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Abstract. The Corpus Callosum (CC) has been a structure of much
interest in neuroimaging studies of normal brain development, schizophre-
nia, autism, bipolar and unipolar disorder. In this paper, we present a tech-
nique which allows us to develop a shape preservation methodology in the
deformation of CC for further global and regional shape analyzes between
two sample corpora callosa. Source and target CC are superpositioned
individually from eleven anchor points. Source CC is deformed in order
to get superpositioned onto the target CC from these anchor points and
superposition operation leads other anatomical landmarks to get placed
automatically in all of the regions of source CC for further deformation
analysis. Region construction via quadratic Bézier curves, deformation by
using Gaussian RBF and quantifying the amount of deformation via gen-
eralized Procrustes analysis are used to infer the proper parameters used
in minimum deformation. Amount of deformation can be analyzed both
regionally and globally.

Keywords: Shape preserving interpolation · Radial Basis Functions ·
Space deformation

1 Introduction

Investigating the regional differences between samples of Corpus Callosum (CC)
is a widely observed task in morphological studies. The gold standard in these
kinds of studies is the works performed by the anatomists. For instance an
anatomist may only describe the slightly thinned splenium between two cor-
pora callosa in the right manner by just checking the MRI data. Currently there
is no such an anatomic system which can point out this kind of anatomical
difference into a semantic description like the one anatomist performs.

Shape is a property that keeps its characteristics when rotated or translated.
Scaling and shearing make the shape of objects alter. In order to perform a
prosperous regional comparison between two corpora callosa, a superposition
operation that will align the source CC onto the target CC is needed to be
carried out. The superposition operation should be performed from the handle
points that are pointing anatomically to the same location in both structures.
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Fig. 1. Regional subdivision of the CC according to the study [15]. Parcellation land-
marks are displayed as cyan circles. (Color figure online)

Those points are the key components of our mathematical model. For a near
accurate comparison, shape deformation in this process must be minimal and the
source structure should preserve its shape as much as possible after deformation.

In [15], author proposes an approach to define the regions of CC according to
the anatomical connectivity. Figure 1 is showing the seven regional subdivisions,
numbered 1 to 7, that will be also used in this study. P1 and P2 indicate the
anteriormost and posteriormost points of the callosum with P1-P2 defined as
the length of the callosum. Point P3 is the anteriormost point on the inner con-
vexity of the anterior callosum. P1-P2 line is used as the linear axis to subdivide
the callosum into anterior and posterior halves; anterior, middle, and posterior
thirds; and the posterior one-fifth region (region 7). The line passing through P3,
that is also perpendicular to the to the P1-P2 axis is used for defining the ante-
riormost division of the CC which generates regions rostrum (region 1) and genu
(region 2). Region 3 is called as rostral body and it is the anteriormost one-third
of the CC minus regions 1 and 2. Region 4 is called as anterior midbody and it
is defined as the anterior one-half minus the anterior one-third. As for region 5,
it is posterior midbody and is defined as the posterior one-half minus the pos-
terior one-third. Region 6 is isthmus and it is defined as the posterior one-third
minus the posterior one-fifth. Regions 3, 4, 5 and 6 constitute the body of the
callosum. Regions, their anatomical labels and the callosal fibres in relation to
cortical regions of origin and termination is displayed in Table 1.

The deformation function f basically maps the points p in the source CC to
the new coordinates q ; thus making the structure deformed. The deformation
function needs to be built carefully and must hold the following properties [11]:

– Interpolation: The handle points p should map directly to q under deforma-
tion. (i.e. f(pi) = qi)

– Smoothness: f should produce smooth deformations
– Identity: If the deformed handles q are the same as p, then f should be the

identity function. (i.e. qi = pi ⇒ f(v) = v)

These properties are similar to the ones that are used in the scattered data
interpolation. In this paper, we introduce a deformation function that holds the
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all requirements covered above. Source CC is superpositioned onto the target
CC from some handle points under the mathematical model of Gaussian Radial
Basis Function (RBF). A mathematical model which maps the handle points of
the source CC to anatomically the same handle points of target CC is calculated.
Apart from these handle points, the model also affects the rest of the points on
the boundary of source CC; thus making a deformation on the source CC shape.
Our aim in this study is proposing a robust method for nearly preserving the
characteristics of source CC shape after by localizing the deformations instead
of globally deforming the whole CC.

Table 1. CC regions displayed in Fig. 1 and their anatomical locations [15].

Region Anatomical label Cortical region

1 Rostrum Caudal/orbital prefrontal, inferior premotor

2 Genu Prefrontal

3 Rostral body Premotor, supplementary motor

4 Anterior midbody Motor

5 Posterior midbody Somaesthetic, posterior parietal

6 Isthmus Superior temporal, posterior parietal

7 Splenium Occipital, inferior temporal

Contributions. We offer a non-linear space deformation technique which lacks
a cage that has to be defined before the interactive deformation operations
start. Eleven handle points scattered through the borders of seven regions in
CC replaces the cage and these handle points are defined semi-automatically via
our framework. Our technique offers a simple formulation and is specific to the
input shape which calculates the right parameters for minimal deformation and
surface detail preservation for further comparison operations. In addition, it can
be extended to 3D neuroanatomical structure studies with the proper anatomical
anchor points. Our method is robust and efficient.

This paper is organized as follows: In the next section we address the related
works; in Sect. 3, we describe the mathematical model; Sect. 4 includes the func-
tionalities that can be included to the study and lastly in Sect. 5 future work is
presented.

2 Related Work

Shape manipulation studies are performed under two categories, namely space
deformation methods and surface-based methods. In the space deformation
methods, the space that holds the object is deformed and hereby deforms the
shape. As for the other one, shape deformation is carried out by using the object
solely.
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Space deformation techniques are much simpler and require less computa-
tional cost than surface-based methods since the deformation is carried out on
the space that surrounds the mesh of the object rather than the mesh itself.
They have less control on the shape detail preservation. Surface-based methods;
however, depend on the mesh that wraps up the object; therefore, mesh quality
becomes an important factor in these kinds of studies. The main advantage of
the surface-based methods is the detail preservation on the shape. Due to this
property, systems of surface-based methods are computationally expensive.

Zohar Levi et al. [6] offered a space deformation framework for real-time shape
deformation which does not have a major effect on the local shape and volume.
The technique for deformation is controlled locally and does not have an influence
on the nearby branches. It is based on Interior Radial Basis Functions (IRBF)
and local distortions are minimized by minimizing the distortion of a set of
spheres that are placed within the object. Another space deformation technique
that is based on triharmonic radial basis functions for real-time freeform shape
editing is proposed in the study of Botsch et al. [2]. In this study, the desired
target shape is not exactly defined before the deformation process starts. The
deformation is put into practice in an interactive manner.

Using a predefined skeleton and free-form deformation (FFD) are also the
popular space-deformation methods that have been used in shape manipulation
studies. In the former one, the user defines a skeleton to the shape and the system
adjusts the shape relative to the skeleton [7]. It has some disadvantages on the
objects which structurally do not have any skeleton such as jellies. A sequence
of lattices which converge to a region in 3D is created in an FFD study [10].
Each point is associated with a lattice. As the points in the lattice are modified,
a deformation of the space is created, and the embedded points are relocated
within that deformed space.

A space deformation method that is called as cage-based Variational Har-
monic Map (VHM) is suggested by Ben-Chen et al. [1]. In this technique, man-
ual editing of the cage is replaced by controlling it with intuitive positional
and rotational constraints that are enforced through energy minimization, which
optimizes the deformation rigidity and smoothness. Sederberg et al. proposed a
method that includes a control lattice for shape deformation [12]. Lattices are
proved to be problematic for controlling the articulated objects.

Mean Value Coordinates (MVC), Harmonic Coordinates (HC) and Green
Coordinates (GC) are three forms of cage-based space deformation methods.
A cage is a polyhedron which has a similar shape to the enclosed object. The
points inside the cage are represented by affine sums of the cage’s vertices mul-
tiplied by special weight functions. Manipulation on the cage makes its interior
get deformed smoothly. The work presented in the study [8] is a cage-based tech-
nique which builds upon the positive MVC. These coordinates are used for mesh
deformation. A similar study that is replacing the MVC with HC is proposed in
the study [5]. This replacement makes each cage vertex non-negative and falls
off with distance as measured within the cage. GCs that are derived from Green
functions introduce appropriate rotations into the space deformation in order to
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allow shape preservation [9]. Weber et al. shows that GCs in the study [9] are a
special case of complex barycentric coordinates and provides a simple analytic
formula for them. Also an improvement on the GC is carried out and a new
complex barycentric coordinates for 2D shape deformation is proposed in which
the deformation better fits the user’s specifications [14].

In the study of [13], the deformation is defined using a deformation graph
which roughly conforms to the input shape. Deformation graphs are consisting of
a varying number of nodes that the total size is related to the types of the edits
that are going to take place. Coarse edits need fewer nodes than the detailed
ones. An affine deformation is associated with each node in the deformation
graph, which describes the transformation this node undergoes. The problem is
stated as ‘embedded deformation’ since the algorithm must deform space through
direct manipulation of objects within it, while preserving the embedded objects’
features. Botsch et al. [3] puts forth a volumetric approach that is originated
from the elastic energies of solid objects. The shape is break into voxels and the
deformation is defined on them.

Igarishi et al. [4] proposes a point-based (surface-based) image deformation
technique which results in a deformation that is called ‘rigid-as-possible’. In this
work, the amount of local scaling and shearing of deformations is minimized.
The method is based on triangulation of the image and solving a linear system
of equations whose size is equal to the number of vertices in the triangulation. In
the study, the movement of vertices affects the positions of the other vertices in
a way which results in a minimum distortion of each relevant triangle. Schaefer
et al. [11] takes as a base of the study [4] and accelerates the deformations by
solving a small linear system at each point in a uniform grid. This results in a
very fast deformation of grids comprising tens of thousands of vertices in real
time. Three classes of linear functions (affine, similarity and rigid) are used in
the deformation method which is based on moving least squares.

Table 2. Points used in superposition operation and their anatomical locations.

Anchor point Anatomical location

IP1 Intersection of regions rostrum & rostral body

IP2 Intersection of regions rostrum & genu

IP3 Intersection of regions genu & rostral body

IP4 Intersection of regions rostral body & anterior midbody (superior)

IP5 Intersection of regions anterior midbody & posterior midbody (superior)

IP6 Intersection of regions posterior midbody & isthmus (superior)

IP7 Intersection of regions isthmus & splenium (superior)

IP8 Intersection of regions isthmus & splenium (inferior)

IP9 Intersection of regions posterior midbody & isthmus (inferior)

IP10 Intersection of regions anterior midbody & posterior midbody (inferior)

IP11 Intersection of regions rostral body & anterior midbody (inferior)
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The work presented here belongs to the space deformation category. Our
main goal is to minimize the local deformations, thus to keep the localized char-
acteristics of source CC regions, while superposing two corpora callosa for shape
comparison. In this manner accurate semantic definition from the operation may
be inferred. RBF is used for the deformation model where Gaussian is the basis
function of the model. Eleven intersection points of seven callosal regions are
defined as anchor points which are RBF centers at the same time. Anchor point
decision affects the shape of deformation substantially. Decided points should be
the same anatomical locations of corpora callosa for an efficient regional compar-
ison. Apart from the number of total anchor points, the variance values of anchor
points also affect the amount of deformation. Landmarks on the CC segments
may be affected from just one anchor point or a combination of several anchor
points. Proper variance values for each anchor point is one of the key studies
of our work. These anchor points are summarized in Table 2 and displayed as
orange circles in Fig. 2. Anchor points on the target CC are the final points that
the initial ones will converge with the appropriate RBF weights. These weights
are calculated according to the model. Proper weight value for each RBF center
is decided after an iterative job which in the end lasts in a minimum localized
source CC deformation. An error function is sum of squares of the difference
between the actual source CC landmark coordinate before deformation and the
one after deformation. The higher the function value, the more is the deforma-
tion. Therefore, error function searches for the proper weight values. General
Procrustes Analysis (GPA) is used for calculating the morphological difference
between two structures in this iterative job.

Fig. 2. Anchorage points for the superposition operation. (Color figure online)

Our method is basically as follows;

i. Source and target CC are parcellated into regions semi-automatically, in the
guidance of the study [15].

ii. Manual shape modeling via quadratic Bézier curves is performed after
regional parcellation.

iii. Source CC is superpositioned onto the target CC from the anchor points by
the use of Gaussian RBF and a mathematical model is calculated.

iv. The parameters of the model are investigated with a method that is
similar to Expectation Maximization (EM) for the minimum source CC
deformation.
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3 Shape Preservation with Gaussian RBF Interpolation

3.1 CC Parcellation

Samples of corpora callosa that are going to be investigated for regional dif-
ferences are parcellated into compartments as an initial work. This process is
performed semi-automatically in which three landmarks are needed to be man-
ually defined on each CC image that has been loaded to the frame. The system
then automatically divides the CC into seven regions as defined in the study
[15]. Table 3 shows the points needed to parcellate the CC.

The boundaries of the callosal regions are calculated automatically with the
positions of user defined landmarks and borders on the model are drawn. The
whole operation lasts less than a minute for each CC. Figure 1 displays the
segmented CC according to these parcellation landmarks. According to exper-
imental work with monkeys and from postmortem studies of humans, a rough
topography of callosal fibres in relation to cortical regions of origin and termi-
nation is displayed in Table 1.

3.2 CC Modeling

Quadratic Bézier curves are the building blocks of the modeling process. All of
the callosal curves are represented with them.

A Bézier curve, specified by n+1 control points, is a parametric curve seg-
ment of order n. It is defined according to a parameter t over the interval
0 ≤ t ≤ 1 and is formally expressed according to the polynomial series;

B(t) =
n∑

i=0

biBi,n(t) (1)

where b0, b1, . . . , bn are the control points of the curve and;

Bi,n(t) =
{ n!

(n−i)!i! (1 − t)n−iti 0 ≤ i ≤ n

0 otherwise
(2)

are the Bernstein polynomials.
A curve segment is defined manually by defining these control points on

the interface. User basically clicks on the frame and when the count of control
point number reaches three, a quadratic Bézier curve is automatically formed
according to the Eq. 1 and drawn on the interface. A region may consist of several
Bézier curves and all of the curves are continuously connected to the adjacent
curve segments. There is no gap either locally in a region or between the two
adjacent callosal regions. Fine tuning of the user drawn segments is performed
by just moving the control points of the Bézier curve segment. All seven regions
are constructed in an anterior-posterior axis starting from the Rostrum.

Modeling operation lasts longer than parcellation. Each region needs seper-
ate modeling. Thus, whole operation may last up to 7–8 minutes for each CC.
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Table 3. Parcellation landmarks of the CC.

User defined points Anatomical definition

P1 Anteriormost point of the CC

P2 Posteriormost point of the CC

P3 Inner convexity of the anterior CC

This may be the major drawback of our method if a large data set is under
study. For a more powerful method, the modeling operation should be performed
automatically.

Regional construction of callosal curves on the CC which is shown on Fig. 1
is displayed in Fig. 3.

Fig. 3. Regional construction of callosal curves on the CC of Fig. 1. (Control polygons
of each quadratic Bzier curve segment are displayed with blue dotted lines.) (Color
figure online)

3.3 Regional Landmark Determination

Landmarks are determined in particular to the callosal regions. Total number
of the landmarks is related with the total length of the curve segments in that
region. The more the total length is the more the count of regional landmarks.

Separate curve which comprises of several quadratic Bézier curve segments
is the key point in the determination of landmarks. Separate curves of a single
region do not join; they are totally disjoint. The landmark determination and
distribution is accomplished in particular to these separate curves. Since identical
regions of two corpora callosa will have the same number of separate curves, one-
to-one correspondence will be set between these curves and landmark operations
are carried out particularly. This operation is performed for all of the separate
curves of the region that is under study.

Figure 4 shows the landmark distribution in two callosal regions, namely
rostrum and genu. There is one separate curve for each region and the length
of this separate curve is used as a parameter in deciding the total number of
landmarks. Figure 4 (a) shows callosal regions of Subject1 where red spots are
indicating the positions of landmarks whereas (b) shows the callosal regions of
Subject5. Here, in this example, it is seen that, 12 landmarks are calculated
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Fig. 4. Landmark distribution displayed in red on the segments of two callosal regions
of (a) Subject1 (b) Subject5. (Color figure online)

for rostrum whereas 19 are for genu in both corpora callosa. There is one-to-
one correspondence between these landmark pairs and all are used for further
operations such as GPA.

Fig. 5. One-to-one correspondence between the anchor points of two corpora callosa

3.4 Superposition

Superposition operation develops a mathematical model via the anchor points
of source (CC1) and target (CC2) corpora callosa. This mathematical model is
based on Gaussian RBF.

s(x) = a0 + a1x + a2y +
N∑

i=1

λiφ(‖x − xi‖) (3)

where; s(x) is the RBF, φ(r) is the basis function, (r = ‖x − xi‖),‖x‖ is the
Euclidean norm, the λi’s are the RBF weights and the xi’s are the RBF centers.

The RBF consists of a weighted sum of a radially symmetric basic function
φ(r) located at the centers xi and a low degree polynomial a0 +a1x+a2y. Given
a set of N points xi and values fi, the process of finding an interpolating RBF
is called fitting, such that:

s(xi) = fi, i = 1, 2, ..., N (4)
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The fitted RBF is defined by the λi, the coefficients of the basic function in the
summation, together with the coefficients of the polynomial term a0+a1x+a2y.

RBF has proven to be an effective tool in multivariate interpolation prob-
lems of scattered data. Here in this operation, anchor points lying on the curve
segments are the key components of the basis functions. There is a one-to-one
correspondence from all of the eleven anchor points of CC1 to the CC2 as dis-
played in Fig. 5.

Weight Vector Calculation: Equation 4 can be rewritten in matrix form as
a linear system;

Hw = b (5)

H =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

φ(||x1 − x1||) φ(||x1 − x2||) . . . φ(||x1 − xN ||) 1 x1 y1
φ(||x2 − x1||) φ(||x2 − x2||) . . . φ(||x2 − xN ||) 1 x2 y2

...
... . . .

...
...

...
...

1 1 . . . 1 0 0 0
x1 x2 . . . xN 0 0 0
y1 y2 . . . yN 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

wT = (λ1, λ2, ....., λN , a0, a1, a2)

bT = (f1, f2, ....., fN , 0, 0, 0)

where the dimension of interpolation matrix H is (N + 3, N + 3), weight matrix
w is (N + 3, 1) and the result matrix b is (N + 3, 1). Solving the linear system
(Eq. 5) determines λi’s and a’s. The RBF that is used in this study is Gaussian,
that is;

φ(r) = e(−( 1
2σ2 )r2) (6)

where σ is the standard deviation value of the relevant RBF center. In our
model RBF centers (xi) are the eleven anchor points of CC1 (N is 11) whereas
b’s are the coordinates of anchor points of CC2. Interpolation matrix (H) is
formed by taking into account of the eleven anchor points of CC1. Row values
are calculated in particular to an anchor point. For example first row includes the
Gaussian RBF function values of all eleven anchor points according to anchor
point IP1. The last three columns in the same row are filled with the values of
1, x and y coordinate values of IP1, respectively. Likewise second row includes
the Gaussian RBF values according to anchor point IP2, and so on. First eleven
columns of the last three rows in the interpolation matrix includes values of 1,
x and y coordinate values of IP$ where $ is equal to the column number. The
3× 3 submatrix in the lower right corner is the zero matrix. When nonsingular H
matrix is prepared, weight matrices which are going to be used in superposition
operation are calculated according to the equations;

wx = H−1bx, wy = H−1by (7)
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Deciding the New Coordinates: Weight matrices which are calculated in
the previous step are used in calculating the new coordinates of every single
point that forms the Bézier curve segments of CC1. Interpolation matrix H is
prepared by the use of point which is going to be deformed on the CC1 and
the eleven anchor points, as in Eq. 5. The dimension of the H matrix will be
(1, N + 3). While calculating the values of first eleven columns in the matrix H,
standard deviation value of the relevant anchor point is used, as shown with σ$

symbol in Fig. 6.
(x, y) coordinate pair for all of the points on the Bézier curve segments of CC1

after deformation is calculated with the matrix multiplication of interpolation
matrix H and wx, interpolation matrix H and wy, respectively.

Fig. 6. Interpolation matrix (H) formation for calculating deformed coordinate pair.

Superposition Operation: The application of superposition operation
requires basically determining anchor points and calculating mathematical model
of the deformation.

The model that was prepared is applied to every points which form the
regional curve segments. Carrying model into execution forms the deformed
shape. Figure 7 shows (a) the source CC before deformation, (b) the target CC
that the source is going to be superimposed on from the eleven anchor points,
(c) the CC after deformation.

3.5 Minimum Deformation Calculation

The standard deviation value of each anchor points effects the outcome. There-
fore, these values are treated as parameters to be learned. We run an iterative
approach that is like the Expectation Maximization algorithm in mixture of
Gaussians. This method makes us calculate different standard deviation values
for each of the anchor points. As a result minimum deformation may be derived.
Three step iterative approach is basically pointed out below.
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Fig. 7. Superposition operation. (a) CC before deformation (b) target CC to get
anchored (c) CC after deformation via RBF model that is based on anchor points all
of which have standard deviation values of 0.5 (red dots indicate the eleven anchor
points). (Color figure online)

i. Fix all standard deviation (σ) values and solve for weight vectors.
ii. Fix weight vectors and minimize error function with respect to σ.
iii. With newly calculated σ values, solve for weight vectors again.
iv. Go to step i until maximum number of iterations is exceeded or difference

of σi and σi+1 are below a defined threshold value.

Our error function is the common sum-of-squares error, that is;

E(x) =
1
2

c∑

k=1

(yk(x) − tk)2 (8)

The derivative of this error with respect to the standard deviation of basis
function j, (σj), is;

∂E

∂σj
(x) =

∑

k

(yk(x) − tk)wkje

‖(x−xj)2‖
2σ2

j

‖(x−xj)2‖
σ3

j (9)

where c is the total number of landmarks on the CC boundary, yk(x) is the
desired value and tk is the actual value of that point.

σj = σj − n
∂E

∂σj
(10)

where n is the learning rate.

4 Conclusion

37 source corpora callosa obtained from both normal subjects and subjects suf-
fering from Major Depression Disorder (MDD) are studied according to the
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model covered in this paper. Also an atlas CC is added as a target CC model to
the study. The experiment is as follows;

i. Each source CC among 37 subjects is superimposed onto the target CC and
proper parameters of all anchor points for the minimum deformation are
obtained.

ii. 37 separate Procrustes distance value are calculated between the pairs of
deformed source corpora callosa and target CC.

iii. The effect of deformation on the original source CCs is investigated via t-test
whether it produces statistically significant results or not.

Fig. 8. Deformation operation. Source CC’s are deformed according to the target CC
via RBF that is holding proper parameters for each anchor points. (Color figure online)
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Figure 8 shows sample deformations in our experiment. Each row belongs to
a different subject and deformation is performed according to the same atlas. In
the figure, CCs on the left show the original CCs of three subjects and CCs that
are drawn with blue lines on the right show the deformed shapes of relevant CC.
The black CCs on the right are the same target structure that is also called as
atlas in the paper.

The null hypothesis (Ho) in our experiment basically assumes that deforma-
tion has no effect on the CC shapes whereas alternative hypothesis (Ha) claims
that statistically significant difference occurs on the CC shape structures after
deformation. Calculated t-value for the experiment becomes 15.86, which means
Ho hypothesis is need to be rejected. As a conclusion, deformation changes the
structures of source CCs significantly.

5 Discussion

Modeling the CC can be fully automated. This will outcome the automated
parcellation; automated modeling of callosal regions which includes deciding on
the number of segments that will form the callosal boundary, drawing Bézier
curve segments and merging them.

Some preprocessing steps before the selection of anchor points may also be
included into the study.

6 Future Work

The same experiment is going to be performed with the methods of affine Moving
Least Squares (MLS), similarity MLS, rigid MLS, GC, MVC, HC and rigid-as-
possible. The inner-distance values such as Floyd-Warshall or Johnson instead
of Euclidean distance may also be applied in the relevant models and the results
are going to be compared with the one that is obtained in our study.
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