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Abstract. We address the challenge of variability in the definition of
anatomical structures over time in a single subject, using a template-
based diffeomorphic mapping algorithm to filter out inconsistencies.
Shape changes are parametrized through 2D surfaces, while data attach-
ment is specified through dense 3D images. The mapping uses two geo-
desic trajectories through diffeomorphism space: template to baseline,
and baseline through the timeseries. We apply this algorithm to a study
of atrophy in the entorhinal and surrounding cortex in patients with mild
cognitive impairment, characterized by rate of change of log-volume. We
compare the uncertainty in atrophy rate measured from manual segmen-
tations, to that computed with segmentations filtered using our longi-
tudinal method, and to that computed from FreeSurfer. Our method
correlates well with manual (correlation coefficient 0.9881, and results
in significantly less variability than manual (p 8.86e-05) and FreeSurfer
(p 1.03e-04).

1 Introduction

While post mortem analysis of plaques and tangles in the brain have long been
used as the diagnostic criteria for Alzheimer’s disease, structural imaging can be
important in clinical studies of the disease. The earliest anatomical changes in
patients with mild cognitive impairment (MCI) [12] are neuronal cell death in the
entorhinal cortex (EC) [7], and have been detected through structural imaging.
Atrophy biomarkers measured through neuroimaging have been shown to be
predictive of disease onset [24], and are associated with reduced performance on
memory related tasks [22] relevant to a patient’s lifestyle.

We have been quantifying these early changes through techniques in com-
putational anatomy known as diffeomorphometry. By identifying spatial corre-
spondences between brain atlases and subject scans via smooth diffeomorphic
mappings, we can infer information about anatomical changes through proper-
ties of theses diffeomorphisms, such as their determinant of Jacobian (see [9] for
a recent review).
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Estimation of these diffeomorphisms is complicated by high dimensional nui-
sance variables. The mappings are not uniquely specified in the homogeneous
interiors of anatomical structures. Discriminating information is only present
on image discontinuities. To address this problem, parsimonious representations
have been developed by parametrizing shape changes through a function on the
bounding surfaces of anatomical structures, an object of the natural dimension
for describing these shapes. In this framework, low dimensional parametric coor-
dinates have been developed by expanding this function in a basis determined
through principal component analysis [13,21], or through eigenfunctions of the
Laplace-Beltrami operator [20].

On the other hand, the majority of neurimaging data, such as T1 MR images
and binary segmentations, is in the form of dense 3D volumes. We have developed
a method to incorporate the advantages of the efficient surface representation
such as robustness to noise [20] and reproducibility [19], with simple and real-
istic noise models obtained by working directly with neuroimaging data. These
models include white noise (sum of square error) when working with T1 images,
or multivariate Bernoulli when working with multiple segmentations [17], as
opposed to less easily interpretable data attachment models that work directly
with surfaces such as currents or varifolds [1].

Despite these advantages, our ability to infer properties of disease progression
is limited by the inconsistency of segmentations of anatomical structures. The
problem we address here is the variability in these definitions within a single
subject over time in longitudinal studies. This source of variability prevents us
from making inferences on an individual level, and mandates larger sample sizes
in studies of populations. We address this challenge by extending our framework
to map onto each segmentation in the timeseries simultaneously.

This extension has been approached in several different ways. Longitudinal
Freesurfer [6,14] addresses this issue with a common initialization of optimization
problems for each scan in a timeseries. It avoids modelling any growth or atrophy
process with the intention of avoiding bias by privileging a given (e.g. baseline)
scan, and to allow the capture of sudden changes.

Several models for growth and atrophy scenarios using flows of diffeomor-
phisms are discussed in [5], with a focus on modelling populations of timeseries,
and describing relationships of a given growth process to a typical one. More com-
plex statistical processes are described through higherarchical geodesic models
in [15]. In [11], several parametrizations of these flows are considered, includ-
ing piecewise geodesic (also used in [5]), spline based, and geodesic shooting (in
order of increasing regularity in time).

For our specific problem, filtering out inconsistencies in anatomical defini-
tions, we are less concerned with over regularization and use the shooting app-
roach, using two geodesic trajectories through the space of diffeomorphisms: one
from template to baseline, and one from baseline through the timeseries. Such
an approach will be shown to significantly reduce this source of variability.
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2 Method

2.1 Data

T1 brain MR images from the Alzhimer’s Disease Neuroimaging Initiative
(ADNI) dataset were examined.1 Twenty patients were selected, older adults
(age 72 ± 8 years), 60% male, education of 17 ± 3 years, with mild cognitive
impairment, and having a continuous left collateral sulcus (the most common
anatomical variant, others are described for example in [3]). Each subject was
scanned up to 5 times, and at least 3 times (so that a residual can be estimated
after linear fitting), over 2 years. The EC and immediately lateral cortex (the
trans entorhinal cortex, TEC) were analyzed for the presence of atrophy.

Structures were delineated by manual segmentation, on T1 structural scans
using the anatomical boundaries described in [8]. The emergence of EC occurs
2 mm caudal to the appearance of the limen insulae and ends 1 mm caudal to the
disappearance of the uncus. To account for morphological variation in the limen
insulae and uncus, the most rostral boundary of EC was defined 4 mm anterior to
the hippocampal head and the most caudal boundary was defined 2 mm posterior
to the disappearance of the gyrus intralimbicus, which appears at the caudal end
of the uncus. With regard to the medial-lateral boundaries, segmentations were
extended as far medially as discernible gray/white matter boundaries would
allow and the EC/TEC boundary was delineated vertically at the midpoint
of the medial bank of the collateral sulcus. For comparison with state of the
art, segmentations were also performed by FreeSurfer version 5.1 that utilizes
the 2010 Desikan-Killany atlas [6,14]. We did not use the longitudinal pipeline
because the resulting data for the entorhinal cortex was extremely variable and
did not look viable.

Imaging data for each subject was rigidly aligned to baseline by minimizing
sum of square error in T1 images, and imaging data between subjects was rigidly
aligned to a single subject through 4 landmarks placed automatically at the
boundaries of the segmentations, minimizing sum of square distances between
pairs of landmarks. For each subject i, at time tj , we denote the rigidly aligned
manual segmentation image as J ij .

1 Data used in the preparation of this article were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database (http://adni.loni.usc.edu). The
ADNI was launched in 2003 as a public-private partnership, led by Principal Investi-
gator Michael W. Weiner, MD. The primary goal of ADNI has been to test whether
serial magnetic resonance imaging (MRI), positron emission tomography (PET),
other biological markers, and clinical and neuropsychological assessment can be com-
bined to measure the progression of mild cognitive impairment (MCI) and early
Alzheimer’s disease (AD). For up-to-date information, see http://www.adni-info.
org.

http://adni.loni.usc.edu
http://www.adni-info.org
http://www.adni-info.org
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2.2 Equations of Diffeomorphometry

The background space of an image, Ω ⊂ R
3 is deformed by a diffeomorphism

ϕ : Ω → Ω, which is generated by a flow under a smooth time varying velocity
vector field v : Ω → R

3

ϕ̇t = vt(ϕt), ϕ0 = identity, ϕ
.= ϕ1. (1)

To ensure solutions are diffeomorphisms, the vector fields are modelled as belong-
ing to a Hilbert space of smooth functions V [23], with inner product given by
〈v, v〉V

.= 〈Lv,Lv〉L2 for L a differential operator designed to give smoother
functions a smaller norm. Here we implicitly choose L such that the Green’s
function of L∗L (for ∗ referring to adjoint) is given by the Gaussian kernel
K(x, y) = exp

(− 1
2σ2 |x − y|2) for σ = 6 mm.

This defines geodesics through the space of diffeomorphisms given by Euler’s
equation. Defining the momentum distribution in the dual V ∗ as μ

.= L∗Lv, this
can be written as [10]

μ̇ = −[Dv]T μ (2)

We model the family of deformations used to study this population through
initial momentum supported on the Nv vertices of a triangulated surface tem-
plate, qi for i ∈ {1, . . . , Nv}, that contours our structures of interest

μ0 =
Nv∑

i=1

δqipi

where δx is the Dirac distribution centered at x, and pi is a vector in R
3 parame-

trizing our deformation. The parameters p will be estimated to model the shape
of each structure in a timeseries or population. For notational convenience we
write exp(p) = ϕ, for p the parameters, and ϕ the diffeomorphism calculated by
solving (2) and (1). Note that ‖v‖2V .= 〈v, v〉V =

∑Nv

i,j=1 pT
i K(qi, qj)pj which we

write as ‖p‖2V ∗ .
These diffeomorphisms act on images through their inverse ϕ ·I .= I ◦ϕ−1, for

I : Ω → R an image, which in our discrete implementation is computed through
trilinear interpolation. In general we will estimate p by minimizing the sum of
square error between segmentation images ‖ exp(p) · I −J‖2L2

for I our template
image and J a target image.

2.3 Algorithms

We construct a hypertemplate surface, with vertices qh, using a restricted delau-
nay triangulation [2] of the isosurface of the average image of our aligned baseline
segmentations. A hypertemplate image Ih is generated by filling each voxel with



Reducing Variability in Anatomical Definitions 55

its fraction inside the surface (estimated by Monte Carlo sampling). We calculate
the deformation parameterized by p0h, minimizing the cost function

1
2σ2

p0
h

‖p0h‖2V ∗ +
Ns∑

i=1

1
2σ2

pi
h

‖pi
h‖2V ∗ +

1
2σ2

Ii
h

‖ exp(pi
h) · exp(p0h) · Ih − J i1‖2L2

over p0h and the nuisance parameters pi
h, for J i1 the target binary segmenta-

tion image of the baseline scan for the i-th out of Ns = 20 subjects. The σ2
·

are scalar parameters that provide the flexibility to change relative weighting
between terms, but here they are each set to 1. We denote our resulting tem-
plate image I

.= exp(p0h) · Ih and our template vertices q = exp(p0h)(qh) (i.e.
each vertex is transformed directly by the diffeomorphism generated by p0h). A
diagram of this setup is shown in Fig. 1.

Fig. 1. Illustration of template estimation procedure for six subjects in our population.
The hypertemplate is shown in green, the estimated template in cyan, the template
deformed to match baseline in blue, and the target baseline scans in red (Color figure
online).

Given this template (surface q and image I), we can map onto the timeseries
for subject i at each time tj for j ∈ {1, . . . , Nti} by minimizing the cost function

1
2σ2

p0

‖pi
0‖2 +

1
2σ2

p1

‖pi
1‖2V ∗(tiNti − ti1)

+
Nti∑

j=1

1
2σ2

Ij

‖ exp(pi
1(t

ij − ti1)) · exp(pi
0) · I − J ij‖2L2

over the parameters pi
0 and pi

1. The σ2
· again provide relative weighting between

terms, and they are set to σ2
p0

= 2, σ2
p1

= σ2
Ij = 1 (chosen heuristically). For

this dataset we express tij in units of 6 months. A diagram of this setup is shown
in Fig. 2, where Iij .= exp(pi

1(tj − t1)) · exp(pi
0) · I. Essentially pi

0 represents the
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Fig. 2. Example longitudinal mapping results for two subjects. The template is shown
in cyan, the deforming template in blue, and the target in red. Top: high variability
example, bottom: low variability example (Color figure online).

“intercept” and pi
1 represents the “slope” of a linear regression in the space of

diffeomorphisms for subject i.
Each of these minimization problems are solved by gradient descent using

an adjoint algorithm. The gradient of each term in the matching cost, namely
(ϕ · I − J), is transported backwards in time through a linearized version of the
dynamics (1), (2), and İt = −∇Itvt (optical flow), and contributes additively to
the gradient of the the cost function with respect to the parameters. Details of
this approach can be found in [20] (or [4] for a similar approach).

2.4 Per Subject Atrophy Rate Estimation

We use the following log-linear model to estimate volumetric atrophy rate in
each subject

log vij = ai
0 + ai

1t
ij + εij

where vij is subject i’s entorhinal cortex and trans entorhinal cortex volume at
time tij , estimated by summing voxels in the segmentations Iij or J ij (for I,
these take value 1 for interior voxels and values between 0 and 1 for boundary
voxels) times voxel volume (0.9375 mm × 1.2 mm × 0.9375 mm = 1.0574 mm3),
ai
0 is a nuisance parameter (log volume at t = 0), and ai

1 is the atrophy rate
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(exponential time constant). In this model, εij is assumed to be independent
Gaussian noise with variance σ2

i .
Each parameter is estimated by maximum likelihood, including σ2

i which is
the mean square error of the fit. The variance of our atrophy rate estimator is
given by

Var[âi
1] =

σ̂2
i

Ntiσ2
ti

(3)

where Nti is the number of timepoints for subject i, σ2
ti is the variance in scan

times, and σ̂2
i is our estimate of the variance in εij . Note that (3) agrees with

the residual bootstrap variance estimator within 3.3% (root mean square percent
error), but in the case that our linear model is incorrect this quantity can still
be interpreted simply as a rescaling of square error after the linear fit.

2.5 Evaluation

We evaluate the accuracy of atrophy rate estimates by examining correlation
with manual segmentations. We evaluate the variability by comparing the stan-
dard deviation (calculated from (3)) of this estimator measured from manual
segmentations, to that measured after our filtering procedure, and to that com-
puted from FreeSurfer.

3 Results

3.1 Mapping Results

The estimated entorhinal cortex and trans-entorhinal cortex atlas is shown in
cyan in Figs. 1 and 2 (cyan). Two example longitudinal maps are shown in Fig. 2,
illustrating a high variability case (top), and a low variability case (bottom). Note
the difference in anterior-posterior (left-right on the figure) extent in the manual
segmentations (red) for the first two timepoints for the high variability subject.
This inconsitency has been filtered out by our mapping procedure (blue).

3.2 Atrophy Rate

For the two subjects shown in Fig. 2, volumetric analysis is shown in Fig. 3.
Volumes of the manual segmentations are shown as red dots, while volumes of
the deforming template are shown as a blue line. The volume of the deformed
template corresponding to each measured timepoint is shown as a blue dot, and
the volume of the template itself is shown as a cyan dot on the left. The reduction
in variance due to the longitudinal mapping procedure is evident, particularly
for the highly variable subject (left).

The atrophy rate estimated for each subject is shown in Fig. 4, with manual
segmentations shown in red, the results of our longitudinal mapping procedure
shown in blue, and results from Freesurfer shown in green for comparison with
state of the art.
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Fig. 3. The mapping procedure’s stabilization of volume measurements is illustrated
for left: high variability example, and right: low variability example. The horizontal
axis indicates months elapsed since baseline scan.

Fig. 4. Estimated atrophy rate in units of exponential time constant, for each of the
20 subjects examined (horizontal axis), is shown for each subject examined as a bar.
Standard deviation of the estimator is shown as an errorbar.

3.3 Quality of Atrophy Rate Estimates

Atrophy rate estimators are quite consistent between the manual segmentations
and the longitudinal maps (correlation coefficient 0.9881), and not very consis-
tent with FreeSurfer results (correlation coefficient 0.2283), as can be seen in the
scatter plot in Fig. 5.

The standard deviation of our atrophy rate estimator, computed according to
the square root of (3), is shown in Fig. 6. Significant differences between the three
methods are determined by pairwise signed rank tests. Variance is significantly
reduced in longitudinal maps relative to manual segmentations (p = 8.86e-05)
and relative to FreeSurfer (p = 1.03e-04). However, variance in FreeSurfer esti-
mates is not significantly different from manual segmentations (p = 6.81e-01).
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Fig. 5. Correlation between atrophy rate measured from manual segmentations (hor-
izontal axis) and estimated with two methods (vertical axis) in units of exponential
time constant is visualized with a scatter plot. Correlation coefficient for longitudinal
maps: 0.9881, and for FreeSurfer: 0.2283.

Fig. 6. Standard deviation of our atrophy rate estimator in units of exponential time
constant, for each of the 20 subjects examined (horizontal axis), is shown for volume of
manual segmentations (red) and volume of our template deformed by the longitudinal
mapping procedure (Color figure online).

4 Discussion and Conclusion

As our population of manual segmentations expands to include healthy control
subjects in addition to those with MCI, we intend to employ this procedure to
identify changes that are specific to disease, as opposed to normal aging. Local
modelling of tissue change based on determinant of Jacobian of our mappings
will likely prove more sensitive than the volumetry presented here, and can be
expanded to include volume change (determinant of 3 × 3 Jacobian), surface
area change (determinant of the 2×2 component of the Jacobian tangent to the
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template surface), and thickness change (determinant of the 1× 1 component of
the Jacobian normal to the template surface). An example of early work with
this type of analysis can be found at [18].

Because our method treats each segmentation differently depending on its
position in the timeseries, unlike the approach in longitudinal FreeSurfer as
mentioned in the introduction, the potential for processing bias exists. This was
estimated by reversing the order of the timeseries and repeating the experiment,
showing an average overestimate in the magnitude of atrophy rate constant of
0.01. This is a small source of error relative to the inconsistencies in anatom-
ical definitions over time we have sought to address. One simple approach for
removing this source of bias is to take the average of the forwards and reversed
atrophy rates. A second would be to choose the one which produces the smaller
value of the cost function. These and other strategies for removing bias will be
the subject of future research.

The longitudinal mapping procedure presented here is able to filter segmen-
tation images, significantly reducing uncertainty in atrophy rate measurements,
while correlating strongly with raw manual segmentation results. This proce-
dure has important implications for clinical studies of Alzheimer’s disease, where
reduced variability will allow for sufficient statistical power at smaller sample
sizes.
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