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Preface

This volume contains the proceedings of the First International Workshop on Spectral
and Shape Analysis in Medical Imaging (SeSAMI 2016) held on October 21, 2016, in
Athens, Greece, in conjunction with the 19th International Conference on Medical
Image Computing and Computer Assisted Interventions (MICCAI 2016). This work-
shop is an extension of the Spectral Analysis in Medical Imaging (SAMI) workshop
held at MICCAI 2015.

Today’s image data often represent continuous and time-varying phenomena, usually
with a geometric structure. Shape and geometry processing methods are, therefore,
starting to receive increased attention, for example, due to their higher sensitivity to
local variations relative to traditional markers, such as the volume of a structure. In
medical image computing or computer-aided interventions in particular, the under-
standing of shapes and their geometrical representations enables the modeling of organs
from an anatomical as well as a functional perspective.

Moreover, spectral methods provide a wealth of opportunities for studying complex
data. They support the analyses by helping to understand high-dimensional structures
representing population or disease data and are often combined with shape analysis due
to their properties, such as isometry invariance. Both shape and spectral analysis have,
therefore, found many applications in medical image analysis.

This workshop provided an invaluable opportunity for researchers to present recent
work on spectral and shape analysis, as well as methods at the intersection of these
domains, and consisted of two components. The first focused on theoretical aspects and
state-of-the-art research on spectral analysis and the characterization of shape in the
form of talks and invited expert presentations. The second focused on cutting-edge
research on medical image applications in the form of oral presentations of accepted
submissions. Novel and original submissions were encouraged on emerging approa-
ches with topics including segmentation, registration, and classification.

We are extremely grateful to the contributors of this SeSAMI workshop. We thank
all authors who shared their latest findings, as well as the Program Committee mem-
bers, and reviewers, who all achieved quality work in a very short time. We also thank
our keynote speakers, who kindly accepted our invitations: Guido Gerig, Professor at
the New York University, USA, and Tom Fletcher, Professor at the University of Utah,
USA.

November 2016 Hervé Lombaert
Christian Wachinger

Martin Reuter
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Spectral Methods



A Volumetric Conformal Mapping Approach for
Clustering White Matter Fibers in the Brain

Vikash Gupta1(B), Gautam Prasad2, and Paul Thompson1

1 Imaging Genetics Center, University of Southern California, Los Angeles, USA
contact@vikashgupta.net

2 Google Inc., Los Angeles, USA

Abstract. The human brain may be considered as a genus-0 shape,
topologically equivalent to a sphere. Various methods have been used in
the past to transform the brain surface to that of a sphere using har-
monic energy minimization methods used for cortical surface matching.
However, very few methods have studied volumetric parameterization
of the brain using a spherical embedding. Volumetric parameterization
is typically used for complicated geometric problems like shape match-
ing, morphing and isogeometric analysis. Using conformal mapping tech-
niques, we can establish a bijective mapping between the brain and the
topologically equivalent sphere. Our hypothesis is that shape analysis
problems are simplified when the shape is defined in an intrinsic coor-
dinate system. Our goal is to establish such a coordinate system for the
brain. The efficacy of the method is demonstrated with a white matter
clustering problem. Initial results show promise for future investigation
in these parameterization technique and its application to other problems
related to computational anatomy like registration and segmentation.

Keywords: Conformal mapping · Volumetric parameterization ·
Spectral clustering · White matter fiber clustering

1 Introduction

Shape parameterization is a well researched area in the computational geom-
etry community [1,2]. In computational anatomy, many algorithms have been
devoted to surface parameterization [3–6] and its applications to cortical surface
matching and registration [7]. Shi et al. [8] used conformal mapping between the
cortical surfaces for cortical label fusion. Brain Transfer [9] is a recent method
suggested by Lombaert et al. is used to find correspondences between cortical
surface across subjects as well as functional areas. Surface parameterization may
be sufficient for analyzing surface geometry. However, it falls short when there is
significant information contained inside the shape under consideration (brain).
Here we developed a parameterization technique that parameterizes the entire
volume of the brain and every structure contained in it. Thus, cortical surface
parameterization is in fact a byproduct of this method.

c© Springer International Publishing AG 2016
M. Reuter et al. (Eds.): SeSAMI 2016, LNCS 10126, pp. 3–14, 2016.
DOI: 10.1007/978-3-319-51237-2 1
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Following work by Wang and colleagues [10] using “sphere carving” to har-
monically map the brain to a sphere, a bijective mapping between the brain
and the topologically equivalent sphere can be established using a 3D harmonic
function. Such a parameterization gives us a coordinate system intrinsic to the
brain shape, which may simplify various sub-problems related to computational
anatomy such as registration, segmentation and automated clustering of white
matter fibers. We will show a potential application of this parameterization tech-
nique, to assist with automated clustering of white matter fibers.

White matter fibers serve as neural pathways that connect different parts of
the brain. Diffusion weighted imaging (DWI) and tractography are used to study
the white matter organization in the brain. Clustering the white matter fibers is
an important step towards statistical analyses. One commonly used clustering
method [11] uses manual ROI delineation on the FA images. These regions can
be used to seed whole-brain fiber tractography, which is then grouped into white
matter bundles using spectral clustering. One method used Hausdorff’s distance
[12] as a distance metric between two fibers. Another more recent method for
fiber clustering was proposed by [13]. In this method, each fiber is represented
using Gaussian mixture models followed by a hierarchical total Bregman soft
clustering. The authors [14] provide a more complete overview of different clus-
tering techniques.

In this paper, we use the proposed conformal mapping technique to para-
meterize the white matter tracks. We then use a hierarchical spectral clustering
approach to classify a given set of tracks into individual anatomically relevant
fiber bundles. The proposed method does not rely on any tractography atlas or
region of interest (ROI) information. The accuracy of the method is compared
with manual clustering results.

2 Conformal Mapping: A Heat Transfer Analogy

To understand the volumetric parameterization problem addressed in this paper,
we draw an analogy between our problem and the heat transfer problem in solid
bodies. For the purpose of explanation, consider a solid body is maintained at a
constant high temperature on the surface and at another point inside the brain
at a constant low temperature. At steady state a thermal gradient will be set up
between the surface and the center with different layers of isothermal surfaces.
The heat from the high temperature surface is conducted towards the center
through heat-flow lines. These heat-flow lines intersect the isothermal surfaces
at right angles. We use this property to define a coordinate system for the whole
brain. We refer to the fixed low temperature point as the shapecenter and the
temperature field as φ.

3 Harmonic Function

The harmonic function is a C2 continuous function that satisfies Laplace’s equa-
tion. It is used to establish a bijective mapping between the brain and the topo-
logically equivalent spherical shape. If φ : U→Rn, where U⊆Rn is some domain
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and φ is some function defined over U , the function φ is harmonic if its Laplacian
vanishes over U , i.e., ∇2φ = 0. In terms of Cartesian coordinate system, we can
write

∇2φ =
∑n

i=1

∂2φ

∂2xi
= 0 (1)

where xi is the ith Cartesian coordinate and n is the number of dimensions of the
shape under study (here, 3). The harmonic function has two properties called
the mean value and the maximum principle property, which are important for
the parameterization problem being discussed.

3.1 Mean Value Property

If a ball B(x, r) with center x and radius r is completely contained within the
domain under study, then the value of the harmonic function φ(x) is given by
the average values of the function over the surface of the sphere. This average
value is also equal to the average values of φ inside the sphere.

3.2 Maximum Principle

According to the maximum principle, the harmonic function φ cannot have local
extrema within the domain U . The Laplacian of the harmonic functions should
be zero by definition. For a local extremum to exist all the components of the
second order partial derivatives of the function should have the same sign. If all
of them have the same sign, their sum will never be zero and thus they will never
be able to satisfy Laplace’s equation.

4 Algorithm

For the parameterization method, the volume generated by the fractional
anisotropy (FA) mask is used. Image voxels were classified as either boundary
surface points or internal points. For every subject the inferior end of the fornix
on the midline was located manually and designated as the “shape center”. In the
future, more automated approach towards choosing the same will be investigated
and adopted.

4.1 Boundary Conditions

We apply the Dirchlet boundary conditions for the shapecenter and the boundary
surface, i.e., we fix the value of the function φ on all the boundary nodes and
the shapecenter to 1 and 0 respectively. All the remaining points are assigned
random values between 0 and 1 as the initial condition.
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4.2 Potential Computation

An iterative finite difference scheme is used to solve the Laplace equations. If
φ(x, y, z) is a harmonic function, its second derivative is computed using the
Taylor’s series expansion.

∂2φ

∂x2
=

φ(xi−1, yi, zi) − 2φ(xi, yi, zi) + φ(xi+1, yi, zi)
h2

(2)

∂2φ

∂y2
=

φ(xi, yi−1, zi) − 2φ(xi, yi, zi) + φ(xi, yi+1, zi)
k2

(3)

∂2φ

∂z2
=

φ(xi, yi, zi−1) − 2φ(xi, yi, zi) + φ(xi, yi, zi+1)
l2

(4)

where h, k and l are the step sizes in the x, y and z directions respectively. Using
the Laplace equation from (1) we have

φ(xi, yi, zi) =
φ(xi+1, yi, zi) + φ(xi−1, yi, zi)

6h2

+
φ(xi, yi−1, zi) + φ(xi, yi+1, zi)

6k2
+

φ(xi, yi, zi−1) + φ(xi, yi, zi+1)
6l2

The above potential values are computed until the maximum difference between
two successive iterations is below a certain threshold ζ. Generally, ζ is chosen to
be 10−12.

4.3 Computing Heat-Flow Lines

Streamlines or the heat flow lines are orthogonal to the isothermal (equipo-
tential) surfaces. Each of the streamlines starts from the boundary points on
the brain surface and progresses towards the designated shapecenter. Each of
these streamlines approaches the shapecenter at unique angle(s), which remain
constant along the streamline. This property is endowed by construction. The
streamlines are computed by solving the following differential equation,

∂X

∂t
= −η∇φ[X(t)] (5)

where X = [x, y, z]T is the coordinate vector and η is the normalization con-
stant. MATLAB’s (version R2014b) ode23 routine is used to solve the system
of differential equations. The differential equation solver requires the potential
values at the non-grid points within the domain U . The intermediate values
are interpolated from the neighboring grid points using a local bilinear fitting
model as,

φ(x, y, z) = p1xyz + p2xy + p3yz + p4zx + p5x + p6y + p7z + p8 (6)

where p′
is are constants. Eight neighborhood grid points are used to calculate

the p′
is and these are used to interpolate the φ at a non-grid point using the

above equation.
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Fig. 1. Left: 3D view of different equipotential surfaces are shown. The heat-flow lines
emanating from the surface approach the shapecenter at unique polar and azimuthal
angles. These angles remain constant along the streamlines. Intersect the surfaces at
right angles. Right: The white matter fibers to be classified into different groups.

4.4 Parameterizing the Brain

Each streamline originating from each of the boundary points approaches the
shapecenter at a unique angle. These angles remain constant along the stream-
lines. In case of three dimensional objects the angle of approach is characterized
by the elevation (θ) and the azimuthal (ψ) angles. The vector between the shape-
center and the end point of the streamline is calculated. The angles are calculated
using the Cartesian to spherical coordinate transformation

ψ = atan2(y, x); θ = atan2(
√

x2 + y2, z) (7)

The streamlines intersect the equipotential surfaces at right angles (see Fig. 1).
Each point of intersection generates a tuple [φ, θ, ψ]T for the corresponding
Cartesian coordinates [x, y, z]T .

5 Mapping the White Matter Fibers

After the whole brain is parameterized as mentioned above, each fiber tract is
mapped to the new coordinate system, i.e., in the spherical space. At this stage,
we have a bijective mapping between the Cartesian coordinates of every voxel
in the brain and the newly computed coordinate system. A KD-tree structure
is built using the native brain coordinates for φ, θ and ψ. For every point on
the fiber streamline, the algorithm searches for ten neighborhood points and
computes a weighted average to get the corresponding coordinate in the target
domain. This process establishes the mapping of fibers in the target domain.
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6 Clustering White Matter Fibers

6.1 Tracking White Matter Fibers

Data was obtained from Alzheimer’s Disease Neuorimaging Initiative for the
Department of Defense (ADNI-DoD). For each of the DTI images, 46 volumes
were acquired with 5 T2 weighted B0 volumes and 41 diffusion-weighted volumes
with voxel size of 1.36 × 1.36 × 2.7mm3. The scans were acquired using a GE
3.0T scanner, using echo planar imaging with parameters: TR/TE = 9050/62 ms.
Images were corrected for eddy-current distortions and skull-stripped. The dif-
fusion gradient vectors are rotated based on the matrix transformation resulting
from eddy-current correction. Whole-brain tractography was performed with
Camino (http://cmic.cs.ucl.ac.uk/camino/), an open source software package
that uses either streamline or probabilistic methods to reconstruct fiber paths.
We performed fiber a probabilistic algorithm, called the ‘Probabilistic Index of
Connectivity’ (PICo) in Camino [15]. Seed points were chosen at those vox-
els whose FA values were greater than 0.2. Monte Carlo simulation was used
to generate fibers proceeding from the seed points throughout the entire brain
[16]. Streamline fiber tracing followed the voxel-wise PDF profile with the Euler
interpolation method for 7 iterations per each seed point. The maximum fiber
turning angle was set to 60 degree/voxel, and tracing stopped at any voxel whose
FA was less than 0.2.

For the purpose of comparison against the ground truth, manual labeling
was performed by experts in neuroanatomy. Essentially, the FA images of these
subjects were registered to a single-subject template in the ICBM-152 space
called the “Type II Eve Atlas” (a 32-year-old healthy female) [17]. The entire
brain of the “Eve” template was parcellated using 130 bilateral ROIs [18]. The
labeled template ROIs were re-assigned to both subjects by warping them with
the deformation fields generated by Advanced Neuroimaging Tools (ANTs) [19].
Each tract was manually edited to remove visible outliers. For each tract, there
is a certain set of ROIs that it is intersects – a fiber must traverse all the required
ROIs for a given tract to be considered, otherwise the fiber was discarded.

6.2 Unsupervised Clustering of White Matter Fibers

Various atlas based fiber clustering techniques are being used widely [20,21].
However, in our knowledge a completely automated fiber clustering method is
non-existent. The authors in [11] claim that the presented method is automatic.
However, the method requires manual region of interest labeling for seeding the
fiber tractography algorithms. Manual delineation can be a time consuming and
laborious process, and does not provide a fully automated method. Furthermore,
the robustness of the clustering algorithm under a whole brain tractography can
be variabled depending on the skill and expertise of the labeler.

Spectral Clustering is one of the widely used unsupervised clustering meth-
ods. The details of the method are available in [22,23]. A spectral clustering
method requires a similarity criterion (or a distance metric) to be defined. This

http://cmic.cs.ucl.ac.uk/camino/
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distance metric is used to compare all the N fibers with each other to create the
affinity matrix of size N × N . The idea behind spectral clustering is to approx-
imate the affinity matrix based on its largest eigenvalues. If k eigenvalues are
chosen, it implies that the data is distributed in a space spanned by the corre-
sponding k eigenvectors. Here we choose k as the same as expected number of
clusters.

Before clustering can be performed on the white matter tracts, the fiber tracts
need to pre-processed. These pre-processing steps are crucial for good clustering
results. All the white matter fibers are reparameterized using the arc length
to contain the same number of points. The resampled tracks are mapped into
the spherical domain as mentioned in Sect. 5. At this point, for each Cartesian
coordinate [x, y, z] on the track we have an equivalent coordinate [φ, θ, ψ] in the
spherical domain. The distance metric (dij) used for constructing the affinity
matrix is defined as sum of squared differences on the new mapped coordinates.
Thus, if i and j are two fibers and N is the total number of points in a track.

dij =
N∑

k=1

(pki − pkj )
2

where pki is one of the coordinates, i.e., φ, θ or ψ of the kth point in the fiber i.
The hierarchical clustering is performed in this set of parameterized coordinates.
The steps involved are enumerated as follows:

1. The mid-sagittal plane is located using the fractional anisotropy (FA) image
and the white matter fibers are separated into the left and right hemispheres.

2. Corpus callosum is contained in both the hemispheres. Thus, it can be seg-
mented by performing a logical AND operation on the two sets of fiber tracks
obtained in the previous step.

3. An estimated desired number of clusters is provided by the user.
4. Spectral clustering is performed on φ coordinates of the tracks.
5. The mean variance of each of the clusters obtained is calculated. It is under-

stood that if a group contains only one cluster, the mean variance will be low
(typically <40).

6. The clusters with variance above the desired threshold is inspected and spec-
tral clustering is performed again using the azimuthal angles (θ) of the tracks.

7. The previous step is repeated again and if there are mis-classified tracks
another clustering is performed using the elevation angle ψ.

8. Because of the hierarchical nature of the clustering, we will generally end up
with over-classification, i.e., we get more groups of fibers than desired.

9. The over classified clusters are merged. Each cluster is merged with those of
the remaining ones and the resulting variance is calculated. If the variance is
lower than the threshold, the clusters are merged. The process continues as
long as there are more clusters than desired by the user.

The steps 4–7 in the algorithm is schematically represented in Fig. 2. Similar
process is repeated for the right hemisphere.
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Fig. 2. The different steps in the hierarchical clustering process (steps 4–7) are shown.
V represents the mean intra-cluster variance and Vt represents the variance threshold.
Cluster 1, 2 and 3 represents the clusters obtained at each step of the process.

6.3 Results of Clustering

In Fig. 3, we show the results of the proposed hierarchical clustering. The left
column shows the results of first level of clustering, i.e., with r co-ordinate. The
tracks are overlayed on the corresponding FA image for anatomical reference. The
variance of the cluster is mentioned below each panel. As expected, we found that
the variance of the clusters containing a single group is comparatively lower than
the ones which contained more than one groups. The groups with variance higher
than 40 (threshold) were re-clustered as shown but with different coordinates
until the variance is lower than the variance threshold. At this point we do
have more sub-clusters than expected. We follow an agglomerative approach
for combining the redundant clusters. The hierarchical nature of the method
makes the clustering process tractable. For the purpose of validation, a ground
truth data set was generated using manual labeling. A comparison between the
proposed clustering method and the traditional spectral clustering method using
Hausdroff distance as metric is shown. When compared to the ground truth the
proposed method is able to retrieve all the fiber bundles as see in Fig. 4.
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Fig. 3. The left column shows the result of clustering based on the φ coordinate. In the
second column, two of the fiber bundles can be further classified. A second and third
level of clustering is performed based of the azimuthal θ and polar ψ angles. At this
stage, we have some over classified bundles as seen in the last column. The bundles
with the combined variance less than a user defined threshold are combined.

Fig. 4. A comparison between the clustering methods. The manual segmentation is
shown in the right most column. The left and the right columns show spectral clustering
using the Hausdroff distance and the proposed method respectively.
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7 Conclusion and Future Work

In this paper we proposed a novel volumetric parameterization technique for
parameterizing the brain to a sphere. Unlike prior methods which generally rely
on surface parameterization, the method presented in this paper parameterizes
the whole brain, following early work by [10]. This method may be useful for
developing novel shape based-registration methods, mapping regions of inter-
est, performing brain connectivity analysis and white matter fiber clustering.
We have also shown a potential use of the method in clustering white matter
tracts. The presented clustering method does not require any ROI based seeding
or image registration. The fiber tractography as well as the clustering was per-
formed in the native space of diffusion acquisition. In the present implementation
of the method the shape-center is chosen manually. However, in the future the
shapecenter can be chosen automatically, preferably at the anterior or posterior
commissure and can be located automatically using tools such as FreeSurfer. We
compared our results with spectral clustering methods using Hausdroff distance
and showed that the proposed method out-performs the former. The method has
to be tested for robustness against noisy data. In the future, we would like to use
the method for statistical analysis on large datasets for comparing fiber tract
geometries. We believe that, a method which solely relies on the subject data
and not on any atlas will be particularly useful for clustering white matter fibers
for surgical purposes and in subject with significant white matter deformities
that cannot be represented in the white matter atlas.
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Abstract. Alzheimer’s disease (AD) and mild cognitive impairment
(MCI) are the most prevalent neurodegenerative brain diseases in elderly
population. Recent studies on medical imaging and biological data have
shown morphological alterations of subcortical structures in patients
with these pathologies. In this work, we take advantage of these struc-
tural deformations for classification purposes. First, triangulated surface
meshes are extracted from segmented hippocampus structures in MRI
and point-to-point correspondences are established among population of
surfaces using a spectral matching method. Then, a deep learning vari-
ational auto-encoder is applied on the vertex coordinates of the mesh
models to learn the low dimensional feature representation. A multi-layer
perceptrons using softmax activation is trained simultaneously to clas-
sify Alzheimer’s patients from normal subjects. Experiments on ADNI
dataset demonstrate the potential of the proposed method in classifica-
tion of normal individuals from early MCI (EMCI), late MCI (LMCI),
and AD subjects with classification rates outperforming standard SVM
based approach.

Keywords: Classification · Spectral matching · Variational
autoencoder · Alzheimer’s disease

1 Introduction

Alzheimer’s disease (AD) is characterized by progressive impairment of cognitive
and memory functions in elderly population. Considering its worldwide preva-
lence, early diagnosis of this disease might have a huge impact on the overall
well-being of the population, and the burden to caregivers, as well as the asso-
ciated financial costs to the world’s health system. Studies reported that AD
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can be diagnosed by clinical assessments in most of the cases [1], while by the
time the patient is diagnosed the disease progression may have deteriorated.
Therefore, early diagnosis of this neuropathology is of special interest.

Mild cognitive impairment (MCI) is considered as a transition state between
normal aging and dementia [2]. The cognitive deficits in MCI patients are not as
severe as those seen in individuals with AD. However, studies have suggested that
about 10–12% of subjects with MCI progress to AD per year [2]. Therefore, these
individuals with milder degrees of cognitive and functional impairment than
AD patients are particularly interesting subjects, since biomarker manifestation
could potentially be different at such an early stage of the disease.

Studies have shown that the neuropathological changes in AD and MCI affect
the hippocampus structure, which is a brain region crucial to various cognitive
functions [3]. Neuroimaging datasets for AD including magnetic resonance imag-
ing (MRI) and other types of biomarkers have shown considerable promise to
detect longitudinal changes in subjects [4], by offering rich information on the
patients morphometric and anatomical profiles. Their use stems from the premise
that morphological changes may be more reproducible and more precisely mea-
sured with MRI than other parameters such as clinical scores, cerebrospinal fluid
(CSF), or proteomic assessments.

Recent advances in medical imaging and classification techniques have led to
a better discrimination between Alzheimer’s disease and healthy aging. Because
of the high dimensionality of medical image, various dimensionality reduction
approaches have been developed to facilitate and enhance classification accuracy.
A simple method is principal components analysis (PCA) [5], which finds the
directions of greatest variance in the dataset and represents each data point by
its coordinates along each of these directions. A nonlinear generalization of PCA
is multi-layer autoencoders (AE) [6], which is a feedforward neural network to
encode the input into a more compact from and reconstruct the input with the
learned representation. Among available AE architectures, the deep variational
autoencoder (VAE) [7] method has recently become popular in computer vision
due to its capability to learn a manifold without the assumption of linearity in
addition to its generative property.

With respect to surface representation, recent studies have shown the advan-
tage of spectral shape description compared to Euclidean surface representa-
tion [8–10]. The use of eigenvalues have led to interesting results for AD classifi-
cation in [11], where Laplace-Beltrami spectrum on the intrinsic geometry of the
structural meshes was computed to define the shape descriptors. The spectral
coordinates, which were derived from the Laplacian eigenfunctions of shapes
have been used in [8] to parametrize surfaces explicitly. The authors applied
a Random Decision Forest classifier on spectral representation of surfaces and
achieved a significant improvement on cortical parcellations. Also, in [9,10], the
eigendecomposion of the surfaces in the spectral domain were used to provide
pointwise information on meshes and establish accurate point-to-point corre-
spondences across surfaces.
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In this work, we present a surface-based classification technique based on clas-
sification of spectral features using variational stacked auto-encoders. We first
extract 3D surface meshes of hippocampus structures from segmented binary MR
images. Then, the point-to-point surface correspondences is established across
populations (NC, AD, EMCI, LMCI) using a spectral matching approach. In
spectral based shape matching approach, relationships are modeled as graphs
and an eigendecomposition on these graphs enables us to match similar fea-
tures. Once the matched surfaces are created, the vertex coordinates are used as
shape feature descriptors. Then, variational autoencoder (VAE) obtains the non-
linear low-dimensional embedding of the shape features. A multi-layer percep-
tron (MLP) classifier is simultaneously trained to model the non-linear decision
boundaries between classes.

The work follows on the prior work of [12], which used a Stacked Auto-
Encoder (SAE) to discover the latent representation from the grey matter (GM)
tissue densities and voxel intensities. Unlike Suk and Shen [12], which selects
intensity and volume based features from MRI and PET modalities, we cre-
ate the feature descriptors from matched hippocampi surfaces extracted from
MRI. Moreover, instead of training a separate classifier on the low dimensional
features as in [12], we add a softmax multi-layer perceptron on top of our vari-
ational autoencoder network to obtain both dimensionality reduction and the
classification output at the same time.

The rest of the paper is organized as follows. In Sect. 2, we present the mor-
phological feature extraction method using spectral shape matching, as well
as the feature representation and classification method based on variational
autoencoder and multi-layer perceptron. Section 3 includes the description of
the dataset, experiments and discussion. Our conclusions are presented in Sect. 4,
along with envisioned future research directions.

2 Methodology

Given MR images along with their corresponding hippocampus segmentations
(produced manually or automatically), we first extract features from MRI as
explained in Sect. 2.1. Then, we use a deep variational autoencoder (VAE) to
learn a latent feature representation from the low-level features and train a
multi-layer perceptron (MLP) for classification purposes in Sect. 2.2.

2.1 Shape Feature Extraction Using Spectral Matching

Given a reference surface mesh Sr and a population of n surfaces {Si}i=1..n, the
spectral matching between each surface meshe Si and Sr is done in a two step
process. First, an initial map is calculated between the two surfaces [9]. This
initial map is then used in the second step to establish a smooth map between
the two meshes [10].

Here, we consider vertices and neighbouring points in each surface mesh as
nodes and edges of a graph. Then a laplacian graph is created for each surface
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graph from the set of vertices and edges of each mesh. The general Laplacian
operator Li [13] is defined on each surface as following:

Li = G−1
i (Di − Wi) (1)

where Wi is the weighted adjacency matrix, which is created based on a distance
between connected nodes. The term Di is a diagonal matrix, in which the ele-
ments are set by the degree of vertices. Gi is a node weighting matrix created
based on the mean curvature at each node as described in [14].

The eigendecomposition of Laplacian matrix Li provides its spectral compo-
nents. After reordering the spectral components by finding the optimal permu-
tation of components between the pair of meshes, regularization is performed by
matching the spectral embeddings. The correspondence initial map c between
each pair of vertices on Si and Sr is established with a simple nearest-neighbour
search between their spectral representations.

In the next step, given initial map c, the final smooth map between two
surfaces Si and Sr is obtained. In this process, an association graph is defined
as the union of the set of vertices and edges of two surfaces with an initial set
of correspondence links c between both surfaces. Then, a Laplacian matrix is
created for the association graph, and the spectral decomposition is computed
to produce a shared set of eigenvectors that enables a direct mapping between
two meshes Si and Sr.

Once all 3D meshes are matched to the reference, the vertices of all surfaces
are rearranged to create the new reconstructed meshes with consistent vertex
ordering. Now, the shape descriptor xi will be created for the surface Si as a
vector of (X,Y,Z) coordinate of all vertices.

2.2 Feature Learning and Classification

In this work we use a deep learning-based feature representation method to
improve the classification accuracy. Here, we take inspiration from the varia-
tional autoencoder network, which learns the low-dimensional manifold with-
out the linearity assumption and has a generative model. In this section, we
explain the proposed network architecture, which is a combination of a varia-
tional autoencoder network (VAE) and a softmax multi-layer perceptron (MLP).
The combined VAE-MLP network architecture is shown in Fig. 1.

Deep Variational Autoencoder and MLP Classifier

Auto-encoders are a type of deep neural networks structurally defined by input,
hidden, and output layers. Given the input data x ∈ RD defined from the spectral
representation of mesh shapes, an auto-encoder maps it to a latent representation
z ∈ Rd (encoding), which could be used for unsupervised learning or for feature
extraction. The representation z from the hidden layer is then mapped back to
a vector y ∈ RD (decoding), which approximately reconstructs the input vector
x. The hidden layer in the middle, i.e., z, can be constrained to be a bottleneck
to learn compact representations of the input data.
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Variational autoencoder (VAE) assumes that data is generated by a directed
graphical model with a latent variable z. VAE uses the encoder network to
map the input x into the continuous latent variables (qφ(z|x)) and uses decoder
network to map latent variables to reconstructed data (pθ(x|z)), where φ and θ
are the parameters of the encoder (recognition model) and decoder (generative
model), respectively.

The lower bound VAE loss function of the variational autoencoder for indi-
vidual datapoint xi has the following form:

LV AE(θ, φ;xi) = −DKL (qφ (z|xi) ||pθ (z)) + Eqφ(z|xi) [log pθ (xi|z)] (2)

The first component is the regularization term, which is the KL divergence of
the approximate posterior from the prior, while the second term is the expected
reconstruction error. As shown in [7], we assume both pθ (z) and qφ (z|xi) as
Gaussian. Given J as the dimensionality of z and K as the number of samples
per datapoint, the resulting estimator for xi will be as follows:

LV AE(θ, φ;xi) = −1
2

J∑

j=1

(
1 + log

(
σ2

j

) − μ2
j − σ2

j

)
+

1
K

K∑

k=1

log pθ (xi|zi,k) (3)

where, zi,k = μi + σi � εk and εk ∼ N (0, I).
Here, μ and σ can be computed using the deterministic encoder network.

The reconstruction (decoding) term of log pθ (xi|zi,k) could be set as a Bernoulli
cross-entropy loss function.

The low dimensional features zi = μi + σi from the latent layer are fed to
an MLP classifier for solving the classification problem. For the last layer, we
use the cross entropy loss function and the softmax activation function, which
is standard for classification problems [15]. The softmax function ensures that
the network outputs are all between zero and one, and that they sum to one on
every time step. Therefore, they can be interpreted as the posterior probabili-
ties, given all the inputs up to the current one. We set the number of units in
the classification output layer to be equal to the number of classes of interest
(i.e., two).

The Network Architecture

Annotated medical image datasets tend to be small and generally hard to obtain.
This increases the risk of network overfitting in medical applications. Therefore,
we make a series of design choices for our network to avoid overfitting. Our net-
work includes L2 regularization at each layer to penalize the squared magnitude
of all parameters directly in the objective function. That is, for every weight
w in the network, we add the term 1

2λw2 to the cost function, where λ is the
regularization strength.

We also add a drop out layer with the probability of 0.5 after each dense
layer. During training, dropout is implemented by only keeping a neurone active
with some probability p, or setting it to zero otherwise. Network weights are set
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based on the uniform initialization scaled by the square root of the number of
inputs.

We train the network for 100 epochs with batch size of 28 starting with a
learning rate of 0.00001 and dropping it at a logarithmic rate to 0.000001. For
the deep learning library, we use Keras and Theano. We determine the number
of hidden units based on the classification results. The optimal structure of the
network is shown in Fig. 1.

Fig. 1. The architecture of our proposed network. The numbers mentioned under each
layer correspond to the layer’s dimension.
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3 Experiments

We evaluate the performance of our approach on a popular brain imaging
dataset in Alzheimer’s disease, namely the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI). The ADNI database (adni.loni.usc.edu) was launched in
2003 as a public-private partnership, led by Principal Investigator Michael W.
Weiner, MD. The primary goal of ADNI has been to test whether serial mag-
netic resonance imaging (MRI), positron emission tomography (PET), other
biological markers, and clinical and neuropsychological assessment can be com-
bined to measure the progression of mild cognitive impairment (MCI) and early
Alzheimer’s disease (AD). For up-to-date information, see www.adni-info.org.
The database of ADNI consists of cross-sectional and longitudinal data includ-
ing 1.5 or 3.0 T structural MR images. The detailed description of the MRI
protocol of ADNI is provided in [16].

For this study, a subset of latest 1.5 T MR images is used including 150
normal controls (NC), 90 AD patients, 160 early MCI (EMCI), and 160 individ-
uals with late MCI (LMCI). ADNI performed additional post-processing steps
on MR images to correct certain image artifacts and to enhance standardization
across sites and platforms [16]. The post-processing steps include gradient non-
linearity correction, intensity inhomogeneity correction, bias field correction, and
phantom-based geometrical scaling to remove calibration errors. In this work,
we use these processed images. Here, hippocampi was segmented using FSL-
FIRST automatic segmentation software package [17] and visual inspection was
performed on the output binary masks to ensure the quality of the automatic
segmentation.

Here we consider six binary classification problems: AD vs. NC, NC vs.
EMCI, NC vs. LMCI, AD vs. EMCI, AD vs. LMCI, and EMCI vs. LMCI. We
consider 20% of data for test and the rest for train. Each time 20% of train
set is left out and used for validation. The whole process is repeated five times
for unbiased evaluation. The regularization strength λ is set as 0.05 based on
experimental results.

We tested different network architectures and realized that going deeper than
the proposed model in Fig. 1 would not help improving the classification accu-
racy, however the dimensionality of the hidden and the latent unit had direct
effect on the classification performance.

In the analysis of the results, the performance of the classifier are mea-
sured by its sensitivity (SE), specificity (SP) and accuracy (AC). Sensitivity,
which is the ability of the classifier to correctly identify positive results, is
defined as TP/(TP + FN). Specificity refers to the ability to correctly identify
negative results and is formulated as TN/(FP + TN). Accuracy is defined as
(TP + TN)/(TP + TN + FN+ FP).

As baseline, we train a linear Support Vector Machines (SVM) on the same
dataset after applying principle components analysis (PCA) for dimensionality
reduction. The features are extracted from 3D surface meshes after applying
spectral matching in the same way as our proposed method. The classification
accuracy for the proposed and the baseline methods is illustrated in Fig. 2. We

http://adni.loni.usc.edu/
http://www.adni-info.org
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Fig. 2. Comparison of the classification accuracy with a baseline approach using the
same spectral-based shape feature representation. The VAE-based method achieved
higher accuracy in most of the cases.

summarize the classification accuracy along with the sensitivity (SE), and speci-
ficity (SP) measures in Table 1.

These results show that our method produces higher accuracy in most of
the cases. As expected, the best classification accuracies are those obtained for
groups, which are well separated diagnostically. For instance, 84% and 81% for
the classification of NC versus AD and EMCI versus AD, respectively. The com-
putational time of both methods is around 60 s for training on 300 surfaces and
less than 5 ms for testing on one surface.

In addition, the obtained results is comparable to the previously proposed
approaches that have used MRI based features. For instance, Suk and Shen [12]
and Goryawala et al. [18] found the accuracy of 85% and 84%, respectively for
the classification of NC versus AD. These method have also included additional
information from PET modality or neuropsychological test to improve the clas-
sification performance. One future direction of our proposed approach would be
to include a combination of informative features to reach a higher accuracy.

Table 1. Comparison of the classification accuracy (AC%), sensitivity (SE%), and
specificity (SP%) with a baseline method using the same spectral-based shape feature
descriptor. The proposed method achieved higher accuracy in most of the cases.

NC/AD NC/EMCI NC/LMCI AD/EMCI AD/LMCI EMCI/LMCI

AC SE SP AC SE SP AC SE SP AC SE SP AC SE SP AC SE SP

Baseline 80 70 86 55 52 58 63 56 75 76 65 71 63 58 66 51 50 52

Proposed 84 73 89 56 52 60 59 52 64 81 70 82 67 58 73 63 62 66
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4 Conclusions

In this paper we have proposed a deep learning method based on a spectral
feature representation using hippocampus morphology for the classification of
Alzheimer’s Disease. The morphological features were extracted as 3D surface
meshes from MR image and spectral matching process was used to establish
point-to-point correspondences in mesh vertices. A variational autoencoder was
trained to find the latent feature representation from hippocampus morpholog-
ical variations. A softmax classifier was applied to differentiate between NC,
EMCI, LMCI, and AD.

Experimental evaluation on the ADNI dataset demonstrates the effectiveness
of our approach especially in classifying AD vs. NC and AD vs. EMCI. This work
shows the importance of the VAE-based morphological feature representation in
improving the diagnosis accuracy in different stages of dementia. Future research
directions include adding other informative features, such as cognitive informa-
tion and multimodal data (e.g., PET) to increase the classification accuracy.
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Abstract. In this paper we exploit the Functional maps approach
for brain classification. The functional representation of brain shapes,
or their subparts, enables us to improve the detection of morphologi-
cal abnormalities associated with the analyzed disease. The proposed
method is based on the spectral shape paradigm that is largely used for
generic geometric processing but still few exploited in the medical con-
text. The key aspect of the Functional maps framework is that it moves
the estimation of correspondences from the shape space to the functional
space enhancing the potential of spectral analysis. Moreover, we propose
a new kernel, called the Functional maps kernel (FM-kernel) for the Sup-
port Vector Machine (SVM) classification that is specifically designed to
work on the functional space. The obtained results for bipolar disorder
detection on the putamen regions are promising in comparison with other
spectral-based approaches.

Keywords: Spectral shape analysis · Functional maps · Brain
classification · Diseases and disorders detection

1 Introduction

Automatically detection of abnormal anatomical shapes derived from diseased
subjects is a fundamental goal in medical imaging. This task is typically for-
mulated as a two-class classification problem, assigning to each shape a healthy
or diseased label [30,31]. In particular, thanks to the increased amount of data
available, the attention of researchers is often focused on advanced learning-
by-example methods [2,4,6,14,15,29]. These tools require good shape repre-
sentation and measure that encodes the relationship between the shapes. The
c© Springer International Publishing AG 2016
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desired representation should be informative, concise and efficient in computa-
tional terms. In order to capture possible brain deformations due to the disease,
it is convenient to exploit geometry and topology properties of the anatomical
parts as shape representation [12,13,18]. To this aim, new spectral shape descrip-
tors and methods have been adopted in this area [5,26], aiming at investigating
advanced shape analysis approaches for the characterization of brain structures.

In this work we propose a new method for shape classification based on the
Functional maps framework [22]. The main idea of Functional maps consists of
defining a functional space for each surface and therefore representing relations
between surfaces as linear maps between these functional spaces. In this fashion,
the correspondences between pair of shapes is carried out on the functional
representation rather than the physical space in a more flexible and easy to
compute way. The characterizations of the shapes are based on point descriptors
and parts derived from a shape segmentation procedure that can be encoded
as functions defined on the surfaces. These corresponding functions give rise to
linear constraints on the linear map between the two spaces. The solution can be
computed by solving an optimization problem. Finally, choosing a proper basis
for each functional space, the desired Functional maps can be carried out by
applying standard linear algebraic techniques.

The contribution of the proposed method is two-fold:

– Firstly we extend the use of Functional map to the medical domain, to improve
the encoding of morphological relations between pairs of brain-shapes.

– Secondly we propose a new dissimilarity measure properly designed for the
functional space. In particular, from this dissimilarity measure we derived a
well defined new kernel, namely the Functional maps kernel (FM-Kernel) that
is effective and theoretically founded.

We evaluated our method for the characterization of brain abnormalities in the
context of mental health research. In particular, we propose a brain classification
study on a dataset of patients affected by bipolar disorder and healthy controls.
We focused on the putamen region, which is a deep gray matter brain structure,
part of the basal ganglia, a functional and anatomical heterogeneous region which
is thought to be affected, particularly in shape, by bipolar disorder [17]. In order
to check the actual effectiveness of the proposed method and the richness added
by the Functional maps framework in this context, we compared our method
with more classical shape analysis methods based on a spectral approach.

Roadmap. The rest of the paper is organized as follows. In Sect. 2 we give a
brief overview of the related works, highlighting connections with our method.
Section 3 summarizes the background on the Functional maps framework. The
proposed method and the derived FM-Kernel are presented in Sect. 4. Then,
the experimental Sect. 5 shows the results of our approach in comparison with
other spectral-based methods for the brain classification on the putamen regions.
Finally, in Sect. 6, some conclusions are drawn and future works are envisaged.
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2 Related Work

In literature there are plenty of methods for identifying and detecting alterations
in anatomical shapes. For brevity here we focus on the approaches that charac-
terize the shapes by adopting a spectral shape analysis strategy. A first method
based on spectral properties was proposed in [11], where spherical harmonic
descriptors (SPHARM) are computed on brain surfaces after a shapes registra-
tion step. In [26] Reuter et al. introduced a spectral global descriptor, namely
Shape-DNA. This signature is defined as the increasing ordered sequence of the
first Laplace-Beltrami operator (LBO) eigenvalues. The Shape-DNA is invariant
to the isometric deformations and by neglecting higher frequencies of the shape
it is also robust to noise. This descriptor is proposed for two different versions:
the external surfaces and the entire volume. The two surface-based and volume-
based versions are also introduced by Castellani et al. in [5] where a well known
point signature, the Heat Kernel Signature (HKS) [10,28], has been extended
to describe the entire shape by leading to the so called Global Heat Kernel Sig-
nature (GHKS). Differently from Shape-DNA this approach is based on a point
signature that encodes local information. Furthermore the GHKS allows a multi-
scale analysis that enhances the discriminative properties of the signature. Note
that both the approaches [5,26] do not require an explicit registration phase for
shape comparison. In [20], a collection of three well known spectral descriptors,
the previously cited HKS, the Wave Kernel Signature WKS [1] and the Scale
Invariant Heat Kernel Signature SI-HKS, [3] are computed at every vertex of the
mesh and then used in a Bag of features framework for spectral shape analysis
of brain structures in order to detect the Alzheimers Disease. The multiscale
analysis is instead the basic idea of [32]. This approach encodes the volumetric
geometry information starting from the volumetric LBO and obtaining a multi-
scale volumetric morphology signature which describes the transition probability
by random walk between the point pairs and depends on heat transmission time.

Finally, starting again from the LBO eigendecomposition an interesting tech-
nique is recently presented by Rabiei et al. in [24]. In this work the Graph Win-
dowed Fourier [27] is exploited to encode the geometric properties of the brain
cortex. More specifically, a Gyrification Index is introduced to represents at every
point how much the surface is folded.

Differently from all these methods we propose to move the comparison
between shapes from the descriptors spaces to the functional spaces defined
on the surfaces. Shifting the focus on functional spaces can be effective and pro-
ductive as for example in [19]. This work proposes a spectral framework namely
Brain Transfer to transfer functions between different shapes, in order to explore
the shape and functional variability of retinotopy. Conversely, to obtain and ana-
lyze this representation we propose the use of the Functional maps framework
defined by Ovsjanikov et al. in [22]. This construction is founded on the LBO
eigendecomposition and involves diffusion spectral descriptors and their desired
properties.
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3 Background

In this section we briefly introduce the Functional map framework presented in
[22]. In order to achieve comparison and classification among a family of similar
surfaces it can be useful to recover a point-to-point map T between every pair
X and Y of smooth surfaces embedded in R

3, defined as:

T : X −→ Y, (1)

such that for every fixed point x ∈ X, y = T (x) ∈ Y is the corresponding
point of x. We can consider F(X,R) and F(Y,R) the spaces of integrable real
valued functions defined on the surfaces. T naturally induces a map between the
functional spaces, namely the functional map. The functional map for the pair
of surfaces Y,X is a map between their two functional spaces:

C : F(Y,R) −→ F(X,R). (2)

Indeed for every function f ∈ F(Y,R) defined on Y the functional map C is
defined by the composition with T as C(f) = f ◦ T , as reported in the following
commutative diagram:

X T Y

g f

R

In the discrete setting, given a couple of basis for the functional spaces, C can
be represented as a matrix. Fixing a pair of basis for the functional spaces, as for
example the eigenfunctions of the Laplace Beltrami operator, the functional map
can be represented in this basis reducing the size and the computational cost
of its computation. If T is given than C can be easily computed. Otherwise as
suggested in [22] it is possible to approximate this functional map, adopting a set
of linear constraint optimizations. In our implementation the imposed constraints
are two-fold. The first related to a set of pairs of functions that are stable with
respect to deformations. The second is based on commutativity with pairs of
corresponding operators. In general, the function constraints do not resolve the
symmetry ambiguity, in fact the selected functions are usually symmetric. For
this reason, in addition to the function constraints, in [22] was proposed to add
the commutativity constraint.

C = argmin
Q

∑

i∈I

||Qfi − gi||2F + α
∑

j∈J

||RjQ − QSj ||2F . (3)

where {fi}i∈I is a collection of functions defined on the surface Y , and {gi}i∈I is
the set of corresponding functions to those selected on Y . α ∈ [0, 1] is a real para-
meter that allows us to choose how much to give importance to the second con-
straint. In this way the first part of the optimization function is minimized when
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∀f ∈ F(Y,R), that is selected as stable function, C(f) is as equal as possible to
g ∈ F(X,R) the selected stable function defined on X that matches f . These
stable functions can be selected in several way. They can be chosen between
the point descriptors that are invariant to isometric deformations. If these func-
tions are known they can be selected as landmark point correspondences or
segment correspondences. The second part of the optimization function is called
the Operator Commutativity constraint. Here for every pair of corresponding
operator (Sj , Rj) belonging to {Sj}j∈J operators of Y and {Rj}j∈J operators
of X this minimization force the following diagram to commute ∀j ∈ J :

F(Y,R) C F(X,R)

Sj Rj

F(Y,R) C F(X,R)

Fixing a proper basis for each functional space, the computation of the func-
tional map can be efficiently done adopting some linear algebraic techniques at
the same time also reducing the dimensionality of the problem. For a deeper
analysis of the properties and uniqueness of the definition of such functional
map refer to [22]. Even though the original method is quite general, in this work
we will consider only brain shapes or subparts of brain represented in the dis-
crete setting as a triangle mesh. Concluding this section, we desire to point out
that the selection of functions and operators thanks to which we can obtain the
functional map is a fundamental step for our work. The choices and the reasons
for these choices will be presented in more detail in the next section.

4 Proposed Method

In this section we show the main contributions of our paper that are: (i) the
design of a Functional maps framework on the spectral domain for brain com-
parison, and (ii) the customized Functional maps kernel for brain classification.

4.1 Computing Functional Maps

As mentioned in Sect. 3, we can approximate the Functional map C taking into
account two sets of linear constraints. In particular, such constraints are defined
by pairs of corresponding functions and by operators that satisfy the commuta-
tivity property with respect to C.

In this work we assume that in the absence of disease and disorders the brain
surfaces are closer to isometric shapes with respect to the variations caused by
the presence of disturbances. Therefore, for shapes belonging to the same class
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it is possible to find a map T that can be approximated by an isometry. Thus,
a good approximation of the Functional maps, in order to detect disorders, can
be computed starting from isometry invariant descriptors and operators. This is
the motivation that has driven our choices of function and operator constraints.

For the operator commutativity we consider the Laplace-Beltrami operator
(LBO), a positive semidefinite differential operator, defined on the smooth mani-
fold. The LBO is fully described in terms of the Riemannian metric and therefore
it is invariant to isometric deformations of the surface [25]. In the discrete setting
the LBO can be computed using the classical cotangent formula [21,23]. As func-
tions constraint we take two spectral point descriptors, which are also selected
as probe functions in the original functional maps framework. These descriptors
namely HKS and WKS are known to be stable and invariant to isometries.

The first one is the Heat Kernel Signature (HKS) [10,28] given by

h(x, t) =
n∑

i=1

e−λitφ2
i (x) (4)

where λi, φi are eigenvalues and eigenfunctions of the LBO eigendecomposition
and n is the number of selected eigenfunctions.

In the same way we can define the second descriptor, namely the Wave Kernel
Signature (WKS) [1], as

w(E, x) =
n∑

i=0

φi(x)2fE(λi)2 (5)

where E is an approximation of the energy expected value, and f2
E is an energy

probability distribution.
As extensively argued in [1,10,28] we chose these two spectral signatures

because they have a lot of interesting property. The HKS ensures the so called
informative theorem which states that if X and Y are two compact manifold and
the eigenvalues of the respective Laplace-Beltrami operators are not repeated,
then the heat HKS is preserved for every isometry T between two manifold X
and Y , i.e. hX(x, t) = hY (T (x), t). Although it is possible for some shapes to
have some eigenvalues that are very close each others by leading to a switch in
the order, in the practical experience the HKS descriptors are quite robust with
respect to this non optimal situation.

The WKS is also intrinsic and informative, i.e. once again for every isometry
T between X and Y , we have that wX(E, x) = wY (E, T (x)), for every x ∈ X and
for every E ∈ R (see Fig. 1). So these descriptors could better represent small
variations among near isometric shapes belonging to the same class, allowing a
better realization of the functional map.

4.2 Functional Maps Kernel

As shown in Sect. 3, we can estimate the map C for every pair of surfaces (X,Y ).
For the sake of clarity we denote with CX,Y the map between X and Y . Now,
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Fig. 1. Distribution of WKS values for several shapes of putamen region and energy
values. From left to right E = 10, 140, 180. Lines 1 and 2 subjects with bipolar disorder,
lines 3 and 4 normal controls.

we need a specific kernel based on this map to perform our classification task.
Given the pair (X,Y ), we compute two maps: (i) CX,Y defined from F(Y,R)
to F(Y,R) and, (ii) the inverse CY,X . Clearly the exact Functional map from a
functional space F(X,R) and itself is the identity map IdX .

If the estimated maps are correct we can draw the following commutative
diagram:

F(X,R) CX,Y F(Y,R)

IdX CY,X

F(X,R)

This diagram shows that a function should remain the same when it is moved
from shape X to Y , and than put it back to X again.
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In order to quantify how well the maps CX,Y and CY,X have been calculated,
we can define the following measure:

||CY,XCX,Y − IdX ||F , (6)

which tells us how much the previous diagram is actually commutative. Now we
infer that if two surfaces are in the same class, i.e. they do not differ sensibly, we
can compute CX,Y and CY,X in a sufficiently exact way, such that CX,Y CY,X ≈
IdX . Thus for surfaces that belongs to the same class we obtain small value in
the Eq. 6, conversely these score will be higher if the surfaces come from different
classes. At this point we can advisedly define the following distance function:

d(X,Y ) =
1
2
(||CY,XCX,Y − IdX ||F + ||CX,Y CY,X − IdY ||F ). (7)

This distance function has the following nice properties:

– Symmetry: d(X,Y ) = d(Y,X), ∀X,Y .
– Zero diagonal: d(X,X) = 0, ∀X.
– Nonnegativity: d(X,Y ) ≥ 0, ∀X,Y .

Thanks to this properties and referring to [16] we can define a distance substi-
tution kernel on the distance d, that we will call Functional maps kernel (FM-
kernel). Given a collection of surfaces {Xi}i∈I we define the FM-kernel as:

K(i, j) = e−γd(Xi,Xj)
2
,∀i, j ∈ I. (8)

As shown in [16] the obtained kernel can be successfully applied in SVM for
classification.

5 Results

In this section we show how the Functional maps framework together with our
new FM-kernel improve the brain classification performance on the spectral
domain. With this aims we explore the comparison with all the spectral meth-
ods that are more related to our framework. We also report the results obtained
using different classifiers, namely the Support Vector Machines (SVM) and the
Nearest Neighbour (NN) classifier.

5.1 Materials

We analyze a dataset of patients affected by bipolar disorder and healthy control
subjects. More precisely, 34 control subjects (22 males, 29 ± 5 years old (y.o.)),
34 patients affected by bipolar disorder (15 males, 45 ± 13 y.o.) underwent an
MRI session. MRI data were obtained using a Siemens 3.0 T Magnetom Allegra
MRI scanner (Siemens Ag). The following parameters were used for T1-weighted
images: 256 256 256 voxels, 1×1×1mm3, TR 2060 ms, TE 3.93 ms, flip angle 15◦.
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Cortical and subcortical surfaces were obtained using FreeSurfer version 4.3.11

[9]. First, non-brain tissues were excluded, then images were segmented into
white and gray matter (WM and GM respectively), and then, meshes of the
boundaries between WM and GM and between GM and CSF were estimated.
We focused on the putamen, a deep gray matter brain structure, which is thought
to be modified in the shape in subjects that are affected by bipolar disorder [17].
The process encoded by the functional map framework is shown in Fig. 2. The
function defined on the first shape is represented by the WKS descriptor. Such
function is map to the second shape by using C by showing that the transported
WKS values are very similar to the original one.

Fig. 2. A couple of putamen surfaces and two WKS descriptors computed on them.
Through the C map calculated using the Functional maps framework, we transport
the function defined on the first shape to the second one and as shown we achieve a
good approximation of the desired function on the second shape.

5.2 Comparison with Other Methods

We compare our method with the state of the art spectral methods. In order to
establish how much the Functional maps framework and the proposed FM-kernel
improve the classification results, we select methods that encode the same infor-
mation used in our Functional maps construction. We consider the Shape-DNA
(S-DNA) descriptor [26], i.e., the increasing ordered sequence of the first LBO
eigenvalues. We evaluate also the so called Global Heat Kernel Signature (GHKS)
[5], a multiscale histogram representation of the pointwise HKS. Similarly, we
define the Global Wave Kernel Signature (GWKS) based on the WKS. Finally,
since in our method the information coming from LBO, HKS, and WKS is inte-
grated into the same framework we carried out a further evaluation with descrip-
tors obtained by the concatenation of GHKS and GWKS (GHKS + GWKS), or
GHKS, WKS and S-DNA (ALL3desc).

1 http://surfer.nmr.mgh.harvard.edu/.

http://surfer.nmr.mgh.harvard.edu/
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5.3 Comparison with Different Classifiers

We show the results obtained by different choices of classifiers. Specifically, we
adopt a K-Nearest Neighbor (KNN) classifier, with k = 6 and the standard SVM
classifier using LIBSVM [7]. A cross-validation scheme is introduced to estimate
the SVM parameters as suggested in [7].

Table 1. Results in classification for the bipolar disorder on the putamen shapes. The
evaluated methods are SVM and KNN classifiers

Classification results

Method Ours S-DNA GHKS GWKS GHKS + GWKS ALL3desc

SVM 72.06 70.59 67.65 69.12 69.12 70.59

KNN 64.71 60.29 63.24 61.76 60.29 63.24

Table 1 shows the results. Our proposed approach outperforms all the other
methods, also in their joined version. This confirm our claim that performing
the classification on the functional space improves the results. Nevertheless, our
method performed at best for both SVM and KNN showing its independence
from the choice of classifier. Since the proposed FM-kernel is designed specifically
for the SVM classifier it does not surprise that the best performance was obtained
with this classifier.

6 Conclusion

In this paper the Functional maps approach for brain classification in the spec-
tral domain is proposed. We introduced a specific kernel for SVM classification,
namely the FM-kernel, based on the integration among different spectral shape
analysis operators and descriptors. We evaluated our new classification method
for bipolar disorder detection on the putamen regions by showing very promis-
ing results in comparison with other spectral-based approaches. As future works
we consider to learn more suitable spectral descriptors for specific tasks as sug-
gested in [8]. In particular, we will focus on the reduction of the importance
of the isometry constraint between shapes that is difficult to justify from the
clinical point of view even if it is working well in practice. We could also include
further information related to the anatomical structure as additional constraints
for the Functional maps framework such as the parts of a prior available shape
segmentation procedure. Moreover, we will consider that the major variability is
for the non-healthy subjects and therefore a new classifier based on the training
of a single class (the healthy one) will be considered. Finally, a more exhaustive
clinical evaluation will be carried out by exploring other brain regions and by
enlarging the cohort of available subjects.
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Abstract. This paper proposes a new method for describing parenchy-
matous organs by the set of volumetric primitives with simple shapes. The
proposed method is based on our modified Self-organizing Deformable
Model (mSDM) which maps an object surface model onto a target surface
with no foldovers. By extending mSDM to apply to organ volume mod-
els, the proposed method, volumetric SDM (vSDM), finds the one-to-one
correspondence between the volume model and its target volume. Dur-
ing the mapping, vSDM preserves geometrical properties of the original
model while mapping internal structures of the model onto their corre-
sponding primitives inside of the target volume. Owing to these charac-
teristics, vSDM enables to obtain a new volume representation of organ
volume models which simultaneously (1) represents by simple primitives
the shapes of the whole organ and its internal structures and (2) describes
the relationship among the external surface and internal structures of the
organ.

1 Introduction

Human body contains many parenchymatous organs which have internal struc-
tures and/or blood vessels within the external surface of the organ. Recent med-
ical imaging devices provide high-resolution volume models of the parenchyma-
tous organs. The volume model of a human organ in our method consists of a
set of tetrahedra. The organ volume models are useful for many medical appli-
cations including statistical analysis of target organs in individuals and surgical
simulators. Here, human organs such as brain surfaces have complicated shape.
Moreover, the volume model of the parenchymatous organ consists of a huge
number of points. For these reasons, the processes using directly the volume mod-
els are time-consuming. Therefore, the description of the organ volume model
is important for the medical applications to deal with the organ volume models
efficiently.
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In the case of the surface models of human organs, one approach for this
problem is to represent the organ surface on a common simple surface (referred
to as a target surface) such as a plane or a spherical surface by mapping these
organs onto the target surface [4,12]. This makes it possible to easily compare
among the organs and analyze them via the target surface.

In the case of the organ volume model, in order to understand the structural
features of the parenchymatous organ, the model description method needs to
represent not only the shapes of the whole organ and its internal structures but
also the spatial relations between the external surface and internal structures
of the organ. When the conventional mapping methods for the surface model is
applied to the volume models, the organ volume is represented as the set of the
surface models of the organ and its internal structures. However, this volume
model description meets the first requirement, but not the second one.

In this paper, we propose a method for representing the volume model of a
human organ with one volumetric primitive with simple shape. The proposed
method is based on our modified Self-organizing Deformable Model (mSDM)
[6,7]. Unlike the conventional methods for surface model mapping, mSDM
enables to map an organ surface model onto its target surface with various
shapes while preserving the geometrical properties of the original organ model
after the mapping. By extending mSDM, our proposed method, volumetric Self-
organizing Deformable Model (vSDM), maps the organ volume model onto its
target volume. In the mapping, the surface of the organ is fitted to that of the
target volume while each internal structure of the organ is mapped onto its corre-
sponding inner primitive within the target volume. In addition, vSDM mapping
preserves geometrical properties of the original volume model such as the angles
and volumes of the tetrahedra. The previous vSDM proposed in [8,9] controls
the mapping of only one internal structure to its inner primitive whose location is
determined manually and fixed during the mapping. Our new vSDM introduces
two new techniques: the simultaneous mapping of multi internal structures and
the automatic determination of the inner primitive positions based on the struc-
ture of each volume model. Owing to these characteristics of the vSDM mapping,
the volume model obtained by the vSDM mapping represents the whole organ
and its internal structures by their corresponding primitives with simple shapes
while describing the spatial relationship between them.

There are several mapping methods for the volume models [3,5]. Li et al.
[5] developed a harmonic volumetric mapping for object volume models. The
harmonic mapping preserves the length ratio among three edges forming a patch,
but not the scale of the patch. vSDM can preserve both the two geometrical
properties, that is, the distance along edges between any two vertices. This means
that the mapped model by the vSDM describes the spatial relationship among
the vertices more faithfully compared with the harmonic volumetric mapping
[5]. Therefore, the use of the model obtained by the vSDM mapping enables
to find a more reliable correspondence between the volume models. Hu et al.
[3] proposed the volume-preserving mapping of a brain volume model onto a
spherical volume. The method in [3] controls for moving a few feature vertices in
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the volume model to their specific locations in the target volume. However, there
is no guarantee that the method in [3] controls the mapping locations of many
vertices on the surface of the internal structure while our vSDM can map the
internal structures with many vertices onto their corresponding inner primitives.
From these characteristics, the contribution of our work is that the vSDM can
represent a volume model by a simple shape while preserving spatial relations
among the internal structures.

2 Modified Self-organizing Deformable Model [6]

In mSDM, a triangular surface model Ms of a human organ is used as an initial
mSDM. For each vertex v in Ms, its 1-ring region Rv consists of the patches p
containing v. The closed surface of v is a part of the target surface enclosed by
edges not including v in Rv. Moreover, we manually select the vertices from Ms

as feature vertices, and their corresponding points from the target surface.
The overview of mSDM algorithm for mapping Ms onto the target surface

is as follows. The detail of the algorithm can be seen in [6,7].

[m1] Deform the model Ms to fit to the target surface by the original SDM
algorithm [10]. SDM is a deformable model based on competitive learning
and energy minimization approaches. Given an organ model as the initial
SDM, the model is deformed to fit to its target surface while moving sev-
eral specific vertices of the model toward their corresponding points on
the target surface. The SDM-based mapping is applicable to objects with
various shapes as the initial SDM and the target surface although con-
ventional mapping methods use as the target surfaces only a plane or a
spherical surface.
Practically, when from the target surface, one point is randomly chosen as
a control point, the vertex of Ms closest to the control point is used as the
winner vertex. Here, when the corresponding point of the feature vertex is
the control point, the feature vertex is always chosen as the winner vertex.
The winner vertex and its neighbor vertices are moved toward the control
point. These processes are repeated until all vertices of Ms are not moved.

[m2] Remove foldovers in the mapped model. This process is derived from the
concept in Athanasiadis et al. [1] that if the deformed model Ms after
step.m1 includes the vertices existing out of their closed surfaces, consider
that the foldovers on the surface of Ms occur around the vertices. Based
on the concept, we correct the foldovers by repeatedly moving all vertices
in Ms toward the inside of their closed surface:

v = ϕ
(
∑

p∈Rv
Apgp∑

p∈Rv
Ap

)
, (1)

where Ap and gp are the area and centroid of the patch p. The function
ϕ(v) projects the vertex v onto the target surface. If the process is applied
only to folded patches, their neighbor patches may become degenerate.
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In order to avoid this situation, the process of removing foldovers is applied
to all vertices and is repeated until all foldovers are removed.

[m3] If the feature vertices are far from their corresponding points, using Free-
Form Deformation (FFD) [11], move each feature vertex to the location of
its corresponding point by deforming the region around the feature vertex.
When a lattice space is generated around the deformation region, FFD
deforms an object with no foldovers by setting properly the lattice for the
deformation. Practically, in our experiment, there is no foldover in all the
models deformed by our FFD-based movement of the landmarks. Even
though the deformed model by FFD includes some foldovers, the foldovers
are removed by our foldover removal processing while fixing the landmark
positions.

[m4] Deform the model Ms to preserve the geometrical properties of the original
organ surface model after the mapping. In mSDM, We focus on the areas
and angles of patches in Ms as the geometrical features to be preserved.
The geometrical feature preserving mapping φ is found by minimizing an
objective function Es which is a weighted linear combination of an angle
error term E

(R)
angle and an area error term Earea:

Es(Ms, φ) =
∑

v∈Ms

[(1 − μs)ψsE
(R)
angle + μsEarea]; (2)

E
(R)
angle(v, φ) =

∑

p∈Rv

3∑

d=1

eangle(θd
p, φ); (3)

Earea(v, φ) =
∑

p∈Rv

earea(p, φ); (4)

eangle(θd
p, φ) = |φ(θd

p) − θd
p|; (5)

earea(v, φ) =
∣∣∣
φ(Ap)
φ(Aw)

− Ap

Aw

∣∣∣, (6)

where ψs is a scaling factor to adjust the ranges of the two error terms. θd
p

and Ap are one angle and area of the patch p included in the 1-ring region
Rv of the vertex v. φ(θ) and φ(A) are the angle and area of the patch in
the mapped model φ(Ms). Here, Aw and φ(Aw) are the whole areas of the
original model Ms and φ(Ms).

We decided the four processing in order of decreasing the range of moving the
model vertices. In the step.m1, all the vertices are moved dynamically to map the
model onto the target surface roughly. The step.m2 is to move all the vertices on
the target surface to remove foldovers occurred in the first step. In the step.m3,
each landmark is located at its target position by moving only the neighbor
vertices of the landmark within the limited space around landmarks. The step.m4
performs the geometrical feature preserving mapping by moving each vertex
within its 1-ring region. From the characteristic, our strategy changing the range
of moving vertices finds the suitable mapping while avoiding local minimum like
Simulated Annealing.
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(a) (b) (c) (d) (e)

Fig. 1. (a) The surface of the brain volume model; (b) The brain volume model cut by
two virtual planes for the interior visualization; (c) The brain surface (blue), ventricle
(red), caudate nuclei (yellow), putamina (green); (d) The surface of the target volume;
(e) The ITS (orange) for the right and left putamina. (Color figure online)

3 Volumetric SDM

In volumetric SDM (vSDM), a tetrahedral volume model Mv of a human organ
is used as an initial vSDM. The external surface of Ms is regarded as the outer
model surface (OMS) of the vSDM. vSDM contains the inner volume models of
the internal structures of the organ. Several internal structures to be analyzed
are selected and the surfaces of the selected internal structures are used as the
inner model surfaces (IMSs) of the vSDM. One example of the initial vSDM is a
brain volume model (Fig. 1(a)–(c)) which consists of brain surface (the blue part
in Fig. 1(c)), ventricle (the red part), caudate nuclei (the yellow part), putamina
(the green part). In this paper, the brain surface is used as the OMS while we
selected as the IMSs the surfaces of the right and left putamina.

The vertices in Mv are classified into three types. OMS and IMS vertices are
the vertices on the OMS and IMSs, respectively. The rest vertices are regarded
as the inner vertices. For each vertex except the OMS vertices, its 1-ball region
is defined by the set of the tetrahedra containing the vertex (Fig. 3(a)).

vSDM is mapped onto a target volume represented by a set of tetrahedra.
The external surface of the target volume, called the outer target surface (OTS)
is the mapping destination of the OMS. The target volume includes inner targets
within the OTS. Each IMS is mapped onto its corresponding inner target surface
(ITS). Here, the initial vSDM is completely covered with the OTS. The example
of a target volume used in our experiment is a spherical volume model (the light
blue region in Fig. 1(d) and (e)) which includes two ellipsoids (the orange regions
in Fig. 1(e)). In this case, the OTS and ITSs are, respectively, the spherical
surface and the two spheroidal surfaces.

Two main processes comprise our vSDM-based approach to find the volume
mapping Φ of the initial vSDM to the target volume (Fig. 2). The first is to map
the OMS onto the OTS while moving the inner and IMS vertices to preserve
the geometrical properties of the original organ model as far as possible. The
geometrical properties to be preserved are the angles of the patches and the
volumes of the tetrahedra in Mv. Therefore, the preservation process is called
an angle- and/or volume-preserving mapping. The first mapping processes are
denoted as φmv in Fig. 2.
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The second process is to find a mapping φm of the mapped IMS by φmv

(the green line in Fig. 2) onto its corresponding ITS by mSDM. To perform
mSDM, the model to be deformed by mSDM needs to cover the large part
of the target surface. Considering this, by using the distribution of the IMS
vertices, we determine the position and pose of the LT (the orange line in Fig. 2)
satisfying this requirement. The mSDM obtains the mapping φm of all IMSs to
their corresponding ITSs. Moreover, we perform two processes: (1) correcting the
inverted tetrahedra in the vSDM and (2) performing a angle- and/or volume-
preserving mapping.

Fig. 2. Overview of vSDM. (Color figure online)

The algorithm of vSDM deformation is as follows.

[v1] Map the OMS vertices of the initial vSDM onto the OTS by step.m1, m2
and m4 of mSDM deformation.

[v2] Move each vertex except the OMS vertices toward the centroid of its poly-
hedron. Here, the polyhedron of a vertex v is obtained by removing from its
1-ball region the vertex v and the edges connecting with v. This movement
process is repeated until no vertices are moved.

[v3] Correct inverted tetrahedra by Correction method 1.
[v4] Perform an angle- and/or volume-preserving mapping by moving the ver-

tices except the OMS vertices.
[v5] For each IMS,

(i) Determine the position and pose of the corresponding LT of the IMS.
(ii) Map the IMS vertices onto the ITS by step.m1, m2 and m4 of mSDM

deformation.
[v6] Move each inner vertex toward the centroid of its polyhedron. This move-

ment process is repeated until all inner vertices are not moved.
[v7] Correct inverted tetrahedra by Correction method 1 and 2.
[v8] Perform an angle- and/or volume-preserving mapping by moving only the

inner vertices while fixing the OMS and IMS vertices.
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Step.v1 maps only the OMS vertices onto the OTS while other vertices are dis-
tributed within the target volume in step.v2. Step.v3 corrects inverted tetrahedra
in the model obtained after these steps. In step.v4, to preserve geometrical fea-
tures of original model on the target volume, angle- and/or volume-preserving
mapping is performed. After the positions of the IMS vertices are determined, in
step.v6, the inner vertices are moved based on the positions of the OMS and IMS
vertices. Finally, the algorithm performs the correction of the inverted tetrahedra
(step.v7) and the angle- and/or volume-preserving mapping (step.v8).

The following describes details of the processes of correcting inverted tetra-
hedra (step.v3 and v7) and performing an angle- and/or volume-preserving map-
ping (step.v4 and v8).

3.1 Inverted Tetrahedron Correction

Depending on the shape of the polyhedron of the vertex, the vertex movement
in step.v2 and v6 may lead to the self-intersections of the vSDM. As a result,
the model obtained after step.v2 and v6 sometimes contains inverted tetrahe-
dra. The inverted tetrahedra provide the wrong description of the spatial rela-
tionship among the vertices. In order to obtain the reliable description of the
original volume model on the target volume, the volumetric mapping method
must guarantee a one-to-one mapping with no inverted tetrahedra between the
volume model and the target volume. To achieve this, in the step.v3 and v7, the
inverted tetrahedra are corrected by the following two ways.

[Correction method 1]

In our method, an inverted tetrahedron is the tetrahedron whose at least one ver-
tex exists outside the polyhedron of the vertex (Fig. 3(b)). To find the inverted
tetrahedron, we use the visibility condition of the vertex from its neighbor ver-
tices: if the vertex v is visible from all vertices of the polyhedron of v, there
are no inverted tetrahedra including a vertex v. When we find the vertices not
satisfying the condition, the tetrahedra including the vertices are regarded as
to be inverted. These inverted tetrahedra are corrected by moving the vertices
toward the suitable positions where the vertices meet the condition. To find such
position, we check whether the polyhedron of the vertex v is a star-shaped poly-
hedron or not. When the polyhedron is star-shaped, the polyhedron contains the
kernel region in which all points are always visible from the vertices of the poly-
hedron [2]. Then, the vertex v is moved to the kernel region. Otherwise, when
the polyhedron of v is not star-shaped, the vertices forming the polyhedron of
v are moved to their kernel region without moving v.

The algorithm for correcting inverted tetrahedra is described as follows. For
each vertex v except the OMS vertices, we calculate support planes (the dotted
lines in Fig. 3(c)) by extending the faces of the polyhedron of the vertex v. If the
support planes form an enclosed region (the red region in Fig. 3(c)), the enclosed
region is regarded as the kernel region of the polyhedron. Then, v is moved
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(a)

Correc on
Polyhedron

(b) (c)

Kernel region

Fig. 3. Example of the inverted tetrahedron correction process shown in two dimen-
sional space: (a) 1-ball region, (b) inverted tetrahedra, (c) normal tetrahedra. (Color
figure online)

toward the centroid of the kernel region. Otherwise, the inverted tetrahedra
including v are corrected by moving the vertices composing the polyhedron of
v to the centroids of their kernel regions. These processes are repeated until all
inverted tetrahedra are corrected.

[Correction method 2]

In the step.v7, the Correction method 1 is applied to the inner vertices to
correct the inverted tetrahedra. If after the correction, there reminds inverted
tetrahedra in the vSDM, the tetrahedra are corrected by moving the IMS ver-
tices vl of the inverted tetrahedra along the ITS. To achieve this, by the same
way as the Correction method 1, we check whether the kernel region of
vl exists or not. If the kernel region exists, we find the quadric surface fit-
ted to the ITS around the kernel region of vl. When there is the overlapping
area between the kernel region and the quadric surface, vl is moved toward
the centroid of the overlapping area. Otherwise, if there is neither the kernel
region nor the overlapping area between the kernel region and the quadric sur-
face, we correct the inverted tetrahedron by the Correction method 1. These
processes of Correction method 2 are repeated until all inverted tetrahedra are
corrected.

3.2 Angle- and/or Volume-Preserving Mapping

In step.v4 and v8, the vSDM is deformed to preserve the angles of the triangle
patches of a tetrahedron, and the volume of the tetrahedron. The angle- and/or
volume-preserving mapping of the volume model Mv is to find the mapping φ
which minimizes an objective function Ev:

Ev(Mv, φ) =
∑

v∈Mv

[
(1 − μv)ψvE

(B)
angle + μvEvol

]
, (7)
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(a) (b) (c) (d) (e)

Fig. 4. (a) The final model surface with the normals of the original model; (b) The
interior of the resulting model; (c) The internal organ mapped on its ITS in the final
model; (d) The original left putamen from two different views; (e) The left putamen
surface after vSDM deformation from the two different views.

where ψv is a scaling factor. The function Ev consists of a weighted linear com-
bination of angle error distortion E

(B)
angle and volume error distortion Evol:

E
(B)
angle(v, φ) =

∑

p∈Bv

3∑

d=1

eangle(θd
p, φ); (8)

Evol(v, φ) =
∑

t∈Bv

evol(t, φ); (9)

evol(t, φ) =
∣∣∣
φ(Vt)
φ(Vw)

− Vt

Vw

∣∣∣, (10)

where θd
p is one angle of the patch p of the tetrahedron t containing a vertex

v in Mv. Vt and φ(Vt) are the volumes of t in the original model Mv and the
mapped model φ(Mv). Vw and φ(Vw) are the total volume of all tetrahedrons
in Mv and φ(Mv). Changing the weighting factor μv in Eq. (7) from 0 to 1, the
mapping becomes from angle- to volume-preserving mapping.

From Eqs.(7)–(10), the minimization of the objective function Ev in Eq. (7) is
replaced as the optimal location problem of the vertices within their polyhedra.
A greedy algorithm is employed to find the optimal mapping which minimizes
Ev. Practically, one vertex is selected randomly from all the vertices. The selected
vertex is moved to a location within its 1-ball region so that Ev after moving the
vertex to the location is minimized. The processes of the vertex selection and
movement are repeated until all vertices are not moved.

4 Experiment

To verify the applicability of our proposed method, we made the experiment
using the volume model of a brain (Fig. 1(a)–(c)). The volume model contains
153,121 vertices and 896,327 tetrahedra. From the internal structures in the
brain model (Fig. 1(c)), we selected as the IMSs the right and left putamina,
and denote as IMS1 and IMS2. By mapping the brain model onto the target
volume with 18,246 points (Fig. 1(d) and (e)), the final mapped brain volume
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model is obtained in Fig. 4. Figure 4(a) shows the brain surface mapped onto the
OTS with the normals of the original model (Fig. 1(a)). Figure 4(b) shows the
cross section of the final model in Fig. 4(a). Figure 4(c) shows the internal organs
of the final model. Figure 4(d) and (e) show the left putamen model before and
after the vSDM deformation.

We evaluate the mapping result by three criteria. First, we count the number
of inverted tetrahedra in the final model. As shown in the second column of
Table 1, the final mapped brain model has no inverted tetrahedra.

The second evaluation is to verify the mapping accuracy of each IMS, L, in
the final model mapped by the mapping Φ onto its ITS, Tl. The accuracy is
measured by the distance ed between L and Tl:

ed(L, Φ) =
1
2

( ∑

vl∈Ωl

H(Φ(vl), Tl)
|Ωl|

+
∑

pl∈Ωt

H(pl, Φ(L))
|Ωt|

)
, (11)

where Ωl and Ωt are the set of the IMS vertices vl and the points pl on the ITS,
and |Ωl| and |Ωt| are the numbers of vertices in Ωl and Ωt, respectively. The
function H(Φ(vl), Tl) returns the Euclidean distance between the vertex Φ(vl)
in the final model and the patch in Tl that is closest to Φ(vl). Similarly, the
function H(pl, Φ(L)) returns the distance between pl and its closest patch in
Φ(L). The values of ed for the mapped putamen surfaces are shown in the third
and fourth columns of Table 1.

The third evaluation is to verify our angle- and/or volume-preserving map-
ping by using the angle error distortion eangle in Eq. (5) and the volume error
distortion evol in Eq. (10). In the experiment, the parameter μv in Eq. (7) is set
to μv = 0.5. We define the geometrical preserving ratios rangle and rvol as the
percentages of the tetrahedra of which each geometrical error, eangle and evol, is
less than a given threshold. When the average angle and volume of all tetrahedra
in the final mapped model are denoted as θ̄ and V̄ , the thresholds of eangle and
evol in the experiment are set to 0.3θ̄ and 0.3V̄ . The values of rangle and rvol

before and after Step.v8 are shown in the fifth and sixth columns of Table 1,
respectively.

4.1 Discussion

From Fig. 4(a)–(c) and the second column of Table 1, we can confirm that the
final mapped brain model has completely the same shape of the target vol-
ume with no inverted tetrahedra. Simultaneously, the vSDM maps the right and

Table 1. The number of inverted tetrahedra (IT), ed of IMS1 and IMS2, rangle and
rvol before and after Step.v8.

IT ed of IMS1 [mm] ed of IMS2 [mm] rangle [%] rvol [%]

Before step.v8 - - - 66.2 63.2

After step.v8 0 3.82 ×10−2 4.27 ×10−2 78.1 75.7
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left putamina to the elliptic LT1 and LT2 (Fig. 4(d)). The mapped right and
left putamina have elliptical shape (the green ellipsoids in Fig. 4(e)), and the
differences ed between the mapped putamina and their ITSs are smaller com-
pared with LT1 and LT2 whose bounding box sizes are 32.6[mm] × 29.8[mm] ×
53.2[mm] and 36.0[mm]×29.6[mm]×51.1[mm], respectively. This result implies
that the vertices of each IMS are completely located on its ITS.

Before applying the angle- and volume-preserving mapping in Step.v8 of the
vSDM deformation, rangle and rvol are 66.2 and 63.2 [%], respectively. After
Step.v8, rangle and rvol increase to 78.1 and 75.7 [%]. This means performing
Step.v8 improves the accuracy of preserving the geometrical properties of the
original model. As mentioned above, the preservation of the two geometrical
properties means that the distance along edges between any two vertices is pre-
served. Therefore, the final mapped model keeps the spatial relationship between
the external surface and internal organs of the original model.

From these resuITS, vSDM can obtain the reliable description of the whole
volume and internal structure of an organ with their corresponding simple shapes
while describing the relationship among them.

5 Conclusion

In this paper, we proposed the method of representing volume models of
parenchymatous organs by their target volumes. The proposed method deforms
the OMS of the volume model to fit to the OTS of the target volume while mov-
ing the vertices of IMSs within the volume model onto their ITSs. Moreover, we
perform two processes: correcting inverted tetrahedra and preserving the geomet-
rical properties of the original model as far as possible. From the experimental
resuITS, our method provides the volumetric description of the brain volume
model composed of several internal structures which both represents the brain
model by the simplified shapes of the brain surface and the internal structures,
and describes the relationship among them. Our future works include the verifi-
cation of the availability of our vSDM by using organ volume models with more
complex structures.
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Abstract. We address the challenge of variability in the definition of
anatomical structures over time in a single subject, using a template-
based diffeomorphic mapping algorithm to filter out inconsistencies.
Shape changes are parametrized through 2D surfaces, while data attach-
ment is specified through dense 3D images. The mapping uses two geo-
desic trajectories through diffeomorphism space: template to baseline,
and baseline through the timeseries. We apply this algorithm to a study
of atrophy in the entorhinal and surrounding cortex in patients with mild
cognitive impairment, characterized by rate of change of log-volume. We
compare the uncertainty in atrophy rate measured from manual segmen-
tations, to that computed with segmentations filtered using our longi-
tudinal method, and to that computed from FreeSurfer. Our method
correlates well with manual (correlation coefficient 0.9881, and results
in significantly less variability than manual (p 8.86e-05) and FreeSurfer
(p 1.03e-04).

1 Introduction

While post mortem analysis of plaques and tangles in the brain have long been
used as the diagnostic criteria for Alzheimer’s disease, structural imaging can be
important in clinical studies of the disease. The earliest anatomical changes in
patients with mild cognitive impairment (MCI) [12] are neuronal cell death in the
entorhinal cortex (EC) [7], and have been detected through structural imaging.
Atrophy biomarkers measured through neuroimaging have been shown to be
predictive of disease onset [24], and are associated with reduced performance on
memory related tasks [22] relevant to a patient’s lifestyle.

We have been quantifying these early changes through techniques in com-
putational anatomy known as diffeomorphometry. By identifying spatial corre-
spondences between brain atlases and subject scans via smooth diffeomorphic
mappings, we can infer information about anatomical changes through proper-
ties of theses diffeomorphisms, such as their determinant of Jacobian (see [9] for
a recent review).
c© Springer International Publishing AG 2016
M. Reuter et al. (Eds.): SeSAMI 2016, LNCS 10126, pp. 51–62, 2016.
DOI: 10.1007/978-3-319-51237-2 5
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Estimation of these diffeomorphisms is complicated by high dimensional nui-
sance variables. The mappings are not uniquely specified in the homogeneous
interiors of anatomical structures. Discriminating information is only present
on image discontinuities. To address this problem, parsimonious representations
have been developed by parametrizing shape changes through a function on the
bounding surfaces of anatomical structures, an object of the natural dimension
for describing these shapes. In this framework, low dimensional parametric coor-
dinates have been developed by expanding this function in a basis determined
through principal component analysis [13,21], or through eigenfunctions of the
Laplace-Beltrami operator [20].

On the other hand, the majority of neurimaging data, such as T1 MR images
and binary segmentations, is in the form of dense 3D volumes. We have developed
a method to incorporate the advantages of the efficient surface representation
such as robustness to noise [20] and reproducibility [19], with simple and real-
istic noise models obtained by working directly with neuroimaging data. These
models include white noise (sum of square error) when working with T1 images,
or multivariate Bernoulli when working with multiple segmentations [17], as
opposed to less easily interpretable data attachment models that work directly
with surfaces such as currents or varifolds [1].

Despite these advantages, our ability to infer properties of disease progression
is limited by the inconsistency of segmentations of anatomical structures. The
problem we address here is the variability in these definitions within a single
subject over time in longitudinal studies. This source of variability prevents us
from making inferences on an individual level, and mandates larger sample sizes
in studies of populations. We address this challenge by extending our framework
to map onto each segmentation in the timeseries simultaneously.

This extension has been approached in several different ways. Longitudinal
Freesurfer [6,14] addresses this issue with a common initialization of optimization
problems for each scan in a timeseries. It avoids modelling any growth or atrophy
process with the intention of avoiding bias by privileging a given (e.g. baseline)
scan, and to allow the capture of sudden changes.

Several models for growth and atrophy scenarios using flows of diffeomor-
phisms are discussed in [5], with a focus on modelling populations of timeseries,
and describing relationships of a given growth process to a typical one. More com-
plex statistical processes are described through higherarchical geodesic models
in [15]. In [11], several parametrizations of these flows are considered, includ-
ing piecewise geodesic (also used in [5]), spline based, and geodesic shooting (in
order of increasing regularity in time).

For our specific problem, filtering out inconsistencies in anatomical defini-
tions, we are less concerned with over regularization and use the shooting app-
roach, using two geodesic trajectories through the space of diffeomorphisms: one
from template to baseline, and one from baseline through the timeseries. Such
an approach will be shown to significantly reduce this source of variability.
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2 Method

2.1 Data

T1 brain MR images from the Alzhimer’s Disease Neuroimaging Initiative
(ADNI) dataset were examined.1 Twenty patients were selected, older adults
(age 72 ± 8 years), 60% male, education of 17 ± 3 years, with mild cognitive
impairment, and having a continuous left collateral sulcus (the most common
anatomical variant, others are described for example in [3]). Each subject was
scanned up to 5 times, and at least 3 times (so that a residual can be estimated
after linear fitting), over 2 years. The EC and immediately lateral cortex (the
trans entorhinal cortex, TEC) were analyzed for the presence of atrophy.

Structures were delineated by manual segmentation, on T1 structural scans
using the anatomical boundaries described in [8]. The emergence of EC occurs
2 mm caudal to the appearance of the limen insulae and ends 1 mm caudal to the
disappearance of the uncus. To account for morphological variation in the limen
insulae and uncus, the most rostral boundary of EC was defined 4 mm anterior to
the hippocampal head and the most caudal boundary was defined 2 mm posterior
to the disappearance of the gyrus intralimbicus, which appears at the caudal end
of the uncus. With regard to the medial-lateral boundaries, segmentations were
extended as far medially as discernible gray/white matter boundaries would
allow and the EC/TEC boundary was delineated vertically at the midpoint
of the medial bank of the collateral sulcus. For comparison with state of the
art, segmentations were also performed by FreeSurfer version 5.1 that utilizes
the 2010 Desikan-Killany atlas [6,14]. We did not use the longitudinal pipeline
because the resulting data for the entorhinal cortex was extremely variable and
did not look viable.

Imaging data for each subject was rigidly aligned to baseline by minimizing
sum of square error in T1 images, and imaging data between subjects was rigidly
aligned to a single subject through 4 landmarks placed automatically at the
boundaries of the segmentations, minimizing sum of square distances between
pairs of landmarks. For each subject i, at time tj , we denote the rigidly aligned
manual segmentation image as J ij .

1 Data used in the preparation of this article were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database (http://adni.loni.usc.edu). The
ADNI was launched in 2003 as a public-private partnership, led by Principal Investi-
gator Michael W. Weiner, MD. The primary goal of ADNI has been to test whether
serial magnetic resonance imaging (MRI), positron emission tomography (PET),
other biological markers, and clinical and neuropsychological assessment can be com-
bined to measure the progression of mild cognitive impairment (MCI) and early
Alzheimer’s disease (AD). For up-to-date information, see http://www.adni-info.
org.

http://adni.loni.usc.edu
http://www.adni-info.org
http://www.adni-info.org
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2.2 Equations of Diffeomorphometry

The background space of an image, Ω ⊂ R
3 is deformed by a diffeomorphism

ϕ : Ω → Ω, which is generated by a flow under a smooth time varying velocity
vector field v : Ω → R

3

ϕ̇t = vt(ϕt), ϕ0 = identity, ϕ
.= ϕ1. (1)

To ensure solutions are diffeomorphisms, the vector fields are modelled as belong-
ing to a Hilbert space of smooth functions V [23], with inner product given by
〈v, v〉V

.= 〈Lv,Lv〉L2 for L a differential operator designed to give smoother
functions a smaller norm. Here we implicitly choose L such that the Green’s
function of L∗L (for ∗ referring to adjoint) is given by the Gaussian kernel
K(x, y) = exp

(− 1
2σ2 |x − y|2) for σ = 6 mm.

This defines geodesics through the space of diffeomorphisms given by Euler’s
equation. Defining the momentum distribution in the dual V ∗ as μ

.= L∗Lv, this
can be written as [10]

μ̇ = −[Dv]T μ (2)

We model the family of deformations used to study this population through
initial momentum supported on the Nv vertices of a triangulated surface tem-
plate, qi for i ∈ {1, . . . , Nv}, that contours our structures of interest

μ0 =
Nv∑

i=1

δqipi

where δx is the Dirac distribution centered at x, and pi is a vector in R
3 parame-

trizing our deformation. The parameters p will be estimated to model the shape
of each structure in a timeseries or population. For notational convenience we
write exp(p) = ϕ, for p the parameters, and ϕ the diffeomorphism calculated by
solving (2) and (1). Note that ‖v‖2V .= 〈v, v〉V =

∑Nv

i,j=1 pT
i K(qi, qj)pj which we

write as ‖p‖2V ∗ .
These diffeomorphisms act on images through their inverse ϕ ·I .= I ◦ϕ−1, for

I : Ω → R an image, which in our discrete implementation is computed through
trilinear interpolation. In general we will estimate p by minimizing the sum of
square error between segmentation images ‖ exp(p) · I −J‖2L2

for I our template
image and J a target image.

2.3 Algorithms

We construct a hypertemplate surface, with vertices qh, using a restricted delau-
nay triangulation [2] of the isosurface of the average image of our aligned baseline
segmentations. A hypertemplate image Ih is generated by filling each voxel with
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its fraction inside the surface (estimated by Monte Carlo sampling). We calculate
the deformation parameterized by p0h, minimizing the cost function

1
2σ2

p0
h

‖p0h‖2V ∗ +
Ns∑

i=1

1
2σ2

pi
h

‖pi
h‖2V ∗ +

1
2σ2

Ii
h

‖ exp(pi
h) · exp(p0h) · Ih − J i1‖2L2

over p0h and the nuisance parameters pi
h, for J i1 the target binary segmenta-

tion image of the baseline scan for the i-th out of Ns = 20 subjects. The σ2
·

are scalar parameters that provide the flexibility to change relative weighting
between terms, but here they are each set to 1. We denote our resulting tem-
plate image I

.= exp(p0h) · Ih and our template vertices q = exp(p0h)(qh) (i.e.
each vertex is transformed directly by the diffeomorphism generated by p0h). A
diagram of this setup is shown in Fig. 1.

Fig. 1. Illustration of template estimation procedure for six subjects in our population.
The hypertemplate is shown in green, the estimated template in cyan, the template
deformed to match baseline in blue, and the target baseline scans in red (Color figure
online).

Given this template (surface q and image I), we can map onto the timeseries
for subject i at each time tj for j ∈ {1, . . . , Nti} by minimizing the cost function

1
2σ2

p0

‖pi
0‖2 +

1
2σ2

p1

‖pi
1‖2V ∗(tiNti − ti1)

+
Nti∑

j=1

1
2σ2

Ij

‖ exp(pi
1(t

ij − ti1)) · exp(pi
0) · I − J ij‖2L2

over the parameters pi
0 and pi

1. The σ2
· again provide relative weighting between

terms, and they are set to σ2
p0

= 2, σ2
p1

= σ2
Ij = 1 (chosen heuristically). For

this dataset we express tij in units of 6 months. A diagram of this setup is shown
in Fig. 2, where Iij .= exp(pi

1(tj − t1)) · exp(pi
0) · I. Essentially pi

0 represents the
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Fig. 2. Example longitudinal mapping results for two subjects. The template is shown
in cyan, the deforming template in blue, and the target in red. Top: high variability
example, bottom: low variability example (Color figure online).

“intercept” and pi
1 represents the “slope” of a linear regression in the space of

diffeomorphisms for subject i.
Each of these minimization problems are solved by gradient descent using

an adjoint algorithm. The gradient of each term in the matching cost, namely
(ϕ · I − J), is transported backwards in time through a linearized version of the
dynamics (1), (2), and İt = −∇Itvt (optical flow), and contributes additively to
the gradient of the the cost function with respect to the parameters. Details of
this approach can be found in [20] (or [4] for a similar approach).

2.4 Per Subject Atrophy Rate Estimation

We use the following log-linear model to estimate volumetric atrophy rate in
each subject

log vij = ai
0 + ai

1t
ij + εij

where vij is subject i’s entorhinal cortex and trans entorhinal cortex volume at
time tij , estimated by summing voxels in the segmentations Iij or J ij (for I,
these take value 1 for interior voxels and values between 0 and 1 for boundary
voxels) times voxel volume (0.9375 mm × 1.2 mm × 0.9375 mm = 1.0574 mm3),
ai
0 is a nuisance parameter (log volume at t = 0), and ai

1 is the atrophy rate
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(exponential time constant). In this model, εij is assumed to be independent
Gaussian noise with variance σ2

i .
Each parameter is estimated by maximum likelihood, including σ2

i which is
the mean square error of the fit. The variance of our atrophy rate estimator is
given by

Var[âi
1] =

σ̂2
i

Ntiσ2
ti

(3)

where Nti is the number of timepoints for subject i, σ2
ti is the variance in scan

times, and σ̂2
i is our estimate of the variance in εij . Note that (3) agrees with

the residual bootstrap variance estimator within 3.3% (root mean square percent
error), but in the case that our linear model is incorrect this quantity can still
be interpreted simply as a rescaling of square error after the linear fit.

2.5 Evaluation

We evaluate the accuracy of atrophy rate estimates by examining correlation
with manual segmentations. We evaluate the variability by comparing the stan-
dard deviation (calculated from (3)) of this estimator measured from manual
segmentations, to that measured after our filtering procedure, and to that com-
puted from FreeSurfer.

3 Results

3.1 Mapping Results

The estimated entorhinal cortex and trans-entorhinal cortex atlas is shown in
cyan in Figs. 1 and 2 (cyan). Two example longitudinal maps are shown in Fig. 2,
illustrating a high variability case (top), and a low variability case (bottom). Note
the difference in anterior-posterior (left-right on the figure) extent in the manual
segmentations (red) for the first two timepoints for the high variability subject.
This inconsitency has been filtered out by our mapping procedure (blue).

3.2 Atrophy Rate

For the two subjects shown in Fig. 2, volumetric analysis is shown in Fig. 3.
Volumes of the manual segmentations are shown as red dots, while volumes of
the deforming template are shown as a blue line. The volume of the deformed
template corresponding to each measured timepoint is shown as a blue dot, and
the volume of the template itself is shown as a cyan dot on the left. The reduction
in variance due to the longitudinal mapping procedure is evident, particularly
for the highly variable subject (left).

The atrophy rate estimated for each subject is shown in Fig. 4, with manual
segmentations shown in red, the results of our longitudinal mapping procedure
shown in blue, and results from Freesurfer shown in green for comparison with
state of the art.
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Fig. 3. The mapping procedure’s stabilization of volume measurements is illustrated
for left: high variability example, and right: low variability example. The horizontal
axis indicates months elapsed since baseline scan.

Fig. 4. Estimated atrophy rate in units of exponential time constant, for each of the
20 subjects examined (horizontal axis), is shown for each subject examined as a bar.
Standard deviation of the estimator is shown as an errorbar.

3.3 Quality of Atrophy Rate Estimates

Atrophy rate estimators are quite consistent between the manual segmentations
and the longitudinal maps (correlation coefficient 0.9881), and not very consis-
tent with FreeSurfer results (correlation coefficient 0.2283), as can be seen in the
scatter plot in Fig. 5.

The standard deviation of our atrophy rate estimator, computed according to
the square root of (3), is shown in Fig. 6. Significant differences between the three
methods are determined by pairwise signed rank tests. Variance is significantly
reduced in longitudinal maps relative to manual segmentations (p = 8.86e-05)
and relative to FreeSurfer (p = 1.03e-04). However, variance in FreeSurfer esti-
mates is not significantly different from manual segmentations (p = 6.81e-01).
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Fig. 5. Correlation between atrophy rate measured from manual segmentations (hor-
izontal axis) and estimated with two methods (vertical axis) in units of exponential
time constant is visualized with a scatter plot. Correlation coefficient for longitudinal
maps: 0.9881, and for FreeSurfer: 0.2283.

Fig. 6. Standard deviation of our atrophy rate estimator in units of exponential time
constant, for each of the 20 subjects examined (horizontal axis), is shown for volume of
manual segmentations (red) and volume of our template deformed by the longitudinal
mapping procedure (Color figure online).

4 Discussion and Conclusion

As our population of manual segmentations expands to include healthy control
subjects in addition to those with MCI, we intend to employ this procedure to
identify changes that are specific to disease, as opposed to normal aging. Local
modelling of tissue change based on determinant of Jacobian of our mappings
will likely prove more sensitive than the volumetry presented here, and can be
expanded to include volume change (determinant of 3 × 3 Jacobian), surface
area change (determinant of the 2×2 component of the Jacobian tangent to the
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template surface), and thickness change (determinant of the 1× 1 component of
the Jacobian normal to the template surface). An example of early work with
this type of analysis can be found at [18].

Because our method treats each segmentation differently depending on its
position in the timeseries, unlike the approach in longitudinal FreeSurfer as
mentioned in the introduction, the potential for processing bias exists. This was
estimated by reversing the order of the timeseries and repeating the experiment,
showing an average overestimate in the magnitude of atrophy rate constant of
0.01. This is a small source of error relative to the inconsistencies in anatom-
ical definitions over time we have sought to address. One simple approach for
removing this source of bias is to take the average of the forwards and reversed
atrophy rates. A second would be to choose the one which produces the smaller
value of the cost function. These and other strategies for removing bias will be
the subject of future research.

The longitudinal mapping procedure presented here is able to filter segmen-
tation images, significantly reducing uncertainty in atrophy rate measurements,
while correlating strongly with raw manual segmentation results. This proce-
dure has important implications for clinical studies of Alzheimer’s disease, where
reduced variability will allow for sufficient statistical power at smaller sample
sizes.
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Abstract. The detection of pathological changes in neurodegenerative
diseases that occur before clinical onset would be of great value for iden-
tifying suitable subjects and assessing drug efficacy in trials aimed at
preventing or slowing onset. Using MRI derived volumetric informa-
tion, researchers have been able to detect significant differences between
patients in the presymptomatic phase of neurodegenerative diseases and
healthy controls. However, volumetric studies provide only a summary
representation of complex morphological changes. Shape analysis has
already been successfully applied to model pathological features in neu-
rodegeneration and represents a valuable instrument to model presymp-
tomatic anatomical changes occurring in specific brain regions.

In this study we propose a computational framework to model group-
wise spatio-temporal shape differences, and to statistically evaluate the
effects of time and pathological components on the modeled variabil-
ity. The proposed approach leverages the geodesic regression framework
based on varifolds, and models the spatio-temporal shape variability via
dimensionality reduction of the subject-specific “residual” transforma-
tions normalised in a common reference frame through parallel trans-
port. The proposed approach is applied to patients with genetic variants
of fronto-temporal dementia, and shows that shape differences in the
posterior part of the thalamus can be observed several years before the
appearance of clinical symptoms.
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1 Introduction

The hallmark of neuro-degenerative diseases such as Alzheimer’s disease (AD)
or frontotemporal dementia (FTD) are the progressive clinical symptoms that
include dementia, memory loss, and changes in behaviour. However, there is
also evidence of pathological changes occurring much earlier than the onset of
these clinical symptoms. This presymptomatic phase of the disease can last more
than a decade. Reliably detecting these early changes in presymptomatic indi-
viduals could provide the roadmap to improved prevention of these diseases.
These findings would not only provide better understanding of the underlying
mechanisms of the disease, but they would also result in improved identification
of at-risk individuals that would be suitable for potential therapies that will
halt or slow down the disease process. Accurate, reliable measurements of these
changes could also be used to assess the efficacy of these therapies in secondary
prevention clinical trials.

Autosomal dominant forms of dementias provide a reliable means of identi-
fying presymptomatic individuals who are highly likely to develop the disease.
The Dominantly Inherited Alzheimer Network (DIAN) and the Genetic FTD
Initiative (GENFI) are examples of international studies of autosomal dominant
forms of AD and FTD that are collecting multimodal neuroimaging, alongside
other biomarkers with the objective of obtaining an improved understanding
of the changes that are occuring during the presymptomatic phase of the dis-
ease. The structural MRI results from these studies [2,19] have shown evidence
of significant volume differences between carriers and non-carriers in numerous
regions of the brain years before the expected onset of clinical symptoms.

While the neurodegenerative process has consistently resulted in downstream
effects of regional volume, there may be even earlier, more sensitive information,
encoded in the shape of the structure. An important aspect of shape analysis is
their description. Different ways to describe shape have been proposed. The use
of M-Representation [18] allows atrophy measurements and enables the separa-
tion of the thickness of a shape from its positioning. However, this representation
is sensitive to topological changes. Spherical harmonic decompositions [23] are
often used for their simplicity in parametrisation since only a few parameters are
required to describe a shape. However, the interpretation of the parameters, and
differences between them, is not intuitive. For the current study we represent
shapes using varifolds [4], which have the same properties as the current rep-
resentation [25]. They are robust to varying topologies, do not require point to
point correspondences, and embed the shapes in a vector space, which facilitate
the interpretation of results.

In this paper the methodology is based on the framework of the Large
Deformation Diffeomorphic Metric Mapping (LDDMM) [1,12,24], providing a
shape space, there is a continuum between all shapes of the population under
study. We develop a for spatio-temporal shape analysis in order to qualify and
quantify early shape changes between subjects with and without genetic vari-
ants of FTD. We first compute an average spatio-temporal trajectory of the
thalamic shapes segmented from a population of 211 individuals [8,11]. Second,
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we compute the subject-specific “residual” trajectories with respect to the mod-
elled progression, and we subsequently spatio-temporaly normalise them in the
baseline reference frame through parallel transport [26]. We finally model the
spatio-temporal variability encoded in the “residuals” through kernel PCA. The
individual projections in the latent space are statistically analysed via random
effect models to investigate significant effects of time and group-wise differences
in the encoded longitudinal variability. In the literature we can find different
longitudinal shape analysis answering different questions. The work presented in
Lorenzi et al. [14] measures brain atrophy for each subject using follow up scans,
and the method is not based on the LDDMM framework. In Datar et al. [6] they
used a shape representation based on point to point correspondences and tend
to model population trend. In Lorenzi et al. [16] they estimate the anatomical
age of a new subject regarding to a normal aging longitudinal model based on
stationary vector fields. The method aims to estimate from brain images the
contribution of aging and pathology. Here the aim of the method is to detect
shape differences due to pathology along the time.

2 Method

We indicate with {(Si, ti)}i∈{0,N−1} a set of N shapes associated with a cor-
responding time point ti. With analogy to classical random-effect-modelling
approaches, we assume that each shape is a random realisation of a common
underlying spatio-temporal process φ(t):

Si = ρi(φ(ti, B0)) + εi,

where B0 is a common reference frame (typically the baseline image), and ρi

is a subject-specific “residual” accounting for individual variations, this is the
diffeomorphic deformation linking the mesh of the shape Si to the corresponding
time point ti of the common trajectory. We also assume that εi is Gaussian ran-
dom distributed noise. In order to identify group-wise differences between the
spatio-temporal trajectory changes, we propose a statistical framework to model
and compare the subjects-specific “residuals” ρi. This is a challenging problem,
since the ρi are defined at different time points, and therefore cannot be directly
compared in a common anatomical framework. Moreover, the optimisation of the
functional for the simultaneous estimation of group-wise trajectory and random
effects is not trivial, and would ultimately result in highly expensive numerical
schemes. For this reason, we propose to simplify the optimisation problem by
introducing an efficient numerical framework composed of three steps illustrated
in Fig. 1. (i) First we assume that the “residuals” ρi are fixed, and estimate
the common trajectory φ(t). (ii) Second, given the modelled trajectory φ, we
estimate the random effects ρi through non-linear registration between the tra-
jectory point φ(B0, ti) and Si. (iii) Third, after normalising the random effects
in the common baseline reference space B0, we evaluate group-wise differences
and time dependencies. This is achieved through dimensionality reduction and
subsequent univariate analysis on the reduced projections.
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Fig. 1. Proposed framework. An average continuous shape trajectory is first com-
puted from a population (composed by 2 groups of individuals). Second the “residual”
between each shape and the trajectory is computed before being parallel transported
to a common time point (B0) for statistical analysis.

The proposed framework relies on the mathematical setting of the Large
Diffeomorphic Deformation Metric Mapping (LDDMM) framework and the var-
ifold representation of shapes. This choice allows a mathematically consistent
definition of (i) the spatio-temporal regression, (ii) the ρi deformations estima-
tion, and (iii) the normalisation of the initial momentum of ρi through parallel
transport.

2.1 Large Diffeomorphic Deformation Metric Mapping and Varifold
Representation

To quantify differences between shapes, we use diffeomorphic deformations
that provide smooth mappings between spaces and are invertible with smooth
inverses. The LDDMM framework [1,24] is a mathematical and algorithmic
framework based on flows of diffeomorphisms, which allows comparing anatom-
ical shapes as well as performing statistics. The framework used in this paper
is in fact a discrete parametrization of the LDDMM framework, as proposed in
Durrleman et al. [10], based on a finite set of control points. The control points
can be located anywhere not necessarily at the shape vertices, and they are
independent of the shapes to be matched. They define a potentially infinite-
dimensional basis of the parametrization of the deformation. The vector attached
to them define the weights of the decomposition of a given deformations onto
this basis, these vectors are called momentum vectors. The position of the con-
trol points and the momentum vectors attached to them need to be optimized.
The optimisation of the control points concentrate them in the most variable
parts of the object to match as shown in Durrleman et al. [7].

Deformation maps ϕv : IR3 → IR3 are built by integrating time-varying
vector fields (vt)0≤t≤1, such that each v(·, t) belongs to a Reproducing Kernel
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Hilbert Space (RKHS) V with kernel KV , we used a Gaussian kernel:

kV (x, y) = exp
(−|x − y|2

λ2

)
Id, for all points(x, y),

with Id the identity matrix, and λ a scale factor which determines the size of the
kernel and therefore the degree of smoothness of the deformations. We define
ϕv(x) = φv(x, 1) as the diffeomorphism induced by v(x, t) where φv(x, 1) is the
unique solution of the differential equation:

dφv

dt
(x, t) = v(φv(x, t), t),∀t ∈ [0, 1] with φv(x, 0) = x,∀x ∈ IR3.

Velocity fields (vt) are controlled via an energy functional
∫ 1

0
‖v(·, t)‖2V dt, where

‖ · ‖V is a Hilbert norm defined on vector fields of R
3, which penalises non-

regularity. This energy is used as a regularity term in the matching functional.
Matching two shapes S and T needs the estimation of an optimal deformation
map φ : R

3 → R
3 such that φ(S) is close to T by optimising a functional

E(φv) = d(ϕv(S), T )2 + γ

∫ 1

0

‖v(·, t)‖2V dt,

where γ balances between the regularity of φ and the spatial proximity d, a
similarity measure between the varifold representation of φ(S) and T .

In a discrete setting, the vector fields v(x, t) corresponding to optimal maps
are expressed as combinations of spline fields which involve the reproducing
kernel KV of the space V :

v(x, t) =
n∑

p=1

KV (x, xp(t))αp(t),

where xp(t) = φv(xp, t) are the trajectories of control points xp, in our case
the control points are regularly spaced on a 3D grid containing the mesh of the
subject S. The spacing between the control points is defined from the size of the
kernel KV . αp(t) ∈ IR3 are time-dependent vectors called momentum vectors.
The optimal trajectories between shapes S and T , satisfy the geodesic equations
for a given metric on the set of control points such as the varifolds [4]. As a
result the full deformation can be encoded by the vector of initial momentum
vectors α(0) = {αp(0)}1≤p≤n located at the points {xp}1≤p≤n. This allows to
analyse the set of deformation maps from a given template to the observed
shapes by performing statistics on the initial momentum vectors located on the
template shape. The process of generating back any deformation maps from
initial conditions (xp(0), αp(0)), i.e. integrating the geodesic equations, is called
geodesic shooting or exponential map and is noted expxp(0)(αp(0)).

As said in the introduction we used the varifolds to represent our shapes [4].
This is the non oriented version of the representation with currents which is
very efficient to model a large range of shapes. To represent a shape S as a
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varifold, the shape space is embedded into a Reproducing Kernel Hilbert Space
(RKHS), where it is encoded using a set of non-oriented unit normals attached
on each vertices of the shape. As for the current representation, this kernel-
based embedding allows to define a proper distance between different embedded
shapes. Here the studied shape is the thalamus, which has an ovoid shape, so
currents or varifolds could have been used, the orientation of the normals on the
shape are not an issue.

2.2 Proposed Framework

The computation of the spatio-temporal regression [8] requires its initialisation
to a baseline shape B0 = {xp}p=1,...,NB0

, where NB0 denotes the number of con-
trol points defined on the shape B0. To avoid any bias of the geodesic regression
towards an initial subject selected as baseline, we estimate the baseline from the
10 youngest subjects regarding the temporal axis, so subjects with the small-
est ti. The baseline is estimated by computing iteratively the centroid of those
subjects in the space of deformations, using the diffeomorphic Iterative Centroid
method [5], based on the LDDMM framework.

The spatio-temporal regression of the set of shapes {(Si, ti)}i∈{0,N} is imple-
mented in the Deformetrica1 software [9,21]. The method requires the discreti-
sation of the temporal axes using T time points, a value specified by the user.
The new set of data, used for the regression, is {(Si, t)}i∈{0,N},t∈{0,T}, where

t = argmin
t

{‖t − ti‖,∀t ∈ {0, ..., T}}.

The method computes a geodesic starting at position B0 at time t = 0, and
moving to positions φ(B0, t)∀t ∈ {0, T}, following the differential equation seen
previously, and minimising the discrepancy between the model at time t (i.e.
φ(B0, t)) and the actual observation Si:

E(φ) =
∑

t

d(φ(B0, t), Si)2 + γ‖|vφ
0 ‖|2V φ ,

with vφ the time-varying velocity vector field that belongs to the RKHS V φ

determined by the Gaussian Kernel Kφ. The initial momentum vector α(0) is
defined on the control points of the baseline shape B0 and fully encodes the
geodesic regression.

Then from the spatio temporal trajectory, we compute the “residuals” defor-
mations ρi between every observation and the spatio-temporal average shape by
estimating the geodesic between φ(B0, ti) and {Si, ti}, using the matching equa-
tion seen in Sect. 2.1. We then obtain a set of momenta {φ(B0, t);αi(0)}t∈{0;T}
that encodes the deformations ρi from the spatio-temporal regression to all sub-
jects. To make this set of momenta comparable, we need to define them in the
same space.

1 http://www.deformetrica.org/.

http://www.deformetrica.org/
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We transport all momenta into the baseline space of B0 = φ(B0, 0), using a
parallel transport method based on Jacobi fields as introduced in [26]. Parallel
transporting a vector along a curve (the computed trajectory parametrised by
{B0;α(0)} here) consists in translating it across the tangent spaces to the curve
by preserving its parallelism, according to a given connection (the Levi-Civita
connection in LDDMM). The vector is parallel transported along the curve if the
connection is null, for all steps along the curve [15]. We chose to use Jacobi field
instead of the Schild’s Ladder method [13], to avoid the cumulative errors and the
excessive computation time due to the computation of Riemannian Logarithms
in the LDDMM framework, required for the Schild’s Ladder. Those errors would
have been different from a subject to an other, since they all are at different time
points of the trajectory, some of them have to travel more than the others. To
transport a vector η from a time t to the time t0 = 0, along the geodesic γ, the
Jacobian field is defined as:

Jγ(t)(0,−αi(t), η) =
∂

∂ε
expγ(t)(1/T (−αi(t) + εη)).

The geodesic γ(t) is in the direction −αi(t), and η is an initial momentum vector
as the {αi(0)} computed above, is tangent to the geodesic γ at the time point t.

We then have N vectors of size 3 × NB0 defined in B0. This information is
reduced using a Kernel Principal Component Analysis (K-PCA) [22], which is
the non-linear version of the standard Principal Component Analysis (PCA).
The covariance matrix is defined as:

ΓV φ

i,j = (αi − α)KV φ(αj − α),

where V n are the eigenvectors of the matrix ΓV , with KV φ the kernel of the space
of deformations used for the computation of the spatio-temporal regression. The
n-th mode of variation is defined as

mα = α +
∑

i

V n
i (αi − α).

3 Data and Experiments

We applied the proposed framework to the GENFI database, using the thalamus
as our structure of interest. GENFI is a multi-centre study in which participants
come from families known to carry a pathogenic mutation in one of three genes
that are the most common cause of genetic FTD: microtubule-associated protein
tau (MAPT), progranulin (GRN) and an expansion of the open reading frame
72 in Chromosome 9 (C9orf72). The thalamus is an intriguing candidate for this
analysis, as Rohrer et al. [19] reported volumetric differences in the thalamus
5 years before expected age at onset. In this paper we used 211 participants,
113 mutation carriers and 98 non-carriers. All participants have a T1-weighted
(T1w) MRI and an expected years to symptom onset (EYO). Table 1 shows the
demographics of the study participants used in this analysis.
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Table 1. Data demographics

Non-carriers Mutation carriers

n = 98 n = 113

Males 59 56

Asymptomatic 98 76

Age in years (med (IQR)) 50.2 (36.6–62.1) 52.7 (41.1–62.7)

Years from expected onset:

≤ −20 years 30 21

−20 ≤ years ≤ −10 16 21

−10 ≤ years < 0 23 22

0 ≤ years 29 49

Before running the spatio-temporal regression, we first ran the parcellation
of the T1w [3] to extract afterwards the meshes of the structure of interest.
Second, we rigidly and affinely aligned the T1w brain images to a groupwise
space before rigidly refining the alignment of the thalamus parcellations [17].
Next, we extracted the meshes corresponding to the left thalamus, including
around 2, 300 vertices for 441 control points. We have 211 left thalamus meshes
associated with the EYO of the subject and the indication if the subject is
mutation carrier (MC) or not. For the regression we used 30 time points, which
corresponds approximatively to one time point every two years. The space of
deformations V was defined using a 11 mm width kernel, which corresponds to
half of the length of a thalamus, and a 5 mm width for he space of varifolds.

Similarly to the volumetric analysis performed by Rohrer et al. [19], we use
a mixed effect model to study the shape difference between the healthy subjects
and the MC. The eigenvectors computed from the principal component analysis
of the “residual” deformations transported in the baseline shape are used as
variables and the fixed effects predictors of interest are mutation carrier status,
EYO and interaction between mutation carrier status and EYO. To allow for
non-linear change in thalamus volume or shape the model includes a term for
EYO2 and the interaction between mutation carrier status and EYO2. A random
intercept for family allows values of the marker to be correlated between family
members.

We did a Wald test on the first principal component, which represents 20.4%
of the variability of the residual deformations, another on the second component
which represents 11.3% of the variability, and on the third component (10.8%
of the variability). We were also interested by the interaction of these compo-
nents, so we conducted joint Wald test on the two first components (31.7% of
the variability), and on the three first components (42.5% of the variability).
For each analysis, further Wald tests were conducted every 5 years as in the
volumetric analysis [19] to assess how long before the expected onset we could
detect evidence for differences between mutation carriers and controls.



Spatio-Temporal Shape Analysis of Cross-Sectional Data 71

The results depend on the metric used for computing the trajectory and for
computing the deformations ρi. The metric depend on the space of deformation
used, which is defined by the kernel KV used. Choosing a bigger kernel size for the
deformation space would lead to different trajectory, with less differences, then
to different results. Choosing a smaller kernel size would give a more variable
trajectory, leading to different results. The size of the kernel KV of the space of
deformations were chosen to be half of the thalamus size.

4 Results

Results from the analysis of the left thalamus shapes, comparing mutation car-
riers and controls, including up to 3 principal components are shown in Table 2.
To visualise the shape differences between the two groups, we computed two tra-
jectories with the same parameters and the same baseline. One for the mutation
carrier group, and one for the control group. Figure 2 shows these trajectories,
we can see that the trajectories are indeed similar at the beginning, they pro-
gressively differ from each others. At the end of the trajectories, the shapes are
clearly different.

Fig. 2. Geodesic trajectories of the left thalamus, for the control group (first row, green)
and for the mutation carrier group (bottom row, red). The figure shows a bottom view
of the thalamus. The middle grey line indicates the expected years to onset (EYO) for
both trajectories (Color figure online).

Table 2. p-values for differences in the shape of the left thalamus between groups, by
expected years to symptom onset and per principal component (PC)

PCs (captured var.) � EYO −25 −20 −15 −10 −5 0 +5 +10

PC 1 (20.4%) 0.70 0.94 0.60 0.16 8e-3 <1e-3 <1e-3 <1e-3

PC 2 (11.3%) 0.42 0.26 0.16 0.08 0.03 0.01 0.01 0.03

PC 3 (10.8%) 0.29 0.13 0.08 0.06 0.06 0.08 0.25 0.62

PC 1+2 (31.7%) 0.78 0.80 0.77 0.45 0.07 1e-3 <1e-3 <1e-3

PC 1+2+3 (42.5%) 0.76 0.49 0.23 0.05 2e-3 <1e-3 <1e-3 <1e-3
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On Table 2 the first two principal components capture individually significant
shape differences 5 years before onset, which is not the case for the third compo-
nent. The combination of the three components increases the significance of the
differences between the two groups and we can then observe significant shape
differences 10 years before the expected symptom onset. The results are not
corrected for multiple comparison to have a head to head correspondance with
the Rohrer et al. [19] volumetric study. We also have strong a-priori expectation
that there would be real differences between mutation carriers and no-carriers,
furthermore multiple comparison would provide protection against type I error
(false positive), while increasing the probability of making type II error (false
negative) [20]. Figure 3 shows the first three modes of variation of the deforma-
tions, with the information of volume for each component. It can be observed
that the first component, which captures approximatively 20% of the variability,
does not embed volumetric information. The volume information is however cap-
tured by the second and the third component. The first three modes of variation
show deformation mainly located in the posterior part of the thalamus, which
dorso-posterior part is connected to the limbic system, implicated in frontotem-
poral dementia.

Fig. 3. First three modes of variation captured from the “residuals” between each indi-
vidual and the average spatio-temporal regression on the whole population. Whereas
the second and third components exhibit correlation with the thalamus volume, the
first component exhibits a constant volume. It can be observed that the captured vari-
ations is located in the posterior part of the thalamus.
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5 Conclusion

Using the proposed framework for spatio-temporal shape analysis, we have been
able to detect shape differences 10 years before the expected onset of clinical
symptoms associated with frontotemporal dementia. Using volumetric informa-
tion alone, Rohrer et al. [19] were able to detect statistical differences 5 years
prior to clinical onset using the same statistical analysis method. Not only does
the proposed framework provide the potential for more sensitivity, but it also
allows for better spatial localisation of the changes within the structure. As
shown by the first mode of variation captured from the data, there are differ-
ences between the groups that are not captured by the volumetric information.
These differences are located in the posterior part of the thalamus. In this study,
we focused on the left thalamus. In the future we will investigate how much infor-
mation can be extracted from other regions of interest that exhibited volumetric
differences. We will also further enhance our framework to include longitudi-
nal information with the aim to better capture the shape differences between
the groups.
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Abstract. Scoliosis is a complex 3D deformation of the spine leading to
asymmetry of the external shape of the human trunk. A clinical follow-
up of this deformation is decisive for its treatment, which depends on
the spinal curvature but also on the deformity’s progression over time.
This paper presents a new method for longitudinal analysis of scoliotic
trunks based on spectral representation of shapes combined with statis-
tical analysis. The spectrum of the surface model is used to compute the
correspondence between deformable scoliotic trunks. Spectral correspon-
dence is combined with Canonical Correlation Analysis to do point-wise
feature comparison between models. This novel combination allows us to
efficiently capture within-subject shape changes to assess scoliosis pro-
gression (SP). We tested our method on 23 scoliotic patients with right
thoracic curvature. Quantitative comparison with spinal measurements
confirms that our method is able to identify significant changes associ-
ated with SP.

1 Introduction

Scoliosis is a complex 3D deformation affecting the general appearance of torso
shape. This deformation is defined by abnormal curvature of the spine accom-
panied by deformation of the rib cage. The standard evaluation protocols of this
pathology use clinical measurements such as the Cobb Angle (CA) [7], which is
based on radiographic image data and quantifies the severity of the spinal cur-
vature. Scoliosis is more commonly diagnosed in children aged 10–18 years and
may develop rapidly, to the point of requiring surgical intervention. Frequent
observations are therefore required to monitor the condition during the adoles-
cent growth spurt. An increase in CA of more than 6◦ indicates a worsening of
the curvature [21]. But since the CA is limited to spinal curvature assessment,
this measure cannot evaluate the complex deformation of the torso shape. Yet,
the importance of the latter should not be underestimated as it exhibits the first
symptoms of scoliosis and is the major concern for adolescent patients. Scoliosis
manifests itself in shape asymmetries and a high variety of deformations of the
c© Springer International Publishing AG 2016
M. Reuter et al. (Eds.): SeSAMI 2016, LNCS 10126, pp. 79–91, 2016.
DOI: 10.1007/978-3-319-51237-2 7
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Fig. 1. Sample scoliotic trunk surfaces of different patients. These examples illustrate
the high variability in the shape of scoliotic trunks.

external surface of the trunk. These anomalies include deformations such as a
hump at the back, a lateral shift of the trunk and asymmetries of the shoulders,
scapulae, waist and hips (Fig. 1). Analysis of the scoliotic trunk shape is valu-
able in the clinical setting to assess the effect of surgical correction or to monitor
scoliosis progression (SP), i.e. the worsening of the deformation over time. A
clinical follow-up of scoliotic 3D shape deformities therefore becomes decisive
for its management.

Previous approaches based on cross-sectional trunk surface analysis either
describe back rotation and lateral shifts of the trunk [18,22], or quantify torso
shape by three rotations in the lateral, axial and posterior-anterior planes [3].
They ignore all the local deformations of scoliotic shapes, and consequently, are
limited in detecting SP. Statistical shape models [1] have been recently proposed
to evaluate local shape deformations of scoliotic trunks. These models are trained
on populations of normal shapes in a reduced feature space. However, the reduced
space affects the statistical power of these models to reveal SP. Furthermore,
these models are often biased by the control groups used to train them, and
may not account for large shape variations due to normal variability across a
population and to anatomical growth, as is the case in adolescents.

To overcome these issues, we propose a longitudinal analysis of scoliotic
trunks based on spectral representation and statistical analysis of shapes. More
specifically, a statistical shape analysis will incorporate within-subject spectral
correspondence of surface models. Currently, spectral methods provide efficient
tools for the representation of geometric models, e.g., meshes, shape match-
ing [8,12,13,20], segmentation [19] and registration [15,19]. Shape spectra are
isometry-invariant and are more robust to large deformations of surface models.
They are considered as fingerprints of shapes [20]. Accordingly, matching shapes
in the spectral domain enables accurate correspondence independently from their
spatial positions in the Euclidean space. We exploit the spectral matching frame-
work to compute correspondence between scoliotic trunk surfaces. A robust cor-
respondence facilitates the underlying statistical analysis problem, in particular,
detecting local changes between shapes. Change detection approaches in lon-
gitudinal processing provide numerous statistical tools to capture significant
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differences, for instance, associated with disease progression [9] and pattern evo-
lution [2]. Inspired by these methods, we propose the Canonical Correlation
Analysis (CCA) method [11] to evaluate point-wise differences between matched
shapes. Performing this analysis within subjects is useful to assess SP during
clinical follow-up protocols.

We begin this paper by describing the representation of scoliotic trunks via
the spectral graph. To our knowledge, this is the first time that the spectrum
of the graph is used for scoliotic trunk analysis. We exploit the recent work
on spectral matching [14] to find accurate correspondence maps between shape
models. Spectral correspondence, together with CCA, are proposed for efficient
point-wise feature comparison between longitudinally acquired scoliotic trunk
shapes. We tested our method using the clinical follow-up trunk shape data of
a set of patients with a specific type of scoliotic curvature: right thoracic spinal
curve. Our results, when validated versus standard clinical measurements, show
that significant shape changes revealed by this novel method of analysis are
associated with SP.

2 Method

2.1 Spectral Representation of Trunk Surfaces

Let us assume a discrete representation of the trunk surface as a triangulated
mesh. A spectral representation of the surface is then derived using the general
Laplacian operator on a graph. Let G = {V, E} be a graph defined by the set of
vertices, with spatial coordinates x = (x, y, z)T , and the set of edges connecting
pairs of neighboring vertices. The general graph Laplacian is then formulated as
L = G−1(D −W ), where W is the |V|× |V| weighted adjacency matrix, D is the
diagonal degree matrix defined as Dii =

∑
j Wij , and G is the diagonal matrix of

vertex weights, defined as G = D. Our weighted adjacency matrix is defined by
the heat kernel Wij = exp−‖xi−xj‖2/2σ2

(σ ∈ IR), if there is an edge connecting
vertices i and j, i.e., eij ∈ E ; otherwise Wij = 0. The harmonic spectrum of
the shape of scoliotic trunks (see Fig. 2) is obtained from the generalized eigen-
vector problem L = UΛU−1, where Λ = diag(λ0, λ1, ..., λ|V|) are the ordered
eigenvalues and U = (U0, U1, ..., U|V|) are their associated eigenfunctions. If the
graph is connected, the first eigenvalue λ0 is always equal to zero [4], i.e. there is
no boundary condition, and the first eigenfunction U0 is always constant. This
solution is valid for trunk surfaces, since meshes are interpolated1 to fill the
holes where the trunk model is cropped off, i.e. at the arms, neck and pelvis. We
leave out the first (trivial) eigenfunction corresponding to the zero eigenvalue,
so that U = (U1, ..., U|V|) and λ1 becomes the first non-zero eigenvalue of Λ.
Accordingly, each mesh vertex x is represented in the spectral domain by the
embedding (λ−1/2

1 U1(x), ..., λ−1/2
K UK(x))—a row of the matrix UΛ−1/2.

1 The Radial Basis Functions (RBF) algorithm [6] is used to interpolate incomplete
trunk meshes and to enforce mesh connectivity.
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Fig. 2. Spectral representation: the first 6 eigenfunctions of the trunk shape of a patient
at two different times. Eigenfunctions 2–6 are incompatible between surfaces due to
sign flips and changes in the eigenfunctions. Direct matching between surfaces will thus
be inconsistent. White isolines highlight the instabilities between eigenfunctions. The
color scale indicates harmonic (eigenfunction) amplitude in the spectral domain. (Color
figure online)

2.2 Spectral Correspondence Between Trunk Surfaces

The spectral representation defines a feature space to solve the correspondence
problem between shapes via spectral matching. Spectral correspondence must
however ensure stability between matched shapes [13]. Figure 2 shows incompat-
ibility in harmonic bases 2–6 between surface models, manifested by sign flips
as well as changes in the shape and orientation of the eigenfunctions, due to
numerical instabilities and multiplicity ambiguities in the eigenvalues. In more
recent work [14], the correspondence problem has been addressed efficiently by
the transfer of harmonic weights Λ−1/2 across shapes. We apply this method to
find the correspondence between pairs of scoliotic trunk shapes. Let two meshes
M1 and M2 represent the surface models of a deformable scoliotic trunk. (The
term “deformable” here refers to the fact that a patient’s trunk shape changes
over time.) Their spectral representations can thus be defined as U1Λ

−1/2
1 and

U2Λ
−1/2
2 , respectively. The spectral transfer from M1 to M2 is defined by the

K × K matrix
R12 =

(
(U2)TU2

)−1 (
(U2)TU(1◦c)

)
(1)

where c is the unknown correspondence map such that U(1◦c)Λ
−1/2
1 is equivalent

to U2R12Λ
−1/2
2 . The correspondence c is solved as an optimization problem

(detailed in [14]) that minimizes the l2 norm of the difference

c = argminc‖U(1◦c)Λ
−1/2
1 − U2R12Λ

−1/2
2 ‖2. (2)
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Fig. 3. Spectral correspondence resulting from the transfer of harmonic weights
between two scoliotic trunks. Similar colors represent corresponding points in the pos-
terior (left) and anterior (right) views of the trunk surfaces. Regions of the deformable
shapes exhibiting local variability, e.g. the shoulders, scapulae, hips and waist, are
correctly matched. (Color figure online)

Similarly, the inverse correspondence c−1 that maps mesh M2 to mesh M1

can be solved such that U(2◦c−1)Λ
−1/2
2 is equivalent to U1R21Λ

−1/2
1 , where

R21 =
(
(U1)TU1

)−1 (
(U1)TU(2◦c−1)

)
(3)

is the K × K spectral transfer matrix from M2 to M1. To enforce symmetry in
the solution, both c and c−1 are used in the underlying energy function. The
number of harmonic bases K determines the resolution used to compute the
correspondence in the spectral domain. Since trunk shapes are smooth surfaces,
it was sufficient in our experiments to compute the correspondence between
their meshes using at most 20 eigenfunctions. Figure 3 gives an example of the
correspondence map of a pair of trunk surfaces acquired during clinical follow-
up. Corresponding points are correctly computed between the deformable shapes
and are independent of local and global differences between the surface models.

2.3 Statistical Analysis of Local Deformations

The correspondence map c (Sect. 2.2) enables accurate point-wise comparison
between local features of shapes. To do this, let us consider two feature vec-
tors F and G on meshes M1 and M2, respectively. Here, M1 and M2 belong to
same individual and are measured at different time points. Our feature vector
represents the geometric information of the mesh, as for instance surface point
(depth) coordinates, i.e. F (x) = (x, y, z)T . A point-wise comparison between
M1 and M2 can then be established from the l2 difference of their multivari-
ate features: δ(x) = ‖F (x) − G(c(x))‖2, at each point x and for a given point
mapping c. This means that we could simply test the statistical significance of
the difference between feature components at the corresponding vertex pairs in
M1 and M2. However, the test statistic obtained by the simple difference would
ignore the inherent correlation between deformable shapes, and consequently,
would be less sensitive to small changes. Indeed, longitudinally sampled scoliotic
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trunks are highly correlated when the scoliosis progresses moderately; changes
in the shape deformities will therefore have very small amplitudes. One possi-
ble solution is to weight the feature vectors so that their statistical differences
become significantly high. We therefore propose to combine the correspondence
map with CCA [11].

Canonical Correlation Analysis (CCA) with Correspondence. The prin-
ciple of CCA is to find a linear transformation that captures the relationship
between two groups of multivariate vectors. Given two groups of features F and
G (of n dimensions) at corresponding vertices, the canonical correlation finds,
simultaneously, the weight matrices a = (a1, ..., an) and b = (b1, ..., bn) whose
column vectors are ordered w.r.t. the degree of positive correlation between F
and G— first canonical variates (aT

1 F, bT
1 G) are the linear combinations with

the largest correlation—and the variances Var[aTF], Var[bTG] are equal to one.
This normalization constraint ensures a uniform scaling of all the features, and
therefore ensures that we get unique weight coefficients for all the corresponding
points.

Our strategy is then to establish a point-wise comparison from the differences
between canonical variates having maximal variance. This is analogous to finding
the linear combinations with minimal (non-negative) correlation [16,17], since

Var{aTF − bTG} = 2(1 − Corr[aTF,bTG]). (4)

Accordingly, differences with maximal variance are obtained by reversing the
correlation order between canonical variates so that the first difference com-
ponent refers to the highest variance. Point-wise comparison is consequently
established between a set of canonical variates aTF, bTG as follows

Change amplitudes

a) b)

Fig. 4. Statistical change maps for a deformable scoliotic trunk shape using (a) the l2
differences between transformed features (normal vector coordinates) with the CCA,
and (b) the direct l2 differences.
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δ(x) =
m∑

k=1

(aT
n−k+1F (x) − bT

n−k+1G(c(x)))2

vn−k+1
, x ∈ M1 (5)

where vk is the k−th component of the variance obtained from Eq. (4). Please
note that all the difference components are mutually independent. Furthermore,
the linear transformation given by the CCA allows the difference components
between canonical variates to approximate zero-mean normal distributions [17]
at each corresponding point. Therefore, the difference measure in Eq. (5) defines
the χ2(m) test statistic with m ≤ n degrees of freedom. (In our application,
n = 3, and m is set to be equal to n.) Figure 4 shows one example of how the
CCA transformation can improve the power of the test statistic relative to the
direct l2 difference between matching features.

3 Results and Discussion

Our method was evaluated on 23 scoliotic patients aged 10–18 years having a
right thoracic curvature in the normal spine. All the subjects were scanned at
an initial visit (t = 0) and at 6 and 12 months from their first visit. The trunk
surface meshes contained 40k to 70k vertices according to the size of the patient.
The trunk model was cropped off at the arms, neck and pelvis using standard
control points. These consisted of the left and right points at the corners of
the acromions and of 4 anatomical landmarks located manually by an tech-
nician by palpation at the following locations: left and right anterior-superior
iliac spines (ASIS), midpoint of the posterior-superior iliac spines (MPSIS) and
C7 vertebral prominence (VP) [22]. The mesh boundaries were subsequently
removed by interpolation (Sect. 2.1). This pre-processing step ensured that holes
were filled and noise was reduced at the cropped regions. The spectral corre-
spondence was computed by matching within-subject meshes to a template, the
latter defined at the initial visit, to ensure accurate vertex-wise feature com-
parison across all time points. For feature comparison, we locally approximated
the mesh by its tangent plane, orthogonal to the normal vector, at each point
F (x) = (nx, ny, nz)T . We then used the CCA method to capture the differences
between the local features, defined as the normal vectors, between pairs of meshes
at corresponding vertices. Figure 5 shows the result of our method (spectral cor-
respondence with CCA) for two trunk shapes at 0 and 6 months intervals for
a patient who was clinically assessed with a progressive scoliosis between these
successive visits. Feature vectors F of the first mesh (M1) and their correspon-
dence (G) on the second mesh M2 are illustrated at each vertex on M1 for visual
comparison. Significant changes in the trunk shape are indicated as the black
regions on the detection map. These were identified using CCA with a p < 0.05
significance test.

We evaluated our method quantitatively by comparing the trunk shape
changes across time to the increase of the Cobb angle (CA), a standard clinical
index which measures the curvature of the spine as acquired in a radiographic
image (in degrees). We therefore computed the normalized local surface area
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Normal values
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F G

Fig. 5. Statistical analysis of local shape deformations for assessment of SP. Shown
here are within-subject scoliotic trunks scanned at 0 and 6 months intervals, with a
progressive thoracic spinal curve (15◦ increase of Cobb angle). Feature vectors F and G
are represented at corresponding points on the template surface (scanned at 0 months
interval). Our method reveals 3% of significant changes (in terms of the normalized
local surface area) in regions located on the back (in black on the detection map at the
center) at 5% test of significance. (Color figure online)

(in percentage) of the changes in trunk deformations during the follow-up; the
local surface area of the longitudinal changes is normalized w.r.t. the total surface
area of the subject’s template (acquisition at t = 0). This normalization com-
pensates for the different torso sizes across the population. Table 1 summarizes
the CA statistics for all 23 patients as well as the averages for the progressive
and non-progressive groups. For clinical purposes, a scoliosis case is considered
progressive when the measured CA increases by 6◦ or more between 2 acqui-
sitions. Table 2 illustrates the confusion matrix between our method and the
ground truth data. This comparison shows that all 7 patients clinically evalu-
ated as progressive had significant trunk shape changes across the two follow-up
time points using our method. The average increase of the normalized area of
scoliotic deformities was (2.7±1.8)%, whereas the average increase in CA across
this group was 9◦. This means that for this group of patients, whose spinal
deviations progressed moderately, the proposed method was able to capture, on
average, 2.7% change in the shape deformations associated with SP. Moreover,
significant shape changes were detected in 4 out of 16 non-progressive scoliotic
patients. These cases are reported as false positives with respect to the ground
truth clinical assessment. They are mainly due to outliers located at the cropped
boundaries of the trunk. The uncertainty in the placement of the anatomic land-
marks leads to variability in the cropping of the trunk model and therefore to
uncertainty errors in matching the boundary regions. On the other hand, SP is
evaluated clinically solely on the basis of deviations of the spine through CA
measurement. But the CA remains limited to assessing the spinal deformity in a
2D radiographic projection, while the shape of the scoliotic trunk is also affected
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Table 1. Summary CA statistics for 23 scoliotic trunks characterized by a right thoracic
spinal curve (in degrees).

t (mo) Max Mean SD Mean of progressive group Mean of non-progressive group

0 47 21 18 37 15

6 58 28 20 46 22

12 59 29 21 51 22

Table 2. Confusion matrix for categorization of patients as progressive or non-
progressive: our method versus standard clinical method based on CA.

Ground truth measurements (CA)

Progressive Non-progressive

Proposed method Change 7 4

No change 0 12

Total 7 16

by other factors, in particular the deformation of the rib cage (manifested as a
hump at the back). This latter deformation is caused by the axial rotation of
vertebrae [10]. Figure 6 shows one case of a follow-up patient whose scoliosis was
considered non-progressive according to the CA, while a hump at the back pro-
gressed significantly between the 6 and 12 month time points. This is considered
as a false positive according to the CA assessment. Rib hump deformation is in
fact one of the first diagnostic indicators of scoliosis, in particular during its early
stages; it is also one of the most visible signs affecting the cosmetic appearance of
the trunk, which is the major concern of young patients [5,23]. Our preliminary
results demonstrate the importance and the effectiveness of including longitudi-
nal shape analysis in scoliosis assessment routines. We aim to strengthen these
results by means of larger datasets and more extensive validation. Moreover, in
order to efficiently evaluate SP, we excluded in this work all possible changes
on the anterior side of the trunk. These changes, particularly observed in young
female patients, are affected by the deformation of the chest, which might be
due to different factors: asymmetry changes associated with scoliosis, position of
the arms or growth; they might therefore lead to ambiguity in SP assessment.
Even with a standardized positioning of the arms, the morphological correla-
tion between the normal anatomical changes of the body (e.g., body fat and
growth) and scoliosis deformations prompted us to focus on the posterior side
of the trunk. Analysis of full-torso changes would require an evaluation of the
normal variability of scoliotic trunk shapes during the anatomical development
of adolescents.

Finally, we evaluated the performance of the point-wise statistical analysis
using the CCA transformation of shape features against direct comparison, i.e.,
simple point-wise differences (Sect. 2.3). For this evaluation, we compared the
increase in the normalized local surface area of the trunk deformations during
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Fig. 6. One progressive case considered as a false positive compared to the CA ground
truth. Middle column: feature vector (normal vector coordinates F(x) = (nx, ny, nz))
of the scoliotic trunk at the initial visit (t = 0 mo. interval). Left and right columns:
shape features at t = 6 and t = 12 mo. intervals, respectively. Detection maps are
obtained using spectral correspondence to t = 0 and CCA for 5% test of significance.

Fig. 7. Performance of the statistical analysis using CCA transformation of matching
features versus direct comparison, for the follow-up of 7 progressive cases. The CCA
significantly improves the test statistic for both p < 0.05 and p < 0.001.
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the follow-up of the 7 patients having progressive scoliosis. Figure 7 shows that
the CCA significantly improves the detection power of the χ2 test statistic (for
p < 0.05 and p < 0.001). On average, a 2.74% increase in the surface area is
detected by the CCA method for p < 0.05, and 3.22% for p < 0.001, while the
test using direct comparison detects only very small areas of change in the shape
deformities (0.5% for p < 0.05 and 0.08% for p < 0.001). Further research could
investigate whether a statistical model [2] that considers the spatial relationship
between each vertex and its neighborhood can improve the underlying point-wise
statistical analysis.

4 Conclusion

In this contribution, we addressed longitudinal shape analysis of scoliotic trunks
using a spectral representation of surface models and point-wise feature compari-
son via CCA. The main originality of our work is the spectral representation and
the efficient computation of shape correspondences in order to compare different
scoliotic trunks over time. For the first time, scoliotic trunk analysis is based
on the spectral representation of shapes. However, correct shape correspondence
remains a challenging problem in our context because of the variability between
acquisitions in the cropping of the surface models at the trunk boundaries. Future
work will focus on this issue. In our validation study, we considered a single type
of scoliotic deformation to test the performance of our method against the stan-
dard evaluation based on Cobb angles. Quantitive comparison with the clinical
ground truth demonstrates the effectiveness of our shape analysis method for
scoliosis follow-up and progression assessment.

Future work will be threefold: we will focus on the issue of shape matching
in the presence of uncertainty at the trunk boundaries; we will consider larger
patient sets including several scoliotic deformation types for validation; finally,
we will look at adapting this framework for other applications such as predict-
ing scoliosis progression and evaluating the effect of spine correction on trunk
asymmetry.

Acknowledgments. This research was funded by the Canadian Institutes of Health
Research (grant number MPO 125875). The authors would like to thank Philippe
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Abstract. Cochlear implants can restore hearing to completely or par-
tially deaf patients. The intervention planning can be aided by providing
a patient-specific model of the inner ear. Such a model has to be built
from high resolution images with accurate segmentations. Thus, a precise
segmentation is required. We propose a new framework for segmentation
of micro-CT cochlear images using random walks combined with a sta-
tistical shape model (SSM). The SSM allows us to constrain the less
contrasted areas and ensures valid inner ear shape outputs. Addition-
ally, a topology preservation method is proposed to avoid the leakage in
the regions with no contrast.

Keywords: Random walks · Segmentation · Shape prior · Iterative seg-
mentation · Distance map prior · Statistical shape model · SSM · Cochlea
segmentation · Inner ear segmentation

1 Introduction

The HEAR-EU1 project aims at reducing the inter-patient variability in the
outcomes of surgical electrode implantation by improving CI designs and surgical
protocols using computational models [1,2]. These models are generally built
from the segmentations of high resolution images where a large amount of intra-
cochlear structures are visible on the image. In this context, we propose a method
that enables an accurate segmentation of the inner ear in micro-CT images which
contains the hearing organ known as the cochlea. This aids the generation of
accurate patient-specific computational models, which can guide implant design,
insertion planning and selection of the best treatment strategy for each patient.

The research leading to these results received funding from the European Union
Seventh Frame Programme (FP7/2007-2013) under grant agreement 304857.

1 http://www.hear-eu.eu/.
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There are a few studies on semi- or fully automatic inner ear segmentation
from micro-CT data. However, due to the complexity of the anatomical struc-
ture, it is generally a manual procedure [3]. One semi-automatic approach to
obtain the cochlea is based on 2D snakes [4], but it requires a high degree of
user interaction to locate the initial contour and adjustment of the parameters.
Another technique is based on statistical shape models (SSMs) [5], where the
high resolution segmentations are used to build a statistical model and assist the
segmentation of low resolution cochlear images. In order to accurately segment
the cochlea in high resolution micro-CT images using the classical SSM app-
roach introduced by Cootes [6], a large number of processed data sets would be
required to learn the correct anatomical variability of the data. The scarce avail-
ability of micro-CT images means that we have to consider other segmentation
strategies.

In order to alleviate these issues, we proposed a new algorithm using random
walks with a distance-based shape prior, which is robust independently of the
chosen prior and which requires no user interaction [7,8]. Random walks seg-
mentation is a graph-based segmentation method proposed by Grady [9]. This
technique has become very popular because it is robust to noise and weak bound-
aries and it can be easily extended to 3D and to an arbitrary number of labels.
According to the author, random walks can outperform the well-known graph
cuts [10] in terms of weak boundaries since the latter tries to minimize the total
edge weights in the cut. Thus, graph cuts may return very small segmentations
(“small cut” behaviour) in presence of low contrast, a small number of seeds
or noise [9]. Additionally, random walks can be straightforwardly generalized to
multi-label segmentation unlike graph cuts which usually use complex alpha-beta
techniques [11].

Generally, the intensity information is not enough to obtain the object of
interest. Thus, a shape prior can be incorporated to be able to separate the
target object from the rest of the image. Some techniques to incorporate prior
knowledge into random walks have been proposed. Constrained random walks
algorithm is developed for pedestrian segmentation [12]. Given binary pedestrian
silhouette images as a training data, a pedestrian shape prior model is built by
averaging the training data for every pose, as well as averaging all training data
to obtain a general prior model. The pedestrian shape models are incorporated
into the random walks formulation. The constrained random walks are applied
for every shape model separately, and the final segmentation is the one with the
highest probability. Baudin et al. proposed a similar work applied to the skele-
tal muscle [13]. The prior model of the thigh muscles is derived from learning a
Gaussian model based on previous segmentations of the thigh muscles in a train-
ing set. The main drawback of both methods is the sensitivity to the average
model and to the registration inaccuracies. The same may occur in [14] where
prior knowledge is obtained from a probabilistic atlas to perform prostate seg-
mentation. In order to allow large scale deformations, Baudin et al. introduced
the principal component analysis (PCA) into the random walks formulation [15].
The shape deformation is constrained to remain close to PCA shape space built
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from training examples. However, the method does not allow representing shapes
that differ too much from the standard shapes [16]. According to the authors,
PCA can not deal properly with probabilities. Thus, they suggest to find a dif-
ferent shape space more compatible with probabilities such as the barycentric
model. A similar work using PCA is presented in [17] which utilizes a PCA-based
shape model as a prior but it is also sensitive to the average shape. In order not
to be constrained to the average shape, the guided random walks are proposed
[18] where the closest subject to the target object in a given database is retrieved
to guide the segmentation. If there is not a close shape in the database, the stan-
dard random walks are performed. The limitations of this method are that all
the samples of the training data must be considered in order to find the closest
data set to the target image and that in case there is no good match, it only
relies on the standard random walks. Random walks with shape prior have also
been used for video tracking and segmentation [19,20].

An extension of random walks was presented by Grady in [21] by integrating
a non-parametric probability density model which allows localization of discon-
nected objects and eliminates the requirement of user-specified labels. We use
this framework to incorporate prior knowledge into random walks formulation
where the region term and the shape prior information given by a SSM constitute
the probability density model.

There are some works combining a classical segmentation method with a
SSM. Two of the most common methods are based on graph cuts [22–28] and
level sets [29–32] where they generally use an implicit representation of shapes
such as a signed distance map relaxing the need for a costly landmark detection
and matching process. In our work, we choose random walks due to the numerous
advantages mentioned above.

In this paper, we present an extension of our previous work [7,8] combining
random walks with a SSM to benefit from the strengths of both methods. The
region term is combined with a distance-based prior constrained by a SSM.
The SSM allows us to constrain the segmentation to a valid inner ear shape to
obtain anatomically correct segmentation results. The confidence map adjusts
the influence of the prior in certain areas making the method, along with the
region term, less sensitive to the average shape. A topology preservation method
is also proposed to avoid leakage in the interior and the turns of the cochlea [33].
In the remainder of this paper, we explain the details of the proposed method
and show the experimental results on micro-CT images of the inner ear.

2 Random Walks Segmentation

An image can be represented as a graph where the nodes are the pixels of the
image, and the weights represent the similarity between nodes. Vertices marked
by the user as seeds are denoted by Vm and the rest by Vu. Given some seeds,
vj ∈ Vm, the random walker assigns to each node, vi ∈ Vu, the probability, xs

i ,
that a random walker starting from that node first reaches a marked node, vj ∈
Vm assigned to label gs. The random walks segmentation is then completed by
assigning each free node to the label for which it has the highest probability [9].
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An extension to random walks was proposed in [21] by incorporating a prob-
ability density model based on the gray-level intensity for each label. Let λs

i be
the probability density that the intensity at node vi belongs to the intensity
distribution of label s. The modified random walks segmentation is obtained by
solving the following system [21]:

(
L + γ

n∑

r=1

Λr

)
xs = γλs (1)

where Λ = diag(λs), n is the number of labels, γ is a free parameter and L is
the Laplacian matrix which can be defined as:

Lij =

⎧
⎨

⎩

di if i = j
−wij if vi and vj are adjacent nodes
0 otherwise

(2)

where Lij is indexed by the vertices vi and vj and di =
∑n

j=1 wij . The weight
function wij can be computed as:

wij = exp(−β(Ii − Ij)2) (3)

where Ii is the intensity at pixel i and β is a free parameter related to the
bandwidth kernel. The weight range is between 0 and 1 and the higher the
weight the larger the similarity between pixels [34,35].

For more details, we refer to [21]. In this work, we use this framework to
perform image segmentation but instead of using an intensity-based distribution,
we propose a more robust density estimation considering region information as
well as shape prior knowledge given by a SSM. We explain them in detail in the
remaining part of the section.

2.1 Region Term Formulation

The region term partitions the image in terms of intensities (bright versus dark).
A histogram is built from one of the slices of the inner ear. Then, two Gaussian
components representing the inner ear including other regions with the same
intensity profile and the background are fitted to the histogram with a Gaussian
mixture model (GMM). The region-based term can be defined as:

Di(li) =
{− ln p(xi|O) if li = object

− ln p(xi|B) if li = background
(4)

where xi is the pixel indexed by i, l is the label and p(xi|O) and p(xi|B) are
the probabilities estimated by the GMM of pixel at i belonging to object and
background intensity, respectively.
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2.2 Shape Prior Knowledge and Statistical Shape Model

Once the region term is obtained, the shape prior is computed to discard areas
which do not belong to the inner ear and have similar intensity values. The
use of a SSM can provide a realistic prior to initialize the whole segmentation
process, and further be a source of plausible shape regularization during each
iteration of the random walker. The SSM is used with a procedure, which we
refer to as statistical non-rigid registration, described as follows. We perform a
non-rigid image registration between a reference data set, IR, and the target
image, IS , which in the framework of elastix [36] is formulated as an opti-
mization problem. The (parametric) transformation that aligns the two images,
Tη : IR → IS is described by the vector η containing q-parameters which is found
by optimization of a cost function, C.

η̂ = arg min
η

C(TSDM
η , IR, IS), where C = SSim(η, IR, IS) (5)

The chosen transformation is a B-Spline model regularized by a Statistical
Deformation Model (SDM) to constrain the non-rigid registration. The SDM was
trained by registering a reference data set against 16 different data sets using
the registration model described in [37]. The output of each registration is a
vector of q-deformation parameters which describes a B-Spline deformation field.
Considering the parameters of the B-Spline model to be corresponding variables,
a principal component analysis on the 16 fields was made using Statismo [38]
to obtain a description of deformation variability in a reduced parameter-space.
This type of transformation model is made available through an integration of
the Statismo-elastix packages. The cost function, C, is solely an image similarity
measure, in this case using the normalized correlation coefficient. Note, that if the
image intensities were normalized to the HU scale, it would be sufficient to use
the sum of squared differences. That was, however, not the case for our data. The
optimization is solved using Adaptive Stochastic Gradient Descent [39], which is
shown to be a good choice for medical image registration with a limited number
of parameters [36,39].

From the statistical non-rigid registration, the deformation between the ref-
erence and target images is applied to the segmentation of the reference data set
to obtain the shape prior. This prior is constrained to be an anatomically correct
cochlea and from its contour we can build a distance map. The idea is that given
an estimation of the location and shape of the object to segment, pixels close to
the shape contour are more likely to be labelled as foreground and vice versa.
The formulation can be defined as follows [40]:

Si(li = object, θ) = p(xi = object|Θ) = 1 − p(xi = background|Θ) =
1

1 + exp(μ · (d(i, Θ) − dr))

(6)
where d(i, Θ) is the distance of a pixel i from a shape Θ, being negative inside
the shape and positive outside the shape. Here, μ is a penalty term determined
by the ratio of points outside the shape compared to the points inside the shape
and dr is the “width” of influence of the shape.
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Then, the distance-based shape prior term is:

Si(li, Θ) =
{

p(x = object|Θ) if li = object
1 − p(x = object|Θ) if li = background

(7)

2.3 Random Walks with Region and Prior Knowledge Terms

We combine the region and shape prior terms by a weighted sum. We use a con-
fidence map to adjust the influence of the shape prior according to the strength
of the image contour by reducing the weight of this prior where strong contours
are present. The formulation is as follows:

Etotal(li) = kSi(li, Θ) · ci + (1 − k)Di(li) · 1
ci

. (8)

where k is the weight of each term and c is the confidence map defined as
ci = exp(−kvσ2

r(i)) where σ2
r(i) is the variance at pixel i computed on a patch

with radius r, and kv is a free parameter that determines the bandwidth of the
Gaussian. Equation 8 is used to obtain λs in the random walks formulation in
Eq. 1 for every label, which results in a segmentation. This segmentation is statis-
tically non-rigidly registered against the reference segmentation to obtain a new
prior constrained by the SSM. Note that this second registration is performed in
the binary segmentation in contrast to the initial prior whose registration was
between the grayscale reference and target images and the resulting deformation
was applied to the reference segmentation to obtain the prior. The distance-based
prior is then built from Eq. 6 and the random walks segmentation is performed
again. This procedure continues until convergence or until the maximum number
of iterations is reached. In order to avoid merging the non-contrasted areas of
the cochlea, the topology preserving method described in [33] is proposed. The
topology preservation method computes the unit outward normal vector of the
contour and when two vectors are pointing in opposite directions, the contours
in this area are not allowed to merge.

3 Results

In this experiment, 10 micro-CT data sets of the inner ear are used to perform
the segmentation in 3D using the proposed method. The original 3D data set
was downsampled from a nominal isotropic resolution of 24.5μm to 49 μm for
computational efficiency reasons. Every data set contains around 213 slices with
an average size of 413 x 275 pixels. The ground truth is manually annotated.
The initial prior is obtained as described in Sect. 2.2. The SSM is built from 17
different data sets (one reference and 16 training samples).

The following parameters were used to produce the results: γ = 0.8 in Eq. 1,
dr = 0 and μ = 1.0 in Eq. 6 and the total number of iterations are 4 with k = 0.8
in Eq. 8.

Some inner ear segmentation results using our approach are illustrated in
Fig. 1. In this example, we can observe from the 3D volume that the topology
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Fig. 1. Inner Ear segmentation. (a) Segmentation in 3D. (b) Slices of the 3D segmen-
tation. (c) Ground truth.
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Fig. 2. Segmentation quality shown as a box plot in terms of the Dice similarity coef-
ficient for the proposed approach and the SSM alone. The results of our method show
a smaller standard variation and better performance than the other technique.

of the inner ear shape is preserved and that the contour of the segmentation is
adjusted to the edges of the image whereas the interior of the cochlea and less
contrasted areas are conserved due to the shape prior and topology preservation
method.

To quantify the segmentation quality for the proposed method, we compute
the well-known Dice with respect to a manual ground truth. The formulation is
defined as Dice = 2TP

2TP+FN+FP where TP and FP stand for true positive and
false positive and TN and FN for true negative and false negative. We compare
our approach with the initial shape prior (corresponding to using the SSM alone)
described in Sect. 2.2. The proposed method achieves a mean Dice index of 0.947
and the initial shape prior reaches a mean Dice index of 0.856. The reason for a
lower value is that 17 samples are obviously not enough to cover the true variability
in inner ear shapes in high resolution images. The results are presented in Fig. 2
where we can observe a high improvement from using the SSM alone. In contrast
with the SSM method alone, the Dice similarity coefficients computed from the
segmentation results of the proposed technique have a smaller standard deviation
having a small range of Dice values between [0.94,0.95] except for one single case
that it has a 0.92 of Dice. The reason of these satisfactory results is that the exterior
of the cochlea can be efficiently separated as there is enough contrast between the
cochlea and background and the small and invisible regions can be extracted with
the guidance of the prior. The topology preservation method prevents leakage in
the non-contrasted areas. In high gradient areas of the image (edges) around the
prior, the confidence map reduces the influence of the prior coping with the possible
artefacts and inaccuracies in the prior shape. It is clear that for internal regions,
this method relies on the prior but the SSM constrains the shape of these areas
and for the exterior of the inner ear, the region term with the prior can provide
promising results.
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4 Conclusion

We presented a new framework for the inner ear segmentation in micro-CT
using the random walks algorithm which is able to deal with weak boundaries
efficiently. The combination of the distance map prior with a region term into
random walks provides accurate segmentations of the inner ear. The SSM allows
us to constrain the interior part of the cochlea to a valid shape while the exterior
of the contour evolves along the shape prior. In this work, the SSM is imple-
mented as a non-rigid registration with learnt statistical shape regularization.
The experiments suggest that the proposed approach is robust and accurate for
the inner ear segmentation in micro-CT images. As future work, we would like
to do an exhaustive analysis and thorough study of this method as well as a
comparison with other methods.
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Abstract. The aim of the paper is to develop a relaxed closed form for
tensor principal component analysis (PCA) for the recognition, classifi-
cation, compression and retrieval of volumetric data. The tensor PCA
derives the tensor Karhunen-Loève transform which compresses volu-
metric data, such as organs, cells in organs and microstructures in cells,
preserving both the geometric and statistical properties of objects and
spatial textures in the space. Furthermore, we numerically clarify that
low-pass filtering after applying the multi-dimensional discrete cosine
transform (DCT) efficiently approximates the data compression pro-
cedure based on tensor PCA. These orthogonal-projection-based data
compression methods for three-way data is extracts outline shapes of
biomedical objects such as organs and compressed expressions for the
interior structures of cells.

1 Introduction

In this paper, we apply three-way principal component analysis (PCA) to volu-
metric data analysis in biomedical information processing. For three-way PCA,
we develop a relaxed closed form of the tensor PCA computation based on
Tucker-3 tensor decomposition, although Tucker-3 tensor decomposition [1,2,5]
is achieved by solving variational optimisation problems iteratively. Our method
solves a system of variational optimisation problems derived from the origi-
nal Tucker-3 decomposition with the orthogonal constraints for solutions. This
method is used for compression and retrieval of volumetric data preserving
volumetric structure with the spatial geometric and statistical properties of
shapes [6,8], such as outer boundary of organs, and interior textures of organs,
respectively.

Furthermore, these orthogonal-projection-based data compression methods
for three-way data arrays extract outline volumetric shapes [7]. Mathematically,
a shape is a finite closed region in a Euclidean space. The boundaries of planar
and volumetric shapes are closed simple planar curve and closed simple two-
dimensional manifolds, respectively. An outline shape is a smoothed profile of
c© Springer International Publishing AG 2016
M. Reuter et al. (Eds.): SeSAMI 2016, LNCS 10126, pp. 103–117, 2016.
DOI: 10.1007/978-3-319-51237-2 9
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a shape. For a planar shape, an outline shape is generated by smoothing the
boundary contour of the shape. For a volumetric shape, an outline shape is
generated by smoothing the closed boundary manifold of the shape. These prop-
erties imply that outline shapes are generated as smoothed approximations of
the original shapes. Outline shapes of volumetric images of organs provide funda-
mental features for information filtering in medical diagnosis and data retrieval.
Furthermore, if a shape is expressed as a series expansion using base functions,
an outline of the shape is a finite truncation of this series expansion of the shape.
This paper introduces a basis system which simultaneously extracts both outline
shape of an object and global statistical properties of interior texture of objects.

Organs, cells in organs and microstructures in cells, which are dealt with
in biomedical image analysis, possess statistical properties as spatial textures.
These biological objects also possess volumetric structures with spatial geomet-
ric and topological properties in the forms of three-dimensional objects [4,9–12].
Although their local volumetric structures as are computed from geometric and
topological properties, their textures estimate both local and global statistical
properties of these objects. Organs are essentially spatial textures defined in
finite regions. Since these finite regions are organs, the outer boundaries of these
regions define the shapes of the organs. For the data analysis of these volu-
metric data, methods which simultaneously process geometrical and topological
structures and spatial texture properties are required.

A pattern is assumed to be a square integrable function in a linear space
and to be defined on a finite support in n-dimensional Euclidean space [13]. For
planar and volumetric patterns, the dimensions of the Euclidean spaces are two
and three, respectively. For the achievement of pattern recognition by numerical
computation, sampled patterns are dealt with. In traditional pattern recognition,
these sampled patterns are embedded in an appropriate-dimensional Euclidean
space as vectors. The other way to deal with sampled patterns is three-way array
data. These three-way array data are expressed as tensors [1–3] to preserve the
linearity of the original pattern space, since tensors expresses three-way array
data in multilinear forms. Therefore, three-way PCA of tensor data extracts
features from three-dimensional objects for pattern recognition, classification,
compression and data retrieval.

We also numerically clarify that data compression by the discrete cosine
transform (DCT) [16] efficiently approximates the data compression procedure
based on tensor PCA, since the DCT approximates the Karhunen-Loève (K-L)
transform [14,15].

2 Tensor Analysis and Sampling

Functions and Tensors. For x ∈ R
3 and X ∈ R

m×n, |x|2 and |X|F are the
vector norm and Frobenius norm of x and X, respectively. For L2, W21 and
W22, the norms are defined as

|f |2 =
(∫

R3
|f |2x

) 1
2

, (1)
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|Pg|2
|g|2

(a)

|P1g|2
|g|2

|P2g|2
|g|2

(b)

Fig. 1. Subspace method. (a) Setting ϕ1 and ϕ2 to be the basis of a linear subspace
corresponding to a pattern, for an input g, the similarity between g and a pattern
in a pattern space is measured by the length of the orthogonal projection of g to
the pattern space. (b) Setting P1 and P2 to be operators for subspaces C1 and C2,
respectively, the input g is labelled as being in the first class, since the length of the
orthogonal projection of g to C1 is longer than the length of the orthogonal projection
of g to C2.

|f |21 =
(∫

R3
(|f |2 + |∇f |2)dx

) 1
2

, (2)

|f |22 =
(∫

R3
(|f(x)|2 + |∇f |2 + |∇∇�f |2F )dx

) 1
2

, (3)

where ∇f and ∇∇�f are the gradient and the Hessian matrix of f , respectively.
Setting δ and ε to be a small vector and a small positive number, respectively,

we have the relation

|f(x + δ) − (f(x) + δ�∇f +
1
2
δ�(∇∇�f)δ)| < ε, (4)

for local geometric perturbations. f , fx, fy, fz, fxx, fyy, fzz, fxy, fyz and fzx

are all independent, if f is not sinusoidal in each direction. Therefore, Eq. (4)
implies that, for a pattern defined on three-dimensional Euclidean space, the
local dimensions of a pattern are four and ten if local geometric perturbations and
local bending deformation of the pattern are assumed as local transformations
to the pattern.

Figure 1(a) and (b) show geometric properties of the subspace method and
multiclass recognition using the subspace method, respectively. Let ϕ1 and ϕ2

be the basis of a linear subspace for a pattern. For an input g, the similarity
is computed using the length of the orthogonal projection of g to the pattern
space. The subspace method allows us to achieve multiclass recognition using
the orthogonal projections. Setting P1 and P2 to be the orthogonal projection
operator to subspaces C1 and C2, respectively, the input g is recognised as an
element in first class, since the length of the orthogonal projection of g to C1 is
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longer than the length of the orthogonal projection of g to C2. The ratio |Pg|/|g|
is called the cumulative contribution ratio (CCR) of g to the linear subspace
defined by P .

For the triplet of positive integers I1, I2 and I3, the third-order tensor
R

I1×I2×I3 is expressed as X = ((xijk)) Indices i, j and k are called the 1-
mode, 2-mode and 3-mode of X , respectively. The tensor space R

I1×I2×I3 is
interpreted as the Kronecker product of three vector spaces R

I1 , RI2 and R
I3

such that R
I1 ⊗ R

I2 ⊗ R
I3 . We set I = max(I1, I2, I3).

For a square integrable function f(x), which is zero outside of a finite sup-
port Ω in three-dimensional Euclidean space, the sample Sf(Δz) for z ∈ Z3 and
|z|∞ ≤ I defines an I×I×I three-way array F. To preserve the multi-linearity of
the function f(x), we deal with the array F as a third-order tensor F . The oper-
ation vecF derives a vector f ∈ R

I123 for I123 = I2 · I2 · I3. We can reconstruct f
from F using an interpolation procedure. Figure 2(a) shows the relations among
sampled data and multi-way data Fig. 2(b) shows a data compression procedure
for multi-way data.

f(x) ∈ R

f Sf(x) = f(Δz)

Interpolation Sampling

arraytensor

fz ∈ R

vec

(a) Sampling procedure

1st-order 2nd-order 3rd-order

(b) Tensors

Fig. 2. Sampling and tensor expression of multi-way data. We can reconstruct f from
F using an interpolation procedure. (a) Shows relations among sampled data and
multi-way data. The sampled values of a multivariate function derives multi-way array
data. This multi-way array date are dealt with as a higher-order tensor to preserve
the multilinear properties of the data. (b) Shows a data compression procedure for
multi-way data by deriving a small-size tensor from the original one.

For the outer product of N vectors, if the tensor X satisfies the condition

X = u(1) ◦ u(2) ◦ u(3), (5)

where ◦ denotes the outer product, we call this tensor X a rank-one tensor. For
X , the n-mode vectors, n = 1, 2, 3, are defined as the In-dimensional vectors
obtained from X by varying this index in while fixing all the other indices.

The unfolding of X along the n-mode vectors of X is defined as matrices such
that

X(1) ∈ R
I1×I23 , X(2) ∈ R

I2×I13 , X(3) ∈ R
I3×I12 (6)

for I12 = I1 · I2, I23 = I· I3 and I13 = I1 · I3, where the column vectors of X(j)

are the j-mode vectors of X for i = 1, 2, 3. We express the j-mode unfolding
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(a) Unfolding of a third order ten-
sor

(b) Unfolding of a second order
tensor

Fig. 3. Unfolding of tensors. (a) Unfolding for a second-order tensor. For a tensor in
R

6×8, unfolding for 1- and 2-modes yields eight 1-mode vectors and six 2-mode vectors,
respectively. (b) Unfolding for a third-order tensor. For a tensor in R

4×5×3, unfoldings
for 1-, 2- and 3-modes yields fifteen 1-mode vectors, twelve 2-mode vectors and twenty
3-mode vectors, respectively.

of Xi as Xi,(j). Figures 3(a) and (b) show unfolding procedures for second- and
third-order tensors, respectively.

For matrices U = ((uii′)) ∈ R
I1×I1 , V = ((vjj′)) ∈ R

I2×I2 and W =
((wkk′)) ∈ R

I3×I3 , the n-mode products for n = 1, 2, 3 of a tensor X are the
tensors with entries

x[1]ijk =
I1∑

i′=1

xi′jkui′i, x[2]ijk =
I2∑

j′=1

xij′kvj′j , x[3]ijk =
I3∑

k′=1

xijk′wk′k, (7)

where (X )ijk = xijk is the ijkth element of the tensor X . The inner product of
two tensors X and Y in R

I1×I2×I3 is

〈X ,Y〉 =
I1∑

i=1

I2∑

j=1

I3∑

k=1

xijkyijk. (8)

Using this inner product, we have the Frobenius norm of a tensor X as |X |F =√〈X ,X〉. The Frobenius norm |X |F of the tensor X satisfies the relation |X |F =
|f |2, where |f |2 is the Euclidean norm of the vector f .

Tensor Projections. To project a tensor X in R
I1×I2×I3 to the tensor Y in

a lower-dimensional tensor space R
P1×P2×P3 , where Pn ≤ In, three projection

matrices {U (n)}3n=1 for U (n) ∈ R
In×Pn are required for n = 1, 2, 3. Using these

three projection matrices, we have the tensor orthogonal projection such that

Y = X ×1 U (1)� ×2 U (2)� ×3 U (3)�. (9)

This projection is established in three steps, where in each step, each n-mode
vector is projected to a Pn-dimensional space by U (n) for n = 1, 2, 3.
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3 Tensor Principal Components

Setting the data matrix X to be X =
(
f1 f2 · · · fm

)
for data vectors {fi}m

i=1

in R
N , whose mean is zero, the K-L transform is established by computing

f̂i = Ufi for U which minimises

J1 = |UX|2F (10)

with the condition U�U = IN . The orthogonal matrix U is the minimiser of

J11 = |UX|2F + (U�U − I)Λ, (11)

where Λ = Diag(λ1, λ2, · · · , λN ) for λ1 ≥ λ2 ≥ λ2 ≥ · · · ≥ λN ≥ 0. The
minimiser of Eq. (11) is the solution of the eigenmatrix problem

MU = UΛ, M = XX�. (12)

The row vectors of U are the principal components.
The compression of fi to a low-dimensional linear subspace is achieved by

computing the transform PnUf , where Pn is the orthogonal projection such
that

Pn =
(

In O
O� O

)
(13)

for n < N .
For a collection of matrices {Fi}N

i=1 ∈ R
m×n satisfying Ei(Fi) = 0, the

orthogonal-projection-based data reduction F̂i = U�FiV is performed by
maximising

J2(U ,V ) = Ei

(
|UF̂iV

�|2F
)

(14)

with respect to the conditions U�U = Im and V �V = In. The solutions are
the minimiser of the Euler-Lagrange equation

J22(U ,V ) = E
(
|UF̂iV

�|2F
)

+ (Im − U�U)Σ + (In − V �V )Λ. (15)

Setting
1
N

N∑

i=1

F �
i Fi = M ,

1
N

N∑

i=1

FiF
�
i = N , (16)

U and V are the solutions of the eigendecomposition problems

MV = V Λ, NU = UΣ, (17)

where Σ ∈ R
m×m and Λ ∈ R

n×n are diagonal matrices satisfying the relation-
ships λi = σi for

Σ = diag(σ1, σ2, . . . , σK , 0, . . . , 0), (18)
Λ = diag(λ1, λ2, . . . , λK , 0, . . . , 0). (19)
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The equation
(P1U)�X(P2V ) = Y (20)

is rewritten as

(P2V ⊗ P1U)vecX
= (P2 ⊗ P1)(V ⊗ U)X = P vecX = vecY . (21)

Using three projection matrices U (i) for i = 1, 2, 3, we have the tensor orthog-
onal projection for a third-order tensor as

Y = X ×1 U (1)� ×2 U (2)� ×3 U (3)�. (22)

For a collection {Xk}m
k=1 of the third-order tensors, the orthogonal-projection-

based dimension reduction procedure is achieved by maximising the criterion

J3 = Ek(|Xk ×1 U (1) ×2 U (2) ×3 U (3)|2F ) (23)

with respect to the conditions U (i)�
U (i) = I for i = 1, 2, 3. The Euler-Lagrange

equation of this conditional optimisation problem is

J33(U (1),U (2),U (3)) = Ek(|Xk ×1 U (1) ×2 U (2) ×3 U (3)|2F )

+
3∑

i=1

|(I − U (i)�
U (i))Λ(i)|2F . (24)

This minimisation problem is solved by the following iteration procedure.

1: U
(i)
0 := Q(i) such that Q(i)�Q(i) = I and α = 0.

2: U
(1)
(α+1) = arg min J33(U (1),U

(2)
(α),U

(3)
(α)).

3: U
(2)
(α+1) = arg min J33(U

(1)
(α+1),U

(2),U
(3)
(α)).

4: U
(3)
(α+1) = arg min J33(U

(1)
(α+1),U

(2)
(α+1),U

(3)).

5: if |U (
(α+1)i) − U(α)i |F ≤ ε, then stop, else α := α + 1 and go to step 2.

For

J33(U (1),U (2),U (3)) = Ek(|Xk ×1 U (1) ×2 U (2) ×3 U (3)|2F )

+
3∑

i=1

|(I − U (i)�
U (i))Λ(i)|2F , (25)

setting I := U
(i)
1 , the system of minimisation problems

U (1) = arg min f(U (1), I, I)
U (2) = arg min f(I,U (2), I) (26)
U (3) = arg min f(I, I,U (3))



110 H. Itoh et al.

is derived. This system of minimisation problem derives the following system of
eigenmatrix probems,

∇U(1)J33(U (1), I, I) = 0
∇U(2)J33(I,U (2), I) = 0 (27)
∇U(3)J33(I, I,U (3)) = 0.

From Eq. (27), as an extension of the two-dimensional problem, we define the
system of optimisation problems

Jj = E(|U (j)�Xi,(j)U
(j)|2F ) + (U (j)�U (j) − Ij)Λ(j) (28)

for i = 1, 2, 3, as a relaxation of the iteration procedure, where Xi,(j) is the ith
column vector of the unfolding matrix X(j). These optimisation problems derive
the system of eigenmatrix problems

M (j)U (j) = U (j)Λ(j), M (j) =
1
N

N∑

i=1

Xi,(j)X �
i,(j) (29)

for j = 1, 2, 3.
Setting P (j) to be an orthogonal projection in the linear space L({u

(j)
i }Ij

i=1)
spanned by the column vectors of U (j), data reduction is computed by

Y = X ×1 P (1)U (1) ×2 P (2)U (2) ×3 P (3)U (3). (30)

This expression is equivalent to the vector form

vecY = (P (3) ⊗ P (2) ⊗ P (1))(U (3) ⊗ U (2) ⊗ U (1))vecX . (31)

Dimensions of Subspaces. The eigenvalues of the eigenmatrices of Tucker-3
orthogonal decomposition satisfy the following theorem.

Theorem 1. The eigenvalues of U = U (1) ⊗ U (2) ⊗ U (3) define a semi-order.

Proof. For the eigenvalues λ
(1)
i , λ

(2)
j , λ

(3)
k of the 1-, 2- and 3-modes of ten-

sors, the inequalities λ
(1)
i λ

(2)
j λ

(3)
k ≥ λ

(1)
i λ

(2)
j λ

(3)
k+1, λ

(1)
i λ

(2)
j λ

(3)
k ≥ λ

(1)
i λ

(2)
j+1λ

(3)
k ,

λ
(1)
i λ

(2)
j λ

(3)
k ≥ λ

(1)
i+1λ

(2)
j λ

(3)
k define semi-orders among the eigenvalues. as

λ
(1)
i λ

(2)
j λ

(3)
k 


〈
λ
(1)
i λ

(2)
j λ

(3)
k+1, λ

(1)
i λ

(2)
j+1λ

(3)
k , λ

(1)
i+1λ

(2)
j λ

(3)
k

〉
(32)

is satisfied. ��
Regarding the selection of the dimension of the tensor subspace, Theorem1

implies the following theorem.
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Theorem 2. The dimension of the subspace of the tensor space for data com-
pression is 1

6n(n+1)(n+2) if we select n principal components in each mode of
three-way array data.

Proof. For a positive integer n, the number sn of eigenvalues λ
(1)
i λ

(2)
j λ

(3)
k is

sn =
n−1∑

i+j+k=0,i,j,k≥0

(i + j + k) =
n∑

l=1

l∑

m=1

m =
1
6
n(n + 1)(n + 2).

��
If n = 1, 2, 3, 4, we have N = 1, 4, 10, 20, respectively, for tensors X = ((xijk))

in R
I×I×I .

Setting {P (i)}3i=1 to be orthogonal projection matrices, the orthogonal pro-
jection of a third-order tensor X to the linear subspace Π123 by {P (i)}3i=1 is
computed as

Y = X ×1 P (1) ×2 P (2) ×3 P (3). (33)

Since |Y|F is the length of the part of the tensor X on the linear subspace Π123,
the ratio 0 ≤ |Y|F /|X |F ≤ 1 is the CCR of X to Π123. The dimension of Π123

is computedby Theorems 1 and 2.

Graphical Truncation. For an approximated tensor X̂i of Xi, we define the
trancation operation

X̂iΩi
=

{O if elements of Xare zero
X̂ otherwise,

(34)

to eliminate artefacts which appear in the background. For the graphical expres-
sion of X̂i.

Discrete Cosine Transform and PCA. Since the discrete cosine transform
(DCT) [16] is asymptotically equivalent to the matrix of the K-L transform
[15] for data observed from a first-order Markov model [14,15], the dimension
reduction by PCA is performed using the DCT as

fn
ijk =

n−1∑

i′j′k′=0

gi′j′k′ϕi′iϕj′jϕk′k, gijk =
N−1∑

i′j′k′=0

fi′j′k′ϕii′ϕjj′ϕkk′ (35)

for n ≤ N , where

Φ(N) = ((ε cos
(2j + 1)i

2πN
)) = ((ϕij)), ε =

{
1 if j = 0
1√
2

otherwise (36)

is the DCT-II matrix of order N . If we apply the fast cosine transform to
the computation of the 3D-DCT-II matrix, the computational complexity is
O(3N log N).
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In the vector and tensor forms, the transforms are expressed as

vecFn = (P(3) ⊗ P(2) ⊗ P(1))(Φ(N) ⊗ Φ(N) ⊗ Φ(N))vecF (37)

Fn = F ×1 (P (1)
n Φ(N)) ×2 (P (2)

n Φ(N)) ×3 (P (3)
n Φ(N)). (38)

Since vec(u ◦ v ◦ w) = u ⊗ v ⊗ w the outer products of vectors redescribes
the DCT-based transform as

F =
N∑

i,j,k=1

aijkϕi ◦ ϕj ◦ ϕk, aijk = 〈F , (ϕi ◦ ϕj ◦ ϕk)〉 (39)

where
Φ(N) = (ϕ1,ϕ2, · · · ,ϕN ) . (40)

The pyramid transform yields reduced images using the transform

gmn =
1∑

i,j=−1

wiwjf2m−i 2n−j , (41)

for w±1 = 1
4 and w0 = 1

2 . This reduction gmn from fmn can be used as an outline
of planar shapes.

Setting

R =
1
2
(I ⊗ (0, 1)�)(D + 4I) (42)

for the second order differential matrix D, with the Neumann condition, such
that,

D =

⎛

⎜⎜⎜⎜⎜⎝

−1 1 0 0 · · · 0 0
1 −2 1 0 · · · 0 0
0 1 −2 1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 · · · 0 1 −1

⎞

⎟⎟⎟⎟⎟⎠
, (43)

Eq. (41) is described as G = RFR� for the image matrices G and F .
Since the eigenmatrix of D is the DCT-II matrix, we have the following

property.

Property 1. Setting LN =L({ϕk}2N−1
k=0 ), for two-dimensional images, the pyra-

mid transform is a linear transform from LN ⊗ LN to L
N
2 ⊗ L

N
2 .

Therefore, the dominant operation in the pyramid transform is the relaxed KL-
transform using the DCT.

The three-dimensional pyramid transform

gpqr =
1∑

i,j=−1

wiwjwkf2p−i 2q−j 2r−k,, (44)
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(a) Original (b) FP (c) FPT (d) 3D-DCT

(e) Original (f) FP (g) FPT (h) 3D-DCT

Fig. 4. Original and reconstructed volumetric data. From left to right, the first, second,
third and fourth rows illustrate the original voxel images and results by the FP, FPT
and 3D-DCT, respectively. (a)–(d) show volume renderings of voxel images of brains.
(e)–(h) show volume renderings of voxel images of livers.

is re-described
Y = X ×1 R ×2 R ×3 R (45)

using Tucker3 decomposition of X . Moreover, the three-dimensional pyramid
transform processes the following property.

Property 2. Setting LN =L({ϕk}2N−1
k=0 ), for 3-dimensional images, the pyramid

transform is a linear transform from LN ⊗ LN ⊗ LN to L
N
2 ⊗ L

N
2 ⊗ L

N
2 .

Equation (45) directly derives an outline shape of a volumetric shape by enforcing
and inhibiting low- and high frequency parts, respectively, on the DCT of the
volumetric shape.

4 Numerical Examples

Setting the number of bases to be the size of the original tensors, we call the
method the full projection (FP). If the number of selected bases is smaller than
the size of the original tensors, we call the method the full projection truncation
(FPT). For data compression using the FP, FPT and 3D-DCT, we adopt 20
volumetric simulation-brains generated by MRI simulation by BrainWeb [17]
and liver data designed in Computational Anatomy project [18].

Table 1 shows the original size of the volumetric data and the reduced data
size. The compression based on the FP, FPT and 3D-DCT the reduced sizes of
a brain and liver 32 × 32 × 32 and 64 × 64 × 64 voxels, respectively.
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Table 1. Sizes and numbers of volumetric data of brains and livers. �data represents the
numbers of livers and brains. The data size is the original size of the volumetric data.
The reduced data size is the size of the volume data after tensor-representation-based
dimension reduction.

�data Data size [voxel] Reduced data size [voxel]

Volumetric data of brains 20 217 × 181 × 181 64 × 64 × 64

Volumetric data of livers 32 89 × 97 × 76 32 × 32 × 32

Figure 4 illustrates volumetric data reconstructed from reduced data gener-
ated by these three methods. Figures 5 and 6 illustrates the compressed volu-
metric data and their slices for brain and liver respectively. In each figure, the
left and right figures of each entry are the volume-rendered outline shape and a

(a) 1st to 4th (b) 1st to 10th (c) 1st to 20th

(d) 1st to 4th (e) 1st to 10th (f) 1st to 20th

(g) 1st to 4th (h) 1st to 10th (i) 1st to 20th

Fig. 5. Compressed volumetric brain data and their slices. For the compressed vol-
umetric brain data, we applied TPCA. For compression, we adopted the FP, FPT
and 3D-DCT. The left and right figures of each entry are the volume-rendered outline
shape and a slice of the volumetric data, respectively. From top to bottom, the results
computed by the FP, FPT and 3D-DCT are illustrated. From left to right, results
reconstructed using the 4, 10 and 20 principal major components of the TPCA are
shown. The 80th axial slice of volumetric data is shown for each result.
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slice of volumetric data, respectively. From top to bottom, the results computed
by the FP, FPT and 3D-DCT are illustrated. From left to right, results using the
4, 10 and 20 principal major components of TPCA are shown. The 80th axial
slice of volumetric data is shown for each result.

Figure 7 shows the CCR of the reordered eigenvalues of the FP for the pro-
jected tensors. As shown in Fig. 7, among the three methods, the CCRs from the
first to the 20th eigenvalues are almost the same. In Fig. 5, the outline shapes of
the reconstructed volumetric data are almost the same for the three methods.

These results indicate that the outline-shape extraction by the 3D-DCT is
a relaxation of the TPCA. Moreover, the comparisons among results in Fig. 4
suggests that the principal major components reconstruct the outline shape of
the volumetric data and the principal minor components reconstruct the interior
texture of volume data.

Our numerical results show that, for a pair of small positive constants ε and
δ, the relations

P (|Y∞ − YΦ|F < ε) > 1 − δ, P (|Y∞ − Y|F < ε)1 − δ (46)

(a) 1st to 4th (b) 1st to 10th (c) 1st to 20th

(d) 1st to 4th (e) 1st to 10th (f) 1st to 20th

(g) 1st to 4th (h) 1st to 10th (i) 1st to 20th

Fig. 6. Compressed volumetric liver data and their slices. For the compressed volumet-
ric data, we applied TPCA. For compression, we adopted the FP, FPT and 3D-DCT.
The left and right figures of each entry are the volume-rendered outline shape and a
slice of volumetric data, respectively. The results computed by FP are illustrated. From
left to right, results reconstructed using the 4, 10 and 20 principal-major components
of TPCA ares shown. The 80th axial slice of volumetric data is shown for each result.
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(a) Brain (b) Liver
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Fig. 7. CCR of TPCA for reduced volume data. For the compression, we adopted FP,
FPT and 3D-DCT. For the computation of the CCR, we used all eigenvalues of modes
1, 2 and 3 after sorting the eigenvalues in decreasing order.

are satisfied based on the probabilistic correctness property for

Y∞ = X ×1 PU
(1)
(∞) ×2 PU

(2)
(∞) ×3 PU

(3)
(∞) (47)

YΦ = X ×1 PΦ(N) ×2 PΦ(N) ×3 PΦ(N) (48)

Y = X ×1 PU (1) ×2 PU (2) ×3 PU (3), (49)

where U
(i)
(∞) = limα→∞ U (i) for i = 1, 2, 3.

5 Conclusions

We have developed two relaxed algorithms for tensor principal component analy-
sis. The first method solves a system of eigenmatrix problems using the unfold-
ing of a tensor, instead of solving a variational optimisation problem iteratively.
The second method is based on the low-pass filtering of multidimensional signals
using the discrete cosine transform (DCT), since the DCT efficiently approxi-
mates the Karhunen-Loève (K-L) transform. Such orthogonal-projection-based
data compression extracts outline shapes of biomedical objects such as organs
and the interior structures of cells. Furthermore, we have numerically evaluated
the performance of these algorithms for compressing volumetric medical images.

The extension of the algorithms to higher order multi-way data analysis, such
as the spatio-temporal volumetric analysis of moving and deforming objects is
straightforward using higher-order tensors.

This research was supported by the “Multidisciplinary Computational
Anatomy and Its Application to Highly Intelligent Diagnosis and Therapy”
project funded by a Grant-in-Aid for Scientific Research on Innovative Areas
from MEXT, Japan, and by Grants-in-Aid for Scientific Research funded by the
Japan Society for the Promotion of Science.
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Abstract. The Corpus Callosum (CC) has been a structure of much
interest in neuroimaging studies of normal brain development, schizophre-
nia, autism, bipolar and unipolar disorder. In this paper, we present a tech-
nique which allows us to develop a shape preservation methodology in the
deformation of CC for further global and regional shape analyzes between
two sample corpora callosa. Source and target CC are superpositioned
individually from eleven anchor points. Source CC is deformed in order
to get superpositioned onto the target CC from these anchor points and
superposition operation leads other anatomical landmarks to get placed
automatically in all of the regions of source CC for further deformation
analysis. Region construction via quadratic Bézier curves, deformation by
using Gaussian RBF and quantifying the amount of deformation via gen-
eralized Procrustes analysis are used to infer the proper parameters used
in minimum deformation. Amount of deformation can be analyzed both
regionally and globally.

Keywords: Shape preserving interpolation · Radial Basis Functions ·
Space deformation

1 Introduction

Investigating the regional differences between samples of Corpus Callosum (CC)
is a widely observed task in morphological studies. The gold standard in these
kinds of studies is the works performed by the anatomists. For instance an
anatomist may only describe the slightly thinned splenium between two cor-
pora callosa in the right manner by just checking the MRI data. Currently there
is no such an anatomic system which can point out this kind of anatomical
difference into a semantic description like the one anatomist performs.

Shape is a property that keeps its characteristics when rotated or translated.
Scaling and shearing make the shape of objects alter. In order to perform a
prosperous regional comparison between two corpora callosa, a superposition
operation that will align the source CC onto the target CC is needed to be
carried out. The superposition operation should be performed from the handle
points that are pointing anatomically to the same location in both structures.

c© Springer International Publishing AG 2016
M. Reuter et al. (Eds.): SeSAMI 2016, LNCS 10126, pp. 118–132, 2016.
DOI: 10.1007/978-3-319-51237-2 10
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Fig. 1. Regional subdivision of the CC according to the study [15]. Parcellation land-
marks are displayed as cyan circles. (Color figure online)

Those points are the key components of our mathematical model. For a near
accurate comparison, shape deformation in this process must be minimal and the
source structure should preserve its shape as much as possible after deformation.

In [15], author proposes an approach to define the regions of CC according to
the anatomical connectivity. Figure 1 is showing the seven regional subdivisions,
numbered 1 to 7, that will be also used in this study. P1 and P2 indicate the
anteriormost and posteriormost points of the callosum with P1-P2 defined as
the length of the callosum. Point P3 is the anteriormost point on the inner con-
vexity of the anterior callosum. P1-P2 line is used as the linear axis to subdivide
the callosum into anterior and posterior halves; anterior, middle, and posterior
thirds; and the posterior one-fifth region (region 7). The line passing through P3,
that is also perpendicular to the to the P1-P2 axis is used for defining the ante-
riormost division of the CC which generates regions rostrum (region 1) and genu
(region 2). Region 3 is called as rostral body and it is the anteriormost one-third
of the CC minus regions 1 and 2. Region 4 is called as anterior midbody and it
is defined as the anterior one-half minus the anterior one-third. As for region 5,
it is posterior midbody and is defined as the posterior one-half minus the pos-
terior one-third. Region 6 is isthmus and it is defined as the posterior one-third
minus the posterior one-fifth. Regions 3, 4, 5 and 6 constitute the body of the
callosum. Regions, their anatomical labels and the callosal fibres in relation to
cortical regions of origin and termination is displayed in Table 1.

The deformation function f basically maps the points p in the source CC to
the new coordinates q ; thus making the structure deformed. The deformation
function needs to be built carefully and must hold the following properties [11]:

– Interpolation: The handle points p should map directly to q under deforma-
tion. (i.e. f(pi) = qi)

– Smoothness: f should produce smooth deformations
– Identity: If the deformed handles q are the same as p, then f should be the

identity function. (i.e. qi = pi ⇒ f(v) = v)

These properties are similar to the ones that are used in the scattered data
interpolation. In this paper, we introduce a deformation function that holds the
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all requirements covered above. Source CC is superpositioned onto the target
CC from some handle points under the mathematical model of Gaussian Radial
Basis Function (RBF). A mathematical model which maps the handle points of
the source CC to anatomically the same handle points of target CC is calculated.
Apart from these handle points, the model also affects the rest of the points on
the boundary of source CC; thus making a deformation on the source CC shape.
Our aim in this study is proposing a robust method for nearly preserving the
characteristics of source CC shape after by localizing the deformations instead
of globally deforming the whole CC.

Table 1. CC regions displayed in Fig. 1 and their anatomical locations [15].

Region Anatomical label Cortical region

1 Rostrum Caudal/orbital prefrontal, inferior premotor

2 Genu Prefrontal

3 Rostral body Premotor, supplementary motor

4 Anterior midbody Motor

5 Posterior midbody Somaesthetic, posterior parietal

6 Isthmus Superior temporal, posterior parietal

7 Splenium Occipital, inferior temporal

Contributions. We offer a non-linear space deformation technique which lacks
a cage that has to be defined before the interactive deformation operations
start. Eleven handle points scattered through the borders of seven regions in
CC replaces the cage and these handle points are defined semi-automatically via
our framework. Our technique offers a simple formulation and is specific to the
input shape which calculates the right parameters for minimal deformation and
surface detail preservation for further comparison operations. In addition, it can
be extended to 3D neuroanatomical structure studies with the proper anatomical
anchor points. Our method is robust and efficient.

This paper is organized as follows: In the next section we address the related
works; in Sect. 3, we describe the mathematical model; Sect. 4 includes the func-
tionalities that can be included to the study and lastly in Sect. 5 future work is
presented.

2 Related Work

Shape manipulation studies are performed under two categories, namely space
deformation methods and surface-based methods. In the space deformation
methods, the space that holds the object is deformed and hereby deforms the
shape. As for the other one, shape deformation is carried out by using the object
solely.
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Space deformation techniques are much simpler and require less computa-
tional cost than surface-based methods since the deformation is carried out on
the space that surrounds the mesh of the object rather than the mesh itself.
They have less control on the shape detail preservation. Surface-based methods;
however, depend on the mesh that wraps up the object; therefore, mesh quality
becomes an important factor in these kinds of studies. The main advantage of
the surface-based methods is the detail preservation on the shape. Due to this
property, systems of surface-based methods are computationally expensive.

Zohar Levi et al. [6] offered a space deformation framework for real-time shape
deformation which does not have a major effect on the local shape and volume.
The technique for deformation is controlled locally and does not have an influence
on the nearby branches. It is based on Interior Radial Basis Functions (IRBF)
and local distortions are minimized by minimizing the distortion of a set of
spheres that are placed within the object. Another space deformation technique
that is based on triharmonic radial basis functions for real-time freeform shape
editing is proposed in the study of Botsch et al. [2]. In this study, the desired
target shape is not exactly defined before the deformation process starts. The
deformation is put into practice in an interactive manner.

Using a predefined skeleton and free-form deformation (FFD) are also the
popular space-deformation methods that have been used in shape manipulation
studies. In the former one, the user defines a skeleton to the shape and the system
adjusts the shape relative to the skeleton [7]. It has some disadvantages on the
objects which structurally do not have any skeleton such as jellies. A sequence
of lattices which converge to a region in 3D is created in an FFD study [10].
Each point is associated with a lattice. As the points in the lattice are modified,
a deformation of the space is created, and the embedded points are relocated
within that deformed space.

A space deformation method that is called as cage-based Variational Har-
monic Map (VHM) is suggested by Ben-Chen et al. [1]. In this technique, man-
ual editing of the cage is replaced by controlling it with intuitive positional
and rotational constraints that are enforced through energy minimization, which
optimizes the deformation rigidity and smoothness. Sederberg et al. proposed a
method that includes a control lattice for shape deformation [12]. Lattices are
proved to be problematic for controlling the articulated objects.

Mean Value Coordinates (MVC), Harmonic Coordinates (HC) and Green
Coordinates (GC) are three forms of cage-based space deformation methods.
A cage is a polyhedron which has a similar shape to the enclosed object. The
points inside the cage are represented by affine sums of the cage’s vertices mul-
tiplied by special weight functions. Manipulation on the cage makes its interior
get deformed smoothly. The work presented in the study [8] is a cage-based tech-
nique which builds upon the positive MVC. These coordinates are used for mesh
deformation. A similar study that is replacing the MVC with HC is proposed in
the study [5]. This replacement makes each cage vertex non-negative and falls
off with distance as measured within the cage. GCs that are derived from Green
functions introduce appropriate rotations into the space deformation in order to
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allow shape preservation [9]. Weber et al. shows that GCs in the study [9] are a
special case of complex barycentric coordinates and provides a simple analytic
formula for them. Also an improvement on the GC is carried out and a new
complex barycentric coordinates for 2D shape deformation is proposed in which
the deformation better fits the user’s specifications [14].

In the study of [13], the deformation is defined using a deformation graph
which roughly conforms to the input shape. Deformation graphs are consisting of
a varying number of nodes that the total size is related to the types of the edits
that are going to take place. Coarse edits need fewer nodes than the detailed
ones. An affine deformation is associated with each node in the deformation
graph, which describes the transformation this node undergoes. The problem is
stated as ‘embedded deformation’ since the algorithm must deform space through
direct manipulation of objects within it, while preserving the embedded objects’
features. Botsch et al. [3] puts forth a volumetric approach that is originated
from the elastic energies of solid objects. The shape is break into voxels and the
deformation is defined on them.

Igarishi et al. [4] proposes a point-based (surface-based) image deformation
technique which results in a deformation that is called ‘rigid-as-possible’. In this
work, the amount of local scaling and shearing of deformations is minimized.
The method is based on triangulation of the image and solving a linear system
of equations whose size is equal to the number of vertices in the triangulation. In
the study, the movement of vertices affects the positions of the other vertices in
a way which results in a minimum distortion of each relevant triangle. Schaefer
et al. [11] takes as a base of the study [4] and accelerates the deformations by
solving a small linear system at each point in a uniform grid. This results in a
very fast deformation of grids comprising tens of thousands of vertices in real
time. Three classes of linear functions (affine, similarity and rigid) are used in
the deformation method which is based on moving least squares.

Table 2. Points used in superposition operation and their anatomical locations.

Anchor point Anatomical location

IP1 Intersection of regions rostrum & rostral body

IP2 Intersection of regions rostrum & genu

IP3 Intersection of regions genu & rostral body

IP4 Intersection of regions rostral body & anterior midbody (superior)

IP5 Intersection of regions anterior midbody & posterior midbody (superior)

IP6 Intersection of regions posterior midbody & isthmus (superior)

IP7 Intersection of regions isthmus & splenium (superior)

IP8 Intersection of regions isthmus & splenium (inferior)

IP9 Intersection of regions posterior midbody & isthmus (inferior)

IP10 Intersection of regions anterior midbody & posterior midbody (inferior)

IP11 Intersection of regions rostral body & anterior midbody (inferior)
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The work presented here belongs to the space deformation category. Our
main goal is to minimize the local deformations, thus to keep the localized char-
acteristics of source CC regions, while superposing two corpora callosa for shape
comparison. In this manner accurate semantic definition from the operation may
be inferred. RBF is used for the deformation model where Gaussian is the basis
function of the model. Eleven intersection points of seven callosal regions are
defined as anchor points which are RBF centers at the same time. Anchor point
decision affects the shape of deformation substantially. Decided points should be
the same anatomical locations of corpora callosa for an efficient regional compar-
ison. Apart from the number of total anchor points, the variance values of anchor
points also affect the amount of deformation. Landmarks on the CC segments
may be affected from just one anchor point or a combination of several anchor
points. Proper variance values for each anchor point is one of the key studies
of our work. These anchor points are summarized in Table 2 and displayed as
orange circles in Fig. 2. Anchor points on the target CC are the final points that
the initial ones will converge with the appropriate RBF weights. These weights
are calculated according to the model. Proper weight value for each RBF center
is decided after an iterative job which in the end lasts in a minimum localized
source CC deformation. An error function is sum of squares of the difference
between the actual source CC landmark coordinate before deformation and the
one after deformation. The higher the function value, the more is the deforma-
tion. Therefore, error function searches for the proper weight values. General
Procrustes Analysis (GPA) is used for calculating the morphological difference
between two structures in this iterative job.

Fig. 2. Anchorage points for the superposition operation. (Color figure online)

Our method is basically as follows;

i. Source and target CC are parcellated into regions semi-automatically, in the
guidance of the study [15].

ii. Manual shape modeling via quadratic Bézier curves is performed after
regional parcellation.

iii. Source CC is superpositioned onto the target CC from the anchor points by
the use of Gaussian RBF and a mathematical model is calculated.

iv. The parameters of the model are investigated with a method that is
similar to Expectation Maximization (EM) for the minimum source CC
deformation.
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3 Shape Preservation with Gaussian RBF Interpolation

3.1 CC Parcellation

Samples of corpora callosa that are going to be investigated for regional dif-
ferences are parcellated into compartments as an initial work. This process is
performed semi-automatically in which three landmarks are needed to be man-
ually defined on each CC image that has been loaded to the frame. The system
then automatically divides the CC into seven regions as defined in the study
[15]. Table 3 shows the points needed to parcellate the CC.

The boundaries of the callosal regions are calculated automatically with the
positions of user defined landmarks and borders on the model are drawn. The
whole operation lasts less than a minute for each CC. Figure 1 displays the
segmented CC according to these parcellation landmarks. According to exper-
imental work with monkeys and from postmortem studies of humans, a rough
topography of callosal fibres in relation to cortical regions of origin and termi-
nation is displayed in Table 1.

3.2 CC Modeling

Quadratic Bézier curves are the building blocks of the modeling process. All of
the callosal curves are represented with them.

A Bézier curve, specified by n+1 control points, is a parametric curve seg-
ment of order n. It is defined according to a parameter t over the interval
0 ≤ t ≤ 1 and is formally expressed according to the polynomial series;

B(t) =
n∑

i=0

biBi,n(t) (1)

where b0, b1, . . . , bn are the control points of the curve and;

Bi,n(t) =
{ n!

(n−i)!i! (1 − t)n−iti 0 ≤ i ≤ n

0 otherwise
(2)

are the Bernstein polynomials.
A curve segment is defined manually by defining these control points on

the interface. User basically clicks on the frame and when the count of control
point number reaches three, a quadratic Bézier curve is automatically formed
according to the Eq. 1 and drawn on the interface. A region may consist of several
Bézier curves and all of the curves are continuously connected to the adjacent
curve segments. There is no gap either locally in a region or between the two
adjacent callosal regions. Fine tuning of the user drawn segments is performed
by just moving the control points of the Bézier curve segment. All seven regions
are constructed in an anterior-posterior axis starting from the Rostrum.

Modeling operation lasts longer than parcellation. Each region needs seper-
ate modeling. Thus, whole operation may last up to 7–8 minutes for each CC.
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Table 3. Parcellation landmarks of the CC.

User defined points Anatomical definition

P1 Anteriormost point of the CC

P2 Posteriormost point of the CC

P3 Inner convexity of the anterior CC

This may be the major drawback of our method if a large data set is under
study. For a more powerful method, the modeling operation should be performed
automatically.

Regional construction of callosal curves on the CC which is shown on Fig. 1
is displayed in Fig. 3.

Fig. 3. Regional construction of callosal curves on the CC of Fig. 1. (Control polygons
of each quadratic Bzier curve segment are displayed with blue dotted lines.) (Color
figure online)

3.3 Regional Landmark Determination

Landmarks are determined in particular to the callosal regions. Total number
of the landmarks is related with the total length of the curve segments in that
region. The more the total length is the more the count of regional landmarks.

Separate curve which comprises of several quadratic Bézier curve segments
is the key point in the determination of landmarks. Separate curves of a single
region do not join; they are totally disjoint. The landmark determination and
distribution is accomplished in particular to these separate curves. Since identical
regions of two corpora callosa will have the same number of separate curves, one-
to-one correspondence will be set between these curves and landmark operations
are carried out particularly. This operation is performed for all of the separate
curves of the region that is under study.

Figure 4 shows the landmark distribution in two callosal regions, namely
rostrum and genu. There is one separate curve for each region and the length
of this separate curve is used as a parameter in deciding the total number of
landmarks. Figure 4 (a) shows callosal regions of Subject1 where red spots are
indicating the positions of landmarks whereas (b) shows the callosal regions of
Subject5. Here, in this example, it is seen that, 12 landmarks are calculated
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Fig. 4. Landmark distribution displayed in red on the segments of two callosal regions
of (a) Subject1 (b) Subject5. (Color figure online)

for rostrum whereas 19 are for genu in both corpora callosa. There is one-to-
one correspondence between these landmark pairs and all are used for further
operations such as GPA.

Fig. 5. One-to-one correspondence between the anchor points of two corpora callosa

3.4 Superposition

Superposition operation develops a mathematical model via the anchor points
of source (CC1) and target (CC2) corpora callosa. This mathematical model is
based on Gaussian RBF.

s(x) = a0 + a1x + a2y +
N∑

i=1

λiφ(‖x − xi‖) (3)

where; s(x) is the RBF, φ(r) is the basis function, (r = ‖x − xi‖),‖x‖ is the
Euclidean norm, the λi’s are the RBF weights and the xi’s are the RBF centers.

The RBF consists of a weighted sum of a radially symmetric basic function
φ(r) located at the centers xi and a low degree polynomial a0 +a1x+a2y. Given
a set of N points xi and values fi, the process of finding an interpolating RBF
is called fitting, such that:

s(xi) = fi, i = 1, 2, ..., N (4)
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The fitted RBF is defined by the λi, the coefficients of the basic function in the
summation, together with the coefficients of the polynomial term a0+a1x+a2y.

RBF has proven to be an effective tool in multivariate interpolation prob-
lems of scattered data. Here in this operation, anchor points lying on the curve
segments are the key components of the basis functions. There is a one-to-one
correspondence from all of the eleven anchor points of CC1 to the CC2 as dis-
played in Fig. 5.

Weight Vector Calculation: Equation 4 can be rewritten in matrix form as
a linear system;

Hw = b (5)

H =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

φ(||x1 − x1||) φ(||x1 − x2||) . . . φ(||x1 − xN ||) 1 x1 y1
φ(||x2 − x1||) φ(||x2 − x2||) . . . φ(||x2 − xN ||) 1 x2 y2

...
... . . .

...
...

...
...

1 1 . . . 1 0 0 0
x1 x2 . . . xN 0 0 0
y1 y2 . . . yN 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

wT = (λ1, λ2, ....., λN , a0, a1, a2)

bT = (f1, f2, ....., fN , 0, 0, 0)

where the dimension of interpolation matrix H is (N + 3, N + 3), weight matrix
w is (N + 3, 1) and the result matrix b is (N + 3, 1). Solving the linear system
(Eq. 5) determines λi’s and a’s. The RBF that is used in this study is Gaussian,
that is;

φ(r) = e(−( 1
2σ2 )r2) (6)

where σ is the standard deviation value of the relevant RBF center. In our
model RBF centers (xi) are the eleven anchor points of CC1 (N is 11) whereas
b’s are the coordinates of anchor points of CC2. Interpolation matrix (H) is
formed by taking into account of the eleven anchor points of CC1. Row values
are calculated in particular to an anchor point. For example first row includes the
Gaussian RBF function values of all eleven anchor points according to anchor
point IP1. The last three columns in the same row are filled with the values of
1, x and y coordinate values of IP1, respectively. Likewise second row includes
the Gaussian RBF values according to anchor point IP2, and so on. First eleven
columns of the last three rows in the interpolation matrix includes values of 1,
x and y coordinate values of IP$ where $ is equal to the column number. The
3× 3 submatrix in the lower right corner is the zero matrix. When nonsingular H
matrix is prepared, weight matrices which are going to be used in superposition
operation are calculated according to the equations;

wx = H−1bx, wy = H−1by (7)
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Deciding the New Coordinates: Weight matrices which are calculated in
the previous step are used in calculating the new coordinates of every single
point that forms the Bézier curve segments of CC1. Interpolation matrix H is
prepared by the use of point which is going to be deformed on the CC1 and
the eleven anchor points, as in Eq. 5. The dimension of the H matrix will be
(1, N + 3). While calculating the values of first eleven columns in the matrix H,
standard deviation value of the relevant anchor point is used, as shown with σ$

symbol in Fig. 6.
(x, y) coordinate pair for all of the points on the Bézier curve segments of CC1

after deformation is calculated with the matrix multiplication of interpolation
matrix H and wx, interpolation matrix H and wy, respectively.

Fig. 6. Interpolation matrix (H) formation for calculating deformed coordinate pair.

Superposition Operation: The application of superposition operation
requires basically determining anchor points and calculating mathematical model
of the deformation.

The model that was prepared is applied to every points which form the
regional curve segments. Carrying model into execution forms the deformed
shape. Figure 7 shows (a) the source CC before deformation, (b) the target CC
that the source is going to be superimposed on from the eleven anchor points,
(c) the CC after deformation.

3.5 Minimum Deformation Calculation

The standard deviation value of each anchor points effects the outcome. There-
fore, these values are treated as parameters to be learned. We run an iterative
approach that is like the Expectation Maximization algorithm in mixture of
Gaussians. This method makes us calculate different standard deviation values
for each of the anchor points. As a result minimum deformation may be derived.
Three step iterative approach is basically pointed out below.
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Fig. 7. Superposition operation. (a) CC before deformation (b) target CC to get
anchored (c) CC after deformation via RBF model that is based on anchor points all
of which have standard deviation values of 0.5 (red dots indicate the eleven anchor
points). (Color figure online)

i. Fix all standard deviation (σ) values and solve for weight vectors.
ii. Fix weight vectors and minimize error function with respect to σ.
iii. With newly calculated σ values, solve for weight vectors again.
iv. Go to step i until maximum number of iterations is exceeded or difference

of σi and σi+1 are below a defined threshold value.

Our error function is the common sum-of-squares error, that is;

E(x) =
1
2

c∑

k=1

(yk(x) − tk)2 (8)

The derivative of this error with respect to the standard deviation of basis
function j, (σj), is;

∂E

∂σj
(x) =

∑

k

(yk(x) − tk)wkje

‖(x−xj)2‖
2σ2

j

‖(x−xj)2‖
σ3

j (9)

where c is the total number of landmarks on the CC boundary, yk(x) is the
desired value and tk is the actual value of that point.

σj = σj − n
∂E

∂σj
(10)

where n is the learning rate.

4 Conclusion

37 source corpora callosa obtained from both normal subjects and subjects suf-
fering from Major Depression Disorder (MDD) are studied according to the
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model covered in this paper. Also an atlas CC is added as a target CC model to
the study. The experiment is as follows;

i. Each source CC among 37 subjects is superimposed onto the target CC and
proper parameters of all anchor points for the minimum deformation are
obtained.

ii. 37 separate Procrustes distance value are calculated between the pairs of
deformed source corpora callosa and target CC.

iii. The effect of deformation on the original source CCs is investigated via t-test
whether it produces statistically significant results or not.

Fig. 8. Deformation operation. Source CC’s are deformed according to the target CC
via RBF that is holding proper parameters for each anchor points. (Color figure online)
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Figure 8 shows sample deformations in our experiment. Each row belongs to
a different subject and deformation is performed according to the same atlas. In
the figure, CCs on the left show the original CCs of three subjects and CCs that
are drawn with blue lines on the right show the deformed shapes of relevant CC.
The black CCs on the right are the same target structure that is also called as
atlas in the paper.

The null hypothesis (Ho) in our experiment basically assumes that deforma-
tion has no effect on the CC shapes whereas alternative hypothesis (Ha) claims
that statistically significant difference occurs on the CC shape structures after
deformation. Calculated t-value for the experiment becomes 15.86, which means
Ho hypothesis is need to be rejected. As a conclusion, deformation changes the
structures of source CCs significantly.

5 Discussion

Modeling the CC can be fully automated. This will outcome the automated
parcellation; automated modeling of callosal regions which includes deciding on
the number of segments that will form the callosal boundary, drawing Bézier
curve segments and merging them.

Some preprocessing steps before the selection of anchor points may also be
included into the study.

6 Future Work

The same experiment is going to be performed with the methods of affine Moving
Least Squares (MLS), similarity MLS, rigid MLS, GC, MVC, HC and rigid-as-
possible. The inner-distance values such as Floyd-Warshall or Johnson instead
of Euclidean distance may also be applied in the relevant models and the results
are going to be compared with the one that is obtained in our study.
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