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15Chordoma of the Sacrum
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15.1  Introduction

Chordoma is a relatively rare, slow-growing, primary bone tumor with an overall 
incidence of approximately one per million population and accounts for 1–4% of all 
malignant bone lesions [1, 2]. Although rare, it represents the most frequent primary 
malignant bone tumor affecting the sacrum [3]. It has a slowly aggressive and locally 
invasive behavior, and it is considered a low-grade malignant neoplasm. In fact, it is 
poorly sensitive to conventional radiotherapy and chemotherapy. Surgical resection 
of sacral chordoma remains the standard for local disease control, even if it is associ-
ated with significant morbidity and repercussions for patient’s quality of life due to 
the close relationship with relevant neurovascular structures [4]. An increasing num-
ber of novel (radio)surgical and pharmacological strategies are currently being 
investigated [5–7] and may have a role in addressing microscopic disease.

15.2  Embryology

The current line of thinking is that chordoma cells originate from remnants of the 
embryonic notochord [8–11]. For the purpose of clarifying the pathophysiology, 
one must first gain an understanding of the ontogenesis of the axial skeleton as it 
matures from the notochord to its ultimate configuration in the adult. During 
embryogenesis, in the third week of human development, gastrulation takes place 
with the formation of the three primary germ layers (ecto-, meso-, and endoderm). 
The stem cells for all major structural elements of the vertebral column are derived 
from the mesoderm [12]. One of the key events following this phenomenon is the 
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formation of the notochord in the Carnegie stages 7 through 9 (crown-rump [CR] 
length of 0.4–2.5 mm), an elongated rod of cells subadjacent to the neural tube 
with a caudo-cranial extension [13]. The notochord plays a critical role by produc-
ing and secreting important signaling factors (e.g., sonic hedgehog [14], bone mor-
phogenetic protein [15, 16]) to the surrounding tissue in order to guide organogenesis 
and the formation of the axial skeleton [17]. Primary neurulation, the process of the 
flat neural plate folding into the cylindrical neural tube, occurs in response to sol-
uble growth factors secreted by the notochord (Fig. 15.1). As a result of the cellular 
shape changes, the neural plate folds creating the U-shape neural groove. This 
neural groove sets the boundary between the right and left sides of the embryo. 
Then, the closure of the neural tube disconnects the neural crest from the epidermi-
dis, and segmentation commences in the axial and paraxial mesenchyme with the 
formation of somites (Carnegie stage 11, CR 2.5–4.5 mm) [18–21]. In axial 

Fig. 15.1 Artistic drawings show embryogenesis of the vertebral column: primary neurulation. 
(a) Shaping. Schematic transverse sections showing neuroectodermal tissues differentiate from the 
ectoderm and thicken into the neural plate (I); (b) Folding and elevation. The neural plate bends 
dorsally creating the U-shaped neural groove. Notochord is shown at the ventral part of the neural 
groove (II). The two ends eventually joining at the neural plate borders, which are now referred to 
as the neural crest (III); (c) Convergence. Bending of the neural plate with convergence of the 
neural folds up to the complete closure of the neural tube (IV); (d) Closure. The closure of the 
neural tube disconnects the neural crest from the epidermidis (V). Neural crest cells differentiate to 
form most of the peripheral nervous system and notochord degenerates (VI)

a

b

A. Angelini and P. Ruggieri



197

section, the mesoderm- derived tissue which bilaterally propagates alongside the 
notochord evolves by an epithelial-to-mesenchymal transition to form the ventral 
sclerotomes [22]. The mesenchymal cells are specified based on their location 
within the somite: they retain the ability to become any kind of somite-derived 
structure until relatively late in the process of somitogenesis [23] and gradually 
assume a concentric arrangement around the notochord, forming a perichordal 
sheath [18, 24, 25]. These mesenchymal cells of the perichordal sheath become 
cartilaginous (chondroblasts/chondrocytic cells) via a condensation process guided 
by secreted factors derived from the notochord originating primordial vertebral 
body [26, 27]. Concurrently with the vertebral body morphogenesis, the confined 
notochordal cells progressively degenerate and probably undergo apoptosis or dif-
ferentiate into the chondrocyte- like cells [28]. Occasionally notochord cells remain 
in the nucleus pulpous of the mature intervertebral disk (Fig. 15.2) or can be wit-
nessed in notochord- like tissue in the intravertebral region, in which case they are 
described as “benign notochordal cell tumors” (BNCT) [29]. The complete forma-
tion of the vertebral segments is expected to be at Carnegie stage 20–22 (CR 
18–30 mm) (Fig. 15.3).

c

d

Fig. 15.1 (continued)
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Fig. 15.2 Artistic drawing show notochord cells remain in the nucleus pulposus of the mature 
intervertebral disk. During resegmentation of the sclerotomes to form the vertebrae, each one splits 
into cranial and caudal segments, and cells remaining in the plane of division coalesce to form the 
annulus fibrous of the intervertebral disk
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Fig. 15.3 Artistic drawing of a human embryo at Carnegie stage 20 show all of the vertebral seg-
ments have formed
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15.3  Pathogenesis

The pathophysiology underlying this lethal disease is demonstrated to be complex. 
Starting from the histological characterization performed by Virchow in 1857 [30] up to 
the discovery of brachyury’s involvement, numerous progresses have been performed 
in the pathogenesis of this tumor. Examination of human embryos and fetus showed 
that notochordal cell nests topographically correspond and distribute to the sites of 
occurrence of chordoma and histological appearance of tumor cells led to hypothesize 
the notochordal origin [31, 32]. Molecular research has so far yielded significant find-
ings on the mechanisms underlying the initiation and further progression of chordoma 
cells. The most compelling evidence of the notochordal hypothesis derived from 
researches focused on a transcription factor named “brachyury.” It is an important tran-
scription factor in notochord development, but duplicated regions contained only the 
brachyury gene have been discovered in familial chordoma [33–36]. The remarkable 
overexpression revealed this transcription factor to be a crucial aspect of chordoma, 
although it is still unclear what role brachyury has in the pathogenesis [37]. Some other 
notochordal factors (Shh, Wnt, galectin-3, NCAM) seem to be relevant in notochord 
formation and in chordoma, as well as the other overexpression of cell cycle regulatory 
pathways and an activated receptor tyrosine kinase pathway [11]. The molecular biol-
ogy process behind the initiation and progression of a chordoma needs to be revealed 
for a better understanding of the disease and to develop more effective therapies [38].

15.4  Epidemiology

Chordomas are classified on the basis of their location along the spine in sacrococ-
cygeal, clival, cervical, thoracic, and lumbar (listed by the most frequent site) [1–3]. 
Recent studies reported an almost equal distribution in the clivus (32%), mobile 
spine (32.8%), and sacrum 29.2% [39]. Other epidemiological studies report that 
the sacrococcygeal area is the most common affect (40–50%) compared to clivus 
(35–40%) and vertebral bodies (20–40%) [40, 41]. Sacrococcygeal chordomas have 
very low incidence in patients below 40 years old and are more frequent in males 
(male to female ratio 2:1) [42–45].

15.5  Presentation and Diagnosis

Chordomas of the sacrum often present with non-specific symptoms which can delay 
diagnosis, such as localized deep pain or radiculopathies related to the spinal level at 
which they occur [46–49]. In advanced disease the tumors can present at the time of 
diagnosis as a slow-growing palpable mass associated with rectal or urinary dysfunction 
[46, 47, 50]. The average duration of symptoms is about 14 months (range, 4–24 months) 
[45]. Diagnosis is further complicated by the fact that lytic sacral lesions might be over-
looked on plain radiographs of the pelvis, and CT or MRI studies are often not per-
formed without a clinical suspicion of sacral tumor [45, 49]. Differential diagnosis for 
lumbosacral chordomas includes pilonidal sinus disease, deep abscesses, rectal sarco-
mas, and several retrorectal tumors (teratomas, extraperitoneal adenomucinosis, cystic 
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lymphangiomas, neurogenic tumors, and cysts, developmental tailgut cysts, sacral 
myelomeningocele, rectal duplication) [51–53]. Most sacrococcygeal chordomas can 
protrude anteriorly into the pelvis, and rectal examination may be useful for clinical 
detection of sacral mass even if the tumor is limited by presacral fascia [54].

15.6  Imaging

Chordomas are midline lesions and often appear radiographically as destructive 
lytic bone lesions. Unlike other primary tumor (osteosarcomas and chondrosarco-
mas) of the spine, chordomas locally invade the intervertebral disk space as they 
spread to adjacent vertebral bodies [49]. Computed tomography (CT) and magnetic 
resonance imaging (MRI) are the gold standard for diagnosis. The tumors are often 
associated with soft tissue mass (Fig. 15.4). Calcification and bony expansion are 

Fig. 15.4 Sagittal view of a 
specimen from a proximal 
sacral resection show the 
large involvement of soft 
tissue
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present in 30–70% of the cases and appear isointense or hypointense on T1-weighted 
MRI images and hyperintense on T2-weighted MRI images and enhance with gado-
linium [55]. On bone scan, chordomas show reduced or normal uptake of radioiso-
tope when juxtaposed to other bone tumors [56]. Careful preoperative assessment of 
imaging within the multidisciplinary team is essential in planning surgical approach 
and discussing strategy of treatment.

15.7  Pathology

Chordomas were first described histologically by Virchow in 1857, when he identi-
fied the typical “physaliferous” tumor cell chordomas [30]. Physaliferous cells 
appear as large white cells with round nuclei and abundant vacuolated cytoplasm 
separated by fibrous septa into lobules [41, 42] and are typical of classic chordomas. 
Chordomas are classified as classical (or conventional), chondroid, or dedifferenti-
ated [41]. Classic chordomas are pathologically identified by their typical cells and 
immunoreactivity for S-100, epithelial membrane antigen (MUC1), and cytokera-
tins [57, 58]. Brachyury staining is used to discriminate chordomas from other 
chondroid lesions [59]. Chondroid chordoma is a histological variant that account 
for 5–15% of all chordomas [41]. It shows histological features resembling chon-
drosarcoma, with hyaline cartilage associated with expression of chordoma markers 
[60, 61]. Dedifferentiated chordomas account for less than 10% of all chordomas 
and are characterized by sarcomatous areas with spindle cells such as fibrosarcoma, 
osteosarcoma, or rhabdomyosarcoma [62–66]. It is characterized by a fulminant 
clinical course resulting in metastases and/or death within 1 year of diagnosis in 
most of the cases [64–68].

15.8  Treatment

The most accredited treatment consists of surgical resection with wide margins, as 
no chemotherapy has been demonstrated to be effective against chordoma and 
conventional radiotherapy is only partially effective [5, 11, 69–74]. Complex pel-
vic anatomy coupled with the need of wide margins means that surgery is chal-
lenging to preserve essential neural function and avoid injury to visceral and 
vascular structures during resection. Frequently, margins are positive (marginal or 
contaminated) [11, 70, 71, 75, 76], and adjuvant treatment strategies must be 
considered.

15.8.1  Sacral Resection

In the 1970s, Stener and Gunterberg [77] first introduced the idea of wide en bloc 
surgical resection for the treatment of sacral tumors. Since then, en bloc resec-
tion has remained the mainstay of treatment of sacral chordoma worldwide, as 
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reported by a large multicentric study based on the AOSpine Tumor Knowledge 
Forum Primary Spinal Tumor database [78]. En bloc sacrectomy is a highly 
demanding surgical procedure, consisting of a partial or total amputation of the 
sacrum. It is associated with significant soft tissue and skin defects, which may 
require reconstruction with myocutaneous flaps to reduce risk of wound infec-
tion and breakdown. However, it is attainable in more than 50% of sacral chor-
domas and offers the best long-term oncological outcomes when wide margins 
are obtained [69, 79].

The surgical approach is often planned according to tumor extension and level of 
resection. Usually all resections distal to S3 level could be approached posteriorly 
only [70, 80, 81], whereas proximal resections need a combined anterior-posterior 
approach [69–71, 78, 79, 82]. Advantages of the posterior approach are a single 
stage procedure and shorter operating time, whereas the combined approach enables 
the visceral organs to be dissected away from the tumor and protected during the 
osteotomy. Some exceptions have been reported in literature, using tools and inno-
vative surgical techniques to perform proximal resections by a posterior approach 
only in selected cases [83, 84].

Unilateral or bilateral sacrifice of the nerve roots is necessary distal to resec-
tion, with corresponding functional damage [77, 82, 85–88]: motor and sensory 
deficits in the lower limbs are mainly related to the sacrifice of S1 and L5 nerve 
roots; sacrectomies that spare the S2 nerve root are associated with abnormal 
bladder and bowel function, even if better results can be expected if an S3 nerve 
root is also preserved; sexual dysfunction with relative saddle anesthesia is asso-
ciated with bilateral S3 lesions, whereas unilateral sacrifice from S2 to S5 
reduces but does not abolish urogenital and rectal functions. Numerous compli-
cations other than neurological deficits have been reported in literature, such as 
wound dehiscence, infection, iatrogenic visceral injury, hematoma, massive 
bleeding, liquoral fistula, flap necrosis, stress fractures, and other less frequently 
reported [70, 89]. Chen et al. [90] reported that albumin <3.0 g/dL, operating 
time (>6 h), and previous surgery were statistically significant risk factors for 
wound infection.

15.8.2  Radiotherapy

The use of radiotherapy (RT) as primary or adjuvant treatment for chordoma has 
been debated for several years and remains controversial. The majority of older 
publications that used conventional photon radiotherapy did not exceed 60 Gy, and 
investigators report poor local control in sacral chordomas [91, 92]. In fact, the 
problem of tolerance dose of the organs and tissues surrounding the sacrum results 
in the limitation of total RT dose that can safely be delivered to the tumor [93, 94]. 
Advances in radiation technology and treatment have led to more strategic targeting 
of neoplasms with higher doses of radiation. There is some consensus that the com-
bination therapy of surgical resection and radiation therapy may be associated with 
higher rates of local control and overall survival [95].
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 – Intensity-modulated radiation therapy (IMRT) and stereotactic delivery tech-
niques can custom modulate each photon beam to conform to the tumor volume 
by minimizing the dose to surrounding tissues [92]. Some authors report the 
experience in sacral chordomas, finding that local control was significantly 
higher in patients treated with radiation dose delivered higher than 60 Gy (range 
60–78 Gy) [96, 97].

 – Radiosurgery is a technique characterized by a very high dose of RT in a single 
fraction (or hypofractionated) thanks to the use of image-guided technology 
coupled with IMRT. The use of radiosurgery for chordoma has shown promising 
preliminary results for local control [98, 99].

 – Proton beam and heavy-ion particle radiation therapy are characterized by deliv-
ering a high-specific radiation dose to the tumor target volume and small dose to 
uninvolved normal tissue (low risk of radiation toxicity to neural tissue) [94, 100, 
101]. Hadrons (high-dose protons or charged particles, including carbon ions, 
helium, or neon) provide biological and physical advantages in terms of their 
high relative biological effectiveness and reduced oxygen-enhancement ratio in 
the tumor region [102]. In fact, studies exploiting the use of hadron therapy in 
chordomas of the sacrococcygeal region show local control at 5 years of 60–70% 
[99, 103–105]. Compared with protons and photons, carbon ions have a relative 
higher biological effectiveness with a larger mean energy per unit length of their 
trajectory [91, 106]. Therefore, carbon-ion radiotherapy has been considered for 
treatment of unresectable chordoma [107]. Promising local control rate and bet-
ter preservation of bladder-bowel function with the use of carbon-ion radiother-
apy has been reported compared with surgery [107–109], whereas good results 
have also been reported as adjuvant treatment [110]. Unfortunately, the avail-
ability of hadron-based therapy is limited because of the associated construction 
and operational expenses [111, 112], even if the cost is expected to decrease 
rapidly [113].

Although there is limited literature comparing the effectiveness of newer radia-
tion therapy modalities coupled with surgery, preliminary promising results have 
been reported with hadron therapy than with photon-based radiation [114–116]. 
However, at this time, single-fraction photon RT and proton-beam and carbon-ion 
RT with wide en bloc excision both are the accepted treatment standard in the man-
agement of chordomas at many quaternary-care cancer centers, showing higher 
local control rates than conventional IMRT [116]. One of the critiques of RT is that 
it can cause pathological fracture of residual sacral bone [69, 70, 117].

15.8.3  Chemotherapy and Medical Treatment

No conventional chemotherapy has proven to be effective in terms of overall sur-
vival and local control in patients with sacral chordoma. The advent of molecular 
targeted therapies and the discovery of molecular profiling of chordomas have 
offered some encouraging alternatives to conventional chemotherapy for the 

A. Angelini and P. Ruggieri



205

management of advanced disease. Chordomas overexpress platelet-derived growth 
factor receptor (PDGFR)B, PDGFRA, and KIT receptors, suggesting a role for ima-
tinib therapy [118–120], a tyrosine kinase inhibitor (TKI) with specificity for the 
kinase domain of PDGFR and KIT receptors. Another TKI, sunitinib, has shown 
clinical efficacy [121], even if reports are limited by small patient numbers and 
short follow- up. Additional molecular pathways such as mTOR and MAPK signal-
ing pathways seem to be involved, meaning a possible role of other targeting thera-
pies such as mTOR inhibitors (everolimus, temsirolimus) [122, 123].

In a small series of patients with chordoma, strong expression of epidermal 
growth factor receptor (EGFR) and c-MET was described [124]. EGFR is a tyrosine 
kinase receptor implicated in cell proliferation through the binding of several 
ligands. This led to the report of a patient’s response to cetuximab and gefitinib 
[125]. Newer EGFR inhibitors, erlotinib and lapatinib, confirmed this efficacy [126, 
127]. A recent analysis showed that activation of phosphorylated signal transducer 
and activator of transcription 3 (STAT3) is associated with poor prognosis [128]. 
The use of STAT3 inhibitors in chordoma cell lines in vitro showed strong inhibition 
of cell growth and proliferation [129]. Phase II studies are now ongoing, combining 
imatinib and everolimus or using lapatinib in HER2-positive advanced chordomas.

15.9  Oncologic Outcome

Several prognostic factors associated with poor survival have been reported: age 
[78, 130, 131], tumor size [46, 71, 72, 131–133], preoperative C-reactive protein 
>1.0 mg/dL [134], tumor site regarding the proximal extent of the tumor, local inva-
sion into other tissues [131, 135], inadequate surgical margins [46, 69, 70–72, 75, 
133, 136–138], content of extracellular matrix and high Ki-67 index [138], histo-
logical category such as dedifferentiated chordomas [41, 139], and local recurrence 
[46, 138, 140]. Patient survival seems to be less affected by distant metastasis than 
by local progression of the disease, underlining the role of local control to improve 
oncological outcomes.

Local recurrence (LR) after surgical treatment is common (43–85%) despite 
resection with adequate margins [71, 72]. Some authors suggested that infiltration 
of the musculature adjacent to the sacrum and/or involvement of the sacroiliac joints 
increases the tendency to local recurrence, even after apparently successful en bloc 
resection [135, 141, 142]. This hypothesis could also justify also the observation of 
similar recurrence rate between major resections of proximal part of the sacrum and 
small resections distal to S3 level [70, 71]. Therefore, in cases of infiltration of the 
sacroiliac joint, we should consider the tumor at an advanced stage with increased 
risk of satellite lesions which may promote disease recurrence. The factors associ-
ated with higher risk of local recurrence are: old age [82, 140], higher sacral local-
ization [140], inadequate surgical margins [46, 69, 70, 78], and previous intralesional 
surgery [69–71, 78]. Adjuvant radiotherapy may improve oncological outcomes in 
patients with inadequate surgical margins or dedifferentiated disease, but optimal 
radiotherapeutic regimens with long-term survival have not been developed. In fact, 
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despite combining en bloc resection with particle radiation therapy, frequent local 
recurrence remains a reality, and the 5- and 10-year overall survival rates are circa 
65% and 35%, respectively [39, 143, 144].
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