A Method of Introducing Weights into OWA
Operators and Other Symmetric Functions

Gleb Beliakov

Abstract This paper proposes a new way of introducing weights into OWA func-
tions which are popular in fuzzy systems modelling. The proposed method is based
on replicating the inputs of OWA the desired number of times (which reflect the
importances of the inputs), and then using a pruned n-ary tree construction to calcu-
late the weighted OWA. It is shown that this tree-based construction preserves many
useful properties of the OWA, and in fact produces the discrete Choquet integral.
A computationally efficient algorithm is provided. The tree-based construction is
universal in its applicability to arbitrary symmetric idempotent n-ary functions such
as OWA, and transparent in its handling the weighting vectors. It will be a valuable
tool for decision making systems in the presence of uncertainty and for weighted
compensative logic.

1 Introduction

One of the fundamental aspects in dealing with various forms of uncertainty is oper-
ations with uncertainty degrees, for example in the if-then-else rule statements. The-
ories that extend classical logic require extensions of the logical operations, such
as conjunction, disjunction, negation and implication. In fuzzy logic in particular,
membership degrees from the unit interval are combined by using aggregation func-
tions [4, 14], which in the most general form are monotone increasing functions f
with the boundary conditions f(0,...,0) =0 and f(1,..., 1) = 1, so they ensure
matching the classical logical operations in the limiting cases.

The first class of prominent aggregation functions are the triangular norms and
their duals, the triangular conorms [17]. The product was the first t-norm to appear
alongside with the minimum in L. Zadeh’s original paper on fuzzy sets [30]. When
trying to mimic human decision making empirically, however, it became clear that
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it is a combination of the t-norm and t-conorm, which itself is neither conjunctive
nor disjunctive operation, that fits the data best [19, 31]. These functions expressed
compensation properties, so that an increase in one input could be compensated by
a decrease in another.

Another prominent class of aggregation functions that are in use since the early
expert systems MYCIN and PROSPECTOR are the uninorms [4, 7, 26]. These are
associative mixed operations that behave as conjunction on one part of their domain
and as a disjunction on another. These functions, when scaled to the interval [—1, 1],
are useful bi-polar operations, where the information can be interpreted as “positive”
or “negative”, supporting or negating the conclusion of a logical statement or a
hypothesis.

The class of averaging functions is the richest in terms of the number of interest-
ing families. Averaging functions, whose prototypical examples are the arithmetic
mean and the median, allow compensation between low values of some inputs and
high values of the others. Such functions are also important for building decision
models in weighted compensative logic [8], where the concept of Generalized Con-
junction/Disjunction (GCD) play a role [10, 12].

Along with many classical means [5], the class of averaging functions contains
such constructions as ordered weighted averages (OWA) [24] and fuzzy integrals
[15]. The OWA functions in particular became very popular in fuzzy systems com-
munity [13, 28, 29]. These are symmetric functions which associate the weights with
the magnitude of the inputs rather than with their sources.

The inability of OWA functions to associate weights with the specific arguments in
order to model the concepts of importance and reliability of information sources was
a stumbling block for their usage in some areas. However the concept of weighted
OWA (WOWA) [20] resolved this issue. In WOWA functions, two vectors of weights
are used. One vector has the weights associated with the arguments, thus modelling
importance of the inputs, whereas the second vector associates weights with the
magnitude of the inputs. It was later shown that WOWA are a special class of the
discrete Choquet integral [18].

A different way of introducing weights into OWA was presented in [25]. In this
paper, the OWA function was applied to the modified arguments, and the modifying
function was found by using fuzzy modelling techniques. One such function was a
linear combination of the argument and the orness (see Definition 3) of the respective
OWA function. This method did not produce idempotent functions except in a few
special cases.

In this contribution we present a different approach to introducing weights into
OWA, based on n-ary tree construction and recursive application of the base OWA
function. Such an approach based in binary trees was recently introduced by Duj-
movic [9] in order to incorporate weights into bivariate symmetric means, as well as
to extend bivariate means to n variables. More detailed analysis of the properties of
this method is in [2, 11].

This paper is structured as follows. After presenting preliminaries in Sect.2, we
describe the construction of WOWA functions by Torra [20] in Sect.3. In Sect.4
we describe the method of introducing weights into arbitrary bivariate averaging
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functions from [9]. Our main contribution is in Sect. 5, where we introduce the n-ary
tree construction, outline some of its theoretical properties, and present an efficient
computational algorithm. The conclusions are presented in Sect. 6.

2 Preliminaries

Consider now the following definitions adopted from [4, 14]. LetI = [0, 1], although
other intervals can be accommodated easily.

Definition 1 A function f : I" — R is monotone (increasing) if Vx,y € ", x <y
then f(x) < f(y), with the vector inequality understood componentwise.

Definition 2 A function f:I" — I is idempotent if for every input x =
(t, t,.., 1), t €1, the output is f(x) = 1.

Definition 3 A function f : I" — 1 is a mean (or is averaging) if for every x it is
bounded by min(x) < f(x) < max(x).

Averaging functions are idempotent, and monotone increasing idempotent func-
tions are averaging. We consider weighting vectors w such that w; > Oand > w; = 1
of appropriate dimensions.

Definition 4 A function f : I" — I is shift-invariant (stable for translations) if
f(x+al) = f(x) + a whenever x, x + al € I". A function f : I" — I is homoge-
neous (of degree 1) if f(ax) = af (x) whenever x, ax € [".

Definition 5 For a given generating function g : [ — [—o0, oo], and a weighting
vector w, the weighted quasi-arithmetic mean (QAM) is the function

My () =g (Z w,-g(xi)) : (1)
i=1
Definition 6 Letg : [ — [ be a bijection. The ¢-transform of a functionf : I" — 1
is the function £, (X) = ¢~ (f (p(x1), 9(x2), ..., P(x)))-
The weighted QAM is a ¢-transform of the weighted arithmetic mean with ¢ = g.

Definition 7 For a given weighting vector w, w; > 0, > w; = 1, the OWA function
is given by

OWA,,(x) = D wixgy, )
i=1

where x(;) denotes the i-th largest value of x.
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The main properties of OWA are summarised below.

e As with all averaging aggregation functions, OWA are increasing (strictly increas-
ing if all the weights are positive) and idempotent;

e OWA functions are continuous, symmetric, homogeneous and shift-invariant;

e OWA functions are piecewise linear, and the linear pieces are joined together where
two or more arguments are equal in value.

e The OWA functions are special cases of the Choquet integral with respect to
symmetric fuzzy measures.

e The special case of OWA include the arithmetic mean, the median and the minimum
and maximum operators among others.

e The dual of an OWA with respect to the standard negation is the OWA with the
weights reversed.

The orness measure allows one to qualify an OWA function as OR-like or AND-
like based on whether it behaves more disjunctively or more conjunctively than the
arithmetic mean. The expression for the orness measure is given by the following
simple formula

(OWA,) Z " owa (1 n-2 ! 0) 3)
orness w) = w; = wll, ——, ..., , .
P n—1 n—1 n—1

The OWA functions are OR-like if orness(OWA,) > % and AND-like if
orness(OWA,) < % If the weighting vector is decreasing, i.e., w; > w; whenever
i < j, OWA is OR-like and is in fact a convex function. The respective (symmetric)
fuzzy measure in this case is sub-modular [3]. The OWA functions with increasing
weights are AND-like, concave functions which correspond to the Choquet integral
with respect to a super-modular fuzzy measure. OWA with decreasing weighting
vectors can be used to define norms [3, 23].

Similarly to quasi-arithmetic means, OWA functions have been generalized with

the help of generating functions g : [ — [—o00, 00] as follows.

Definition 8 Let g : [ — [—00, oo] be a continuous strictly monotone function and
let w be a weighting vector. The function

GenOWA,, o(x) = g~ (Z w,-g(x@)) “)
i=1

is called a generalized OWA. As for OWA, x(; denotes the i-th largest value of x.

The generalized OWA is a ¢-transform of the OWA function with ¢ = g. One
special case is the Ordered Weighted Geometric (OWG) function studied in [16, 22].
It is defined by
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Definition 9 For a given weighting vector w, the OWG function is
OWG,(x) = [ [ xi- 5)
i=1

Similarly to the weighted geometric mean, OWG is a special case of (4) with
the generating function g(#) = log(¢). Another special case is the Ordered Weighted
Harmonic (OWH) function, where g(¢) = 1/t.

A large family of generalized OWA functions is based on power functions, similar
to weighted power means [27]. Let g, denote the family of power functions

[ ifr o0,
&0 = [log(t), if r =0,

Definition 10 For a given weighting vector w, and a value r € R, the function

n 1/r
GenOWAw,[r] (-x) = (Z wi'x(i)) ? (6)
i=1

if r #0,and GenOWA,, [,1(x) = OWG,,(x) if r = 0, is called a power-based gen-
eralized OWA.

3 Weighted OWA

The weights in weighted means and in OWA functions represent different things.
In weighted means w; reflects the importance of the i-th input, whereas in OWA w;
reflects the importance of the i-th largest input. In [20] Torra proposed a generalization
of both weighted means and OWA, called WOWA. This aggregation function has
two sets of weights w, p. Vector p plays the same role as the weighting vector in
weighted means, and w plays the role of the weighting vector in OWA functions.

Consider the following motivation. A robot needs to combine information coming
from n different sensors, which provide distances to the obstacles. The reliability
of the sensors is known (i.e., we have weights p). However, independent of their
reliability, the distances to the nearest obstacles are more important, so irrespective
of the reliability of each sensor, their inputs are also weighted according to their
numerical value, hence we have another weighting vector w. Thus both factors, the
size of the inputs and the reliability of the inputs, need to be taken into account.
WOWA provides exactly this type of aggregation function.

WOWA function becomes the weighted arithmetic mean if w; = % i=1,....n,
and becomes the usual OWA if p; = L= 1,...,n.

Definition 11 Let w, p be two weighting vectors, w;, p; > 0, D> w; = > p; = 1.
The following function is called Weighted OWA function
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n
WOWA,,(x) = > wixg.
i=1

where x; is the i-th largest component of x, and the weights u; are defined as

w=g| > ni|-¢| D r]-

JEH; JEH 1

where the set H; = {j|x; > x;} is the set of indices of i largest elements of x, and g is
a monotone non-decreasing function with two properties:

1. g(i/n) = sti wj, i =0,...,n (of course g(0) = 0);
2. g is linear if all w; are equal.

Thus computation of WOWA involves a very similar procedure as that of OWA
(i.e., sorting components of x and then computing their weighted sum), but the
weights u; are defined by using both vectors w, p, a special monotone function g,
and depend on the components of x as well. One can see WOWA as an OWA function
with the weights u.

Of course, the weights u also depend on the generating function g. This function
can be chosen as a linear spline (i.e., a broken line interpolant), interpolating the
points (i/n, ng; w;) (in which case it automatically becomes a linear function if
these points are on a straight line), or as a monotone quadratic spline, as was suggested
in [20, 21], see also [1] where Schumaker’s quadratic spline algorithm was used,
which automatically satisfies the straight line condition when needed.

It turns out that WOWA belongs to a more general class of Choquet inte-
gral based aggregation functions [18]. It is a piecewise linear function whose
linear segments are defined on the simplicial partition of the unit cube [0, 1]":
i = {x € [0, 11"|x,(5) = Xp(+1)}, Where p is a permutation of the set {1, ..., n}.
Note that there are exactly n! possible permutations, the union of all .%; is [0, 1]",
and the intersection of the interiors of ;N .7 =0, i # j.

The next two sections introduce an alternative and generic construction to incor-
porate weights into any symmetric averaging function. In particular, it will work
for OWA and will not have a somewhat unclear issue of selecting the function g in
Torra’s WOWA.

4 Binary Tree Construction

Consider now a method of incorporating weights into a symmetric bivariate idempo-
tent function f, presented [9] and then extended in [2, 11]. To introduce the weights
we use the approach from [6], where each argument x; is replicated a suitable num-
ber of times. To be more precise, we consider an auxiliary vector of arguments
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X =(xg,...,X1,Xx2,...,X2), so that x; is taken k; times and x, is taken k, times,
so that ’2‘—} X wi, ]2‘—, A w,, and k; + k, = 2L. Here w; are the desired weights, and
L > 1 is a specified number of levels of the binary tree shown in Fig. 1. One way
of doing so is to take ky = [w2F + %J and k, = 2¢ — k;. The vector X needs to be
sorted in the increasing or decreasing order.

Next, let us build a binary tree presented in Fig. 1, where at each node a value is
produced by aggregating the values of two children nodes with the given bivariate
symmetric averaging function f (denoted by B on the plot and with weights equal to
%). We start from the leaves of the tree which contain the elements of the vector X.
In this example we took w; = % and w3 = % The value y at the root node will be
the desired output of the n-variate weighted function.

A straightforward binary tree traversal algorithm for doing so, which starts from
the vector X, is as follows:

Aggregation by Levels (ABL) Algorithm

1. Compute k; := [w2F + %J, ko :=2F —k;, and create the array

X :=(x,...,X1,X2,...,X) by taking k; copies of x; and k, copies of x,;
2. N :=2k
3. Repeat L times:
(a) N:=N/2;

(b) Fori:=1...N do X[i] :=f(X[2i — 1], X[2i]);
4. return X[1].

The algorithm is obviously terminating. The runtime of the ABL algorithm is
O(2%), which can make its use prohibitive even for moderate L. Fortunately an
efficient algorithm based on pruning the binary tree was presented in [2].

The pruning of the binary tree is done by using the idempotency of f, see Fig. 1,
right. Indeed no invocation of f is necessary if both of its arguments are equal. Below
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Fig. 1 Representation of a weighted arithmetic mean in a binary tree construction. The tree on the
right is pruned by using idempotency
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we present the pruned tree algorithm whose worst case complexity is O(L), which
makes it practically applicable for larger L.

The algorithm is recursive depth-first traversing of the binary tree. A branch is
pruned if it is clear that all its leaves have exactly the same value, and by idempotency
this is the value of the root node of that branch.

Pruned Tree Aggregation (PTA) Algorithm
function node(m, N, K, x)

1. If N[K] > 2™ then do:

(a) N[K]:=NI[K]—2";

() y:=x[K];

(c) fN[K]=0thenK :=K + 1;
(d) returny;

else
2. return f (node(m — 1, N, K, x), node(m — 1, N, K, x)).

function f_n(w, x, L)

1. create the array N := (k;, k») by using
ki := (w2 + 1], and ky := 28 — ky;

2. K:=1;

3. return node(L, N, K, x).

In this algorithm, the array N serves as a counter of how many copies of each
of x[K] remains. If there are more than 2" copies, they belong to a branch that can
be pruned, so the function node just returns x[K] and never visits the nodes of that
branch. If N[K] = 1 then the last remaining copy of x[K] is returned and the value
of K is incremented. Every time a branch whose leaves contain identical arguments
is encountered (which is detected by the counter N[K] > 2™), this branch is pruned.

As an example, consider the binary tree in Fig. 1. Here L = 3, k; = 5 and k, = 3.
In the first call to function node instruction passes to step 2 where node is called
recursively twice. In the first recursive call N[1] =5 > 2% at step 1, hence x; is
returned and N[1] is set to 1. In the second call to node the instruction goes to step
2, where node is called recursively twice. In the first of those calls the recursion
continues until m = 0, at which point x; is returned and K is incremented. In the
subsequent call to node x; is returned and then f (x;, x,) is computed and returned
(the bottom level in the pruned tree in Fig. 1, right). At this point N[2] becomes 2,
and in the subsequent call to node step 1 is executed, x; is returned and subsequently
aggregated in f(f (x;, x2), xo) (middle level of the tree in Fig. 1, right). That last
output is aggregated with x; at the top level of the tree, and the recursive algorithm
terminates, producing the output y = f(x1, £ (f (x1, x2), X2)).

To see the complexity of this algorithm note that f is never executed (nor the
corresponding node of the tree is visited) if its arguments are the same. There is
exactly one node at each level of the tree where the child nodes contain distinct
arguments, hence f is executed exactly L times. Also note that both N and K are
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input-output parameters, so that the two arguments of f at step 2 are different as N
and K change from one invocation of the function node to another, however the order
of execution of the calls to node does not matter as the lists of formal parameters are
identical.

The ABL and PTL algorithms produce identical outputs but differ in computa-
tional complexity. For this reason it may be convenient to formulate (or prove) the
results in terms of the complete tree processed by algorithm ABL.

Several useful properties of the binary tree construction were presented in [2]. In
particular, the weighted function f,, inherits many properties of the base aggregator f,
such as idempotency, monotonicity, continuity, convexity (concavity), homogeneity
and shift-invariance, due to preservation of these properties in function composition.
Furthermore, when the weights are given in a finite binary representation (as is always
the case in machine arithmetic), the sequence of the outputs of the ABL (and hence
PTA) algorithm with increasing L = 2, 3, ... converges to a weighted mean with the
specified weights, and in fact L needs not exceed the number of bits in the mantissa of
the weights w; to match these weights exactly. Finally, when f is a quasi-arithmetic
mean, f,, is a weighted quasi-arithmetic mean with the same generator.

Another contribution made in [2, 11] is the extension of the symmetric bivariate
means to weighted n-variate means by using essentially the same approach, i.e.,
by replicating the n inputs a suitable number of times and constructing a binary tree
with the desired numbed of levels L. The ABL and PTA algorithms in fact remain the
same, safe the definition of the array of multiplicities N which is now n-dimensional.

The big advantage of the binary tree construction is its universality and trans-
parency. It is applicable to any bivariate idempotent function f without modification,
and the role of the weights as the respective multiplicities of the arguments as argued
in [6] is very clear. The availability of a fast and uncomplicated algorithm for com-
puting the output makes this method immediately applicable.

However the binary tree construction is not suitable for introducing weights into
OWA functions, as here we already start with an n-variate function. The approach
presented in the next section is an adaptation of the binary tree approach to n-variate
OWA functions.

S Importance Weights in OWA Functions

Our goal here is to incorporate a vector p of non-negative weights (which add to one)
into a symmetric n-variate function, by replicating the arguments a suitable number
of times. As in the binary tree construction we build an n-ary tree with L levels,
as shown in Fig.2. As the base symmetric aggregator f we take an OWA function
OWA,, with specified weights w (although the origins of f are not important for the
algorithm).
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Fig.2 Representatlon of a welghted tri-variate function f in a ternary tree construction. The weights
are chosen as p = (2 77 27 27) and L = 3. The circled branches are pruned by the algorithm

Now, let us create an auxiliary vector X = (xy, ..., X, X2, ... x2, s Xy e
X,), so that x; is taken k; times, x, is taken k, times, and so on, and & oL~ D1, }’1‘—{ ~ py,

wand Dk = nt, where L > 11is a specified number of levels of the tree shown
in Fig.2. One way of doing so is to take k; = |p;n" + %J, i=1,...,n—1 and
kn:nL_kl _k2_"'_ n—1-

Pruned n-Tree Aggregation (PnTA) Algorithm
function node(n, m, N, K, x)

1. If N[K] > n™ then do:

(a) N[K]:=NI[K]—n";

(b) y = x[K;

(c) If N[K]=0thenK :=K + 1;
(d) returny;

else
2. fori:=1,...,ndo

z[i] := node(n,m — 1, N, K, x)
3. return f(z).

function f_n(n, x, w, p, L)

1. create the array N := (ki, kp, ..., k,) by using

p=Ipnt+ 1 i=1,...,n—1landk, :=nt —k — - —k,_1;
2. K:=1;
3. return node(n, L, N, K, x).
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The algorithm PnTA works in the same way as the PTA algorithm for binary trees.
The vector of counters N helps determine whether there are more than »™ identical
elements of the auxiliary array X, in which case they are the leaves of a branch of
the tree with m levels. This branch is pruned. The function f is executed only when
some of its arguments are distinct, and since the elements of X are ordered, there are
at most n — 1 such possibilities at each level of the tree, hence the complexity of the
algorithm is O((n — 1)L).

Note that the complexity is linear in terms of L, as that of the PTA algorithm,
which means that the dimension of the base aggregator f does not matter in this
respect. Of course, nominally the n-ary tree is larger than the binary tree, but since
we only track the multiplicities of the arguments, never creating the array X explicitly,
memorywise the complexity of the PnTA algorithm is the same as that of PTA.

We also reiterate that the vector X needs to be sorted, which is equivalent to sorting
the inputs x jointly with the multiplicities of the inputs N (i.e., using the components
of x as the key).

Let us list some useful properties of the function f, generated by the PnTA algo-
rithm.

Theorem 1 (The Inheritance Theorem) The weighted extension f, of a function f
by the PnTA algorithm preserves the intrinsic properties of the parent function f as
follows:

Jp idempotent since f is idempotent;

if f is monotone increasing then f, is monotone increasing;

if f is continuous then f,, is continuous;

if f is convex (resp. concave) then f,, is convex (resp. concave);

if f is homogeneous then f, is homogeneous;

iff is shift-invariant then f, is shift-invariant;

Jp has the same absorbing element as f (if any);

iff generates f, then a -transform of f generates the corresponding g-transform

of fp.

Proof The proof easily follows from the properties of composition of the respective
functions and idempotency of f. For the ¢-transform notice that at each inner level
of the tree the composition ¢! o ¢ = Id, while ¢ is applied to the leaves of the tree
and ¢! is applied to the root. O

o N A W~

Now we focus on the OWA functions as the base aggregator f. Here we can show
the following.

Theorem 2 Letf = OWA,,. Then the algorithm PnTA generates the weighted func-
tion f,, which is the discrete Choquet integral (and is hence homogeneous and shift-
invariant).

Proof The Choquet integral is a piecewise linear continuous aggregation function
where the linear pieces are joined together at the intersections of the canonical sim-
plices .#;, i.e., where two or more components of x are equal. Since OWA,, is
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continuous and piecewise linear, so is f,,, by the properties of function composition.
Now, let us show that the function f, is not differentiable only on the sets where some
of the components of the input vector x are equal, which will imply that the result is
the discrete Choquet integral. Indeed at each node in the n-ary tree there is a function
(OWA) not differentiable when some of inputs are equal. At the L-th level of the tree
these are the points where the components of x are equal.

At the level L — 1, the arguments of the OWA function are equal if and only if
the arguments of the child nodes are equal, because the smallest argument of the
left child node is no smaller than the largest argument of the right node (we recall
that X is sorted). Continuing this recursion, we end up with the root node where the
resulting function is not differentiable if and only if some of the arguments of the
nodes at the bottom level L are equal, which are exactly the components of x. Hence
Jp 18 a piecewise linear, continuous aggregation function, and the linear pieces are
joined together at the intersections of .}, so f, is the discrete Choquet integral. [J

As the special cases of Choquet integral we have the following results.

Theorem 3 Letf = OWA,,. Then the algorithm PnTA generates the weighted func-
tion f,, with the following properties:

1. for the weights w; = %, Jp is the weighted arithmetic mean with the weights p;

2. for the weights p; = %,f,, is OWA,;

3. whenf = OWA,, = min (or = max) and p; > 0 for all i, f, is also min (respec-

tively, max);

when f = OWA,, = median and n is odd, f, is the weighted median;

5. if OWA,, generates f,, then the dual OWAZ’, generates the dual f¢, and in par-
ticular an OWA with the reverse weights generates the respective weighted OWA
with the reverse weights.

R

Proof 1. In this case OWA,, is the arithmetic mean, and hence f), is the weighted
arithmetic mean with the respective weights.

2. Inthis case, each argument x; is repeated exactly n” times, hence the inputs to each
node of the n-ary tree (except the root node) are all equal, and by idempotency the
tree is pruned to just one level, and hence delivers the original OWA,, function.

3. The function at each node in the tree returns the minimum (maximum) of its
arguments, hence the result does not depend of the weights if they are strictly
positive. However, when the weights p; could be 0, the result is not true, as
the smallest (largest) component of x can be excluded from the calculation of
the minimum (maximum). Note that f, is not a weighted minimum or weighted
maximum functions, as those are the instances of the Sugeno and not Choquet
integral.

4. The weighted median can be written as the median of a vector with the components
repeated the relevant number of times, i.e., median(X) [4], p. 121. While in general
the median of medians of subsets of inputs is not the median of the whole set of
inputs, for an odd n at each level of the tree the median is the value of the central
child node, which in turn is the value of its central child node, and so on until
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the bottom level where we get the centralof X; see Fig.?2 for an illustration. This
statement does not work for an even n if we consider the lower (respectively,
upper) medians, because now we need to take the value of the right middle child
node at every level, but the lower median of X sorted in the decreasing order
corresponds to Xz /41, which happens to be the left child of its parent node.
This is clearly seen in the case of n = 2 where the lower median of the bivariate
function f is the minimum of its arguments, hence f,(x) = min(X) which clearly
does not always coincide with the median of X. For example, in the binary tree
in Fig. 1 median(X) = X5 = x| whereas f,(x1, x2) = Xz = x2.

5. Follows from the preservation of ¢-transform. (]

Theorem 4 Letf = OWA,, and let the weighting vector be decreasing (increasing).
Then the algorithm PnTA generates a Choquet integral with respect to a submodular
(supermodular) fuzzy measure.

Proof An OWA function with decreasing weights is convex (respectively concave for
increasing weights), and hence is a special case of the Choquet integral with respect
to a submodular (supermodular) fuzzy measure [3]. Since the convexity (concavity)
is preserved in the n-ary tree construction as per Theorem 1, the resulting weighted
function f, is also convex (concave), and hence it is a Choquet integral with respect
to a submodular (supermodular) fuzzy measure [3]. O

This result is useful when constructing weighted norms from OWA with decreas-
ing weights, see [3, 23].

On the technical size we note that we do not need to sort the arguments in each
OWA function in the n-ary tree, as the vector x is already sorted, hence only one
sort operation for the inputs is required. Another note is that when the weights p are
specified to m digits in base n, L = m levels of the n-ary tree is sufficient to match
these weighs exactly. For example if p are specified to 3 decimal places and n = 10,
we only need to take L = 3. Therefore to match the weights to machine precision
(e.g., 53 bits for data type double) n” need not exceed the largest 64-bit integer, and
hence the algorithm PnTA can be implemented with 64-bit data types. The source
code in C++ is presented in Fig. 3.

Finally by using Definition 8 we can introduce weights into generalized OWA
functions in the same was as for OWA functions, by using the n-ary tree construction.
This can be done in two ways: a) by using GenOW Ay, ¢ function as f, or b) by using
a p-transform of a weighted OWA with ¢ = g, that is, by applying g and g~! only to
the leaves and to the root node of the tree, relying on the preservation of ¢-transforms.
The second method is computationally more efficient as functions g and g~' need
not be used in the middle of the tree, where they cancel each other.

This way we also obtain the special cases of weighted OWG and weighted power
based generalized OWA functions.
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double OWA (int n, double x[],double wl[])
{ /* no sorting is needed when used in the tree x/
double z=0;
for(int i=0;i<n;i++) z+=x[i]rw[i];
return z;
}
double node (int n,double x[],long int N[],long int C,int & k,
double w[],double (*F) (int, double [],double[]),double* z)
{

/* recursive function in the n-ary tree processing
Parameters: x input vector, N vector of multiplicities of x
m current level of recursion counted from root node L to 0O
k input-output parameter, the index of x being processed x/

1f(N[k]==0) k++;

if(N[k]>= C) { /x we use idempotency to prune the tree x/
N[k] -= C;
1if(N[k]<=0) return x[k++]; else return x[k];

C /= n;

/* tree not pruned, process the children nodes */
for(int i=0;i<n;i++) z[i]=node(n,x,N,C,k,w,F,z+n);
return F(n,z,w);

}

double weightedf (double x[], double p[], double w[], int n,
double (*F) (int, double[],double[]), int L)

/ *

Function F is the symmetric base aggregator.

pl]l = array of weights of inputs x[],

w[] = array of weights for OWA, n = the dimension of x, p, w.
the weights must add to one and be non-negative.

L = number of binary tree levels. Run time = O[(n-1)L] */

long int t=0, C=1;

int k=0;

for (int i=0;i<L;i++) C*=n; /+ C=n"L */

sortpairs (x, x+n, p);

long int N[n];/* multiplicities of x based on the weightsx/

for (int i=0;i<n-1;i++) { N[i]=p[i]xC+1l./n; t+=N[i]; }
N[n-1]=C-t;
double z[n*L]; /* working memory =*/

return node (n,x,N,C,k,w,F,z);
}
/* example: calling the function =/
int n=4, L=4;

double x([4]={0.2,0.2,0.4,0.8};
double w([4]={0.1,0.2,0.3,0.4};
double p[4]={0.3,0.2,0.1,0.4};
double y=weightedf (x,p,w,n, &OWA,L) ;

Fig.3 A C++implementation of the pruned n-ary tree algorithm PnTA. The function sortpairs
(not shown) implements sorting of an array of pairs (x;, p;) in the order of decreasing x;
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6 Conclusions

The proposed method of introducing weights into n-ary symmetric functions has
several advantages. Firstly, it is a generic method universally applicable to any sym-
metric idempotent function, in particular to OWA functions. Secondly, the handling
of the weights is transparent and intuitive: the weights correspond to the multiplic-
ities of the arguments. Thirdly, many important properties of the base symmetric
aggregator are preserved in the n-ary tree construction, which is very useful as these
properties need to be verified only for the base aggregator. Finally, the pruned n-ary
tree algorithm delivers a numerically efficient way of calculating weighed averages,
among them the weighted OWA. This algorithm has complexity linear in n and the
number of levels of the tree L, and L is bounded by the desired accuracy of the weights.
We believe the n-ary tree algorithm constitutes a very competitive alternative to the
existing weighted OWA approaches.
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