏j+1)| ≤
Ru

‖K‖
𝜇j+1, and |Kz(𝜏j+1)| ≤ Ru𝜇j+1. The conver-

gence of 𝜇j to zero will again follow from the bound in (8.22) in Theorem 8.1.

Remark 8.1 In order to implement the quantization algorithm for the control inputs,

it must be noted that the parameter 𝜇 actually depends on the parameter 𝜈 used for the

quantization of ỹ. This is done because the evolution of the controller state z actually

depends upon the quantized values of ỹ, and to determine the region that contains

the state z at current time instant, we use the knowledge of how large ỹ is, which is

indeed captured by the most recent value of 𝜈.

8.2.3 Convergence Result

Based on the sampling strategies and quantization algorithms developed in

Sects. 8.2.1 and 8.2.2, we now state our first main result which relates to the asymp-

totic stability of the origin in closed-loop (8.1), (8.2).

Theorem 8.1 Assume that the information transmitted between the plant P to the
controller C , given by q

𝜈k
(ỹ(tk)), k ≥ 1, and q

𝜇j
(Kz(𝜏j)), j ≥ 1, are such that

∙ The output sampling instants tk, k ≥ 𝚗𝚜, are determined by the relation (8.10); and
the input sampling instants 𝜏j, j ≥ 1 are determined by (8.18).

∙ For the output dynamic quantizer (8.11), the parameter 𝜈𝚗𝚜 is chosen to sat-
isfy (8.12) and 𝜈k, k > 𝚗𝚜, is updated according to (8.17). The parameter 𝜇j for
the dynamic quantization of the input is updated according to (8.21).

∙ The number of output quantization levels determined by Ry and 𝛥y, and the input
quantization levels determined by Ru and 𝛥u are such that

𝛥y

Ry
=

√
𝜆min(Po)
𝜆max(Po)

⋅
𝜌y

𝜒o ‖C‖
, and

𝛥u

Ru
=

√
𝜆min(Pc)
𝜆max(Pc)

𝜌u

𝜒c‖K‖
(8.22)

for some 𝜌y, 𝜌u ∈ (0, 1).
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Then the following statements hold:

∙ There is a minimum dwell time between two consecutive sampling times of the
input and the output, that is, there exists tD, 𝜏D > 0 such that tk+1 − tk ≥ tD, and
𝜏j+1 − 𝜏j ≥ 𝜏d for each k ≥ 𝚗𝚜, j ≥ 1.

∙ The origins of the error dynamics (8.5) and of the plant dynamics (8.1) are asymp-
totically stable.

Remark 8.2 (Trade-off between sampling and quantization) In order to maximize

the inter-sampling time for outputs, one may choose 𝜎o in the expression (8.10a)

by selecting a large value of 𝜀o. However, the value 𝜀o closer to 1 results in the

larger value of 𝜒o introduced in (8.16). From expression (8.22), it now follows that

larger values of 𝜒o mean that we require a large number of quantization levels to

guarantee asymptotic convergence. Hence, slower sampling allows for lesser num-

ber of quantization levels and leads to faster convergence of the parameter 𝜈, and vice

versa. In order to minimize both the sampling rate and the quantization levels, that is,

increase 𝜎o without increasing 𝜒 , one way is to maximize the ratio
𝜆min(Qo)
‖PoL‖

by select-

ing L and Qo appropriately. Similar observation can be made for input sampling and

quantization.

8.2.4 Illustrative Example

Consider the plant (8.1) with A =
[
1 1
0 0.5

]

, B =
[
0
1

]

, C =
[
1 0

]
. Since the matrix

A does not have any complex eigenvalues, it suffices to take 𝚗𝚜 = 2. For the state

estimation part, we choose the output injection gain L = [4 3]⊤, Qo = [ 1
0.5

0.5
1
], and

𝜀o = 0.75 which results in Po ∶= [ 1.63
−1.47

−1.47
1.93

] and 𝜎o = 0.09. For quantization of the

sampled output, we pick a quantizer qy
which rounds off the real-valued output to the

nearest integer, so that𝛥y = 1. The value of parameter 𝛼o = 0.1 (1−𝜀0)𝜆min(Qo)
𝜆max(Po)

= 0.0038
results in 𝜒o = 37.94. Finally by selecting 𝜌y = 0.975, it is seen that the number of

quantization levels required for convergence of state estimation error is

Ry

𝛥y
= 127,

that is, we need ⌈log2(127)⌉ = 7 bit quantizer for the output. It must be recalled

that no optimality criterion was placed in obtaining the required number of bits for

convergence and it could be reduced for other choices of matrices L and Qo.

For the control input, the feedback gain matrix K = −[6 4.5] is chosen with

Qc = Qo, and 𝜀c = 0.85. This results in Pc = [ 2.5
0.25

0.25
0.5

], and 𝜎c = 0.38. For the quan-

tization, we again pick qu
such that its input is rounded of to the nearest inte-

ger, so that 𝛥u = 1. The value of parameter 𝛼c = 0.1 (1−𝜀c)𝜆min(Qc)
𝜆max(Pc)

= 0.0048 results

in 𝜒c = 9.94. Finally by selecting 𝜌u = 0.85, it is seen that the desired value of



214 C. Prieur and A. Tanwani

Fig. 8.3 Simulation results for event-triggered sampling and quantization in linear plants

Ru = 318, so we need ⌈log2(318)⌉ = 9 bit quantizer for the control input. The results

of the simulation are given in Fig. 8.3. As expected, the states of the system converge

to zero under the proposed algorithm, and the plots in Fig. 8.3a, b show the sampled

and real values of the output and input, respectively.

8.3 Dynamic Sampling for Nonlinear Systems

We next consider nonlinear dynamical systems of the form

P ∶
{

ẋ = f (x, u) ,
y = h(x) (8.23)

where x, u, y denote the state trajectory, the input, and the output respectively. For

stabilization of system (8.23), we choose to work with the following class of con-

trollers:

C ∶
{

ż = g(z, u, y) ,
u = k(z) . (8.24)

Going by the approach adopted for controller design in the previous section, the

dynamical system given by the first line of (8.24) plays the role of state estimator, and

the control input u is some function of the estimated state variable z. The problem

of stabilization of nonlinear systems with dynamic output feedback is well studied

in the literature, see [3] for a survey, or [42] for various tools developed for solving

this problem.

In the previous section, the algorithm that was designed to determine the output

sampling times resembled a discrete-time system. Inspired by this development, the

sampling algorithms that we propose in this section for nonlinear systems are based

on designing auxiliary dynamical systems which determine when the next output,

or input sample must be transmitted. In this regard, Fig. 8.4 lays out the sketch of

the control loop that we wish to implement in this section. Before addressing this

problem of designing sampling algorithms, we first describe some basic hypotheses

on the system and controller data (8.24) that will be used later.
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Fig. 8.4 Feedback loop where the inputs and outputs are time-sampled and the sampling instants

are determined by the dynamic filters 𝜂c and 𝜂o, respectively

8.3.1 Nominal Output Feedback

Basic assumptions on system (8.23) and the controller (8.24) which relate to robust

(with respect to measurement errors) asymptotic stabilization of the closed-loop sys-

tem are now listed.

(NL-1) The vector fields f ∶ ℝn ×ℝm → ℝn
and g ∶ ℝn ×ℝm ×ℝp → ℝn

are con-

tinuous in each of their arguments. The function h ∶ ℝn → ℝp
is continuous

and there exists a class K function 𝛼h such that

|h(x)| ≤ 𝛼h(|x|).

(NL-2) An ISS state estimator: There exist a continuously differentiable function

Vo ∶ ℝn → ℝ
≥0, and functions 𝛼o, 𝛼o, 𝛼o, 𝛾o of class K∞, which satisfy the

following inequalities:

𝛼o(|x̃|) ≤ Vo(x̃) ≤ 𝛼o(|x̃|) (8.25a)

⟨∇Vo, f (x, u) − g(z, u, y + dy)⟩ ≤ −𝛼o(Vo(x̃)) + 𝛾o(|dy|), (8.25b)

where x̃ ∶= x − z denotes the state estimation error.

(NL-3) An ISS control law: There exist a continuously differentiable function Vc ∶
ℝn → ℝ

≥0, functions 𝛼c, 𝛼c, 𝛼c, 𝛾c of class K∞, and a state feedback control

law k ∶ ℝn → ℝm
such that

𝛼c(|x|) ≤ Vc(x) ≤ 𝛼c(|x|) (8.26a)

⟨∇Vc, f (x, k(x + dc))⟩ ≤ −𝛼c(Vc(x)) + 𝛾c

(
|dc|

2

)

. (8.26b)

(NL-4) As r → 0+, we have (𝛾c◦𝛼
−1
o )(r) = O(𝛼o(r)), that is, there exists a constant

M > 0 such that
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lim
r→0+

(𝛾c ◦ 𝛼
−1
o )(r)

𝛼o(r)
≤ M. (8.27)

Hypotheses (NL-2) and (NL-3) allow us to decompose the problem of dynamic

output feedback into two components: first is to design a state estimator, and then

apply a static control law which is robust with respect to measurement errors. Design-

ing control laws which are ISS with respect to measurements of state variable has

remained a topic of major interest in the control community and several techniques

now exist depending on the system class. The state estimators, that one typically

designs for a nonlinear system (using high-gain, or passivity approach), are robust

with respect to output measurement error but the estimate of the form (8.25b) is typ-

ically not stated in such works. We refer the reader to a recent paper [35] which deals

with designing estimators of this form. The assumption (NL-4) is imposed to con-

struct a particular Lyapunov function for the closed-loop system. This construction

is inspired by [37] and it allows us to invoke arguments related to the stability of the

cascaded nonlinear systems. If the functions 𝛼c and 𝛾c are quadratic, and 𝛼o is linear,

as one would usually obtain in the linear case with quadratic Vo and Vc, then (NL-4)
is satisfied.

8.3.2 Sampling Algorithms

To design sampling algorithms, we introduce the following auxiliary dynamical

system:

𝜂̇o ∶= −𝛽o(𝜂o) + 𝜌o(|y(t)|) + 𝛾o(|y(t) − y(tk)|) (8.28a)

and on the controller side

𝜂̇c ∶= −𝛽c(𝜂c) + 𝜌c

(
|z(t)|
2

)

+ 𝛾c(|z(t) − z(𝜏j)|) (8.28b)

with initial conditions 𝜂o(0) > 0, and 𝜂c(0) > 0. In the above equations, 𝛽o, 𝜌o, 𝜌c, and

𝛽c are all functions of class K , which would be specified later. One may notice that,

if 𝛽o(r) = 𝛼o(r) and 𝛽c(r) = 𝛼c(r) are linear, then in the light of (NL-2) and (NL-3),
the dynamic filters in (8.28a) and (8.28b) play the role of norm estimators [38] for

error dynamics x̃ = x − z, and the closed-loop dynamics for the state x, respectively.

We use the sample-and-hold strategy for sampling, that is, the outputs and inputs

are updated at certain discrete times, and in between updates, they are held constant.

The algorithms that determine the sampling instants for inputs and outputs can now

be defined as a function of 𝜂o, 𝜂c given by (8.28).

Output Sampling Rule:

It is assumed that the output sent to the controller is updated at time instants tk, k ∈ ℕ,

which are defined inductively as:
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tk+1 ∶= inf{t > tk | |y(t) − y(tk)| ≥ 𝜎o(𝜂o(t))}, (8.29)

where 𝜎o ∶ ℝ
≥0 → ℝ

≥0 is some positive definite, nondecreasing function to be spec-

ified later.

Input Sampling Rule:

The control input u(⋅) is updated at time instants 𝜏j, j ∈ ℕ, according to the following

rule:

𝜏j+1 ∶= inf{t > 𝜏j | |z(t) − z(𝜏j)| ≥ 𝜎c(𝜂c(t))}, (8.30)

where 𝜎c ∶ ℝ
≥0 → ℝ

≥0 is a positive definite and nondecreasing function which will

be specified later.

8.3.3 Stability Analysis

Using the sampling algorithms from the previous section, the dynamics of the closed-

loop system are now written in the framework of hybrid systems [13], where we spec-

ify the continuous and discrete dynamics, along with their respective domains. We

then invoke tools from the literature related to the stability of such systems to show

that for certain choice of the design parameters in (8.28) and appropriately chosen

functions 𝜎o, 𝜎c in (8.29), (8.30), the origin of the closed-loop system is asymptoti-

cally stable.

8.3.3.1 Hybrid Model of the System

Using yd and zd to denote the sampled output and sampled controller state, respec-

tively, we can let x ∶= (x, z, 𝜂c, 𝜂o, yd, zd) ∈ ℝn
, where n = 3n + p + 2, is the aug-

mented state variable for the closed-loop system. The flow set ℭ for the state vari-

ables (where they all satisfy a certain ordinary differential equation) is defined as

ℭ ∶= ℭo ∩ ℭc ∩ ℭ
𝜂
,

where we define

ℭo ∶= {x ∈ ℝn | |h(x) − yd| ≤ 𝜎o(𝜂o)}, (8.31a)

ℭc ∶= {x ∈ ℝn | |z − zd| ≤ 𝜎c(𝜂c)}, (8.31b)

ℭ
𝜂
∶= {x ∈ ℝn | 𝜂o ≥ 0 ∧ 𝜂c ≥ 0}. (8.31c)

The jump set 𝔇 where the state variables may get reset is given by:

𝔇 ∶= 𝔇c ∪𝔇o,
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where

𝔇o ∶= {x ∈ ℝn | |h(x) − yd| ≥ 𝜎o(𝜂o)} (8.32a)

𝔇c ∶= {x ∈ ℝn | |z − zd| ≥ 𝜎c(𝜂c)}. (8.32b)

Clearly, the sets ℭ and 𝔇 are closed. By construction, the jump set 𝔇 for the

closed-loop hybrid system also allows for two jumps simultaneously, that is, yd and

zd may get updated at the same time instant. The corresponding sets of differential

and difference equation on these sets are:

x ∈ ℭ ∶

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩

ẋ = f (x, k(zd))
ż = g(z, k(zd), yd)
żd = 0
ẏd = 0
𝜂̇o = −𝛽o(𝜂o) + 𝜌o(|h(x)|) + 𝛾o(|h(x) − yd|)
𝜂̇c = −𝛽c(𝜂c) + 𝜌c

(
|z|
2

)

+ 𝛾c(|z − zd|)

(8.33a)

x ∈ 𝔇c ∶
{

z+d = z (8.33b)

x ∈ 𝔇o ∶
{

y+d = h(x). (8.33c)

The closed-loop system (8.33) satisfies the basic assumptions listed in

[13, Assumption 6.5], and is, hence, nominally well posed.

8.3.3.2 Design of Sampling Functions

The choice of functions 𝜎o, 𝜎c depends on the construction of a function q which

will also be used to define the Lyapunov function of system (8.33). Under assump-

tion (NL-4), it is possible to introduce a continuous nondecreasing function q ∶
ℝ

≥0 → ℝ
≥0 that satisfies [37, Lemma 2]:

q(s) ≥
4(𝛾c◦𝛼

−1
o )(s)

𝛼o(s)
.

The functions 𝛽o, 𝛽c, 𝜎o, 𝜎c, 𝜌o and 𝜌c under consideration should satisfy the

following design criteria for the stability result to follow:

(D1) Let 𝛽o and 𝛽c be two smooth functions of class K ;

(D2) Let 𝜃o be a function of class K∞ defined as
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𝜃o(r) ∶= 𝛼
−1
o (2𝛾o(r)).

Choose the functions 𝜎o and 𝜎c in (8.31) and (8.32) such that for some 𝜀 ∈
(0, 1), and for each s ≥ 0:

(𝛾o ◦ 𝜎o)(s) ⋅
[
1 + (q◦𝜃o◦𝜎o)(s)

]
≤ (1 − 𝜀)𝛽o(s)

2(𝛾c◦𝜎c)(s) ≤ (1 − 𝜀)𝛽c(s).

(D3) The functions 𝜌o and 𝜌c in (8.33) are chosen such that for each s ≥ 0:

0 ≤ (𝜌o◦𝛼h◦𝛼
−1
c )(s) ≤ (1 − 2𝜀)𝛼c(s),

0 ≤ 𝜌c(s) ≤ min
{
(1 − 𝜀)𝛾c(s), 𝜀𝛼c(𝛼c(s))

}
.

The basic idea behind the aforementioned design criteria is to work with the fol-

lowing candidate Lyapunov function:

V(x) ∶= l(Vo(x̃)) + Vc(x) + 𝜂o + 𝜂c, (8.34)

where l ∶ ℝ
≥0 → ℝ

≥0 is defined as

l(s) ∶=
∫

s

0
q(r)dr.

Since q is a continuous nondecreasing function, it follows that l(⋅) is a contin-

uously differentiable function of class K∞. The foregoing bounds are introduced

to obtain V̇ ≤ 0 during the flows, whereas, by construction, V+ = V−
when a jump

occurs. Arguments based on LaSalle’s invariance principle can then be invoked to

show that the origin is asymptotically stable.

Theorem 8.2 Consider the closed-loop system (8.33) under the hypotheses (NL-1),
(NL-2), (NL-3), and (NL-4). If the functions 𝛽o, 𝛽c, 𝜌o, 𝜌c in (8.33a) and the functions
𝜎o, 𝜎c in (8.31c) are chosen to meet the design criteria (D1), (D2), and (D3), then the
origin {0} ∈ ℝn is globally asymptotically stable (GAS) for the closed-loop system
(8.33).

8.3.4 Dwell Time Between Sampling Instants

We next want to show that the proposed sampling algorithms given in Sect. 8.3.2 do

not lead to the accumulation of jump times over a finite time interval, and over each

compact interval, there exists a lower bound on inter-sampling times. Our strategy

for showing the existence of minimal inter-sampling time is primarily based on the

approach adopted in [39]. However, unlike [39], we do not get an autonomous differ-
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ential inequality that gives uniform lower bounds; instead, we obtain time-varying

differential inequalities, and hence the inter-sampling times depend upon the interval

under consideration.

For the proposed sampling routines, the minimum time between two output

(respectively, control input) updates is the time taken by the term
|y(t)−yd(t)|
𝜎o(𝜂o(t))

(
resp.

|z(t)−zd(t)|
𝜎c(𝜂c(t))

)
to go from 0 to 1, after each time yd has been reset to current value of

y (resp. zd has been reset to z). In order to derive lower bounds on minimal time

between updates, we will first introduce certain assumptions on the gain functions

given in Sect. 8.3.1 and the ones used to define sampling instants in Sect. 8.3.2.

(A1) The system dynamics defined by f , h, and the controller functions g, k are

bounded by a linear growth rate, which allow us to write |f (x, k(x + dc))| ≤
Lfk(|x| + |dc|) and |g(z, k(z + dz), h(x) + dy)| ≤ Lgk(|z| + |dz|) + Lgh(|x| + dy).
Also, ‖𝜕h∕𝜕x‖ is bounded by a constant.

(A2) The functions 𝛼o and 𝛼c are linear, and 𝛼o(r) < 𝛼c(r).
(A3) The function 𝛾c ◦ 𝛼

−1
o is bounded by a linear growth rate: There exists Lco > 0

such that 𝛾c(𝛼−1
o (r)) ≤ Lco r.

(A4) The functions 𝜎o, 𝜎c are same up to multiplication by a constant C > 0, that is,

𝜎o = C𝜎c. Furthermore, let 𝜎 ∶= min{𝜎o, 𝜎c}, and assume there are constants

C
𝜎,1,C𝜎,2 > 0, that satisfy

𝜎(r) ≥ C
𝜎,1 max{𝛼−1

c (r), 𝛼−1
o (r)} (8.35a)

𝜎
′(r) ⋅ r ≤ C

𝜎,2 𝜎(r). (8.35b)

In addition, there exists a continuous locally integrable function 𝜒 ∶ ℝ
≥0 →

ℝ
≥0 such that for every r, s ≥ 0

𝜎(r)
𝜎(s)

≤ 𝜒

( r
s

)

. (8.35c)

Remark 8.3 (How restrictive are (A1)–(A4)?) One typically requires f , g to be locally

Lipschitz for existence of solutions, which would ensure that the linear growth rate

condition holds on every compact set. A global linear bound (which is satisfied for

globally Lipschitz functions) has been introduced to avoid the semi-global arguments

in this chapter. For (A2), note that it is always possible to modify the Lyapunov func-

tions Vo,Vc so that the dissipation functions 𝛼o and 𝛼c are linear, see [27, Lemma 12].

However, this would also modify the gain function 𝛾c and one must be careful in

verifying hypothesis (NL-4). The most restrictive aspect of our approach is to verify

(A4): As one would usually observe in the linear case, if 𝛼c(r) = 𝛼o(r) = r2, then one

can choose 𝜎(r) =
√

r (modulo multiplication with certain constants). In general,

having 𝜎(r) = r𝛼 , for 𝛼 > 0, would satisfy (8.35b) and (8.35c). To find a construc-

tive proof for existence of such 𝜎 is a topic of ongoing work.



8 Asymptotic Stabilization of Some Finite and Infinite Dimensional Systems . . . 221

In the light of these assumptions, we now impose the following additional criteria

on the design functions introduced in (8.28a), (8.28b), (8.29) and (8.30):

(D4) The functions 𝛽o, 𝛽c are linear and for each r ≥ 0

𝛽o(r) ≤ 𝛼o(r) < 𝛽c(r) ≤ 𝛼c(r).

(D5) The functions 𝜌o and 𝜌c are chosen such that

max{𝜌o ◦ 𝛼
−1
c (r), 𝜌o ◦ 𝛼

−1
o (r)} ≤ C

𝜌
r

max{𝜌c ◦ 𝛼
−1
c (r), 𝜌c ◦ 𝛼

−1
o (r)} ≤ C

𝜌
r

for some constants C
𝜌
> 0.

The main result on Zeno-freeness now follows.

Theorem 8.3 If, in addition to the hypotheses of Theorem 8.2, assumptions (A1)–
(A4) hold and the functions 𝛽o, 𝛽c, 𝜌o, 𝜌c satisfy (D4) and (D5), then there is no accu-
mulation point of the sampling times for outputs and inputs over a compact interval.

8.3.5 Example

In order to demonstrate our design, and observe practical feasibility of our algo-

rithms, we take a nonlinear system with globally Lipschitz vector field. The calcula-

tions carried out in this example would carry over to linear systems with very slight

modification. Consider the system

ẋ1 = x2 + 0.25 |x1|
ẋ2 = sat(x1) + u

with y = x1. The notation sat(x1) denotes the saturation function, that is, sat(x1) =
min{1,max{−1, x1}}. The nominal output feedback controller is:

ż1 = z2 + 0.25 |y| + l1(y − z1)
ż2 = sat(y) + u + l2(y − z1)
u = k(z) = sat(z1) − k1z1 − k2z2,

where we pick L⊤ ∶= [l1 l2] = [2 2], and K ∶= [k1 k2] = L⊤
. By choosing, Vo(x̃) =

x̃⊤Pox̃ and Vc(x) = x⊤Pcx, with Po =
[ 2 −1
−1 1

]
and Pc =

[ 1 0.5
0.5 0.5

]
, hypotheses (NL-2)

and (NL-3) hold. Indeed, if the controller is driven by the sampled output yd, then

V̇o ≤ −𝛼oVo + 𝛾o|yd − y|2,
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where 𝛾o ∶= ‖PoL‖2

po𝜆min(Po)
, and 𝛼o + po = 2. Similarly, with ud = k(zd), the derivative of

Vc(x) = x⊤Pcx satisfies

V̇c ≤ −𝛼cVc + 𝛾c|zd − z|2 + 𝛾c|x̃|2,

where 𝛾c ∶=
2‖PcBK‖2

pc𝜆min(Pc)
, and 𝛼c + pc = 2 − ‖P‖.

For sampling algorithms, we can let q(s) = q ∶= 4𝛾c

𝛼o𝜆min(Po)
to be the constant func-

tion and consider the following dynamic filters which satisfy the design criteria

(D1)–(D3):

𝜂̇o = −𝛼o𝜂o + 𝜌o|y(t)|2 + 𝛾o|y − yd|
2

𝜂̇c = −𝛼c𝜂c + 𝜌c
|z|2

4
+ 𝛾c|z − zd|

2
,

where in the notation of (8.28), we have chosen 𝛽o(r) = 𝛼o r and 𝛽c(r) = 𝛼c r for

simplicity. Also, we let 𝜌o ∶= (1−2𝜀)𝜆min(Po)
‖C‖2

and 𝜌c ∶= min{(1 − 𝜀)𝛾c, 𝜀 𝛼c𝜆min(Pc)}.

The jump sets for the closed-loop system which determine the sampling times are

now defined as follows:

𝔇o = {x ∈ ℝn | |h(x) − yd| ≥ 𝜎o
√
𝜂o }

𝔇c = {x ∈ ℝn | |z − zd| ≥ 𝜎c
√
𝜂c }

where 𝜎o ∶= (1−𝜀)𝛼o

(1+q)𝛾o
, and 𝜎c =

(1−𝜀)𝛼c

2𝛾c
. From Theorem 8.2, asymptotic stability of the

closed-loop system with sampled outputs and inputs now follows. It can also be

verified that (A1)–(A4) hold by construction.

The results of the simulation appear in Fig. 8.5. We observed that, even though

the constants 𝜎o and 𝜎c are relatively small in magnitude, it was possible to slow

down the sampling rate by increasing the initial values of 𝜂o, and 𝜂c. Also, the Lya-

punov functions Vo(x̃) and Vc(x) are not always decaying but the function V in (8.34)

associated with the closed loop is indeed decaying with time.

8.4 Event-Triggered Sampling in Hyperbolic Systems

Moving from the class of finite dimensional to infinite dimensional systems, we now

consider the problem of designing sampling algorithm for control of linear hyper-

bolic plants described by the following equations:

P ∶
⎧
⎪
⎨
⎪
⎩

𝜕tx(w, t) + 𝛬𝜕wx(w, t) = 0 , w ∈ [0, 1], t ≥ 0
x(0, t) = Hx(1, t) + Bu(t) , t ≥ 0
y(t) = x(1, t) , t ≥ 0.

(8.36)
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Fig. 8.5 Simulation results: In the top plot, whenever |y(t) − yd(t)| reaches the sampling threshold

𝜎o
√
𝜂o(t), yd is updated. The middle plot shows 𝜎c

√
𝜂c(t) and |z(t) − zd(t)|. The bottom plot shows

time evaluation of Lyapunov functions Vo(e) and Vc(x) which are not always decaying

In (8.36), x(w, t) in ℝn
is the state depending on the space variable w ∈ [0, 1]

and on the time variable t ≥ 0, y(t) ∈ ℝn
and u(t) ∈ ℝm

denote, respectively, the

measured output and boundary control input at time t. The matrices H ∈ ℝn×n
and

B ∈ ℝn×m
define the boundary condition, and 𝛬 ∈ Dn,+, where Dn,+ denotes the set

of diagonal positive definite matrices.

8.4.1 Nominal Output Feedback Law

The presence of the control input in (8.36) allows us to modify the boundary condi-

tion x(0, t), which is then transported according to the rate determined by the entries

of the matrix 𝛬. Within the class of linear output feedback controllers, if we define

u(t) = Ky(t) (8.37)

for some suitably chosen matrix K ∈ ℝn×m
, then the boundary condition of the

closed-loop system is described by

x(0, t) = Gx(1, t) , t ≥ 0, (8.38)

where G ∶= H + BK. Such feedback laws for boundary control have been found to

be useful in various applications, most notably the traffic flow control [11, 15], and

the open-channel regulation [8, 29, 30] among others.

Several techniques are available in the literature to design the feedback gain

matrix K for asymptotic stability of the closed-loop system, see the books [16, 21].
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For our purposes, the design methodology based on the appropriate choice of Lya-

punov functions [9, 14] is more relevant. Since the event-triggered sampling is built

on working with Lyapunov function for closed-loop system, we choose to work with

the Lyapunov function proposed in [7]. Based on that, a sufficient condition, which

guarantees asymptotic stability of the origin (w.r.t. L2(0, 1) norm), is to choose K
such that

𝜌2(G) < 1, (8.39)

where 𝜌2(G) = inf{‖𝛥G𝛥
−1‖, 𝛥 ∈ Dn,+}. As a particular case of [7, Theorem 2],

this condition is obtained from working with the following Lyapunov function can-

didate V defined for all x in L2(0, 1) by

V(x) =
∫

1

0
e−𝜇wx⊤Px dw (8.40)

where P is a suitable matrix in Dn,+ and 𝜇 > 0 is sufficiently small. To see the role

of condition (8.39) in ensuring stability, we compute the time derivative of V along

the solutions of (8.36) with the boundary condition (8.38):

V̇ = −2
∫

1

0
x(w, t)⊤P𝛬𝜕wx(w, t)e−𝜇wdw

= −
[
x(w, t)⊤P𝛬x(w, t)e−𝜇w]1

0 − 𝜇
∫

1

0
x(w, t)⊤P𝛬x(w, t)e−𝜇wdw,

where the integration by parts has been used together with the property P𝛬 = 𝛬P
(which is implied by P and 𝛬 diagonal). Now since P𝛬 and P are positive definite,

there exists 𝛼c > 0 such that −𝜇P𝛬 ≤ −𝛼cP. Using the boundary condition (8.38),

and the fact that P, 𝛬 are diagonal, we obtain

V̇ ≤ x(1, t)⊤
[
G⊤P𝛬G − P𝛬e−𝜇

]
x(1, t) − 𝛼cV

≤ x(1, t)⊤(P𝛬)1∕2
[
(P𝛬)−1∕2G⊤P𝛬G(P𝛬)−1∕2−e−𝜇I

]
(P𝛬)1∕2x(1, t)−𝛼cV ,

(8.41)

where I ∈ ℝn×n
denotes the identity matrix. Due to the condition 𝜌2(G) < 1, there

exists 𝛥 in Dn,+ such that ‖𝛥G𝛥
−1‖ < 1 which implies that the matrix

𝛥
−1G⊤

𝛥𝛥G𝛥
−1 − I is negative definite. Hence, there exists 𝜇 > 0 such that

𝛥
−1G⊤

𝛥𝛥G𝛥
−1 − e−𝜇I ≤ 0 . (8.42)

Now define P as P = 𝛥
2
𝛬

−1
, it follows from (8.41) and (8.42) that

V̇ ≤ −𝛼cV
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Fig. 8.6 Feedback loop with time-sampled boundary control. The output and input sampling

instants are synchronized due to static control

and thus the origin is exponentially stable in L2
norm for the system (8.36) with the

boundary condition (8.38), if (8.39) holds.

8.4.2 Sampling Algorithm

In contrast to the dynamic controllers for finite dimensional systems, the nominal

control law chosen for (8.36) is actually a static one. For this reason, it makes sense

to choose the sampling times for the output y and the control input u to be the same.

We are thus interested in computing a sequence of sampling times {𝜏j}j∈ℕ such that

the piecewise constant control input ud, defined as,

C ∶

{
ud(t) = 0, ∀ t ∈ [𝜏0, 𝜏1),
ud(t) = Ky(𝜏j), ∀ t ∈ [𝜏j, 𝜏j+1), j ≥ 1,

(8.43)

renders the plant (8.36) asymptotically stable in closed loop.
3

This control architec-

ture is graphically illustrated in Fig. 8.6.

To compute the sampling times, we first rewrite the boundary condition x(0, t) in

the presence of sampling error as follows:

x(0, t) = Hx(1, t) + BKx(1, 𝜏j)
= (H + BK)x(1, t) + BK(−x(1, t) + x(1, 𝜏j))
= Gx(1, t) + d(t, 𝜏j), (8.44)

3
Instead of letting ud(t) = 0 for all t in [0, 𝜏1) in the first line of (8.43), other choices may be possible,

as ud(t) = Ky(0) for all t in [0, 𝜏1). However, we were not able to find a choice such that the estimation

(8.47) in Theorem 8.4 below holds for all t in [0, 𝜏1), but only for all t ≥ 𝜏1. This estimation of the

time derivative of the Lyapunov function V along the solutions to (8.36) in closed-loop with (8.43)

is indeed a key step in our proof.
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where d(t, 𝜏j) ∶= BK(−x(1, t) + x(1, 𝜏j)) is seen as a perturbation due to sampling.

A natural question is how to derive an ISS property with respect to d, from the

Lyapunov function V defined for the nominal system. ISS properties for hyperbolic

systems have been studied for specific cases in [31, 33]. To obtain the desired ISS

estimate in the current context, we work with the Lyapunov function V introduced

in (8.40), where the parameters P and 𝜇 are fixed as obtained in the nominal case.

The time derivative of V along the solutions of (8.36) with perturbed boundary con-

dition (8.44) yields the following modification of (8.41):

V̇ ≤ x(1, t)⊤(P𝛬)1∕2
[
(P𝛬)−1∕2G⊤P𝛬G(P𝛬)−1∕2 − e−𝜇I

]
(P𝛬)1∕2x(1, t)

+d(t, 𝜏j)⊤P𝛬d(t, 𝜏j) − 𝛼cV .

Therefore, under the condition 𝜌2(G) < 1, with the same definition for 𝛼c as in

the nominal case, it holds that

V̇ ≤ −𝛼cV(t) + 𝛾c‖d(t, 𝜏j)‖2,

where 𝛾c > 0 is the largest eigenvalue of P𝛬. We rewrite the foregoing inequality as

V̇ ≤ −
𝛼c

2
V +

(

−
𝛼c

2
V + 𝛾c‖d(t, 𝜏j)‖2

)

,

which leads us to define the increasing sequence of sampling times {𝜏j}j∈ℕ. We let

𝜏0 = 0, 𝜏1 =
1
𝜆

(where 𝜆 denotes the smallest term on the diagonal of 𝛬), and 𝜏j+1

for j ≥ 1 is defined iteratively as

𝜏j+1 = inf
{

t > 𝜏j
|
| 𝛾c‖d(t, 𝜏j)‖2 ≥

𝛼c

2
V + 𝜂oe−𝛽ot

}

. (8.45)

In (8.45), the parameters 𝜂o and 𝛽o, which make the sampling rule dynamic, are

to be chosen appropriately (see Theorem 8.4 below).

The definition of the sequence {𝜏j}j∈ℕ depends on the values of the Lyapunov

function V(t) at time t and the state of an external filter 𝜂̇o = −𝛽o𝜂o. As far as V(x(., t))
is concerned, using (8.36) and the boundary condition (8.44), it holds that (with a

slight abuse of notation)

V(x(., t)) =
n∑

i=1
pi
∫

1

0

(

Hiy(t −
w
𝜆i
) + Biud(t −

w
𝜆i
)
)2

e−𝜇wdw, (8.46)

where P = diag (pi), and Hi and Bi denote the i-th row of the matrices H and B,

respectively. Therefore the definition (8.45) of the sequence {𝜏j}j∈ℕ is a function of

the current output, the boundary control, and of the auxiliary variable 𝜂o only.

We can now state the main result of this section. See [10] for a complete proof

which is quite tedious, in particular, the proof of the well posedness in appropriate



8 Asymptotic Stabilization of Some Finite and Infinite Dimensional Systems . . . 227

state space preventing accumulation of discontinuities (and thus preventing Zeno

solutions).
4

Theorem 8.4 Consider the plant P defined by (8.36) in closed-loop with the con-
trollerC defined by (8.43). Under the assumption 𝜌2(G) < 1, and for suitable choices
of the matrix P ∈ Dn,+, and positive scalars 𝜇, 𝛽o and 𝜂o(0), the closed-loop system
has a unique solution x(., t) in L2(0, 1) for all t ≥ 0, and for all initial condition
x(0, t) ∈ Clpw(0, 1). Moreover, the origin is globally exponentially convergent, that
is, there exist 𝛼c > 0, C1 > 0 and C2 > 0 such that for every x0 ∈ Clpw(0, 1), the
solution of (8.36) in closed loop with (8.43) satisfies, for all t ≥ 0,

‖x(⋅, t)‖L2(0,1) ≤
(
C1‖x(0, t)‖L2(0,1) + C2

)
e−𝛼ct

.

Finally, for the solution of the closed-loop system (8.36), (8.43), it holds that, ∀ t ≥ 1
𝜆
,

V̇ ≤ −(1 − 𝜎)𝛼cV(t) + 𝜂oe−𝛽ot
(8.47)

for a suitable 𝜎 in (0, 1), and 𝜂o > 0.
Note that, Theorem 8.4 does not state any stability property due to the presence of the

term e−𝛽ot
. Modifying the sampling algorithm to get the global asymptotic stability

of the origin is a topic of actual research.

8.4.3 Numerical Simulations

Let us consider a 2 × 2 linear hyperbolic system of conservation laws

𝜕tx(w, t) + 𝛬𝜕wx(w, t) = 0 w ∈ [0, 1], t ≥ 0

where x(w, t) ∈ ℝ2
, 𝛬 =

[
1 0
0
√
2

]

, H =
[ 0 1
1 0
]
, B = [ 0 1 ]⊤, K = [ −1 0 ]. We may check

the condition 𝜌2(G) < 1, which implies the exponential convergence of the origin of

(8.36) in closed-loop with the nominal controller (8.37), and also the global conver-

gence of the origin of (8.36) in closed loop with time-sampled controller (8.43) is

obtained for suitable choices of the parameters considered in Theorem 8.4.

For simulation, let the initial condition be defined by x(w, 0) = [ 4w(w−1) sin(8𝜋w) ]⊤
for w ∈ [0, 1]. The solution of the closed-loop system (8.36) and (8.43) is numer-

ically computed using a Weighted Essentially Non-Oscillatory scheme (as done in

[20]). The convergence of the state x is observed in Fig. 8.7, where the first and the

second components of the solution are given.

4
The well-posed property for solutions has to be understood in the set Clpw(0, 1) of piecewise left-

continuous functions. In particular there are only a finite number of discontinuities in any bounded

time interval.
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(a) The first state component x1(w, t). (b) The second state component x2(w, t).

Fig. 8.7 Simulation results for the solution x of (8.36) in closed loop with (8.43)

For some additional discussions on the triggering condition and the numerical

computation of the positive inter-execution time (between two updates of the input

of plant P), please see [10].

8.5 Conclusion

Novel techniques within the paradigm of event-triggered algorithms have been sug-

gested for sampled-data control of the following classes of plants: linear control

systems; nonlinear control systems; and linear hyperbolic systems. In contrast to

existing methods, the use of dynamic filters was proposed to overcome certain limi-

tations seen while using static inequalities to determine sampling times. The analy-

sis and design were built on appropriately chosen ISS Lyapunov functions for the

closed-loop system. To show that such schemes are robust to communication errors

in case of finite dimensional linear systems, the transmitted inputs and outputs are

also dynamically quantized to ensure asymptotic stability of the closed-loop system.

For all the suggested control algorithms, it is analytically proven that the Zeno solu-

tions do not occur, and hence the sampling times do not possess an accumulation

point over any finite time interval.
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Chapter 9
Incremental Graphical Asymptotic Stability
for Hybrid Dynamical Systems

Yuchun Li and Ricardo G. Sanfelice

Abstract This chapter introduces an incremental asymptotic stability notion for sets

of hybrid trajectories S . The elements in S are functions defined on hybrid time

domains, which are subsets of ℝ
≥0 × ℕ with a specific structure. For this abstract

system, incremental asymptotic stability is defined as the property of the graphi-

cal distance between every pair of solutions to the system having stable behavior

(incremental graphical stability) and approaching zero asymptotically (incremental

graphical attractivity). Necessary conditions for S to have such properties are pre-

sented. When S is generated by hybrid systems given in terms of hybrid inclusions,

that is, differential equations and difference equations with state constraints, further

necessary conditions on the data are highlighted. In addition, sufficient conditions for

incremental graphical asymptotic stability involving the data of the hybrid inclusion

are presented. Throughout the chapter, examples illustrate the notions and results.

9.1 Introduction

9.1.1 Motivation

In contrast to asymptotic stability, which can be interpreted as a property of each

system solution relative to a set, incremental stability consists of a property for every

pair of solutions to the system. More precisely, for a continuous-time system of the

form ẋ = f (x), the uniform version of such a property requires every pair of solutions

t ↦ 𝜙1(t) and t ↦ 𝜙2(t) to ẋ = f (x) to satisfy

|𝜙1(t) − 𝜙2(t)| ≤ 𝛽(|𝜙1(0) − 𝜙2(0)|, t) (9.1)
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for each t in the domain of definition of 𝜙1 and 𝜙2, where 𝛽 is a class-K L func-

tion; see, e.g., [1–3]. The bound (9.1) implies that the Euclidean distance between

two solutions is upper bounded by a function of the difference between their initial

conditions and also decreases as t gets arbitrarily large (when the domain of defini-

tion of the solutions is unbounded to the right).

Unfortunately, the incremental stability notions available in the literature (most

of which are for continuous-time systems) cannot be applied directly to systems with

variables that can change continuously and, at times, jump. These systems, known

as hybrid systems, are capable of modeling a wide range of complex dynamical sys-

tems, including robotic, automotive, and power systems as well as natural processes.

Hybrid systems are dynamical systems that exhibit characteristics typical of both

continuous-time and discrete-time behaviors. As a set stability theory in terms of

Lyapunov functions is available (see [4, 5]), the availability of an incremental sta-

bility notion for this class of systems would enable the study of similar properties

for them as the current notion for continuous-time systems allows. However, as we

make clear in Sect. 9.2, mismatch of jump times and length of domains of pairs of

solutions starting nearby makes characterizing and guaranteeing incremental stabil-

ity properties in hybrid systems difficult.

9.1.2 Results in This Chapter

In this chapter, we introduce a notion of graphical incremental asymptotic stabil-

ity for a set of hybrid trajectories, which we denote S and contains all trajectories

that cannot be further extended (namely, they are maximal). A set of hybrid trajecto-

ries can be considered an abstract system on itself, or can be generated using hybrid

inclusions. For such class of systems, we establish necessary and sufficient condi-

tions for graphical incremental asymptotic stability. More precisely, we establish the

following results:

1. The set S is neither graphically incrementally stable nor graphically incremen-

tally attractive if there exists two elements in S with nearby initial conditions

such that the amount of flow or jump is not the same, as in Propositions 9.1, 9.2

and 9.3.

2. The set S is not incrementally graphically stable if there exists one element in

S that is not unique, as in Proposition 9.4.

3. When elements in S are generated by all maximal solutions to a hybrid system

given in terms of a hybrid inclusion with a nonempty jump set D, under mild

assumptions, Theorem 9.1 reveals that it is necessary to have a finite-time con-

vergence like property from points that are nearby the jump set D. Proposition 9.6

provides a sufficient condition to guarantee such a property.

4. In Theorem 9.2, sufficient conditions for a set S consisting of all maximal solu-

tions to a hybrid inclusion to be incrementally graphically asymptotically stable

are given. A special case of this result (with the jump set D being discrete) is



9 Incremental Graphical Asymptotic Stability . . . 233

established in Corollary 9.1. Both results require the flow map to induce a con-

traction during flows.

5. An extension of the result in Theorem 9.2 is presented in Theorem 9.3, where the

jump map is required to be a weak contraction mapping.

To the best of our knowledge, the notion of incremental stability and its properties

for hybrid systems have not been thoroughly studied before, only discussed briefly

in [6] for a class of transition systems in the context of bisimulations, and in [7]

for a particular class of hybrid systems prioritizing ordinary time t; see also related

definitions in [8].

9.1.3 Organization of the Chapter

The remainder of this chapter is organized as follows. Section 9.2 briefly discusses

notions of incremental stability for continuous-time (discrete) systems and intro-

duces a notion of graphical incremental stability for sets of hybrid trajectories.

Section 9.3 establishes several sufficient and necessary conditions for the proposed

notion. Examples are discussed throughout the chapter to illustrate the results.

Notation: The set𝔹 denotes a closed unit ball in Euclidean space with appropriate

dimension. Given a set S ⊂ ℝn
, the closure of S is the intersection of all closed sets

containing S, denoted by S; S is said to be discrete if nonempty and there exists 𝛿 > 0
such that for each x ∈ S, (x + 𝛿𝔹) ∩ S = {x}; conS is the closure of the convex hull

of the set S. ℝ
≥0 ∶= [0,∞) and ℕ ∶= {0, 1, 2,…}. Given vectors 𝜈 ∈ ℝn

, w ∈ ℝm
,

|𝜈| defines the Euclidean vector norm |𝜈| =
√
𝜈⊤𝜈, and [𝜈⊤ w⊤]⊤ is equivalent to

(𝜈,w); given a symmetric positive definite matrix P ∈ ℝn×n
, i.e., P = P⊤

> 0, the

weighted norm |𝜈|P =
√
𝜈⊤P𝜈. Given a function f ∶ ℝm → ℝn

, its domain of defi-

nition is denoted by domf , i.e., domf ∶= {x ∈ ℝm ∶ f (x) is defined}. The range of

f is denoted by rge f , i.e., rge f ∶= {f (x) ∶ x ∈ dom f }. The right limit of the func-

tion f is defined as f +(x) ∶= lim
𝜈→0+ f (x + 𝜈) if it exists. Given a point y ∈ ℝn

and a

closed set A ⊂ ℝn
, |y|A ∶= inf x∈A |x − y|. A function 𝛼 ∶ ℝ

≥0 → ℝ
≥0 is a class-

K∞ function, also written 𝛼 ∈ K∞, if 𝛼 is zero at zero, continuous, strictly increas-

ing, and unbounded; 𝛼 is positive definite, also written 𝛼 ∈ PD , if 𝛼(s) > 0 for all

s > 0 and 𝛼(0) = 0. A function 𝛽 ∶ ℝ
≥0 ×ℝ

≥0 → ℝ
≥0 is a class-K L function, also

written 𝛽 ∈ K L , if it is nondecreasing in its first argument, nonincreasing in its sec-

ond argument, limr→0+ 𝛽(r, s) = 0 for each s ∈ ℝ
≥0, and lims→∞ 𝛽(r, s) = 0 for each

r ∈ ℝ
≥0. Given a function f ∶ ℝm ×ℝn → ℝr

, ∇xf (x, y) ∶=
𝜕f
𝜕x
(x, y). Given a matrix

A ∈ ℝn×n
, eig(A) is the set of eigenvalues of A; 𝜆(A) = max{Re(𝜆) ∶ 𝜆 ∈ eig(A)};

𝜆(A) = min{Re(𝜆) ∶ 𝜆 ∈ eig(A)}; |A| ∶= max{|𝜆|
1
2 ∶ 𝜆 ∈ eig(A⊤A)}. Given a real

number x ∈ ℝ, f loor(x) is the closest integer to x from below. A function V ∶ ℝn →
ℝ

≥0 is a Lyapunov function with respect to a set A if V is continuously differen-

tiable and such that c1(|x|A ) ≤ V(x) ≤ c2(|x|A ) for all x ∈ ℝn
and some functions

c1, c2 ∈ K∞. Given a set A ⊂ ℝn
, a point x ∈ ℝn

and a metric d on ℝn
, the distance

|x|d
A

∶= supz∈A d(x, z).
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9.2 Definition of Incremental Stability for Hybrid Systems

Informally, incremental stability is typically defined as the property of every pair

of trajectories staying close when they start close (stability) and, as time gets large,

converging to each other (attractivity). To formally state this notion, let the set of

trajectories to a system with state in ℝn
be denoted by S and the time variable

parameterizing such trajectories be denoted by s. The variable s parameterizes the

trajectories in forward time from s◦ = 0. This parameter takes values from ℝ
≥0 when

the system is a continuous-time system, in which case S is a set of continuous-time

trajectories and every element 𝜙 ∈ S has a domain dom𝜙 that is a subset of ℝ
≥0.

The parameter takes values from ℕ when the system is a discrete-time system, in

which case S is a set of discrete-time trajectories and elements in S have a domain

that is a subset of ℕ. Let the function d denote a metric on ℝn ×ℝn
measuring the

distance between pairs of elements in S . An element 𝜙 ∈ S is said to be maximal

if there is no 𝜙
′ ∈ S such that 𝜙 is a proper truncation of 𝜙

′
and complete if dom𝜙

is unbounded. Since we are interested in the behavior of maximal elements in S ,

without loss of generality, from now on, it is assumed that S is a set of maximal

hybrid trajectories.

The set of trajectories S is incrementally asymptotically stable with respect to

a metric d if it is incrementally stable, in the sense that for every 𝜀 > 0 there exists

𝛿 > 0 such that

𝜙1, 𝜙2 ∈ S , d(𝜙1(s◦), 𝜙2(s◦)) ≤ 𝛿

⇒ dom𝜙1 = dom𝜙2, d(𝜙1(s), 𝜙2(s)) ≤ 𝜀 ∀s ∈ dom𝜙1(= dom𝜙2)
(9.2)

and incrementally attractive, in the sense that there exists 𝜇 > 0 such that

𝜙1, 𝜙2 ∈ S , d(𝜙1(s◦), 𝜙2(s◦)) ≤ 𝜇

⇒ dom𝜙1 = dom𝜙2unbounded, lim
s→∞

d(𝜙1(s), 𝜙2(s)) = 0. (9.3)

When incremental attractivity holds for any 𝜇 > 0, we say that the set of trajectories

S is globally incrementally stable.

The notion defined above captures the nominal version of [2, Definition 2.1]

for continuous-time systems when the elements in S are generated by a nonlinear

continuous-time system of the form ẋ = f (x). It also captures the notion for discrete-

time systems of the form x+ = g(x), see, e.g., [9, 10]. To assess this notion for the

hybrid case, we define hybrid trajectories as functions on hybrid time domains.

Definition 9.1 (hybrid time domain) A subset E ⊂ ℝ
≥0 × ℕ is a compact hybrid

time domain if

E =
J−1⋃

j=0

(
[tj, tj+1], j

)
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for some finite sequence of times 0 = t0 ≤ t1 ≤ t2 ≤ … ≤ tJ . It is a hybrid time
domain if for all (T , J) ∈ E, E ∩ ([0,T] × {0, 1,… , J}) is a compact hybrid time

domain.

Given a hybrid time domain E, we define

sup
t
E ∶= sup

(t,j)∈E
t, sup

j
E ∶= sup

(t,j)∈E
j.

Definition 9.2 (hybrid trajectory) A function 𝜙 ∶ dom𝜙 → ℝn
is a hybrid trajec-

tory (or hybrid arc) if dom𝜙 is a hybrid time domain and if for each j ∈ ℕ, the func-

tion t ↦ 𝜙(t, j) is locally absolutely continuous on the interval Ij∶ = {t ∶ (t, j) ∈ dom𝜙 }.

Remark 9.1 When every 𝜙 ∈ S is such that dom𝜙 ⊂ ℝ
≥0 × {0} and dom𝜙 has

more than one point, S is a set of continuous-time trajectories, while when every

𝜙 ∈ S is such that dom𝜙 ⊂ {0} × ℕ and dom𝜙 has more than one point, S is a

set of discrete-time trajectories. Finally, when every 𝜙 ∈ S is such that 𝜙 is either

bounded or dom𝜙 is unbounded, S is said to be pre-forward complete.

For the case when the elements in S are hybrid trajectories, it is natural to con-

sider an extension of the notion above when s takes values from ℝ
≥0 × ℕ and is

written as s = (t, j), and s◦ = (0, 0). Unfortunately, there are several subtleties that

make such extension of the notion above limiting for hybrid systems, some of which

we illustrate next in simple examples. The first example illustrates issues measuring

the distance between a pair of trajectories for a system that one would expect to be

incrementally stable (but not incrementally attractive). The second example illus-

trates issues in measuring such distance for pairs of trajectories with dramatically

different hybrid time domains.

Example 9.1 (mismatch of event times) Let S be the set of hybrid trajectories with

(maximal and complete) elements 𝜙 defined as

𝜙(t, j) =𝜙(0, 0) − (t − j)

∀(t, j) ∶ t ∈
[

max{j − 1, 0} + ceil
(

j
j + 1

)

𝜙(0, 0), j + 𝜙(0, 0)
]

, j ∈ ℕ

with 𝜙(0, 0) ≥ 0. (This set of trajectories can be generated using the hybrid inclusion

given in Example 9.7.) Each trajectory inS reaches zero in finite flow time, at which

event is reset to one instantaneously and from where it periodically reaches zero and

gets reset to one. Figure 9.1a shows two trajectories with initial values within 𝛿 = 0.3.

This figure appears to suggest that trajectories from S starting close stay close.

However, condition (9.2) does not hold unless 𝜙1(0, 0) = 𝜙2(0, 0). In fact, consider

two such trajectories, 𝜙1 and 𝜙2, with initial values satisfying |𝜙1(0, 0) − 𝜙2(0, 0)| ≤
𝛿 and 𝜙1(0, 0) ≠ 𝜙2(0, 0). First, dom𝜙1 ≠ dom𝜙2 since (𝜙1(0, 0), 1) ∈ dom𝜙1 and

(𝜙2(0, 0), 1) ∈ dom𝜙2 but 𝜙1(0, 0) ≠ 𝜙2(0, 0). Without loss of generality, assume
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0.5 0.3

Fig. 9.1 Two elements 𝜙1 and 𝜙2 from the set S given in Example 9.1. The Euclidean dis-

tance, which, precisely, is given by |𝜙1(t, j1(t)) − 𝜙2(t, j2(t))| for all (t, ji(t)) ∈ dom𝜙i, ji(t) =
min(t,j′i )∈dom𝜙i

j′i , assumes the value 0.7 for 0.3 s periodically. On the other hand, the “graphical

distance” from 𝜙1 to 𝜙2 is zero for 𝜀 = 0.3, while the “graphical distance” from 𝜙2 to 𝜙1 converges

to zero in 0.3 s

0 < 𝜙1(0, 0) < 𝜙2(0, 0). Then, even when the condition of equal domains is omitted,

we have

|𝜙1(t1, 1) − 𝜙2(t1, 0)| = |1 − 𝜙2(t1, 0)| = |1 − 𝜙2(0, 0) + 𝜙1(0, 0)|,

where we used the fact that t1 = 𝜙1(0, 0). No matter how small 𝛿 ∈ (0, 1) is chosen,

|𝜙1(t1, 1) − 𝜙2(t1, 0)| ≥ 1 − 𝛿. This property makes it impossible for the Euclidean

distance between 𝜙1 and 𝜙2 to satisfy the 𝜀-𝛿 criterion in (9.2). In such case, the

Euclidean distance (or any other metric d) may not be a good candidate of a distance

function for the study of incremental properties. △

Example 9.1 suggests that a notion of incremental stability for hybrid systems has

to allow for a mismatch of the jump times of two hybrid trajectories. This example

also highlights that the pointwise (in s = (t, j)) distance is not appropriate for the

purposes of defining incremental stability for sets of hybrid trajectories.

Example 9.2 (mismatch of length of domains) LetS be the set of hybrid trajectories

with elements 𝜙 defined as

𝜙(t, j) =
[
− 𝛾

2
(t − tj)2 + 𝜙2(tj, j)(t − tj) + 𝜙1(tj, j)

−𝛾(t − tj) + 𝜙2(tj, j)

]

∀(t, j) ∈
⋃

i∈ℕ

(
[ti, ti+1] × {i}

)

with 𝜙(0, 0) ∈ ℝ
≥0 ×ℝ, where t0 = 0, t1 =

𝜙2(0,0)+
√
𝜙2(0,0)2+2𝛾𝜙1(0,0)

𝛾
,
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Fig. 9.2 Hybrid trajectories in Example 9.2. The Euclidean distance, which is |𝜙1,2(t, j1(t)) −
𝜙2,2(t, j2(t))| for all (t, ji(t)) ∈ dom𝜙i, has repetitive large peaks, where ji(t) = min(t,ji)∈dom𝜙i

ji

tj = t1 +
2(𝛾t1 − 𝜙2(0, 0))

𝛾

j−1∑

i=1
𝜆
i ∀j ∈ ℕ ⧵ {0, 1}

𝜙2(tj+1, j + 1) = −𝜆𝜙2(tj+1, j) ∀j ∈ ℕ

𝛾 > 0, and 𝜆 ∈ (0, 1). These trajectories capture the evolution of the height (𝜙1) and

vertical velocity (𝜙2) of a ball bouncing on a ground at zero height, where 𝛾 repre-

sents the gravity constant and 𝜆 the restitution coefficient. A hybrid inclusion gen-

erating this set of hybrid trajectories is given in [4, Examples 1.1 and 2.12]. Each

element 𝜙 ∈ S is such that

sup
t
dom𝜙 =

𝜙2(0, 0)
𝛾

+ 1 + 𝜆

𝛾(1 − 𝜆)

√

𝜙2(0, 0)2 + 2𝛾𝜙1(0, 0) (9.4)

Figure 9.2a shows the position (first) component of two hybrid trajectories (𝜙i =
(𝜙i,1, 𝜙i,2) for i ∈ {1, 2}) from initial conditions 𝜙1(0, 0) = (5, 0) (ball starting at a

positive height with zero velocity) and 𝜙2(0, 0) = (0, 3) (ball starting at the ground

with a positive velocity). As Fig. 9.2a shows, the jumps in 𝜙2 accumulate at about

t = 6 s while 𝜙1 is still describing the motion of the ball bouncing.

Given two elements 𝜙1, 𝜙2 ∈ S with 𝜙1(0, 0) ≠ 𝜙2(0, 0), according to (9.4),

supt dom𝜙1 ≠ supt dom𝜙2. Without loss of generality, assuming that supt dom𝜙2 <

supt dom𝜙1, then we have that 𝜙2 is not defined at points (t′, j′) ∈ dom𝜙1 with

t′ + j′ ≥ supt dom𝜙2. Hence, at such points, it is not possible to measure the distance

between 𝜙1 and 𝜙2. Note that for such points (t′, j′) we have that (t′, j) ∉ dom𝜙2 for

any j ∈ ℕ, which indicates that it is not possible to relax the incremental stability

notion by instead requiring that the distance between the trajectories be small for

each common t and potentially different values of the jump parameter j. Even when
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we omit such points, for points (t, j) ∈ dom𝜙2 with t close to supt dom𝜙2 and points

(t, j′′) ∈ dom𝜙1, we have that j is much larger than j′′ since j grows unbounded as t
approaches supt dom𝜙2. This fact makes comparing trajectories using the graphical

distance in this particular set of hybrid solutions very difficult. A similar situation

is encountered if, instead, the pointwise distance is used. As shown in Fig. 9.2b, the

pointwise distance between velocity (second) components of two solutions (𝜙i,2 for

i ∈ {1, 2}) has repetitive large peaks, even though they are initialized very close to

each other. △

While Example 9.1 already has elements in S with different domains, Exam-

ple 9.2 pinpoints a key difficulty in measuring the distance between solutions with

jump times that accumulate, namely, Zeno solutions. In fact, when accumulation of

events occurs in finite time t, determining the appropriate distance function to certify

incremental stability is rather difficult since, when the accumulation time depends on

the initial condition as in Example 9.2, the distance between the trajectories may not

be quantifiable over an unbounded set. On the other hand, a notion of incremental

stability for a set of continuous-time trajectories or for a set of discrete-time trajecto-

ries with elements having different time domains can be formulated by only requiring

the stability condition to hold over the intersection of the domains of definition of

every pair of trajectories starting nearby.

Motivated by the issues mentioned above, we propose a notion of incremental

asymptotic stability that employs the graphical distance between the graphs defined

by the hybrid trajectories.

Definition 9.3 ([4, Definition 5.20]) The graph of a hybrid trajectory 𝜙 ∶ dom𝜙 →
ℝn

is a set in ℝn+2
given by

gph𝜙 = {(t, j, x) ∶ (t, j) ∈ dom𝜙, x = 𝜙(t, j)}. (9.5)

To measure the distance between the graphs of two hybrid trajectories, given a metric

d, we use the following graphical distance notion for hybrid trajectories.

Definition 9.4 ([4, Definition 4.11]) Given 𝜀 > 0, two hybrid trajectories 𝜙1 and 𝜙2
are graphically 𝜀-close with respect to d if

(a) for each (t, j) ∈ dom𝜙1 there exists s such that (s, j) ∈ dom𝜙2, |t − s| ≤ 𝜀, and

d(𝜙1(t, j), 𝜙2(s, j)) ≤ 𝜀,

(b) for each (t, j) ∈ dom𝜙2 there exists s such that (s, j) ∈ dom𝜙1, |t − s| ≤ 𝜀, and

d(𝜙2(t, j), 𝜙1(s, j)) ≤ 𝜀.

To characterize the distance between the graphs of two hybrid arcs over a finite hori-

zon, we use the following graphical (𝜏, 𝜀)-closeness notion for hybrid trajectories.
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Definition 9.5 ([4, Definition 5.23]) Given 𝜏, 𝜀 > 0, two hybrid trajectories 𝜙1 and

𝜙2 are graphically (𝜏, 𝜀)-close with respect to d if

(a) for each (t, j) ∈ dom𝜙1 with t + j ≤ 𝜏 there exists s such that (s, j) ∈ dom𝜙2,

|t − s| ≤ 𝜀, and

d(𝜙1(t, j), 𝜙2(s, j)) ≤ 𝜀,

(b) for each (t, j) ∈ dom𝜙2 with t + j ≤ 𝜏 there exists s such that (s, j) ∈ dom𝜙1,

|t − s| ≤ 𝜀, and

d(𝜙2(t, j), 𝜙1(s, j)) ≤ 𝜀.

To characterize the property of hybrid trajectories graphically converging to each

other, we introduce the following notion.

Definition 9.6 Given 𝜀 > 0, two hybrid trajectories 𝜙1 and 𝜙2 are eventually graph-
ically 𝜀-close with respect to d if

(a) there exists T > 0 such that for each (t, j) ∈ dom𝜙1 and t + j ≥ T , there exists

(s, j) ∈ dom𝜙2 satisfying |t − s| ≤ 𝜀 and

d(𝜙1(t, j), 𝜙2(s, j)) ≤ 𝜀, (9.6)

(b) there exists T > 0 such that for each (t, j) ∈ dom𝜙2 and t + j ≥ T , there exists

(s, j) ∈ dom𝜙1 satisfying |t − s| ≤ 𝜀 and

d(𝜙2(t, j), 𝜙1(s, j)) ≤ 𝜀. (9.7)

Remark 9.2 If two hybrid trajectories 𝜙1 and 𝜙2 are not complete, then the prop-

erty in Definition 9.6 holds for free. In particular, the property would hold vac-

uously for T > max{T1 + J1,T2 + J2}, where T1 = supt dom𝜙1, J1 = supj dom𝜙1,

T2 = supt dom𝜙2, and J2 = supj dom𝜙2.

Now, we are ready to define incremental asymptotic stability for sets of hybrid

trajectories.

Definition 9.7 (incremental graphical asymptotic stability) The set of hybrid tra-

jectories S is said to be

1. incrementally graphically stable (𝛿S) with respect to d if for every 𝜀 > 0 there

exists 𝛿 > 0 such that

𝜙1, 𝜙2 ∈ S , d(𝜙1(0, 0), 𝜙2(0, 0)) ≤ 𝛿

⇒ 𝜙1 and 𝜙2 are graphically 𝜀-close with respect to d
(9.8)

2. incrementally graphically locally attractive (𝛿LA) with respect to d if there exists

𝜇 > 0 such that for every 𝜀 > 0
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𝜙1, 𝜙2 ∈ S , d(𝜙1(0, 0), 𝜙2(0, 0)) ≤ 𝜇

⇒ 𝜙1 and 𝜙2 are eventually graphically 𝜀-close with respect to d

(9.9)

3. incrementally graphically locally asymptotically stable (𝛿LAS) with respect to d
if it is both 𝛿S and 𝛿LA.

When 𝛿LA holds for every 𝜇 > 0, we say that the set of hybrid trajectories S is

incrementally graphically globally attractive (𝛿GA).

Remark 9.3 The notion in Definition 9.7 covers the special cases of S being a set of

continuous-time trajectories or a set of discrete-time trajectories. In particular, when

S is a set of complete discrete-time trajectories, condition (9.8) reduces to

𝜙1, 𝜙2 ∈ S , d(𝜙1(0, 0), 𝜙2(0, 0)) ≤ 𝛿

⇒ d(𝜙1(0, j), 𝜙2(0, j)) ≤ 𝜀 ∀j ∈ ℕ.
(9.10)

Due to requiring a property for every possible pair of trajectories, incremental graph-

ical global attractivity only holds when S is either a set of continuous-time trajecto-

ries or of discrete-time trajectories (see [8]). As a difference to those in [8, Definition

3], both the 𝛿S and 𝛿LA notions in Definition 9.7 exploit the graphically 𝜀-closeness

notion in [4, Definition 4.11], which in [4] is shown to be a structural property of

solutions to well-posed hybrid systems.

Note that unboundedness of the domain of the elements in a generic set S is not

required, but when there are elements with dramatically different domains, incre-

mental stability may not hold—in particular, the set of solutions in Example 9.2

would not be 𝛿LA. The following result formalizes this fact.

Proposition 9.1 Let S be a set of hybrid trajectories. Suppose that no matter how
small 𝛿′ > 0 is, there exist complete 𝜙1, 𝜙2 ∈ S with |𝜙1(0, 0) − 𝜙2(0, 0)| ≤ 𝛿

′ such
that supt dom𝜙2 < supt dom𝜙1 < ∞. Then, S is neither 𝛿S nor 𝛿LA with respect
to any metric d.

Proof We proceed by contradiction. Let d be any metric, tz1 = supt dom𝜙1, and

tz2 = supt dom𝜙2. Since dom𝜙1 and dom𝜙2 are unbounded and supt dom𝜙2 < supt
dom𝜙1, there exists T ∈ (tz2, t

z
1). Pick 𝜀 ∈ (0,min{T − tz2, t

z
1 − T}). By continuity of

d and the fact that d(x, x) = 0 for all x ∈ ℝn
,

for each 𝜌 > 0 there exists 𝛿
′′
> 0 such that

d(x′, y′) ≤ 𝜌 for all x′, y′ such that |x′ − y′| ≤ 𝛿
′′
.

(9.11)

Now, suppose that S is 𝛿S with respect to d. With 𝜀 as above, let 𝛿 be such that

(9.8) holds. Pick 𝜌 ≤ 𝛿 and let 𝛿
′′

be generated by the continuity property of d in

(9.11). Using 𝛿
′

such that 𝛿
′ ≤ 𝛿

′′
in the assumption of the claim, in which 𝜙1 and

𝜙2 start within 𝛿
′

in terms of the Euclidean distance, in particular, we have that



9 Incremental Graphical Asymptotic Stability . . . 241

d(𝜙1(0, 0), 𝜙2(0, 0)) ≤ 𝛿 and 𝜙1 and 𝜙2 are graphically 𝜀-close with respect to d.

However, since supt dom𝜙2 < T , there exists (t, j) ∈ dom𝜙1 with t > T such that

(t′, j′) ∉ dom𝜙2 for each t′ satisfying |t − t′| < 𝜀 and for some j′ ∈ ℕ. This fact con-

tradicts graphical 𝜀-closeness with respect to d guaranteed by (9.8). The case when

S is 𝛿LA follows similarly. ⊓⊔

Next, we revisit Example 9.1 and show that the set of hybrid trajectories therein

is 𝛿S. More examples illustrating the proposed notions will be given in Sect. 9.3, in

which sets of solutions S are generated by hybrid inclusions.

Example 9.3 We show that S given in Example 9.1 is 𝛿S. For a given 𝜀 > 0,

let 0 < 𝛿 < 𝜀 and assume |𝜙1(0, 0) − 𝜙2(0, 0)| < 𝛿 and pick corresponding trajec-

tories 𝜙1, 𝜙2 ∈ S . Without loss of generality, we further suppose 0 ≤ 𝜙1(0, 0) ≤
𝜙2(0, 0) and pick corresponding trajectories 𝜙1, 𝜙2 ∈ S . Then, the hybrid trajec-

tory 𝜙1 jumps before 𝜙2. For each j ∈ ℕ ⧵ {0}, let t̄j = max(t,j−1)∈dom𝜙1∩dom𝜙2
t and

t̄′j = min(t,j)∈dom𝜙1∩dom𝜙2
t. Then, we have that for each t ∈ [0, t̄1], there exists (s, 0) ∈

dom𝜙2 such that s = t and

|𝜙1(t, 0) − 𝜙2(t, 0)| = |𝜙1(0, 0) − t − 𝜙2(0, 0) + t| ≤ 𝛿 < 𝜀. (9.12)

For each t ∈ [t̄1, t̄′1],

|𝜙1(t̄1, 0) − 𝜙2(t, 0)| = |𝜙2(0, 0) − t|
≤ |𝜙2(0, 0) − t̄1| = |𝜙2(0, 0) − 𝜙1(0, 0)| ≤ 𝛿 < 𝜀,

(9.13)

where we used the fact that 𝜙1(t̄1, 0) = 𝜙1(0, 0) − t̄1 = 0. Moreover, 𝜙2(t̄′1, 0) =
𝜙2(0, 0) − t̄′1 = 0. Then, |t̄′1 − t̄1| = |𝜙2(0, 0) − 𝜙1(0, 0)| ≤ 𝛿 < 𝜀. Therefore, for each

t ∈ [t̄1, t̄′1],

|𝜙1(t, 1) − 𝜙2(t̄′1, 1)| = |1 − (t − t̄1) − 1| ≤ 𝛿 < 𝜀. (9.14)

Proceeding similarly and using (9.14), for each t ∈ [t̄′i−1, t̄i], where i ∈ ℕ ⧵ {0, 1},

|𝜙1(t, i − 1) − 𝜙2(t, i − 1)| = |𝜙1(t̄′i−1, i − 1) − 𝜙2(t̄′i−1, i − 1)| ≤ 𝛿 < 𝜀.

Moreover, since 𝜙1(t̄i, i − 1) = 0, for each t ∈ [t̄i, t̄′i ], where i ∈ ℕ ⧵ {0, 1},

|𝜙1(t̄i, i − 1) − 𝜙2(t, i − 1)| = |𝜙1(t̄i, i − 1) − 𝜙2(t̄i, i − 1) + (t − t̄i)|
≤ |𝜙2(t̄i, i − 1) − 𝜙1(t̄i, i − 1)| ≤ 𝛿 < 𝜀,
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and |𝜙1(t, i) − 𝜙2(t̄′i , i)| = |1 − (t − t̄i) − 1| ≤ 𝛿 < 𝜀. Therefore, the set S is 𝛿S.
1

On

the other hand, since the distance between 𝜙1 and 𝜙2 does not converge to zero,

𝜙1, 𝜙2 are not eventually 𝜀-close and thus the set S is neither 𝛿LA nor 𝛿GA. △

To further illustrate the notion in Definition 9.7, the following example shows that

a set S is 𝛿LAS.

Example 9.4 Let S be the set of hybrid trajectories with elements 𝜙

𝜙(t, j) =
(

𝜙(tj, j) − ceil
(

j
j+1

))

exp(−t + tj) (9.15)

for all (t, j) ∈
⋃

i∈ℕ,i<J
(
[ti, ti+1] × {i}

)⋃
([tJ ,∞) × {J}) with 𝜙(0, 0) ⊂

⋃
i∈{2k∶k∈ℕ}[i, i + 1], where J = 1

2
f loor(𝜙(0, 0)), t0 = 0, and, for J > 0, tJ = tJ−1 and

tj = ln(𝜙(0, 0)) − ln(f loor(𝜙(0, 0)))

+
j−1∑

k=1
(ln(f loor(𝜙(0, 0)) − k) − ln(f loor(𝜙(0, 0)) − k − 1)) ∀j ∈ ℕ ⧵ {0}, j ≤ J.

(This set of trajectories can be generated using the hybrid inclusion given in Exam-

ple 9.6.) Given 𝜀 > 0, consider two elements 𝜙1, 𝜙2 ∈ S such that |𝜙1
(0, 0) − 𝜙2(0, 0)| ≤ 𝛿, where 0 ≤ 𝛿 < min{1, 𝜀}. Then, it is guaranteed that J̄ ∶=
supj dom𝜙 = supj dom𝜙2 < ∞ since f loor(𝜙1(0, 0)) = f loor(𝜙2(0, 0)). For each j ∈
ℕ ⧵ {0}, let t̄j = max(t,j−1)∈dom𝜙1∩dom𝜙2

t and t̄′j = min(t,j)∈dom𝜙1∩dom𝜙2
t. Without loss

of generality, assume𝜙2(0, 0) > 𝜙1(0, 0) ≥ 2, then𝜙1 jumps first. Then, we have that

for each t ∈ [0, t̄1], there exists (s, 0) ∈ dom𝜙2 such that s = t and

|𝜙1(t, 0) − 𝜙2(t, 0)| = |𝜙1(0, 0) exp(−t) − 𝜙2(0, 0) exp(−t)| ≤ 𝛿 < 𝜀. (9.16)

For each t ∈ [t̄1, t̄′1],

|𝜙1(t̄1, 0) − 𝜙2(t, 0)| = | exp(−t̄1)𝜙1(0, 0) − exp(−t)𝜙2(0, 0)|
≤ | exp(−t̄1)𝜙1(0, 0) − exp(−t̄1)𝜙2(0, 0)| ≤ 𝛿 < 𝜀,

(9.17)

where we used the property exp(−t̄1)𝜙1(0, 0) = f loor(𝜙1(0, 0)) = f loor(𝜙2(0, 0)) =
exp(−t̄′1)𝜙2(0, 0). Note that t̄1 = ln(𝜙1(0, 0)) − ln(f loor(𝜙1(0, 0))) and t̄′1 = ln
(𝜙2(0, 0)) − ln(f loor(𝜙2(0, 0))). Therefore, t̄′1 − t̄1 = ln(𝜙2(0, 0)) − ln(𝜙1(0, 0)).
Furthermore, by the mean value theorem, there exists 𝜙

⋆

0 ∈ [𝜙1(0, 0), 𝜙2(0, 0)] such

that |t̄′1 − t̄1| =
1
𝜙
⋆

0
|𝜙1(0, 0) − 𝜙2(0, 0)| ≤ |𝜙1(0, 0) − 𝜙2(0, 0)| ≤ 𝛿 < 𝜀. Similarly,

for each t ∈ [t̄1, t̄′1],

1
Using the ideas in [11], it may be possible to construct an alternative distance function that is

decreasing along trajectories.
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Fig. 9.3 Two maximal elements 𝜙1 and 𝜙2. Unlike the Euclidean distance, which is |𝜙1(t, j1(t)) −
𝜙2(t, j2(t))| for all (t, ji(t)) ∈ dom𝜙i and ji(t) = min(t,ji)∈dom𝜙i

ji, which does not decrease along

hybrid trajectories, the “graphical distance” from 𝜙1 to 𝜙2 is zero for 𝜀 = 0.3 and the “graphical

distance” from 𝜙2 to 𝜙1 converges to zero

|𝜙1(t, 1) − 𝜙2(t̄′1, 1)| = | exp(−t + t̄1)𝜙1(t̄1, 1) − 𝜙2(t̄′1, 1)|
= 𝜙2(t̄′1, 1) − exp(−t + t̄1)𝜙1(t̄1, 1)
≤ 𝜙2(t̄′1, 1) − exp(−t̄′1 + t̄1)𝜙1(t̄1, 1)
≤ 𝜙2(t̄′1, 1) − exp(− ln(𝜙2(0, 0)) + ln(𝜙1(0, 0)))𝜙1(t̄1, 1)

≤ f loor(𝜙2(0, 0))
(

1 − exp
(

ln
𝜙1(0, 0)
𝜙2(0, 0)

))

≤
f loor(𝜙2(0, 0))

𝜙2(0, 0)
(𝜙2(0, 0) − 𝜙1(0, 0))

≤ 𝜙2(0, 0) − 𝜙1(0, 0) ≤ 𝛿.

(9.18)

Note that the derivation in (9.18) can be repeated for J̄ times.

If 𝜙1(0, 0), 𝜙2(0, 0) ∈ [0, 1], we have that |𝜙1(t, 0) − 𝜙2(t, 0)| ≤ exp(−t)|𝜙1
(0, 0) − 𝜙2(0, 0)| ≤ 𝛿 for all (t, 0) ∈ dom𝜙1 = dom𝜙2. In fact, limt→∞,(t,0)∈dom𝜙1
|𝜙1(t, 0) − 𝜙2(t, 0)| = 0. Therefore, the set S is 𝛿LAS.

As shown in Fig. 9.3a, the domains of two elements in the set S may be differ-

ent from each other. The Euclidean distance between 𝜙1 and 𝜙2 has peaks during

the mismatch part of the hybrid time domain, i.e., the time instances (t) when two

solutions have different values of j, as shown in Fig. 9.3b. △

While the notion introduced in Definition 9.7 appears to be suitable for the study

of incremental stability properties of sets of hybrid trajectories, in particular, for

those generated using hybrid inclusions, conditions guaranteeing it are not obvious
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due to the noncausality nature of the notion. Necessary and sufficient conditions for

this notion are proposed in the next section, both for sets of hybrid trajectories as

well as hybrid inclusions.

9.3 Necessary and Sufficient Conditions for Incremental
Graphical Stability Notions

In this section, we explore several necessary and sufficient conditions of incremental

graphical stability properties for hybrid systems that satisfy certain assumptions. In

particular, Proposition 9.2 implies a basic necessary condition for two hybrid arcs to

be 𝜀-close and eventually 𝜀-close, respectively. Proposition 9.4 shows that maximal

elements in a set S are unique if S is 𝛿S. In Theorem 9.2, a sufficient condition

for H to be 𝛿LAS is presented for a hybrid system with generic jump sets. When

D is a discrete set, Corollary 9.1 provides sufficient conditions for H to be 𝛿LAS.

Moreover, Proposition 9.6 establishes Lyapunov-like sufficient conditions for item

(2) of Corollary 9.1. Then, a finite-time stability property is shown to be necessary

forH to be 𝛿S or 𝛿LA in Theorem 9.1. Furthermore, Theorem 9.3 studies conditions

for which H is 𝛿LAS when the jump map is Lipschitz.

For them to be constructive, some of the necessary and sufficient conditions are

stated for sets of hybrid trajectories generated by hybrid system given by hybrid

inclusions. A hybrid system H has data (C, f ,D, g) and is defined by

ż = f (z) z ∈ C,
z+ = g(z) z ∈ D,

(9.19)

where z ∈ ℝn
is the state, f defines the flow map capturing the continuous dynamics

and C defines the flow set on which f is effective. The map g defines the jump map

and models the discrete behavior, while D defines the jump set, which is the set of

points from where jumps are allowed. A solution 𝜙 to H is hybrid trajectory that

satisfies the dynamics of (9.19). A solution is Zeno if it is complete and its domain

is bounded in the t direction. A solution is precompact if it is complete and bounded.

The set of hybrid trajectories SH contains all maximal solutions to H , and the

set SH (𝜉) contains all maximal solutions to H from 𝜉. Note the use of single-

valued maps f and g in (9.19) is necessary when studying incremental stability; see

Proposition 9.4.

Definition 9.8 A hybrid system H = (C, f ,D, g) is said to satisfy the hybrid basic

conditions if

(a) the sets C and D are closed;

(b) the functions f ∶ ℝn → ℝn
and g ∶ ℝn → ℝn

are continuous.

We refer the reader to [4] and [5] for more details on these notions and the hybrid

systems’ framework.
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9.3.1 Necessary Conditions

The following result highlights a necessary property of the hybrid time domains of

two hybrid arcs that are graphically close. In particular, it holds for every pair of

elements in a set S that is 𝛿S, 𝛿LA, or 𝛿GA.

Proposition 9.2 Given 𝜀 > 0 and two elements 𝜙1, 𝜙2 ∈ S , the following holds:

1. if 𝜙1 and 𝜙2 are graphically 𝜀-close, or
2. if 𝜙1 and 𝜙2 are complete and graphically eventually 𝜀-close,

then

sup
j
dom𝜙1 = sup

j
dom𝜙2. (9.20)

Proof We proceed by contradiction. Given 𝜀 > 0, consider two hybrid arcs 𝜙1, 𝜙2
that are graphically 𝜀-close. Suppose that J1 = supj dom𝜙1, J2 = supj dom𝜙2 and

J1 ≠ J2. Moreover, without loss of generality, assume that J1 and J2 are both finite

and J1 > J2. Then, J1 > 0. Let (tJ1 , J1) ∈ dom𝜙1 be such that (tJ1 , J1 − 1) ∈ dom𝜙1.

Then, (t, J1) ∉ dom𝜙2 for any t ∈ ℝ
≥0, which implies that there does not exist

(t, J1) ∈ dom𝜙2 such that |t − tJ1 | ≤ 𝜀 and d(𝜙1(tJ1 , J1), 𝜙2(t, J1)) ≤ 𝜀. This contra-

dicts the fact that 𝜙1 and 𝜙2 are graphically 𝜀-close. The situation where either J1 or

J2 is ∞ follows similarly.

When 𝜙1 and 𝜙2 are complete and eventually graphically 𝜀-close, given 𝜀 > 0,

there exists T > 0 such that 𝜙1 and 𝜙2 satisfy (9.6) and (9.7) for all (t1, j1) ∈ dom𝜙1
and (t2, j2) ∈ dom𝜙2 such that t1 + j1 > T and t2 + j2 > T . Proceeding by contradic-

tion, suppose that J1 = supj dom𝜙1, J2 = supj dom𝜙2 and J1 ≠ J2. Moreover, with-

out loss of generality, assume that J1 and J2 are both finite and J1 > J2 . Then, J1 > 0.

Let (tJ1 , J1) ∈ dom𝜙1 be such that (tJ1 , J1 − 1) ∈ dom𝜙1. Pick (t, J1) ∈ dom𝜙1 and

t + J1 > T , which is always possible since 𝜙1 is complete. Then, (t, J1) ∉ dom𝜙2
which implies that there does not exists (t, J1) ∈ dom𝜙2 such that |t − tJ1 | ≤ 𝜀 and

d(𝜙1(tJ1 , J1), 𝜙2(t, J1)) ≤ 𝜀. This contradicts the fact that 𝜙1 and 𝜙2 are eventually

graphically 𝜀-close. The situation where either J1 or J2 is ∞ follows similarly. ⊓⊔

Example 9.5 Consider the set S given in Example 9.4, and two elements 𝜙1 and

𝜙2 with𝜙1(0, 0) = 4.5 and𝜙2(0, 0) = 1, respectively. The hybrid trajectory𝜙1 jumps

twice while the hybrid trajectory𝜙2 never jumps. Therefore,𝜙1 and𝜙2 are not graph-

ically eventually 𝜀-close according to Proposition 9.2. This property prevents the set

S from being 𝛿GA while Example 9.4 shows that this set is 𝛿LAS. △

Proposition 9.3 Let S be a set of hybrid trajectories.

1. IfS is 𝛿S or 𝛿LA with respect to a metric d, there exists 𝛿 > 0 such that

𝜙1, 𝜙2 ∈ S , d(𝜙1(0, 0), 𝜙2(0, 0)) ≤ 𝛿 ⇒ sup
t
dom𝜙1 = sup

t
dom𝜙2.

(9.21)
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2. IfS is 𝛿GA with respect to a metric d,

sup
t
dom𝜙1 = sup

t
dom𝜙2. (9.22)

Proof Proceeding by contradiction, suppose S is 𝛿S and, no matter how small

𝛿 > 0 is chosen, there exist 𝜙1, 𝜙2 ∈ S such that d(𝜙1(0, 0), 𝜙2(0, 0)) < 𝛿 and supt
dom𝜙1 ≠ supt dom𝜙2. Then, by Proposition 9.1, S is neither 𝛿S nor 𝛿LA. The

argument follows similarly when S is 𝛿GA. ⊓⊔

The following result establishes that uniqueness is a necessary condition for 𝛿S.

In turn, according to Proposition 9.4, it justifies the choice of using single-valued

flow and jump maps in the definition of H in (9.19).

Proposition 9.4 (uniqueness of elements in S ) Let S be a set of hybrid trajec-
tories. Suppose S is 𝛿S with respect to a metric d. Then, every element of S is
unique.

Proof We proceed by contradiction. Assume that there exist two elements 𝜙1, 𝜙2 ∈
S such that 𝜙1(0, 0) = 𝜙2(0, 0) but 𝜙1 ≢ 𝜙2. We have the following cases:

1. dom𝜙1 ≠ dom𝜙2. If supj dom𝜙1 ≠ supj dom𝜙2, by Proposition 9.2, 𝜙1 and 𝜙2
cannot be graphically 𝜀-close, which contradicts that S is 𝛿S. While if

sup
t
dom𝜙1 ≠ sup

t
dom𝜙2,

according to Proposition 9.3,𝜙1 and𝜙2 cannot be graphically 𝜀-close, which con-

tradicts that S is 𝛿S. If supj dom𝜙1 = supj dom𝜙2 and supt dom𝜙1 = supt dom
𝜙2, since dom𝜙1 ≠ dom𝜙2, there exists (t⋆, j⋆) ∈ dom𝜙1 such that (t⋆, j⋆) ∉
dom𝜙2. Without loss of generality, assume the 𝜙1 and 𝜙2 have their domains of

definition unbounded in the t direction. It must be one of the following cases:

a. (t⋆, j̄) ∈ dom𝜙2 for some j⋆ ≠ j̄ ∈ ℕ. Then,

i. if j̄ < j⋆, it follows that there exists t̄ > t⋆ such that (t̄, j⋆) ∈ dom𝜙2.

Moreover, (t, j⋆) ∉ dom𝜙2 for all t ∈ [t⋆ − 1
2
(t̄ − t⋆), t⋆ + 1

2
(t̄ − t⋆)].

Then, for 𝜀 = 1
2
(t̄ − t⋆), there does not exists (t, j⋆) ∈ dom𝜙2 such that

|t − t⋆| ≤ 𝜀 and d(𝜙1(t⋆, j⋆), 𝜙2(t, j⋆)) ≤ 𝜀. This contradicts the fact

that 𝜙1 and 𝜙2 are graphically 𝜀-close due to the set S being 𝛿S.

ii. the case when j̄ > j⋆ follows similarly.

b. (t̄, j⋆) ∈ dom𝜙2 for some t̄ ≠ t⋆ and t̄ ∈ ℝ
≥0. Then,

i. if t̄ < t⋆, let t̄′ = max{t ∶ (t, j⋆) ∈ dom𝜙2, t ≤ t⋆}. Then, t̄′ < t⋆. Fur-

thermore, either j⋆ = supj dom𝜙2 or (t̄′, j⋆ + 1) ∈ dom𝜙2. In either

case, pick 𝜀 = 1
2
(t⋆ − t̄′), and note it is not possible to find (t, j⋆) ∈

dom𝜙2 such that |t − t⋆| ≤ 𝜀 and d(𝜙2(t, j⋆), 𝜙1(t⋆, j⋆)) ≤ 𝜀. This con-

tradicts the fact that 𝜙1 and 𝜙2 are graphically 𝜀-close.

ii. the case when t̄ > t⋆ follows similarly.
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2. dom𝜙1 = dom𝜙2 but there exists (t⋆, j⋆) ∈ dom𝜙1 such that 𝜙1(t⋆, j⋆) ≠ 𝜙2
(t⋆, j⋆). Suppose (t⋆, j⋆) is not an “end point,” i.e., (t⋆, j⋆ − 1) ∉ dom𝜙1 and

(t⋆, j⋆ + 1) ∉ dom𝜙1. Denote 𝜀̄ = d(𝜙1(t⋆, j⋆), 𝜙2(t⋆, j⋆)) > 0. Since t ↦ 𝜙1
(t, j⋆) and t ↦ 𝜙2(t, j⋆) are locally absolutely continuous for all t such that (t, j⋆) ∈
dom𝜙1 and (t, j⋆) ∈ dom𝜙2 according to Definition 9.2, there exists 𝛿 > 0 such

that |t − t⋆| ≤ 𝛿 implies that d(𝜙1(t, j⋆), 𝜙1(t⋆, j⋆)) ≤
1
2
𝜀̄ and d(𝜙2(t, j⋆), 𝜙2

(t⋆, j⋆)) ≤ 1
2
𝜀̄. Therefore, by triangle inequality,

d(𝜙1(t, j⋆), 𝜙2(t⋆, j⋆)) ≥ d(𝜙1(t⋆, j⋆), 𝜙2(t⋆, j⋆)) − d(𝜙1(t, j⋆), 𝜙1(t⋆, j⋆))

≥ 𝜀̄ − 1
2
𝜀̄ = 1

2
𝜀̄.

Thus, for 𝜀 = 1
4
𝜀̄, no matter how small 𝛿 is chosen, we have that

d(𝜙1(0, 0), 𝜙2(0, 0)) = 0 < 𝛿

and 𝜙1 and 𝜙2 are not graphically 𝜀-close which contradicts the assumption that

the set S is 𝛿S with respect to d. The situation where (t⋆, j⋆) is an “end point”

can be proved similarly. ⊓⊔

When the set S is generated by solutions to a hybrid system H = (C, f ,D, g), a

sufficient condition for guaranteeing uniqueness of maximal solutions requires f to

be locally Lipschitz and no flow from C ∩ D—a rigorous statement is given in [4,

Proposition 2.11]. According to Proposition 9.4, assuming uniqueness of solutions

to H is not at all restrictive, in fact, when studying incremental graphical stability,

it is necessary. Hence, in the following results we impose the following uniqueness

of solutions assumption.

Assumption 9.1 The hybrid system H = (C, f ,D, g) is such that each maximal

solution 𝜙 to H is unique.

Next, we show that, to have 𝛿S or 𝛿LA, a finite-time convergence property within

a neighborhood of the jump set D is a necessary condition for a set of hybrid trajec-

tories generated by hybrid system H . Indeed, without the finite-time convergence

property nearby D and g(D), the graphs of the solutions would not be graphically

close.

Theorem 9.1 (necessary condition for 𝛿S and 𝛿LA) Consider a hybrid system
H = (C, f ,D, g) with state z ∈ ℝn satisfying Assumption 9.1 and the hybrid basic
conditions. Suppose D ≠ ∅ and g(D) ⊂ C ∪ D. If SH is 𝛿S or 𝛿LA with respect to
a metric d, then there exists 𝛿0 > 0 such that each maximal solution 𝜙 to H from
𝜙(0, 0) satisfying |𝜙(0, 0)|dD ≤ 𝛿0 and 𝜙(0, 0) ∈ C converges to D within finite time,
i.e., there exists s > 0 such that |𝜙(s, 0)|dD = 0.

Proof Let 𝜀 > 0 be given. Proceeding by contradiction, for all 𝛿0 > 0, there exists

𝜙 ∈ SH satisfying
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𝜙(0, 0) ∈ C, |𝜙(0, 0)|dD ≤ 𝛿0 (9.23)

and |𝜙(t, 0)|dD > 0 for all (t, 0) ∈ dom𝜙. Let z⋆ ∈ D be such that |𝜙(0, 0)|dD = d(𝜙
(0, 0), z⋆) = 𝛿0. Consider a solution𝜙1 ∈ SH from z⋆. Then, we have that d(𝜙1(0, 0),
𝜙(0, 0)) ≤ 𝛿0 which implies that 𝜙1 and 𝜙 are graphically 𝜀-close due to S being

𝛿S with respect to d (using 𝛿 = 𝛿0 in the definition). Since each maximal solution to

H is unique under Assumption 9.1, (0, 1) ∈ dom𝜙1. Then, since 𝜙(t, 0) ∉ D for all

(t, 0) ∈ dom𝜙, there does not exist (s, 1) ∈ dom𝜙 such that d(𝜙1(0, 1), 𝜙(s, 1)) < 𝜀

with |s| ≤ 𝜀. This contradicts the assumption that 𝜙 and 𝜙1 are graphically 𝜀-close.

Now suppose S is 𝛿LA. For any T > 0, t + j ≥ T and (t, j) ∈ dom𝜙1, there does not

exist (s, j) ∈ dom𝜙 with |s − t| ≤ 𝜀 such that d(𝜙1(t, j), 𝜙(s, j)) ≤ 𝜀. This contradicts

the fact that 𝜙1 and 𝜙 are graphically eventually 𝜀-close. ⊓⊔

The 𝛿S property leads to the following necessary condition pertaining to depen-

dence of solutions with respect to initial conditions.

Proposition 9.5 (necessary condition for 𝛿S) Consider a hybrid systemH = (C, f ,
D, g) with state z ∈ ℝn satisfying Assumption 9.1. SupposeSH is 𝛿S with respect to
a metric d. Then, SH satisfies the following property: for every 𝜙 ∈ SH , and for
every 𝜀 > 0, there exists 𝛿 > 0 such that for every solution 𝜙̄ ∈ SH (𝜙(0, 0) + 𝛿𝔹),
𝜙̄ and 𝜙 are graphically 𝜀-close with respect to d.

Proof Since the set SH is 𝛿S, for a given 𝜀 > 0, there exists 𝛿 > 0 such that for

𝜙1, 𝜙2 ∈ SH ,

d(𝜙1(0, 0), 𝜙2(0, 0)) ≤ 𝛿 ⟹ 𝜙1, 𝜙2 are graphically 𝜀-close.

Let 𝛿 > 0 be small enough such that |𝜙1(0, 0) − 𝜙2(0, 0)| ≤ 𝛿 implies that

d(𝜙1(0, 0), 𝜙2(0, 0)) ≤ 𝛿.

Then, for any 𝜙 and 𝜙̄ picked as in the theorem, |𝜙(0, 0) − 𝜙̄(0, 0)| ≤ 𝛿 implies that

d(𝜙̄(0, 0), 𝜙(0, 0)) ≤ 𝛿. Therefore, using the 𝛿S property of the set SH , 𝜙̄ and 𝜙 are

graphically 𝜀-close. ⊓⊔

9.3.2 Sufficient Conditions

To establish sufficient conditions for 𝛿LAS, we impose the following assumptions.

The first assumption is that each maximal solution to H has its domain of definition

unbounded in the t direction. The second assumption enables each maximal solution

to H to flow for sufficient amount of time in between jumps. A sufficient condition

for Assumption 9.3 can be found in [12, Lemma 2.7].

Assumption 9.2 The hybrid system H = (C, f ,D, g) is such that every 𝜙 ∈ SH

satisfies supt dom𝜙 = ∞.
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Assumption 9.3 The hybrid system H = (C, f ,D, g) is such that there exists 𝛾 > 0
such that for each 𝜙 ∈ SH , the flow time between two consecutive jumps is lower

bounded by 𝛾 .

Moreover, we will use the following forward invariance notion.

Definition 9.9 (forward invariance from away of D) A set A ⊂ ℝn
is said to be

forward invariant for H from away of D if for each solution 𝜙 to H from 𝜙(0, 0) ∈
A ⧵ D, 𝜙(t, 0) ∈ A for all (t, 0) ∈ dom𝜙.

Remark 9.4 Note that the standard forward invariance notion for a set captures the

property that every solution from the set stays within the set for all time, see, e.g.,

[4, Definition 6.25].

Now, we are ready to present the sufficient condition.

Theorem 9.2 (𝛿LAS through flow for generic D) Consider a hybrid system H =
(C, f ,D, g)with state z ∈ ℝn. SupposeH satisfies Assumptions 9.1, 9.2 and 9.3, and
the hybrid basic conditions. Let 𝛾 be generated from Assumption 9.3. If there exist
P = P⊤

> 0, 𝛽 > 0, and 𝛿0 > 0 such thatH satisfies

(1) ∇f ⊤(z)P + P∇f (z) ≤ −2𝛽P for all z ∈ conC;
(2) for each 𝛿 ∈ [0, 𝛿0], each 𝜙 ∈ SH from 𝜙(0, 0) satisfying

𝜙(0, 0) ∈ C, |𝜙(0, 0)|D = 𝛿 (9.24)

is such that there exists s ∈ [0, 𝛿] for which we have

|𝜙(s, 0)|D = 0 (9.25)

and the set 𝜙(s, 0) + 𝛿𝔹 is forward invariant from away of D, and each 𝜙̄ ∈
SH (g(𝜙(s, 0)) + 𝛿𝔹) satisfies

𝜙̄(t, 0) ∈ g(𝜙(s, 0)) + 𝛿𝔹 (9.26)

for all t ∈ [0, s];
(3) the jump map g is locally Lipschitz on D with Lipschitz constant L1 ∈ [0, 1],2

i.e., |g(z1) − g(z2)| ≤ L1|z1 − z2| for all z1, z2 ∈ D such that |z1 − z2| ≤ 𝛿0; and

(4) c < exp(𝛽𝛾), where c =
√

𝜆(P)
𝜆(P)

;

then, the setSH is 𝛿LAS with d being the Euclidean distance.

Proof Given 𝜀 > 0, and using 𝛿0, 𝛾 as in the assumption, consider 𝜙1, 𝜙2 ∈ SH

such that |𝜙1(0, 0) − 𝜙2(0, 0)| < 𝛿, where 𝛿 is chosen such that

2
Such g is also known as a weak contraction map.
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0 < 𝛿 ≤ min
{

𝜀

c
,
𝛿0
c
, 𝛾 − 1

𝛽
ln c

}

.

First, we show that SH is 𝛿S for the case when 𝜙1(0, 0), 𝜙2(0, 0) ∈ C and

supj dom𝜙1 = supj dom𝜙2 = 0, i.e., no jump occurs to either 𝜙1 or 𝜙2. By the gen-

eralized mean value theorem (for vector-valued functions), for almost all (t, 0) ∈
dom𝜙1(= dom𝜙2 = [0,∞) × {0}), we have that

𝜙̇1(t, 0) − 𝜙̇2(t, 0) = f (𝜙1(t, 0)) − f (𝜙2(t, 0))

=
∫

1

0
∇f (𝜂(t, s))ds (𝜙1(t, 0) − 𝜙2(t, 0)),

where 𝜂(t, s) = 𝜙1(t, 0) + s(𝜙2(t, 0) − 𝜙1(t, 0)). Then, using item (1), for almost all

t ∈ [0,∞), we have

d
dt

|
|𝜙1(t, 0) − 𝜙2(t, 0)||

2
P

= (𝜙1(t, 0) − 𝜙2(t, 0))⊤
(

∫

1

0

(
∇f ⊤(𝜂(t, s))P + P∇f (𝜂(t, s))

)
ds
)

(𝜙1(t, 0) − 𝜙2(t, 0))

≤ −
∫

1

0
2𝛽(𝜙1(t, 0) − 𝜙2(t, 0))⊤P(𝜙1(t, 0) − 𝜙2(t, 0))ds

≤ −2𝛽|𝜙1(t, 0) − 𝜙2(t, 0)|2P, (9.27)

where we used the property that 𝜂(t, s) ∈ conC for all t ∈ [0,∞) and s ∈ [0, 1].
Therefore, by the comparison lemma, we have, for all t ∈ [0,∞),

|𝜙1(t, 0) − 𝜙2(t, 0)|P ≤ exp(−𝛽t)|𝜙1(0, 0) − 𝜙2(0, 0)|P. (9.28)

Then, using the property

𝜆(P)|z|2 ≤ |z|2P = z⊤Pz ≤ 𝜆(P)|z|2 ∀z ∈ ℝn
(9.29)

and the choice of 𝛿, we obtain

|𝜙1(t, 0) − 𝜙2(t, 0)| ≤
1

√
𝜆(P)

|𝜙1(t, 0) − 𝜙2(t, 0)|P

≤ c exp(−𝛽t)|𝜙1(0, 0) − 𝜙2(0, 0)| ≤ 𝜀. (9.30)

Next, we show SH is 𝛿S for the case when either 𝜙1 or 𝜙2 jump. By the

choice of 𝛿 and item (2), supj dom𝜙1 = supj dom𝜙2 =∶ J. Without loss of gener-

ality, assume 𝜙1 jumps first and J = ∞. Furthermore, for each j ∈ ℕ ⧵ {0}, let t̄j =
max(t,j−1)∈dom𝜙1∩dom𝜙2

t and t̄′j = min(t,j)∈dom𝜙1∩dom𝜙2
t, and t̄′0 = 0, where t̄j denotes

the minimum time when one of the two solutions 𝜙1, 𝜙2 jumps j times, while

t̄′j denotes the minimum time when both solutions have jumped j times. In fact,
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[t̄′j , t̄j+1] × {j} ⊂ dom𝜙1 ∩ dom𝜙2 for all j ∈ ℕ. For simplicity, assume that the time

when j-th jump occurs to 𝜙1 is always smaller than or equal to that of 𝜙2 for j ∈ ℕ.

(I) If 𝜙1(0, 0), 𝜙2(0, 0) ∈ C. Similarly as in (9.30), for all t ∈ [0, t̄1], we have that

|𝜙1(t, 0) − 𝜙2(t, 0)| ≤ c exp(−𝛽t)|𝜙1(0, 0) − 𝜙2(0, 0)| ≤ 𝜀. (9.31)

When t = t̄1, since 𝜙1 jumps first, 𝜙1(t̄1, 0) ∈ D and 𝜙1(t̄1, 1) = g(𝜙1(t̄1, 0)).
Note that under item (3) of Assumption 9.3, g(D) ∩ D = ∅. Then,

a. if 𝜙2(t̄1, 0) ∈ D, i.e., t̄1 = t̄′1, by (9.31), |𝜙1(t̄1, 0) − 𝜙2(t̄1, 0)| ≤ 𝛿 and

𝜙1(t̄1, 0), 𝜙2(t̄1, 0) ∈ D.

Then, we can apply the argument in item (II);

b. If 𝜙2(t̄1, 0) ∉ D, i.e., t̄1 < t̄′1, by (9.31), it follows that 𝜙2(t̄1, 0) ∈ (D + 𝛿𝔹) ⧵
D. For each t ∈ [t̄1, t̄′1], since, |𝜙2(t̄1, 0)|D ≤ |𝜙2(t̄1, 0) − 𝜙1(t̄1, 0)| = 𝛿1 for

some 𝛿1 ∈ [0, 𝛿], by (9.24) and (9.25) in item (2), it follows that t̄′1 − t̄1 ≤ 𝛿.

Since the set 𝜙(t̄1, 0) + 𝛿1𝔹 is forward invariant from away of D according

to item (2), we obtain, for each t ∈ [t̄1, t̄′1],

|𝜙2(t, 0) − 𝜙1(t̄1, 0)| ≤ |𝜙2(t̄1, 0) − 𝜙1(t̄1, 0)|. (9.32)

Furthermore, since 𝜙1(t̄1, 0), 𝜙2(t̄′1, 0) ∈ D, by item (3),

|𝜙2(t̄′1, 1) − 𝜙1(t̄1, 1)| ≤ |𝜙2(t̄′1, 0) − g(𝜙1(t̄1, 0))|
≤ |𝜙2(t̄′1, 0) − 𝜙1(t̄1, 0)|.

Then, since 𝜙1(t̄1, 1) ∈ 𝜙2(t̄′1, 1) + 𝛿1𝔹 according to (9.32), by item (2), for

each t ∈ [t̄1, t̄′1],

|𝜙1(t, 1) − 𝜙2(t̄′1, 1)| ≤ |𝜙1(t̄1, 1) − 𝜙2(t̄′1, 1)|
≤ |𝜙1(t̄1, 0) − 𝜙2(t̄′1, 0)|.

(9.33)

In general, for each j ∈ ℕ and t ∈ [t̄′j , t̄j+1], since 𝜙1(t̄′j , j), 𝜙2(t̄′j , j) ∈ C, sim-

ilarly as for (9.31), we have

|𝜙1(t, j) − 𝜙2(t, j)| ≤ c exp(−𝛽(t − t̄′j ))|𝜙1(t̄′j , j) − 𝜙2(t̄′j , j)|. (9.34)

While for j ∈ ℕ ⧵ {0} and t ∈ [t̄j, t̄′j ], we have [t̄j, t̄′j ] × {j} ⊂ dom𝜙1, [t̄j, t̄′j ] ×
{j − 1} ⊂ dom𝜙2 and |t̄′j − t̄j| ≤ 𝛿. Then, similarly as for (9.32) and (9.33),

we obtain



252 Y. Li and R.G. Sanfelice

i. for each j ∈ ℕ ⧵ {0} and each t ∈ [t̄j, t̄′j ]:

|𝜙2(t, j − 1) − 𝜙1(t̄j, j − 1)| ≤ |𝜙2(t̄j, j − 1) − 𝜙1(t̄j, j − 1)|, (9.35)

ii. for each j ∈ ℕ ⧵ {0} and each t ∈ [t̄j, t̄′j ]:

|𝜙1(t, j) − 𝜙2(t̄′j , j)| ≤ |𝜙1(t̄j, j − 1) − 𝜙2(t̄j, j − 1)|. (9.36)

Therefore, using (9.34), (9.35), (9.36) and |𝜙1(0, 0) − 𝜙2(0, 0)| ≤ 𝛿, it fol-

lows that

i. for each j ∈ ℕ ⧵ {0} and each t ∈ [t̄′j , t̄j+1]:

|𝜙1(t, j) − 𝜙2(t, j)| ≤ c exp(−𝛽(t − t̄′j ))|𝜙1(t̄′j , j) − 𝜙2(t̄′j , j)|

≤ c exp(−𝛽(t − t̄′j ))|𝜙1(t̄j, j − 1) − 𝜙2(t̄j, j − 1)|

≤ c2 exp(−𝛽(t − t̄′j )) exp(−𝛽(t̄j − t̄′j−1))

× |𝜙1(t̄′j−1, j − 1) − 𝜙2(t̄′j−1, j − 1)|

⋮

≤ cj+1 exp(−𝛽(t − t̄′j−1 + Δj))|𝜙1(0, 0) − 𝜙2(0, 0)| ≤ 𝜀,

(9.37)

where Δj ∶=
∑j

k=1(t̄k − t̄′k−1). In particular, the first inequality in (9.37)

uses (9.34) with t ∈ [t̄′j , t̄j+1], the second inequality in (9.37) uses (9.36)

with t = t̄′j , and the third inequality in (9.37) uses (9.34) with t = t̄j.
ii. for each j ∈ ℕ ⧵ {0} and each t ∈ [t̄j, t̄′j ]:

|𝜙2(t, j − 1) − 𝜙1(t̄j, j − 1)| ≤ |𝜙2(t̄j, j − 1) − 𝜙1(t̄j, j − 1)|
≤ c exp(−𝛽(t̄j − t̄′j−1))|𝜙1(t̄′j−1, j − 1) − 𝜙2(t̄′j−1, j − 1)|

⋮

≤ cj exp(−𝛽Δj)|𝜙1(0, 0) − 𝜙2(0, 0)|
≤ exp(−(𝛽(𝛾 − 𝛿) − ln c)j)|𝜙1(0, 0) − 𝜙2(0, 0)| ≤ 𝜀,

(9.38)

where the first inequality follows from (9.35) with t ∈ [t̄j, t̄′j ], and the

second inequality follows from (9.34) with t = t̄j.
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iii. for each j ∈ ℕ ⧵ {0} and each t ∈ [t̄j, t̄′j ]:

|𝜙1(t, j) − 𝜙2(t̄′j , j)| ≤ |𝜙1(t̄j, j − 1) − 𝜙2(t̄j, j − 1)|

≤ c exp(−𝛽(t̄j − t̄′j−1))|𝜙1(t̄′j−1, j − 1) − 𝜙2(t̄′j−1, j − 1)|

⋮

≤ cj exp(−𝛽Δj)|𝜙1(0, 0) − 𝜙2(0, 0)|
≤ exp(−(𝛽(𝛾 − 𝛿) − ln c)j)|𝜙1(0, 0) − 𝜙2(0, 0)| ≤ 𝜀.

(9.39)

In particular, the first inequality in (9.39) uses (9.36) with t ∈ [t̄j, t̄′j ],
and the second inequality in (9.39) uses (9.34) with t = t̄j.

Therefore, 𝜙1 and 𝜙2 are 𝜀-close.

(II) If𝜙1(0, 0), 𝜙2(0, 0) ∈ D, by condition (3) that the jump map is locally Lipschitz

on D with Lipschitz constant L1 ≤ 1, we obtain

|𝜙1(1, 0) − 𝜙2(1, 0)| = |g(𝜙1(0, 0)) − g(𝜙2(0, 0))| ≤ |𝜙1(0, 0) − 𝜙2(0, 0)|.
(9.40)

Note that after the jump, 𝜙1(1, 0), 𝜙2(1, 0) ∈ C, we can apply the arguments in

item (I).

(III) If 𝜙1(0, 0) ∈ C, 𝜙2(0, 0) ∈ D, the arguments follow similarly as in item (I).

Therefore, by combining arguments in items (I), (II), (III), it is proved that 𝜙1 and

𝜙2 are 𝜀-close. Note that the case when J < ∞ follows similarly. Therefore, SH is

𝛿S with respect to Euclidean distance.

Now, we show that SH is 𝛿LA. Consider the case in item (I) (the other cases fol-

low similarly). Note that
⋃∞

j=1[t̄
′
j , t̄j+1] = ∞ if J = ∞ (or

⋃J−1
j=1 [t̄

′
j , t̄j+1]

⋃

[t̄′J ,∞) = ∞ if J < ∞ respectively). Moreover, since [t̄′j , t̄j+1] × {j} ⊂ dom𝜙1 ∩ dom
𝜙2 for all j ∈ ℕ. Then, on each interval [t̄′j , t̄j+1], we have that |𝜙1(t, j + 1) − 𝜙2(t, j +
1)| ≤ exp(−𝛽(t − t̄′j ))|𝜙1(t̄′j , j) − 𝜙2(t̄′j , j)| for all t ∈ [t̄′j , t̄j+1]. In particular, pick

𝜇 = 𝛿 < min
{

𝛿0
c
, 𝛾 − 1

𝛽
ln c

}

,

for a given 𝜀
′
> 0, pick

T = − 1
𝛽(𝛾 − 𝛿)

ln
(

min
{

1, 𝜀
′

c𝛿

})

.

Then, using (9.37), (9.38), and (9.39), we obtain



254 Y. Li and R.G. Sanfelice

1. for (t, j) such that j ≥ T and t ∈ [t̄′j , t̄j+1]:

|𝜙1(t, j) − 𝜙2(t, j)| ≤ c exp(−(𝛽(𝛾 − 𝛿) − ln c)j)|𝜙1(0, 0) − 𝜙2(0, 0)|
≤ c exp(−(𝛽(𝛾 − 𝛿) − ln c)T)|𝜙1(0, 0) − 𝜙2(0, 0)|

≤ min
{

1, 𝜀
′

c𝛿

}

c|𝜙1(0, 0) − 𝜙2(0, 0)| ≤ 𝜀
′
,

2. for (t, j) such that j ≥ T and t ∈ [t̄j, t̄′j ]:

|𝜙2(t, j − 1) − 𝜙1(t̄j, j − 1)| ≤ exp(−(𝛽(𝛾 − 𝛿) − ln c)j)|𝜙1(0, 0) − 𝜙2(0, 0)| ≤ 𝜀
′
,

3. for (t, j) such that j ≥ T and t ∈ [t̄j, t̄′j ]:

|𝜙1(t, j) − 𝜙2(t̄′j , j)| ≤ exp(−(𝛽(𝛾 − 𝛿) − ln c)j)|𝜙1(0, 0) − 𝜙2(0, 0)| ≤ 𝜀
′
.

Therefore, for 𝜙1, 𝜙2 such that |𝜙1(0, 0) − 𝜙2(0, 0)| ≤ 𝜇, 𝜙1, 𝜙2 are eventually 𝜀-

close and SH is 𝛿LA. ⊓⊔

When the jump set D is discrete, the conditions in Theorem 9.2 simplify and we

obtain the following result.

Corollary 9.1 (𝛿LAS through flow with D being a discrete set) Consider a hybrid
system H = (C, f ,D, g) with state z ∈ ℝn and D being a discrete set. Suppose H
satisfies Assumptions 9.1, 9.2, 9.3, and the hybrid basic conditions. Let 𝛾 be gener-
ated from Assumption 9.3. If there exist P = P⊤

> 0, 𝛽 > 0, and 𝛿0 > 0 such thatH
satisfies

(1) ∇f ⊤(z)P + P∇f (z) ≤ −2𝛽P for all z ∈ conC;
(2) for each 𝛿 ∈ [0, 𝛿0], each 𝜙 ∈ SH from 𝜙(0, 0) satisfying

𝜙(0, 0) ∈ C, |𝜙(0, 0)|D = 𝛿 (9.41)

is such that there exists s ∈ [0, 𝛿] for which we have

|𝜙(s, 0)|D = 0, |𝜙(t, 0)|D ≤ 𝛿 ∀t ∈ [0, s], (9.42)

and
|𝜙̄(t, 0) − g(𝜙(s, 0))| ≤ 𝛿 ∀t ∈ [0, s], (9.43)

where 𝜙̄ ∈ SH (g(𝜙(s, 0))); and

(3) c < exp(𝛽𝛾), where c ∶=
√

𝜆(P)
𝜆(P)

;

then, the setSH is 𝛿LAS with d being the Euclidean distance.
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Proof Given 𝜀 > 0, and using 𝛿0, 𝛾 as in the assumption, consider 𝜙1, 𝜙2 ∈ SH

such that |𝜙1(0, 0) − 𝜙2(0, 0)| < 𝛿, where 𝛿 is chosen such that

0 < 𝛿 ≤ min
{

𝜀

c
,
𝛿0
c
, 𝛾 − 1

𝛽
ln c

}

and, for each z ∈ D, (z + 𝛿𝔹) ∩ D = {z}; namely z + 𝛿𝔹 is a small neighborhood

around z that does not intersect D. Note that from condition (3), 𝛾 − 1
𝛽
ln c > 0.

First, we show that SH is 𝛿S for the case when 𝜙1(0, 0), 𝜙2(0, 0) ∈ C and

supj dom𝜙1 = supj dom𝜙2 = 0, i.e., no jump occurs to either 𝜙1 or 𝜙2. Similarly

as derived in (9.27), using condition (1) and the comparison lemma, we obtain for

all (t, 0) ∈ dom𝜙1(= dom𝜙2 = [0,∞) × {0}),

|𝜙1(t, 0) − 𝜙2(t, 0)|P ≤ c exp(−𝛽t)|𝜙1(0, 0) − 𝜙2(0, 0)| ≤ 𝜀. (9.44)

Next, we show SH is 𝛿S for the case when either 𝜙1 or 𝜙2 jump. By the choice

of 𝛿 and item (2), supj dom𝜙1 = supj dom𝜙2 =∶ J. This can be verified as fol-

lows. When 𝜙1 flows to the jump set D, 𝜙2 is within the 𝛿 neighborhood of 𝜙1,

then, by item (2), 𝜙2 flows into the jump set D within 𝛿 time. Furthermore, since

𝛾 ≥ 𝛿, therefore, 𝜙1 will not jump again before 𝜙2 jumps. Without loss of general-

ity, assume 𝜙1 jumps first and J = ∞ (Alternatively, we could pick J large enough,

but ∞ suffices). Furthermore, for each j ∈ ℕ ⧵ {0}, let t̄j = max(t,j−1)∈dom𝜙1∩dom𝜙2
t

and t̄′j = min(t,j)∈dom𝜙1∩dom𝜙2
t, and t̄′0 = 0, where t̄j denotes the minimum time in

dom𝜙1 ∩ dom𝜙2 when at least one of the two solutions 𝜙1, 𝜙2 has jumped j times

(note that t̄j and t̄′j are not necessarily jump times of both solutions), while t̄′j denotes

the minimum time when both solutions have jumped j times. In fact, [t̄′j , t̄j+1] × {j} ⊂

dom𝜙1 ∩ dom𝜙2 for all j ∈ ℕ. Note that with Assumption 9.3 and the choice of 𝛿,

𝜙1(t̄1, 0) = 𝜙2(t̄′1, 0) and t̄′1 > t̄1. By the uniqueness of solutions, 𝜙1(t̄1, 1) = 𝜙2(t̄′1, 1)
and 𝜙2 is “following” the trajectory of 𝜙1 after that, which implies that 𝜙1 and 𝜙2
jumps one after another. In particular, after the j-th jump occurs to 𝜙1, the j-th jump

occurs to 𝜙2 before the (j + 1)-th jump occurs to 𝜙1. The derivation follows the steps

as in Theorem 9.2. The main difference is that in the derivation of (9.32) and (9.33),

instead of using the condition (2) in Theorem 9.2, we use condition (2) of Corol-

lary 9.1.

The proof for 𝛿LA follows similarly as that in Theorem 9.2 with 𝜇 > 0 and 𝜇 <

min
{

𝛿0
c
, 𝛾 − 1

𝛽
ln c

}

.

Remark 9.5 Item (1) in Corollary 9.1 guarantees strict decrease of the distance

between every pair of maximal solutions to H on the intersections of their hybrid

time domains. In fact, these conditions guarantee a contraction property of the non-

linear system with right-hand side given by f ; see, e.g., [9]. The second item in

Corollary 9.1 implies that, over the mismatch parts of their hybrid time domains,

the graphical distance between them does not grow. The third item in Corollary 9.1

ensures that every pair of maximal solutions can flow for enough time to overcome
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the possible overshoot on the distance between them. When P = I, the third condi-

tion is satisfied for free.

The necessity of item (2) of Corollary 9.1 is justified in Theorem 9.1. This con-

dition is guaranteed by the following sufficient condition.

Proposition 9.6 Consider a hybrid system H = (C, f ,D, g) with state z ∈ ℝn and
D being a discrete set. Suppose H satisfies the hybrid basic conditions. Then, item
(2) of Corollary 9.1 holds if there exists 𝛿0 > 0 such that, for any z⋆ ∈ D, the follow-
ing holds: there exist c1, c2 > 0, c2 ∈ (0, c1], and 𝛼 ∈ (0, 1) such that

(1) the function V1(z) ∶= |z − z⋆|2 satisfies ⟨∇V1(z), f (z)⟩ + c1V𝛼

1 (z) ≤ 0 and |z −
z⋆|1−2𝛼 ≤ c1(1 − 𝛼) for all z ∈ C

⋂
((z⋆ + 𝛿0𝔹) ⧵ D),

(2) the function V2(z) ∶= |z − g(z⋆)|2 satisfies ⟨∇V2(z), f (z)⟩ − c2V𝛼

2 (z) ≤ 0 for all
z ∈ C

⋂
(g(z⋆) + 𝛿0𝔹).

Proof Let 𝛿 be such that 0 < 𝛿 ≤ 𝛿0 and for each z ∈ D, (z + 𝛿𝔹) ∩ D = {z}. Given

z⋆ ∈ D, consider 𝜙 ∈ SH (C
⋂(

(z⋆ + 𝛿𝔹) ⧵ D
)
). By item (1) in Proposition 9.6

and by integrating t ↦ dV1−𝛼
1
dt

(𝜙(t, 0)) over [0, t1] × {0} ⊂ dom𝜙, it follows that

V1(𝜙(t, 0))1−𝛼 ≤ −c1(1 − 𝛼)t + V1(𝜙(0, 0))1−𝛼 ∀(t, 0) ∈ dom𝜙. (9.45)

Note that, since V1 is a positive definite function with respect to z⋆, using the prop-

erty that |z − z⋆|1−2𝛼 ≤ c1(1 − 𝛼) for all z ∈ C
⋂
((z⋆ + 𝛿0𝔹) ⧵ D), 𝜙 converges to z⋆

within t⋆ seconds, where

t⋆ =
V1(𝜙(0, 0))1−𝛼

c1(1 − 𝛼)
= |𝜙(0, 0) − z⋆|2−2𝛼

c1(1 − 𝛼)
(9.46)

⟹ t⋆ ≤
c1(1 − 𝛼)|𝜙(0, 0) − z⋆|

c1(1 − 𝛼)
= |𝜙(0, 0) − z⋆|. (9.47)

Moreover, by (9.45) and the fact that V1(𝜙(t, 0)) = |𝜙(t, 0) − z⋆|2,

|𝜙(t, 0) − z⋆| =
√
V1(𝜙(t, 0)) ≤

√
V1(𝜙(0, 0)) = |𝜙(0, 0) − z⋆| ∀(t, 0) ∈ dom𝜙.

(9.48)

It is implied from (9.47) that there exists s ∈ [0, |𝜙(0, 0) − z⋆|] such that

𝜙(s, 0) = z⋆ and, from (9.48), |𝜙(t, 0)|D ≤ 𝛿 for all t ∈ [0, s]. Now using item (2) of

the assumptions and proceeding similarly to arrive to (9.45), the maximal solution

𝜙̄ ∈ SH (g(𝜙(s, 0))) satisfies

V2(𝜙̄(t, 0))1−𝛼 ≤ c2(1 − 𝛼)t + V2(𝜙̄(0, 0))1−𝛼 ∀(t, 0) ∈ dom 𝜙̄. (9.49)

Since V2(𝜙̄(0, 0)) = |g(𝜙(s, 0)) − g(z⋆)|2 = 0, using (9.46), (9.48), and (9.49), we

obtain that for all t ∈ [0, s],
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|𝜙̄(t, 0) − g(𝜙(s, 0))| = |𝜙̄(t, 0) − g(z⋆)| =
√

V2(𝜙̄(t, 0)) ≤
√

(c2(1 − 𝛼)t)
1

1−𝛼

≤

√
√
√
√

(

c2(1 − 𝛼)
V1(𝜙(0, 0))1−𝛼

c1(1 − 𝛼)

) 1
1−𝛼

≤

√
√
√
√

(
c2
c1

) 1
1−𝛼

|𝜙(0, 0) − z⋆| ≤ |𝜙(0, 0) − z⋆| ≤ 𝛿,

where we used the property 0 < c2 ≤ c1. ⊓⊔

Remark 9.6 In item (1) of Proposition 9.6, if c1 and 𝛼 can be chosen as c1 ≥ 2 and

𝛼 = 1
2
, then, for any z⋆ ∈ D, the condition |z − z⋆|1−2𝛼 ≤ c1(1 − 𝛼) is true for any

z ∈ ℝn
since |z − z⋆|1−2𝛼 = |z − z⋆|0 = 1 ≤

1
2
c1.

The following example illustrates the sufficient condition in Corollary 9.1, for which

Proposition 9.6 is used to guarantee that item (2) in Corollary 9.1 holds.

Example 9.6 Consider the following hybrid system H = (C, f ,D, g) with state z ∈
ℝ and data given by

f (z) = −z ∀ z ∈ ℝ

C ∶=
⋃

i∈{2k∶k∈ℕ}
[i, i + 1]

g(z) = z − 1 ∀ z ∈ D ∶= {2k ∶ k ∈ ℕ ⧵ {0}},

where f ∶ ℝ → ℝ and g ∶ ℕ → ℕ. The conditions in Corollary 9.1 can be verified as

follows. Each 𝜙 ∈ SH is complete and its domain is unbounded in the t direction.

Moreover, the flow map is continuously differentiable on conC. Furthermore, for

any 𝜙 ∈ SH from 𝜙(0, 0) ∈ (C ∪ D), denote 𝜌
⋆ ∶= max{x ∶ x ∈ C, x ≤ 𝜙(0, 0)}.

If 𝜌
⋆ ≤ 1, then 𝜙 never jumps and the jump time between two consecutive jumps

is bounded below by ∞. If 𝜌
⋆ ≥ 2, the flow time between two consecutive jumps

of 𝜙 is bounded below by 𝜌̄ ∶= ln 𝜌
⋆

𝜌⋆−1
. For all z ∈ conC, ∇f (z) + ∇f (z)⊤ = −2, so

item (1) in Corollary 9.1 is satisfied with 𝛽 = 1 and P = I. Moreover, given z⋆ ∈ D,

the function V1(z) = |z − z⋆|2 satisfies ⟨∇V1(z), f (z)⟩ = 2(z − z⋆)(−z) ≤ −2z⋆(z −

z⋆) = −2z⋆V
1
2
1 (z) for z ∈ C

⋂
((z⋆ + 𝜌̄𝔹) ⧵ D), where we used the property that z ≥

z⋆ for all z ∈ C
⋂
((z⋆ + 𝜌̄𝔹) ⧵ D). Furthermore, the function V2(z) = |z − g(z⋆)|2

satisfies ⟨∇V2(z), f (z)⟩ = 2(z − g(z⋆))(−z) ≤ 2z⋆(g(z⋆) − z) = 2g(z⋆)V
1
2
2 (z) for z ∈

(g(z⋆) + 𝜌̄𝔹)
⋂

C, where we used the property that z ≤ g(z⋆) for all z ∈ (g(z⋆) +
𝜌̄𝔹)

⋂
C and g(z⋆) = z⋆ − 1 < z⋆. Then, Proposition 9.6 is satisfied with c1 = 2z⋆,

𝛼 = 1∕2, and c2 = 2(z⋆ − 1) ∈ (0, c1]. Thus, the condition (2) in Corollary 9.1 is ver-

ified. Note that the condition (3) in Corollary 9.1 holds for free since 𝛽 = 1, c = 1
and 𝛾 = 𝜌̄ > 0. Then, by Corollary 9.1, we have that H is 𝛿LAS. △
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The following result establishes a sufficient condition for a set SH to be 𝛿LAS

“through jumps.” In particular, under such conditions, the graphical distance between

any two maximal solutions to a hybrid system H strictly decreases during jumps.

Due to such requirement, we need to impose the following assumption to guarantee

that every maximal solution to H jumps infinitely many times.

Assumption 9.4 The hybrid system H = (C, f ,D, g) is such that every 𝜙 ∈ SH

satisfies supj dom𝜙 = ∞.

Theorem 9.3 (𝛿LAS through jump for generic D) Consider a hybrid systemH =
(C, f ,D, g) with state z ∈ ℝn. Suppose H satisfies Assumptions 9.1, 9.3, and the
hybrid basic conditions. If there exist 𝛿0,L1,L2 > 0,P = P⊤

> 0 such that

(1) ∇f (z)⊤P + P∇f (z) ≤ 0 for all z ∈ conC;
(2) for each 𝛿 ∈ [0, 𝛿0], each maximal solution 𝜙 toH from 𝜙(0, 0) satisfying

𝜙(0, 0) ∈ C, |𝜙(0, 0)|D = 𝛿

satisfies |𝜙(s, 0)|D = 0 for some s ∈ [0, 𝛿];
(3) for each z ∈ D and each 𝛿 ∈ [0, 𝛿0], the set z + 𝛿𝔹 is forward invariant for H

from away of D;
(4) the jump map g is locally Lipschitz on D with Lipschitz constant L1, i.e., |g(z1) −

g(z2)| ≤ L1|z1 − z2| for all z1, z2 ∈ D such that |z1 − z2| ≤ 𝛿0;
(5) f is bounded on conC with bound L2, i.e., |f (z)| ≤ L2 for all z ∈ conC;

(6) c(L1 + L2) ≤ 1 where c =
√

𝜆(P)
𝜆(P)

;

then, the setSH is 𝛿S with d being the Euclidean distance. Furthermore, if L1 and
L2 can be chosen such that c(L1 + L2) < 1 and H satisfies Assumption 9.4, then,
SH is 𝛿LAS with d being the Euclidean distance.

Proof Given 𝜀 > 0 and using 𝛿0 as in the item (2)–(5) of assumption and 𝛾 as in

Assumption 9.3, consider 𝜙1, 𝜙2 ∈ SH such that |𝜙1(0, 0) − 𝜙2(0, 0)| < 𝛿, where

𝛿 is chosen such that

0 < 𝛿 ≤ min
{

𝜀

c
,
𝛿0
c
, 𝛾

}

.

First, we show that SH is 𝛿S for the case when 𝜙1(0, 0), 𝜙2(0, 0) ∈ C and

supj 𝜙1 = supj dom𝜙2 = 0. Similarly as derived in (9.27), using item (1) and the

comparison lemma, we have, for all t ∈ [0,∞),

|𝜙1(t, 0) − 𝜙2(t, 0)| ≤ c|𝜙1(0, 0) − 𝜙2(0, 0)| ≤ 𝜀.

Next, we show SH is 𝛿S for the case when either 𝜙1 or 𝜙2 jump. By the

choice of 𝛿 and item (2), supj dom𝜙1 = supj dom𝜙2 =∶ J. Without loss of gen-

erality, assume 𝜙1 jumps first and J = ∞. Furthermore, for each j ∈ ℕ ⧵ {0}, let
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t̄j = max(t,j−1)∈dom𝜙1∩dom𝜙2
t and t̄′j = min(t,j)∈dom𝜙1∩dom𝜙2

t, and t̄′0 = 0. For simplic-

ity, assume that the time when j-th jump occurs to 𝜙1 is always smaller than or equal

to that of 𝜙2 for j ∈ ℕ.

(I) If 𝜙1(0, 0), 𝜙2(0, 0) ∈ C, using item (1) and similar derivations in Theorem 9.2,

we obtain for all t ∈ [0, t̄1],

|𝜙1(t, 0) − 𝜙2(t, 0)| ≤ c|𝜙1(0, 0) − 𝜙2(0, 0)| ≤ 𝜀. (9.50)

When t = t̄1, since 𝜙1 jumps first, 𝜙1(t̄1, 0) ∈ D and 𝜙1(t̄1, 1) = g(𝜙1(t̄1, 0)).
Note that under Assumption 9.3, g(D) ∩ D = ∅. Then,

a. if 𝜙2(t̄1, 0) ∈ D, i.e., t̄1 = t̄′1, by (9.50) and the choice of 𝛿, |𝜙1(t̄1, 0) −
𝜙2(t̄1, 0)| ≤ 𝛿 and 𝜙1(t̄1, 0), 𝜙2(t̄1, 0) ∈ D. By condition (4) and (9.50),

|𝜙1(t̄1, 1) − 𝜙2(t̄1, 1)| ≤ L1|𝜙1(t̄1, 0) − 𝜙2(t̄1, 0)| ≤ 𝜀. (9.51)

Since 𝜙1(t̄1, 1), 𝜙2(t̄1, 1) ∈ C, we can recursively apply the arguments in (I)

b. If 𝜙2(t̄1, 0) ∉ D, i.e., t̄1 < t̄′1, by (9.50), it follows that 𝜙2(t̄1, 0) ∈ (D + 𝛿𝔹) ⧵
D. For each t ∈ [t̄1, t̄′1], since, 𝜙1(t̄1, 0) ∈ D and |𝜙2(t̄1, 0) − 𝜙1
(t̄1, 0)| = 𝛿1 for some 𝛿1 ∈ [0, 𝛿], by item (2) and item (3), we obtain

i. for each j ∈ ℕ ⧵ {0} and each t ∈ [t̄′j , t̄j+1]:

|𝜙1(t, j) − 𝜙2(t, j)| ≤ (L1 + L2)jcj+1|𝜙1(0, 0) − 𝜙2(0, 0)| ≤ 𝜀.

(9.52)

ii. for each j ∈ ℕ ⧵ {0} and each t ∈ [t̄j, t̄′j ]:

|𝜙2(t, j − 1) − 𝜙1(t̄j, j − 1)| ≤ (L1 + L2)j−1cj|𝜙1(0, 0) − 𝜙2(0, 0)| ≤ 𝜀.

(9.53)

iii. for each j ∈ ℕ ⧵ {0} and each t ∈ [t̄j, t̄′j ]:

|𝜙1(t, j) − 𝜙2(t̄′j , j)| ≤ (L1 + L2)j−1cj|𝜙1(0, 0) − 𝜙2(0, 0)| ≤ 𝜀.

(9.54)

Therefore, 𝜙1 and 𝜙2 are 𝜀-close.

The other cases follow similarly. Therefore, SH is 𝛿S with respect to Euclidean

distance.

When the domain of each 𝜙 ∈ SH is unbounded in the j direction and c(L1 +
L2) < 1, the 𝛿LA property can be established by picking 0 < 𝜇 ≤ min

{
𝛿0
c
, 𝛾

}

, for

a given 𝜀
′
> 0, pick T = max

{

1, logc(L1+L2)
𝜀
′

c𝜇

}

+ 1. ⊓⊔
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The following example illustrates the conditions in Theorem 9.3.

Example 9.7 Consider a timer system H with state z ∈ ℝ and data given by

ż = −1 z ≥ 0,
z+ = 1 z = 0.

Each maximal solution𝜙 to it has a domain that is unbounded in the t and j directions.

Moreover, the flow time between two consecutive jumps of 𝜙 is lower bounded by

1. The condition in item (1) of Theorem 9.3 can be verified with P = I as ∇f (z) +
∇f (z)⊤ = 0 for all z ∈ conC. The condition in item (2) can be verified according

to Proposition 9.6. Consider 𝛿0 ∈ (0, 1) and the function V(z) = |z|2D = z2. For each

z ∈ (D + 𝛿0𝔹) ∩ C ⧵ D, we have ⟨∇V(z), f (z)⟩ = −2z = −2V
1
2 (z), where we used the

property that z ∈ [0, 1]. Item (3) of Theorem 9.3 follows from the fact D = {0} is

a singleton and ⟨∇V(z), f (z)⟩ = −2z < 0 for all z ∈ (D + 𝛿0𝔹) ∩ C ⧵ D. Item (4) of

Theorem 9.3 is satisfied with L1 = 0, and item (5) of Theorem 9.3 is satisfied with

L2 = 1. Item (6) of Theorem 9.3 holds for free since c = 1. Therefore, the set SH

is 𝛿S with d being the Euclidean distance. △

9.4 Final Remarks

In this chapter, we introduced and studied several notions of graphical incremental

stability for hybrid systems. When compared to the pointwise distance, the proposed

graphical notion can be applied to systems with “peaking phenomenon,” which is a

typical behavior in tracking and observer design for hybrid systems. Graphical incre-

mental stability involves a convergence property where solutions converge to each

other. Several sufficient and necessary conditions for a hybrid system to be graph-

ically incrementally stable and graphically incrementally attractive were provided

and illustrated in examples.

An alternative approach to use the graphical distance is to prioritize ordinary

time. When one prioritizes ordinary time t, i.e., studying the incremental property

of solutions’ projection to the t direction, it leads to the result as in [7]. Note that

the notion defined therein imposes the incremental stability property in some of the

state components. This is due to the fact that when studying the incremental stability

for certain hybrid systems, such as mechanical systems and dynamical systems that

are dominated by continuous-time behavior, one may not be interested in having

state components pertaining to variables such as timers, logic variables, and memory

states to have the incremental stability property.

The results in [7] cover results for continuous-time system as in [2]. In [2], several

sufficient and necessary conditions for continuous-time systems to be incrementally

stable are provided. For continuous-time systems, incremental stability has also been

studied in more general spaces and using general distance notions, such as the Rie-

mannian distance in the context of contraction theory; see, e.g., the study of contract-
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ing and nonexpansive flows in [13, 14], the local arguments in [9], and the regional

results in [15] in the context of observer design. Due to often being misinterpreted

as a property of convergent systems [16], the authors in [17] provide a rigorous com-

parison between incremental stability and the property of convergent systems, and

conclude that neither implies the other.

Following the ideas in [7, 18], one could alternatively define a notion that pri-

oritizes jumps and mimics the case of purely discrete-time systems. Unfortunately,

such a notion would only apply to a narrow class of hybrid system due to the gen-

eral aforementioned difficulty. For instance, for the rather elementary set of hybrid

trajectories in Example 9.1, the pointwise distance between every pair of trajecto-

ries with different initial conditions is clearly nondecreasing as a function of t, while

the graphical distance between them is small and, as shown in Example 9.3, the sys-

tem is graphically incrementally stable. As argued in this chapter, for hybrid systems

that exhibit a “peaking phenomenon,” see, e.g., [19, 20], approaches that prioritize

ordinary time t or jump time j in the incremental stability notion do not have broad

applicability in the analysis of incremental stability for hybrid dynamical systems.
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Chapter 10
Exponential Stability of Semi-linear
One-Dimensional Balance Laws

Georges Bastin and Jean-Michel Coron

Abstract Raman amplifiers and plug flow chemical reactors are typical exam-

ples of engineering systems that are conveniently represented by semi-linear one-
dimensional systems of balance laws. The main goal of this chapter is to explain

how a quadratic Lyapunov function can be used to prove the exponential stability of

the steady state for this class of hyperbolic systems.

10.1 Introduction

The Lyapunov method is a well-established tool in stability analysis of dynamical

systems. The principal merit of the method is that the actual solution (whether ana-

lytical or numerical) of the concerned system is not required. Meanwhile, the main

drawback is that no systematic procedure exists for deriving Lyapunov functions and

Laurent Praly is definitely one of the scientists who made the greatest contributions

to their construction (see e.g., [3, 9–11, 14]). In this chapter, we bring a modest

additional stone to this building. The main goal is to explain how a quadratic Lya-

punov function can be used to prove the exponential stability of the steady state of

semi-linear one-dimensional hyperbolic systems of balance laws. As a motivation,

in the next section, we present some interesting physical examples of such systems.
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10.1.1 Raman Amplifiers

Raman amplifiers are electro-optical devices that are used for compensating the

natural power attenuation of laser signals transmitted along optical fibers in long

distance communications. Their operation is based on the Raman effect which was

discovered by [12]. The simplest implementation of Raman amplification in optical

telecommunications is depicted in Fig. 10.1. The transmitted information is encoded

by amplitude modulation of a laser signal with wavelength 𝜔s. The signal is provided

by an optical source at the channel input and received by a photo-detector at the out-

put. A pump laser beam with wavelength 𝜔p is injected backward in the optical fiber.

If the wavelengths are appropriately selected, the energy of the pump is transferred

to the signal and produces an amplification that counteracts the natural attenuation.

The dynamics of the signal and pump powers along the fiber are represented by the

following system of two balance laws [4]:

𝜕tS + 𝜆s

(

𝜕xS + 𝛼sS − 𝛽sSP
)

= 0,

𝜕tP − 𝜆p

(

𝜕xP − 𝛼pP − 𝛽pPS
)

= 0,
t ∈ [0,+∞), x ∈ [0,L], (10.1)

where S(t, x) is the power of the transmitted signal, P(t, x) is the power of the pump

laser beam, 𝜆s and 𝜆p are the propagation group velocities of the signal and pump

waves respectively, 𝛼s and 𝛼p are the attenuation coefficients per unit length, 𝛽s and

𝛽p are the amplification gains per unit length. All these positive constant parameters

𝛼s and 𝛼p, 𝛽s and 𝛽p, 𝜆s and 𝜆p are characteristic of the fiber material and dependent

of the wavelengths 𝜔s and 𝜔p.

As the input signal power and the launch pump power can be exogenously

imposed, the boundary conditions are

S(t, 0) = U0,P(t,L) = UL, (10.2)

with constant inputs U0 and UL.

x
0 L

input 
signal output 

signal

pump 
beam

Fig. 10.1 Optical communication with Raman amplification
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10.1.2 Plug Flow Chemical Reactors

A plug flow chemical reactor (PFR) is a tubular reactor where a liquid reaction mix-

ture circulates. The reaction proceeds as the reactants travel through the reactor.

Here, we consider the case of an horizontal PFR where a simple monomolecular

reaction takes place

A ⇄ B.

A is the reactant species and B is the desired product. The reaction is supposed to be

exothermic and a jacket is used to cool the reactor. The cooling fluid flows around the

wall of the tubular reactor. The dynamics of the PFR are described by the following

system of balance laws:

𝜕tTc − Vc𝜕xTc − ko(Tc − Tr) = 0,
𝜕tTr + Vr𝜕xTr + ko(Tc − Tr) − k1r(Tr,CA,CB) = 0,
𝜕tCA + Vr𝜕xCA + r(Tr,CA,CB) = 0,
𝜕tCB + Vr𝜕xCB − r(Tr,CA,CB) = 0,

(10.3)

where t ∈ [0,+∞), x ∈ [0,L], Tc(t, x) is the coolant temperature, Tr(t, x) is the reac-

tor temperature. The variables CA(t, x) and CB(t, x) denote the concentrations of the

chemicals in the reaction medium. Vc is the constant coolant velocity in the jacket,

Vr is the constant reactive fluid velocity in the reactor. The function r(Tr,CA,CB)
represents the reaction rate. A typical form of this function is

r(Tr,CA,CB) = (aCA − bCB) exp
(

− E
RTr

)

,

where a and b are rate constants, E is the activation energy and R is the Boltzmann

constant.

The system is subject to the following constant boundary conditions:

Tr(t, 0) = T in

r , CA(t, 0) = Cin

A , CB(t, 0) = 0, Tc(t, 0) = T in

c . (10.4)

10.1.3 Chemotaxis

Chemotaxis refers to the motion of certain living microorganisms (bacteria, slime

molds, leukocytes ...) in response to the concentrations of chemicals. A simple model

for one-dimensional chemotaxis, known as the Kac-Goldstein model, has been pro-

posed in [5] in order to explain the spatial pattern formations in chemosensitive pop-

ulations. Revisited in [6], this model, in its simplest form, is a system of two balance

laws of the form
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𝜕t𝜚
+ + 𝛾𝜕x𝜚

+ + 𝜙(𝜚+, 𝜚−)(𝜚− − 𝜚
+) = 0,

𝜕t𝜚
− − 𝛾𝜕x𝜚

− + 𝜙(𝜚+, 𝜚−)(𝜚+ − 𝜚
−) = 0,

t ∈ [0,+∞), x ∈ [0,L], (10.5)

where 𝜚
+

denotes the density of right-moving cells and 𝜚
−

the density of left-moving

cells. The function𝜙(𝜚+, 𝜚−) is called the “turning function”. The constant parameter

𝛾 is the velocity of the cell motion. With the change of coordinates 𝜚 ≜ 𝜚
+ + 𝜚

−
,

q ≜ 𝛾(𝜚+ − 𝜚
−), we have the following alternative equivalent model:

𝜕t𝜚 + 𝜕xq = 0,

𝜕tq + 𝛾
2
𝜕x𝜚 − 2𝜙

(𝜚

2
+

q
2𝛾

,
𝜚

2
−

q
2𝛾

)
q = 0,

where 𝜚 is the total density and q is a flux proportional to the difference of densities

of right and left-moving cells. Remark that we have q = 𝜚V where

V ≜ 𝛾
𝜚
+ − 𝜚

−

𝜚+ + 𝜚−

can be interpreted as the average group velocity of the moving cells.

Various possible turning functions are reviewed in [8]. A typical example is

𝜙(𝜚+, 𝜚−) = 𝛼𝜚
+
𝜚
− − 𝜇,

where 𝛼 and 𝜇 are positive constants.

A special case of interest (see, e.g., [7]) is when the cells are confined in the

domain [0,L]. This situation may be represented by “no-flow boundary conditions”

of the form

q(t, 0) = 𝛾

(
𝜚
+(t, 0) − 𝜚

−(t, 0)
)
= 0,

q(t,L) = 𝛾

(
𝜚
+(t,L) − 𝜚

−(t,L)
)
= 0.

(10.6)

10.2 Exponential Stability of Semi-linear Hyperbolic
Systems of Balance Laws

The examples given above are special cases of the general semi-linear hyperbolic

system

𝐘t + 𝛬𝐘x + G(𝐘) = 𝟎, t ∈ [0,+∞), x ∈ [0,L], (10.7)

B
(
𝐘(t, 0),𝐘(t,L)

)
= 𝟎, t ∈ [0,+∞), (10.8)

where
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∙ t and x are the two independent variables: a time variable t ∈ [0,+∞) and a space

variable x ∈ [0,L] over a finite interval;

∙ 𝐘 ∶ [0,+∞) × [0,L] →  is the vector of state variables, with  a nonempty con-

nected open subset of ℝn
;

∙ 𝛬 ∈ n,n(ℝ) is the diagonal matrix defined as

𝛬 ≜

(
𝛬

+ 0
0 −𝛬−

)

with

{
𝛬

+ = diag
{
𝜆1,… , 𝜆m

}
,

𝛬
− = diag

{
𝜆m+1,… , 𝜆n

}
,

(10.9)

where m ∈ [0, n] and 𝜆i > 0 ∀i;

∙ G ∈ C2( ,ℝn) is the vector of source terms;

∙ B ∈ C2( ×  ,ℝn) is the vector of boundary conditions.

A steady state 𝐘∗(x) is a solution of the ordinary differential equation 𝛬𝐘∗
x (x) +

G(𝐘∗(x)) = 𝟎 satisfying the boundary condition B
(
𝐘∗(0),𝐘∗(L)

)
= 𝟎.

We define the following change of coordinates:

𝐙(t, x) ≜ 𝐘(t, x) − 𝐘∗(x), 𝐙 = (Z1,… ,Zn)𝖳.

In the 𝐙 coordinates, the system (10.7), (10.8) is rewritten

𝐙t + 𝛬𝐙x + B(𝐙, x) = 𝟎, (10.10)

B
(
𝐙(t, 0) + 𝐘∗(0),𝐙(t,L) + 𝐘∗(L)

)
= 𝟎, (10.11)

where

B(𝐙, x) ≜
[

G(𝐙 + 𝐘∗(x)) − G(𝐘∗(x))
]

.

Since B(𝟎, x) = 𝟎 by definition of the steady state, it follows that there exists a matrix

M(𝐙, x) ∈ n×n(ℝ) such that (10.10) may be rewritten as

𝐙t + 𝛬𝐙x + M(𝐙, x)𝐙 = 𝟎, (10.12)

with

M(𝟎, x) = 𝜕B
𝜕𝐙

(𝟎, x).

In order to have a well-posed Cauchy problem, a basic requirement is that “at each

boundary point the incoming information 𝐙
in

is determined by the outgoing infor-

mation 𝐙
out

” [13, Sect. 3], with the definitions
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𝐙
in
(t) ≜

(
𝐙+(t, 0)
𝐙−(t,L)

)

and 𝐙
out
(t) ≜

(
𝐙+(t,L)
𝐙−(t, 0)

)

, (10.13)

where 𝐙+
and 𝐙−

are defined as follows:

𝐙+ =
⎛
⎜
⎜
⎝

Z1
⋮

Zm

⎞
⎟
⎟
⎠

, 𝐙− =
⎛
⎜
⎜
⎝

Zm+1
⋮
Zn

⎞
⎟
⎟
⎠

.

This means that the system (10.12) is subject to boundary conditions having the form

𝐙
in
(t) = 

(
𝐙

out
(t)
)
, (10.14)

where the map  ∈ C1(ℝn;ℝn).
Our concern is to analyze the exponential stability of the steady state 𝐙(t, x) ≡

𝟎 of the system (10.12) under the boundary condition (10.14) and under an initial

condition

𝐙(0, x) = 𝐙
o
(x), x ∈ [0,L]. (10.15)

which satisfies the compatibility condition

(
𝐙+

o
(0)

𝐙−
o
(L)

)

= 

(
𝐙+

o
(L)

𝐙−
o
(0)

)

. (10.16)

Let us first recall the following theorem on the well-posedness of the Cauchy problem

(10.12), (10.14), (10.15).

Theorem 10.1 There exists 𝛿0 > 0 such that, for every 𝐙o ∈ H1((0,L);ℝn) satisfy-
ing

‖𝐙o‖H1((0,L);ℝn) ⩽ 𝛿0

and the compatibility condition (10.16), the Cauchy problem (10.12), (10.14), (10.15)
has a unique maximal classical solution

𝐙 ∈ C0([0,T),H1((0,L);ℝn)) (10.17)

with T ∈ (0,+∞].
Moreover, if

‖𝐙(t, ⋅)‖H1((0,L);ℝn) ⩽ 𝛿0, ∀t ∈ [0,T),

then T = +∞.

A proof of this theorem is easily adapted from [1, Appendix B] by considering

the special case of a constant matrix 𝛬 which allows to replace H2((0,L);ℝn) by

H1((0,L);ℝn).
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The definition of the exponential stability is as follows.

Definition 10.1 The steady state 𝐙(t, x) ≡ 0 of the system (10.12), (10.14) is expo-

nentially stable for the H1
-norm if there exist 𝛿 > 0, 𝜈 > 0 and C > 0 such that, for

every 𝐙
o
∈ H1((0,L);ℝn) satisfying ‖𝐙

o
‖H1((0,L);ℝn) ⩽ 𝛿 and the compatibility con-

ditions (10.16), the solution 𝐙 of the Cauchy problem (10.12), (10.14), (10.15) is

defined on [0,+∞) × [0,L] and satisfies

‖𝐙(t, .)‖H1((0,L);ℝn) ≤ Ce−𝜈t‖𝐙
o
‖H1((0,L);ℝn), ∀t ∈ [0,+∞). (10.18)

Let us now define the matrix 𝐊 as the linearization of the map  at the steady

state

𝐊 ≜ 
′(𝟎).

We then have the following stability theorem.

Theorem 10.2 The steady state 𝐙(t, x) ≡ 𝟎 of the system (10.12), (10.14) is expo-
nentially stable for the H1-norm if there exists a map Q satisfying

Q(x) ≜ 𝐝𝐢𝐚𝐠{Q+(x),Q−(x)},
Q+(x) ≜ 𝐝𝐢𝐚𝐠{q1(x),… , qm(x)}, Q−(x) ≜ 𝐝𝐢𝐚𝐠{qm+1(x),… , qn(x)},

qi ∈ C1([0,L];ℝ+) ∀i.

such that the following Matrix Inequalities hold:

(i) the matrix
(

Q+(L)𝛬+ 0
0 Q−(0)𝛬−

)

−𝐊𝖳

(
Q+(0)𝛬+ 0

0 Q−(L)𝛬−

)

𝐊 (10.19)

is positive semi-definite;

(ii) the matrix
−Q′(x)𝛬 + Q(x)M(𝟎, x) + M𝖳(𝟎, x)Q(x)

is positive definite ∀x ∈ [0,L].

10.3 Proof in the Case Where m = n

For the clarity of the demonstration, we shall first prove the theorem in the spe-

cial case where m = n, which means that the matrix 𝛬 is the positive diagonal

matrix diag{𝜆1,… , 𝜆n} with 𝜆i > 0 ∀i = 1,… , n. In that case, the boundary condi-

tion (10.14) and the compatibility conditions (10.16) are simply rewritten
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𝐙(t, 0) = 

(

𝐙(t,L)
)

, (10.20)

𝐙
o
(0) = 

(

𝐙
o
(L)

)

. (10.21)

Moreover, condition (i) of Theorem 10.2 is restated as

(i-bis) the matrix Q(L)𝛬 −𝐊𝖳Q(0)𝛬𝐊 is positive semi-definite.

For the stability analysis, we adopt the H1
Lyapunov function candidate

𝐕 ≜ 𝐕1 + 𝐕2 (10.22)

such that

𝐕1 =
∫

L

0
𝐙𝖳Q(x)𝐙 dx, (10.23)

𝐕2 =
∫

L

0
𝐙𝖳t Q(x)𝐙t dx, (10.24)

where, by definition, the notation 𝐙t must be understood as

𝐙t ≜ −𝛬𝐙x − B(𝐙, x).

Let us remark that by (10.17) 𝐕 is a continuous function of t. In order to prove

Theorem 10.2, we temporarily assume that 𝐙 is of class C2
on [0,T] × [0,L] and

therefore that 𝐕 is of class C1
in [0,T]. Under this assumption (that will be relaxed

later on) the first step of the proof is to compute the following estimates of d𝐕1∕dt
and d𝐕2∕dt.
Estimate of d𝐕1∕dt
The time derivative of 𝐕1 along the solutions of (10.12), (10.20) is

1

d𝐕1
dt

=
∫

L

0
2𝐙𝖳Q(x)𝐙tdx

=
∫

L

0
2𝐙𝖳Q(x)

(

− 𝛬𝐙x − B(𝐙, x)
)

dx.

Then, using integrations by parts, we get

d𝐕1
dt

= 11 + 12, (10.25)

with

1
The notation M𝖳

denotes the transpose of the matrix M.
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11 ≜
[

− 𝐙𝖳Q(x)𝛬𝐙
]L

0
, (10.26)

12 ≜
∫

L

0
−𝐙𝖳Q′(x)𝛬𝐙 − 2𝐙𝖳Q(x)B(𝐙, x)dx. (10.27)

From (10.26), we have

11 = −𝐙𝖳(t,L)Q(L)𝛬𝐙(t,L) + 𝐙𝖳(t, 0)Q(0)𝛬𝐙(t, 0). (10.28)

Let us introduce a notation in order to deal with estimates on “higher order terms”.

We denote by (X;Y), with X ⩾ 0 and Y ⩾ 0, quantities for which there exist C > 0
and 𝜀 > 0, independent of 𝐙 and 𝐙t, such that

(Y ⩽ 𝜀) ⇒ (|(X;Y)| ⩽ CX).

Then from (10.28), using the boundary condition (10.20), we have

11 = −𝐙𝖳(t,L)
[

Q(L)𝛬 −𝐊𝖳Q(0)𝛬𝐊
]

𝐙(t,L) + (|𝐙(t,L)|3; |𝐙(t,L)|), (10.29)

and from (10.27) we have

12 = −
∫

L

0
𝐙𝖳

[

− Q′(x)𝛬 + M𝖳(𝟎, x)Q(x) + Q(x)M(𝟎, x)
]

𝐙 dx

+ 
(

∫

L

0
|𝐙|3dx; |𝐙(t, .)|0

)
, (10.30)

where, for f ∈ C0([0,L];ℝn), we denote |f |0 = max{|f (x)|; x ∈ [0,L]}.

Estimate of d𝐕2∕dt

By time differentiation of the system equations (10.12), (10.20), 𝐙t can be shown to

satisfy the following hyperbolic dynamics:

𝐙tt + 𝛬𝐙tx +
𝜕B
𝜕𝐙

(𝐙, x)𝐙t = 𝟎, (10.31)

𝐙t(t, 0) = 
′(𝐙(t,L))𝐙t(t,L). (10.32)

The time derivative of 𝐕2 along the solutions of (10.12), (10.20), (10.31),

(10.32) is

d𝐕2
dt

=
∫

L

0
2𝐙𝖳t Q(x)(𝐙t)tdx

=
∫

L

0
2𝐙𝖳t Q(x)

(

− 𝛬𝐙tx −
𝜕B
𝜕𝐙

(𝐙, x)𝐙t

)

dx.

Then, using integrations by parts, we get
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d𝐕2
dt

= 21 + 22, (10.33)

with

21 ≜
[

− 𝐙𝖳t Q(x)𝛬𝐙t

]L

0
, (10.34)

22 ≜
∫

L

0
𝐙𝖳t Q′(x)𝛬𝐙t + 2𝐙𝖳t Q(x)

(
𝜕B
𝜕𝐙

(𝐙, x)𝐙t
))

dx. (10.35)

From (10.34), we have

21 = −𝐙𝖳t (t,L)Q(L)𝛬𝐙t(t,L) + 𝐙𝖳t (t, 0)Q(0)𝛬𝐙t(t, 0). (10.36)

Then, using the boundary condition (10.32), we get

21 = −𝐙𝖳t (t,L)
[

Q(L)𝛬 −𝐊𝖳Q(0)𝛬𝐊
]

𝐙t(t,L)

+ (|𝐙t(t,L)|2|𝐙(t,L)|; |𝐙(t,L)|). (10.37)

Moreover 22 is written

22 = −
∫

L

0
𝐙𝖳t

[

− Q′(x)𝛬 + M𝖳(𝟎, x)Q(x) + Q(x)M(𝟎, x)
]

𝐙t dx

+ 
(

∫

L

0
|𝐙t|

2|𝐙|dx; |𝐙(t, .)|0
)
. (10.38)

In the next lemma, we shall now use these estimates to show that the Lyapunov

function exponentially decreases along the system trajectories.

Lemma 10.1 There exist positive real constants 𝛼, 𝛽 and 𝛿 such that, for every 𝐙
such that |𝐙|0 ≤ 𝛿, we have

1
𝛽 ∫

L

0
(|𝐙|2 + |𝐙x|

2)dx ⩽ 𝐕 ⩽ 𝛽
∫

L

0
(|𝐙|2 + |𝐙x|

2)dx, (10.39)

d𝐕
dt

≤ −𝛼𝐕. (10.40)

Proof Inequalities (10.39) follow directly from the definition of 𝐕 and straightfor-

ward estimations.

Let us introduce the following compact matrix notations:

K ≜ Q(L)𝛬 −𝐊𝖳Q(0)𝛬𝐊, (10.41)

L(x) ≜ −Q′(x)𝛬 + M𝖳(𝟎, x)Q(x) + Q(x)M(𝟎, x). (10.42)
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Then it follows from (10.28), (10.30), (10.37), (10.38) that

d𝐕
dt

= −𝐙𝖳(t,L)K𝐙(t,L) − 𝐙𝖳t (t,L)K𝐙t(t,L)

+ (|𝐙(t,L)|(|𝐙(t,L)|2 + |𝐙t(t,L)|2); |𝐙(t,L)|)

−
∫

L

0

(

𝐙𝖳L(x)𝐙 + 𝐙𝖳tL(x)𝐙t

)

dx

+ (
∫

L

0

(

(|𝐙|2| + |𝐙t|
2)|𝐙|

)

dx; |𝐙(t, .)|0
)
.

(10.43)

Then, by assumption (i-bis) of Theorem 10.2 and from (10.41), there exists 𝛿1 > 0
such that if |𝐙(t,L)| < 𝛿1 then

− 𝐙𝖳(t,L)K𝐙(t,L) − 𝐙𝖳t (t,L)K𝐙t(t,L)
+ (|𝐙(t,L)|(|𝐙(t,L)|2 + |𝐙t(t,L)|2); |𝐙(t,L)|) ⩽ 0.

(10.44)

Let us recall the following Sobolev inequality, see, e.g., [2]: for a function 𝜑 ∈
C1([0,L];ℝn), there exists C1 > 0 such that

|𝜑|0 ⩽ C1
∫

L

0
(|𝜑(x)|2 + |𝜑′(x)|2)dx. (10.45)

Moreover, from (10.10) and (10.31), we know also that there exist 𝛿2 > 0 and C2 > 0
such that, if |𝐙(t, x)| + |𝐙t(t, x)| < 𝛿2, then

|𝐙t(t, x)| ⩽ C2
(
|𝐙(t, x)| + |𝐙x(t, x)|

)
, (10.46)

|𝐙x(t, x)| ⩽ C2
(
|𝐙(t, x)| + |𝐙t(t, x)|

)
. (10.47)

Using repeatedly, inequalities (10.45) to (10.47), it follows that there exists 𝛿3 > 0
and C3 > 0 such that, if |𝐙(t, .)|0 < 𝛿3, then

(
∫

L

0

(

(|𝐙|2| + |𝐙t|
2)|𝐙|

)

dx; |𝐙(t, .)|0
)
⩽ C3|𝐙(t, .)|0𝐕. (10.48)

Using assumption (ii) of Theorem 10.2, there exists 𝛾 > 0 such that

−
∫

L

0

(

𝐙𝖳L(x)𝐙 + 𝐙𝖳tL(x)𝐙t

)

dx ⩽ −2𝛾𝐕. (10.49)

Finally it follows from (10.43), (10.44), (10.48) and (10.49) that, if 𝛿 < min(𝛿1, 𝛿3)
is taken sufficiently small, then 𝛼 > 0 can be selected such that
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d𝐕
dt

= (−2𝛾 + C3|𝐙(t, .)|0)𝐕 ⩽ −𝛼𝐕,

for every 𝐙(t, .) such that |𝐙(t, .)|0 ≤ 𝛿. This concludes the proof of Lemma 10.1.

In this lemma, the estimates (10.39) and (10.40) were obtained under the assump-

tion that 𝐙 is of class C2
on [0,T] × [0,L]. But the selection of 𝛼 and 𝛽 does not

depend on the C2
-norm of 𝐙: they depend only on the C0([0,T];H1((0,L);ℝn))-

norm of 𝐙. Hence, using a classical density argument (see, e.g., [1, Comment 4.6]),

the estimates (10.39) and (10.40) remain valid in the distribution sense if 𝐙(., .) is

only of class C1
.

Let us now introduce

𝜀 ≜ min
{

𝛿

2C1𝛽
,
𝛿0
𝛽

}

. (10.50)

Note that 𝛽 ⩾ 1 and therefore that 𝛿 ⩽ 𝛿0. Using Lemma 10.1, (10.45) and (10.50),

for every t ∈ [0,T]

(
‖𝐙(t, .)‖H1((0,L);ℝn) ⩽ 𝜀

)
⟹

(

|𝐙(t, .)|0 ≤
𝛿

2
and 𝐕(t) ⩽ 𝛽𝜀

2
)

, (10.51)

(
|𝐙(t, .)|0 ≤ 𝛿 and 𝐕 ⩽ 𝛽𝜀

2)

⟹
(

|𝐙(t, .)|0 ≤
𝛿

2
and ‖𝐙(t, .)‖H1((0,L);ℝn) ⩽ 𝛿0

)

,

(10.52)

(
|𝐙(t, .)|0 ≤ 𝛿

)
⟹

(d𝐕
dt

⩽ 0
)

in the distribution sense. (10.53)

Let 𝐙
o
∈ H1((0,L);ℝn) satisfy the compatibility condition (10.21) and

‖𝐙
o
‖H1((0,L);ℝn) < 𝜀.

Let 𝐙 ∈ C0([0,T∗),H1((0,L);ℝn)) be the maximal classical solution the Cauchy

problem (10.12), (10.14), (10.15). Using implications (10.51) to (10.53) for T ∈
[0,T∗), we get that

|𝐙(t, ⋅)|H1((0,L);ℝn) ⩽ 𝛿0, ∀t ∈ [0,T∗), (10.54)

|𝐙(t, ⋅)|0 + |𝐙t(t, ⋅)|0 ⩽ 𝛿, ∀t ∈ [0,T∗). (10.55)

Using (10.54) and Theorem 10.1, we have that T = +∞. Using Lemma 10.1 and

(10.55), we finally obtain that
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‖𝐙(t, ⋅)‖2H1((0,L);ℝn) ⩽ 𝛽𝐕(t) ⩽ 𝛽𝐕(0)e−𝛼t ⩽ 𝛽
2‖𝐙

o
‖2H1((0,L);ℝn)e

−𝛼t
.

This concludes the proof of Theorem 10.2.

10.4 Proof in the Case Where 𝟎 < m < n

In this section, we explain the modifications of the proof that must be used to deal

with the case 0 < m < n. (Of course,the case m = 0 is equivalent to the case m = n
by considering 𝐙(t,L − x) instead of 𝐙(t, x).)

The major difference lies in functions 11 and 21 which are now written as fol-

lows:

11 = −
(
𝐙+(t,L)
𝐙−(t, 0)

)𝖳 (Q+(L)𝛬+ 0
0 Q−(0)𝛬−

)(
𝐙+(t,L)
𝐙−(t, 0)

)

+
(
𝐙+(t, 0)
𝐙−(t,L)

)𝖳 (Q+(0)𝛬+ 0
0 Q−(L)𝛬−

)(
𝐙+(t, 0)
𝐙−(t,L)

)

,

21 = −
(
𝐙+

t (t,L)
𝐙−

t (t, 0)

)𝖳 (Q+(L)𝛬+ 0
0 Q−(0)𝛬−

)(
𝐙+

t (t,L)
𝐙−

t (t, 0)

)

+
(
𝐙+

t (t, 0)
𝐙−

t (t,L)

)𝖳 (Q+(0)𝛬+ 0
0 Q−(L)𝛬−

)(
𝐙+

t (t, 0)
𝐙−

t (t,L)

)

.

Using the boundary condition (10.14) and assumption (i) in these equations, it is

then a straightforward exercise to verify that Theorem 10.2 can be established for

the case 0 < m < n in a manner completely parallel to the one we have followed in

the case m = n.

10.5 Conclusion

The main goal of this chapter was to explain how a quadratic Lyapunov function

can be used to prove the exponential stability of the steady state of semi-linear one-
dimensional hyperbolic systems of balance laws. Further stability results for hyper-

bolic systems of balance laws can be found in the textbook [1].
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Chapter 11
Checkable Conditions for Contraction After
Small Transients in Time and Amplitude

Michael Margaliot, Tamir Tuller and Eduardo D. Sontag

Abstract Contraction theory is a powerful tool for proving asymptotic properties

of nonlinear dynamical systems including convergence to an attractor and entrain-

ment to a periodic excitation. We consider generalizations of contraction with respect

to a norm that allow contraction to take place after small transients in time and/or

amplitude. These generalized contractive systems (GCSs) are useful for several rea-

sons. First, we show that there exist simple and checkable conditions guaranteeing

that a system is a GCS, and demonstrate their usefulness using several models from

systems biology. Second, allowing small transients does not destroy the important

asymptotic properties of contractive systems like convergence to a unique equilib-

rium point, if it exists, and entrainment to a periodic excitation. Third, in some cases

as we change the parameters in a contractive system it becomes a GCS just before it

looses contractivity with respect to a norm. In this respect, generalized contractivity

is the analogue of marginal stability in Lyapunov stability theory.

11.1 Introduction

Differential analysis studies nonlinear dynamical systems based on the time evolu-

tion of the distance between trajectories emanating from different initial conditions.

A dynamical system is called contractive if any two trajectories converge to one
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other at an exponential rate. A contractive system has many important properties

including convergence to a unique attractor (if it exists), and entrainment to periodic

excitations [2, 21, 34]. These properties can be proven even when the equilibrium

point or attractor are not known explicitly. Contraction theory found applications in

control theory [22], observer design [10], synchronization of coupled oscillators [3,

44], and more. It has also been extended in many directions including the notion of

partial contraction [38], analysis of networks of interacting agents using contraction

theory [6, 35], and Lyapunov and Lyapunov-Finsler characterizations of incremen-

tal stability [4] and contraction [18]. The latter also leads to a LaSalle-type principle

for contractive systems [18]. There is also a growing interest in design techniques

for controllers that render control systems contractive or incrementally stable; see,

e.g. [45] and the references therein, and also the incremental ISS condition in [15].

A contractive system with added diffusion terms or random noise still satisfies

certain asymptotic properties [1, 28]. Also, there exist explicit bounds on the devi-

ations between trajectories of the system and those of its discretization [15]. In this

respect, contraction is a robust property.

Contraction can in general be defined with respect to a norm that depends on

time and/or space [21]. However, establishing that a given dynamical systems is

contractive with respect to such a norm may be difficult (see, e.g. [8]). There are,

however, easy to check conditions for establishing contraction with respect to a fixed

norm that are based on the corresponding matrix measure.

Since contraction is usually used to prove asymptotic properties, i.e. properties

that hold as time goes to infinity, it is natural to consider systems that are eventually
contractive, i.e. that become contractive after some time T > 0. However, finding

checkable conditions that guarantee this property seems difficult.

In this chapter, we consider three forms of generalized contractive systems

(GCSs). These are motivated by requiring contraction, with respect to a fixed norm,

to take place after arbitrarily small transients in time and/or amplitude. We give easy

to check sufficient conditions for GSC that are based on matrix measures. In some

cases as we change the parameters in a contractive system it becomes a GCS just

before it looses contractivity. In this respect, a GCS is the analogue of marginal

stability in Lyapunov stability theory. We demonstrate the usefulness of these gen-

eralizations using examples of systems that are not contractive with respect to any

norm, yet are GCSs.

The remainder of this chapter is organized as follows. The next section provides a

brief review of some ideas from contraction theory. Section 11.3 presents three gen-

eralizations of contraction with respect to a fixed norm. Section 11.4 details sufficient

conditions for their existence and describes their implications. The proofs of all the

results are placed in Sect. 11.5. The GSCs reviewed here were introduced in [42] (see

also [24]). Due to space constraints, [24, 42] did not include the proofs of the main

results. These are included here, as well as several new results and examples.
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11.2 Preliminaries

We begin with a brief review of some ideas from contraction theory. For more details,

including the historic development of contraction theory, and the relation to other

notions, see e.g. [20, 33, 40].

Consider the time-varying dynamical system

ẋ = f (t, x), (11.1)

with the state x evolving on a positively invariant convex set 𝛺 ⊆ ℝn
. We assume

that f (t, x) is differentiable with respect to x, and that both f (t, x) and J(t, x) ∶= 𝜕f
𝜕x
(t, x)

are continuous in (t, x). Let x(t, t0, x0) denote the solution of (11.1) at time t ≥ t0
with x(t0) = x0. For the sake of simplicity, we assume from here on that x(t, t0, x0)
exists and is unique for all t ≥ t0 ≥ 0 and all x0 ∈ 𝛺.

We say that (11.1) is contractive on 𝛺 with respect to a norm | ⋅ | ∶ ℝn → ℝ+ if

there exists c > 0 such that

|x(t2, t1, a) − x(t2, t1, b)| ≤ exp(−(t2 − t1)c)|a − b| (11.2)

for all t2 ≥ t1 ≥ 0 and all a, b ∈ 𝛺. This means that any two trajectories contract to

one another at an exponential rate. This implies in particular that the initial condition

is “quickly forgotten.”

Note that Ref. [21] provides a more general definition, where contraction is with

respect to a time- and state-dependent metric M(t, x) rather than to a fixed norm (see

also [37] for a general treatment of contraction on a Riemannian manifold). Some

of the results below may be stated using this more general framework. But, for a

given dynamical system finding such a metric may be difficult. Another extension of

contraction is incremental stability [4].

Our approach is based on the fact that there exists a simple sufficient condition

guaranteeing (11.2), so generalizing (11.2) appropriately leads to checkable suffi-

cient conditions for a system to be a GCS. Another advantage of our approach is that

a GCS retains the important property of entrainment to periodic signals.

Recall that a vector norm | ⋅ | ∶ ℝn → ℝ+ induces a matrix measure 𝜇 ∶ ℝn×n →

ℝ defined by 𝜇(A) ∶= lim
𝜖↓0

1
𝜖
(||I + 𝜖A|| − 1), where || ⋅ || ∶ ℝn×n → ℝ+ is the

matrix norm induced by | ⋅ |. It is well known (see, e.g. [34]) that if there exist a

vector norm | ⋅ | and c > 0 such that the induced matrix measure 𝜇 ∶ ℝn×n → ℝ
satisfies

𝜇(J(t, x)) ≤ −c, (11.3)

for all t ≥ 0 and all x ∈ 𝛺 then (11.2) holds. This is in fact a particular case of using

a Lyapunov-Finsler function to prove contraction [18].

We list here the matrix measures corresponding to some vector norms (see,

e.g. [43, Chap. 3]). The matrix measure induced by the L1 vector norm is
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𝜇1(A) = max{c1(A),… , cn(A)}, (11.4)

where

cj(A) ∶= Ajj +
∑

1≤i≤n
i≠j

|Aij|, (11.5)

i.e., the sum of the entries in column j of A, with non diagonal elements replaced by

their absolute values. The matrix measure induced by the L∞ norm is

𝜇∞(A) = max{d1(A),… , dn(A)}, (11.6)

where

dj(A) ∶= Ajj +
∑

1≤i≤n
i≠j

|Aji|, (11.7)

i.e., the sum of the entries in row j of A, with non diagonal elements replaced by their

absolute values.

Often it is useful to work with scaled norms. Let | ⋅ |∗ be some vector norm, and

let 𝜇∗ ∶ ℝn×n → ℝ denote its induced matrix measure. If P ∈ ℝn×n
is an invertible

matrix, and | ⋅ |∗,P ∶ ℝn → ℝ+ is the vector norm defined by |z|∗,P ∶= |Pz|∗ then the

induced matrix measure is 𝜇∗,P(A) = 𝜇∗(PAP−1).
One important implication of contraction is entrainment to a periodic excitation.

Recall that f ∶ ℝ+ ×𝛺 → ℝn
is called T-periodic if

f (t, x) = f (t + T , x)

for all t ≥ 0 and all x ∈ 𝛺. Note that for the system ẋ(t) = f (u(t), x(t)), with u an input

(or excitation) function, f will be T periodic if u is a T-periodic function. It is well

known [21, 34] that if (11.1) is contractive and f is T-periodic then for any t1 ≥ 0
there exists a unique periodic solution 𝛼 ∶ [t1,∞) → 𝛺 of (11.1), of period T , and

every trajectory converges to 𝛼. Entrainment is important in various applications

ranging from biological systems [23, 34] to the stability of a power grid [17]. Note

that for the particular case where f is time-invariant, this implies that if 𝛺 contains

an equilibrium point e then it is unique and all trajectories converge to e.

11.3 Definitions of Contraction After Small Transients

We begin by defining three generalizations of (11.2).

Definition 11.1 The time-varying system (11.1) is said to be contractive after a
small overshoot and short transient (SOST) on 𝛺 w.r.t. a norm | ⋅ | ∶ ℝn → ℝ+ if

for each 𝜀 > 0 and each 𝜏 > 0 there exists 𝓁 = 𝓁(𝜏, 𝜀) > 0 such that
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|x(t2 + 𝜏,t1, a) − x(t2 + 𝜏, t1, b)| ≤ (1 + 𝜀) exp(−(t2 − t1)𝓁)|a − b| (11.8)

for all t2 ≥ t1 ≥ 0 and all a, b ∈ 𝛺.

This definition is motivated by requiring contraction at an exponential rate, but

only after an (arbitrarily small) time 𝜏, and with an (arbitrarily small) overshoot (1 +
𝜀). However, as we will see below when the convergence rate 𝓁 may depend on 𝜀 a

somewhat richer behavior may occur.

Definition 11.2 The time-varying system (11.1) is said to be contractive after a
small overshoot (SO) on 𝛺 w.r.t. a norm | ⋅ | ∶ ℝn → ℝ+ if for each 𝜀 > 0 there

exists 𝓁 = 𝓁(𝜀) > 0 such that

|x(t2,t1, a) − x(t2, t1, b)| ≤ (1 + 𝜀) exp(−(t2 − t1)𝓁)|a − b| (11.9)

for all t2 ≥ t1 ≥ 0 and all a, b ∈ 𝛺.

The definition of SO is thus similar to that of SOST, yet now the convergence

rate 𝓁 depends only on 𝜀, and there is no time transient 𝜏 (i.e., 𝜏 = 0). In other

words, SO is a uniform (in 𝜏) version of SOST.

Definition 11.3 The time-varying system (11.1) is said to be contractive after a
short transient (ST) on 𝛺 w.r.t. a norm | ⋅ | ∶ ℝn → ℝ+ if for each 𝜏 > 0 there

exists 𝓁 = 𝓁(𝜏) > 0 such that

|x(t2 + 𝜏,t1, a) − x(t2 + 𝜏, t1, b)| ≤ exp(−(t2 − t1)𝓁)|a − b| (11.10)

for all t2 ≥ t1 ≥ 0 and all a, b ∈ 𝛺.

This definition allows the contraction to “kick in” only after a time transient of

length 𝜏.

It is clear that every contractive system is SOST, SO, and ST. Thus, all these

notions are generalizations of contraction. Also, both SO and ST imply SOST and,

as we will see below, under a mild technical condition on (11.1) SO and SOST are

equivalent. Figure 11.2 on p. 16 summarizes the relations between these GCSs (as

well as other notions defined below).

The next simple example demonstrates a system that does not satisfy (11.2), but

is a GCS.

Example 11.1 Consider the scalar time-varying system

ẋ(t) = −𝛼(t)x(t), (11.11)

where the state x evolves on 𝛺 ∶= [−1, 1], and 𝛼 ∶ ℝ+ → ℝ+ is a class K function

(i.e. 𝛼 is continuous and strictly increasing, with 𝛼(0) = 0). It is straightforward to

show that this system does not satisfy (11.2) w.r.t. any norm (consider the trajectories

emanating from x(0) = 0 and from x(0) = 𝜀, with 𝜀 > 0 sufficiently small), yet it

is ST, with 𝓁(𝜏) = 𝛼(𝜏) > 0, for any given 𝜏 > 0.



284 M. Margaliot et al.

The next section analyzes the properties of the three forms of GCSs introduced

above, with an emphasis on checkable conditions for establishing that a system is a

GCS based on matrix measures. We assume from here on that the state space𝛺 ⊂ ℝn

is compact and convex. The proofs of all the results are placed in Sect. 11.5.

11.4 Properties of GCSs

The next three subsections study the three forms of GCSs defined above.

11.4.1 Contraction After a Small Overshoot and Short
Transient (SOST)

Just like contraction, SOST implies entrainment to a periodic excitation. To demon-

strate this, assume for example that the vector field f in (11.1) is T periodic. Pick t0 ≥
0. Define m ∶ 𝛺 → 𝛺 by m(a) ∶= x(T + t0, t0, a). In other words, m maps a to the

solution of (11.1) at time T + t0 for the initial condition x(t0) = a. Then m is contin-

uous and maps the convex and compact set 𝛺 to itself, so by the Brouwer fixed point

theorem (see, e.g. [11, Chap. 6]) there exists 𝜁 ∈ 𝛺 such that m(𝜁 ) = 𝜁 , i.e., x(T +
t0, t0, 𝜁 ) = 𝜁 . This implies that (11.1) admits a periodic solution 𝛾 ∶ [t0,∞) → 𝛺

with period T . Assuming that the system is also SOST, pick 𝜏, 𝜀 > 0. Then there

exists 𝓁 = 𝓁(𝜏, 𝜀) > 0 such that

|x(t − t0 + 𝜏, t0, a) − x(t − t0 + 𝜏, t0, 𝜁 )| ≤ (1 + 𝜀) exp(−(t − t0)𝓁)|a − 𝜁 |,

for all a ∈ 𝛺 and all t ≥ t0. Taking t → ∞ implies that every solution converges

to 𝛾 . In particular, there cannot be two distinct periodic solutions. Thus, we proved

the following.

Proposition 11.1 Suppose that the time-varying system (11.1), with state x evolving
on a compact and convex state-space 𝛺 ⊂ ℝn, is SOST, and that the vector field f
is T-periodic. Then for any t0 ≥ 0 it admits a unique periodic solution 𝛾 ∶ [t0,∞) →
𝛺 with period T, and x(t, t0, a) converges to 𝛾 for any a ∈ 𝛺.

Since both SO and ST imply SOST, Proposition 11.1 holds for all three forms

of GCSs.

Our next goal is to derive a sufficient condition for SOST. One may naturally

expect that if (11.1) is contractive w.r.t. a set of norms | ⋅ |
𝜁
, with, say 𝜁 ∈ (0, p], p >

0, and that lim
𝜁→0 | ⋅ |𝜁 = | ⋅ | then (11.1) is a GCS w.r.t. the norm | ⋅ |.

In fact, this can be further generalized by requiring (11.1) to be contractive w.r.t. | ⋅ |
𝜁

only on suitable subsets 𝛺
𝜁

of the state-space. This leads to the following definition.
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Definition 11.4 System (11.1) is said to be nested contractive (NC) on 𝛺 with

respect to a norm | ⋅ | if there exist convex sets𝛺
𝜁
⊆ 𝛺, and norms | ⋅ |

𝜁
∶ ℝn → ℝ+,

where 𝜁 ∈ (0, 1∕2], such that the following conditions hold.

(a) ∪
𝜁∈(0,1∕2]𝛺𝜁

= 𝛺, and

𝛺
𝜁1
⊆ 𝛺

𝜁2
, for all 𝜁1 ≥ 𝜁2. (11.12)

(b) For every 𝜏 > 0 there exists 𝜁 = 𝜁 (𝜏) ∈ (0, 1∕2], with 𝜁 (𝜏) → 0 as 𝜏 → 0, such

that for every a ∈ 𝛺 and every t1 ≥ 0

x(t, t1, a) ∈ 𝛺
𝜁
, for all t ≥ t1 + 𝜏, (11.13)

and (11.1) is contractive on 𝛺
𝜁

with respect to | ⋅ |
𝜁
.

(c) The norms | ⋅ |
𝜁

converge to | ⋅ | as 𝜁 → 0, i.e., for every 𝜁 > 0 there exists s =
s(𝜁 ) > 0, with s(𝜁 ) → 0 as 𝜁 → 0, such that

(1 − s)|y| ≤ |y|
𝜁
≤ (1 + s)|y|, for all y ∈ 𝛺.

Equation (11.13) means that after an arbitrarily short time 𝜁 every trajectory

enters and remains in a subset 𝛺
𝜁

of the state space on which we have contraction

with respect to | ⋅ |
𝜁
. We can now state the main result in this subsection. Recall that

the proofs of all the results are placed in Sect. 11.5.

Theorem 11.1 If the system (11.1) is NC w.r.t. the norm | ⋅ | then it is SOST w.r.t.
the norm | ⋅ |.

The next result is an application of Theorem 11.1 to systems with a cyclic struc-

ture (see, e.g. [6, 7] and the references therein). It also shows that as we change the

parameters in a contractive system, it may become a GCS when it hits the “verge”

of contraction (as defined in 11.2). This is reminiscent of an asymptotically stable

system that becomes marginally stable as it looses stability.

Proposition 11.2 Consider the system

ẋ1 = −f1(x1) + g(xn),
ẋ2 = −f2(x2) + k1x1,
ẋ3 = −f3(x3) + k2x2,

⋮

ẋn = −fn(xn) + kn−1xn−1. (11.14)

Suppose that the following properties hold for all i: ki > 0, fi(0) = 0, f ′i (s) is a non-
decreasing function of s with f ′i (0) > 0, g(0) > 0, and g′(s) is a strictly decreasing
function of s with g′(s) > 0 for all s ≥ 0. (Note that these properties imply in par-
ticular that ℝn

+ is an invariant set of the dynamics. We further assume that there
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exists a compact and convex set 𝛺 ⊂ ℝn
+ that is an invariant set of the dynamics.)

Let k ∶=
∏n−1

i=1 ki. For 𝜀 > 0, let

D
𝜀
∶= diag

(

1,
f ′1(0) − 𝜀

k1
,

(f ′1(0) − 𝜀)(f ′2(0) − 𝜀)
k1k2

,… ,

n−1∏

i=1

f ′i (0) − 𝜀

ki

)

.

If
n∏

i=1
f ′i (0) > kg′(0) (11.15)

then (11.14) is contractive on𝛺 w.r.t. the scaled norm | ⋅ |1,D
𝜀

for all 𝜀 > 0 sufficiently
small. If

∏n
i=1 f ′i (0) = kg′(0) then (11.14) does not satisfy (11.2), w.r.t. any (fixed)

norm on 𝛺, yet it is SOST on 𝛺 w.r.t. the norm | ⋅ |1,D0
.

Example 11.2 Consider the cyclic system

ẋ1 = −𝛼1x1 + g(xn),
ẋ2 = −𝛼2x2 + x1,
ẋ3 = −𝛼3x3 + x2,

⋮

ẋn = −𝛼nxn + xn−1, (11.16)

where 𝛼i > 0, and

g(u) ∶= 1 + u
c + u

, with c > 1.

As explained in [39, Chap. 4] this is a model for a simple biochemical feedback con-

trol circuit for protein synthesis in the cell. The xi’s represent concentrations of var-

ious macromolecules in the cell and are therefore non-negative. It is straightforward

to see that this system satisfies all the properties in Proposition 11.2 with fi(s) = 𝛼is,

and ki = 1. Using the fact that g(u) < 1 for all u ≥ 0 it is straightforward to show

that the set 𝛺r ∶= r([0, 𝛼−1
1 ] × [0, (𝛼1𝛼2)−1] × · · · × [0, 𝛼−1]) is an invariant set of

the dynamics for all r ≥ 1.

Let 𝛼 ∶=
∏n

i=1 𝛼i. We conclude that if

c − 1 < c2𝛼

then (11.16) is contractive on 𝛺r w.r.t. the scaled norm | ⋅ |1,D
𝜀

for all 𝜀 > 0 suffi-

ciently small, where D
𝜀
∶= diag

(

1, 𝛼1 − 𝜀, (𝛼1 − 𝜀)(𝛼2 − 𝜀),… ,
∏n−1

i=1 (𝛼i − 𝜀)
)

. On

the other hand, if c − 1 = c2𝛼 then (11.16) does not satisfy (11.2), w.r.t. any (fixed)

norm on 𝛺r, yet it is SOST on 𝛺r w.r.t. the norm | ⋅ |1,D0
. Intuitively speaking, this

means that the system is contractive when the “total dissipation” 𝛼 is strictly larger
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than the maximal value of the feedback’s derivative g′(0), and looses contractivity

to become SOST when these two values are equal.

Thus, (11.16), with c − 1 ≤ c2𝛼, admits a unique equilibrium point e ∈ 𝛺1 and

lim
t→∞

x(t, a) = e, for all a ∈ ℝn
+.

This property also follows from a more general result [39, Prop. 4.2.1] that is proved

using the theory of irreducible cooperative dynamical systems. Yet the contraction

approach leads to new insights. For example, it implies that the distance between

trajectories can only decrease, and can also be used to prove entrainment to suitable

generalizations of (11.16) that include periodically varying inputs.

We now describe another application of Theorem 11.1 to a model from systems

biology. Cells often respond to stimulus by modification of proteins. One mecha-

nism for doing this is phosphorelay (also called phosphotransfer) in which a phos-

phate group is transferred through a serial chain of proteins from an initial histidine

kinase (HK) down to a final response regulator (RR). The next example uses Theo-

rem 11.1 to analyze a model for phosphorelay studied in [13].

Example 11.3 Consider the system

ẋ1 = (p1 − x1)c − 𝜂1x1(p2 − x2),
ẋ2 = 𝜂1x1(p2 − x2) − 𝜂2x2(p3 − x3),

⋮

ẋn−1 = 𝜂n−2xn−2(pn−1 − xn−1) − 𝜂n−1xn−1(pn − xn),
ẋn = 𝜂n−1xn−1(pn − xn) − 𝜂nxn, (11.17)

where 𝜂i, pi > 0, and c ∶ [t1,∞) → ℝ+. In the context of phosphorelay [13], c(t) is

the strength at time t of the stimulus activating the HK, xi(t) is the concentration of

the phosphorylated form of the protein at the ith layer at time t, and pi denotes the

total protein concentration at that layer. Note that 𝜂nxn is the flow of the phosphate

group to an external receptor molecule.

In the particular case where pi = 1 for all i (11.17) becomes the ribosome flow
model (RFM) [32]. This is the mean-field approximation of an important model

from nonequilibrium statistical physics called the totally asymmetric simple exclu-
sion process (TASEP) [9]. In the RFM, xi ∈ [0, 1] is the normalized occupancy at

site i, where xi = 0 [xi = 1] means that site i is completely free [full], and 𝜂i is the

capacity of the link that connects site i to site i + 1. This has been used to model

mRNA translation, where every site corresponds to a group of codons on the mRNA

strand, xi(t) is the normalized occupancy of ribosomes at site i at time t, c(t) is the

initiation rate at time t, and 𝜂i is the elongation rate from site i to site i + 1.

Our original motivation for introducing GCSs was to prove entrainment in the

RFM [23]. For more on the analysis of the RFM, and networks of interconnected

RFMs, using tools from systems and control theory, see [25–27, 29–31, 46].
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Assume that there exists 𝜂0 > 0 such that c(t) ≥ 𝜂0 for all t ≥ t1. Let 𝛺 ∶=
[0, p1] × · · · × [0, pn] denote the state-space of (11.17). Then, as shown in

Sect. 11.5, (11.17) does not satisfy (11.2), w.r.t. any norm, on 𝛺, yet it is SOST

on 𝛺 w.r.t. the L1 norm.

Systems in which every state variable describes the amount of “material” in a

compartment, and the dynamics describes the flow between the compartments and

the environment are called compartmental systems [19]. Both (11.16) and (11.17)

are thus compartmental systems. Analysis of contraction in such systems using the

matrix measure corresponding to the scaled L1 norm goes back at least to the work

of Sandberg [36].

Considering Theorem 11.1 in the special case where all the sets 𝛺
𝜁

in Defini-

tion 11.4 are equal to 𝛺 yields the following result.

Corollary 11.1 Suppose that (11.1) is contractive on 𝛺 w.r.t. a set of norms | ⋅
|
𝜁
, 𝜁 ∈ (0, 1∕2], and that condition (c) in Definition 11.4 holds. Then (11.1) is SOST

on 𝛺 w.r.t. | ⋅ |.

Corollary 11.1 may be useful in cases where some matrix measure of the Jaco-

bian J of (11.1) turns out to be non positive on𝛺, but not strictly negative, suggesting

that the system is “on the verge” of satisfying (11.2). The next result demonstrates

this for the time-invariant system

ẋ = f (x), (11.18)

and the particular case of the matrix measure 𝜇1 ∶ ℝn×n → ℝ induced by the L1
norm. Recall that this is given by (11.4) with the cjs defined in (11.5).

Proposition 11.3 Consider the Jacobian J(⋅) ∶ 𝛺 → ℝn×n of the time-invariant sys-
tem (11.18). Suppose that𝛺 is compact and convex, and that the set {1,… , n} can be
divided into two nonempty disjoint sets S0 and S− such that the following properties
hold for all x ∈ 𝛺:

1. for any k ∈ S0, ck(J(x)) ≤ 0;
2. for any j ∈ S−, cj(J(x)) < 0;
3. for any i ∈ S0 there exists an index z = z(i) ∈ S− such that Jzi(x) > 0.

Then (11.18) is SOST on 𝛺 w.r.t. the L1 norm.

The proof of Proposition 11.3 is based on the following idea. By compactness

of 𝛺, there exists 𝛿 > 0 such that

cj(J(x)) < −𝛿, for all j ∈ S− and all x ∈ 𝛺. (11.19)

The conditions stated in the proposition imply that there exists a diagonal matrix P
such that ck(PJP−1) < 0 for all k ∈ S0. Furthermore, there exists such a P with

diagonal entries arbitrarily close to 1, so cj(PJP−1) < −𝛿∕2 for all j ∈ S−. Thus,

𝜇1(PJP−1) < 0. Now Corollary 11.1 implies SOST. Note that this implies that the
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compactness assumption may be dropped if for example it is known that (11.19)

holds.

Example 11.4 Consider the system:

ẋ = − 𝛿x + k1y − k2(eT − y)x,
ẏ = − k1y + k2(eT − y)x, (11.20)

where 𝛿, k1, k2, eT > 0, and 𝛺 ∶= [0,∞) × [0, eT ]. This is a basic model for a tran-

scriptional module that is ubiquitous in both biology and synthetic biology (see,

e.g. [14, 34]). Here x(t) is the concentration at time t of a transcriptional factor X
that regulates a downstream transcriptional module by binding to a promoter with

concentration e(t) yielding a protein-promoter complex Y with concentration y(t).
The binding reaction is reversible with binding and dissociation rates k2 and k1,

respectively. The linear degradation rate of X is 𝛿, and as the promoter is not sub-

ject to decay, its total concentration, eT , is conserved, so e(t) = eT − y(t). The Jaco-

bian of (11.20) is J =
[
−𝛿 − k2(eT − y) k1 + k2x

k2(eT − y) −k1 − k2x

]

, and all the properties in Propo-

sition 11.3 hold with S− = {1} and S0 = {2}. Indeed, J12 = k1 + k2x > k1 > 0 for

all
[
x y

]T ∈ 𝛺. Thus, (11.20) is SOST on 𝛺 w.r.t. the L1 norm. Note that Ref. [34]

showed that (11.20) is contractive w.r.t. a certain weighted L1 norm. Here we showed

SOST w.r.t. the (unweighted) L1 norm.

Example 11.5 A more general example studied in [34] is where the transcription

factor regulates several independent downstream transcriptional modules. This leads

to the following model:

ẋ = − 𝛿x + k11y1 − k21(eT ,1 − y1)x + k12y2 − k22(eT ,2 − y2)x
+ · · · + k1nyn − k2n(eT ,n − yn)x,

ẏ1 = − k11y1 + k21(eT ,1 − y1)x,
⋮

ẏn = − k1nyn + k2n(eT ,n − yn)x, (11.21)

where n is the number of regulated modules. The state-space is 𝛺 = [0,∞) ×
[0, eT ,1] × · · · × [0, eT ,n]. The Jacobian of (11.21) is

J =
⎡
⎢
⎢
⎣

−𝛿−
∑n

i=1 k2i(eT ,i−yi) k11+k21x k12+k22x … k1n−1+k2n−1x k1n+k2nx
k21(eT ,1−y1) −k11−k21x 0 … 0 0
k22(eT ,2−y2) 0 −k12−k22x 0 … 0

⋮
k2n(eT ,n−yn) 0 0 … 0 −k1n−k2nx

⎤
⎥
⎥
⎦

,

and all the properties in Proposition 11.3 hold with S− = {1} and S0 = {2, 3,… , n}.

Thus, this system is SOST on 𝛺 w.r.t. the L1 norm.

Arguing as in the proof of Proposition 11.3 for the matrix measure 𝜇∞ induced

by the L∞ norm (see 11.7) yields the following result.
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Proposition 11.4 Consider the Jacobian J(⋅) ∶ 𝛺 → ℝn×n of the time-invariant sys-
tem (11.18). Suppose that 𝛺 is compact and that the set {1,… , n} can be divided
into two nonempty disjoint sets S0 and S− such that the following properties hold for
all x ∈ 𝛺:

1. dj(J(x)) ≤ 0 for all j ∈ S0;
2. dk(J(x)) < 0 for all k ∈ S−;
3. for any j ∈ S0 there exists an index z = z(j) ∈ S− such that Jjz(x) ≠ 0.

Then (11.18) is SOST on 𝛺 w.r.t. the L∞ norm.

11.4.2 Contraction After a Small Overshoot (SO)

A natural question is under what conditions SO and SOST are equivalent. To address

this issue, we introduce the following definition.

Definition 11.5 We say that (11.1) is weakly expansive (WE) if for each 𝛿 > 0 there

exists 𝜏0 > 0 such that for all a, b ∈ 𝛺 and all t0 ≥ 0

|x(t, t0, a) − x(t, t0, b)| ≤ (1 + 𝛿)|a − b|, for all t ∈ [t0, t0 + 𝜏0]. (11.22)

Proposition 11.5 Suppose that (11.1) is WE. Then (11.1) is SOST if and only if it is
SO.

Remark 11.1 Suppose that f in (11.1) is Lipschitz globally in 𝛺 uniformly in t, i.e.,

there exists L > 0 such that

|f (t, x) − f (t, y)| ≤ L|x − y|, for all x, y ∈ 𝛺, t ≥ 0.

Then by Gronwall’s Lemma (see, e.g. [41, Appendix C])

|x(t, t0, a) − x(t, t0, b)| ≤ exp
(
L(t − t0)

)
|a − b|,

for all t ≥ t0 ≥ 0, and this implies that (11.22) holds for 𝜏0 ∶=
1
L
ln(1 + 𝛿) > 0. In

particular, if 𝛺 is compact and f is periodic in t then WE holds under rather weak

continuity arguments on f .

To explore the connection of SO with other notions related to contraction, we

require the following definitions.

Definition 11.6 We say that (11.1) is non expansive (NE) w.r.t. a norm | ⋅ | if for

all a, b ∈ 𝛺 and all s2 > s1 ≥ 0

|x(s2, s1, a) − x(s2, s1, b)| ≤ |a − b|. (11.23)

We say that (11.1) is weakly contractive (WC) if (11.23) holds with ≤ replaced by <.
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One may perhaps expect that any of the three generalizations of contraction also

implies WC. However, the next example shows that SO does not imply WC.

Example 11.6 Consider the scalar system

ẋ =

{
−2x, 0 ≤ |x| < 1∕2,
− x

|x|
,

1
2
≤ |x| ≤ 1, (11.24)

with x evolving on 𝛺 ∶= [−1, 1]. Clearly, this system is not WC. However, it is not

difficult to show that it satisfies the definition of SO with 𝓁 = 𝓁(𝜀) ∶= min{ln(1 +
𝜀), 1}.

11.4.3 Contraction After a Short Transient (ST)

For time-invariant systems whose state evolves on a convex and compact set 𝛺 it

is possible to give a simple sufficient condition for ST. Let Int(S) [𝜕S] denote the

interior [boundary] of a set S.

Definition 11.7 The time-invariant system (11.18) with the state x evolving on a

compact and convex set𝛺 ⊂ ℝn
, is said to be interior contractive (IC) w.r.t. a norm | ⋅

| ∶ ℝn → ℝ+ if the following properties hold:

(a) for every x0 ∈ 𝜕𝛺,

x(t, x0) ∉ 𝜕𝛺, for all t > 0; (11.25)

(b) for every x ∈ Int(𝛺),
𝜇(J(x)) < 0, (11.26)

where 𝜇 ∶ ℝn×n → ℝ is the matrix measure induced by | ⋅ |.

In other words, the matrix measure is negative in the interior of 𝛺, and the bound-

ary of 𝛺 is “repelling”. Note that these conditions do not necessarily imply that

the system satisfies (11.2) on 𝛺, as it is possible that 𝜇(J(x)) = 0 for some x ∈ 𝜕𝛺.

Yet, (11.26) does imply that (11.18) is NE on 𝛺. We can now state the main result

in this subsection.

Theorem 11.2 If the system (11.18) is IC w.r.t. a norm | ⋅ | then it is ST w.r.t. | ⋅ |.

The proof of this result is based on showing that IC implies that for each 𝜏 > 0
there exists d = d(𝜏) > 0 such that

dist(x(t, x0), 𝜕𝛺) ≥ d, for all x0 ∈ 𝛺 and all t ≥ 𝜏,

and then using this to conclude that for any t ≥ 𝜏 all the trajectories of the system

are contained in a convex and compact set D ⊂ Int(𝛺). In this set the system is con-
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tractive with rate c ∶= maxx∈D 𝜇(J(x)) < 0. The next example, that is a variation of

a system studied in [34], demonstrates this reasoning.

Example 11.7 Consider a transcriptional factor X that regulates a downstream tran-

scriptional module by irreversibly binding, at a rate k2 > 0, to a promoter E yielding

a protein-promoter complex Y . The promoter is not subject to decay, so its total con-

centration, denoted by eT > 0, is conserved. Assume also that X is obtained from an

inactive form X0, for example through a phosphorylation reaction that is catalyzed

by a kinase with abundance u(t) satisfying u(t) ≥ u0 > 0 for all t ≥ 0. The sum of

the concentrations of X0, X, and Y is constant, denoted by zT , with zT > eT . Let-

ting x1(t), x2(t) denote the concentrations of X,Y at time t yields the model

ẋ1 =(zT − x1 − x2)u − 𝛿x1 − k2(eT − x2)x1,
ẋ2 =k2(eT − x2)x1, (11.27)

with the state evolving on 𝛺 ∶= [0, zT ] × [0, eT ]. Here 𝛿 ≥ 0 is the dephosphoryla-

tion rate X → X0. Let P ∶=
[
1 1
0 1

]

, and consider the matrix measure 𝜇∞,P. A calcu-

lation yields

J̃ ∶= PJP−1

=
[

−u − 𝛿 𝛿

k2(eT − x2) k2(x2 − x1 − eT )

]

,

so d1(J̃) = −u − 𝛿 + |𝛿| ≤ −u0 < 0, and

d2(J̃) = k2(x2 − x1 − eT ) + |k2(eT − x2)|
= −k2x1.

Letting S ∶= {0} × [0, eT ], we conclude that 𝜇∞,P(x) < 0 for all x ∈ (𝛺 ⧵ S). For

any x ∈ S, ẋ1 = (zT − x2)u ≥ (zT − eT )u0 > 0, and arguing as in the proof of The-

orem 11.2 (see Sect. 11.5), we conclude that for any 𝜏 > 0 there exists d = d(𝜏) > 0
such that

x1(t, a) ≥ d, for all a ∈ 𝛺 and all t ≥ 𝜏.

In other words, after time 𝜏 all the trajectories are contained in the closed and convex

set D = D(𝜏) ∶= [d, zT ] × [0, eT ]. Letting c ∶= c(𝜏) = maxx∈D 𝜇∞,P(J(x)) yields c <

0 and

|x(t + 𝜏, a) − x(t + 𝜏, b)|∞,P ≤ exp(ct)|a − b|∞,P, for all a, b ∈ 𝛺 and all t > 0,

so (11.27) is ST w.r.t. | ⋅ |∞,P.
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Fig. 11.1 Solution x1(t)
(solid line) and x2(t) (dashed
line) of the system in

Example 11.8 as a function

of t
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As noted above, one motivation for GCSs is that contraction is used to deduce

asymptotic results, so allowing initial transients should increase the class of systems

that can be analyzed. The next result demonstrates this.

Corollary 11.2 If (11.18) is IC with respect to some norm then it admits a unique
equilibrium point e ∈ Int(𝛺), and limt→∞ x(t, a) = e for all a ∈ 𝛺.

Remark 11.2 The proof of Corollary 11.2, given in the Appendix, is based on The-

orem 11.2. It is possible to give another proof using the variational system (see,

e.g. [18]) associated with (11.18):

ẋ = f (x),
̇𝛿x = J(x)𝛿x. (11.28)

The function V(x, 𝛿x) ∶= |𝛿x|, where | ⋅ | ∶ ℝn → ℝ+ is the vector norm correspond-

ing to the matrix measure 𝜇 in (11.26), is a Lyapunov-Finsler function of (11.28),

and Corollary 11.2 follows from the LaSalle invariance principle described in [18].

Since IC implies ST and this implies SOST, it follows from Proposition 11.1 that

IC implies entrainment to T-periodic vector fields.
1

The next example demonstrates

this.

Example 11.8 Consider again the system in Example 11.7, and assume that the

kinase abundance u(t) is a strictly positive and periodic function of time with

period T . Since we already showed that this system is ST, it admits a unique periodic

solution 𝛾 , of period T , and any trajectory of the system converges to 𝛾 . Figure 11.1

1
Note that the proof that IC implies ST used a result for time-invariant systems, but an analogous

argument holds for the time-varying case as well.
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depicts the solution of (11.27) for 𝛿 = 2, k2 = 1, zT = 4, eT = 3, u(t) = 2 + sin(2𝜋t),
and initial condition x1(0) = 2, x2(0) = 1∕4. It may be seen that both state variables

converge to a periodic solution with period T = 1. (In particular, x2 converges to the

constant function x2(t) ≡ eT that is of course periodic with period T .)

Contraction can be characterized using a Lyapunov-Finsler function [18]. The

next result describes a similar characterization for ST. For simplicity, we state this

for the time-invariant system (11.18).

Proposition 11.6 The following two conditions are equivalent.

(a) The time-invariant system (11.18) is ST w.r.t. a norm | ⋅ |.
(b) For any 𝜏 > 0 there exists 𝓁 = 𝓁(𝜏) > 0 such that for any a, b ∈ 𝛺 and any c

on the line connecting a and b the solution of (11.28) with x(0) = c and 𝛿x(0) =
b − a satisfies

|𝛿x(t + 𝜏)| ≤ exp(−𝓁t)|𝛿x(0)|, for all t ≥ 0. (11.29)

Note that (11.29) implies that the function V(x, 𝛿x) ∶= |𝛿x| is a generalized

Lyapunov-Finsler function in the following sense. For any 𝜏 > 0 there exists 𝓁 =
𝓁(𝜏) > 0 such that along solutions of the variational system:

V (x(t + 𝜏, x(0)), 𝛿x(t + 𝜏, 𝛿x(0), x(0))) ≤ exp(−𝓁t)V(x(0), 𝛿x(0)),

for all t ≥ 0.

Figure 11.2 summarizes the relations between the various contraction notions.

ST

WCCONTRACTION

SO

NE

SOST

NC

IC

Ex. 6

Ex. 1

Thm. 1

Thm. 2

Prop. 5
Ex. 6

Fig. 11.2 Relations between various contraction notions. A solid arrow denotes implication; a

crossed out arrow denotes that the implication is in general false; and a dashed arrow denotes

an implication that holds under some additional conditions. Some of the relations are immediate.

Others follow from the results marked near the arrows
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11.5 Proofs

Proof of Theorem 11.1 Fix arbitrary t1 ≥ 0. The function 𝜁 = 𝜁 (𝜏) ∈ (0, 1∕2] is as in

the statement of the Theorem. For each 𝜏 > 0, let c
𝜁
> 0 be a contraction constant

on 𝛺
𝜁
, where we write 𝜁 = 𝜁 (𝜏) here and in what follows. Pick a, b ∈ 𝛺 and 𝜏 > 0.

By (11.13), x(t, t1, a), x(t, t1, b) ∈ 𝛺
𝜁

for all t ≥ t1 + 𝜏, so

|x(t, t1, a)−x(t, t1, b)|𝜁
≤ exp(−c

𝜁
(t − t1 − 𝜏))|x(t1 + 𝜏, t1, a) − x(t1 + 𝜏, t1, b)|𝜁 ,

for all t ≥ t1 + 𝜏. In particular,

|x(t, t1, a) − x(t, t1, b)|𝜁 < |x(t1 + 𝜏, t1, a) − x(t1 + 𝜏, t1, b)|𝜁 , (11.30)

for all t > t1 + 𝜏. From the convergence property of norms in the Theorem statement,

there exist v
𝜁
,w

𝜁
> 0 such that

|y| ≤ v
𝜁
|y|

𝜁
≤ w

𝜁
v
𝜁
|y|, for all y ∈ 𝛺, (11.31)

and v
𝜁
→ 1, w

𝜁
→ 1 as 𝜏 → 0. Combining this with (11.30) yields

|x(t, t1, a) − x(t, t1, b)| < v
𝜁
w
𝜁
|x(t1 + 𝜏, t1, a) − x(t1 + 𝜏, t1, b)|,

for all t > t1 + 𝜏. Note that taking 𝜏 → 0 yields

|x(t, t1, a) − x(t, t1, b)| ≤ |a − b|, for all t > t1. (11.32)

Now for t ≥ t1 + 𝜏 let p ∶= t − t1 − 𝜏. Then

|x(t, t1, a) − x(t, t1, b)| ≤ v
𝜁
|x(t, t1, a) − x(t, t1, b)|𝜁

≤ v
𝜁
exp(−c

𝜁
p)|x(t1 + 𝜏, t1, a) − x(t1 + 𝜏, t1, b)|𝜁

≤ v
𝜁
w
𝜁
exp(−c

𝜁
p)|x(t1 + 𝜏, t1, a) − x(t1 + 𝜏, t1, b)|

≤ v
𝜁
w
𝜁
exp(−c

𝜁
p)|a − b|,

where the last inequality follows from (11.32). Now pick 𝜀 > 0. Since v
𝜁
→ 1, w

𝜁
→

1 as 𝜏 → 0, v
𝜁
w
𝜁
≤ 1 + 𝜀 for 𝜏 > 0 small enough. We conclude that there exists 𝜏m >

0 sufficiently small such that for all 𝜏 ∈ [0, 𝜏m]

|x(t + 𝜏, t1, a) − x(t + 𝜏, t1, b)| ≤ (1 + 𝜀) exp(−c
𝜁
(t − t1))|a − b|, (11.33)

for all a, b ∈ 𝛺 and all t ≥ t1. Now pick 𝜏 > 𝜏m. For any t ≥ t1, let s ∶= t + 𝜏 − 𝜏m.

Then
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|x(t + 𝜏, t1, a) − x(t + 𝜏, t1, b)| = |x(s + 𝜏m, t1, a) − x(s + 𝜏m, t1, b)|
≤ (1 + 𝜀) exp(−c

𝜁
(s − t1))|a − b|

≤ (1 + 𝜀) exp(−c
𝜁
(t − t1))|a − b|,

and this completes the proof of Theorem 11.1. □
Proof of Proposition 11.2 The Jacobian of (11.14) is

J(x) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−f ′1(x1) 0 0 … 0 g′(xn)
k1 −f ′2(x2) 0 … 0 0
0 k2 −f ′3(x3) … 0 0

⋮
0 0 0 … kn−1 −f ′n(xn)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (11.34)

so

D
𝜀
J(x)D−1

𝜀
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−f ′1(x1) 0 0 … 0 g′(xn)
∏n−1

i=1
f ′i (0)−𝜀

ki

f ′1(0) − 𝜀 −f ′2(x2) 0 … 0 0
0 f ′2(0) − 𝜀 0 … 0 0

⋮
0 0 0 … f ′n−1(0) − 𝜀 −f ′n(xn)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Thus, for any sufficiently small 𝜀 > 0, 𝜇1,D
𝜀

(J(x)) is the maximum of the n values:

v1 ∶= f ′1(0) − f ′1(x1) − 𝜀,… , vn−1 ∶= f ′n−1(0) − f ′n−1(xn−1) − 𝜀,

and

vn ∶=
kg′(xn) − f ′n(xn)

∏n−1
i=1 (f

′
i (0) − 𝜀)

∏n−1
i=1 (f

′
i (0) − 𝜀)

.

Since f ′i is nondecreasing, vi ≤ −𝜀 for all i = 1,… , n − 1. Suppose that
∏n

i=1 f ′i (0) >
kg′(0). Then since f ′i (xn) ≥ f ′i (0) and g′(xn) ≤ g′(0), there exists a sufficiently small

𝜀 > 0 such that vn ≤ −𝜀∕2, so 𝜇1,D
𝜀

(J(x)) ≤ −𝜀∕2 for all x ∈ ℝn
+, and thus the system

is contractive on ℝn
+ w.r.t. | ⋅ |1,D

𝜀

.

Now assume that
n∏

i=1
f ′i (0) = kg′(0). (11.35)

By (11.34),

det(J(x)) = (−1)n
( n∏

i=1
f ′i (xi) − kg′(xn)

)

,
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so (11.35) implies that det(J(0)) = 0, and thus the system does not satisfy (11.2)

w.r.t. any (fixed) norm on ℝn
+.

We now use Theorem 11.1 to prove that (11.14) is SOST on ℝn
+. For 𝜁 ∈ (0, 1∕2],

let

𝛺
𝜁
∶= {x ∈ ℝn

+ ∶ x ≥ 𝜁}.

It is straightforward to verify that (11.14) satisfies condition (BR) in [23, Lemma 1],

and this implies that for every 𝜏 > 0 there exists 𝜀(𝜏) > 0 such that x(t) ∈ 𝛺
𝜀

for

all t ≥ 𝜏. Then g′(xn) < g′(0), and f ′n(xn) ≥ f ′n(0) so for any sufficiently small 𝜀 > 0,

kg′(xn) − f ′n(xn)
n−1∏

i=1
(f ′i (0) − 𝜀) < kg′(0) − f ′n(0)

n−1∏

i=1
f ′i (0) = 0.

We already showed that this implies that there exists a 𝜁 > 0 and a norm | ⋅ |1,D
𝜁

such

that (11.14) is contractive on 𝛺
𝜀

w.r.t. this norm. Summarizing, all the conditions in

Theorem 11.1 hold, and we conclude that (11.14) is SOST on ℝn
+ w.r.t. | ⋅ |1,D0

. □
Analysis of the system in Example 11.3. For a ∈ 𝛺, let x(t, t1, a) denote the solu-

tion of (11.17) at time t ≥ t1 for the initial condition x(t1) = a. Pick 𝜏 > 0. Equa-

tion (11.17) satisfies condition (BR) in [23, Lemma 1], and this implies that there

exists 𝜀 = 𝜀(𝜏) > 0 such that for all a ∈ 𝛺, all i = 1,… n, and all t ≥ t1 + 𝜏

xi(t, t1, a) ≥ 𝜀.

Furthermore, if we define yi(t) ∶= pn−i+1 − xn−i+1(t), i = 1,… , n, then the y system

also satisfies condition (BR) in [23, Lemma 1], and this implies that there exists 𝜀1 =
𝜀1(𝜏) > 0 such that for all a ∈ 𝛺, all i = 1,… n, and all t ≥ t1 + 𝜏

yi(t, t1, a) ≥ 𝜀1.

We conclude that after an arbitrarily short time 𝜏 > 0 every state variable xi(t), t ≥
𝜏 + t1, is separated from 0 and from pi. This means the following. For 𝜁 ∈ [0, 1∕2],
let

𝛺
𝜁
∶= {x ∈ 𝛺 ∶ 𝜁pi ≤ xi ≤ (1 − 𝜁 )pi, i = 1,… , n}.

Note that 𝛺0 = 𝛺, and that 𝛺
𝜁

is a strict subcube of 𝛺 for all 𝜁 ∈ (0, 1∕2]. Then for

any t1 ≥ 0, and any 𝜏 > 0 there exists 𝜁 = 𝜁 (𝜏) ∈ (0, 1∕2), with 𝜁 (𝜏) → 0 as 𝜏 → 0,

such that

x(t, t1, a) ∈ 𝛺
𝜁
, for all t ≥ t1 + 𝜏 and all a ∈ 𝛺. (11.36)

The Jacobian of (11.17) satisfies J(t, x) = L(x) − diag(c(t), 0,… , 0, 𝜂n), where
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L(x) =
⎡
⎢
⎢
⎢
⎣

−𝜂1(p2−x2) 𝜂1x1 0 0
𝜂1(p2−x2) −𝜂1x1−𝜂2(p3−x3) … 0

0 𝜂2(p3−x3) … 0
⋱

0 … −𝜂n−2xn−2−𝜂n−1(pn−xn) 𝜂n−1xn−1
0 … 𝜂n−1(pn−xn) −𝜂n−1xn−1

⎤
⎥
⎥
⎥
⎦

.

Note that L(x) is Metzler, tridiagonal, and has zero sum columns for all x ∈ 𝛺. Note

also that for any x ∈ 𝛺
𝜁

every entry Lij on the sub- and superdiagonal of L satis-

fies 𝜁s1 ≤ Lij ≤ (1 − 𝜁 )s2, with s2 ∶= maxi{𝜂ipi} > s1 ∶= mini{𝜂ipi} > 0.

Note also that there exist x ∈ 𝜕𝛺 such that J(x) is singular (e.g., when x1 = 0
and x3 = p3 the second column of J is all zeros), and this implies that the system

does not satisfy (11.2) on 𝛺 w.r.t. any norm.

By [23, Theorem 4], for any 𝜁 ∈ (0, 1∕2] there exists 𝜀 = 𝜀(𝜁 ) > 0, and a diagonal

matrix D = diag(1, q1, q1q2,… , q1q2 … qn−1), with qi = qi(𝜀) > 0, such that (11.17)

is contractive on 𝛺
𝜁

w.r.t. the scaled L1 norm defined by |z|1,D ∶= |Dz|1. Further-

more, we can choose 𝜀 such that 𝜀(𝜁 ) → 0 as 𝜁 → 0, and D(𝜀) → I as 𝜀 → 0. Summa-

rizing, all the conditions in Definition 11.4 hold, so (11.17) is NC on 𝛺 and applying

Theorem 11.1 concludes the analysis. □
Proof of Proposition 11.3 Without loss of generality, assume that S0 = {1,… , k},

with 1 ≤ k < n − 1, so that S− = {k + 1,… , n}. Fix 𝜀 ∈ (0, 1). Let D = diag
(d1,… , dn) with the dis defined as follows. For every i ∈ S0, di = 1 and dz(i) = 1 − 𝜀.

All the other dis are one. Let J̃ ∶= DJD−1
. Then J̃ij =

di

dj
Jij. We now calculate 𝜇1(J̃).

Fix j ∈ S0. Then dj = 1, so

cj(J̃) = J̃jj +
∑

1≤i≤n
i≠j

|J̃ij|

= Jjj +
∑

i∈S0
i≠j

di|Jij| +
∑

k∈S−
k≠j

dk|Jkj|

= Jjj +
∑

i∈S0
i≠j

|Jij| +
∑

k∈S−
k≠j

dk|Jkj|

< cj(J),

where the inequality follows from the fact that dk ≤ 1 for all k, and for the spe-

cific value k = z(j) ∈ S− we have dk = 1 − 𝜀 and |Jkj| > 0. We conclude that for

every j ∈ S0, cj(J̃) < cj(J) = 0. It follows from property 11.3) in the statement of

Proposition 11.3 and the compactness of𝛺 that there exists 𝛿 > 0 such that cj(J(x)) <
−𝛿 for all j ∈ S− and all x ∈ 𝛺, so for 𝜀 > 0 sufficiently small we have cj(J̃(x)) <
−𝛿∕2 for all j ∈ S− and all x ∈ 𝛺. We conclude that for all 𝜀 > 0 sufficiently

small,𝜇1(DJD−1) = maxj cj(J̃) < 0, i.e., the system is contractive w.r.t. | ⋅ |1,D. Clearly, | ⋅
|1,D → | ⋅ |1 as 𝜀 → 0, and applying Corollary 11.1 completes the proof. □
Proof of Proposition 11.5 Suppose that (11.1) is WE, and also SOST w.r.t. some

norm | ⋅ |v. Pick 𝜀 > 0. Since the system is WE, there exists 𝜏0 = 𝜏0(𝜀) > 0 such that
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|x(t, t0, a) − x(t, t0, b)|v ≤
(

1 + 𝜀

2

)

|a − b|v,

for all t ∈ [t0, t0 + 𝜏0]. Letting 𝓁2 ∶=
1
𝜏0
ln( 1+𝜀

1+(𝜀∕2)
) yields

|x(t, t0, a) − x(t, t0, b)|v ≤ (1 + 𝜀) exp(−(t − t0)𝓁2)|a − b|v, (11.37)

for all t ∈ [t0, t0 + 𝜏0]. It is not difficult to show that SOST implies that there exists

𝓁1 = 𝓁1(𝜏0, 𝜀) > 0 such that

|x(t, t0, a) − x(t, t0, b)|v ≤ (1 + 𝜀) exp(−(t − t0)𝓁1)|a − b|v,

for all t ≥ t0 + 𝜏0. Combining this with (11.37) yields

|x(t, t0, a) − x(t, t0, b)|v ≤ (1 + 𝜀) exp(−(t − t0)𝓁)|a − b|v,

for all t ≥ t0, where 𝓁 ∶= min{𝓁1,𝓁2} > 0. This proves SO. □
Proof of Theorem 11.2 We require the following result.

Lemma 11.1 If system (11.18) is IC then for each 𝜏 > 0 there exists d = d(𝜏) > 0
such that

dist(x(t, x0), 𝜕𝛺) ≥ d, for all x0 ∈ 𝛺 and all t ≥ 𝜏.

Proof of Lemma 11.1 Pick 𝜏 > 0 and x0 ∈ 𝛺. Since 𝛺 is an invariant set, Int(𝛺)
is also an invariant set (see, e.g. [5, Lemma III.6]), so (11.25) implies that x(t, x0) ∉
𝜕𝛺 for all t > 0. Since 𝜕𝛺 is compact, ex0 ∶= dist(x(𝜏, x0), 𝜕𝛺) > 0. Thus, there

exists a neighborhood Ux0 of x0, such that dist(x(𝜏, y), 𝜕𝛺) ≥ ex0∕2 for all y ∈ Ux0 .

Cover 𝛺 by such Ux0 sets. By compactness of 𝛺, we can pick a finite subcover.

Pick smallest e in this subcover, and denote this by d. Then d > 0 and we have that

dist(x(𝜏, x0), 𝜕𝛺) ≥ d for all x0 ∈ 𝛺. Now, pick t ≥ 𝜏. Let x1 ∶= x(t − 𝜏, x0). Then

dist(x(t, x0), 𝜕𝛺) = dist(x(𝜏, x1), 𝜕𝛺)
≥ d,

and this completes the proof of Lemma 11.1. □
We can now prove Theorem 11.2. We recall some definitions from the theory of

convex sets. Let B(x, r) denote the closed ball of radius r around x (in the Euclidean

norm). Let K be a compact and convex set with 0 ∈ Int(K). Let s(K) denote the

inradius of k, i.e., the radius of the largest ball contained in K. For 𝜆 ∈ [0, s(K)] the

inner parallel set of K at distance 𝜆 is

K−𝜆 ∶= {x ∈ K ∶ B(x, 𝜆) ⊆ K}.

Note that K−𝜆 is a compact and convex set; in fact, K−𝜆 is the intersection of all

the translated support hyperplanes of K, with each hyperplane translated “inwards”
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through a distance 𝜆 (see [12, Section 17]). Assume, without loss of generality,

that 0 ∈ Int(𝛺). Pick 𝜏 > 0. Let M = M(𝜏) ∶= {x(t, x0) ∶ t ≥ 𝜏, x0 ∈ 𝛺}. By

Lemma 11.1, M ⊂ 𝛺 and dist(y, 𝜕𝛺) ≥ d > 0 for all y ∈ M. Let 𝜆 = 𝜆(𝜏) ∶= 1
2
min

{d, s(𝛺)}. Then 𝜆 > 0. Pick z ∈ M. We claim that B(z, 𝜆) ⊆ 𝛺. To show this, assume

that there exists v ∈ B(z, 𝜆) such that v ∉ 𝛺. Then there is a point q on the line con-

necting v and z such that q ∈ 𝜕𝛺. Therefore,

dist(z, 𝜕𝛺) ≤ |z − q|
≤ |z − v|
≤ 𝜆

≤ d∕2,

and this is a contradiction as z ∈ M. We conclude that M ⊆ K−𝜆. Let c = c(𝜏) ∶=
maxx∈K−𝜆

𝜇(J(x)). Then (11.26) implies that c < 0. Thus, the system is contractive

on K−𝜆, and for all a, b ∈ 𝛺 and all t ≥ 0

|x(t + 𝜏, a) − x(t + 𝜏, b)| ≤ exp(ct)|a − b|,

where | ⋅ | is the vector norm corresponding to the matrix measure 𝜇. This estab-

lishes ST, and thus completes the proof of Theorem 11.2. □
Proof of Corollary 11.2. Since 𝛺 is convex, compact, and invariant, it includes an

equilibrium point e of (11.18). Clearly, e ∈ Int(𝛺). By Theorem 11.2, the system

is ST. Pick a ∈ 𝛺 and 𝜏 > 0, and let 𝓁 = 𝓁(𝜏) > 0. Applying (11.10) with b = e
yields

|x(t + 𝜏, a) − e| ≤ exp(−𝓁t)|a − e|,

for all t ≥ 0. Taking t → ∞ completes the proof. □

Remark 11.3 Another possible proof of Corollary 11.2 is based on defining V ∶
𝛺 → ℝ+ by V(x) ∶= |x − e|. Then for any a ∈ 𝛺, V(x(t, a)) is nondecreasing, and

the LaSalle invariance principle tells us that x(t, a) converges to an invariant subset

of the set {y ∈ 𝛺 ∶ |y − e| = r}, for some r ≥ 0. If r = 0 then we are done. Other-

wise, pick y in the omega limit set of the trajectory. Then y ∉ 𝜕𝛺, so (11.26) implies

that V is strictly decreasing. This contradiction completes the proof.

Proof of Proposition 11.6. Pick a, b ∈ 𝛺. Let 𝛾 ∶ [0, 1] → 𝛺 be the line 𝛾(r) ∶=
(1 − r)a + rb. Note that since 𝛺 is convex, 𝛾(r) ∈ 𝛺 for all r ∈ [0, 1]. Let

w(t, r) ∶= d
dr

x(t, 𝛾(r)).

This measures the sensitivity of the solution at time t to a change in the initial con-

dition along the line 𝛾 . Note that w(0, r) = d
dr
𝛾(r) = b − a, and

ẇ(t, r) = J(x(t, 𝛾(r)))w(t, r).
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Comparing this to (11.28) implies that w(t, r) is equal to the second component, 𝛿x(t),
of the solution of the variational system (11.28) with initial condition

x(0) = (1 − r)a + rb, (11.38)

𝛿x(0) = b − a.

Suppose that the time-invariant system (11.18) is ST. Pick 𝜏 > 0. Let 𝓁 = 𝓁(𝜏) >
0. Then for any r ∈ [0, 1) and any 𝜀 ∈ [0, 1 − r],

|x(t + 𝜏, 𝛾(r + 𝜀)) − x(t + 𝜏, 𝛾(r))| ≤ exp(−t𝓁)|𝛾(r + 𝜀) − 𝛾(r)|.

Dividing both sides of this inequality by 𝜀 and taking 𝜀 ↓ 0 implies that

|w(t + 𝜏, r)| ≤ exp(−t𝓁)|b − a|, (11.39)

so

|𝛿x(t + 𝜏)| ≤ exp(−t𝓁)|𝛿x(0)|.

This proves the implication (a) → (b). To prove the converse implication, assume

that (11.29) holds. Then (11.39) holds and thus

|x(t + 𝜏, b) − x(t + 𝜏, a)| =
|
|
|
|
|
∫

1

0

d
dr

x(t + 𝜏, 𝛾(r))dr
|
|
|
|
|

≤
∫

1

0
|w(t + 𝜏, r)| dr

≤
∫

1

0
exp(−𝓁t)|b − a|dr

= exp(−𝓁t)|b − a|,

so the system is ST. □
Above, we have used several times the fact that singularity of the Jacobian implies

that the system ẋ = f (x) cannot be contractive (as defined in 11.2) w.r.t. any (fixed)

norm. For the sake of completeness, we now show this.

Pick any point a ∈ Int(𝛺) and any fixed 𝜀 > 0 such that the sphere B of radius

𝜀 around a is contained in 𝛺. Pick any b = a + q, q ∈ B, and let 𝛾 ∶ [0, 1] → 𝛺

be the line 𝛾(r) ∶= (1 − r)a + rb = a + rq. Since 𝛺 is convex, this line is contained

in 𝛺. Let w(t, r) ∶= d
dr

x(t, 𝛾(r)). Since ẇ(t, r) = J(x(t, 𝛾(r)))w(t, r), we have that for

any vector norm and for any 𝜏 > 0,

|w(𝜏, 0)| − |w(0, 0)| = |(I + 𝜏J(x(0, 𝛾(0))) + o(𝜏))w(0, 0)| − |w(0, 0)|
= |(I + 𝜏J(a))q| − |q| + o(𝜏) .
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Pick r ∈ [0, 1), and 𝜀 > 0 sufficiently small. If the system is contractive then there

exist a vector norm | ⋅ | and 𝜂 > 0 such that for all t ≥ 0,

|x(t, 𝛾(r + 𝜀)) − x(t, 𝛾(r))| ≤ exp(−𝜂t)|𝛾(r + 𝜀) − 𝛾(r)|.

Dividing both sides by 𝜀 and taking limits as 𝜀 → 0 yields |w(t, r)| ≤ exp(−𝜂t)|q|,
for all t ≥ 0, and all r ∈ [0, 1). In particular,

|w(𝜏, 0)| − |w(0, 0)| ≤ (exp(−𝜂𝜏) − 1)|q|.

Combining all this information, we have that

|(I + 𝜏J(a))q| − |q| + o(𝜏) ≤ (exp(−𝜂𝜏) − 1)|q|

and therefore, dividing by |q| and 𝜏 > 0,

|(I+𝜏J(a))q|
|q|

− 1

𝜏
≤ −𝜂 + o(𝜏)

𝜏
.

For each fixed 𝜏, pick a q = q(𝜏) so that ‖I + 𝜏J(a)‖ = |(I+𝜏J(a))q|
|q|

, so the inequality

gives

‖I + 𝜏J(a)‖ − 1
𝜏

≤ −𝜂 + o(𝜏)
𝜏

.

Taking the limit as 𝜏 ↘ 0 gives that 𝜇(J(a)) ≤ −𝜂, where 𝜇 is the matrix measure

associated to the given norm. It follows that the real part of every eigenvalue of J(a)
is also less than −𝜂 [16, p. 35], so J(a) is nonsingular. There remains the case when

a is not in the interior of 𝛺. However, continuity of eigenvalues implies that the

conclusion that the real part of every eigenvalue of J(a) is ≤ −𝜂 is true as well.

11.6 Conclusions

Contraction theory is a powerful tool for studying nonlinear dynamical systems.

Contraction implies several desirable asymptotic properties such as convergence to

a unique attractor (if it exists), and entrainment to periodic excitation. This holds

even if the equilibrium point or periodic attractor are not known in explicit form.

However, proving contraction is in many cases nontrivial.

We considered three generalizations of contraction. These are motivated by

allowing contraction to take place after an arbitrarily small transient in time and/or

amplitude. In particular, this means that they have the same asymptotic proper-

ties as contractive systems. We provided checkable conditions guaranteeing that a
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dynamical system is a GCS, and demonstrated their usefulness by using them to

analyze a number of models from systems biology. Some of these models do not

satisfy (11.2), w.r.t. any (fixed) norm, yet are a GCS.
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Chapter 12
Asymptotic Expansions of Laplace Integrals
for Quantum State Tomography

Pierre Six and Pierre Rouchon

Abstract Bayesian estimation of a mixed quantum state can be approximated via

maximum likelihood (MaxLike) estimation when the likelihood function is sharp

around its maximum. Such approximations rely on asymptotic expansions of multi-

dimensional Laplace integrals. When this maximum is on the boundary of the inte-

gration domain, as is the case when the MaxLike quantum state is not full rank, such

expansions are not standard. We provide here such expansions, even when this max-

imum does not lie on the smooth part of the boundary, as in the case when the rank

deficiency exceeds two. Aside from the MaxLike estimate of the quantum state, these

expansions provide confidence intervals for any observable. They confirm the for-

mula proposed and used without precise mathematical justifications by the authors

in an article recently published in Physical Review A.

12.1 Introduction

When the probability laws of observed data Y with respect to a continuous parameter

p to be estimated are given by an analytic model, the Maximum Likelihood (Max-

Like) reconstruction method is widely used (see, e.g., [1]). It chooses an estimate of

p, denoted by pML, the value of p that maximizes the conditional probability ℙ (Y | p)
of the data Y . Indeed, when the data Y consists of a large amount of independent mea-

surements, the function p ↦ ℙ (Y | p) becomes extremely sharp around its maximal

value, and the MaxLike estimate pML is a good approximation of the Bayesian mean

estimate denoted by pBM:
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pBM =
∫D

pℙ (p | Y) dp =
∫D pℙ (Y | p) ℙ0(p) dp
∫D ℙ (Y | p) ℙ0(p) dp

,

where D ⊂ ℝdim p
is a set of physically acceptable values for p; ℙ (p | Y) is the prob-

ability density of p knowing Y; and ℙ0(p) is any a priori probability density for p.

Reliance only on MaxLike estimation has the advantage of providing easy-to-

compute algorithms. The first and second derivatives of ℙ (Y | p) versus p can be

derived using the finite difference method, and gradient-like optimization methods

can be used. The Cramér–Rao bound can also be extracted from the Hessian of the

log-likelihood function to define a lower bound of the mean estimation error when

this Hessian matrix is not degenerate. Nevertheless, some technical problems can

arise, in particular for quantum state tomography [2], where the estimated value of

parameter p corresponds to a quantum state 𝜌, an element of the compact convex

domain D formed by the set of non-negative Hermitian matrices of trace one. In

practice, MaxLike estimates of 𝜌ML may be of low rank, for instance on the boundary

of D as noted in [3] and observed in [4].

All these reasons have led us to consider Bayesian Mean Estimations (BME) in

the general setting when the parameter p exists in a finite-dimensional and compact

domain D with piecewise smooth boundary. As the magnitude of ℙ (Y | p) grows

(or decreases) at an exponentially high rate compared to the number of independent

measurements N generating the measurement set Y , we consider the scaled log-

likelihood function f (p) = 1
N
log (ℙ (Y | p)). We then address the problem of com-

puting the asymptotic development when N tends toward infinity, for any smooth

scalar functions f and g and under various conditions of the Laplace’s integral:

Ig(N) =
∫D

g(p) exp (Nf (p)) dp. (12.1)

Such asymptotic expansions, which have long been investigated, involve integration

by parts, Watson’s lemma, Laplace’s method, stationary phase, steepest descents, and

Hironaka’s resolution of singularities: see [5] for dim p = 1; and the regular case

when dim p ≥ 1; also see [6] for the singular case in arbitrary dimensions and its

much more elaborate analysis. In the analytic case and around the maximum of f at

pML inside domain D , these expansions rely on terms such as eNf (pML) (logN)k

N𝛼
, where

k is a non-negative integer less than dim p − 1 and where 𝛼 is rational and strictly

positive [6, p. 231]. Fundamental connections between algebraic geometry and sta-

tistical learning theory in the singular case stem from such series expansions, for

example, when the Hessian of f at pML is not negative definite. This is the object of

singular learning theory developed in [7, 8].

It is interesting to note that, as far as we know, very few results can be found when

pML lies on the boundary of D , except in the case when pML is on a smooth part of the

boundary. In [5, Sect. 8.3], the derivation of the leading term is explained when pML
is on the smooth part of the boundary and when the Hessian of the restriction of f to

this smooth part is negative definite; Sect. 8.3.4 of [6] provides precise indications
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showing that, when the Hessian of the restriction of f is degenerate, an asymptotic

expansion exists which is similar to that obtained for pML in the interior of D .

For quantum state estimation, this ensures the existence of asymptotic expansion

in any case when 𝜌ML has either a full rank (interior of D) or rank deficiency of one

(smooth part of the boundary of D). For rank deficiency strictly exceeding one, 𝜌ML
does not lie on the smooth part of the boundary. As far as we know, the derivations

of asymptotic expansions in these singular cases, when the rank deficiency of 𝜌ML
exceeds two, have not been precisely addressed before now. This paper is a first

attempt at deriving such asymptotic expansion of the Bayesian mean and variance

when the log-likelihood function reaches it maximum on the boundary of D , that is,

when 𝜌ML is of low rank.

The goal of this paper is twofold. First, we provide the leading terms of specific

asymptotic expansions when pML lies in a half-space. This is the object of Sect. 12.2,

where we assume that restricting f to the boundary admits a non-degenerate maxi-

mum at pML (see Theorem 12.2). Second, we consider quantum state estimation and

reformulate these leading terms intrinsically in terms of operators and trace. This

is the object of Sect. 12.3, where we recall the precise structures of f and g in this

case and exploit convexity and unitary invariance. We provide in this section pre-

cise mathematical justifications of the necessary and sufficient optimality conditions

given without details in [4, Eq. (8)] (see Lemma 12.2 below) and of the Bayesian

variance approximation corresponding to Eq. (10) in [4] (see Theorem 12.3).

12.2 Asymptotic Expansion of Laplace’s Integral

Here, we assume that p is of dimension n and that D = (−1, 1)n. Set p = z with

z ∈ ℝn
. Then (12.1) may be written

Ig(N) =
∫z∈(−1,1)n

g(z) exp (Nf (z)) dz. (12.2)

Theorem 12.1 Consider (12.2) where f and g are analytic functions of z on a com-
pact neighbourhood of D , the closure of D . Assume that f admits a unique maximum
on D at z = 0 with 𝜕

2f
𝜕z2

|
|
|0

negative definite.
If g(0) ≠ 0, we have the following dominant term in the asymptotic expansion of

Ig(N) for large N

Ig(N) =

⎛
⎜
⎜
⎜
⎜
⎝

g(0) (2𝜋)n∕2 eNf (0)N−n∕2
√

|
|
|
|
det

(
𝜕2f
𝜕z2

|
|
|0

)|
|
|
|

⎞
⎟
⎟
⎟
⎟
⎠

+ O
(

eNf (0)N−n∕2−1
)

. (12.3)
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If g(0) = 0, with 𝜕g
𝜕z
|
|
|0
= 0, then we have

Ig(N) =

⎛
⎜
⎜
⎜
⎜
⎝

Tr
(

− 𝜕
2g
𝜕z2

|
|
|0

(
𝜕
2f
𝜕z2

|
|
|0

)−1
)

(2𝜋)n∕2

2
√

|
|
|
|
det

(
𝜕2f
𝜕z2

|
|
|0

)|
|
|
|

⎞
⎟
⎟
⎟
⎟
⎠

eNf (0)N−n∕2−1

+ O
(
eNf (0)N−n∕2−2)

. (12.4)

Proof Since f is analytic, f (z) = f (0) − h(z) where h is an analytic function of z only

with h(0) = 0,
𝜕h
𝜕z
|
|
|0
= 0 and

𝜕
2h
𝜕z2

|
|
|0
= − 𝜕

2f
𝜕z2

|
|
|0

positive definite.

Via the Morse lemma (see, e.g., [9]), there exists a local diffeomorphism on z
around 0, written z̃ = 𝜓(z), such that𝜓(0) = 0 and h(z) = 1

2
∑n

k=1(𝜓k(z))2. Moreover,

we can choose 𝜓 such that
𝜕𝜓

𝜕z
|
|
|0
=
√

− 𝜕2f
𝜕z2

|
|
|0

is a positive definite symmetric matrix.

For 𝜂 ∈ (0, 1) small, there exists a c < f (0) such that, ∀z ∈ (−1, 1)n∕(−𝜂, 𝜂)n,

f (z) ≤ c. Since

Ig(N) =
∫z∈(−𝜂,𝜂)n

g(z)eNf (z) dz +
∫z∈(−1,1)n∕(−𝜂,𝜂)n

g(z)eNf (z) dz

= eNf (0)
(

∫z∈(−𝜂,𝜂)n
g(z)eN(f (z)−f (0)) dz + O

(
e−N(f (0)−c))

)

,

we keep only

I
𝜂
(N) =

∫z∈(−𝜂,𝜂)n
g(z)eN(f (z)−f (0)) dz.

Since 𝜂 is small, we can consider the change of variable z̃ = 𝜓(z) that yields:

I
𝜂
(N) =

∫z̃∈𝜓((−𝜂,𝜂)n)
g̃(z̃)e−

N
2
∑n

k=1 z̃2k dz̃,

where

g̃(z̃) =
g(𝜓−1(z̃))

√
|
|
|
|
det

(
𝜕2f
𝜕z2

|
|
|0

)|
|
|
|

(1 + d̃(z̃)) (12.5)

and d̃ is an analytic function with d̃(0) = 0. There exists 𝜂̃ > 0 such that (−𝜂̃, 𝜂̃)n ⊂

𝜓((−𝜂, 𝜂)n). Thus, as in the passage from Ig(N) to I
𝜂
(N), then up to exponentially

small terms versus N, we consider only the asymptotic expansion of

Ĩ
𝜂̃
=
∫z̃∈(−𝜂̃,𝜂̃)n

g̃(z̃)e−
N
2
∑n

k=1 z̃2k dz̃. (12.6)
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When g(0) ≠ 0, we have g̃(0) ≠ 0. Setting g̃(z̃) = g̃(0) +
∑n

k=1 z̃kh̃k(z̃) with h̃k
bounded analytic functions on (−𝜂̃, 𝜂̃)n, we obtain

Ĩ
𝜂̃
= g̃(0)

∫z̃∈(−𝜂̃,𝜂̃)n
e−

N
2
∑n

k=1 z̃2k dz̃ +
∫z̃∈(−𝜂̃,𝜂̃)n

( n∑

k=1
z̃kh̃k(z̃)

)

e−
N
2
∑n

k=1 z̃2k dz̃.

Up to exponentially small terms versus N, the first integral on the right-hand side

can be replaced by

∫z̃∈(−∞,+∞)n
e−

N
2
∑n

k=1 z̃2k dz̃ =
(2𝜋

N

)n∕2
.

A single integration by parts versus zk yields

∫z̃∈(−𝜂̃,𝜂̃)n
z̃kh̃k(z̃)e

− N
2
∑n

k=1 z̃2k dz̃

= 1
N ∫z̃∈(−𝜂̃,𝜂̃)n

𝜕h̃k

𝜕z̃k
(z̃)e−

N
2
∑n

k=1 z̃2k dz̃ + O(e−𝜂̃2N∕2∕N).

This implies (12.3), via Ĩ
𝜂̃
= g̃(0)

(
2𝜋
N

)n∕2
(1 + O(1∕N)) and g̃(0) = g(0)

√
|
|
|
|
|

det
(

𝜕2 f
𝜕z2

|
|
|
|0

)|
|
|
|
|

.

Assuming now that g(0) = 0 and
𝜕g
𝜕z
|
|
|0
= 0, and considering then the function g̃

in (12.5), we have g̃(0) = 0 and
𝜕g̃
𝜕z̃
|
|
|0
= 0. Moreover, writing

𝜅0 =

√
|
|
|
|
|

det
(
𝜕2f
𝜕z2

|
|
|
|0

)|
|
|
|
|

,

we have

𝜅0g̃(𝜓(z)) = g(z) (1 + e(z))

where e is an analytic function such that e(0) = 0. Thus, for any i, j ∈ {1,… , n},

𝜕
2g

𝜕zi𝜕zj

|
|
|
|
|0
= 𝜅0

n∑

k,k′=1

𝜕
2g̃

𝜕z̃k𝜕z̃k′

|
|
|
|
|0

𝜕𝜓k

𝜕zi

|
|
|
|0

𝜕𝜓k′

𝜕zi

|
|
|
|0
.

Since
𝜕𝜓

𝜕z
|
|
|0
=
√

− 𝜕2f
𝜕z2

|
|
|0

, we have



312 P. Six and P. Rouchon

𝜅0
𝜕
2g̃
𝜕z̃2

|
|
|
|
|0
=
⎛
⎜
⎜
⎝

√

−
𝜕2f
𝜕z2

|
|
|
|0

⎞
⎟
⎟
⎠

−1
𝜕
2g
𝜕z2

|
|
|
|
|0

⎛
⎜
⎜
⎝

√

−
𝜕2f
𝜕z2

|
|
|
|0

⎞
⎟
⎟
⎠

−1

,

and thus

Tr

(
𝜕
2g̃
𝜕z̃2

|
|
|
|
|0

)

=
Tr

(

− 𝜕
2g
𝜕z2

|
|
|0

(
𝜕
2f
𝜕z2

|
|
|0

)−1
)

√
|
|
|
|
det

(
𝜕2f
𝜕z2

|
|
|0

)|
|
|
|

(12.7)

Since g̃ and its first partial derivatives with respect to z̃k vanish, we have

g̃(z̃) =
n∑

k,k′=1
z̃kz̃k′ b̃k,k′ (z̃),

where the function b̃k,k′ is analytic. To evaluate the integral in (12.6), we have to

consider the dominant terms of the following integrals:

Bk,k′ =
∫z̃∈(−𝜂̃,𝜂̃)n

z̃kz̃k′ b̃k,k′ (z̃)e
− N

2
∑n

l=1 z̃2l dz̃.

For k ≠ k′, one integration by parts versus z̃k followed by another versus z̃k′ yield

Bk,k′ = O
(
N−n∕2−2)

. For k = k′, we can perform a single integration by parts versus

z̃k:

∫z̃∈(−𝜂̃,𝜂̃)n
z̃2k b̃k,k(z̃)e

− N
2
∑n

l=1 z̃2l dz̃

= 1
N ∫z̃∈(−𝜂̃,𝜂̃)n

(

b̃k,k(z̃) + z̃k
𝜕b̃k,k

𝜕z̃k
(z̃)

)

e−
N
2
∑n

l=1 z̃2l dz̃ + O(e−N𝜂̃
2∕2)

=
b̃k,k(0)

N

(2𝜋
N

)n∕2
+ O

(
N−n∕2−2)

.

The sum
∑

k,k′ Bk,k′ corresponds to the integral Ĩ
𝜂̃

and becomes

Ĩ
𝜂̃
(N) =

∑n
k=1 b̃k,k(0)

N

(2𝜋
N

)n∕2
+ O

(
N−n∕2−2)

.

Since Ĩ
𝜂̃

and e−Nf (0)Ig(N) coincide up to exponentially small terms, we obtain (12.4)

using (12.7) since
∑n

k=1 b̃k,k(0) =
1
2
Tr

(
𝜕
2g̃
𝜕z̃2

|
|
|0

)

.

We assume now that p ∈ ℝn+1
, n + 1 being the dimension of p (n non-negative

integers), and that D = (0, 1) × (−1, 1)n. Set p = (x, z) with x ∈ ℝ and z ∈ ℝn
. Then,

when g(x, z) is replaced by xmg(x, z), with m a non-negative integer, (12.1) becomes
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Ig(N) =
∫x∈(0,1) ∫z∈(−1,1)n

xmg(x, z) exp (Nf (x, z)) dx dz. (12.8)

Theorem 12.2 Consider (12.8), where f and g are analytic functions of (x, z) on
a compact neighbourhood of D , the closure of D . Assume that f admits a unique
maximum on D at (x, z) = (0, 0), with 𝜕

2f
𝜕z2

|
|
|(0,0)

negative definite and 𝜕f
𝜕x
|
|
|(0,0)

< 0.
If g(0, 0) ≠ 0, we have the following dominant term in the asymptotic expansion

of Ig(N) for large N:

Ig(N) =

⎛
⎜
⎜
⎜
⎜
⎝

g(0, 0) m! (2𝜋)n∕2 eNf (0,0)N−m−n∕2−1
√

|
|
|
|
det

(
𝜕2f
𝜕z2

|
|
|(0,0)

)|
|
|
|

(

− 𝜕f
𝜕x
|
|
|(0,0)

)m+1

⎞
⎟
⎟
⎟
⎟
⎠

+ O
(

eNf (0,0)N−m−n∕2−2
)

. (12.9)

If g(0, 0) = 0, with 𝜕g
𝜕x
|
|
|(0,0)

= 0 and 𝜕g
𝜕z
|
|
|(0,0)

= 0, we have

Ig(N) =

⎛
⎜
⎜
⎜
⎜
⎝

Tr
(

− 𝜕
2g
𝜕z2

|
|
|(0,0)

(
𝜕
2f
𝜕z2

|
|
|(0,0)

)−1
)

m! (2𝜋)n∕2

2
√

|
|
|
|
det

(
𝜕2f
𝜕z2

|
|
|(0,0)

)|
|
|
|

(

− 𝜕f
𝜕x
|
|
|(0,0)

)m+1

⎞
⎟
⎟
⎟
⎟
⎠

eNf (0,0))N−m−n∕2−2

+ O
(
eNf (0,0))N−m−n∕2−3)

.

(12.10)

For clarity, we consider here only the analytic situation, despite the fact that the above

asymptotics are also valid in the Cm+3
case.

Proof We adapt here the method sketched in Sect. 8.3.4 of [6] for oscillatory inte-

grals in a half-space. Since f is analytic, we have

f (x, z) = f (0, 0) − xf1(x, z) − h(z),

where f1 is analytic with f1(0, 0) = − 𝜕f
𝜕x
|
|
|(0,0)

> 0 and h is an analytic function of z

only, with h(0) = 0,
𝜕h
𝜕z
|
|
|0
= 0 and

𝜕
2h
𝜕z2

|
|
|0
= − 𝜕

2f
𝜕z2

|
|
|(0,0)

positive definite.

Set 𝜙(x, z) = xf1(x, z). Consider the following map (x, z) ↦ (x̃ = 𝜙(x, z), z). It is

a local diffeomorphism around (0, 0) that preserves the sign of x, i.e., x𝜙(x, z) ≥ 0.

Moreover, using the Morse lemma (see, e.g., [9]), there exists a local diffeomorphism

on z around 0, z̃ = 𝜓(z), such that 𝜓(0) = 0 and h(z) = 1
2
∑n

k=1(𝜓k(z))2 (see, e.g.,

[9]). Moreover, we can choose 𝜓 such that
𝜕𝜓

𝜕z
|
|
|0
=
√

− 𝜕2f
𝜕z2

|
|
|0

is a positive definite

symmetric matrix.
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To summarize, there is a local analytic diffeomorphism𝛯 ∶ V ∋ (x, z) ↦ (x̃, z̃) ∈
Ṽ from an open connected neighbourhood V of 0 to another open connected neigh-

bourhood of 0 such that

∙ for all (x, z) ∈ V , we have 𝜙(x, z) > 0 (resp. < 0, = 0) when x > 0 (resp. < 0, = 0).

∙ ∀(x, z) ∈ V , f (x, z) = −𝜙(x, z) − 1
2
∑n

k=1(𝜓k(z))2.

∙ det

(
𝜕𝜙

𝜕x
𝜕𝜙

𝜕z
𝜕𝜓

𝜕x
𝜕𝜓

𝜕z

)|
|
|
|
|
|(x,z)

=
|
|
|
|

𝜕f
𝜕x
|
|
|(0,0)

|
|
|
|

√
|
|
|
|
det

(
𝜕2f
𝜕z2

|
|
|(0,0)

)|
|
|
|
(1 + d(x, z)) where d is analytic

on V with d(0, 0) = 0.

Since V is a neighbourhood of 0, there exists a 𝜂 ∈ (0, 1) such that C
𝜂
= (0, 𝜂) ×

(−𝜂, 𝜂)n ⊂ V . Moreover, there exists c < f (0, 0) such that, ∀(x, z) ∈ D∕C
𝜂
, f (x, z) ≤

c. Since

Ig(N) =
∫(x,z)∈C𝜂

xmg(x, z)eNf (x,z) dx dz +
∫(x,z)∈D∕C𝜂

xmg(x, z)eNf (x,z) dx dz

= eNf (0,0)

(

∫(x,z)∈C𝜂

xmg(x, z)eN(f (x,z)−f (0,0)) dx dz + e−N(f (0,0)−c)
∫(x,z)∈D∕C𝜂

xmg(x, z)eN(f (x,z)−c) dx dz

)

= eNf (0,0)

(

∫(x,z)∈C𝜂

xmg(x, z)eN(f (x,z)−f (0,0)) dx dz + O
(
e−N(f (0,0)−c))

)

we have to consider only the asymptotic expansion of

I
𝜂
(N) =

∫(x,z)∈C
𝜂

xmg(x, z)eN(f (x,z)−f (0,0)) dx dz.

Since C
𝜂
⊂ V , we can consider the change of variable (x̃, z̃) = 𝛯(x, z) that yields

I
𝜂
(N) =

∫(x̃,z̃)∈𝛯(C
𝜂
)
x̃mg̃(x̃, z̃)e−N

(

x̃+ 1
2
∑n

k=1 z̃2k
)

dx̃ dz̃,

where

g̃(x̃, z̃) =
g(𝛯−1(x̃, z̃))

(
f1(𝛯−1(x̃, z̃))

)m |
|
|
|

𝜕f
𝜕x
|
|
|(0,0)

|
|
|
|

√
|
|
|
|
det

(
𝜕2f
𝜕z2

|
|
|(0,0)

)|
|
|
|

(1 + d̃(x̃, z̃))

and d̃ is an analytic function with d̃(0, 0) = 0. Since, for all (x̃, z̃) ∈ 𝛯(C
𝜂
) we have

x̃ ≥ 0, there exists an 𝜂̃ > 0 such that C̃
𝜂̃
= (0, 𝜂̃) × (−𝜂̃, 𝜂̃)n ⊂ 𝛯(C

𝜂
). Thus, as in the

passage from Ig(N) to I
𝜂
(N), up to exponentially small terms versus N we consider

only the asymptotic expansion of

Ĩ
𝜂̃
=
∫(x̃,z̃)∈C̃

𝜂̃

x̃mg̃(x̃, z̃)e−N
(

x̃+ 1
2
∑n

k=1 z̃2k
)

dx̃ dz̃. (12.11)



12 Asymptotic Expansions of Laplace Integrals . . . 315

When g(0, 0) ≠ 0, we have g̃(0, 0) ≠ 0. Set g̃(x̃, z̃) = g̃(0, 0) + x̃g̃1(x̃, z̃) +
∑n

k=1 z̃k

h̃k(x̃, z̃) with g̃1 and h̃k bounded analytic functions on C̃
𝜂̃
. We obtain

Ĩ
𝜂̃
= g̃(0, 0)

∫(x̃,z̃)∈C̃
𝜂̃

x̃me−N
(

x̃+ 1
2
∑n

k=1 z̃2k
)

dx̃ dz̃

+
∫(x̃,z̃)∈C̃

𝜂̃

x̃m+1g̃1(x̃, z̃)e
−N

(

x̃+ 1
2
∑n

k=1 z̃2k
)

dx̃ dz̃

+
∫(x̃,z̃)∈C̃

𝜂̃

x̃m

( n∑

k=1
z̃kh̃k(x̃, z̃)

)

e−N
(

x̃+ 1
2
∑n

k=1 z̃2k
)

dx̃ dz̃.

Up to exponentially small terms versus N, the first integral on the right-hand side

can be replaced by

∫(x̃,z̃)∈(0,+∞)×(−∞,+∞)n
x̃me−N

(

x̃+ 1
2
∑n

k=1 z̃2k
)

dx̃ dz̃ = m!
Nm+1

(2𝜋
N

)n∕2
.

For the second integral, m + 1 integrations by parts versus x̃ are necessary

∫(x̃,z̃)∈C̃
𝜂̃

x̃m+1g̃1(x̃, z̃)e
−N

(

x̃+ 1
2
∑n

k=1 z̃2k
)

dx̃ dz̃

=
∫z̃∈(−𝜂̃,𝜂̃)n

(

∫

𝜂̃

0
x̃m+1g̃1(x̃, z̃)e−Nx̃ dx̃

)

e−
N
2
∑n

k=1 z̃2k dz̃,

where, m + 1 integrations by parts give

∫

𝜂̃

0
x̃m+1g̃1(x̃, z̃)e−Nx̃ dx̃ = 1

Nm+1 ∫

𝜂̃

0
g̃m+2(x̃, z̃)e−Nx̃ dx̃ + O(e−𝜂̃N∕N)

with g̃m+2 =
𝜕

m+1

𝜕x̃m+1

(
x̃m+1g̃1(x̃, z̃)

)
. We obtain

∫(x̃,z̃)∈C̃
𝜂̃

x̃m+1g̃1(x̃, z̃)e
−N

(

x̃+ 1
2
∑n

k=1 z̃2k
)

dx̃ dz̃

= 1
Nm+1 ∫(x̃,z̃)∈C̃

𝜂̃

g̃m+2(x̃, z̃)e
−N

(

x̃+ 1
2
∑n

k=1 z̃2k
)

dx̃ dz̃ + O(e−𝜂̃N∕N)

= O
( 1

Nm+n∕2+2

)

,

since ∫
𝜂̃

0 g̃m+2(x̃, z̃)e−Nx̃ dx̃ is of order 1∕N.

Similarly, m integrations by parts versus x̃ give
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∫(x̃,z̃)∈C̃
𝜂̃

x̃mz̃kh̃k(x̃, z̃)e
−N

(

x̃+ 1
2
∑n

l=1 z̃2l
)

dx̃ dz̃

= 1
Nm ∫(x̃,z̃)∈C̃

𝜂̃

z̃kq̃k,m(x̃, z̃)e
−N

(

x̃+ 1
2
∑n

l=1 z̃2l
)

dx̃ dz̃ + O(e−𝜂̃N∕N),

where q̃k,m(x̃, z̃) =
𝜕

m

𝜕x̃m

(
x̃mh̃k(x̃, z̃)

)
. A single integration by parts versus z̃k yields

∫(x̃,z̃)∈C̃
𝜂̃

z̃kq̃k,m(x̃, z̃)e
−N

(

x̃+ 1
2
∑n

l=1 z̃2l
)

dx̃ dz̃

= 1
N ∫(x̃,z̃)∈C̃

𝜂̃

𝜕q̃k,m

𝜕z̃k
(x̃, z̃)e−N

(

x̃+ 1
2
∑n

l=1 z̃2l
)

dx̃ dz̃ + O(e−𝜂̃2N∕2∕N).

This implies that

∫(x̃,z̃)∈C̃𝜂̃

x̃mz̃kh̃k(x̃, z̃)e
−N

(

x̃+ 1
2
∑n

kl=1 z̃2l
)

dx̃ dz̃

= 1
Nm+1 ∫(x̃,z̃)∈C̃𝜂̃

𝜕r̃k,m

𝜕z̃k
(x̃, z̃)e−N

(

x̃+ 1
2
∑n

l=1 z̃2l
)

dx̃ dz̃ + O(e−𝜂̃2N∕2∕N)

= O
(

1
Nm+n∕2+2

)

.

Thus, we obtain (12.9), since Ĩ
𝜂̃
= g̃(0,0)m!

Nm+1

(
2𝜋
N

)n∕2
(1 + O(1∕N)) and g̃(0, 0) =

g(0,0)
(
|
|
|
|

𝜕f
𝜕x
|
|
|(0,0)

|
|
|
|

)m+1
√

|
|
|
|
|

det
(

𝜕2 f
𝜕z2

|
|
|
|(0,0)

)|
|
|
|
|

.

Assuming now that g(0, 0) = 0,
𝜕g
𝜕x
|
|
|(0,0)

= 0 and
𝜕g
𝜕z
|
|
|(0,0)

= 0, and considering the

function g̃ in (12.11), we have g̃(0, 0) = 0,
𝜕g̃
𝜕x̃
|
|
|(0,0)

= 0 and
𝜕g̃
𝜕z̃
|
|
|(0,0)

= 0. Moreover,

denoting

𝜆0 =

√
|
|
|
|
|

det
(
𝜕2f
𝜕z2

|
|
|
|(0,0)

)|
|
|
|
|

(

−
𝜕f
𝜕x

|
|
|
|(0,0)

)m+1

,

we have

𝜆0g̃(𝜙(x, z), 𝜓(z)) = g(x, z) (1 + e(x, z)),

where e is an analytic function such that e(0, 0) = 0. As in (12.7), we obtain

Tr

(
𝜕
2g̃
𝜕z̃2

|
|
|
|
|(0,0)

)

=
Tr

(

− 𝜕
2g
𝜕z2

|
|
|(0,0)

(
𝜕
2f
𝜕z2

|
|
|(0,0)

)−1
)

√
|
|
|
|
det

(
𝜕2f
𝜕z2

|
|
|(0,0)

)|
|
|
|

(

− 𝜕f
𝜕x
|
|
|(0,0)

)m+1
. (12.12)
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Since g̃ and its first partial derivatives versus x̃ and z̃k vanish, we have

g̃(x̃, z̃) = x̃2ã(x̃, z̃) +
n∑

k,k′=1
z̃kz̃k′ b̃k,k′ (x̃, z̃) +

n∑

k=1
x̃z̃kc̃k(x̃, z̃),

where the functions ã, b̃k,k′ and c̃k are analytic. To evaluate the integral in (12.11),

we have to consider the dominant terms of three kinds of integrals:

A =
∫(x̃,z̃)∈C̃

𝜂̃

x̃m+2ã(x̃, z̃)e−N
(

x̃+ 1
2
∑n

l=1 z̃2l
)

dx̃ dz̃,

Bk,k′ =
∫(x̃,z̃)∈C̃

𝜂̃

x̃mz̃kz̃k′ b̃k,k′ (x̃, z̃)e
−N

(

x̃+ 1
2
∑n

l=1 z̃2l
)

dx̃ dz̃,

Ck =
∫(x̃,z̃)∈C̃

𝜂̃

x̃m+1z̃kc̃k(x̃, z̃)e
−N

(

x̃+ 1
2
∑n

l=1 z̃2l
)

dx̃ dz̃.

As done previously, m + 2 integrations by parts on x̃ yield A = O
(
N−m−n∕2−3)

. Also

as previously, m + 1 integrations by parts versus x̃ and a single integration by parts

versus z̃k provide Ck = O
(
N−m−n∕2−3)

. For k ≠ k′, m integrations by parts versus x̃,

one integration by parts versus z̃k and another versus z̃k′ , yield a similar expression

to Bk,k′ = O
(
N−m−n∕2−3)

. For k = k′, we start with m integrations by parts versus x̃

Bk,k =
∫(x̃,z̃)∈C̃

𝜂̃

x̃mz̃2k b̃k,k(x̃, z̃)e
−N

(

x̃+ 1
2
∑n

l=1 z̃2l
)

dx̃ dz̃

= 1
Nm ∫(x̃,z̃)∈C̃

𝜂̃

z̃2k q̃k,m(x̃, z̃)e
−N

(

x̃+ 1
2
∑n

k=1 z̃2k
)

dx̃ dz̃ + O(e−𝜂̃N∕N),

where q̃k,m(x̃, z̃) =
𝜕

m

𝜕x̃m

(
x̃mb̃k,k(x̃, z̃)

)
. We notice that q̃k,m(0) = m!b̃k,k(0). A single

integration by parts versus z̃k yields

∫(x̃,z̃)∈C̃
𝜂̃

z̃2k q̃k,m(x̃, z̃)e
−N

(

x̃+ 1
2
∑n

l=1 z̃2l
)

dx̃ dz̃

= 1
N ∫(x̃,z̃)∈C̃

𝜂̃

(

q̃k,m(x̃, z̃) + z̃k
𝜕q̃k,m

𝜕z̃k
(x̃, z̃)

)

e−N
(

x̃+ 1
2
∑n

l=1 z̃2l
)

dx̃ dz̃ + O(e−N𝜂̃
2∕2)

= q̃k,m(0)
1

N2

(2𝜋
N

)n∕2
+ O

(
N−n∕2−3)

.

With q̃k,m(0) = m!b̃k,k(0), the sum A +
∑

k Ck +
∑

k,k′ Bk,k′ corresponding to the inte-

gral in (12.11) becomes

Ĩ
𝜂̃
(N) =

∑n
k=1 m!b̃k,k(0)

Nm+2

(2𝜋
N

)n∕2
+ O

(
N−m−n∕2−3)

.
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Since Ĩ
𝜂̃

and e−Nf (0)Ig(N) coincide up to exponentially small terms, we obtain (12.10)

from (12.12), since
∑n

k=1 b̃k,k(0) =
1
2
Tr

(
𝜕
2g̃
𝜕z̃2

|
|
|0

)

.

The asymptotic expansions of Theorems 12.1 and 12.2 directly yield the following

approximations of the Bayesian mean and variance.

Corollary 12.1 Consider the analytic function f (z) of Theorem 12.1. Then we have
the following asymptotic for any analytic function g(z):

Mg(N) ≜
∫z∈(−1,1)n g(z) exp (Nf (z)) dz

∫z∈(−1,1)n exp (Nf (z)) dz
= g(0) + O(N−1). (12.13)

We have also

Vg(N) ≜
∫z∈(−1,1)n

(

g(z) −Mg(N)
)2

exp (Nf (z)) dz

∫z∈(−1,1)n exp (Nf (z)) dz

=
Tr

(

− 𝜕
2g
𝜕z2

|
|
|0

(
𝜕
2f
𝜕z2

|
|
|0

)−1
)

2N
+ O

(
N−2)

.

(12.14)

Consider the analytic function f (x, z) of Theorem 12.2. Then, we have the follow-
ing asymptotic for any analytic function g(x, z):

Mg(N) ≜
∫x∈(0,1) ∫z∈(−1,1)n xmg(x, z) exp (Nf (x, z)) dx dz

∫x∈(0,1) ∫z∈(−1,1)n xm exp (Nf (x, z)) dx dz
= g(0, 0) + O(N−1).

(12.15)

We have also

Vg(N) ≜
∫x∈(0,1) ∫z∈(−1,1)n xm

(

g(x, z) −Mg(N)
)2

exp (Nf (x, z)) dx dz

∫x∈(0,1) ∫z∈(−1,1)n xm exp (Nf (x, z)) dx dz

=
Tr

(

− 𝜕
2g
𝜕z2

|
|
|(0,0)

(
𝜕
2 f
𝜕z2

|
|
|(0,0)

)−1
)

2N
+ O

(
N−2)

. (12.16)

In the proof of Theorem 12.1, we have shown during the passage from z to z̃
coordinates the following lemma.

Lemma 12.1 Take two C2 real-value functions f and g of z ∈ ℝn. Assume that 0 is
a regular critical point of f and a critical point of g. Take any C2 diffeomorphism 𝜙

defined locally around 0: z̃ = 𝜙(z). Then
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Tr
⎛
⎜
⎜
⎝

−
𝜕
2g
𝜕z2

|
|
|
|
|0

(
𝜕
2f
𝜕z2

|
|
|
|
|0

)−1⎞
⎟
⎟
⎠

= Tr
⎛
⎜
⎜
⎝

−
𝜕
2g̃
𝜕z̃2

|
|
|
|
|𝜙(0)

(
𝜕
2 f̃
𝜕z̃2

|
|
|
|
|𝜙(0)

)−1⎞
⎟
⎟
⎠

where f̃ (𝜙(z)) = f (z) and g̃(𝜙(z)) = g(z).

This lemma simply states that the above trace formula is coordinate-free—that is,

independent of the local coordinates chosen to compute the Hessian of f and g at

their common critical point.

12.3 Application to Quantum State Tomography

As explained in [4], the estimated parameter p corresponds to a density operator 𝜌

(quantum state), which is a square matrix with complex entries and belonging to the

convex compact set D formed by Hermitian d × d non-negative matrices of trace

one. Then, the log-likelihood function admits the following structure:

f (𝜌) =
∑

𝜇∈M
log

(
Tr

(
𝜌Y

𝜇

))
, (12.17)

where the set M is finite and each measurement data Y
𝜇

belongs also to D . For any

Hermitian d × d matrix A (a quantum observable), we are interested in providing an

approximation of the Bayesian estimate of Tr (𝜌A),

IA(N) =
∫D Tr (𝜌A) eNf (𝜌) ℙ0(𝜌) d𝜌

∫D eNf (𝜌) ℙ0(𝜌) d𝜌
, (12.18)

and of the Bayesian variance

VA(N) =
∫D

(

Tr (𝜌A) − IA(N)
)2

eNf (𝜌) ℙ0(𝜌) d𝜌

∫D eNf (𝜌) ℙ0(𝜌) d𝜌
. (12.19)

Here, d𝜌 stands for the standard Euclidian volume element on D , derived from the

Frobenius product of n × n Hermitian matrices, and ℙ0 > 0 is a probability density

on 𝜌 prior to the measurement data (Y
𝜇
). Since the number of real parameters to

describe 𝜌 is large in general, it is difficult to compute these integrals even numeri-

cally using the Monte Carlo method.

The following lemma provides a unitary invariance characterization of any 𝜌̄ argu-

ment of the maximum of f on D .

Lemma 12.2 Assume that the d × d Hermitian matrix 𝜌 is an argument of the max-
imum of f ∶ D ∋ 𝜌 ↦ f (𝜌) ∈ [−∞, 0] defined in (12.17) over D (the set of density
operators). Then 𝜌 necessarily satisfies the following conditions:
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∙ Tr
(
𝜌Y

𝜇

)
> 0 for each 𝜇 ∈ M ;

∙
[
𝜌 , ∇f |

𝜌

]
= 𝜌 ⋅ ∇f |

𝜌
− ∇f |

𝜌
⋅ 𝜌 = 0, where ∇f |

𝜌
=
∑

𝜇∈M
Y
𝜇

Tr(𝜌Y
𝜇) is the gradi-

ent of f at 𝜌 for the Frobenius scalar product;
∙ there exists 𝜆̄ > 0 such that 𝜆P = P ∇f |

𝜌
and ∇f |

𝜌
≤ 𝜆I, where P is the orthogonal

projector on the range of 𝜌 and I is the identity operator.

These conditions are also sufficient and characterize the unique maximum when,
additionally, the vector space spanned by the Y

𝜇
’s coincides with the set of Hermitian

matrices.

Proof Since f is a concave function of 𝜌, we can use the standard optimality criterion

for a convex optimization problem (see, e.g., [10, Sect. 4.2.3]): 𝜌 maximizes f over

the convex compact set D if, and only if, 𝜌 ∈ D , Tr
(
(𝜌 − 𝜌) ∇f |

𝜌

)
≤ 0.

Assume that f (𝜌) is maximum. Since f (I) > −∞, for each 𝜇 we have Tr
(
𝜌Y

𝜇

)
>

0. Taking 𝜌 = e−iH
𝜌eiH

, where H is an arbitrary Hermitian operator, we have

Tr
(
e−iH

𝜌eiH ∇f |
𝜌

)
≤ Tr

(
𝜌 ∇f |

𝜌

)
.

For H close to zero, we have via the Baker-Campbell-Hausdorff formula, e−iH
𝜌eiH =

𝜌 − i[H, 𝜌] + O(Tr
(
H2)). The above inequality implies that for all H sufficiently

small, Tr
(
[H, 𝜌] ∇f |

𝜌

)
= Tr

(
H
[
𝜌, ∇f |

𝜌

])
= 0 and thus 𝜌 and ∇f |

𝜌
commute.

Consider the spectral decomposition 𝜌 = U𝛥U†
where U is unitary and 𝛥 diag-

onal with entries 0 ≤ 𝛥1 ≤ 𝛥2 ≤ ⋯ ≤ 𝛥d ≤ 1. Since 𝜌 and ∇f |
𝜌

commute, we also

have ∇f |
𝜌
= U𝛬U†

with 𝛬 diagonal with entries (𝛬k). Since ∇f is non-negative,

these entries are also non-negative. Taking 𝜌 = U𝛥U†
, where 𝛥 is any diagonal

matrix with non-negative entries and of trace one, we have

Tr
(
(𝜌 − 𝜌) ∇f |

𝜌

)
= Tr

(

(𝛥 − 𝛥)𝛬
)

≤ 0.

This means that, for any (𝛥1,… , 𝛥d) ∈ [0, 1]d such that
∑d

k=1 𝛥k = 1 we have:

d∑

k=1
(𝛥k − 𝛥k)𝛬k ≤ 0.

Take 𝜖 > 0, (k1, k2) ∈ {1,… , d}2 such that 𝛥k1 > 0 and k2 ≠ k1. For k ∈ {1,… , d −
1}∕{k1, k2} set 𝛥k = 𝛥k, and take 𝛥k1 = 𝛥k1 − 𝜖 with 𝛥k2 = 𝛥k2 + 𝜖. By construction

Tr (𝛥) = 1 and, for 𝜖 > 0 sufficiently small, 𝛥k ≥ 0 for all k ∈ {1,… , d}. The previ-

ous inequality implies that

∀(k1, k2) ∈ {1,… , d}2 such that 𝛥k1 > 0 and k1 ≠ k2, 𝛬k2 ≤ 𝛬k1 .
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Thus for all k1, k2 such that 𝛥k1 > 0 and 𝛥k2 > 0, 𝛬k1 = 𝛬k2 = 𝜆 ≥ 0. For k1, k2 such

that 𝛥k1 > 0 and 𝛥k2 = 0, we also have 𝛬k2 ≤ 𝛬k1 = 𝜆. Thus we obtain 𝛬 ≤ 𝜆I. With

𝛩, the diagonal matrix of entries𝛩k = 0 (resp.= 1) when𝛥k = 0 (resp.> 0), we have

P = U𝛩U†
, and we obtain 𝜆P = P ∇f |

𝜌
. Since ∇f |

𝜌
is non-negative and cannot be

zero, we have 𝜆 > 0.

Take 𝜌 satisfying the conditions of Lemma 12.2. Since they are unitary invariant,

we can assume that 𝜌 and ∇f |
𝜌

are diagonal operators 𝛥 and 𝛬. Since we are in the

convex situation, it is enough to prove that 𝜌 is a local maximum. Any local variation

of 𝜌 around 𝜌 and remaining inside D is parameterized via the following mapping:

(H,D) ↦ e−iH(𝛥 + D)eiH = 𝜌H,D,

where H is any Hermitian matrix and D is any diagonal matrix of zero trace such

that 𝛥 + D ≥ 0. We have the following expansion for H and D around zero:

𝜌H,D = 𝛥 + D − i[H, 𝛥] − i[H,D] − 1
2
[H, [H, 𝛥]] + O(Tr

(
H3 + D3)).

This yields the following second-order expansion of (H,D) ↦ f (𝜌H,D) around zero:

f (𝜌H,D) = f (𝜌) +Tr

(

𝛬

(

D − i[H, 𝛥] − i[H,D] − 1
2
[H, [H, 𝛥]]

))

−
∑

𝜇∈M

Tr
2 ((𝜌H,D − 𝜌)Y

𝜇

)

2Tr
2 (

𝜌Y
𝜇

) + O(‖𝜌H,D − 𝜌‖3).

By assumption, 𝛬, 𝛥 and D are diagonal. Thus Tr

(

𝛬

(

−i[H, 𝛥] − i[H,D]
))

= 0.

Some elementary arguments exploiting 𝜆𝛩 ≤ 𝛥 ≤ 𝜆I show that Tr

(

𝛬D
)

≤ 0 since

D is such that 𝛥 + D is non-negative and of trace one. We also have

−Tr

(

𝛬

(

[H, [H, 𝛥]]
))

= Tr

(

[H, 𝛬] [H, 𝛥]
)

= −2
∑

k1∈P,k2∈Q
𝛥k1

(
𝜆 − 𝛬k2

)
|Hk1k2 |

2
≤ 0

where P = {k | 𝛥k > 0} and Q = {k | 𝛥k = 0}.

Consequently,

f (𝜌H,D) ≤ f (𝜌) −
∑

𝜇∈M

Tr
2 ((𝜌H,D − 𝜌)Y

𝜇

)

2Tr
2 (

𝜌Y
𝜇

) + O(‖𝜌H,D − 𝜌‖3).

Since the vector space spanned by the Y
𝜇

coincide with the set of Hermitian matri-

ces, the quadratic form X ↦
∑

𝜇∈M
Tr

2(XY
𝜇)

2Tr
2(𝜌Y

𝜇) is non-degenerate (X is any Hermitian

matrix) and f is strongly concave. Thus we have f (𝜌) < f (𝜌) for 𝜌 ≠ 𝜌 close to 𝜌.
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Consequently, 𝜌 is a strict local maximum and this maximum is unique and global

since f is concave.

Theorem 12.3 Consider the log-likelihood function f defined in (12.17). Assume
that the Y

𝜇
’s span the set of Hermitian matrices. Denote by 𝜌 the unique maximum of

f on D and define a projector P such that, in addition to the necessary and sufficient
conditions of Lemma 12.2, we have ker

(

𝜆I − ∇f |
𝜌

)

= ker(I − P). Then, for any
Hermitian operator A, its Bayesian mean defined in (12.18) admits the following
asymptotic expansion

IA(N) = Tr
(
A𝜌

)
+ O(1∕N)

and its Bayesian variance defined in (12.19) satisfies

VA(N) = Tr
(

A∥

(

F
)−1

(A∥)
)

∕N + O(1∕N2)

where
∙ for any Hermitian operator B, B∥ stands for is orthogonal projection on the tan-

gent space at 𝜌 to the submanifold of Hermitian matrices with a rank equal to the
rank of 𝜌 and of unit trace, written as

B∥ = B −
Tr

(

BP
)

Tr
(

P
) P − (I − P)B(I − P); (12.20)

when 𝜌 is full rank, B∥ = B − Tr (B) I∕d since P = I;
∙ the linear super-operator F corresponds to the Hessian at 𝜌 of the restriction of

f to the manifold of Hermitian matrices of rank equal to the rank of 𝜌 and with
trace one. For any Hermitian operator X, it is written as

F(X) =
∑

𝜇

Tr
(
XY

𝜇∥
)

Tr2
(
𝜌Y

𝜇

)Y
𝜇∥ +

(

𝜆I − ∇f |
𝜌

)

X𝜌+ + 𝜌
+X

(

𝜆I − ∇f |
𝜌

)

, (12.21)

with 𝜌+ the Moore-Penrose pseudoinverse of 𝜌; the restriction of X ↦ Tr
(

XF(X)
)

to the tangent space at 𝜌 is positive definite; thus the restriction of F to this tangent
space is invertible and can be seen as the analogue of the Fisher information; its

inverse at A∥ is denoted here above by
(

F
)−1

(A∥).

Proof The Hessian of f at 𝜌 ∈ D where f (𝜌) > −∞ is

∇2f ||
|𝜌
(X,Z) = −

∑

𝜇

Tr
(
XY

𝜇

)
Tr

(
ZY

𝜇

)

Tr
2 (

𝜌Y
𝜇

) ,
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where X and Z are any Hermitian matrices. Since it is positive definite, f is strongly

concave. Consequently the argument of the maximum of f on D is unique, denoted

𝜌, and satisfies the condition of Lemma 12.2. Take a small neighbourhood V of 𝜌 in

D . Then there exists a 𝜖 > 0 such that, for 𝜌 ∈ D∕V , f (𝜌) ≤ f (𝜌) − 𝜖. To investigate

∫V eN(f (𝜌)−f (𝜌)) ℙ0(𝜌) d𝜌, we consider the following local coordinates based on the

spectral decomposition of 𝜌 = U𝛥U†
with U unitary and 𝛥 diagonal with entries 0 =

𝛿1 ≤ 𝛿2 ≤ ⋯ ≤ ⋯ , 𝛿d ≤ 1 with
∑d

k=1 𝛿k = 1. Denote by r the rank of 𝜌 and assume

that r < d (the case r = d is much simpler since it relies on Theorem 12.1, and is left

to the reader). We have 𝛿k = 0 for k between 1 and d − r, and 𝛿k > 0 for k between

d − r + 1 and d. Since the volume element d𝜌 used in (12.18) and (12.19) is unitary

invariant [11, page 42], we can assume without lost of generality that 𝜌 is diagonal

(change ℙ0(∙) to ℙ0(U ∙ U†) and replace each Y
𝜇

by U†Y
𝜇
U in the definition of f in

(12.17)). Consider the following map

(𝜉, 𝜁 , 𝜔) ↦ 𝛶 = exp
([

0 𝜔

−𝜔† 0

])[
𝜉 0

0 𝛥r + 𝜁 − Tr(𝜉)
r

Ir

]

exp
([

0 −𝜔
𝜔
† 0

])

where 𝜉 is a (d − r) × (d − r) Hermitian matrix, 𝜔 is a (d − r) × r matrix with com-

plex entries, 𝜁 is a r × r Hermitian matrix of trace 0, Ir is the identity matrix of

size r and 𝛥 =
[
0 0
0 𝛥r

]

. This map is a local diffeomorphism from a neighbourhood of

(0, 0, 0) to a neighbourhood of 𝜌 in the set of Hermitian matrices of trace one since

its tangent map at zero, given by

(𝛿𝜉, 𝛿𝜁 , 𝛿𝜔) ↦

[
𝛿𝜉 𝛿𝜔 𝛥r

𝛥r 𝛿𝜔
†
𝛿𝜁 − Tr(𝛿𝜉)

r
Ir

]

= 𝛿𝜌 (12.22)

is bijective (local inversion theorem). Thus we have

∫V

eN(f (𝜌)−f (𝜌)) ℙ0(𝜌) d𝜌

=
∫
𝛶 −1(V )

eN(f (𝜉,𝜁 ,𝜔)−f (0,0,0))ℙ0(𝜉, 𝜁 , 𝜔)J(𝜉, 𝜁 , 𝜔)d𝜉 d𝜁 d𝜔

where f (𝜉, 𝜁 , 𝜔) and ℙ0(𝜉, 𝜁 , 𝜔) stand for f (𝛶 (𝜉, 𝜁 , 𝜔)) and ℙ0(𝛶 (𝜉, 𝜁 , 𝜔)), and where

J(𝜉, 𝜁 , 𝜔) is the Jacobian of this change of coordinates.

Since the constraint 𝛶 (𝜉, 𝜁 , 𝜔) ≥ 0 may be written 𝜉 ≥ 0, we consider another

change of variables to parameterize 𝜉 ≥ 0 around 0: 𝛯 ∶ (x, 𝜎, 𝜁 , 𝜔) ↦ (x𝜎 = 𝜉,

𝜁 , 𝜔), where x ≥ 0 and 𝜎 is a (d − r) × (d − r) density matrix. Then,
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∫V

eN(f (𝜌)−f (𝜌)) ℙ0(𝜌) d𝜌

=
∫
𝛯−1

(
𝛶 −1(V )

) eN(f (x𝜎,𝜁,𝜔)−f (0,0,0))ℙ0(x𝜎, 𝜁 , 𝜔)J(x𝜎, 𝜁 , 𝜔)xm dx d𝜎 d𝜁 d𝜔

with m = (d − r + 1)(d − r − 1). This change of variables is singular, since for x = 0
it is not invertible; however, since the set of coordinates verifying x = 0 is of zero

measure, this has no impact on the integral. Take 𝜂 > 0 small enough and adjust

the neighbourhood V of 𝜌 such that 𝛯
−1(

𝛶
−1(V )

)
coincides with the set where

x ∈ (0, 𝜂), 𝜎 ∈ Dd−r and all the real and imaginary parts of the 𝜁 and𝜔 entries belong

to (−𝜂, 𝜂). Following the notations of Theorem 12.1, set z = (𝜁, 𝜔). We have z ∈
(−𝜂, 𝜂)n with n = 2r(d − r) + (r + 1)(r − 1) and

∫V

eN(f (𝜌)−f (𝜌)) ℙ0(𝜌) d𝜌

=
∫
𝜎∈Dd−r

(

∫(x,z)∈(0,𝜂)×(−𝜂,𝜂)n
eNf (x𝜎,z)xmJ(x𝜎, z)ℙ0(x𝜎, z) dx dz

)

d𝜎.

For each 𝜎 ∈ Dd−r, let us use (12.9), with J(x𝜎, z)ℙ0(x𝜎, z) standing for g(x, z). We

have g(0, 0) = J(0, 0)ℙ0(0, 0) > 0. By construction, we have

f (x𝜎, z) = xf1(x, 𝜎, z) + f (0, z),

where f1(x, 𝜎, z) is analytic versus (x, z) and f1(0, 𝜎, 0) =
(

Tr
(
𝛬d−r𝜎

)
− 𝜆

)

. This is

based on (12.22) and on the diagonal structure ∇f |
𝜌
=
[
𝛬d−r 0
0 𝜆Ir

]

. By assumption,

𝛬d−r < 𝜆Id−r. Thus, there exists 𝜖
′
> 0 such that, for all 𝜎, f1(0, 𝜎, 0) < −𝜖′ and

𝜕f
𝜕x

<

−𝜖′ at (x, z) = 0, for any 𝜎 ∈ Dd−r. Let us consider now the expansion of z ↦ f (0, z)
up to order 2 versus z. Using 𝛿z = (𝛿𝜁, 𝛿𝜔) and (12.22), completed via second-order

terms derived from the Baker-Campbell-Hausdorff formula, we find

𝛿𝜌 =

[
𝛿𝜔 𝛥r 𝛿𝜔

†
𝛿𝜔 (𝛥r + 𝛿𝜁 )

(𝛿𝜁 + 𝛥r) 𝛿𝜔†
𝛿𝜁 − 𝛿𝜔

†
𝛿𝜔𝛥r+𝛥r𝛿𝜔

†
𝛿𝜔

2

]

+ 0(‖𝛿z‖3).

Consequently,

f (0, 𝛿z) =f (𝜌) + Tr
(
∇f |

𝜌
𝛿𝜌

)
+ 1

2
∇2f ||

|𝜌
(𝛿𝜌, 𝛿𝜌) + O(‖𝛿𝜌‖3)

= f (𝜌) − Tr

(

(𝜆Id−r − 𝛬d−r)𝛿𝜔 𝛥r 𝛿𝜔
†
)

− 1
2

∑

𝜇

Tr
2 (

𝛿𝜌Y
𝜇

)

Tr
2 (

𝜌Y
𝜇

) . (12.23)
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This shows that
𝜕f
𝜕z

vanishes at (0, z) and that
𝜕
2f
𝜕z2

is negative definite at (0, z) (𝜆Id−r >

𝛬d−r) and independent of 𝜎. All the assumptions necessary for (12.9) are fulfilled

and we can write:

∫D

eNf (𝜌) ℙ0(𝜌) d𝜌 =

𝜅0 ef (𝜌)NN−m−n∕2−1
∫
𝜎∈Dd−r

d𝜎
(

𝜆−Tr(𝛬d−r𝜎)
)m+1 + O

(

ef (𝜌)NN−m−n∕2−2
)

where 𝜅0 =
ℙ0(𝜌)J(0,0)m! (2𝜋)n∕2
√

|
|
|
|
|

det
(

𝜕2 f
𝜕z2

|
|
|
|(0,0)

)|
|
|
|
|

.

Similarly we have

∫D

Tr (𝜌A) eNf (𝜌) ℙ0(𝜌) d𝜌 =

𝜅0Tr
(
A𝜌

)
ef (𝜌)NN−m−n∕2−1

∫
𝜎∈Dd−r

d𝜎
(

𝜆−Tr(𝛬d−r𝜎)
)m+1 + O

(

ef (𝜌)NN−m−n∕2−2
)

.

Consequently, we have proved that IA(N) = Tr
(
𝜌A

)
+ O(1∕N).

Simple computations show that the expansion of VA(N) reduces to the expansion

of the integral ∫D Tr
2 ((𝜌 − 𝜌)A

)
eNf (𝜌) ℙ0(𝜌) d𝜌 based on (12.10) with g(x, 𝜎, z) =

J(x𝜎, z)ℙ0(x𝜎, z)h(x𝜎, z), h(x𝜎, z) = Tr
2 ((𝛶 (x𝜎, z) − 𝜌)A

)
and z = (𝜁, 𝜔). Since

𝜕
2g
𝜕z2

|
|
|(0,𝜎,0)

= J(0, 0)ℙ0(𝜌)
𝜕
2h
𝜕z2

|
|
|(0,𝜎,0)

is independent of 𝜎, we have from (12.10):

∫D

Tr
2 ((𝜌 − 𝜌)A

)
eNf (𝜌) ℙ0(𝜌) d𝜌 =

𝜅0

Tr

(

− 𝜕
2h
𝜕z2

|
|
|
|(0,0)

(
𝜕
2 f
𝜕z2

|
|
|
|(0,0)

)−1)

2
ef (𝜌)NN−m−n∕2−2

∫
𝜎∈Dd−r

d𝜎
(

𝜆−Tr(𝛬d−r𝜎)
)m+1

+ O
(

ef (𝜌)NN−m−n∕2−3
)

.

Consequently, we have VA(N) =
Tr

(

− 𝜕
2h
𝜕z2

|
|
|
|(0,0)

(
𝜕
2 f
𝜕z2

|
|
|
|(0,0)

)−1
)

2N
+ O(N−2). The fact that the

trace in the numerator coincides with 2Tr

(

A∥

(

F
)−1

(A∥)
)

results from the follow-

ing computations.

∙ Formula (12.20) is unitary invariant. In the frame where 𝜌 =
[
0 0
0 𝛥r

]

is diagonal,

the tangent space to the manifold of rank r Hermitian matrices at 𝜌 is given by 𝛿𝜌

satisfying (12.22) with 𝛿𝜉 = 0 and (𝛿𝜁, 𝛿𝜔) arbitrary. One can check that (12.20)
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provides the following block decomposition

[
0 A0,r

A†
0,r Ar −

Tr(Ar)
r

Ir

]

for A∥ when A =
[

A0 A0,r
A†
0,r Ar

]

. One can also check that A∥ belongs to this tangent space and that

Tr (A𝛿𝜌) = Tr
(
A∥𝛿𝜌

)
for any tangent element 𝛿𝜌.

∙ Since h(0, z) = Tr
2 ((𝛶 (0, z) − 𝜌)A

)
, we have

𝜕
2h
𝜕z2

|
|
|
|(0,0)

(𝛿z, 𝛿z) = 2Tr
2 (𝛿𝛶 A) = 2Tr

2 (
𝛿𝛶 A∥

)

with 𝛿𝛶 =
[

0 𝛿𝜔 𝛥r
𝛥r 𝛿𝜔

†
𝛿𝜁

]

and 𝛿z = (𝛿𝜁, 𝛿𝜔). This means that
𝜕
2h
𝜕z2

|
|
|(0,0)

is collinear

with the orthogonal projector on the direction given by A∥ in the tangent space to

𝜌. This implies that Tr

(
𝜕
2h
𝜕z2

|
|
|(0,0)

(
𝜕
2f
𝜕z2

|
|
|(0,0)

)−1
)

corresponds to twice the value at

A∥ of the quadratic form attached to the inverse of the Hessian at 𝜌 of the restric-

tion of f to the manifold of rank r Hermitian matrices of trace one (we use here

Lemma 12.1).

∙ This Hessian is given by (12.21) since, for X = 𝛿𝛶 =
[

0 𝛿𝜔 𝛥r
𝛥r 𝛿𝜔

†
𝛿𝜁

]

, we have

Tr

(

X
(

𝜆I − ∇f |
𝜌

)

X𝜌+ + X𝜌+X
(

𝜆I − ∇f |
𝜌

))

= 2Tr

(

(𝜆Id−r − 𝛬d−r)𝛿𝜔 𝛥r 𝛿𝜔
†
)

because 𝜌
+ =

[
0 0
0 𝛥

−1
r

]

. We recover from (12.23) that f (0, z) = f (𝜌) − 1
2

Tr

(

X F(X)
)

, i.e., that F is indeed the Hessian at 𝜌 of the restriction of f to rank r

Hermitian matrices of trace one.

12.4 Concluding Remark

When maximum likelihood estimation provides a quantum state of reduced rank,

we have expressed, based on asymptotic expansions of specific multidimensional

Laplace integrals, an estimate of the Bayesian mean and variance for any observ-

able. We speculate that similar asymptotic expansions could be of some interest for

quantum compress sensing [12] when the dimension of the underlying Hilbert space

is large and the rank is small.
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Chapter 13
Recent Developments in Stability Theory
for Stochastic Hybrid Inclusions

Andrew R. Teel

Abstract Stochastic hybrid systems (SHS) combine continuous evolution, instanta-

neous jumps, and random inputs that affect each type of evolution. Various types of

SHS have been studied for over three decades and can be used to model many inter-

esting systems in science and engineering. The most recent developments regarding

SHS focus on models that permit nonunique solutions, perhaps thereby modeling

the effect of an adversarial input on the system dynamics, and robustness properties,

which can again be linked to the effect of adversaries. We call such systems “sto-

chastic hybrid inclusions” (SHI). Using, as a departure point, developments over

the past ten years on modeling, sequential compactness of the solution space, and

robustness of stability for non-stochastic hybrid systems, a comprehensive modeling

framework for SHI is being developed. The ultimate goal is an extensive, robust sta-

bility theory for SHI. In this paper, we review recent results that have been obtained

in this direction, describing a solution concept for a class of SHI, defining stabil-

ity notions like recurrence and asymptotic stability in probability, stating equivalent

characterizations (involving uniformity and robustness) that follow from a sequential

compactness result, providing Lyapunov-based necessary and sufficient conditions

for these properties, and describing relaxed sufficient conditions that are based on an

invariance-like principle.

13.1 Introduction: Praly and Robustness

It is an extreme pleasure to contribute to this volume, which honors Laurent Praly

and his contributions to the field of nonlinear control on the occasion of his sixtieth

birthday. My joint journal papers with Laurent have been few, and not recent, but

they have always been enlightening to me. While his postdoctoral student in 1992,

we published tools for semi-global stabilization by output feedback [52] and applied

those tools to the general output feedback stabilization problem for nonlinear sys-

A.R. Teel (✉)
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tems [51]. Later, we teamed up to present general results on disturbance attenuation

for nonlinear systems, focusing on techniques that permit the use of non-smooth Lya-

punov functions [54]. The same year we developed novel converse Lyapunov theo-

rems for differential inclusions [55]. This work with Laurent allowed me to hone my

technical skills, and learn new analysis tricks. For this experience, I will always be

grateful.

In addition to these experiences, each of the papers with Laurent heightened my

interest in the role of robustness in asymptotic stability studies. Indeed, robustness

turned out to be the key to converse Lyapunov theorems, as had already been noted

in [17, 19], and very explicitly in [5]; see also [18]. Subsequently, I was fascinated to

discover that, for a nonlinear discrete-time system with a discontinuous right-hand

side, the origin can be globally asymptotically stable with no robustness margin [16].

My students and I pointed out that this phenomenon could occur in the closed loop

when employing a commonly advocated model predictive control algorithm [12].

With these observations as inspiration we knew that, when we investigated stability

theory for hybrid systems, we had to elucidate the weakest assumptions under which

asymptotic stability is automatically robust. Our work in this area started in [7, 10]

and culminated in the tutorial article [8] and the research monograph [9].

Now, as my collaborators and I turn our attention to stochastic systems, the same

principles guide us: we look for a stability theory that applies to a very wide class

of stochastic hybrid systems and that automatically entails robustness. To cut our

teeth, we began by looking at stability theory for stochastic difference inclusions. Our

results for such systems are contained in [11, 37, 38, 43, 47–49]. Most recently, we

have turned our attention to stochastic hybrid systems, or inclusions, which are the

topic of this chapter. The results on stochastic hybrid inclusions that are recalled here

are adopted from [39, 42, 44–46]. The interested reader may also wish to consult

[53] for a survey of other stability theory results available in the stochastic hybrid

systems literature.

Most of our focus is on Lyapunov function methods for establishing stability prop-

erties, which brings me to one more important comment about Laurent Praly: I have

never seen anyone so adept at finding Lyapunov functions for nonlinear systems.

At his birthday celebration we joked that the best “app” available for finding Lya-

punov functions is the “Ask Laurent!” app. Around the time of Laurent’s birth, in the

mid-1950s, our predecessors recognized the urgency of establishing the existence of

smooth Lyapunov functions [2, 17, 21–23] since Laurent was born to find them.

Tongue in cheek, one of the goals of my talk at that celebration and of this paper

is to encourage “Ask Laurent!” 6.0 to include the functionality of finding Lyapunov

functions for stochastic hybrid systems.

The rest of this chapter is organized as follows. In Sect. 13.2 we recall some main

results about stability theory and robustness for constrained differential inclusions.

We hint at similar observations about constrained difference inclusions in Sect. 13.3.

However, since these systems provide a special case of hybrid systems, we do not

go into much detail. Instead, we discuss a robust stability theory for non-stochastic

hybrid inclusions in Sect. 13.4. Then, we turn our attention to our current research on

stochastic hybrid inclusions. In each section, we point out the role regularity assump-
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tions and, in the case of stochastic systems, also causality assumptions play in guar-

anteeing a coherent, robust stability theory. Finally, we end with some conclusions.

13.2 Constrained Differential Inclusions

In this section, we consider asymptotic stability and global recurrence for constrained

differential inclusions. Asymptotic stability is a standard property considered in the

systems and control literature. Recurrence is a property that is much more common to

find in the stochastic systems and control literature. This is because it is possible for

a stochastic system to exhibit recurrence to an open, bounded set and yet possess no

compact, forward invariant set. This phenomenon does not occur in non-stochastic

systems, as we explain below.

13.2.1 Motivation

In the analysis of control systems, there are several motivations for studying differ-

ential inclusions rather than differential equations.

One motivation is the convenience of using a differential inclusion to analyze a

differential equation under the influence of an arbitrary time-varying disturbance,

ẋ(t) = f (x(t), d(t)), (x(t), d(t)) ∈ ℝn ×ℝm
, when the disturbance is expected to sat-

isfy a state-dependent constraint d(t) ∈ S(x(t)) for all t ≥ 0, where S ∶ ℝn ⇉ ℝm
.

The double arrows here, following the notation appearing in [30], indicate that the

values of S are subsets of ℝm
. In this case, we may be motivated to analyze the

behavior of the differential inclusion ẋ ∈ F(x), where F ∶ ℝn ⇉ ℝn
is defined by

F(x) ∶= f (x, S(x)) for all x ∈ ℝn
, or perhaps by cof (x, S(x)) for all x ∈ ℝn

, where co

indicates taking the closed convex hull. Convex hulls are appropriate in continuous-

time systems because it is possible for the derivative to switch arbitrarily fast among

the available values in the set-valued map, essentially replicating the effect of any

value in the convex hull of the derivative set.

Another motivation for differential inclusions occurs when a continuous feed-

back control system ẋ = f (x, u), (x, u) ∈ ℝn ×ℝm
, employs a discontinuous feedback

function u = k(x) where k ∶ ℝn → ℝm
. Since discontinuous differential equations

may not have solutions (in a standard sense) or because the solutions of a discon-

tinuous differential equation may not give an accurate picture of the behavior under

small perturbations, we may be motivated to study instead the differential inclusion

ẋ ∈ F(x), where F ∶ ℝn ⇉ ℝn
is defined by F(x) ∶= cof (x,K(x)) and K is the outer

semicontinuous hull
1

of k; that is,K is the set-valued mapping whose graph coincides

with the closure of the graph of k, which is the set {(x, y) ∈ ℝn ×ℝm ∶ y = k(x)}.

This differential inclusion is sometimes called the Krasovskii regularization of the

1
For more information, see [30, pp. 154–155].
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discontinuous differential equation and the solutions of the differential inclusion are

sometimes called the Krasovskii solutions of the original discontinuous differential

equation. For more information, see [13] or [33].

There are also reasons to consider constrained differential equations or inclusions,

of the form x ∈ C, ẋ ∈ F(x). For example, a particular subset of the state space may

be known to be forward invariant; restricting the state to that forward invariant set

may facilitate a simpler analysis. In this case, we can take C to be the forward invari-

ant set. Similarly, the state of such a system may evolve on a manifold embedded in

a Euclidean space. In this particular case, we can take C to be the manifold on which

the state evolves. One situation where evolution on a manifold is helpful is when

converting a time-varying, periodic system to a time-invariant one. In this case, the

state may include a clock variable that rotates around the unit circle with uniform

rate. In this situation, considering initial conditions that are not constrained to this

circle would make little sense. Finally, it may be known that once the state of ẋ ∈ F(x)
reaches a set D, it behaves as desired. Then to study whether the solutions of sys-

tem eventually behave well from any initial condition, we may consider studying the

behavior of the solutions of x ∈ ℝn∖D =∶ C, ẋ ∈ F(x). For this constrained system,

we may aim to prove that each solution either behaves as desired or is forced to stop

because it reaches the boundary of and attempts to leave C. In this case, as a solution

of the original system, it would reach D, and then start behaving as desired.

A special case of constrained differential equations corresponds to the situation

where C = ℝn
and F is a function, i.e., ẋ = F(x).

13.2.2 Model and Solution Concept

We consider a constrained differential inclusion of the form

x ∈ C, ẋ ∈ F(x). (13.1)

Throughout the discussion of this system, we impose the following assumption:

Assumption 13.1 The data of the constrained differential inclusion (13.1) are such

that

1. the set C ⊂ ℝn
is closed, and

2. the set-valued mapping F ∶ ℝn ⇉ ℝn
is outer semicontinuous

2
and locally

bounded
3

with values on C that are nonempty and convex. ■

We note that when f ∶ C → ℝn
is a continuous function and C is closed, the set-

valued mapping F ∶ ℝn ⇉ ℝn
defined by F(x) ∶= {f (x)} for x ∈ C and F(x) ∶= ∅

for x ∈ ℝn∖C is outer semicontinuous and locally bounded with nonempty convex

values on C. The outer semicontinuity follows from the fact that the graph of F is

2
See [30, Definition 5.4].

3
See [30, Definition 5.14].
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closed in this situation. Having a closed graph is an equivalent characterization of

outer semicontinuity [30, Theorem 5.7(a)]. The values are convex on C by virtue of

being singletons at such points.

For the constrained differential inclusion (13.1), a solution is any locally

absolutely continuous function x defined on a set dom(x) of the form [0,T) or [0,T]
with T ≥ 0, or [0,∞), such that x(t) ∈ C and ẋ(t) ∈ F(x(t)) for almost all t ∈ dom(x).
Given a set K ⊂ ℝn

, S (K) denotes the set of solutions starting in the set K.

13.2.3 Asymptotic Stability: Definitions and Results

We give a brief overview of stability theory for the constrained differential inclu-

sion (13.1), where the attractor is denoted A . All of the subsequent results use the

following assumption:

Assumption 13.2 The set A ⊂ ℝn
is compact. ■

Since the attractor is assumed to be compact, the discussion is more general than a

stability discussion for equilibria. This is especially appropriate for hybrid systems

(which we consider eventually) where it is quite common for some states to persis-

tently change their values. On the other hand, it does not allow for unbounded attrac-

tors, like might be required for the analysis of time-varying, non-periodic systems

when attempting to use results for time-invariant systems. As suggested by the dis-

cussion above about clock variables as examples of state constraints, it does account

for stability theory for time-varying, periodic systems.

We now give a sequence of definitions, culminating in a definition of robust, uni-

form, global asymptotic stability.

A set A ⊂ ℝn
is said to be Lyapunov stable for (13.1) if, for each 𝜀 > 0, there

exists 𝛿 > 0 such that x(t) ∈ A + 𝜀𝔹 for each x ∈ S (A + 𝛿𝔹) and each t ∈ dom(x).
A set A ⊂ ℝn

is said to be uniformly Lagrange stable for (13.1) if, for each 𝛿 > 0,

there exists 𝜀 > 0 such that x(t) ∈ A + 𝜀𝔹 for each x ∈ S (A + 𝛿𝔹) and each t ∈
dom(x).

Note that Lyapunov stability of the set A is a characterization of how the system

behaves near the set A while Lagrange stability of A is a characterization of how

the system behaves far from A .

A set A ⊂ ℝn
is said to be globally attractive for (13.1), if there are no finite

escape times (that is, each solution is bounded on each bounded subset of its domain)

and every solution with an unbounded time domain satisfies limt→∞ |x(t)|A = 0. In

this definition, |x|A denotes the distance of a vector x to the set A , i.e., |x|A ∶=
inf y∈A |x − y| where | ⋅ | denotes the standard Euclidean norm.

A set A ⊂ ℝn
is said to be uniformly globally attractive for (13.1) if there are

no finite escape times and for each 𝜀 > 0 and 𝛥 > 0 there exists T ≥ 0 such that

x(t) ∈ A + 𝜀𝔹 for all x ∈ S (A + 𝛥𝔹) and all t ∈ [T ,∞) ∩ dom(x). Notice that, for

a given x ∈ S (A + 𝛥𝔹), if [T ,∞) ∩ dom(x) = ∅ then there is nothing to check for

the solution x.
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A set A ⊂ ℝn
is said to be globally asymptotically stable (GAS) for (13.1), if it

is Lyapunov stable and globally attractive.

A set A ⊂ ℝn
is said to be uniformly globally asymptotically stable (UGAS) for

(13.1) if it is Lyapunov stable, uniformly Lagrange stable, and uniformly globally

attractive.

A set A ⊂ ℝn
is said to be robustly uniformly globally asymptotically stable (R-

UGAS) for (13.1), if there exists a continuous function 𝜌 ∶ ℝn → ℝ
≥0 satisfying

𝜌(x) > 0 for all x ∈ ℝn∖A , such that A is UGAS for the constrained differential

inclusion x ∈ C
𝜌
, ẋ ∈ F

𝜌
(x), where

C
𝜌
∶= {x ∈ ℝn ∶ (x + 𝜌(x)𝔹) ∩ C ≠ ∅} (13.2a)

F
𝜌
(x) ∶= coF((x + 𝜌(x)𝔹) ∩ C) + 𝜌(x)𝔹. (13.2b)

The conditions of Assumptions 13.1 and 13.2 provide the somewhat surprising

result that R-UGAS is not actually stronger than GAS.

Theorem 13.1 Under Assumptions 13.1 and 13.2, the set A ⊂ ℝn is R-UGAS for
(13.1) if and only if it is GAS for (13.1).

For the case where C = ℝn
, Theorem 13.1 is a consequence of [55, Proposition

3, Theorem 3 and Propositions 2]. For the general case, the result of Theorem 13.1

is contained in [4, Theorem 7.9].

We emphasize through an example that GAS may not imply UGAS when Assump-

tion 13.1 does not hold.

Example 13.1 Consider the case where A ∶= {0}, C ∶= [0,∞) and F ∶ ℝn → ℝn

where

F(x) ∶=

{
−x x ∈ [0, 1]
−
√
x − 1 x ∈ (1,∞).

This function is not continuous at 1. In particular, it does not have a closed graph

and thus is not outer semicontinuous when viewed as a set-valued mapping. The

solution starting at a point x◦ ∈ [0, 1] is x(t) = exp(−t)x◦. The solution starting at a

point x◦ > 1 is

x(t) ∶=
⎧
⎪
⎨
⎪
⎩

1 +
(√

x◦ − 1 − 0.5t
)2

t ∈ [0, 2
√
x◦ − 1)

exp(−t + 2
√
x◦ − 1) t ≥ 2

√
x◦ − 1.

Therefore the origin is UGAS. However, for each continuous function 𝜌 ∶ ℝ →
ℝ

≥0 satisfying 𝜌(x) > 0 for all x ∈ ℝ∖ {0}, the differential inclusion ẋ = coF((x +
𝜌(x)𝔹) ∩ C) + 𝜌(x)𝔹 will have a solution x(t) = c where c is any real number greater

than or equal to one satisfying

√
c − 1 ≤ 𝜌(c). This condition holds for c = 1 and for

other values near one since 𝜌(1) > 0 and 𝜌 is continuous. ■
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13.2.4 Lyapunov Functions for Asymptotic Stability

One of the most convenient ways to establish GAS (equivalently, R-UGAS) of a

compact set is by means of a Lyapunov function. A function V ∶ dom(V) → ℝ
≥0

is a Lyapunov function candidate for the set A ⊂ ℝn
and the data (C,F) of (13.1),

i.e., for (A , (C,F)), if C ⊂ dom(V), it is continuously differentiable on an open set

containing C, V(x) = 0 for all x ∈ A , V(x) > 0 for all x ∈ C∖A , and if the sequence

of points
{
xi
}∞
i=1, with each point belonging to C, is unbounded then the sequence

of values
{
V(xi)

}∞
i=1 is unbounded. It is a Lyapunov function if ⟨∇V(x), f ⟩ < 0 for

all x ∈ C∖A and f ∈ F(x). It is a Krasovskii–LaSalle function if ⟨∇V(x), f ⟩ ≤ 0 for

all x ∈ C and f ∈ F(x) and there does not exist a solution x with an unbounded time

domain that renders t ↦ V(x(t)) constant and nonzero. The latter condition is sat-

isfied if V is also a Lyapunov function. It is an exponentially decreasing Lyapunov
function, if if there exists 𝜆 > 0 such that ⟨∇V(x), f ⟩ ≤ −𝜆V(x) for all x ∈ C and

f ∈ F(x).
The existence of an exponentially decreasing Lyapunov function does not neces-

sarily imply that the solutions converge exponentially to the set A . Indeed, it turns

out that the existence of an exponentially decreasing Lyapunov function is equivalent

to the GAS property.

Theorem 13.2 Under Assumptions 13.1 and 13.2, (A , (C,F)) admits an exponen-
tially
decreasing Lyapunov function if and only if A is GAS for (13.1).

For the case where C = ℝn
, Theorem 13.1 is established via the combination of

[55, Propositions 3, 2, Theorem 3 and Theorem 1]. For the general case, the result

of Theorem 13.1 is contained in [4, Theorem 3.13].

Example 13.1 above shows that GAS may not imply the existence of a Lya-

punov function when Assumption 13.1 is omitted. Indeed, since limx→1+ F(x) = 0
and ∇V is continuous, ⟨∇V(x),F(x)⟩ must approach zero as x → 1+; on the other

hand, limx→1+ −𝜆V(x) = −𝜆V(1) < 0.

Fortunately, we are not required to find an exponentially decreasing Lyapunov

function in order to establish R-UGAS. The existence of a Krasovskii–LaSalle func-

tion is enough, as the next theorem states.

Theorem 13.3 Under Assumptions 13.1 and 13.2, if (A , (C,F)) admits a Krasovskii–
LaSalle function then the set A is R-UGAS for (13.1).

For the case C = ℝn
, the result of Theorem 13.3 can be pieced together from results

in [6, Chap. 3] or [1, 31] (which locate the 𝜔-limit set of each bounded solution

and help to establish attractivity and, in turn, GAS) and [4] (which converts GAS to

R-UGAS). Similarly, for the general case, Theorem 13.3 follows by combining the

results of [4, 32].

The conclusion of Theorem 13.3 may fail when Assumption 13.1 is omitted, as

the next example illustrates.
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Example 13.2 Consider the case where A ∶= {0}, C ∶= [0,∞) and F ∶ ℝn → ℝn

where

F(x) ∶=

{
−x x ∈ [0, 1]
−(x − 1) x ∈ (1,∞).

This function is discontinuous at x = 1 and hence does not have a closed graph. The

solution starting at a point x◦ ∈ [0, 1] is x(t) = exp(−t)x◦. The solution starting at a

point x◦ > 1 is x(t) = 1 + exp(−t)[x◦ − 1]. Hence the origin is not globally attractive.

WithV(x) = x2, we have that ⟨∇V(x),F(x)⟩ < 0 for all x ∈ C, and there is no solution

that renders t ↦ V(x(t)) constant and nonzero. ■

An alternative to attempting to rule out solutions that keep V equal to a nonzero

constant involves employing Matrosov functions. See [20, 34, 50]. In this approach,

we do not need to know anything about solutions to the constrained differential inclu-

sion. Instead, we must work to find additional functions whose derivatives have the

effect of ruling out solutions that keep V equal to a nonzero constant. We defer to

the references above for more details.

13.2.5 Recurrence: Definitions and Results

In this section, we consider an attractivity-like property, called recurrence, which

plays a prominent role in the study of stochastic systems. We study it here for non-

stochastic systems. We use O to denote the recurrent set, and assume the following:

Assumption 13.3 The set O ⊂ ℝn
is open and bounded. ■

We give a sequence of definitions, culminating in the definition of robust, uniform

global recurrence.

A set O ⊂ ℝn
is said to be globally recurrent (GR) for (13.1) if there are no finite

escape times and for each solution x with an unbounded time domain there exists

t ∈ dom(x) such that x(t) ∈ O .

A set O ⊂ ℝn
is said to be uniformly globally recurrent (UGR) for (13.1) if there

are no finite escape times and for each compact set K ⊂ ℝn
there exists T > 0 such

that, for each solution x ∈ S (K) with a time domain that contains T , there exists

t ∈ dom(x) ∩ [0,T) such that x(t) ∈ O .

A set O ⊂ ℝn
is said to be robustly uniformly globally recurrent (R-UGR) for

(13.1) if there exists a continuous function 𝜌 ∶ ℝn → ℝ
>0 such that O is uniformly

globally recurrent for the constrained differential inclusion x ∈ C
𝜌
, ẋ ∈ F

𝜌
(x), where

the pair (C
𝜌
,F

𝜌
) is defined in (13.2).

The conditions of Assumptions 13.1 and 13.3 provide the somewhat surprising

result that R-UGR is not actually stronger than global recurrence.

Theorem 13.4 Under Assumptions 13.1 and 13.3, the set O ⊂ ℝn is R-UGR for
(13.1) if and only if it is globally recurrent for (13.1).
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The result of Theorem 13.4 is contained in [41, Theorem 4]. Global recurrence

may not imply R-UGR if either Assumption 13.1 or 13.3 does not hold.

Example 13.3 Consider the case where F ∶ ℝ → ℝ is defined by F(x) ∶= x2(1 − x)
for all x ∈ ℝ and O ∶= [−0.1, 0] ∪ [0.9, 1.1]. Notice that O is bounded but not open.

The set O is globally recurrent since every solution starting to the left of or at the

origin converges to the origin (and thus reaches [−0.1, 0] in finite time) while every

solution that starts to the right of the origin converges to 1 (and thus reaches [0.9, 1.1]
in finite time). However, O is not uniformly globally recurrent because the time it

takes to reachO grows unbounded as the initial condition approaches the origin from

the right. ■

Example 13.4 Consider the case where C ∶= ℝ × [0, 2] and f ∶ C → ℝ2
is defined

by

f (x) ∶=
[
−x1𝜆(x2)

0

]

where 𝜆 ∶ [0, 2] → ℝ
>0 satisfies

𝜆(x2) ∶=

{
1 x2 = 1
(1 − x2)2 x2 ∈ [0, 2]∖ {1} .

Let O ∶= (−0.1, 0.1) × (−1, 3). The set O is open and bounded, but F is not con-

tinuous. The set O is globally recurrent (in fact, globally attractive), but it is not

uniformly globally recurrent since the time it takes the x1 component to become

small from x1(0) = 1 grows unbounded as the initial value of x2 approaches 1. ■

Finally, we can make a connection between global recurrence and global asymp-

totic stability. This connection is made through the definition of the 𝛺-limit set for

(13.1) from a set of initial conditions K, defined as

𝛺(K) ∶=
{

z ∈ ℝn ∶ z = lim
i→∞

xi(ti), xi ∈ S (K), ti ∈ dom(xi), limi→∞
ti = ∞

}

.

Theorem 13.5 Under Assumptions 13.1 and 13.3, if the set O ⊂ ℝn is globally
recurrent for (13.1) and𝛺(O) is nonempty then the latter is a UGAS compact set for
(13.1).

For more details about this result, see [41, Sect. 5.2]. As we will explain later,

there is no reason to expect an analogous result for stochastic systems.

13.2.6 Foster Functions for Recurrence

Like for asymptotic stability, a convenient tool for establishing global recurrence is a

Lyapunov-like function. A function V ∶ dom(V) → ℝ
≥0 is a Lyapunov–Foster func-
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tion candidate for the set O ⊂ ℝn
and the data (C,F) of (13.1), i.e., for (O , (C,F)),

if C ⊂ dom(V), it is continuously differentiable on an open set containing C, and

if the sequence of points
{
xi
}∞
i=1, with each point belonging to C, is unbounded

then the sequence of values
{
V(xi)

}∞
i=1 is unbounded. (There is no requirement

that V(x) = 0 for x ∈ O .) It is a Lyapunov–Foster function if ⟨∇V(x), f ⟩ < 0 for all

x ∈ C∖O and f ∈ F(x). It is a Krasovskii–LaSalle–Foster function if ⟨∇V(x), f ⟩ ≤ 0
for all x ∈ C∖O and f ∈ F(x) and there does not exist a solution x with an unbounded

time domain that never intersects O and that renders t ↦ V(x(t)) constant. The latter

property is satisfied ifV is also a Lyapunov–Foster function. It is a uniformly decreas-

ing Lyapunov–Foster function if there exists 𝜆 > 0 such that ⟨∇V(x), f ⟩ ≤ −𝜆 for all

x ∈ C∖O and f ∈ F(x).

Theorem 13.6 Under Assumptions 13.1 and 13.3, (O , (C,F)) admits a uniformly
decreasing Lyapunov–Foster function if and only ifO is globally recurrent for (13.1).

Theorem 13.6 was established for more general (i.e., hybrid) systems in [41, The-

orem 5].

Regarding the necessary and sufficient conditions for global recurrence in The-

orem 13.6, Example 13.1 above, with O a small open neighborhood of the origin,

provides a counterexample to the necessity when Assumption 13.1 is omitted.

We are not required to find a uniformly decreasing Lyapunov–Foster function in

order to prove robust, uniform global recurrence, as the next theorem states.

Theorem 13.7 Under Assumptions 13.1 and 13.3, if (O , (C,F)) admits a Krasovskii–
LaSalle–Foster then the set O is R-UGR for (13.1).

The result of Theorem 13.7 is a combination of the results in [6, Chap. 3] or [1, 31]

(about locating the 𝜔-limit set of each bounded solution that has an unbounded time

domain, to prove recurrence) and [41, Theorem 4] (on the equivalence of recurrence

and R-UGR).

Example 13.2 above, with O a small open neighborhood of the origin, provides a

counterexample to the conclusion of Theorem 13.7 when Assumption 13.1 is omit-

ted.

The idea behind Matrosov functions can also be applied easily to rule out solutions

x that never intersect O and render t ↦ V(x(t)) constant.

13.3 Constrained Difference Inclusions

In this section, we allude to results on asymptotic stability and global recurrence for

constrained difference inclusions. We do not go into detail since the available results

are very similar to those available for constrained differential inclusions and because

they are contained in the upcoming results for hybrid inclusions.
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13.3.1 Motivation

The motivations for considering constrained difference inclusions, rather than just

constrained difference equations, are analogous to the motivations for considering

constrained differential inclusions. However, when constructing the set-valued map-

pings that prescribe the possible next value of the state, there is no reason to invoke

the convex hull, as there is no analogy to arbitrarily fast switching in discrete-time

systems. Like in continuous-time systems, sometimes discontinuous feedbacks are

useful, or even necessary [29], or simply manifest themselves when the control is

designed by solving an optimization problem like in model predictive control [27].

But the best predictor of the behavior of a discontinuous system under small per-

turbations is the difference inclusion that uses the outer semicontinuous hull of the

discontinuous function [16, 33]. Recall that the outer semicontinuous hull of a dis-

continuous mapping is the unique set-valued mapping whose graph is equal to the

closure of the graph of the original mapping.

Also like in continuous-time systems, there are many reasons to consider con-

strained difference inclusions. In addition to the reasons encountered for continuous-

time systems, another natural reason is that discrete-time systems often naturally

include variables that take values in a discrete set and so it makes no sense to con-

sider solutions from all initial conditions in the underlying Euclidean space.

13.3.2 Model and Solutions

The model of a constrained difference inclusion has the form

x ∈ D, x+ ∈ G(x). (13.3)

These systems are often studied under the following conditions:

Assumption 13.4 The data of the constrained difference inclusion (13.3) are such

that

1. the set D ⊂ ℝn
is closed, and

2. the set-valued mapping G ∶ ℝn ⇉ ℝn
is outer semicontinuous and locally

bounded with values on D that are nonempty. ■

For a constrained difference inclusion x ∈ D, x+ ∈ G(x), a solution is any function

x defined on a set dom(x) of the form {0,… , k}, where k is a nonnegative integer, or

ℤ
≥0, such that x(0) ∈ D and if both j and j + 1 belong to dom(x) then x(j) ∈ D and

x(j + 1) ∈ G(x(j)).
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13.3.3 Asymptotic Stability: Basic Definitions and Results

The definitions of stability for constrained difference equations parallel those for

constrained differential equations but with j replacing t as the time variable. Also,

in the definitions of R-UGAS and R-UGR, the inflated system is x ∈ D
𝜌
, x+ ∈ G

𝜌
(x)

where

D
𝜌
∶= {x ∈ ℝn ∶ (x + 𝜌(x)𝔹) ∩ D ≠ ∅} (13.4a)

G
𝜌
(x) ∶= {g ∈ ℝn ∶ g + 𝜌(g)𝔹, g ∈ G((x + 𝜌(x)𝔹) ∩ D)} . (13.4b)

For discrete-time systems, there is no particular need for a Lyapunov function to

be continuously differentiable, or even continuous, as long as it is uniformly decreas-

ing along solutions and it can be upper and lower bounded by K∞ functions of the

distance of the state to the attractor A .

The theorems and counterexamples of Sect. 13.2 for constrained differential inclu-

sions apply to constrained difference inclusions, mutatis mutandis. Moreover, such

theorems are special cases of upcoming results for hybrid systems. Hence, those

results are omitted here.

13.4 Hybrid Inclusions

Now we turn our attention to hybrid inclusions, demonstrating results pertaining to

asymptotic stability and recurrence that parallel results in continuous-time systems

and discrete-time systems.

13.4.1 Motivation

Hybrid systems, or perhaps more appropriately “hybrid inclusions,” combine con-

strained differential inclusions (13.1) and constrained difference inclusions (13.3)

[9]. One strong motivation for studying hybrid systems stems from the role that

hybrid feedback can play in robustly stabilizing nonlinear continuous-time systems.

For example, logic-based switching control has been shown to be useful for stabiliz-

ing the origin of difficult systems like the non-holonomic integrator [15]. In addition,

hysteresis is a very effective mechanism for achieving robust, global stabilization of

a point on a manifold without boundary [24–26]. Moreover, the hybrid systems for-

malism can address a wide range of systems, including mechanical systems with

impacts and networked control systems, which combine continuous-time evolution

and communication logic and switching; see, for example, [8].

While constrained differential inclusions and constrained difference inclusions

can exhibit nonunique solutions, because the allowed derivative or the allowed next
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value is not unique, for hybrid systems nonuniqueness can also arise at points in the

state space where both continuous evolution and instantaneous change are allowed.

13.4.2 Model and Solutions

A model of a hybrid inclusion is written formally as

x ∈ C ẋ ∈ F(x) (13.5a)

x ∈ D x+ ∈ G(x). (13.5b)

The data (C,F) and (D,G) are supposed to satisfy Assumptions 13.1 and 13.4,

respectively.

For a hybrid system, each solution is defined on a hybrid time domain, which

combines continuous time and discrete time. A compact hybrid time domain is a

set of the form ∪J
i=0

(
[ti, ti+1] × {i}

)
where J ∈ ℤ

≥0, and 0 = t0 ≤ t1 ≤ ⋯ ≤ tJ+1. A

hybrid time domain is a set E ⊂ ℝ
≥0 × ℤ

≥0 such that, for each (T , J) ∈ E, the set

E ∩ ([0,T] × {0,… , J}) is a compact hybrid time domain.

A solution of the hybrid system (13.5) is a function x defined on a hybrid time

domain dom(x) such that t ↦ x(t, j) is locally absolutely continuous for each j ∈ ℤ
≥0,

x(0, 0) ∈ C ∪ D, and

1. if (t1, j), (t2, j) ∈ dom(x) with t1 < t2 then, for almost all t ∈ [t1, t2],

x(t, j) ∈ C (13.6a)

ẋ(t, j) ∈ F(x(t, j)); (13.6b)

2. if (t, j), (t, j + 1) ∈ dom(x) then

x(t, j) ∈ D (13.7a)

x(t, j + 1) ∈ G(x(t, j)). (13.7b)

13.4.3 Asymptotic Stability: Basic Definitions and Results

Stability theory for an attractor A will be discussed under Assumption 13.2 together

with Assumptions 13.1 and 13.4. The definitions of stability parallel those for continuous-

time and discrete-time systems. We make those definitions explicit here to be clear.

A set A ⊂ ℝn
is said to be Lyapunov stable for (13.5) if, for each 𝜀 > 0, there

exists 𝛿 > 0 such that x(t, j) ∈ A + 𝜀𝔹 for each x ∈ S (A + 𝛿𝔹) and each (t, j) ∈
dom(x). For future reference, it is worth noting that this condition is equivalent to

asking that
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graph(x) ⊂ ℝ2 × (A + 𝜀𝔹) ∀x ∈ S (A + 𝛿𝔹) (13.8)

where

graph(x) ∶= {(t, j, z) ∶ (t, j) ∈ dom(x), z = x(t, j)} . (13.9)

A set A ⊂ ℝn
is said to be uniformly Lagrange stable for (13.5) if, for each 𝛿 >

0, there exists 𝜀 > 0 such that x(t, j) ∈ A + 𝜀𝔹 for each x ∈ S (A + 𝛿𝔹) and each

(t, j) ∈ dom(x), that is, (13.8) holds.

A set A ⊂ ℝn
is said to be globally attractive for (13.5) if there are no finite

escape times and every solution with an unbounded time domain satisfies limt+j→∞
|x(t, j)|A = 0.

A set A ⊂ ℝn
is said to be uniformly globally attractive for (13.5) if there are

no finite escape times and, for each 𝜀 > 0 and 𝛥 > 0, there exists T ≥ 0 such that

x(t, j) ∈ A + 𝜀𝔹 for all x ∈ S (A + 𝛥𝔹) and all (t, j) ∈ dom(x) satisfying t + j ≥ T;

in other words, defining T
≥T ∶=

{
(s, i) ∈ ℝ

≥0 × ℤ
≥0 ∶ s + i ≥ T

}
, we have

graph(x) ∩ (T
≥T ×ℝn) ⊂ ℝ2 × (A + 𝜀𝔹). (13.10)

A set A ⊂ ℝn
is said to be globally asymptotically stable (GAS) for (13.5), if it

is Lyapunov stable and globally attractive.

A set A ⊂ ℝn
is said to be uniformly globally asymptotically stable (UGAS) for

(13.5) if it is Lyapunov stable, uniformly Lagrange stable, and uniformly globally

attractive.

A set A ⊂ ℝn
is said to be robustly uniformly globally asymptotically stable (R-

UGAS) for (13.5), if there exists a continuous function 𝜌 ∶ ℝn → ℝ
≥0 satisfying

𝜌(x) > 0 for all x ∈ ℝn∖A , such that A is uniformly globally asymptotically stable

for the hybrid system

x ∈ C
𝜌

ẋ ∈ F
𝜌
(x) (13.11a)

x ∈ D
𝜌

x+ ∈ G
𝜌
(x) (13.11b)

where the pair (C
𝜌
,F

𝜌
) is defined in (13.2) and the pair (D

𝜌
,G

𝜌
) is defined in (13.4).

The main stability theory results also carry over from the continuous-time and

discrete-time settings. For example, the conditions of Assumptions 13.2 with Assump-

tions 13.1 and 13.4 provide the somewhat surprising result that R-UGAS is not actu-

ally stronger than GAS.

Theorem 13.8 Under Assumptions 13.1, 13.2, and 13.4, the setA ⊂ ℝn is R-UGAS
for (13.5) if and only if it is GAS for (13.5).

The result of Theorem 13.8 is taken from [4, Theorem 7.9].

Example 13.1 illustrates that GAS may not imply R-UGAS when Assumption 13.1

does not hold. Here, we provide an alternative example that involves continuous

functions but where C is not closed. A similar example can be constructed for D not

closed.
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Example 13.5 Let A ⊂ ℝ be the origin, and consider the data (C, f ,D, g) where

C ∶= [0, 1), f ∶ C → ℝ is given by f (x) = −x(1 − x) for all x ∈ C, D ∶= [1,∞), and

g(x) ∶= 0 for all x ∈ D. Each solution starting in C never jumps and converges to

the origin monotonically. All solutions starting in D jump once, to the origin, and

then flow, remaining at the origin for all subsequent time. Hence, the origin is GAS.

However, it is not R-UGAS, as any inflation of the data would satisfy [0, 1] ⊂ C
𝜌

and 0 ∈ F
𝜌
(1), thereby admitting a solution that remains at 1, while flowing, for

all time. ■

13.4.4 Lyapunov Functions for Asymptotic Stability

Again, a Lyapunov function is a convenient tool for establishing asymptotic stabil-

ity. Moreover, converse Lyapunov theorems establish that it is reasonable to search

for Lyapunov functions for hybrid inclusions. A function V ∶ dom(V) → ℝ
≥0 is a

Lyapunov function candidate for the set A ⊂ ℝn
and the hybrid data (C,F,D,G),

i.e., for (A , (C,F,D,G)), if C ∪ D ∪ G(D) ⊂ dom(V), it is continuous on its domain,

it is continuously differentiable on an open set containing C, V(x) = 0 for all x ∈
dom(V) ∩A , V(x) > 0 for all x ∈ C ∪ D∖A , and if the sequence of points

{
xi
}∞
i=1,

with each point belonging to C ∪ D, is unbounded then the sequence of values{
V(xi)

}∞
i=1 is unbounded. It is a Lyapunov function if ⟨∇V(x), f ⟩ < 0 for all x ∈ C∖A

and f ∈ F(x) and V(g) − V(x) < 0 for all x ∈ D∖A and g ∈ G(x). It is a Krasovskii–
LaSalle function if ⟨∇V(x), f ⟩ ≤ 0 for all x ∈ C and f ∈ F(x), V(g) − V(x) ≤ 0 for

all x ∈ D and g ∈ G(x), and there does not exist a solution x with an unbounded time

domain that renders (t, j) ↦ V(x(t, j)) constant and nonzero. The latter condition is

satisfied if V is also a Lyapunov function. It is an exponentially decreasing Lya-
punov function if if there exists 𝜆 > 0 such that ⟨∇V(x), f ⟩ ≤ −𝜆V(x) for all x ∈ C
and f ∈ F(x), and V(g) ≤ exp(−𝜆)V(x) for all x ∈ D and g ∈ G(x).

The following results parallel the earlier Theorems 13.2 and 13.3.

Theorem 13.9 Under Assumptions 13.1, 13.2, and 13.4, (A , (C,F,D,G)) admits
an exponentially decreasing Lyapunov function if and only if A is GAS for (13.5).

The result of Theorem 13.9 is contained in [4, Theorem 3.13].

Theorem 13.10 Under Assumptions 13.1, 13.2, and 13.4, if (A , (C,F,D,G)) admits
a
Krasovskii–LaSalle function then the set A is R-UGAS for (13.12)

For the general case, Theorem 13.10 follows by combining the results of [32] and

[4].

Like for continuous-time and discrete-time systems, an alternative to attempting

to rule out solutions that keep V equal to a nonzero constant involves employing

Matrosov functions. See [34]. In this approach, we do not need to know anything

about solutions to the hybrid system. Instead, we must work to find additional func-

tions whose derivatives have the effect of ruling out solutions that keep V equal to a

nonzero constant.
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13.4.5 Recurrence: Definitions and Results

In this section, we consider recurrence for hybrid inclusions. Again, we use O to

denote the recurrent set.

A set O ⊂ ℝn
is said to be globally recurrent (GR) for (13.5) if there are no finite

escape times and, for each solution x with an unbounded time domain, there exists

(t, j) ∈ dom(x) such that x(t, j) ∈ O .

A set O ⊂ ℝn
is said to be uniformly globally recurrent (UGR) for (13.5) if there

are no finite escape times and for each compact set K ⊂ ℝn
there exists T > 0 such

that, for each solution x ∈ S (K), either dom(x) ⊂
{
(t, j) ∈ ℝ

≥0 × ℤ
≥0 ∶ t + j < T

}

=∶ T
<T or else there exists (t, j) ∈ dom(x) ∩T

<T such that x(t, j) ∈ O .

A set O ⊂ ℝn
is said to be robustly uniformly globally recurrent (R-UGR) for

(13.5) if there exists a continuous function 𝜌 ∶ ℝn → ℝ
>0 such that O is uniformly

globally recurrent for (13.11) where (C
𝜌
,F

𝜌
) are defined in (13.2) and (D

𝜌
,G

𝜌
) are

defined in (13.4).

The conditions of Assumptions 13.1, 13.3, and 13.4 provide the (by now expected)

result that R-UGR is not actually stronger than recurrence.

Theorem 13.11 Under Assumptions 13.1, 13.3, and 13.4, the setO ⊂ ℝn is R-UGR
for (13.5) if and only if it is globally recurrent for (13.5).

The result of Theorem 13.11 was established in [41, Theorem 4].

Finally, like for continuous-time and discrete-time systems, we can make a con-

nection between recurrence and global asymptotic stability. This connection is made

through the definition of the 𝛺-limit set for (13.5) from a set of initial conditions K,

defined as

𝛺(K) ∶=
{

z ∈ ℝn ∶ z = lim
i→∞

xi(ti, ji), xi ∈ S (K), (ti, ji) ∈ dom(xi), limi→∞
ti + ji = ∞

}

.

Theorem 13.12 Under Assumptions 13.1, 13.3, and 13.4, if the setO ⊂ ℝn is recur-
rent for (13.1) and 𝛺(O) is nonempty then the latter is a UGAS compact set for
(13.5).

For more details, see [41, Sect. 5.2].

13.4.6 Foster Functions for Recurrence

A function V ∶ dom(V) → ℝ
≥0 is a Lyapunov–Foster function candidate for the set

O ⊂ ℝn
and the data (C,F,D,G) of (13.5), i.e., for (O , (C,F,D,G)), if C ∪ D ∪

G(D) ⊂ dom(V), it is continuous on its domain, continuously differentiable on an

open set containing C, and if the sequence of points
{
xi
}∞
i=1, with each point belong-

ing to C ∪ D, is unbounded then the sequence of values
{
V(xi)

}∞
i=1 is unbounded. It

is a Lyapunov–Foster function if ⟨∇V(x), f ⟩ < 0 for all x ∈ C∖O and f ∈ F(x) and
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V(g) − V(x) < 0 for all x ∈ D∖O and g ∈ G(x). It is a Krasovskii–LaSalle–Foster
function if ⟨∇V(x), f ⟩ ≤ 0 for all x ∈ C∖O and f ∈ F(x), V(g) − V(x) ≤ 0 for all

x ∈ D∖O and g ∈ G(x), and there does not exist a solution x with an unbounded

time domain that never intersects O and that renders (t, j) ↦ V(x(t, j)) constant. The

latter is satisfied if V is also a Lyapunov–Foster function. It is a uniformly decreas-
ing Lyapunov–Foster function if there exists 𝜆 > 0 such that ⟨∇V(x), f ⟩ ≤ −𝜆 for all

x ∈ C∖O and f ∈ F(x) and V(g) − V(x) ≤ −𝜆 for all x ∈ D∖O and g ∈ G(x).

Theorem 13.13 Under Assumptions 13.1, 13.3, and 13.4, (O , (C,F,D,G)) admits a
uniformly decreasing Foster function if and only ifO is globally recurrent for (13.5).

Theorem 13.13 was established in [41, Theorem 5].

Theorem 13.14 Under Assumptions 13.1, 13.3, and 13.4, if (O , (C,F,D,G)) admits
a
Krasovskii–LaSalle–Foster then the set O is R-UGR for (13.5).

The result of Theorem 13.14 is a combination of the results in [32] (about locating

the 𝜔-limit set of each bounded solution that has an unbounded time domain) and

[41, Theorem 4] (on the equivalence of recurrence and R-UGR).

Example 13.2 above, with O a small open neighborhood of the origin, provides a

counterexample to the conclusion of Theorem 13.14 when Assumption 13.1 is omit-

ted.

13.5 A Class of Stochastic Hybrid Inclusions

13.5.1 Motivation

Now, we get to the setting that has been developed most recently. In particular, we

discuss stochastic hybrid inclusions. While some results for these systems have been

developed for the case where both the flows and the jumps are affected by stochastic

inputs, much more progress has been made for the case where randomness appears

only in the jumps. For simplicity, we focus on that case here, but refer the reader to

[46, 53] for what has been developed for the more general setting.

In addition to finding motivation in the same types of problems that motivated

hybrid inclusions, the study of stochastic hybrid inclusions is motivated by problems

that include analyzing the effect of random-in-time updates in networked control

systems [14], random updates in sampled-data multi-agent systems to eliminate cor-

related actions [28], randomness in algorithms used for consensus on manifolds (see

[36] and the references therein), like the circle, and sampled-data nonlinear observer

problems with randomness in the measurements [3], to name just a few.
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13.5.2 Model and Solutions

A model of a stochastic hybrid inclusion with randomness only in the jumps has the

form

x ∈ C, ẋ ∈ F(x) (13.12a)

x ∈ D, x+ ∈ G(x, v+) v ∼ 𝜇(⋅) (13.12b)

where v+ is a placeholder for a sequence of independent, identically distributed

(iid) random variables, defined on a probability space (𝛺,F ,ℙ), with distribu-

tion 𝜇; that is, letting
{
𝐯i
}∞
i=1 denote the sequence of random variables, we have

𝜇(A) = ℙ
(
𝜔 ∈ 𝛺 ∶ 𝐯i(𝜔) ∈ A

)
for each i ∈ ℤ

≥1 and each A ∈ 𝐁(ℝm), the latter

being the Borel 𝜎-field on ℝm
. We use V to denote the set of all possible values of

𝐯i(𝜔), 𝜔 ∈ 𝛺, i ∈ ℤ
≥1. A solution 𝐱 from some point x ∈ C ∪ D, denoted 𝐱 ∈ Sr(x),

is a mapping from 𝛺 to hybrid arcs such that, for almost every 𝜔 ∈ 𝛺, and with the

definition 𝜙
𝜔
∶= 𝐱(𝜔),

1. 𝜙
𝜔
(0, 0) = x;

2. if (t1, j), (t2, j) ∈ dom(𝜙
𝜔
) with t1 < t2 then, for almost all t ∈ [t1, t2],

𝜙
𝜔
(t, j) ∈ C (13.13a)

𝜙̇
𝜔
(t, j) ∈ F(𝜙

𝜔
(t, j)) (13.13b)

3. If (t, j), (t, j + 1) ∈ dom(𝜙
𝜔
) then

𝜙
𝜔
(t, j) ∈ D (13.14a)

𝜙
𝜔
(t, j + 1) ∈ G(𝜙

𝜔
(t, j), 𝐯j+1(𝜔)). (13.14b)

In addition, to qualify as a solution, 𝐱 must have an appropriate measurability prop-

erty. This property, defined below, enables measuring probabilities and expected val-

ues associated with solutions; it also enforces a causal relationship between solutions

and the sequence of random variable inputs. We express measurability in terms of

the graphs of the sample paths 𝐱(𝜔) (see (13.9)). A solution is required to be such

that, for each i ∈ ℤ
≥0, the set-valued mapping

𝜔 ↦ graph(𝐱(𝜔)) ∩
(
ℝ

≥0 × {0,… , i} ×ℝn)
(13.15)

is an Fi-measurable set-valued mapping, where F0 ∶= {∅, 𝛺}, and
{
Fi

}∞
i=1 is the

natural filtration associated to
{
𝐯i
}∞
i=1; that is, the space of events

Fi ∶=
{{

𝜔 ∈ 𝛺 ∶ (𝐯1(𝜔),… , 𝐯i(𝜔)) ∈ A
}
,A ∈ 𝐁((ℝm)i)

}
.
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This particular measurability assumption imposes causality constraints on how the

solution depends on the random inputs. For more details, see [42]. See also Exam-

ple 13.6 below. It also guarantees that𝜔 ↦ graph(𝐱(𝜔)) isF -measurable [30, Propo-

sition 14.11(b)]. For more information about measurability of set-valued mappings,

see [30, Chap. 14].

13.5.3 Asymptotic Stability: Basic Definitions and Results

Stability theory for an attractor A proceeds under Assumptions 13.1, 13.2, and the

following extension of Assumption 13.4.

Assumption 13.5 The data (D,G) are such that

1. the set D ⊂ ℝn
is closed, and

2. the set-valued mapping v ↦ graphG(⋅, v) ∶= {(x, y) ∈ ℝn ×ℝn ∶ y ∈ G(x, v)}
is measurable with closed values. ■

The fact that the values of v ↦ graphG(⋅, v) are closed implies that, for each v ∈ ℝm
,

the set-valued mapping G(⋅, v) is outer semicontinuous.

A set A ⊂ ℝn
is said to be Lyapunov stable in probability for (13.5) if, for each

𝜀 > 0 and 𝜌 > 0 there exists 𝛿 > 0 such that

ℙ
(

graph(𝐱) ⊂ ℝ2 × (A + 𝜀𝔹)
)

≥ 1 − 𝜌 ∀𝐱 ∈ Sr(A + 𝛿𝔹). (13.16)

The reader may wish to compare the condition in (13.16) to the condition in (13.8).

A set A ⊂ ℝn
is said to be uniformly Lagrange stable in probability for (13.5) if,

for each 𝛿 > 0 and 𝜌 > 0 there exists 𝜀 > 0 such that (13.16) holds.

A set A ⊂ ℝn
is said to be globally attractive almost surely for (13.5) if, for every

solution 𝐱 and almost every 𝜔 ∈ 𝛺, 𝜙
𝜔
∶= 𝐱(𝜔) is a hybrid arc without finite escape

time and if its time domain is unbounded then limt+j→∞ |𝜙
𝜔
(t, j)|A = 0.

A set A ⊂ ℝn
is said to be uniformly globally attractive in probability for (13.5)

if every solution is almost surely bounded and, for each 𝜀 > 0, 𝜌 > 0 and 𝛥 > 0, there

exists T ≥ 0 such that, for all 𝐱 ∈ Sr(A + 𝛥𝔹),

ℙ
(
graph(x) ∩ (T

≥T ×ℝ2) ⊂ ℝ2 × (A + 𝜀𝔹)
)
≥ 1 − 𝜌. (13.17)

The reader may wish to compare the condition in (13.17) to the condition in (13.10).

A set A ⊂ ℝn
is said to be globally asymptotically stable in probability (GASp)

for (13.5) if it is Lyapunov stable in probability and globally attractive almost surely.

A set A ⊂ ℝn
is said to be uniformly globally asymptotically stable in probability

(UGASp) for (13.5) if it is Lyapunov stable in probability, uniformly Lagrange stable

in probability, and uniformly globally attractive in probability.

A set A ⊂ ℝn
is said to be robustly uniformly globally asymptotically stable in

probability (R-UGASp) for (13.5) if there exists a continuous function 𝜌 ∶ ℝn →
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ℝ
≥0 satisfying 𝜌(x) > 0 for all x ∈ ℝn∖A , such that A is uniformly globally asymp-

totically stable for the hybrid system

x ∈ C
𝜌

ẋ ∈ F
𝜌
(x) (13.18a)

x ∈ D
𝜌

x+ ∈ G
𝜌
(x, v+) (13.18b)

where the pair (C
𝜌
,F

𝜌
) is defined in (13.2) and the pair (D

𝜌
,G

𝜌
) is such that D

𝜌
is

defined in (13.4) and

G
𝜌
(x, v+) ∶=

{
g ∈ ℝn ∶ g + 𝜌(g)𝔹, g ∈ G((x + 𝜌(x)𝔹, v+) ∩ D)

}
. (13.19)

In turns out that, for the system (13.12) under Assumptions 13.1, 13.2 and 13.4,

GASp is equivalent to UGASp. On the other hand, so far we have established the

equivalence between GASp and R-UGASp only for the case where C = ∅, i.e., for

stochastic difference inclusions. However, a more general result does not appear to

face any obstructions and should be forthcoming.

Theorem 13.15 Under Assumptions 13.1, 13.2 and 13.4, the setA ⊂ ℝn is UGASp
for (13.12) if and only if it is GASp for (13.12).

The result of Theorem 13.15 is contained in [45].

Theorem 13.16 Suppose C = ∅. Under Assumptions 13.1, 13.2 and 13.4, the set
A ⊂ ℝn is R-UGASp for (13.12) if and only if it is GASp for (13.12).

The result of Theorem 13.16 is contained in [49].

13.5.4 Lyapunov Functions for Asymptotic Stability

Lyapunov functions prove useful for stochastic hybrid systems as well. A func-

tion V ∶ dom(V) → ℝ
≥0 is a Lyapunov function candidate for the set A ⊂ ℝn

and

the hybrid data (C,F,D,G, 𝜇), i.e., for (A , (C,F,D,G, 𝜇)), if C ∪ D ∪ G(D,V ) ⊂
dom(V), it is continuous on its domain, it is continuously differentiable on an open set

containing C, V(x) = 0 for all x ∈ dom(V) ∩A , V(x) > 0 for all x ∈ C ∪ D∖A , and

if the sequence of points
{
xi
}∞
i=1, with each point belonging to C ∪ D, is unbounded

then the sequence of values
{
V(xi)

}∞
i=1 is unbounded. It is a Lyapunov function if

⟨∇V(x), f ⟩ < 0 for all x ∈ C∖A and f ∈ F(x) and

∫ℝm
max

g∈G(x,v)
V(g)𝜇(dv) < V(x) ∀x ∈ D∖A . (13.20)

It is a Krasovskii–LaSalle function if ⟨∇V(x), f ⟩ ≤ 0 for all x ∈ C and f ∈ F(x),
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∫ℝm
max

g∈G(x,v)
V(g)𝜇(dv) ≤ V(x) ∀x ∈ D, (13.21)

and there does not exist a solution 𝐱 with unbounded time domain almost surely that

renders V constant and nonzero almost surely. The latter property holds if V is also

a Lyapunov function.

The following results parallel the earlier Theorems 13.2 and 13.3.

Theorem 13.17 Suppose C = ∅. Under Assumptions 13.1, 13.2, and 13.4,
(A , (C,F,D,G, 𝜇)) admits a Lyapunov function if and only ifA is GASp for (13.5).

The result of Theorem 13.17 is contained in [49].

Theorem 13.18 Under Assumptions 13.1, 13.2, and 13.4, if (A , (C,F,D,G, 𝜇))
admits a Krasovskii–LaSalle function then the set A is UGASp for (13.12) (and
R-UGASp when C = ∅).

The first part of Theorem 13.18 follows by combining the results in [39] with

Theorem 13.15, which comes from [45]. The result for C = ∅ follows by combining

the results in [47] with Theorem 13.16, which comes from [49].

The following example illustrates that the results of Theorems 13.17 and 13.18

would fail if the causality constraint, i.e., theFi-measurability of the set-valued map-

ping in (13.15), were not a part of the solution definition.

Example 13.6 Consider the stochastic difference inclusion

x1 ∈ {−0.6, 0.6} x+1 ∈ {−0.6, 0.6} (13.22a)

x2 ∈ ℝ x+2 = (x1 + v+)x2 (13.22b)

where the distribution 𝜇 associated to the iid random process driving the system

satisfies 𝜇 ({−0.6}) = 𝜇 ({0.6}) = 0.5. Given x ∈ D ∶= {−0.6, 0.6} ×ℝ, the map-

ping 𝜔 ↦ 𝐱(𝜔) defined for almost all 𝜔 ∈ 𝛺 by 𝐱(𝜔) ∶= 𝜙
𝜔

, 𝜙
𝜔
(0) ∶= x and, for all

j ∈ ℤ
≥0,

𝜙1,𝜔(j + 1) = 𝐯j+2(𝜔) ∈ {−0.6, 0.6} (13.23a)

𝜙2,𝜔(j + 1) =
(
𝜙1,𝜔(j) + 𝐯j+1(𝜔)

)
𝜙2,𝜔(j) (13.23b)

satisfies the appropriate recursion but not the causality constraint associated with the

set-valued mapping in (13.15). This particular mapping has the property that

ℙ
(
|𝐱2(j)| = (1.2)j|x2(0)| ∀j ∈ ℤ

≥0
)
= 0.5. (13.24)

In particular, the compact set A ∶= {−0.6, 0.6} × {0} is not GASp.

On the other hand, it is straightforward to show that the function V(x) = x22 is a

Lyapunov function for (A , (D,G)). ■
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Once again, an alternative to attempting to rule out solutions that keep V equal to

a nonzero constant almost surely involves employing Matrosov functions. See [42].

In this approach, we do not need to know anything about solutions to the stochastic

hybrid inclusion. Instead, we must work to find additional functions that have the

effect of ruling out solutions that keep V equal to a nonzero constant almost surely.

13.5.5 Recurrence: Definitions and Results

In this section, we study recurrence. The recurrence property plays a more important

role for stochastic systems than it does for non-stochastic systems. This is because,

in the stochastic case, a system may exhibit a recurrent, open, and bounded set but

not exhibit an asymptotically stable compact set. For example, consider the system

with C = ∅, D = ℝ, g(x, v+) = v+ and such that 𝜇 does not have compact support,

perhaps because it corresponds to a Gaussian distribution. In this case, there is no

compact set that is almost surely forward invariant, and thus no compact set that is

Lyapunov stable in probability. Compare this observation for the stochastic case with

Theorem 13.12 for the non-stochastic case. More results have been established for

recurrence than for asymptotic stability for the system (13.12).

We continue to use O to denote the recurrent set and will continue to assume that

it is open and bounded.

A set O ⊂ ℝn
is said to be globally recurrent (GR) for (13.12) if, for each solution

𝐱, there are no finite escape times almost surely and, almost surely, the sample paths

with unbounded time domains reach O , i.e., for almost all 𝜔 ∈ 𝛺, either dom(𝐱(𝜔))
is bounded or there exists (t, j) ∈ dom(𝐱(𝜔)) such that, with 𝜙

𝜔
∶= 𝐱(𝜔), 𝜙

𝜔
(t, j) ∈

O .

A set O ⊂ ℝn
is said to be uniformly globally recurrent (UGR) for (13.5) if there

are no finite escape times and for each compact set K ⊂ ℝn
and 𝜌 > 0 there exists

T > 0 such that, for each solution x ∈ S (K),

ℙ
(
𝛺1 ∪𝛺2

)
≥ 1 − 𝜌 (13.25)

where

𝛺1 ∶=
{
𝜔 ∈ 𝛺 ∶ dom(𝐱(𝜔)) ⊂ T

<T
}

(13.26a)

𝛺2 ∶=
{
𝜔 ∈ 𝛺 ∶ graph(𝐱(𝜔)) ∩

(
T

<T × O
)
≠ ∅

}
. (13.26b)

A set O ⊂ ℝn
is said to be robustly uniformly globally recurrent (R-UGR) for

(13.5) if there exists a continuous function 𝜌 ∶ ℝn → ℝ
>0 such that O is uniformly

globally recurrent for (13.18) where (C
𝜌
,F

𝜌
) are defined in (13.2) and (D

𝜌
,G

𝜌
) are

defined in (13.4).

The conditions of Assumptions 13.1, 13.3, and 13.4 confer the property that R-

UGR and global recurrence are equivalent.
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Theorem 13.19 Under Assumptions 13.1, 13.3, and 13.4, the setO ⊂ ℝn is R-UGR
for (13.12) if and only if it is globally recurrent for (13.12).

Theorem 13.19 was established in [40].

13.5.6 Foster Functions for Recurrence

A function V ∶ dom(V) → ℝ
≥0 is a Lyapunov–Foster function candidate for the set

O ⊂ ℝn
and the data (C,F,D,G, 𝜇) of (13.12), i.e., for (O , (C,F,D,G, 𝜇)), if C ∪

D ∪ G(D,V ) ⊂ dom(V), it is continuous on its domain, continuously differentiable

on an open set containing C, and if the sequence of points
{
xi
}∞
i=1, with each point

in C ∪ D, is unbounded then the sequence of values
{
V(xi)

}∞
i=1 is unbounded. It is a

Lyapunov–Foster function if ⟨∇V(x), f ⟩ < 0 for all x ∈ C∖O and f ∈ F(x), and

∫ℝm
max

g∈G(x,v)
V(g) < V(x) ∀x ∈ D∖O . (13.27)

It is a Krasovskii–LaSalle–Foster function if ⟨∇V(x), f ⟩ ≤ 0 for all x ∈ C∖O and

f ∈ F(x),

∫ℝm
max

g∈G(x,v)
V(g) ≤ V(x) ∀x ∈ D (13.28)

and there does not exist a solution 𝐱 that is has an unbounded time domain almost

surely and that almost surely never intersects O while keeping V equal to a nonzero

constant. The latter property holds ifV is a Lyapunov–Foster function. In the stochas-

tic case, recurrence does not guarantee the type of uniformly decreasing Lyapunov–

Foster function we encountered in the non-stochastic case. Instead, we consider the

following definition: It is a uniformly decreasing (on compact sets) Lyapunov–Foster
function if there exists a continuous function 𝜆 ∶ ℝn → ℝ

>0 such that ⟨∇V(x), f ⟩ ≤
−𝜆(x) for all x ∈ C∖O and f ∈ F(x) and

∫ℝm
max

g∈G(x,v)∩(ℝn∖O)
V(g)𝜇(dv) − V(x) ≤ −𝜆(x) ∀x ∈ D∖O . (13.29)

The following result is contained in [35].

Theorem 13.20 Under Assumptions 13.1, 13.3, and 13.4, (O , (C,F,D,G, 𝜇)) admits
a uniformly decreasing (on compact sets) Lyapunov–Foster function if and only ifO
is recurrent for (13.5).

The following theorem is a combination of results in [39] and Theorem 13.19,

which came from [40].
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Theorem 13.21 Under Assumptions 13.1, 13.3, and 13.4, if (O , (C,F,D,G, 𝜇)) admits
a
Krasovskii–LaSalle–Foster then the set O is R-UGR for (13.5).

Example 13.2 above, with O a small open neighborhood of the origin, provides a

counterexample to the conclusion of Theorem 13.20 when Assumption 13.1 is omit-

ted.

13.6 Conclusions

In this paper, we have summarized the stability theory that is currently available for

stochastic hybrid inclusions. Most of the pieces are in place, though some impor-

tant open questions remain, especially for the case where there is randomness in

the differential inclusion. This chapter is light on examples, though examples have

been studied elsewhere, either in the literature on stochastic hybrid systems with

unique solutions or in papers like [42]. For example, the latter studies the stochas-

tic bouncing ball, which exhibits Zeno sample paths (typically each with different

Zeno times). Both asymptotic stability and recurrence are considered for that exam-

ple. We believe that many interesting additional applications are waiting to be made.

Indeed, stochastic hybrid inclusions provides a very rich modeling framework for

systems that combine continuous change, instantaneous change, worst-case distur-

bances, and random inputs.
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