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Abstract. This paper proposes a new method for describing parenchy-
matous organs by the set of volumetric primitives with simple shapes. The
proposed method is based on our modified Self-organizing Deformable
Model (mSDM) which maps an object surface model onto a target surface
with no foldovers. By extending mSDM to apply to organ volume mod-
els, the proposed method, volumetric SDM (vSDM), finds the one-to-one
correspondence between the volume model and its target volume. Dur-
ing the mapping, vSDM preserves geometrical properties of the original
model while mapping internal structures of the model onto their corre-
sponding primitives inside of the target volume. Owing to these charac-
teristics, vSDM enables to obtain a new volume representation of organ
volume models which simultaneously (1) represents by simple primitives
the shapes of the whole organ and its internal structures and (2) describes
the relationship among the external surface and internal structures of the
organ.

1 Introduction

Human body contains many parenchymatous organs which have internal struc-
tures and/or blood vessels within the external surface of the organ. Recent med-
ical imaging devices provide high-resolution volume models of the parenchyma-
tous organs. The volume model of a human organ in our method consists of a
set of tetrahedra. The organ volume models are useful for many medical appli-
cations including statistical analysis of target organs in individuals and surgical
simulators. Here, human organs such as brain surfaces have complicated shape.
Moreover, the volume model of the parenchymatous organ consists of a huge
number of points. For these reasons, the processes using directly the volume mod-
els are time-consuming. Therefore, the description of the organ volume model
is important for the medical applications to deal with the organ volume models
efficiently.
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In the case of the surface models of human organs, one approach for this
problem is to represent the organ surface on a common simple surface (referred
to as a target surface) such as a plane or a spherical surface by mapping these
organs onto the target surface [4,12]. This makes it possible to easily compare
among the organs and analyze them via the target surface.

In the case of the organ volume model, in order to understand the structural
features of the parenchymatous organ, the model description method needs to
represent not only the shapes of the whole organ and its internal structures but
also the spatial relations between the external surface and internal structures
of the organ. When the conventional mapping methods for the surface model is
applied to the volume models, the organ volume is represented as the set of the
surface models of the organ and its internal structures. However, this volume
model description meets the first requirement, but not the second one.

In this paper, we propose a method for representing the volume model of a
human organ with one volumetric primitive with simple shape. The proposed
method is based on our modified Self-organizing Deformable Model (mSDM)
[6,7]. Unlike the conventional methods for surface model mapping, mSDM
enables to map an organ surface model onto its target surface with various
shapes while preserving the geometrical properties of the original organ model
after the mapping. By extending mSDM, our proposed method, volumetric Self-
organizing Deformable Model (vSDM), maps the organ volume model onto its
target volume. In the mapping, the surface of the organ is fitted to that of the
target volume while each internal structure of the organ is mapped onto its corre-
sponding inner primitive within the target volume. In addition, vSDM mapping
preserves geometrical properties of the original volume model such as the angles
and volumes of the tetrahedra. The previous vSDM proposed in [8,9] controls
the mapping of only one internal structure to its inner primitive whose location is
determined manually and fixed during the mapping. Our new vSDM introduces
two new techniques: the simultaneous mapping of multi internal structures and
the automatic determination of the inner primitive positions based on the struc-
ture of each volume model. Owing to these characteristics of the vSDM mapping,
the volume model obtained by the vSDM mapping represents the whole organ
and its internal structures by their corresponding primitives with simple shapes
while describing the spatial relationship between them.

There are several mapping methods for the volume models [3,5]. Li et al.
[5] developed a harmonic volumetric mapping for object volume models. The
harmonic mapping preserves the length ratio among three edges forming a patch,
but not the scale of the patch. vSDM can preserve both the two geometrical
properties, that is, the distance along edges between any two vertices. This means
that the mapped model by the vSDM describes the spatial relationship among
the vertices more faithfully compared with the harmonic volumetric mapping
[5]. Therefore, the use of the model obtained by the vSDM mapping enables
to find a more reliable correspondence between the volume models. Hu et al.
[3] proposed the volume-preserving mapping of a brain volume model onto a
spherical volume. The method in [3] controls for moving a few feature vertices in
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the volume model to their specific locations in the target volume. However, there
is no guarantee that the method in [3] controls the mapping locations of many
vertices on the surface of the internal structure while our vSDM can map the
internal structures with many vertices onto their corresponding inner primitives.
From these characteristics, the contribution of our work is that the vSDM can
represent a volume model by a simple shape while preserving spatial relations
among the internal structures.

2 Modified Self-organizing Deformable Model [6]

In mSDM, a triangular surface model Ms of a human organ is used as an initial
mSDM. For each vertex v in Ms, its 1-ring region Rv consists of the patches p
containing v. The closed surface of v is a part of the target surface enclosed by
edges not including v in Rv. Moreover, we manually select the vertices from Ms

as feature vertices, and their corresponding points from the target surface.
The overview of mSDM algorithm for mapping Ms onto the target surface

is as follows. The detail of the algorithm can be seen in [6,7].

[m1] Deform the model Ms to fit to the target surface by the original SDM
algorithm [10]. SDM is a deformable model based on competitive learning
and energy minimization approaches. Given an organ model as the initial
SDM, the model is deformed to fit to its target surface while moving sev-
eral specific vertices of the model toward their corresponding points on
the target surface. The SDM-based mapping is applicable to objects with
various shapes as the initial SDM and the target surface although con-
ventional mapping methods use as the target surfaces only a plane or a
spherical surface.
Practically, when from the target surface, one point is randomly chosen as
a control point, the vertex of Ms closest to the control point is used as the
winner vertex. Here, when the corresponding point of the feature vertex is
the control point, the feature vertex is always chosen as the winner vertex.
The winner vertex and its neighbor vertices are moved toward the control
point. These processes are repeated until all vertices of Ms are not moved.

[m2] Remove foldovers in the mapped model. This process is derived from the
concept in Athanasiadis et al. [1] that if the deformed model Ms after
step.m1 includes the vertices existing out of their closed surfaces, consider
that the foldovers on the surface of Ms occur around the vertices. Based
on the concept, we correct the foldovers by repeatedly moving all vertices
in Ms toward the inside of their closed surface:

v = ϕ
(
∑

p∈Rv
Apgp

∑
p∈Rv

Ap

)
, (1)

where Ap and gp are the area and centroid of the patch p. The function
ϕ(v) projects the vertex v onto the target surface. If the process is applied
only to folded patches, their neighbor patches may become degenerate.
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In order to avoid this situation, the process of removing foldovers is applied
to all vertices and is repeated until all foldovers are removed.

[m3] If the feature vertices are far from their corresponding points, using Free-
Form Deformation (FFD) [11], move each feature vertex to the location of
its corresponding point by deforming the region around the feature vertex.
When a lattice space is generated around the deformation region, FFD
deforms an object with no foldovers by setting properly the lattice for the
deformation. Practically, in our experiment, there is no foldover in all the
models deformed by our FFD-based movement of the landmarks. Even
though the deformed model by FFD includes some foldovers, the foldovers
are removed by our foldover removal processing while fixing the landmark
positions.

[m4] Deform the model Ms to preserve the geometrical properties of the original
organ surface model after the mapping. In mSDM, We focus on the areas
and angles of patches in Ms as the geometrical features to be preserved.
The geometrical feature preserving mapping φ is found by minimizing an
objective function Es which is a weighted linear combination of an angle
error term E

(R)
angle and an area error term Earea:

Es(Ms, φ) =
∑

v∈Ms

[(1 − μs)ψsE
(R)
angle + μsEarea]; (2)

E
(R)
angle(v, φ) =

∑

p∈Rv

3∑

d=1

eangle(θd
p, φ); (3)

Earea(v, φ) =
∑

p∈Rv

earea(p, φ); (4)

eangle(θd
p, φ) = |φ(θd

p) − θd
p|; (5)

earea(v, φ) =
∣
∣
∣
φ(Ap)
φ(Aw)

− Ap

Aw

∣
∣
∣, (6)

where ψs is a scaling factor to adjust the ranges of the two error terms. θd
p

and Ap are one angle and area of the patch p included in the 1-ring region
Rv of the vertex v. φ(θ) and φ(A) are the angle and area of the patch in
the mapped model φ(Ms). Here, Aw and φ(Aw) are the whole areas of the
original model Ms and φ(Ms).

We decided the four processing in order of decreasing the range of moving the
model vertices. In the step.m1, all the vertices are moved dynamically to map the
model onto the target surface roughly. The step.m2 is to move all the vertices on
the target surface to remove foldovers occurred in the first step. In the step.m3,
each landmark is located at its target position by moving only the neighbor
vertices of the landmark within the limited space around landmarks. The step.m4
performs the geometrical feature preserving mapping by moving each vertex
within its 1-ring region. From the characteristic, our strategy changing the range
of moving vertices finds the suitable mapping while avoiding local minimum like
Simulated Annealing.
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(a) (b) (c) (d) (e)

Fig. 1. (a) The surface of the brain volume model; (b) The brain volume model cut by
two virtual planes for the interior visualization; (c) The brain surface (blue), ventricle
(red), caudate nuclei (yellow), putamina (green); (d) The surface of the target volume;
(e) The ITS (orange) for the right and left putamina. (Color figure online)

3 Volumetric SDM

In volumetric SDM (vSDM), a tetrahedral volume model Mv of a human organ
is used as an initial vSDM. The external surface of Ms is regarded as the outer
model surface (OMS) of the vSDM. vSDM contains the inner volume models of
the internal structures of the organ. Several internal structures to be analyzed
are selected and the surfaces of the selected internal structures are used as the
inner model surfaces (IMSs) of the vSDM. One example of the initial vSDM is a
brain volume model (Fig. 1(a)–(c)) which consists of brain surface (the blue part
in Fig. 1(c)), ventricle (the red part), caudate nuclei (the yellow part), putamina
(the green part). In this paper, the brain surface is used as the OMS while we
selected as the IMSs the surfaces of the right and left putamina.

The vertices in Mv are classified into three types. OMS and IMS vertices are
the vertices on the OMS and IMSs, respectively. The rest vertices are regarded
as the inner vertices. For each vertex except the OMS vertices, its 1-ball region
is defined by the set of the tetrahedra containing the vertex (Fig. 3(a)).

vSDM is mapped onto a target volume represented by a set of tetrahedra.
The external surface of the target volume, called the outer target surface (OTS)
is the mapping destination of the OMS. The target volume includes inner targets
within the OTS. Each IMS is mapped onto its corresponding inner target surface
(ITS). Here, the initial vSDM is completely covered with the OTS. The example
of a target volume used in our experiment is a spherical volume model (the light
blue region in Fig. 1(d) and (e)) which includes two ellipsoids (the orange regions
in Fig. 1(e)). In this case, the OTS and ITSs are, respectively, the spherical
surface and the two spheroidal surfaces.

Two main processes comprise our vSDM-based approach to find the volume
mapping Φ of the initial vSDM to the target volume (Fig. 2). The first is to map
the OMS onto the OTS while moving the inner and IMS vertices to preserve
the geometrical properties of the original organ model as far as possible. The
geometrical properties to be preserved are the angles of the patches and the
volumes of the tetrahedra in Mv. Therefore, the preservation process is called
an angle- and/or volume-preserving mapping. The first mapping processes are
denoted as φmv in Fig. 2.



44 S. Miyauchi et al.

The second process is to find a mapping φm of the mapped IMS by φmv

(the green line in Fig. 2) onto its corresponding ITS by mSDM. To perform
mSDM, the model to be deformed by mSDM needs to cover the large part
of the target surface. Considering this, by using the distribution of the IMS
vertices, we determine the position and pose of the LT (the orange line in Fig. 2)
satisfying this requirement. The mSDM obtains the mapping φm of all IMSs to
their corresponding ITSs. Moreover, we perform two processes: (1) correcting the
inverted tetrahedra in the vSDM and (2) performing a angle- and/or volume-
preserving mapping.

Fig. 2. Overview of vSDM. (Color figure online)

The algorithm of vSDM deformation is as follows.

[v1] Map the OMS vertices of the initial vSDM onto the OTS by step.m1, m2
and m4 of mSDM deformation.

[v2] Move each vertex except the OMS vertices toward the centroid of its poly-
hedron. Here, the polyhedron of a vertex v is obtained by removing from its
1-ball region the vertex v and the edges connecting with v. This movement
process is repeated until no vertices are moved.

[v3] Correct inverted tetrahedra by Correction method 1.
[v4] Perform an angle- and/or volume-preserving mapping by moving the ver-

tices except the OMS vertices.
[v5] For each IMS,

(i) Determine the position and pose of the corresponding LT of the IMS.
(ii) Map the IMS vertices onto the ITS by step.m1, m2 and m4 of mSDM

deformation.
[v6] Move each inner vertex toward the centroid of its polyhedron. This move-

ment process is repeated until all inner vertices are not moved.
[v7] Correct inverted tetrahedra by Correction method 1 and 2.
[v8] Perform an angle- and/or volume-preserving mapping by moving only the

inner vertices while fixing the OMS and IMS vertices.
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Step.v1 maps only the OMS vertices onto the OTS while other vertices are dis-
tributed within the target volume in step.v2. Step.v3 corrects inverted tetrahedra
in the model obtained after these steps. In step.v4, to preserve geometrical fea-
tures of original model on the target volume, angle- and/or volume-preserving
mapping is performed. After the positions of the IMS vertices are determined, in
step.v6, the inner vertices are moved based on the positions of the OMS and IMS
vertices. Finally, the algorithm performs the correction of the inverted tetrahedra
(step.v7) and the angle- and/or volume-preserving mapping (step.v8).

The following describes details of the processes of correcting inverted tetra-
hedra (step.v3 and v7) and performing an angle- and/or volume-preserving map-
ping (step.v4 and v8).

3.1 Inverted Tetrahedron Correction

Depending on the shape of the polyhedron of the vertex, the vertex movement
in step.v2 and v6 may lead to the self-intersections of the vSDM. As a result,
the model obtained after step.v2 and v6 sometimes contains inverted tetrahe-
dra. The inverted tetrahedra provide the wrong description of the spatial rela-
tionship among the vertices. In order to obtain the reliable description of the
original volume model on the target volume, the volumetric mapping method
must guarantee a one-to-one mapping with no inverted tetrahedra between the
volume model and the target volume. To achieve this, in the step.v3 and v7, the
inverted tetrahedra are corrected by the following two ways.

[Correction method 1]

In our method, an inverted tetrahedron is the tetrahedron whose at least one ver-
tex exists outside the polyhedron of the vertex (Fig. 3(b)). To find the inverted
tetrahedron, we use the visibility condition of the vertex from its neighbor ver-
tices: if the vertex v is visible from all vertices of the polyhedron of v, there
are no inverted tetrahedra including a vertex v. When we find the vertices not
satisfying the condition, the tetrahedra including the vertices are regarded as
to be inverted. These inverted tetrahedra are corrected by moving the vertices
toward the suitable positions where the vertices meet the condition. To find such
position, we check whether the polyhedron of the vertex v is a star-shaped poly-
hedron or not. When the polyhedron is star-shaped, the polyhedron contains the
kernel region in which all points are always visible from the vertices of the poly-
hedron [2]. Then, the vertex v is moved to the kernel region. Otherwise, when
the polyhedron of v is not star-shaped, the vertices forming the polyhedron of
v are moved to their kernel region without moving v.

The algorithm for correcting inverted tetrahedra is described as follows. For
each vertex v except the OMS vertices, we calculate support planes (the dotted
lines in Fig. 3(c)) by extending the faces of the polyhedron of the vertex v. If the
support planes form an enclosed region (the red region in Fig. 3(c)), the enclosed
region is regarded as the kernel region of the polyhedron. Then, v is moved
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(a)

Correc on
Polyhedron

(b) (c)

Kernel region

Fig. 3. Example of the inverted tetrahedron correction process shown in two dimen-
sional space: (a) 1-ball region, (b) inverted tetrahedra, (c) normal tetrahedra. (Color
figure online)

toward the centroid of the kernel region. Otherwise, the inverted tetrahedra
including v are corrected by moving the vertices composing the polyhedron of
v to the centroids of their kernel regions. These processes are repeated until all
inverted tetrahedra are corrected.

[Correction method 2]

In the step.v7, the Correction method 1 is applied to the inner vertices to
correct the inverted tetrahedra. If after the correction, there reminds inverted
tetrahedra in the vSDM, the tetrahedra are corrected by moving the IMS ver-
tices vl of the inverted tetrahedra along the ITS. To achieve this, by the same
way as the Correction method 1, we check whether the kernel region of
vl exists or not. If the kernel region exists, we find the quadric surface fit-
ted to the ITS around the kernel region of vl. When there is the overlapping
area between the kernel region and the quadric surface, vl is moved toward
the centroid of the overlapping area. Otherwise, if there is neither the kernel
region nor the overlapping area between the kernel region and the quadric sur-
face, we correct the inverted tetrahedron by the Correction method 1. These
processes of Correction method 2 are repeated until all inverted tetrahedra are
corrected.

3.2 Angle- and/or Volume-Preserving Mapping

In step.v4 and v8, the vSDM is deformed to preserve the angles of the triangle
patches of a tetrahedron, and the volume of the tetrahedron. The angle- and/or
volume-preserving mapping of the volume model Mv is to find the mapping φ
which minimizes an objective function Ev:

Ev(Mv, φ) =
∑

v∈Mv

[
(1 − μv)ψvE

(B)
angle + μvEvol

]
, (7)
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(a) (b) (c) (d) (e)

Fig. 4. (a) The final model surface with the normals of the original model; (b) The
interior of the resulting model; (c) The internal organ mapped on its ITS in the final
model; (d) The original left putamen from two different views; (e) The left putamen
surface after vSDM deformation from the two different views.

where ψv is a scaling factor. The function Ev consists of a weighted linear com-
bination of angle error distortion E

(B)
angle and volume error distortion Evol:

E
(B)
angle(v, φ) =

∑

p∈Bv

3∑

d=1

eangle(θd
p, φ); (8)

Evol(v, φ) =
∑

t∈Bv

evol(t, φ); (9)

evol(t, φ) =
∣
∣
∣
φ(Vt)
φ(Vw)

− Vt

Vw

∣
∣
∣, (10)

where θd
p is one angle of the patch p of the tetrahedron t containing a vertex

v in Mv. Vt and φ(Vt) are the volumes of t in the original model Mv and the
mapped model φ(Mv). Vw and φ(Vw) are the total volume of all tetrahedrons
in Mv and φ(Mv). Changing the weighting factor μv in Eq. (7) from 0 to 1, the
mapping becomes from angle- to volume-preserving mapping.

From Eqs.(7)–(10), the minimization of the objective function Ev in Eq. (7) is
replaced as the optimal location problem of the vertices within their polyhedra.
A greedy algorithm is employed to find the optimal mapping which minimizes
Ev. Practically, one vertex is selected randomly from all the vertices. The selected
vertex is moved to a location within its 1-ball region so that Ev after moving the
vertex to the location is minimized. The processes of the vertex selection and
movement are repeated until all vertices are not moved.

4 Experiment

To verify the applicability of our proposed method, we made the experiment
using the volume model of a brain (Fig. 1(a)–(c)). The volume model contains
153,121 vertices and 896,327 tetrahedra. From the internal structures in the
brain model (Fig. 1(c)), we selected as the IMSs the right and left putamina,
and denote as IMS1 and IMS2. By mapping the brain model onto the target
volume with 18,246 points (Fig. 1(d) and (e)), the final mapped brain volume
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model is obtained in Fig. 4. Figure 4(a) shows the brain surface mapped onto the
OTS with the normals of the original model (Fig. 1(a)). Figure 4(b) shows the
cross section of the final model in Fig. 4(a). Figure 4(c) shows the internal organs
of the final model. Figure 4(d) and (e) show the left putamen model before and
after the vSDM deformation.

We evaluate the mapping result by three criteria. First, we count the number
of inverted tetrahedra in the final model. As shown in the second column of
Table 1, the final mapped brain model has no inverted tetrahedra.

The second evaluation is to verify the mapping accuracy of each IMS, L, in
the final model mapped by the mapping Φ onto its ITS, Tl. The accuracy is
measured by the distance ed between L and Tl:

ed(L, Φ) =
1
2

( ∑

vl∈Ωl

H(Φ(vl), Tl)
|Ωl|

+
∑

pl∈Ωt

H(pl, Φ(L))
|Ωt|

)
, (11)

where Ωl and Ωt are the set of the IMS vertices vl and the points pl on the ITS,
and |Ωl| and |Ωt| are the numbers of vertices in Ωl and Ωt, respectively. The
function H(Φ(vl), Tl) returns the Euclidean distance between the vertex Φ(vl)
in the final model and the patch in Tl that is closest to Φ(vl). Similarly, the
function H(pl, Φ(L)) returns the distance between pl and its closest patch in
Φ(L). The values of ed for the mapped putamen surfaces are shown in the third
and fourth columns of Table 1.

The third evaluation is to verify our angle- and/or volume-preserving map-
ping by using the angle error distortion eangle in Eq. (5) and the volume error
distortion evol in Eq. (10). In the experiment, the parameter μv in Eq. (7) is set
to μv = 0.5. We define the geometrical preserving ratios rangle and rvol as the
percentages of the tetrahedra of which each geometrical error, eangle and evol, is
less than a given threshold. When the average angle and volume of all tetrahedra
in the final mapped model are denoted as θ̄ and V̄ , the thresholds of eangle and
evol in the experiment are set to 0.3θ̄ and 0.3V̄ . The values of rangle and rvol

before and after Step.v8 are shown in the fifth and sixth columns of Table 1,
respectively.

4.1 Discussion

From Fig. 4(a)–(c) and the second column of Table 1, we can confirm that the
final mapped brain model has completely the same shape of the target vol-
ume with no inverted tetrahedra. Simultaneously, the vSDM maps the right and

Table 1. The number of inverted tetrahedra (IT), ed of IMS1 and IMS2, rangle and
rvol before and after Step.v8.

IT ed of IMS1 [mm] ed of IMS2 [mm] rangle [%] rvol [%]

Before step.v8 - - - 66.2 63.2

After step.v8 0 3.82 ×10−2 4.27 ×10−2 78.1 75.7
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left putamina to the elliptic LT1 and LT2 (Fig. 4(d)). The mapped right and
left putamina have elliptical shape (the green ellipsoids in Fig. 4(e)), and the
differences ed between the mapped putamina and their ITSs are smaller com-
pared with LT1 and LT2 whose bounding box sizes are 32.6[mm] × 29.8[mm] ×
53.2[mm] and 36.0[mm]×29.6[mm]×51.1[mm], respectively. This result implies
that the vertices of each IMS are completely located on its ITS.

Before applying the angle- and volume-preserving mapping in Step.v8 of the
vSDM deformation, rangle and rvol are 66.2 and 63.2 [%], respectively. After
Step.v8, rangle and rvol increase to 78.1 and 75.7 [%]. This means performing
Step.v8 improves the accuracy of preserving the geometrical properties of the
original model. As mentioned above, the preservation of the two geometrical
properties means that the distance along edges between any two vertices is pre-
served. Therefore, the final mapped model keeps the spatial relationship between
the external surface and internal organs of the original model.

From these resuITS, vSDM can obtain the reliable description of the whole
volume and internal structure of an organ with their corresponding simple shapes
while describing the relationship among them.

5 Conclusion

In this paper, we proposed the method of representing volume models of
parenchymatous organs by their target volumes. The proposed method deforms
the OMS of the volume model to fit to the OTS of the target volume while mov-
ing the vertices of IMSs within the volume model onto their ITSs. Moreover, we
perform two processes: correcting inverted tetrahedra and preserving the geomet-
rical properties of the original model as far as possible. From the experimental
resuITS, our method provides the volumetric description of the brain volume
model composed of several internal structures which both represents the brain
model by the simplified shapes of the brain surface and the internal structures,
and describes the relationship among them. Our future works include the verifi-
cation of the availability of our vSDM by using organ volume models with more
complex structures.
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