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Abstract. Cochlear implants can restore hearing to completely or par-
tially deaf patients. The intervention planning can be aided by providing
a patient-specific model of the inner ear. Such a model has to be built
from high resolution images with accurate segmentations. Thus, a precise
segmentation is required. We propose a new framework for segmentation
of micro-CT cochlear images using random walks combined with a sta-
tistical shape model (SSM). The SSM allows us to constrain the less
contrasted areas and ensures valid inner ear shape outputs. Addition-
ally, a topology preservation method is proposed to avoid the leakage in
the regions with no contrast.

Keywords: Random walks · Segmentation · Shape prior · Iterative seg-
mentation · Distance map prior · Statistical shape model · SSM · Cochlea
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1 Introduction

The HEAR-EU1 project aims at reducing the inter-patient variability in the
outcomes of surgical electrode implantation by improving CI designs and surgical
protocols using computational models [1,2]. These models are generally built
from the segmentations of high resolution images where a large amount of intra-
cochlear structures are visible on the image. In this context, we propose a method
that enables an accurate segmentation of the inner ear in micro-CT images which
contains the hearing organ known as the cochlea. This aids the generation of
accurate patient-specific computational models, which can guide implant design,
insertion planning and selection of the best treatment strategy for each patient.

The research leading to these results received funding from the European Union
Seventh Frame Programme (FP7/2007-2013) under grant agreement 304857.

1 http://www.hear-eu.eu/.
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There are a few studies on semi- or fully automatic inner ear segmentation
from micro-CT data. However, due to the complexity of the anatomical struc-
ture, it is generally a manual procedure [3]. One semi-automatic approach to
obtain the cochlea is based on 2D snakes [4], but it requires a high degree of
user interaction to locate the initial contour and adjustment of the parameters.
Another technique is based on statistical shape models (SSMs) [5], where the
high resolution segmentations are used to build a statistical model and assist the
segmentation of low resolution cochlear images. In order to accurately segment
the cochlea in high resolution micro-CT images using the classical SSM app-
roach introduced by Cootes [6], a large number of processed data sets would be
required to learn the correct anatomical variability of the data. The scarce avail-
ability of micro-CT images means that we have to consider other segmentation
strategies.

In order to alleviate these issues, we proposed a new algorithm using random
walks with a distance-based shape prior, which is robust independently of the
chosen prior and which requires no user interaction [7,8]. Random walks seg-
mentation is a graph-based segmentation method proposed by Grady [9]. This
technique has become very popular because it is robust to noise and weak bound-
aries and it can be easily extended to 3D and to an arbitrary number of labels.
According to the author, random walks can outperform the well-known graph
cuts [10] in terms of weak boundaries since the latter tries to minimize the total
edge weights in the cut. Thus, graph cuts may return very small segmentations
(“small cut” behaviour) in presence of low contrast, a small number of seeds
or noise [9]. Additionally, random walks can be straightforwardly generalized to
multi-label segmentation unlike graph cuts which usually use complex alpha-beta
techniques [11].

Generally, the intensity information is not enough to obtain the object of
interest. Thus, a shape prior can be incorporated to be able to separate the
target object from the rest of the image. Some techniques to incorporate prior
knowledge into random walks have been proposed. Constrained random walks
algorithm is developed for pedestrian segmentation [12]. Given binary pedestrian
silhouette images as a training data, a pedestrian shape prior model is built by
averaging the training data for every pose, as well as averaging all training data
to obtain a general prior model. The pedestrian shape models are incorporated
into the random walks formulation. The constrained random walks are applied
for every shape model separately, and the final segmentation is the one with the
highest probability. Baudin et al. proposed a similar work applied to the skele-
tal muscle [13]. The prior model of the thigh muscles is derived from learning a
Gaussian model based on previous segmentations of the thigh muscles in a train-
ing set. The main drawback of both methods is the sensitivity to the average
model and to the registration inaccuracies. The same may occur in [14] where
prior knowledge is obtained from a probabilistic atlas to perform prostate seg-
mentation. In order to allow large scale deformations, Baudin et al. introduced
the principal component analysis (PCA) into the random walks formulation [15].
The shape deformation is constrained to remain close to PCA shape space built
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from training examples. However, the method does not allow representing shapes
that differ too much from the standard shapes [16]. According to the authors,
PCA can not deal properly with probabilities. Thus, they suggest to find a dif-
ferent shape space more compatible with probabilities such as the barycentric
model. A similar work using PCA is presented in [17] which utilizes a PCA-based
shape model as a prior but it is also sensitive to the average shape. In order not
to be constrained to the average shape, the guided random walks are proposed
[18] where the closest subject to the target object in a given database is retrieved
to guide the segmentation. If there is not a close shape in the database, the stan-
dard random walks are performed. The limitations of this method are that all
the samples of the training data must be considered in order to find the closest
data set to the target image and that in case there is no good match, it only
relies on the standard random walks. Random walks with shape prior have also
been used for video tracking and segmentation [19,20].

An extension of random walks was presented by Grady in [21] by integrating
a non-parametric probability density model which allows localization of discon-
nected objects and eliminates the requirement of user-specified labels. We use
this framework to incorporate prior knowledge into random walks formulation
where the region term and the shape prior information given by a SSM constitute
the probability density model.

There are some works combining a classical segmentation method with a
SSM. Two of the most common methods are based on graph cuts [22–28] and
level sets [29–32] where they generally use an implicit representation of shapes
such as a signed distance map relaxing the need for a costly landmark detection
and matching process. In our work, we choose random walks due to the numerous
advantages mentioned above.

In this paper, we present an extension of our previous work [7,8] combining
random walks with a SSM to benefit from the strengths of both methods. The
region term is combined with a distance-based prior constrained by a SSM.
The SSM allows us to constrain the segmentation to a valid inner ear shape to
obtain anatomically correct segmentation results. The confidence map adjusts
the influence of the prior in certain areas making the method, along with the
region term, less sensitive to the average shape. A topology preservation method
is also proposed to avoid leakage in the interior and the turns of the cochlea [33].
In the remainder of this paper, we explain the details of the proposed method
and show the experimental results on micro-CT images of the inner ear.

2 Random Walks Segmentation

An image can be represented as a graph where the nodes are the pixels of the
image, and the weights represent the similarity between nodes. Vertices marked
by the user as seeds are denoted by Vm and the rest by Vu. Given some seeds,
vj ∈ Vm, the random walker assigns to each node, vi ∈ Vu, the probability, xs

i ,
that a random walker starting from that node first reaches a marked node, vj ∈
Vm assigned to label gs. The random walks segmentation is then completed by
assigning each free node to the label for which it has the highest probability [9].
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An extension to random walks was proposed in [21] by incorporating a prob-
ability density model based on the gray-level intensity for each label. Let λs

i be
the probability density that the intensity at node vi belongs to the intensity
distribution of label s. The modified random walks segmentation is obtained by
solving the following system [21]:(

L + γ

n∑
r=1

Λr

)
xs = γλs (1)

where Λ = diag(λs), n is the number of labels, γ is a free parameter and L is
the Laplacian matrix which can be defined as:

Lij =

⎧⎨
⎩

di if i = j
−wij if vi and vj are adjacent nodes
0 otherwise

(2)

where Lij is indexed by the vertices vi and vj and di =
∑n

j=1 wij . The weight
function wij can be computed as:

wij = exp(−β(Ii − Ij)2) (3)

where Ii is the intensity at pixel i and β is a free parameter related to the
bandwidth kernel. The weight range is between 0 and 1 and the higher the
weight the larger the similarity between pixels [34,35].

For more details, we refer to [21]. In this work, we use this framework to
perform image segmentation but instead of using an intensity-based distribution,
we propose a more robust density estimation considering region information as
well as shape prior knowledge given by a SSM. We explain them in detail in the
remaining part of the section.

2.1 Region Term Formulation

The region term partitions the image in terms of intensities (bright versus dark).
A histogram is built from one of the slices of the inner ear. Then, two Gaussian
components representing the inner ear including other regions with the same
intensity profile and the background are fitted to the histogram with a Gaussian
mixture model (GMM). The region-based term can be defined as:

Di(li) =
{− ln p(xi|O) if li = object

− ln p(xi|B) if li = background
(4)

where xi is the pixel indexed by i, l is the label and p(xi|O) and p(xi|B) are
the probabilities estimated by the GMM of pixel at i belonging to object and
background intensity, respectively.
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2.2 Shape Prior Knowledge and Statistical Shape Model

Once the region term is obtained, the shape prior is computed to discard areas
which do not belong to the inner ear and have similar intensity values. The
use of a SSM can provide a realistic prior to initialize the whole segmentation
process, and further be a source of plausible shape regularization during each
iteration of the random walker. The SSM is used with a procedure, which we
refer to as statistical non-rigid registration, described as follows. We perform a
non-rigid image registration between a reference data set, IR, and the target
image, IS , which in the framework of elastix [36] is formulated as an opti-
mization problem. The (parametric) transformation that aligns the two images,
Tη : IR → IS is described by the vector η containing q-parameters which is found
by optimization of a cost function, C.

η̂ = arg min
η

C(TSDM
η , IR, IS), where C = SSim(η, IR, IS) (5)

The chosen transformation is a B-Spline model regularized by a Statistical
Deformation Model (SDM) to constrain the non-rigid registration. The SDM was
trained by registering a reference data set against 16 different data sets using
the registration model described in [37]. The output of each registration is a
vector of q-deformation parameters which describes a B-Spline deformation field.
Considering the parameters of the B-Spline model to be corresponding variables,
a principal component analysis on the 16 fields was made using Statismo [38]
to obtain a description of deformation variability in a reduced parameter-space.
This type of transformation model is made available through an integration of
the Statismo-elastix packages. The cost function, C, is solely an image similarity
measure, in this case using the normalized correlation coefficient. Note, that if the
image intensities were normalized to the HU scale, it would be sufficient to use
the sum of squared differences. That was, however, not the case for our data. The
optimization is solved using Adaptive Stochastic Gradient Descent [39], which is
shown to be a good choice for medical image registration with a limited number
of parameters [36,39].

From the statistical non-rigid registration, the deformation between the ref-
erence and target images is applied to the segmentation of the reference data set
to obtain the shape prior. This prior is constrained to be an anatomically correct
cochlea and from its contour we can build a distance map. The idea is that given
an estimation of the location and shape of the object to segment, pixels close to
the shape contour are more likely to be labelled as foreground and vice versa.
The formulation can be defined as follows [40]:

Si(li = object, θ) = p(xi = object|Θ) = 1 − p(xi = background|Θ) =
1

1 + exp(μ · (d(i, Θ) − dr))

(6)
where d(i, Θ) is the distance of a pixel i from a shape Θ, being negative inside
the shape and positive outside the shape. Here, μ is a penalty term determined
by the ratio of points outside the shape compared to the points inside the shape
and dr is the “width” of influence of the shape.
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Then, the distance-based shape prior term is:

Si(li, Θ) =
{

p(x = object|Θ) if li = object
1 − p(x = object|Θ) if li = background

(7)

2.3 Random Walks with Region and Prior Knowledge Terms

We combine the region and shape prior terms by a weighted sum. We use a con-
fidence map to adjust the influence of the shape prior according to the strength
of the image contour by reducing the weight of this prior where strong contours
are present. The formulation is as follows:

Etotal(li) = kSi(li, Θ) · ci + (1 − k)Di(li) · 1
ci

. (8)

where k is the weight of each term and c is the confidence map defined as
ci = exp(−kvσ2

r(i)) where σ2
r(i) is the variance at pixel i computed on a patch

with radius r, and kv is a free parameter that determines the bandwidth of the
Gaussian. Equation 8 is used to obtain λs in the random walks formulation in
Eq. 1 for every label, which results in a segmentation. This segmentation is statis-
tically non-rigidly registered against the reference segmentation to obtain a new
prior constrained by the SSM. Note that this second registration is performed in
the binary segmentation in contrast to the initial prior whose registration was
between the grayscale reference and target images and the resulting deformation
was applied to the reference segmentation to obtain the prior. The distance-based
prior is then built from Eq. 6 and the random walks segmentation is performed
again. This procedure continues until convergence or until the maximum number
of iterations is reached. In order to avoid merging the non-contrasted areas of
the cochlea, the topology preserving method described in [33] is proposed. The
topology preservation method computes the unit outward normal vector of the
contour and when two vectors are pointing in opposite directions, the contours
in this area are not allowed to merge.

3 Results

In this experiment, 10 micro-CT data sets of the inner ear are used to perform
the segmentation in 3D using the proposed method. The original 3D data set
was downsampled from a nominal isotropic resolution of 24.5μm to 49 μm for
computational efficiency reasons. Every data set contains around 213 slices with
an average size of 413 x 275 pixels. The ground truth is manually annotated.
The initial prior is obtained as described in Sect. 2.2. The SSM is built from 17
different data sets (one reference and 16 training samples).

The following parameters were used to produce the results: γ = 0.8 in Eq. 1,
dr = 0 and μ = 1.0 in Eq. 6 and the total number of iterations are 4 with k = 0.8
in Eq. 8.

Some inner ear segmentation results using our approach are illustrated in
Fig. 1. In this example, we can observe from the 3D volume that the topology
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Fig. 1. Inner Ear segmentation. (a) Segmentation in 3D. (b) Slices of the 3D segmen-
tation. (c) Ground truth.
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Fig. 2. Segmentation quality shown as a box plot in terms of the Dice similarity coef-
ficient for the proposed approach and the SSM alone. The results of our method show
a smaller standard variation and better performance than the other technique.

of the inner ear shape is preserved and that the contour of the segmentation is
adjusted to the edges of the image whereas the interior of the cochlea and less
contrasted areas are conserved due to the shape prior and topology preservation
method.

To quantify the segmentation quality for the proposed method, we compute
the well-known Dice with respect to a manual ground truth. The formulation is
defined as Dice = 2TP

2TP+FN+FP where TP and FP stand for true positive and
false positive and TN and FN for true negative and false negative. We compare
our approach with the initial shape prior (corresponding to using the SSM alone)
described in Sect. 2.2. The proposed method achieves a mean Dice index of 0.947
and the initial shape prior reaches a mean Dice index of 0.856. The reason for a
lower value is that 17 samples are obviously not enough to cover the true variability
in inner ear shapes in high resolution images. The results are presented in Fig. 2
where we can observe a high improvement from using the SSM alone. In contrast
with the SSM method alone, the Dice similarity coefficients computed from the
segmentation results of the proposed technique have a smaller standard deviation
having a small range of Dice values between [0.94,0.95] except for one single case
that it has a 0.92 of Dice. The reason of these satisfactory results is that the exterior
of the cochlea can be efficiently separated as there is enough contrast between the
cochlea and background and the small and invisible regions can be extracted with
the guidance of the prior. The topology preservation method prevents leakage in
the non-contrasted areas. In high gradient areas of the image (edges) around the
prior, the confidence map reduces the influence of the prior coping with the possible
artefacts and inaccuracies in the prior shape. It is clear that for internal regions,
this method relies on the prior but the SSM constrains the shape of these areas
and for the exterior of the inner ear, the region term with the prior can provide
promising results.
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4 Conclusion

We presented a new framework for the inner ear segmentation in micro-CT
using the random walks algorithm which is able to deal with weak boundaries
efficiently. The combination of the distance map prior with a region term into
random walks provides accurate segmentations of the inner ear. The SSM allows
us to constrain the interior part of the cochlea to a valid shape while the exterior
of the contour evolves along the shape prior. In this work, the SSM is imple-
mented as a non-rigid registration with learnt statistical shape regularization.
The experiments suggest that the proposed approach is robust and accurate for
the inner ear segmentation in micro-CT images. As future work, we would like
to do an exhaustive analysis and thorough study of this method as well as a
comparison with other methods.

Acknowledgments. The research leading to these results received funding from the
European Union Seventh Frame Programme (FP7/2007–2013) under grant agreement
304857, HEAR-EU Project.
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