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Preface

This volume is devoted to the 65th birthday of Dr. Boris Kovalerchuk. Dr.
Kovalerchuk’s results cover many research areas. Many of these areas are reflected
in this volume.

In this preface, I would like to emphasize his contributions to research areas
which are the closest to my own research: data processing under uncertainty,
especially fuzzy data processing, when uncertainty comes from the imprecision of
expert opinions.

Fuzzy research area: successes and challenges. Fuzzy techniques have many
successful practical applications, especially in intelligent control, where expert
knowledge—originally formulated in terms of imprecise (fuzzy) words from natural
language—is successfully translated into a computer-understandable form and then
used in automated decision making.

However, there are still many applications problems (and even whole application
areas) where, at present, we are not that successful in formalizing and using
imprecise expert knowledge. To be able to use this knowledge, we must overcome
several important challenges. In all these challenges, Dr. Kovalerchuk plays an
important role as a research leader.

First challenge: need to select appropriate techniques. The first challenge is that,
in contrast to (more traditional) probabilistic methods—which are based on solid
foundations—many fuzzy techniques are, by nature, heuristic.

There are usually many ways to translate imprecise expert knowledge into
precise terms, and the success of an application often depends on selecting the most
adequate translation. To be able to select such a translation, we need to have a
general description of all possible translations and ways to deal with them. This
activity is known as foundations of fuzzy techniques.

This is a very complex area of research, an area that requires deep knowledge of
mathematics, computer science, foundations and philosophy of science, and—since
the ultimate goal is applications—a good understanding of many application areas.
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Boris has all these skills, and he has used them successfully in his numerous
seminal papers on fuzzy foundations. His papers appeared as chapters in the
Springer book series “Studies in Fuzziness and Soft Computing” (see, e.g., [1, 2];
one of the first was his 1994 chapter [1] devoted to the difficult problem of opti-
mization of an uncertain (fuzzy) objective function under uncertain (fuzzy)
constraints.

Second challenge: need to combine fuzzy and probabilistic techniques. The
second major challenge is related to the fact that, in addition to subjective expert
knowledge, we also have measurement-based objective information about the
corresponding system, information usually formulated in probabilistic terms. To
solve the corresponding practical problems, we need to adequately combine fuzzy
and probabilistic uncertainty. Here, we face two problems:

• a foundational problem—which is the best way to combine these two types of
uncertainty?—and

• a communication problem, caused by the fact that the two communities are not
very familiar with each other’s research and, as a result, have misunderstandings
about the other research areas, misunderstandings that prevent successful
collaboration.

Boris is one of the main research leaders in solving both these problems.
He has published several seminal papers on selecting the best way of combining

these two types of knowledge; see, e.g., [3, 4]; I would like to specifically mention
his 2012 Springer chapter [2].

He has also done a great job of describing probability ideas to fuzzy community
and fuzzy ideas to probability researchers, in particular, by showing that—contrary
to the widely spread misunderstanding—fuzzy-related techniques do not violate the
main idea of probability, and moreover, many such fuzzy techniques can be
meaningfully reformulated (and explained) in probabilistic terms.

In particular, he has shown that many real-life applications of fuzzy techniques
can actually be reformulated in probabilistic terms—and that the combination of
such reformulated terms and traditional probabilistic techniques can enhance the
probabilistic approach. He has also shown that a seeming inconsistency between
fuzzy methods (based on t-norms) and probabilistic approach can be resolved
within a new formalism that Boris called Exact Complete Context Spaces (ECCS).
His series of publications starting with his 1994 paper [5], in which he showed that
exact complete context spaces link fuzzy logic and probability theory in a new
rigorous way. Specifically, he has shown how the use of ECCS can explain
numerous successes of fuzzy control in application; this was the main topic of his
1996 paper [6] that was welcomed by Lotfi Zadeh. This work had been expanded in
his other publications published in the proceedings of the IEEE World Congresses
on Computational Intelligence WCCI’2008–2012, International Conferences on
Information Processing and Management of Uncertainty in Knowledge-Based
Systems IPMU’2012–2014, World Congress of International Fuzzy Systems
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Association IFSA/NAFIPS’2013, and in several seminal Springer book chapters
published in 2012 and 2013; see also [7, 8, 9].

Third challenge: dynamic character of human reasoning. The third challenge is
that, in contrast to the objective knowledge, which, once established, remains
stable, subjective knowledge changes with time, it is dynamic: an expert may learn
new things and/or realize that some of his/her previous opinions were imprecise or
even incorrect. To make applications of expert knowledge more adequate, we need
to take into account the dynamic nature of human reasoning. This is a very difficult
task.

In solving this task, Boris was one of the pioneers. With Leonid Perlovsky and
Gregory Wheeler, he established a formal mechanism for modeling such dynamic
character, a mechanism that they called Dynamic Logic of Phenomena. This is an
approach to solve real-world tasks via a dynamic process of synchronous adapting
the task and the solution criteria when both are uncertain. Boris started this research
under the grant from the US National Research Council (NRC) when he was
working at the US Air Force Research laboratory in 2007–2008. His main results
are overviewed in his seminal 2012 paper published in a prestigious Journal of
Applied Non-Classical Logics [10].

Fourth challenge: dealing with (somewhat) inconsistent expert knowledge. The
fourth challenge is that, due to imprecision of expert reasoning, some of the expert
statements are, strictly speaking, contradictory to one another. It is desirable to be
able to deal with such seemingly inconsistent knowledge. The logic of such
inconsistent knowledge bases is known as paraconsistent logic. This a very active
and a very difficult area of research, so difficult that at present, it has are very few
applications to real-life situations, and most of these applications only deal with
“crisp” (non-fuzzy) expert statements.

In his pioneer 2006–2010 joint research with Germano Resconi, Boris developed
a theory of irrational (=inconsistent) agents, a theory that combined fuzzy logic,
probability theory, and paraconsistent logic into a general techniques for handling
both rational and irrational agents [11, 12, 13–20].

Fifth challenge: translating computer results into human-understandable
form. The fifth major challenge is related to the fact that, in contrast to fuzzy
control where often a decision needs to be made urgently and thus, has to be
automated, in many other application areas—e.g., in many cases of medical diag-
nostics—there is no such hurry. So, it is desirable to first show the resulting
computer-generated decision proposal to an expert, to make sure that the automated
system properly took all the experts’ knowledge into account. To be able to do that,
we face a problem which is reverse to the above-mentioned translation problem
underlying fuzzy techniques—a problem of how to better translate numerical results
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of the computer data processing into expert-understandable form. There are two
ways we humans get the information:

• in terms of words, and
• in terms of pictures.

Thus, we need to translate the computer results both into words and into pictures.
On both tasks, Boris did a pioneer work.

The question of translating computer results into words is handled in Boris’s
publications on interpretability of fuzzy operations. Not only he analyzed this
problem theoretically, he also proposed and conducted empirical studies that
established the scope of applicability of different “and”-operations (=t-norms) of
fuzzy logic. This work was published in Fuzzy Sets and Systems—the main journal
of our community—in Elsevier’s Journal of General Systems [21], in proceedings
of IEEE WCCI’2010–2012 [22], and in many other places (see, e.g., [23]).

In terms of visualization, Boris is a recognized expert in analytical and visual data
mining, and in visual analytics. He has published two related books: Data Mining in
Finance [24] and Visual and Spatial Analysis [25]. Most recently (2014) Boris pub-
lished a series of four conference papers (jointly with his colleague Vladimir Grishin)
on lossless visualization of multi-D data in 2-D; see, e.g., [26, 27].

This is an interesting new development, with a potential for a breakthrough in
the critical area of big data research. Boris introduced new concepts of collocated
paired coordinates and general line coordinates that dramatically expand the scope
of lossless multi-D data visualizations [1, 27, 28].

Need for applications. Finally, once all these challenges are resolved, it is
important to actively pursue new applications of the corresponding techniques.
Boris has many application papers, ranging:

• from applications to medicine, including breast cancer diagnostics [29, 30];
• to finance [24]
• to geospatial analysis—in a series of SPIE publications during the last 10 years;

see, e.g., [31–33], and in [34];
• to efficient applications of his new visualization techniques to World Hunger

data analysis and the Challenger disaster.

Dr. Kovalerchuk is a world-renowned researcher. All this research activity has
made Boris Kovalerchuk a world-renowned expert in systems and uncertainty
modeling.

For example, in 2012, he was invited to present a 3-h tutorial on Fuzzy Logic,
Probability, and Measurement for Computing with Words at the IEEE World
Congress on Computational Intelligence WCCI’2012.

Service to the research community. In addition to doing research, Boris is also
very active in the fuzzy research community. He regularly posts short tutorials and
opinions on the relation between possibility and probability to the Berkeley
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Initiative Soft Computing (BISC) mailing list, often at the explicit invitation of Dr.
Zadeh himself.

He also makes an important contribution to conferences. He chaired two
Computational Intelligence Conferences [35, 36]. In 2015, he serves as a technical
co-chair of the North American Fuzzy Information Processing Society (NAFIPS)
Conference to be held in Redmond, Washington (August 2015). At the IEEE
Symposium on Computational Intelligence for Security and Defense Applications,
CISDA (New York State, May 2015), he organized and mediated a panel of leading
experts from multiple organizations including DARPA on Current Challenges of
Computational Intelligence in Defense and Security.

Conclusion. Dr. Boris Kovalerchuk is an excellent well-recognized world-level
researcher in the area of fuzzy techniques and uncertainty modeling in general, he is
one of the leaders in this research area. We wish him happy birthday and many
many more interesting research results!

El Paso, Texas, USA Vladik Kreinovich
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MapReduce: From Elementary Circuits
to Cloud

Rǎzvan Andonie, Mihaela Maliţa, and Gheorghe M. Ştefan

Abstract We regard the MapReduce mechanism as a unifying principle in the
domain of computer science. Going back to the roots of AI and circuits, we show
that the MapReduce mechanism is consistent with the basic mechanisms acting at
all the levels, from circuits to Hadoop. At the circuit level, the elementary circuit is
the smallest and simplest MapReduce circuit—the elementary multiplexer. On the
structural and informational chain, starting from circuits and up to Big Data process-
ing, we have the same behavioral pattern: the MapReduce basic rule. For a unified
parallel computing perspective, we propose a novel starting point: Kleene’s partial
recursive functions model. In this model, the composition rule is a true MapReduce
mechanism. The functional forms, in the functional programming paradigm defined
by Backus, are also MapReduce type actions. We propose an abstract model for
parallel engines which embodies various forms of MapReduce. These engines are
represented as a hierarchy of recursive MapReduce modules. Finally, we claim that
the MapReduce paradigm is ubiquitous, at all computational levels.
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2 R. Andonie et al.

1 Introduction

MapReduce is a programming framework invented by engineers at Google [4] and
used to simplify data processing across massive data sets. Beside Googles’ imple-
mentation, a very popular MapReduce platform is Hadoop [16], used by companies
like Yahoo!, Facebook, and New York Times. Other MapReduce implementations
are Disco [5], MapReduce-MPI [6], and Phoenix [14].

In MapReduce, users specify a map function that processes a key/value pair to
generate a set of intermediate key/value pairs, and a reduce function that merges
all intermediate values associated with the same intermediate key. Computational
processing can occur on data stored either in a file system (unstructured) or within
a database (structured). MapReduce operates only at a higher level: the programmer
thinks in terms of functions of key and value pairs, and the data flow is implicit. The
two fundamental functions of a MapReduce query are1:

“Map” function: The master node takes the input, chops it up into smaller sub-
problems, and distributes those to worker nodes. A worker node may do this again in
turn, leading to a multi-level tree structure. The worker node processes that smaller
problem, and passes the answer back to its master node.

“Reduce” function: Themaster node then takes the answers to all the sub-problems
and combines them in a way to get the output—the answer to the problem it was
originally trying to solve.

Programs written in this functional style are automatically parallelized and exe-
cuted on a large cluster of commodity machines (e.g., on a computer cloud). The
run-time system takes care of the details of partitioning the input data, scheduling
the program’s execution across a set of machines, handling machine failures, and
managing the required inter-machine communication [4]. This allows programmers
to easily utilize the resources of a large distributed system.

Why is MapReduce so popular today? One simple reason would be that it comes
fromGoogle.Well, this is not enough, andwehave to look closer atwhat the problems
are with Big Data storage and analysis. Yes, we know, Big Data is here. It is difficult
to measure the total volume of data stored electronically. We can estimate that this
data is in the order of one disk drive for every person in the world [16]. The bad news
is that we are struggling to access fast Big Data:

• While the storage capacity of hard drives has increased massively over the years,
access speed has not kept up. On one typical drive from 1990 you could read all
the data from the full drive in about five minutes. Presently, it takes more than two
and a half hours to read all the data from a Tera byte drive. Access speed depends
on the transfer rate, which corresponds to a disk’s bandwidth.

• Seeking time improves more slowly than transfer rate (seeking time characterizes
the latency of a disk operation, i.e., the delay introduced by the rotation of the disk
to bring the required disk sector).

1http://www.mapreduce.org/what-is-mapreduce.php.
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The problem is that we expect to keep data access time constant (if not to reduce),
whereas the data volume is dramatically increasing. MapReduce solves this problem
by collocating data with computer code, so data access is fast since it is local. This
way, MapReduce tries to avoid the data access bottleneck. MapReduce is a good
answer to the execution time concern, being a linearly scalable model. If you also
double the size of the input data, a job will run twice as slow, whereas if you double
the size of the cluster, a job will run as fast as the original one.

Even if MapReduce looks revolutionary and Google has been granted a patent,
there are authors who consider that MapReduce is too similar to existing products.2

What is perhaps missing in this debate is the connection between the principles of
MapReduce and old results from functional and distributed computing. It may be
surprising to see how old ideas, put in a new framework (Big Data in this case), can
be rediscovered and made practical. Let us consider the following example.

Here are two of the most used functional forms written in Scheme/Lisp:

(define (myMap func list)

(cond ((null? list) ())

(#t (cons (func (car list))

(myMap func (cdr list))))

)

)

(define (myReduce binaryOp list)

(cond ((null? (cdr list)) (car list))

(#t (binaryOp (car list)

(myReduce binaryOp (cdr list))))

)

)

The first form maps the function func over a list of elements we call list.
It is a recursive definition which takes, by turn, each element of the list list as
argument for the function func. The selection is done using the Lisp function car,
which selects the first element from a list. The selected element is extracted from
the list using another Lisp function, cdr, which returns what remains from list
after removing its first element. The final result is provided recursively, step by step,
using the Lisp function cons, which builds the list of results attaching in front of
the shortening list of arguments the value of (func (car list)). The process
ends when the Lisp conditional function, cond, evaluates list to the empty list,
(). For example:

(myMapinc’(358))->(469)

The second form reduces the list list to an atom by repeated application of
the binary function binaryOp. It is also a recursive application which stops when

2http://www.dbms2.com/2010/02/11/google-MapReduce-patent/.

http://www.dbms2.com/2010/02/11/google-MapReduce-patent/
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list contains just one element. The result occurs, step by step, applying by turn the
binary operation binaryOp to the first element, (car(list)), and binaryOp
applied on the rest, (cdr(list)). For example:

(myReduce+’(358))->16

InMapReduce, the combination of these two forms is considered the fundamental
programming model for big and complex data processing. This observation gave us
the motivation for our work.

Actually, we claim more: MapReduce is a key concept, from elementary digital
circuits to the main tasks performed in the cloud, going through the (parallel) com-
puting model proposed by Stephen Kleene, the functional languages envisaged by
Alonzo Church (Lisp, the first to be considered), and the one-chip parallel architec-
tures.

We do not aim to question the originality of Google’s patent, or the practical
value of MapReduce and its implementations. But going back to the roots of AI
and circuits, we aim to show that the MapReduce mechanism is consistent with the
basic mechanisms acting at all the levels, starting from circuits to Hadoop. On the
structural and informational chain, starting from circuits to Big Data processing, we
recognize the sameMapReduce behavioral pattern. We discover a unifying principle
which guarantees a natural structuring process, instead of an ad hoc way of scaling
up data processing systems. David Patterson offered us a vivid image about what
is meant by an ad hoc solution, when, expressing serious concerns about one-chip
parallel computing, he wrote [10]:

The semiconductor industry threw the equivalent of a Hail Mary pass when it switched from
making microprocessors run faster to putting more of them on a chip – doing so without any
clear notion of how such devices would in general be programmed.

We start by looking at the roots of theMapReduce mechanisms in Kleene’s model
of computation, and describing the main theoretical models related to MapReduce.
We will refer both to the recursive function level and to the computer architecture
level (circuits and cloud computing). We discover the MapReduce mechanism as
a basic module in circuits. We present the abstract model of parallelism using five
particular forms of Kleene’s composition, and we define the corresponding generic
parallel computational engines. These engines will be represented as a hierarchy of
recursive MapReduce modules. At the highest level of abstraction, we analyze the
MapReducemechanism in the cloud computing context. In the Concluding Remarks,
we synthesize the results of our study.

2 Theoretical Models

Computation starts with mathematical models of computation. For sequential com-
putation, Turing’s model worked very well because of its simplicity and an almost
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direct correspondence with the first actual embodiments. Indeed, the distance from
Turing Machine to von Neumann’s abstract model is short. For parallel computa-
tion, we propose a novel starting point: Stephan Kleene’s partial recursive functions
model [7]. This model is directly supported by circuits and it supports the functional
programming style.

2.1 A Mathematical Model of Computation

Kleene’smodel consists of three basic functions (zero, increment, selection) and three
rules (composition, primitive recursivity, minimalization). In [8, 13], we proved that
primitive recursivity andminimalization are special forms of composition. Therefore,
only the composition rule should be considered.

Composition captures directly the process of computing a number of p + 1 func-
tions by:

f (x1, . . . , xn) = g(h1(x1, . . . , xn), . . . , h p(x1, . . . , xn))

where, at the first level, we have functions h1, . . . , h p and one p-variable reduction
function g. Function g (the reduction function) is sometimes implementable as a
(log p)-depth binary tree of p − 1 functions.

The circuit structure associated to the composition rule is presented in Fig. 1. At
the first level, functions hi (i = 1, 2 . . . , p) are processed in parallel. The reduc-
tion function is computed at the second level. In the general case, the input vari-
ables are sent to all the p cells processing functions hi , and the resulting vector
{h1(x1, . . . , xn), . . . , h p(x1, . . . , xn)} is reduced by g to a scalar.

The modules used in this representation can be implemented in various ways,
from circuits to programmable structures. The first level implements a synchronous
parallelism, while between the two levels there is a pipelined, diachronic parallelism.
In other words, the first level represents the map step and the second level the reduce
step.

Fig. 1 The physical
embodiment of the
composition rule. The map
step performs a synchronous
parallel computation, while
the reduce step is diachronic
parallel with the map step

h1(x) h2(x) hp(x)

g(h1(x), . . . , hp(x))

f(x1, . . . , xn)

x = {x1, . . . , xn}
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Thus, the mathematical model of computation proposed by Kleene in 1936 is
an intrinsic model for parallel computing, and we consider it the starting point for
defining the MapReduce parallel computation.

2.2 Circuits

Behind Kleene’s model, we have the circuit level. Circuits can be used to implement
any hi or g function. Using Kleene’s definition, the three basic functions (zero,
increment, projection) can be reduced to one, the elementary selection:

s(i, x1, x0) = xi

i ∈ {0, 1}, because any Boolean function f : {0, 1}n → {0, 1} can be recursively
defined by the Boolean expression:

f (xn−1, . . . , x0) = xn−1 · G + x ′
n−1 · H

where:
G = g(xn−2, . . . , x0) = f (1, xn−2, . . . , x0)

H = h(xn−2, . . . , x0) = f (0, xn−2, . . . , x0)

Therefore, any circuit can be seen as a tree of basic circuits corresponding to the
elementary if-then-else control structure. Indeed, if

out = if (sel = 1) then in1 else in0

is performed for the one bit variables out, sel, in1, in0, then the associated circuit is
the elementary multiplexer expressed in Boolean form as:

O = S · I1 + S′ · I0

For I0 = 1 and I1 = 0, the circuit performs the NOT function, i.e., O = S′. For
I0 = 0, the circuit performs the AND function, i.e., O = S · I1. Thus, we are back
to Boolean algebra.

Figure2a displays the elementary multiplexer. In the world of digital systems, this
is the simplest and smallest form of MapReduce.

If we connect the output of this multiplexer to one of the selected inputs, we
obtain the basic memory circuit. If O = I0 (see Fig. 2b) and the clock (applied on
the selection input) switches from 1 to 0 the value applied on the input I1 is latched
into the circuit, i.e., it is stored, maintained to the output of the circuit as long as the
clock stays on 0. In a complementary configuration, if O = I1, the input I0 is latched
when the clock switches from 0 to 1.
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Fig. 2 a The elementary
multiplexer: the first level of
ANDs is the map step, while
the OR circuit makes the
reduction. b The elementary
storage element: the loop
closed over the elementary
multiplexer provides the
1-bit clocked latch S

I1

I0

clock

D

QO

(a) (b)

All digital circuits, from the simplest to themost complex programmable systems,
are build on the MapReduce elementary structure formally described as an if-then-
else. Hence, the basic “brick” used in the circuit domain is a MapReduce circuit.

2.3 Programming Style

The lambda calculus was introduced by Church [2] as part of an investigation into
the foundations of mathematics. Together with Kleene’s partial recursive function
model, it has significantly contributed to the development of the Lisp programming
language. In our opinion, the most important contribution for the extension of func-
tional programming to parallel systems was provided by Backus [1], much later: the
functional forms.

Functional forms are based on functions which map objects into objects, where
an object can be [1]:

• an atom, x ; special atoms are: T (true), F (false), φ (empty sequence)
• a sequence of objects, 〈x1, . . . , x p〉, where xi are atoms or sequences
• an undefined object ⊥

The set of functions contains:

• primitive functions which manage:

– atoms, using functions defined on constant length sequences of atoms, returning
constant length sequence of atoms

– p-length sequences, where p is the number of computational cells

• functional forms for:

– expanding to sequences the functions defined on atoms
– defining new functions

• definitions—the programming tool used for developing applications.

A functional form is made of functions which are applied to objects. They are
used to define complex functions starting from the set of primitive functions.
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We are interested in the following functional forms:

• Apply to all: the same function is applied to all elements of the sequence.

α f : x ≡ (x = 〈x1, . . . , x p〉) → 〈 f : x1, . . . , f : x p〉

• Insert: the function f has as argument a sequence of objects and returns an object.
Its recursive form is:

/ f : x ≡ ((x = 〈x1, . . . , x p〉)& (p ≥ 2)) → f : 〈x1, / f : 〈x2, . . . , x p〉〉

The resulting action looks like a sequential process executed in O(p) cycles, but
it can be executed as a reduction function in O(log p) steps.

• Construction: the same argument is used by a sequence of functions.

[ f1, . . . , fn] : x ≡ 〈 f1 : x, . . . , fn : x〉

• Threaded construction: is a special case of construction, when fi = gi ◦ i

θ [ f1, . . . , f p] : x ≡ (x = 〈x1, . . . , x p〉) → 〈g1 : x1, . . . , gp : x p〉

where: gi : xi represents an independent thread.
• Composition: a pile of functions is applied to a stream of objects. By definition:

( fq ◦ fq−1 ◦ . . . ◦ f1) : x ≡ fq : ( fq−1 : ( fq−2 : (. . . : ( f1 : x) . . .)))

This form is a pipelined computation if a stream of objects, |xn, . . . , x1|, is inserted
into a pipe of cells, starting with x1. In this case, each two successive cells will
perform:

fi ( fi−1 : ( fi−2 : (. . . : ( f1 : x j ) . . .)))

fi+1( fi : ( fi−1 : (. . . : ( f1 : x j−1) . . .)))

The functional forms apply to all, construction, and threaded
construction are obviously map-type functions. The function composition
results by serially connecting map-type functions. The function insert is a reduc-
tion function. Consequently, Backus’s formalism for functional form uses predomi-
nantly MapReduce mechanisms.

3 MapReduce Architectures

In this section, we generate abstract models for computing engines and recursive
structures, especially for solving Big Data problems. We start our construction from
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Kleene’s parallel computation model and from Backus’ functional forms. We also
look at the MapReduce paradigm in the context of cloud computing.

3.1 Abstract Model for Parallel Engines

The computational model defined by Turing was followed in the mid 1940s by the
von Neumann [15] and Harvard [3] architectures. Kleene’s formalism is also an
abstract computational model [7]. Inspired by Kleene’s model, in a previous work
[9], we have generated five particular composition forms which correspond to the
main abstract parallel engines:

1. Data-parallel
If we consider hi (x1, . . . , x p) = h(xi ) and g(y1, . . . , yp) = {y1, . . . , yp}, then

f (x1, . . . , x p) = {h(x1), . . . , h(x p)}

where xi = {xi1, . . . , xim} are data sequences. This composition formcorresponds
to Backus’ apply to all functional form.

2. Reduction-parallel
If hi (xi ) = xi , then the general form becomes:

f (x1, . . . , x p) = g(x1, . . . , x p)

which operates a reduction from vector(s) to scalar(s). This corresponds to
Backus’ insert functional form.

3. Speculative-parallel
If the functionally different cells – hi – receive the same input variable, while the
reduction performs the identity function, g(y1, . . . , yp) = {y1, . . . , yp}, then,

f (x) = {h1(x), . . . , h p(x)}

where: x is a sequence of data. This corresponds to Backus’ construction
functional form.

4. Time-parallel
For the special case when p = 1, f (x) = g(h(x)). Here we have no synchronous
parallelism. Only the pipelined, diachronic parallelism is possible, if in each
“cycle” we have a new input value. Many applications of type f (x) = g(h(x))

result in the m-level “pipe” of functions:

f (x) = fm( fm−1(. . . f1(x) . . .))

where x is an element in the stream of data. This corresponds to the
composition functional form.
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5. Thread-parallel
If hi (x1, . . . , xn) = hi (xi ) and g(h1, . . . , h p) = {h1, . . . , h p}, then the general
composition form reduces to

f (x1, . . . , x p) = {h1(x1), . . . , h p(x p)}

where xi is a data sequence. Each hi (xi ) represents a distinct and independent
thread. This corresponds to the threaded construction functional form.

There is a synergic relation between the five abstract parallel engines resulting
from Kleene’s model and the functional forms proposed by Backus:

Kleene’s parallelism ↔
data-parallel ↔

reduction-parallel ↔
speculative-parallel ↔

time-parallel ↔
thread-parallel ↔

Backus’ functional forms
apply to all
insert
construction
composition
threaded construction

The MapReduce oriented functional forms find their correspondents in the par-
ticular forms of Kleene’s MapReduce shaped rule.

3.2 Recursive Structures

The above MapReduce generic parallel engines can be integrated as a recursive
hierarchy of MapReduce cells (see Fig. 3), where cell consists of engine&memory.
At the lowest level3 in the hierarchy, for example, we can have:

• engine: consists of theMAP array of many cells and the REDUCTION network
loop coupled through CONTROL, with:

– engine: an execution/processing unit of 8–64 bits
– memory: a 2–8 KB of static RAM
– CONTROL: a 32-bit sequential processor

• memory: is MEMORY, a 1–4 GB of dynamic RAM (sometimes expanded in a
1–4 TB hard disc)

The above described cell, let us call it cell1, can be used to build recursively the next
level, cell2, with the same organization but based on cell1 cells. And so on.

In the MAP module, the cellular structure has the simplest interconnections net-
work: a linearly connected network. Each cell contains a local engine and a local
memory. The REDUCTION module is a log-depth network. At the lowest level,
the log-depth reduction network contains simple circuits (adders, comparators, logic

3The lowest level of the generic engine was implemented as BA1024 SoC for HDTV applications
[12].
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engine memory engine memory

cell cell

CONTROL MEMORY
MAP

REDUCTION

engine memory

cell

Fig. 3 The recursive definition of the hierarchy of generic MapReduce engines. At each level of
this hierarchy, the MAP stage is a linear array of cells, while the REDUCTION stage is a log-depth
network of circuits

units), while at the highest level, the network is used almost exclusively for commu-
nication.

The MapReduce communication pattern allows an easy coherence maintenance
of theMEMORY content. The local memory in each celli provides the premises for a
very high global bandwidth between the storage support and the processing support.

The recursiveness of the structure allows the uniformity of the associated pro-
gramming environment. Let it be of the form suggested in the first section, where a
Lisp-like functional language was used to introduce the map and reduction opera-
tions.

3.3 MapReduce and the Cloud

MapReduce programs prove to be very useful for processing big data in parallel. This
is performed by dividing the workload across a large number of processing nodes
which are not allowed to share data arbitrarily. This feature is one of the explanation
of the scalability of aMapReduce application: the communication overhead required
to keep the data on the nodes synchronized at all times would prevent the system
from performing efficiently on a large scale. In other words, all data elements in
MapReduce are immutable, meaning that they cannot be updated. There are several
benefits of MapReduce over conventional data processing techniques:

• Themodel is easy to use, even for programmerswithout experiencewith distributed
systems, since it hides the implementation details.
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• A large variety of problems are easily expressible as MapReduce computations.
For example,MapReduce is used for the generation of data forGoogle’s production
web search service, for sorting, for data mining, for machine learning, and many
other systems.

• MapReduce enables scaling of applications across large clusters of machines com-
prising thousands of nodes, with fault-tolerance built-in for ultra-fast performance.

The popularity of MapReduce is deeply connected to a very “hot” distributed
computer architecture: the cloud. MapReduce usually runs on computer clouds and
is highly scalable: a typical MapReduce computation processes many Tera bytes of
data on thousands of machines. Actually, MapReduce has become the weapon of
choice for data-intensive analyses in the cloud and in commodity clusters due to its
excellent fault tolerance features, scalability and the ease of use.

In the simplest terms, cloud computing means storing and accessing data and
programs over the Internet instead of your computer’s hard drive. Cloud computing
is the next stage in the Internet’s evolution, providing the means through which
everything fromcomputing power to computing infrastructure, applications, business
processes to personal collaboration can be delivered to you as a service wherever and
whenever you need. Cloud computing groups together large numbers of commodity
hardware servers and other resources to offer their combined capacity on an on-
demand, pay-as-you-go basis. The users of a cloud have no idea where the servers
are physically located and can start working with their applications.

Like with MapReduce, the primary concept behind cloud computing is not a new
idea. John McCarthy, in the 1960s, imagined that processing amenities is going to
be supplied to everyone just like a utility (see [11]). The cloud computing concept
is motivated by latest data demands as the data stored on web is increasing drasti-
cally in recent times. Combined with MapReduce, the cloud architecture attempts to
minimize (and make transparent) the communication bottlenecks between cells and
between cells and the system memory.

4 Concluding Remarks

Almost everyone has heard of Google’s MapReduce framework which executes on
a computer cloud, but few have ever hacked around with the general idea of map and
reduce. In our paper, we looked at the fundamental structure of the map and reduce
operations from the perspective of recursive functions and computability. This took
us back to the foundations of AI and digital circuits.

We can synthesize now the results of our study:

In MapReduce, all is composition We have identified the MapReduce chain with
six meaningful stages:

• Circuits—for both, combinational and sequential circuits, the basic “brick” is the
elementary multiplexer: one of the simplest and smallest MapReduce structure.
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• Mathematical model—the composition rule in Kleene’s model (the only indepen-
dent one) is MapReduce.

• Programming style—the functional forms in Backus’s approach are MapReduce-
type forms.

• Abstract machine model—the five forms of parallelism (data-, reduction-,
speculative-, time-, threaded-parallelism) are synergic with the functional forms
of Backus and follow the MapReduce mechanism.

• Hierarchical generic parallel structures—represent a direct recursive embodiment
of the MapReduce mechanism.

• Cloud computing—is an optimal distributed architecture for MapReduce opera-
tions.

MapReduce is the only true parallel paradigm According to our study, this is the
only parallel mechanism which solves data synchronization overhead using explicit
local buffer management. It is true, MapReduce uses an embarrassingly simple par-
allelization (a problem that is obviously decomposable into many identical, but sep-
arate subtasks is called embarrassingly parallel) and not all problems can be easily
parallelized this way.

The programming languagematches the structure The composition, embodied in
the MapReduce mechanism, generates both the language and the physical structure.
It is more “natural” than in the Turing triggered approach, where the language and the
engine emerge in two distinct stages: first the engine and then the idea of language
as a symbolic entity.

The match between language & structure is maximal at the lowest level in
the recursive hierarchy: the one-chip parallel engine level For this reason the
power and area performances are in the order of hundred GOPS/Watt4 and tens
GOPS/mm2 [12].

We claim that theMapReduce chainworks as a spinal column in computer science,
providing the ultimate coherence for this apparently so heterogeneous domain. We
have to observe that the standards for connecting the computer systems and the
software needed to make cloud computing work are not fully defined at present time,
leaving many companies to define their own cloud computing technologies. Our
approach may be useful in this direction.
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On the Helmholtz Principle for Data Mining

Alexander Balinsky, Helen Balinsky, and Steven Simske

Abstract Keyword and feature extraction is a fundamental problem in text data
mining and document processing. A majority of document processing applications
directly depend on the quality and speed of keyword extraction algorithms. In this
article, an approach, introduced in [1], to rapid change detection in data streams and
documents is developed and analysed. It is based on ideas from image processing and
especially on the Helmholtz Principle from the Gestalt Theory of human perception.
Applied to the problem of keywords extraction, it delivers fast and effective tools to
identify meaningful keywords using parameter-free methods. We also define a level
of meaningfulness of the keywords which can be used to modify the set of keywords
depending on application needs.

1 Introduction

Automatic keyword and feature extraction is a fundamental problem in text data min-
ing, where a majority of document processing applications directly depend on the
quality and speed of keyword extraction algorithms. The applications ranging from
automatic document classification to information visualization, from automatic fil-
tering to security policy enforcement—all rely on automatically extracted keywords
[2]. Keywords are used as basic documents representations and features to perform
higher level of analysis. By analogywith low-level image processing,we can consider
keywords extraction as low-level document processing.
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Fig. 1 The Helmholtz principle in human perception

The increasing number of people contributing to the Internet and enterprise
intranets, either deliberately or incidentally, has created a huge set of documents
that still do not have keywords assigned. Unfortunately, manual assignment of high
quality keywords is expensive and time-consuming. This is whymany algorithms for
automatic keywords extraction have been recently proposed. Since there is no pre-
cise scientific definition of the meaning of a document, different algorithms produce
different outputs.

The main purpose of this article is to develop novel data mining algorithms based
on the Gestalt theory in Computer Vision and human perception. More precisely,
we are going to develop Helmholtz principle for mining textual, unstructured or
sequential data.

Let us first briefly explain the Helmholtz principle in human perception. Accord-
ing to a basic principle of perception due to Helmholtz [3], an observed geometric
structure is perceptually meaningful if it has a very low probability to appear in
noise. As a common sense statement, this means that “events that could not happen
by chance are immediately perceived”. For example, a group of seven aligned dots
exists in both images in Fig. 1, but it can hardly be seen on the left-hand side image.
Indeed, such a configuration is not exceptional in view of the total number of dots.
In the right-hand image we immediately perceive the alignment as a large deviation
from randomness that would be unlikely to happen by chance.

In the context of data mining, we shall define the Helmholtz principle as the
statement that meaningful features and interesting events appear as large deviations
from randomness. In the cases of textual, sequential or unstructured data we derive
qualitative measure for such deviations.

Under unstructured data we understand data without an explicit data model, but
with some internal geometrical structure. For example, sets of dots in Fig. 1 are not
created by a precise data model, but still have important geometrical structures: near-
est neighbours, alignments, concentrations in some regions, etc. A good example is
textual data where there are natural structures like files, topics, paragraphs, docu-
ments etc. Sequential and temporal data also can be divided into natural blocks like
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days, months or blocks of several sequential events. In this article, we will assume
that data comes packaged into objects, i.e. files, documents or containers.We can also
have several layers of such structures; for example, in 20Newsgroups all words are
packed into 20 containers (news groups), and each group is divided into individual
news. We would like to detect some unusual behaviour in these data and automat-
ically extract some meaningful events and features. To make our explanation more
precise, we shall consider mostly textual data, but our analysis is also applicable to
any data that generated by some basic set (words, dots, pair of words, measurements,
etc.) and divided into some set of containers (documents, regions, etc.), or classified.

The currentwork introduces a newapproach to the problemof automatic keywords
extraction based on the following intuitive ideas:

• keywords should be responsible for topics in a data stream or corpus of documents,
i.e. keywords should be defined not just by documents themselves, but also by the
context of other documents in which they lie;

• topics are signalled by “unusual activity”, i.e. a new topic emerges with some
features rising sharply in their frequency.

For example, in a bookonC++programming language a sharp rise in the frequency
of the words “file”, “stream”, “pointer”, “fopen” and “fclose” could be indicative of
the book chapter on “File I/O”.

These intuitive ideas have been a source for almost all algorithms in Information
Retrieval. One example is the familiar TF-IDFmethod for representing documents [4,
5].Despite beingoneof themost successful andwell-tested techniques in Information
Retrieval, TF-IDF has its origin in heuristics and it does not have a convincing
theoretical basis [5].

Rapid change detection is a very active and important area of research. A seminal
paper by Jon Kleinberg [6] develops a formal approach for modelling “bursts” using
an infinite-state automation. In [6] bursts appear naturally as state transitions.

The current work proposes to model the above mentioned unusual activity by
analysis basedon theGestalt theory inComputerVision (humanperception). The idea
of the importance of “sharp changes” is very natural in image processing,where edges
are responsible for rapid changes and the information content of images. However,
not all local sharp changes correspond to edges, as some can be generated by noise. To
represent meaningful objects, rapid changes have to appear in some coherent way.
In Computer Vision, the Gestalt Theory addresses how local variations combined
together to create perceived objects and shapes.

As mention in [7], the Gestalt Theory is a single substantial scientific attempt to
develop principles of visual reconstruction. Gestalt is a German word translatable as
“whole”, “form”, “configuration” or “shape”. The first rigorous approach to quantify
basic principles ofComputerVision is presented in [7]. In the next section,wedevelop
a similar analysis for the problem of automatic keywords extraction.

The paper is organized as follows. In Sect. 2 we present some results from [1]
and further analyse the Helmholtz Principle in the context of document processing
and derive qualitative measures of the meaningfulness of words. In Sect. 3 numerical
results for State of the Union Addresses from 1790 till 2009 (data set from [8])
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are presented and compared with results from [6, Sect. 4]. We also present some
preliminary numerical results for the 20Newsgroups data set [9]. Conclusions and
future work are discussed in the Sect. 4.

2 The Helmholtz Principle and Meaningful Events

We have defined Helmholtz principle as the statement that meaningful features and
interesting events appear as large deviations from randomness. Let us now develop
a more rigorous approach to this intuitive statement.

First of all, it is definitely not enough to say that interesting structures are those
that have low probability. Let us illustrate it by the following example. Suppose,
one unbiased coin is being tossed 100 times in succession, then any 100-sequence
of heads (ones) and tails (zeros) can be generated with the same equal probability
(1/2)100. Whilst both sequences

s1 = 10101 11010 01001 . . . 00111 01000 10010

s2 = 111111111 . . . 111111
︸ ︷︷ ︸

50 times

000000000 . . . 000000
︸ ︷︷ ︸

50 times

are generated with the same probability, the second output is definitely not expected
for an unbiased coin. Thus, low probability of an event does not really indicates its
deviation from randomness.

To explain why the second output s2 is unexpected we should explain what an
expected output should be. To do this some global observations (random variables)
on the generated sequences are to be considered. This is similar to statistical physics
where some macro parameters are observed, but not a particular configuration. For
example, let μ be a random variable defined as the difference between number of
heads in the first and last 50 flips. It is no surprise that the expected value of this
random variable (its mean) is equal to zero, which is with high level of accuracy
true for s1. However, for sequence s2 with 50 heads followed by 50 tails this value is
equal to 50 which is very different from the expected value of zero.

Another example can be given by the famous ‘Birthday Paradox’. Let us look
at a class of 30 students and let us assume that their birthdays are independent and
uniformly distributed over the 365 days of the year. We are interested in events that
some students have their birthday on a same day. Then the natural random variables
will be Cn, 1 ≤ n ≤ 30, the number of n-tuples of students in the class having the
same birthday. It is not difficult to see that the expectation of the number of pairs
of students having the same birthday in a class of 30 is E(C2) ≈ 1.192. Similar,
E(C3) ≈ 0.03047 and E(C4) ≈ 5.6 × 10−4. This means that ‘on the average’ we
can expect to see 1.192 pairs of students with the same birthday in each class. So,
if we have found that two students have the same birthday we should not really be
surprised. But having tree or even four students with the same birthday would be
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unusual. If we look in a class with 10 students, then E(C2) ≈ 0.1232. This means
that having two students with the same birthday in a class of 10 should be considered
as unexpected event.

More generally, let Ω be a probability space of all possible outputs. Formally,
an output ω ∈ Ω is defined as unexpected with respect to some observation μ, if
the value μ(ω) is very far from expectation E(μ) of the random variable μ, i.e. the
bigger the difference |μ(ω) − E(μ)| is, the more unexpected outcome ω is. From
Markov’s inequalities for random variables it can be shown that such outputs ω are
indeed very unusual events.

The very important question in such setup is the question of how to select appro-
priate random variables for a given data. The answer can be given by standard math-
ematical and statistical physics approach. Any structure can be described by its
symmetry group. For example, if we have completely unstructured data, then any
permutation of the data is possible. But if we want to preserve a structure, then we
can do only transformations that preserve the structure. For example, if we have set
of documents, then we can not move words between documents, but can reshuffle
words inside each documents. In such a case, the class of suitable random variables
are functions which are invariant under the group of symmetry.

2.1 Counting Functions

Let us return to the text data mining. Since we defined keywords as words that
correspond with a sharp rise in frequency, then our natural measurements should be
counting functions of words in documents or parts of document. To simplify our
description let us first derive the formulas for expected values in the simple and ideal
situation of N documents or containers of the same length, where the length of a
document is the number of words in the document.

Suppose we are given a set of N documents (or containers) D1, . . . ,DN of the
same length. Let w be some word (or some observation) that present inside one
or more of these N documents. Assume that the word w appear K times in all N
documents and let us collect all of them into one set Sw = {w1, w2, . . . , wK}.

Now we would like to answer the following question: If the word w appears m
times in some document, is this an expected or unexpected event? For example, the
word “the” usually has a high frequency, but this is not unexpected. From other hand,
in a chapter on how to use definite and indefinite articles in any English grammar
book, the word “the” usually has much higher frequency and should be detected as
unexpected.

Let us denote by Cm a random variable that counts how many times anm-tuple of
the elements of Sw appears in the same document. Now we would like to calculate
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the expected value of the random variable Cm under an assumption that elements
from Sw are randomly and independently placed into N containers.

For m different indexes i1, i2, . . . , im between 1 and K , i.e. 1 ≤ i1 < i2 < . . . <

im ≤ K , let us introduce a random variable χi1,i2,...,im :

{

1 if wi1 , . . . , wim are in the same document,
0 otherwise.

Then by definition of the function Cm we can see that

Cm =
∑

1≤i1<i2<...<im≤K

χi1,i2,...,im ,

and that the expected value E(Cm) is sum of expected values of all χi1,i2,...,im :

E(Cm) =
∑

1≤i1<i2<...<im≤K

E(χi1,i2,...,im).

Since χi1,i2,...,im has only values zero and one, the expected value E(χi1,i2,...,im) is
equal to the probability that all wi1 , . . . , wim belong to the same document, i.e.

E(χi1,i2,...,im) = 1

Nm−1
.

From the identities above we can see that

E(Cm) =
(

K

m

)

· 1

Nm−1
, (1)

where
(K
m

) = K !
m!(K−m)! is a binomial coefficient.

Now we are ready to answer the previous question:
If in some document the word w appears m times and E(Cm) < 1, then this is an
unexpected event.

Suppose that the word w appear m or more times in each of several documents.
Is this an expected or or unexpected event? To answer this question, let us intro-
duce another random variable Im that counts number of documents with m or more
appearances of the word w. It should be stressed that despite some similarity, the
random variables Cm and Im are quite different. For example, Cm can be very large,
but Im is always less or equal N . To calculate the expected value E(Im) of Im under
an assumption that elements from Sw are randomly and independently placed into N
containers let as introduce a random variable Im,i, 1 ≤ i ≤ N with

Im,i =
{

1 if Di contains w at least m times,
0 otherwise.
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Then by definition

Im =
N

∑

i=1

Im,i.

Since Im,i has only values zero and one, the expected value E(Im,i) is equal to the
probability that at least m elements of the set Sw belong to the document Di, i.e.

E(Im,i) =
K

∑

j=m

(

K

j

)(

1

N

)j (

1 − 1

N

)K−j

.

From the last two identities we have

E(Im) = N ×
K

∑

j=m

(

K

j

) (

1

N

)j (

1 − 1

N

)K−j

. (2)

We can rewrite (2) as
E(Im) = N × B(m,K, p),

where B(m,K, p) := ∑K
j=m

(K
j

)

pj(1 − p)K−j is the tail of binomial distribution and
p = 1/N .

Now, if we have several documents with m or more appearances of the word w

and E(Im) < 1, then this is an unexpected event.
Following [7], we will define E(Cm) from (1) as the number of false alarms of a

m-tuple of the word w and will use notation NFAT (m,K,N) for the right hand side
of (1). The NFAT of an m-tuple of the word w is the expected number of times such
an m-tuple could have arisen just by chance. Similar, we will define E(Im) from (2)
as the number of false alarms of documents with m or more appearances of the word
w, and us notation NFAD(m,K,N) for the right hand side of (2). The NFAD of an
the word w is the expected number of documents with m or more appearances of the
word w that could have arisen just by chance.

2.2 Dictionary of Meaningful Words

Let us now describe how to create a dictionary of meaningful words for our set of
documents. We will present algorithms for NFAT . The similar construction is also
applicable to NFAD.

If we observe that the word w appears m times in the same document, then we
define this word as a meaningful word if and only if its NFAT is smaller than 1. In
other words, if the event of appearingm times has already happened, but the expected
number is less than one, we have a meaningful event. The set of all meaningful words
in the corpus of documents D1, . . . ,DN will be defined as a set of keywords.
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Let us now summarize how to generate the set of keywords KW (D1, . . . ,DN ) of
a corpus of N documents D1, . . . ,DN of the same or approximately same length:

For all words w from D1, . . . ,DN

1. Count the number of times K the word w appears in D1, . . . ,DN .
2. For i from 1 to N

(a) count the number of times mi the word w appears in the document Di;
(b) if mi ≥ 1 and

NFAT (mi,K,N) < 1, (3)

then add w to the set KW (D1, . . . ,DN ) and mark w as a meaningful word
for Di.

If the NFAT is less than ε we say that w is ε-meaningful. We define a set of ε-
keywords as a set of all words withNFAT < ε, ε < 1. Smaller ε corresponds to more
important words.

In real life examples we can not always have a corpus ofN documentsD1, . . . ,DN

of the same length. Let li denote the length of the document Di. We have three
strategies for creating a set of keywords in such a case:

• Subdivide the set D1, . . . ,DN into several subsets of approximately equal size
documents. Perform analysis above for each subset separately.

• “Scale” each document to common length l of the smallest document. More pre-
cisely, for any word w we calculate K as K = ∑N

i=1[mi/l], where [x] denotes an
integer part of a number x and mi counts the number of appearances of the word
w in a documentDi. For each documentDi we calculate the NFAT with this K and
the new mi ← [mi/l]. All words with NFAT < 1 comprise a set of keywords.

• We can “glue” all documents D1, . . . ,DN into one big document and perform
analysis for one document as will be described below.

In a case of one document or data stream we can divide it into the sequence of
disjoint and equal size blocks and perform analysis like for the documents of equal
size. Since such a subdivision can cut topics and is not shift invariant, the better
way is to work with a “moving window”. More precisely, suppose we are given a
document D of the size L and B is a block size. We define N as [L/B]. For any word
w from D and any windows of consecutive B words let m count number of w in
this windows and K count number of w in D. If NFAT < 1, then we add w to a set
of keywords and say that w is meaningful in these windows. In the case of one big
document that has been subdivided into sub-documents or sections, the size of such
parts are natural selection for the size of windows.

If we want to create a set of ε-keywords for one document or for documents of
different size we should replace the inequalityNFAT < 1 by an inequalityNFAT < ε.
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2.3 Estimating of the Number of False Alarms

In real examples calculating NFAT (m,K,N) and NFAD(m,K,N) can be tricky and
is not a trivial task. Numbers m,K and N can be very large and NFAT or NFAD can
be exponentially large or small. Even relatively small changes inm can results in big
fluctuations of NFAT and NFAD. The correct approach is to work with

− 1

K
logNFAT (m,K,N) (4)

and

− 1

K
logNFAD(m,K,N) (5)

In this case the meaningful events can be characterized by− 1
K logNFAT (m,K,N) >

0 or − 1
K logNFAD(m,K,N) > 0.

There are several explanations why we should work with (4) and (5). The first is
pure mathematical: there is a unified format for estimations of (4) and (5) (see [7]
for precise statements). For large m,K and N there are several famous estimations
for large deviations and asymptotic behavior of (5): law of large numbers, large
deviation technique and Central Limit Theorem. In [7, Chap. 4, Proposition 4] all
such asymptotic estimates are presented in uniform format.

The second explanations why we should work with (4) and (5) can be given by
statistical physics of random systems: these quantities represent ‘energy per particle’
or energy per word in our context. Like in physics where we can compare energy per
particle for different systems of different size, there is meaning in comparison of (4)
and (5) for different words and documents.

Calculating of (4) usually is not a problem, since NFAT is a pure product. For
(5) there is also possibility of using Monte Carlo method by simulating Bernoulli
process with p = 1/N , but such calculations are slow for large N and K .

2.4 On TF-IDF

The TF-IDF weight (term frequency—inverse document frequency) is a weight very
often used in information retrieval and text mining. If we are given a collection of
documents D1, . . . ,DN and a word w appears in L documents Di1 , . . . ,DiL from the
collection, then

IDF(w) = log

(

N

L

)

.

The TF-IDF weight is just ‘redistribution’ if IDF among Di1 , . . . ,DiL according to
term frequency of w inside of Di1 , . . . ,DiL .
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The TF-IDF weight demonstrates remarkable performance in many applications,
but the IDF part is still remain a mystery. Let us now look at IDF from number of
false alarms point of view.

Consider all documents Di1 , . . . ,DiL containing the word w and combine all of
them into one document (the document aboutw)˜D = Di1 + · · · + DiL . For example,
if w = ‘cow’, then˜D is all about ‘cow’. We now have a new collection of documents
(containers): ˜D,Dj1 , . . . ,DjN−L , where Dj1 , . . . ,DjN−L are documents of the original
collectionD1, . . . ,DN that do not contains the word w. In general,˜D,Dj1 , . . . ,DjN−L

are of different sizes. For this new collection ˜D,Dj1 , . . . ,DjN−L the word w appear
only in ˜D, so we should calculate number of false alarms or ‘energy’ ((4) or (5)) per
each appearance of w only for ˜D.

Using adaptive window size or ‘moving window’, (4) and (5) become

− 1

K
log

((

K

K

)

1
˜N

)

,

i.e.
K − 1

K
· log˜N, where ˜N =

∑N
i=1 |Di|
|˜D| . (6)

If all documents D1, . . . ,DN are of the same size, then (6) becomes

K − 1

K
· IDF(w),

and for large K is almost equal to IDF(w). But for the case of documents of different
lengths (which ismore realistic) our calculation suggest that more appropriate should
be adaptive IDF:

AIDF(w) := K − 1

K
· log

∑N
i=1 |Di|
|˜D| , (7)

where K is term count of the word w in all documents, |˜D| is the total length of
documents containing w and

∑N
i=1 |Di| is the total length of all documents in the

collection.

3 Experimental Results

In this section we present some numerical results for State of the Union Addresses
from 1790 till 2009 (data set from [8]) and for the famous 20Newsgroups data set [9].

The performance of the proposed algorithm was studied on a relatively large
corpus of documents. To illustrate the results, following [6], we selected the set of all
U.S. Presidential State of the Union Addresses, 1790–2009 [8]. This is a very rich
data set that can be viewed as a corpus of documents, as a data stream with natural
timestamps, or as one big document with many sections.
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Fig. 2 Document lengths in
hundreds of words is shown
by the solid line; the
document average length is
equal to 7602.4 and the
sample deviation is 5499.7
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It is important to emphasize that we do not perform any essential pre-processing
of documents, such as stop word filtering, lemmatization, part of speech analysis,
and others. We simply down-case all words and remove all punctuation characters.

For the first experiment, the data is analyzed as a collection ofN = 219 individual
addresses. The number of words in these documents vary dramatically, as shown in
Fig. 2 by the solid line.

As expected, the extraction of meaningful or ε-meaningful words using formula
(3) from the corpus of different length documents performs well for the near-average
length documents. The manual examination of the extracted keywords reveals that

• all stop words have disappeared;
• meaningful words relate to/define the corresponding document topic very well;
• the ten most meaningful words with the smallest NFA follow historical events in
union addresses.

For example, five of the most meaningful words extracted from the speeches of the
current and former presidents are

Obama, 2009: lending, know, why, plan, restart;
Bush, 2008: iraq, empower, alqaeda, terrorists, extremists;
Clinton, 1993: jobs, deficit, investment, plan, care.

However, the results for the document outliers are not satisfactory. Only a few
meaningful words or none are extracted for the small documents. Almost all words
are extracted as meaningful for the very large documents. In documents with size
more than 19Kwords even the classical stopword “the”was identified asmeaningful.

To address the problem of the variable document length different strategies were
applied to the set of all Union Addresses: moving window, scaling to average and
adapting window size described in Sect. 2. The results are dramatically improved for
outliers in all cases. The best results from our point of view are achieved using an
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adaptive window size for each document, i.e. we calculate (3) for each document with
the same K and mi but with N = L/|Di| with L being the total size of all documents
and |Di| is the size of the document Di. The numbers of meaningful words (ε = 1)
extracted for the corresponding documents are shown by the dashed line in Fig. 2.
The remarkable agreement with document sizes is observed.

Our results are consistent with the existing classical algorithm [6]. For example,
using amovingwindowapproach, themostmeaningfulwords extracted forTheGreat
Depression period from 1929 till 1933 are: “loan”, “stabilize”, “reorganization”,
“banks”, “relief” and “democracy”, whilst the most important words extracted by
[6] are “relief”, “depression”, “recovery”, “banks” and “democracy”.

Let us now look at the famous Zipf’s law for natural languages. Zipf’s law states
that given some corpus of documents, the frequency of any word is inversely pro-
portional to some power γ of its rank in the frequency table, i.e. frequency(rank) ≈
const/rankγ . Zipf’s law is mostly easily observed by plotting the data on a log-log
graph, with the axes being log(rank order) and log(frequency). The data conform
to Zipf’s law to extend the plot is linear. Usually Zipf’s law is valid for the upper
portion of the log-log curve and not valid for the tail.

For all words in the Presidential State of the Union Address we plot rank of a word
and the total number of the word’s occurrences in log-log coordinates, as shown in
Fig. 3.

Let us look into Zipf’s law for only the meaningful words of this corpus (ε = 1).
We plot rank of a meaningful word and the total number of the wold’s occurrences
in log-log coordinates, as shown in Fig. 4. We still can observe the Zipf’s law, the
curve become smoother and the power γ becomes smaller.

Ifwe increase level ofmeaningfulness (i.e. decrease the ε), then the curve becomes
even more smoother and conform to Zipf’s law with smaller and smaller γ . This is
very much in a line with what we should expect from good feature extraction and
dimension reduction: to decrease number of features and to decorrelate data.

Fig. 3 The total number of
words in the Presidential
State of the Union Addresses
as a function of their rank in
log-log coordinates
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Fig. 4 The total number of
meaningful words as a
function of their rank in
log-log coordinates

For two sets S1 and S2 let us use as a measure of their similarity the number of
common elements divided by the number of elements in their union: W (S1, S2) =
|S1 ⋂

S2|/|S1 ⋃

S2|. After extracting meaningful words we can look into similarity
of the Union Addresses by calculating similarityW for their sets of keywords. Then,
for example, Barack Obama, 2009 speech is mostly similar to George H.W. Bush,
1992 speech with the similarity W ≈ 0.132 and the following meaningful words in
common:

set([‘everyone’, ‘tax’, ‘tonight’, ‘i’m’, ‘down’, ‘taxpayer’, ‘reform’, ‘health’, ‘you’,
‘tell’, ‘economy’, ‘jobs’, ‘get’, ‘plan’, ‘put’, ‘wont’, ‘short-term’, ‘long-term’,
‘times’, ‘chamber’, ‘asked’, ‘know’]).

George W. Bush, 2008 speech is mostly similar to his 2006 speech (which is very
reasonable) with the similarity W ≈ 0.16 and the following meaningful words in
common:

set([‘terrorists’, ‘lebanon’, ‘al-qaeda’, ‘fellow’, ‘tonight’, ‘americans’, ‘technol-
ogy’, ‘enemies’, ‘terrorist’, ‘palestinian’, ‘fight’, ‘iraqi’, ‘iraq’, ‘terror’, ‘we’, ‘iran’,
‘america’, ‘attacks’, ‘iraqis’, ‘coalition’, ‘fighting’, ‘compete’]).

From all the Presidential State of the Union Address most similar are William
J. Clinton 1997 speech and 1998 speech. Their similarity is W ≈ 0.220339 and the
following meaningful words in common:

set([‘help’, ‘family’, ‘century’, ‘move’, ‘community’, ‘tonight’, ‘schools’, ‘finish’,
‘college’, ‘welfare’, ‘go’, ‘families’, ‘education’, ‘children’, ‘lifetime’, ‘row’, ‘chem-
ical’, ‘21st’, ‘thank’, ‘workers’, ‘off’, ‘environment’, ‘start’, ‘lets’, ‘nato’, ‘build’,
‘internet’, ‘parents’, ‘you’, ‘bipartisan’, ‘pass’, ‘across’, ‘do’, ‘we’, ‘global’, ‘jobs’,
‘students’, ‘thousand’, ‘scientists’, ‘job’, ‘leadership’, ‘every’, ‘know’, ‘child’, ‘com-
munities’, ‘dont’, ‘america’, ‘lady’, ‘cancer’, ‘worlds’, ‘school’, ‘join’, ‘vice’, ‘chal-
lenge’, ‘proud’, ‘ask’, ‘together’, ‘keep’, ‘balanced’, ‘chamber’, ‘teachers’, ‘lose’,
‘americans’, ‘medical’, ‘first’]).
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3.1 20 Newsgroups

In this subsection of the article some numerical results for the famous 20 Newsgroup
data set [9] will be presented.

This data set consists of 20000 messages taken from 20 newsgroups. Each group
contains one thousand Usenet articles. Approximately 4% of the articles are cross-
posted. Our only preprocessing was removing words with length ≤ 2. For defining
meaningful words we use NFAT and consider each group as separate container. In
Fig. 5, group lengths (total number of words) in tens of words is shown by blue line
and number of different words in each group is shown by green line. The highest peek
in group lengths correspond to the group ‘talk.politics.mideast’, and the highest peek
in number of different words correspond to the group ‘comp.os.ms-windows.misc’.

After creating meaningful words for each group based on NFAT with ε = 1 and
removing non-meaningful words from each group, the news group lengths (total
number of meaningful words) in tens of words is shown my blue line in Fig. 6. The
number of different meaningful words in each group is shown by green line on the
same Fig. 6.

Let us now look into the Zipf’s law for 20Newsgroups.We plot rank of a word and
total number of the word’s occurrences in log-log coordinates, as shown in Fig. 7, and
we also plot rank of ameaningful word and total number of the word’s occurrences in
log-log coordinates, as shown in Fig. 8. As we can see, meaningful word also follow
Zipf’s law very close.

Similar to the State of the Union Addresses, let us calculate similarity of groups
by calculating W for corresponding sets of meaningful words. We will index the
groups by integer i = 0, . . . , 19 and denote ith group by Gr[i], for example, Gr[3]
= ‘comp.sys.ibm.pc.hardware’, as shown on the Table1. The similarity matrix W
is 20 × 20-matrix and is too big to reproduce in the article. So, we show in the
Table1 most similar and most non-similar groups for each group, together with
corresponding measure of similarity W . For example, the group ‘comp.windows.x’

Fig. 5 Group lengths (total
number of words) in tens of
words and the number of
different words in each group
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Fig. 6 News group lengths
(total number of meaningful
words) in tens of words and
the number of different
meaningful words in each
group

Fig. 7 The total number of
words in the 20Newsgroups
dataset as a function of their
rank in log-log coordinates

(index = 5) is most similar to the group Gr[1] = ‘comp.graphics’ with similarity
= 0.038, and most non-similar with the group Gr[19] = ‘talk.religion.misc’ with
similarity = 0.0012. As we can see, our feature extraction approach produce very
natural measure of similarity for the 20 Newsgroups.

Let us now investigate how sets of meaningful words change with number of arti-
cles inside groups. Let us create so calledmini-20Newsgroups by selecting randomly
10% of articles in each group. In the mini-20Newsgroups there are 100 articles in
each group. We have used for our numerical experiments the mini-20Newsgroups
from [9]. After performingmeaningfulwords extraction from themini-20Newsgroup
with NFAT and ε = 1, let us plot together number of meaningful words in each
group of original 20Newsgroups, number of meaningful words in each group of
mini-20Newsgroup and number of common meaningful words for these two data
set. The results are shown in Fig. 9.
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Fig. 8 The total number of
meaningful words in the
20Newsgroups dataset as a
function of their rank in
log-log coordinates

Table 1 An example of group similarities

Index News groups Highest similarity Lowest similarity

0 alt.atheism Gr[19], 0.12 Gr[2], 0.0022

1 comp.graphics Gr[5], 0.038 Gr[15], 0.0023

2 comp.os.ms-windows.misc Gr[3], 0.0197 Gr[15], 0.0023

3 comp.sys.ibm.pc.hardware Gr[4], 0.041 Gr[17], 0.0024

4 comp.sys.mac.hardware Gr[3], 0.041 Gr[17], 0.0023

5 comp.windows.x Gr[l], 0.038 Gr[19], 0.0012

6 misc.forsale Gr[12], 0.03 Gr[0], 0.0024

7 rec.autos Gr[8], 0.035 Gr[15], 0.0025

8 rec.motorcycles Gr[7], 0.035 Gr[2], 0.0033

9 rec.sport.baseball Gr[10], 0.036 Gr[19], 0.0043

10 rec.sport.hockey Gr[9], 0.036 Gr[15], 0.0028

11 sci.crypt Gr[16], 0.016 Gr[2], 0.0025

12 sci.electronics Gr[6], 0.030 Gr[17], 0.0028

13 sci.med Gr[12], 0.012 Gr[2], 0.0035

14 sci.space Gr[12], 0.016 Gr[2], 0.0045

15 soc.religion.christian Gr[19], 0.044 Gr[2], 0.0014

16 talk.politics.guns Gr[18], 0.042 Gr[2], 0.0021

17 talk.politics.mideast Gr[18], 0.022 Gr[2], 0.0018

18 talk.politics.misc Gr[19], 0.043 Gr[5], 0.0017

19 talk.religion.misc Gr[0], 0.120 Gr[5], 0.0012

As we can see, large part of meaningful words survive when we increase number
of articles by ten times, i.e. when we go from mini to full 20Newsgroup data: red
and green lines are remarkable coherent.
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Fig. 9 The number of meaningful words in each news group of the original 20Newsgroups, the
number of meaningful words in each group of the mini-20 Newsgroups and the number of common
meaningful words for these two data sets

Let us now check how all these meaningful words perform in classification tasks.
We would like to have a classifier for finding appropriate newsgroup for a new
message. Using 10% of news as training set we have created 20 sets of meaningful
words,MW [i], i = 0, . . . , 19. Let us introduce the simplest possible classifierC from
messages to the set of 20 Newsgroups. For a messageM let us denote by set(M) the
set of all different words inM. ThenC(M) is a group with largest number of words in
set(M)

⋂

MW [i]. If there are several groups with the same largest number of words
in set(M)

⋂

MW [i], then we select as C(M) a group with smallest index. In the case
when all intersections set(M)

⋂

MW [i] are empty, we will mark a message M as
“unclassifiable”.

The results of applying this classifier to the remaining 90% of 20Newsgroups
can be represented by the classification confusion matrix CCM Fig. 10. CCM is a
2020 integer value matrix with CCM(i,j) is the number of messages from ith group
classified into jth group. For ideal classifier CCM is a diagonalmatrix. For calculating
this matrix we used 18000 messages from 20Newsgroups excluding the training set.

REMARK: In each rowof theCCM, the sumof its elements is equal to 900,which
is the number of messages in each group. The exception is the row corresponding to
the group “soc.religion.christian”, where the sum is equal to 897, because 3messages
from this group remained unclassified, their intersection with the set of meaningful
words in each group was empty.

It is also useful to check the classifier performance on the training set itself to
validate our approach for selecting meaningful words. The classification confusion
matrix for the training set only is shown in Fig. 11.

We now calculate the precision, recall and accuracy of our classifier for each of 20
groups.
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Fig. 10 Classification confusion matrix, where CCM(i, j) is the number of messages from the ith
group classified into the jth group

Precision for ith group is defines as

P(i) = CMM(i, i)
∑

j CMM(i, j)
,

Recall for ith group is defines as

R(i) = CMM(i, i)
∑

j CMMj, i)
,

and
Accuracy for ith group is defines as harmonic mean of precision and recall

A(i) = 2P(i)R(i)

P(i) + R(i)
.

The results of calculation of precision, recall and accuracy of our classifier for
each of 20 groups is shown in the Table2.

As we can see from the Table2, this simple classifier performs impressively well
for the most of news groups, thus illustrating the success ofNFAT for selectingmean-
ingful features. The smallest accuracy of around 57%has been observed for the group
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“talk.religion.misc”. From the classification confusionmatrixCCM (Fig. 10), we can
see that many articles from “talk.religion.misc” have been classified as belonging to
“alt.atheism”, “soc.religion.christian” or “talk.politics.misc” groups.

4 Conclusion and Future Work

In this article, the problem of automatic keyword and feature extraction in unstruc-
tured data is investigated using image processing ideas and especially the Helmholtz
principle. We define a new measure of keywords meaningfulness with good perfor-
mance on different types of documents. We expect that our approach may not only
establish fruitful connections between the fields of Computer Vision, Image Process-
ing and Information Retrieval, but may also assist with the deeper understanding of
existing algorithms like TF-IDF.

In TF-IDF it is preferable to create a stop word list, and remove the stop word
before computing the vector representation [2]. In our approach, the stop words are
removed automatically. It would be very interesting to study the vector model for text

Fig. 11 Classification confusion matrix for the training set with data presented as in Fig. 10
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Table 2 Precision, recall and accuracy

News groups Precision Recall Accuracy

alt.atheism 0.71 0.8331 0.7667

comp.graphics 0.8256 0.5251 0.6419

comp.os.ms-windows.misc 0.4389 0.9229 0.5949

comp.sys.ibm.pc.hardware 0.78 0.6756 0.7241

comp.sys.mac.hardware 0.7389 0.8504 0.7907

comp.windows.x 0.8122 0.6362 0.7135

misc.forsale 0.8833 0.6925 0.7764

rec.autos 0.7889 0.9103 0.8452

rec.motorcycles 0.8956 0.9516 0.9227

rec.sport.baseball 0.9256 0.9423 0.9339

rec.sport.hockey 0.9711 0.9001 0.9343

sci.crypt 0.9033 0.961 0.9312

sci.electronics 0.6667 0.9091 0.7692

sci.med 0.8667 0.9319 0.8981

sci.space 0.8922 0.9209 0.9063

soc.religion.christian 0.9922 0.7325 0.8428

talk.politics.guns 0.8633 0.852 0.8576

talk, politics, mideast 0.9522 0.8899 0.92

talk.politics.misc 0.69 0.7657 0.7259

talk.religion.misc 0.4977 0.6677 0.5703

mining based with −log(NFA) as a weighting function. Even the simplest classifier
based on meaningful events performs well.

One of the main objectives in [7] is to develop parameter free edge detections
based on maximal meaningfulness. Similarly, algorithms in data mining should have
as few parameters as possible—ideally none. Developing a similar approach to the
keyword and feature extraction, i.e. defining the maximal time or space interval for
a word to stay meaningful, is an exciting and important problem. It would also be
interesting to understand the relationship between the NFA and [6].
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AMethod of Introducing Weights into OWA
Operators and Other Symmetric Functions

Gleb Beliakov

Abstract This paper proposes a new way of introducing weights into OWA func-
tions which are popular in fuzzy systems modelling. The proposed method is based
on replicating the inputs of OWA the desired number of times (which reflect the
importances of the inputs), and then using a pruned n-ary tree construction to calcu-
late the weighted OWA. It is shown that this tree-based construction preserves many
useful properties of the OWA, and in fact produces the discrete Choquet integral.
A computationally efficient algorithm is provided. The tree-based construction is
universal in its applicability to arbitrary symmetric idempotent n-ary functions such
as OWA, and transparent in its handling the weighting vectors. It will be a valuable
tool for decision making systems in the presence of uncertainty and for weighted
compensative logic.

1 Introduction

One of the fundamental aspects in dealing with various forms of uncertainty is oper-
ations with uncertainty degrees, for example in the if-then-else rule statements. The-
ories that extend classical logic require extensions of the logical operations, such
as conjunction, disjunction, negation and implication. In fuzzy logic in particular,
membership degrees from the unit interval are combined by using aggregation func-
tions [4, 14], which in the most general form are monotone increasing functions f
with the boundary conditions f (0, . . . , 0) = 0 and f (1, . . . , 1) = 1, so they ensure
matching the classical logical operations in the limiting cases.

The first class of prominent aggregation functions are the triangular norms and
their duals, the triangular conorms [17]. The product was the first t-norm to appear
alongside with the minimum in L. Zadeh’s original paper on fuzzy sets [30]. When
trying to mimic human decision making empirically, however, it became clear that
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it is a combination of the t-norm and t-conorm, which itself is neither conjunctive
nor disjunctive operation, that fits the data best [19, 31]. These functions expressed
compensation properties, so that an increase in one input could be compensated by
a decrease in another.

Another prominent class of aggregation functions that are in use since the early
expert systems MYCIN and PROSPECTOR are the uninorms [4, 7, 26]. These are
associative mixed operations that behave as conjunction on one part of their domain
and as a disjunction on another. These functions, when scaled to the interval [−1, 1],
are useful bi-polar operations, where the information can be interpreted as “positive”
or “negative”, supporting or negating the conclusion of a logical statement or a
hypothesis.

The class of averaging functions is the richest in terms of the number of interest-
ing families. Averaging functions, whose prototypical examples are the arithmetic
mean and the median, allow compensation between low values of some inputs and
high values of the others. Such functions are also important for building decision
models in weighted compensative logic [8], where the concept of Generalized Con-
junction/Disjunction (GCD) play a role [10, 12].

Along with many classical means [5], the class of averaging functions contains
such constructions as ordered weighted averages (OWA) [24] and fuzzy integrals
[15]. The OWA functions in particular became very popular in fuzzy systems com-
munity [13, 28, 29]. These are symmetric functions which associate the weights with
the magnitude of the inputs rather than with their sources.

The inability ofOWA functions to associateweightswith the specific arguments in
order to model the concepts of importance and reliability of information sources was
a stumbling block for their usage in some areas. However the concept of weighted
OWA (WOWA) [20] resolved this issue. InWOWA functions, two vectors of weights
are used. One vector has the weights associated with the arguments, thus modelling
importance of the inputs, whereas the second vector associates weights with the
magnitude of the inputs. It was later shown that WOWA are a special class of the
discrete Choquet integral [18].

A different way of introducing weights into OWA was presented in [25]. In this
paper, the OWA function was applied to the modified arguments, and the modifying
function was found by using fuzzy modelling techniques. One such function was a
linear combination of the argument and the orness (see Definition 3) of the respective
OWA function. This method did not produce idempotent functions except in a few
special cases.

In this contribution we present a different approach to introducing weights into
OWA, based on n-ary tree construction and recursive application of the base OWA
function. Such an approach based in binary trees was recently introduced by Duj-
movic [9] in order to incorporate weights into bivariate symmetric means, as well as
to extend bivariate means to n variables. More detailed analysis of the properties of
this method is in [2, 11].

This paper is structured as follows. After presenting preliminaries in Sect. 2, we
describe the construction of WOWA functions by Torra [20] in Sect. 3. In Sect. 4
we describe the method of introducing weights into arbitrary bivariate averaging
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functions from [9]. Our main contribution is in Sect. 5, where we introduce the n-ary
tree construction, outline some of its theoretical properties, and present an efficient
computational algorithm. The conclusions are presented in Sect. 6.

2 Preliminaries

Consider now the following definitions adopted from [4, 14]. Let I = [0, 1], although
other intervals can be accommodated easily.

Definition 1 A function f : In → R is monotone (increasing) if ∀ x, y ∈ I
n, x ≤ y

then f (x) ≤ f (y), with the vector inequality understood componentwise.

Definition 2 A function f : In → I is idempotent if for every input x =
(t, t, ..., t), t ∈ I, the output is f (x) = t.

Definition 3 A function f : In → I is a mean (or is averaging) if for every x it is
bounded by min(x) ≤ f (x) ≤ max(x).

Averaging functions are idempotent, and monotone increasing idempotent func-
tions are averaging.We consider weighting vectorsw such thatwi ≥ 0 and

∑

wi = 1
of appropriate dimensions.

Definition 4 A function f : In → I is shift-invariant (stable for translations) if
f (x + a1) = f (x) + a whenever x, x + a1 ∈ I

n. A function f : In → I is homoge-
neous (of degree 1) if f (ax) = af (x) whenever x, ax ∈ I

n.

Definition 5 For a given generating function g : I → [−∞,∞], and a weighting
vector w, the weighted quasi-arithmetic mean (QAM) is the function

Mw,g(x) = g−1

(

n
∑

i=1

wig(xi)

)

. (1)

Definition 6 Let ϕ : I → I be a bijection. Theϕ-transform of a function f : In → I

is the function fϕ(x) = ϕ−1 (f (ϕ(x1), ϕ(x2), ..., ϕ(xn))).

The weighted QAM is a ϕ-transform of the weighted arithmetic mean with ϕ = g.

Definition 7 For a givenweighting vectorw,wi ≥ 0,
∑

wi = 1, theOWA function
is given by

OWAw(x) =
n

∑

i=1

wix(i), (2)

where x(i) denotes the i-th largest value of x.
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The main properties of OWA are summarised below.

• As with all averaging aggregation functions, OWA are increasing (strictly increas-
ing if all the weights are positive) and idempotent;

• OWA functions are continuous, symmetric, homogeneous and shift-invariant;
• OWAfunctions are piecewise linear, and the linear pieces are joined togetherwhere
two or more arguments are equal in value.

• The OWA functions are special cases of the Choquet integral with respect to
symmetric fuzzy measures.

• The special case ofOWAinclude the arithmeticmean, themedian and theminimum
and maximum operators among others.

• The dual of an OWA with respect to the standard negation is the OWA with the
weights reversed.

The orness measure allows one to qualify an OWA function as OR-like or AND-
like based on whether it behaves more disjunctively or more conjunctively than the
arithmetic mean. The expression for the orness measure is given by the following
simple formula

orness(OWAw) =
n

∑

i=1

wi
n − i

n − 1
= OWAw

(

1,
n − 2

n − 1
, . . . ,

1

n − 1
, 0

)

. (3)

The OWA functions are OR-like if orness(OWAw) ≥ 1
2 and AND-like if

orness(OWAw) ≤ 1
2 . If the weighting vector is decreasing, i.e., wi ≥ wj whenever

i < j, OWA is OR-like and is in fact a convex function. The respective (symmetric)
fuzzy measure in this case is sub-modular [3]. The OWA functions with increasing
weights are AND-like, concave functions which correspond to the Choquet integral
with respect to a super-modular fuzzy measure. OWA with decreasing weighting
vectors can be used to define norms [3, 23].

Similarly to quasi-arithmetic means, OWA functions have been generalized with
the help of generating functions g : I → [−∞,∞] as follows.
Definition 8 Let g : I → [−∞,∞] be a continuous strictly monotone function and
let w be a weighting vector. The function

GenOWAw,g(x) = g−1

(

n
∑

i=1

wig(x(i))

)

(4)

is called a generalized OWA. As for OWA, x(i) denotes the i-th largest value of x.

The generalized OWA is a ϕ-transform of the OWA function with ϕ = g. One
special case is the OrderedWeighted Geometric (OWG) function studied in [16, 22].
It is defined by



A Method of Introducing Weights into OWA Operators … 41

Definition 9 For a given weighting vector w, the OWG function is

OWGw(x) =
n

∏

i=1

xwi
(i). (5)

Similarly to the weighted geometric mean, OWG is a special case of (4) with
the generating function g(t) = log(t). Another special case is the Ordered Weighted
Harmonic (OWH) function, where g(t) = 1/t.

A large family of generalized OWA functions is based on power functions, similar
to weighted power means [27]. Let gr denote the family of power functions

gr(t) =
{

tr, if r �= 0,
log(t), if r = 0.

Definition 10 For a given weighting vector w, and a value r ∈ R, the function

GenOWAw,[r](x) =
(

n
∑

i=1

wix
r
(i)

)1/r

, (6)

if r �= 0, and GenOWAw,[r](x) = OWGw(x) if r = 0, is called a power-based gen-
eralized OWA.

3 Weighted OWA

The weights in weighted means and in OWA functions represent different things.
In weighted means wi reflects the importance of the i-th input, whereas in OWA wi

reflects the importance of the i-th largest input. In [20]Torra proposed ageneralization
of both weighted means and OWA, called WOWA. This aggregation function has
two sets of weights w, p. Vector p plays the same role as the weighting vector in
weighted means, and w plays the role of the weighting vector in OWA functions.

Consider the followingmotivation. A robot needs to combine information coming
from n different sensors, which provide distances to the obstacles. The reliability
of the sensors is known (i.e., we have weights p). However, independent of their
reliability, the distances to the nearest obstacles are more important, so irrespective
of the reliability of each sensor, their inputs are also weighted according to their
numerical value, hence we have another weighting vector w. Thus both factors, the
size of the inputs and the reliability of the inputs, need to be taken into account.
WOWA provides exactly this type of aggregation function.

WOWA function becomes the weighted arithmetic mean if wi = 1
n , i = 1, . . . , n,

and becomes the usual OWA if pi = 1
n , i = 1, . . . , n.

Definition 11 Let w, p be two weighting vectors, wi, pi ≥ 0,
∑

wi = ∑

pi = 1.
The following function is called Weighted OWA function
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WOWAw,p(x) =
n

∑

i=1

uix(i),

where x(i) is the i-th largest component of x, and the weights ui are defined as

ui = g

⎛

⎝

∑

j∈Hi

pj

⎞

⎠ − g

⎛

⎝

∑

j∈Hi−1

pj

⎞

⎠ ,

where the set Hi = {j|xj ≥ xi} is the set of indices of i largest elements of x, and g is
a monotone non-decreasing function with two properties:

1. g(i/n) = ∑

j≤i wj, i = 0, . . . , n (of course g(0) = 0);
2. g is linear if all wi are equal.

Thus computation of WOWA involves a very similar procedure as that of OWA
(i.e., sorting components of x and then computing their weighted sum), but the
weights ui are defined by using both vectors w, p, a special monotone function g,
and depend on the components of x as well. One can seeWOWA as an OWA function
with the weights u.

Of course, the weights u also depend on the generating function g. This function
can be chosen as a linear spline (i.e., a broken line interpolant), interpolating the
points (i/n,

∑

j≤i wj) (in which case it automatically becomes a linear function if
these points are on a straight line), or as amonotone quadratic spline, aswas suggested
in [20, 21], see also [1] where Schumaker’s quadratic spline algorithm was used,
which automatically satisfies the straight line condition when needed.

It turns out that WOWA belongs to a more general class of Choquet inte-
gral based aggregation functions [18]. It is a piecewise linear function whose
linear segments are defined on the simplicial partition of the unit cube [0, 1]n:
Si = {x ∈ [0, 1]n|xp(j) ≥ xp(j+1)}, where p is a permutation of the set {1, . . . , n}.
Note that there are exactly n! possible permutations, the union of all Si is [0, 1]n,
and the intersection of the interiors of Si ∩ Sj = ∅, i �= j.

The next two sections introduce an alternative and generic construction to incor-
porate weights into any symmetric averaging function. In particular, it will work
for OWA and will not have a somewhat unclear issue of selecting the function g in
Torra’s WOWA.

4 Binary Tree Construction

Consider now a method of incorporating weights into a symmetric bivariate idempo-
tent function f , presented [9] and then extended in [2, 11]. To introduce the weights
we use the approach from [6], where each argument xi is replicated a suitable num-
ber of times. To be more precise, we consider an auxiliary vector of arguments
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X = (x1, . . . , x1, x2, . . . , x2), so that x1 is taken k1 times and x2 is taken k2 times,
so that k1

2L ≈ w1,
k2
2L ≈ w2, and k1 + k2 = 2L. Here wi are the desired weights, and

L ≥ 1 is a specified number of levels of the binary tree shown in Fig. 1. One way
of doing so is to take k1 = �w12L + 1

2 and k2 = 2L − k1. The vector X needs to be
sorted in the increasing or decreasing order.

Next, let us build a binary tree presented in Fig. 1, where at each node a value is
produced by aggregating the values of two children nodes with the given bivariate
symmetric averaging function f (denoted by B on the plot and with weights equal to
1
2 ). We start from the leaves of the tree which contain the elements of the vector X.
In this example we took w1 = 5

8 and w3 = 3
8 . The value y at the root node will be

the desired output of the n-variate weighted function.
A straightforward binary tree traversal algorithm for doing so, which starts from

the vector X, is as follows:

Aggregation by Levels (ABL) Algorithm

1. Compute k1 := �w12L + 1
2, k2 := 2L − k1, and create the array

X := (x1, . . . , x1, x2, . . . , x2) by taking k1 copies of x1 and k2 copies of x2;
2. N := 2L;
3. Repeat L times:

(a) N := N/2;
(b) For i := 1 . . .N do X[i] := f (X[2i − 1],X[2i]);

4. return X[1].
The algorithm is obviously terminating. The runtime of the ABL algorithm is

O(2L), which can make its use prohibitive even for moderate L. Fortunately an
efficient algorithm based on pruning the binary tree was presented in [2].

The pruning of the binary tree is done by using the idempotency of f , see Fig. 1,
right. Indeed no invocation of f is necessary if both of its arguments are equal. Below

Fig. 1 Representation of a weighted arithmetic mean in a binary tree construction. The tree on the
right is pruned by using idempotency
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we present the pruned tree algorithm whose worst case complexity is O(L), which
makes it practically applicable for larger L.

The algorithm is recursive depth-first traversing of the binary tree. A branch is
pruned if it is clear that all its leaves have exactly the same value, and by idempotency
this is the value of the root node of that branch.

Pruned Tree Aggregation (PTA) Algorithm
function node(m,N,K, x)

1. If N[K] ≥ 2m then do:

(a) N[K] := N[K] − 2m;
(b) y := x[K];
(c) If N[K] = 0 then K := K + 1;
(d) return y;

else
2. return f (node(m − 1,N,K, x), node(m − 1,N,K, x)).

function f _n(w, x,L)

1. create the array N := (k1, k2) by using
k1 := �w12L + 1

2, and k2 := 2L − k1;
2. K := 1;
3. return node(L,N,K, x).

In this algorithm, the array N serves as a counter of how many copies of each
of x[K] remains. If there are more than 2m copies, they belong to a branch that can
be pruned, so the function node just returns x[K] and never visits the nodes of that
branch. If N[K] = 1 then the last remaining copy of x[K] is returned and the value
of K is incremented. Every time a branch whose leaves contain identical arguments
is encountered (which is detected by the counter N[K] ≥ 2m), this branch is pruned.

As an example, consider the binary tree in Fig. 1. Here L = 3, k1 = 5 and k2 = 3.
In the first call to function node instruction passes to step 2 where node is called
recursively twice. In the first recursive call N[1] = 5 ≥ 22 at step 1, hence x1 is
returned and N[1] is set to 1. In the second call to node the instruction goes to step
2, where node is called recursively twice. In the first of those calls the recursion
continues until m = 0, at which point x1 is returned and K is incremented. In the
subsequent call to node x2 is returned and then f (x1, x2) is computed and returned
(the bottom level in the pruned tree in Fig. 1, right). At this point N[2] becomes 2,
and in the subsequent call to node step 1 is executed, x2 is returned and subsequently
aggregated in f (f (x1, x2), x2) (middle level of the tree in Fig. 1, right). That last
output is aggregated with x1 at the top level of the tree, and the recursive algorithm
terminates, producing the output y = f (x1, f (f (x1, x2), x2)).

To see the complexity of this algorithm note that f is never executed (nor the
corresponding node of the tree is visited) if its arguments are the same. There is
exactly one node at each level of the tree where the child nodes contain distinct
arguments, hence f is executed exactly L times. Also note that both N and K are
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input-output parameters, so that the two arguments of f at step 2 are different as N
andK change from one invocation of the function node to another, however the order
of execution of the calls to node does not matter as the lists of formal parameters are
identical.

The ABL and PTL algorithms produce identical outputs but differ in computa-
tional complexity. For this reason it may be convenient to formulate (or prove) the
results in terms of the complete tree processed by algorithm ABL.

Several useful properties of the binary tree construction were presented in [2]. In
particular, the weighted function fw inherits many properties of the base aggregator f ,
such as idempotency, monotonicity, continuity, convexity (concavity), homogeneity
and shift-invariance, due to preservation of these properties in function composition.
Furthermore,when theweights are given in a finite binary representation (as is always
the case in machine arithmetic), the sequence of the outputs of the ABL (and hence
PTA) algorithm with increasing L = 2, 3, . . . converges to a weighted mean with the
specified weights, and in fact L needs not exceed the number of bits in themantissa of
the weights wi to match these weights exactly. Finally, when f is a quasi-arithmetic
mean, fw is a weighted quasi-arithmetic mean with the same generator.

Another contribution made in [2, 11] is the extension of the symmetric bivariate
means to weighted n-variate means by using essentially the same approach, i.e.,
by replicating the n inputs a suitable number of times and constructing a binary tree
with the desired numbed of levels L. The ABL and PTA algorithms in fact remain the
same, safe the definition of the array of multiplicitiesN which is now n-dimensional.

The big advantage of the binary tree construction is its universality and trans-
parency. It is applicable to any bivariate idempotent function f without modification,
and the role of the weights as the respective multiplicities of the arguments as argued
in [6] is very clear. The availability of a fast and uncomplicated algorithm for com-
puting the output makes this method immediately applicable.

However the binary tree construction is not suitable for introducing weights into
OWA functions, as here we already start with an n-variate function. The approach
presented in the next section is an adaptation of the binary tree approach to n-variate
OWA functions.

5 Importance Weights in OWA Functions

Our goal here is to incorporate a vector p of non-negative weights (which add to one)
into a symmetric n-variate function, by replicating the arguments a suitable number
of times. As in the binary tree construction we build an n-ary tree with L levels,
as shown in Fig. 2. As the base symmetric aggregator f we take an OWA function
OWAw with specified weights w (although the origins of f are not important for the
algorithm).
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Fig. 2 Representation of aweighted tri-variate function f in a ternary tree construction. Theweights
are chosen as p = ( 1227 , 5

27 , 10
27 ) and L = 3. The circled branches are pruned by the algorithm

Now, let us create an auxiliary vector X = (x1, . . . , x1, x2, . . . , x2, . . . , xn, . . . ,
xn), so that x1 is taken k1 times, x2 is taken k2 times, and so on, and k1

nL ≈ p1,
k2
nL ≈ p2,

. . ., and
∑

ki = nL, where L ≥ 1 is a specified number of levels of the tree shown
in Fig. 2. One way of doing so is to take ki = �pinL + 1

n, i = 1, . . . , n − 1 and
kn = nL − k1 − k2 − · · · − kn−1.

Pruned n-Tree Aggregation (PnTA) Algorithm
function node(n,m,N,K, x)

1. If N[K] ≥ nm then do:

(a) N[K] := N[K] − nm;
(b) y := x[K];
(c) If N[K] = 0 then K := K + 1;
(d) return y;

else
2. for i := 1, . . . , n do

z[i] := node(n,m − 1,N,K, x)
3. return f (z).

function f _n(n, x, w, p,L)

1. create the array N := (k1, k2, . . . , kn) by using
ki := �pinL + 1

n, i = 1, . . . , n − 1, and kn := nL − k1 − · · · − kn−1;
2. K := 1;
3. return node(n,L,N,K, x).
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The algorithm PnTAworks in the sameway as the PTA algorithm for binary trees.
The vector of counters N helps determine whether there are more than nm identical
elements of the auxiliary array X, in which case they are the leaves of a branch of
the tree with m levels. This branch is pruned. The function f is executed only when
some of its arguments are distinct, and since the elements of X are ordered, there are
at most n − 1 such possibilities at each level of the tree, hence the complexity of the
algorithm is O((n − 1)L).

Note that the complexity is linear in terms of L, as that of the PTA algorithm,
which means that the dimension of the base aggregator f does not matter in this
respect. Of course, nominally the n-ary tree is larger than the binary tree, but since
we only track themultiplicities of the arguments, never creating the arrayX explicitly,
memorywise the complexity of the PnTA algorithm is the same as that of PTA.

We also reiterate that the vectorX needs to be sorted, which is equivalent to sorting
the inputs x jointly with the multiplicities of the inputs N (i.e., using the components
of x as the key).

Let us list some useful properties of the function fp generated by the PnTA algo-
rithm.

Theorem 1 (The Inheritance Theorem) The weighted extension fp of a function f
by the PnTA algorithm preserves the intrinsic properties of the parent function f as
follows:

1. fp idempotent since f is idempotent;
2. if f is monotone increasing then fp is monotone increasing;
3. if f is continuous then fp is continuous;
4. if f is convex (resp. concave) then fp is convex (resp. concave);
5. if f is homogeneous then fp is homogeneous;
6. if f is shift-invariant then fp is shift-invariant;
7. fp has the same absorbing element as f (if any);
8. if f generates fp then a ϕ-transform of f generates the corresponding ϕ-transform

of fp.

Proof The proof easily follows from the properties of composition of the respective
functions and idempotency of f . For the ϕ-transform notice that at each inner level
of the tree the composition ϕ−1 ◦ ϕ = Id, while ϕ is applied to the leaves of the tree
and ϕ−1 is applied to the root. �

Now we focus on the OWA functions as the base aggregator f . Here we can show
the following.

Theorem 2 Let f = OWAw. Then the algorithm PnTA generates the weighted func-
tion fp which is the discrete Choquet integral (and is hence homogeneous and shift-
invariant).

Proof The Choquet integral is a piecewise linear continuous aggregation function
where the linear pieces are joined together at the intersections of the canonical sim-
plices Si, i.e., where two or more components of x are equal. Since OWAw is
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continuous and piecewise linear, so is fp, by the properties of function composition.
Now, let us show that the function fp is not differentiable only on the sets where some
of the components of the input vector x are equal, which will imply that the result is
the discrete Choquet integral. Indeed at each node in the n-ary tree there is a function
(OWA) not differentiable when some of inputs are equal. At the L-th level of the tree
these are the points where the components of x are equal.

At the level L − 1, the arguments of the OWA function are equal if and only if
the arguments of the child nodes are equal, because the smallest argument of the
left child node is no smaller than the largest argument of the right node (we recall
that X is sorted). Continuing this recursion, we end up with the root node where the
resulting function is not differentiable if and only if some of the arguments of the
nodes at the bottom level L are equal, which are exactly the components of x. Hence
fp is a piecewise linear, continuous aggregation function, and the linear pieces are
joined together at the intersections of Si, so fp is the discrete Choquet integral. �

As the special cases of Choquet integral we have the following results.

Theorem 3 Let f = OWAw. Then the algorithm PnTA generates the weighted func-
tion fp with the following properties:

1. for the weights wi = 1
n , fp is the weighted arithmetic mean with the weights p;

2. for the weights pi = 1
n , fp is OWAw;

3. when f = OWAw = min (or = max) and pi > 0 for all i, fp is also min (respec-
tively, max);

4. when f = OWAw = median and n is odd, fp is the weighted median;
5. if OWAw generates fp, then the dual OWAd

w generates the dual f dp , and in par-
ticular an OWA with the reverse weights generates the respective weighted OWA
with the reverse weights.

Proof 1. In this case OWAw is the arithmetic mean, and hence fp is the weighted
arithmetic mean with the respective weights.

2. In this case, each argument xi is repeated exactly nL times, hence the inputs to each
node of the n-ary tree (except the root node) are all equal, and by idempotency the
tree is pruned to just one level, and hence delivers the original OWAw function.

3. The function at each node in the tree returns the minimum (maximum) of its
arguments, hence the result does not depend of the weights if they are strictly
positive. However, when the weights pi could be 0, the result is not true, as
the smallest (largest) component of x can be excluded from the calculation of
the minimum (maximum). Note that fp is not a weighted minimum or weighted
maximum functions, as those are the instances of the Sugeno and not Choquet
integral.

4. Theweightedmedian can bewritten as themedian of a vectorwith the components
repeated the relevant number of times, i.e.,median(X) [4], p. 121.While in general
the median of medians of subsets of inputs is not the median of the whole set of
inputs, for an odd n at each level of the tree the median is the value of the central
child node, which in turn is the value of its central child node, and so on until
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the bottom level where we get the centralof X; see Fig. 2 for an illustration. This
statement does not work for an even n if we consider the lower (respectively,
upper) medians, because now we need to take the value of the right middle child
node at every level, but the lower median of X sorted in the decreasing order
corresponds to XnL/2+1, which happens to be the left child of its parent node.
This is clearly seen in the case of n = 2 where the lower median of the bivariate
function f is the minimum of its arguments, hence fp(x) = min(X) which clearly
does not always coincide with the median of X. For example, in the binary tree
in Fig. 1 median(X) = X5 = x1 whereas fp(x1, x2) = X8 = x2.

5. Follows from the preservation of ϕ-transform. �

Theorem 4 Let f = OWAw and let the weighting vector be decreasing (increasing).
Then the algorithm PnTA generates a Choquet integral with respect to a submodular
(supermodular) fuzzy measure.

Proof AnOWAfunctionwith decreasingweights is convex (respectively concave for
increasing weights), and hence is a special case of the Choquet integral with respect
to a submodular (supermodular) fuzzy measure [3]. Since the convexity (concavity)
is preserved in the n-ary tree construction as per Theorem 1, the resulting weighted
function fp is also convex (concave), and hence it is a Choquet integral with respect
to a submodular (supermodular) fuzzy measure [3]. �

This result is useful when constructing weighted norms from OWAwith decreas-
ing weights, see [3, 23].

On the technical size we note that we do not need to sort the arguments in each
OWA function in the n-ary tree, as the vector x is already sorted, hence only one
sort operation for the inputs is required. Another note is that when the weights p are
specified to m digits in base n, L = m levels of the n-ary tree is sufficient to match
these weighs exactly. For example if p are specified to 3 decimal places and n = 10,
we only need to take L = 3. Therefore to match the weights to machine precision
(e.g., 53 bits for data type double) nL need not exceed the largest 64-bit integer, and
hence the algorithm PnTA can be implemented with 64-bit data types. The source
code in C++ is presented in Fig. 3.

Finally by using Definition 8 we can introduce weights into generalized OWA
functions in the samewas as for OWA functions, by using the n-ary tree construction.
This can be done in two ways: a) by using GenOWAw,g function as f , or b) by using
a ϕ-transform of a weighted OWAwith ϕ = g, that is, by applying g and g−1 only to
the leaves and to the root node of the tree, relying on the preservation of ϕ-transforms.
The second method is computationally more efficient as functions g and g−1 need
not be used in the middle of the tree, where they cancel each other.

This way we also obtain the special cases of weighted OWG and weighted power
based generalized OWA functions.
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Fig. 3 AC++ implementation of the pruned n-ary tree algorithm PnTA. The function sortpairs
(not shown) implements sorting of an array of pairs (xi, pi) in the order of decreasing xi
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6 Conclusions

The proposed method of introducing weights into n-ary symmetric functions has
several advantages. Firstly, it is a generic method universally applicable to any sym-
metric idempotent function, in particular to OWA functions. Secondly, the handling
of the weights is transparent and intuitive: the weights correspond to the multiplic-
ities of the arguments. Thirdly, many important properties of the base symmetric
aggregator are preserved in the n-ary tree construction, which is very useful as these
properties need to be verified only for the base aggregator. Finally, the pruned n-ary
tree algorithm delivers a numerically efficient way of calculating weighed averages,
among them the weighted OWA. This algorithm has complexity linear in n and the
number of levels of the treeL, andL is boundedby the desired accuracy of theweights.
We believe the n-ary tree algorithm constitutes a very competitive alternative to the
existing weighted OWA approaches.
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Uncertainty Management: Probability,
Possibility, Entropy, and Other Paradigms

Bernadette Bouchon-Meunier

Abstract Uncertainty modeling is a domain explored by researchers for centuries
and it is difficult to bring stones to this long history of thought. Boris Kovalerchuk has
been concerned for many years with specificities, relations and complementarities
of the main paradigms enabling the construction of automatic systems able to handle
imperfect information in a real-world environment, mainly probability theory and
fuzzy set theory.We point out the necessity to copewith several aspects of uncertainty
apparent in complex systems, mainly due to the complexity of natural phenomena
and, more recently, to the size and diversity of artifacts, in addition to the necessity
to take observers of the phenomena into account.

Keywords Uncertainty · Fuzzy sets · Probability · Complexity · Entropy · Percep-
tion · Subjectivity · Imprecision · Incomplete information

1 Introduction

Uncertainty modeling is a domain explored by researchers for centuries and it is
difficult to bring stones to this long history of thought. After the preeminence of
probability theory until the 1960s, the necessity to built automatic systems able to
handle imperfect information in a real-world environment drove to the emergence
of new paradigms, among which fuzzy set and possibility theories have led the
field, mainly because of their efficiency to cope with the complexity of real-world
problems. These theories are surrounded by evidence theory, imprecise probabilities,
interval methods, non-classical logics, to name but a few among the most important
paradigms to represent uncertainty and imperfect information. Boris Kovalerchuk
has been concerned for many years with specificities of several of these paradigms,
their relations and their complementarities and he has keenly explored solutions
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to make them collaborate, in particular in the Computing With Words approach
[2, 13, 14]. In this paper, we point out the necessity to cope with several aspects of
uncertainty underlying complex systems, mainly due to the complexity of natural
phenomena and, more recently, to the size and diversity of artifacts, in addition to
the necessity to take observers of the phenomena into account. We can consider that
the imperfection of available real-world information takes three main forms bringing
uncertainty, the first one being a doubt on the outcome of an experiment or in the
forecasting of a system state. The second one is incompleteness of information,which
entails uncertainty on unknown aspects of the studied phenomenon. The third one is
imprecision and vagueness resulting either from the observer, due to natural ability of
humans to cope with imprecise concepts and values or to inaccuracies of observation
tools; imprecision and vagueness also exist in nature and provide uncertainty on
precise values or states.

In Sect. 2,we insert the question of uncertaintymanagement in approaches to com-
plexity, mainly proposed by E.Morin and J.-L. LeMoigne. In Sect. 3, we review con-
cepts of entropy asmethods to deal with uncertainty, showing that several approaches
are available, according to the level of complexity of the observed system we take
into account. In Sect. 4, we propose to differentiate several dimensions of uncertainty
to show that they must work together and adapt to fit the requirements of any given
real-world problem.

2 Complexity Intelligence

In a restricted view, complexity intelligence could be regarded as an approach to
deal with the present complexity of available data, due to the large amount and
the heterogeneity of information available in a digital environment in the so-called
big data paradigm. This aspect of complexity intelligence corresponds to the use of
artificial intelligence approaches and, in particular, the efficiency of computational
intelligence methods, to deal with large amounts of data, to explore them, to extract
relevant information, to discover patterns, to detect exceptional elements, outliers or
weak signals, in order to support decisions and to predict risk. This aspect is certainly
a major one in the modern environment, but it does not cover the whole concept of
complexity intelligence advocated by E. Morin [16] and J.-L. Le Moigne [15].

They consider that, in its general form, complexity intelligence refers to the impos-
sibility to separate the observed world from the observer, and the necessity to take
into account perception and context in the analysis of complex phenomena. Natural
intelligence is then involved in the handling of complexity inherent in all systems,
in the construction of models and the communication of knowledge. According to
E. Morin, consciousness of complexity is necessary to understand a phenomenon
and to generate science. Progresses made by humans on scientific certainties induce
progresses on their uncertainties and recognition of their ignorance associated with
their knowledge. E. Morin claims that principles of incompleteness and uncertainty
are at the heart of complexity intelligence, even though it is based on a kind of
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multidimensional thinking tending to take into account all aspects of the observed
phenomenon.

In [15], the authors point out the necessity for Science to be conscious of its
own complexity, impossible to avoid because of relations between humans and the
observedworld, be it natural or artifactual. They recommend that science of complex-
ity produces concepts and theories supporting intelligibility and being in the realm of
the possible, rather than the necessary. They claim that, before being conscious of the
need to approach complexity through intelligence, perception and understandability,
science was based on four “pillars of certainty” tending to eliminate complexity and
to introduce simplicity in order to grasp complex phenomena. E. Morin [15] con-
siders that the first pillar of certainty is the absolute order, considering that a strict
ordering governs everything in the universe and disorder can only be the consequence
of a lack of knowledge. The second pillar of certainty is the separability principle,
associated with the capability to split any problem into simple elements, forgetting
the whole and the existing relations between parts of the system. The third pillar
of certainty is the reduction principle, reducing knowledge to measurable quanti-
ties. The fourth pillar of certainty is inductive/deductive logic, denying concepts like
creation, abduction and hypothesis-based reasoning.

E.Morin insists on the need to take into account qualitative, as well as quantitative
effects and to accept contradictions in observations. Uncertainty is unavoidable, as
is complexity inherent in the real world, and it takes various forms, such as “logical
uncertainty”, “empirical uncertainty”, or “cognitive uncertainty” referring to human
mental categories. E. Morin and Le Moigne’s vision is embedded in system science,
the foundations of which have been laid by Ludwig von Bertalanffy in the fifties, at
the same time as cybernetics was emerging, disseminating the concept of entropy. It
is worth noting that their work is related to the so-called second-order cybernetics,
invented by H. von Foerster [1, 17] and regarded as the cybernetics of observing
systems, as opposed to the cybernetics of observed systems. The observer is clearly
involved in the analysis of complexity and the management of uncertainty, involving
perception and taking into account context and environment of the system.

Such an approach leads to search for solutions to deal with complexity through
the representation of incomplete information, the preservation of possible situations
even in the case where they seem incompatible and the capacity to revise and update
information in non-classical logics. Furthermore, it appears that theworld complexity
cannot be grasped by means of the only utilization of probabilities to cope with
so diverse uncertainties. We can think of L.A. Zadeh’s search for the involvement
of perception in the automated management of information, and in particular his
perception-based theory of probabilistic reasoning [20] or a computational theory of
perception [19] adding to classic probability theory or predicate logic the capacity
to compute and reason with perception-based information.

More generally, a fuzzy set-based knowledge representation following
L.A. Zadeh’s seminal work and the associated possibility theory provide solutions to
escape the four above-mentioned pillars of certainty. Among fuzzy relations, fuzzy
orders, similarity and indistinguishability relations providemethods to avoid absolute
orders. Partial membership, fuzzy partitions, overlapping classes enable to weaken
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the separability principle, according to human capabilities of considering unsharp
categories and to accept contradictions to some extent. Fuzzy sets, providing a numer-
ical/symbolic interface, are source of expressiveness and linguistic summarization
of numerical data can be achieved, as an alternative proposal to reduction principle.
Finally, approximate reasoning, general modus ponens, fuzzy inductive reasoning,
fuzzy abduction and case-based reasoning, are solutions to avoid the rigidity of
deduction in classical logic, when suitable.

3 Entropy

After means of representing uncertainty reviewed in Sect. 2, we can consider means
of evaluating uncertainty, which are mainly studied in information theory. We can
establish a parallel between these two paradigms and their history.

The previous proposals to deal with complexity go beyond traditional knowledge
representation methods, by means of the involvement of the observer and his percep-
tions in the representation of uncertainty in complex systems. They can be compared
to novel information theory that also appeared in the 1960s, after the first concept
of entropy proposed by C. Shannon in coding theory and N. Wiener at the origin of
cybernetics, in 1948. This concept was dedicated to communication and information
transmission and was considered as syntactical, with no semantic value. This is the
reasonwhy amore general theory of informationwas proposed by J. Kampé de Fériet
and B. Forte [10] as a theoretical approach to the concept of information, based on
axioms [8] not necessarily dependent on probabilities and taking an observer into
account. We see again, as we did in E. Morin’s approach to uncertain information
representation, that observers take part in the evaluation of uncertain knowledge,
with a role assigned to a “headquarter” [11] in the case where there exist several
observers. The objective of the authors is to accept subjectivity in information.

Another extension of the original concept of entropy has been simultaneously
proposed in [3, 9] to take into account qualitative aspects of information related to
its utility for the fulfillment of a goal, considering again the context of the observed
phenomena. A fresh look at the concept of entropywas taken byDeLuca and Termini
[7] in their definition of a non-probabilistic entropy regarded as a measure of a
quantity of information not necessarily related to random experiments, provided by
a different kind of uncertainty based on a fuzzy set-based knowledge representation.

Suchworks were the presages of a long list of extensions of the concept of entropy
[12] supposed to go along with various uncertain knowledge representation, such as
intuitionistic entropy [6], or entropy in a mathematical theory of evidence [18]. The
reasons why the introduced quantities are called entropy, as well as their properties,
are diverse [5], but in any case they are assumed to evaluate a degree of imperfection
taking a part in some uncertainty inherent in an observed system,whatever the chosen
means of representing uncertainty are.
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4 Dimensions of Uncertainty

Introduced and developed in the 17th century by B. Pascal, P. de Fermat and J.
Bernoulli, probability has been the main mathematical concept to represent uncer-
tainty during three centuries. Subjective probabilities were a first attempt to soften
this concept in order to take into account the observer, to some extent, and they were
proposed by F. Ramsey and B. de Finetti in the 1930s. Another alternative to classic
probabilities was introduced by A. Dempster in 1967 to encompass a higher form
of uncertainty, regarded as uncertainty on degrees of uncertainty, by means of upper
and lower probabilities, then developed by G. Shafer in 1976 as evidence theory. All
these works were addressing the problem of doubt and uncertainty about the out-
come of an experiment or the state of a phenomenon [2], which can be regarded as the
first level of uncertainty in complex systems. Examples of such intrinsic uncertainty
are “Peter may attend the meeting today” or “Mr. X will probably be elected by the
assembly”.

A second level of uncertainty corresponds to a doubt resulting from an impreci-
sion, an approximation, or from incomplete knowledge. For instance, “I will be at the
railway station around noon” is based on imprecise information and entails an uncer-
tainty on my exact arrival time and the fact that I can catch a train leaving at noon.
This level of uncertainty was first tackled by L.A. Zadeh in 1965 in his seminal paper
on fuzzy sets, and also by Ramon Moore in 1966 in his book on interval analysis
addressing a narrower aspect of imprecise information. It is only in the framework
of fuzzy set theory that the induced uncertainty itself is represented by means of
possibilities, introduced by L.A. Zadeh in 1978.

A third level of uncertainty can be identified, corresponding to a doubt due to a
subjective appreciation or a judgment expressed by an individual. For instance, “I
don’t believe that Peter is in Paris” or “I am not sure that Mr. X will be elected by
the assembly”. Such appreciation can autonomously rate the doubt on a fact or be
regarded as somemeta-uncertainty added to an uncertainty of the first or second level.
In addition to possibilistic logic developed in the environment of possibility theory,
extensive work has been published on non-classical logics such as modal logics since
the 1960s, nonmonotonic reasoning to copewith evolving information and its revision
since 1980, TruthMaintenance Systems introduced by J. Doyle in 1979 to enable the
revision of beliefs, autoepistemic logics introduced by Robert Moore in 1983 to take
into account partial information with semantical considerations, probabilistic logic
introduced by N.J. Nilsson in 1986.

This list is not exhaustive, as the development of non-classical logics has been
intense, but our purpose is to point out the existence of solutions to cope with uncer-
tainty, answering E. Morin and J.-L. Le Moigne’s concerns and accepting uncertain
information instead of eliminating it, considering the need to revise beliefs and to
take context and observer into account in the representation of complex situations.

This typology of levels of uncertainty can be completed by a view of uncertain
information representation methods along three dimensions according to the nature
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of the addressed uncertainty [2], with the aim of choosing an appropriate method
when facing a real-world problem.

The first dimension refers to the distinction between numerical and symbolic
information: probabilities or masses of assignment in evidence theory are examples
of methods to deal with numerical information (“Mr. X is expected to be elected
with 62% of the votes”), while modal logics manage symbolic uncertain information
(“I believe that Mr. X will be elected”). Fuzzy set-based methods and the associated
possibility theory are intermediate between these kinds of information, coping with
numerical data by means of a symbolic representation, while equipping knowledge
representation with capabilities of interpretability and expressiveness (“Mr. X is
expected to be elected with a large majority of the votes”).

The second dimension of uncertain information corresponds to the distinction
between intrinsic and extrinsic uncertainty, the first one being attached to the real
world phenomenon, the second one being due to the process of observation itself.
Interval analysis can be used to handle extrinsic uncertainty deriving for instance
frommeasurement errors (“within 10% of the measured value”), while fuzzy classes
can also address various cases of intrinsic uncertainty, such as the contours of regions
in a digital image or categories with blurred boundaries like “young” and “old”.

The third dimension of uncertain information in a complex world indicates a grad-
ual degree of subjectivity, from an objective measurement to a subjective evaluation
[4], from physical properties of an object to its perceived properties, for instance
from the numerical representation of colors from red (“wavelength between 620–
700nm”, “RGB: 255, 36, 0”) in a digital image to the perception of a dominant color
by a human agent (“red”), and furthermore to a subjective appreciation, such as a
feeling or an emotion (“passion”, “energy”).

It is worth noting that these dimensions of uncertain information do not gener-
ally appear independently and representation methods can be regarded in this three
dimensional space. We give a few examples of elements in this space.

The most classic uncertainty representation regards numerical intrinsic uncer-
tainty, dealt with by means of objective or subjective probabilities, according to the
importance attached to subjectivity.

Examples of objective symbolic intrinsic uncertainty can be associated with
imprecise descriptions of variables managed through fuzzy sets in the case of objec-
tive and measured data. For instance [2], in the case of descriptions of spots on a
mammography, qualified as “round” by a medical doctor, an uncertainty comes from
the imprecise description, since “round” is only a linguistic approximation of the
mathematical characterization “circular”, and the membership function is obtained
in a machine learning-based process from measurements of various criteria such as
convexity or elongation, performed during the image processing.

Objective numerical extrinsic uncertainty is present in sensor imprecision or in
estimations. Interval analysis, fuzzy sets, or confidence intervals can be used to deal
with it.

A subjective intrinsic symbolic uncertainty can be identified in felt probabili-
ties (such as “highly probable”), which can be represented by fuzzy values, whose
membership functions can be obtained by means of a psychometric approach.
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Subjective extrinsic numerical uncertainty is identified in web-based information
quality scoring, and it can be managed by means of possibility theory or evidence
theory, for instance.

A symbolic extrinsic source of uncertainty is related to the difficulty to characterize
a given complex phenomenon, solved bymeans of linguistic expressions.An example
of objective such uncertainty appears when it is impossible to obtain precise values
from an observer, for instance evaluating a distance (“far from the house”), this
information being easily represented through fuzzy sets. The case of a subjective
symbolic extrinsic uncertainty is observed when the observer expresses a doubt on
the validity of data (“I believe these news”), and modal logic is one of the candidates
to cope with it.

In real-world applications, the selection of an uncertainty modeling technique
relies on the nature of uncertainty present in the problem to solve or the phenomenon
to observe. It is also oriented by the necessity to obtain an expressible result and/or a
numerical coefficient or mark expressed by users. Let us remark that, in some situa-
tions, it may be interesting to preserve the uncertainty associated with the outcomes
of a system and to enable the user to use his/her expertise to make a final decision.
In other words, it may be important to know that two different events may occur
and to be prepared to both of them, which can be achieved by means of possibility
theory or fuzzy logic, rather than to look for a deterministic decision. In addition,
it is often interesting to use several uncertainty modeling techniques simultaneously
in a given environment, for instance probabilities and fuzzy sets, which is possible
in the so-called Soft Computing paradigm.

5 Conclusion

We have presented a prism to study uncertainty in an operational environment, with
the aim of helping users to appropriately choose a knowledge representation method.
We have situated this study in the analysis of complex systems, in which uncertainty
is fundamentally inherent. We have shown three levels and three dimensions of
uncertainty and we claim that it is impossible to reduce one form of uncertainty to
another one to deal with complex systems.
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Relationships Between Fuzziness, Partial
Truth, and Probability in the Case
of Repetitive Events

Jozo Dujmović

Abstract Frequency-based probabilistic models are suitable for the quantitative
characterization and analysis of repetitive events. Quantitative models based on the
concept of fuzzy set can be applied both in the case of repetitive events and in cases
where frequency-based probabilistic models are not appropriate. In the case of repet-
itive events there is a possibility of comparison of relationships between probabilistic
and fuzziness-based interpretations of the same physical or perceptual reality. In this
paper we analyze these relationships using three characteristic examples and show
that in the case of repetitive events, fuzziness, probability and partial truth are three
coexisting compatible interpretations of the same reality, i.e. practically equivalent
concepts.

1 Introduction

Relationships between fuzziness and probability have a long history of controversial
opinions and hot discussions. The latest contribution to this area can be found in [6,
8]. In spring 2014, BISC community (Berkeley Initiative in Soft Computing) was a
forum for exchanging a variety of opinions about fuzziness, probability, possibility
and partial truth, as formalisms for dealing with uncertainty. This paper includes
material that was initially used as author’s contribution to that discussion.

Repetitive events are events that have predecessors and successors. Any form
of life creates repetitive events. Some sequences of events have the first and the last
event in the sequence, but the nature of sequence is still repetitive. Even the first event
in the sequence can frequently be interpreted as a repetition of the first event in some
similar previous sequence that consisted of similar events. Since the repetitive events
are defined using predecessors and successors, singular events should be defined as
events without predecessor and successor. Taking into account that predecessors
and successors only need to be sufficiently similar to an analyzed event, it seems
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to be extremely difficult to find truly singular events. Even if such events can be
identified, it is very easy to show that they are a negligible minority compared to
repetitive events. Therefore, whenever in this paper we speak about probability and
probabilistic models we always assume frequency-based probability and frequency-
based probabilistic models derived from observation of repetitive events.

Most of human experiences are repetitive. For example, human work in any pro-
fession is essentially a repetitive experience that consists of many days spent working
with similar people, offering similar services, and solving similar problems. Regu-
lar use of machines and tools (e.g. cars and computers), by both individuals and
corporate users creates repetitive events where some experiences are more positive
(machines provided satisfactory service) and some are less positive (performance
of machines was not sufficiently satisfactory). Human physical and other properties
(e.g. weight, height) are also repetitive and can be analyzed using data about selected
populations of human subjects.

It is useful to note that some events are only seemingly singular, i.e. they are
interpreted with intention to be classified as singular. A favorite recent example is
the possible election of a female president in a country that had a long sequence
of male presidents. Of course, one could argue that this is a singular event, but it
would be much easier to see that the election of female president follows the same
rules as the election of all previous male presidents, and that such a “singular event”
already occurredmany times inmany countries that had a sequence ofmale presidents
followed by a female president. Interpreting events as repetitive is much easier than
interpreting them as singular.

Generally, repetitive experiences are neither identical nor certain—they always
vary in a specific range and create human perceptions of satisfaction, suitability,
quality, value, etc. In such cases some properties are objectively measurable (e.g.
the height of a car driver), but much more frequently we have to deal with human
percepts that are not measurable. Of course, human perceptions can be modeled
using formal models, and such models create the areas of computing with words [9],
perceptual computing [7], and aggregation logic [1, 5].

Uncertainty is a human property that primarily reflects a lack of information and
human inability to accurately predict future events. Formalisms for dealing with
uncertainty are developed with general intention to reduce uncertainty and help in
precision of meaning and better describing perceptions in a natural language.

The frequency-based probabilistic approach to reducing uncertainty consists of
observing and recording frequencies of past events, and then using them to predict
the likelihood of similar future events (e.g. to determine, with a given degree of
confidence, intervals where events are likely to occur). Fuzzy approach is based on
reducing uncertainty by using fuzzy set membership functions where high degree
of membership reflects a high certainty that an object satisfies conditions that define
members of a specific fuzzy set. Logic approach to reducing uncertainty consists of
computing a degree of truth of assertion that an object has specific properties [2]. If
the degree of truth is high, then the certainty of assertion is also high, contributing to
precision and reducing the uncertainty. In this paper, our goal is to use characteristic
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examples to show that in the case of repetitive events fuzzy approach, probabilis-
tic approach, and soft computing logic approach are similar and very frequently
equivalent.

2 The Case of Tall Drivers

Let us consider a set of n licensed car drivers (in the USA n > 200 × 106). Let h
denote the height of a car driver (written in each driver license), and let us sort car
drivers according to their height:

hmin = h1 < h2 < · · · < hn = hmax.

The heights are real numbers, and for simplicity we assume that all heights are
different. The function P : [hmin, hmax] → [0, 1] denotes the fraction of remaining
n − 1 drivers that are shorter than the i-th driver:

P(hi ) = (i − 1)/(n − 1), i = 1, . . . , n

P(h1) = 0, P(hn) = 1

A typical shape of this function (for large n) is shown in Fig. 1.
Let us now consider a fuzzy set of tall drivers. The membership function of such a

fuzzy set μtall(H) could be defined in many different ways using various arbitrarily
selected intervals of height H . Since the distribution in Fig. 1 represents the objective
reality, it is very reasonable to claim that only the tallest of all n drivers has the distinct
privilege to be the “full member” of the tall driver fuzzy set, i.e., μtall(hn) = 1. Once
we decided the status of the tallest driver, we must do the same with the shortest
driver: we declare the shortest driver to be the one and only full member of the fuzzy
set of short drivers, i.e. μshort(h1) = 1. Furthermore, μtall(H) + μshort(H) = 1.

Another self-evident decision is related to the driver whose membership satisfies
μtall(H) = μshort(H) = 1/2. The most natural way to select such a driver is by using
the median of all heights H = hmed ; assuming that n is odd, the median driver has
the height hmed = μ−1

short(1/2) = μ−1
tall(1/2), i.e., approximately 50% of all drivers are

Fig. 1 A characteristic
shape of the P(H) function

H

minh maxh

(   )P H 

0 

1 

0 Height 



64 J. Dujmović

taller than the driver med and 50% of all drivers are shorter than the driver med.
If this reasoning is acceptable, then the most realistic membership functions are the
following:

μtall(hi ) = (i − 1)/(n − 1)

μshort(hi ) = (n − i)/(n − 1)

Consequently, μtall(H) is exactly the function shown in Fig. 1.
Let us now investigate an arbitrary driver D whose height is hm , and let us find the

degree of truth of the statement “D is a tall driver.” Again, it seems impossible to find
reasons why this degree of truth should differ from μtall(hm) = (m − 1)/(n − 1),
which is the fraction of drivers who are shorter than D. In other words, the degree of
truth for “D is a tall driver” is the same as the degree of membership in the fuzzy set
of tall drivers, and the probability that a randomly selected driver is shorter then D.

The height of a driver is obviously a repetitive event that occurs with measurable
frequency. The number of drivers having the height h ∈ [a, b] is n[P(b) − P(a)].
If we measure frequencies of drivers f1, . . . , fk in k equidistant subintervals of
[hmin, hmax], and normalize the frequencies, pi = fi/( f1 + . . . + fk), i = 1, . . . , k,
then, for large k and n we can consider that h is a continuous random variable,
and we get the probability density function of driver height p(H), 0 < hmin ≤ H ≤
hmax and the (cumulative) probability distribution function P(H) = ∫ H

hmin
p(t) dt .

Unsurprisingly, for all practical purposes related to modeling human reasoning, the
function shown in Fig. 1 is also the probability distribution function for the height
of a driver, i.e. Pr[h ≤ H ] = P(H) and Pr[a < h ≤ b] = P(b) − P(a). The mean
height of drivers is the following:

h = n−1(h1 + . . . + hn) =
∫ hmax

hmin

tp(t) dt =

∫ hmax

0
[1 − P(t)] dt = hmax −

∫ hmax

hmin

P(t) dt.

Therefore, in the repetitive case of a measurable physical property (height) of a
large number of drivers, we have that the fuzzy set membership function coincides
with the probability distribution function. In addition, the degree of fuzzy set mem-
bership of an object can be naturally interpreted as the degree of truth of a statement
claiming that the object is a full member of the set.

3 The Case of Job Satisfaction

Job satisfaction is not an objective physical property. However, it is a well defined
perceptual variable. Each worker has a clear percept of the degree of job satisfaction,
and such percept can easily be quantified. For example, consider the statement “I am
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asked to indicate, on a scale from 0 to 1, the degree to which I like my job.My answer
is: 0.7.” This is a value statement (it reports the result of an intuitive evaluation).
Obviously, this statement indicates that the degree of truth of the statement “I have a
perfect job” is 0.7. Following are two interesting questions related to this statement:

(a) Is this statement a consequence of the repetitive nature of job satisfaction?
(b) Is this statement yielding equivalent fuzzy, probabilistic, and truth value inter-

pretations?

Job satisfaction is a compound perception. It is affected bymany factors, including
monetary compensation, fringe benefits, opportunities for professional growth, social
recognition, degree of job-related stress, relationships with coworkers andmanagers,
etc. There is no doubt that each job creates repetitive experiences every day spent
at work. Job satisfaction can be interpreted as a quantifiable perception that can be
created at the end of each working day. The degree to which a worker likes a job can
be interpreted as an overall perception of job satisfaction obtained by averaging all
repetitive daily job satisfaction degrees.

A typical normalized relative frequency distribution of a daily job satisfaction per-
ception s is shown in Fig. 2. So,

∫ 1
smin

fs(x) dx = 1 and the corresponding probability

distribution function of job satisfaction is Fs(x) = Pr[s ≤ x] = ∫ x
smin

fs(t) dt. The

average daily job satisfaction is S = s = ∫ 1
smin

x fs(x) dx = 1 − ∫ 1
smin

Fs(x) dx and it
can also be interpreted as the degree of truth of the statement “I have a perfect job”.
So, S is a cumulative perception of job satisfaction that in the above example was
reported to be S = 0.7. This is also a degree of membership of the current job in the
fuzzy set of “worker’s ideal jobs,” as well as a degree of likelihood that a randomly
selected day at work will completely satisfy worker’s expectations. On the other
hand, the probability distribution function Fs(x) shows the probability Pr[s ≤ x],
and it can be interpreted as the membership function of the daily job satisfaction
perception x in a fuzzy set of “high job satisfaction days.”

Note that all these interpretations hold only for one specific individual. In the
next iteration we can analyze a group of n related individuals (e.g. medical doc-
tors, or corn farmers, or software engineers) with respect to their perceptions of
the average job satisfaction S1, . . . , Sn . Here we can directly apply the same rea-
soning used for the fuzzy set of tall drivers. For example, we can sort the average
job satisfaction of all medical doctors, Smin = S1 < · · · < Sn = Smax, and then the

Fig. 2 A typical shape of
the daily job satisfaction
distribution for a specific
worker
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membership in the fuzzy set of job-satisfied medical doctors is the same as the
probability distribution function of the average MD job satisfaction: PMD(Si ) =
Pr[S ≤ Si ] = (i − 1)/(n − 1) = μMD(Si ). The mean value of this probability dis-
tribution S = smax − ∫ Smax

Smin
PMD(x) dx can be used as the degree of truth of the state-

ment “medical doctors are completely satisfied with their jobs.”
Therefore, this example demonstrates that job satisfaction experiences are repeti-

tive both at the level of individual worker, and at he level of a professional group. In
both cases, probabilistic, fuzzy and truth value interpretations are equivalent: the job
satisfaction probability distribution is the same as the corresponding membership
function in the fuzzy set of satisfied workers, and the mean degree of satisfaction can
be interpreted as the degree of truth of the statement claiming a complete satisfaction.

4 The Case of Computer Selection

The percept of value is one of the most frequent human percepts. It is not an objec-
tively measurable property of evaluated object. Our final example investigates com-
puter evaluation and selection, i.e. a decision process of predicting the value of a
computer system for a specific stakeholder. The stakeholder is a company (or an indi-
vidual) who buys a computer system in order to attain specific goals. The computer
selection process consists of computing the overall suitability of each competitive
computer system and selecting the computer that has the maximum suitability.

Each computer has many quantitative and qualitative parameters and there is no
simple probabilistic model for computing the probability of satisfaction of specific
stakeholder. Similar difficulties are encountered in defining a precise overall mem-
bership function of each competitive computer in the fuzzy set of computers that
completely satisfy the stakeholder. What can be done, however, is to use the soft
computing evaluation logic methodology and compute the degree of truth of the
statement claiming that a given computer completely satisfies justifiable require-
ments of the stakeholder. That degree of truth is a function of degrees of truth of
statements that significant computer attributes satisfy stakeholder’s requirements.
The computation of the overall degree of truth can be based on a propositional cal-
culus presented in [2, 3]; that calculus is the main component of the Logic Scoring
of Preference (LSP) evaluation method [4].

If the evaluation is based on the LSP criterion model, then the first step consists
of identifying a set of attributes a1, a2, . . . , an that affect the capability of computer
system to attain stakeholder’s goals. For complex computer systems typical value of
n is from 80 to 120. For each attribute it is necessary to define an attribute criterion
that specifies the attribute degree of suitability. For example, if ai denotes thememory
capacity, then a simple form of attribute criterion for computing thememory capacity
suitability degree xi might be the following:

xi = gi (ai ) = max

[

0,min

(

1,
ai − Mmin

Mmax − Mmin

)]

, ai > 0, 0 ≤ xi ≤ 1
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If ai ≤ Mmin, then xi = 0 and if ai ≥ Mmax then xi = 1. Between Mmin and Mmax,
the degree of suitability is approximated as a linear function of ai . Therefore, the
available memory must be greater than the threshold value Mmin; similarly, Mmax

denotes the maximum necessary memory (buying more would not improve perfor-
mance but would decrease affordability). The selections of both the attributes and
the parameters of their criteria are based on experiences with previous (and/or sim-
ilar) computer systems, i.e. on repetitive events of satisfaction/dissatisfaction with
attributes of previously owned computers running stakeholder’s workload. The suit-
ability degree xi is interpreted as the degree of truth of assertion that the available
memory perfectly (completely) satisfies stakeholder’s requirements. It can also be
interpreted as the degree of membership in the fuzzy set of fully satisfied memory
capacity requirements.

After the specification of all attribute criteria and attribute evaluation we have n
attribute suitability degrees x1, x2,…, xn that are continuous logic variables affecting
the overall degree of suitability x . The aggregation of x1, x2, …, xn is a logic process
because these values must satisfy various logic conditions: some groups must be
simultaneously satisfied, some attributes can replace each other, some aremandatory,
some are optional, etc. Similarly to attribute criteria, these conditions are also derived
from experiences generated using previous stakeholder’s computer systems. The
result of logic aggregation is the overall suitability

x = L(x1, . . . , xn) = L(g1(a1), . . . , gn(an)), 0 ≤ x ≤ 1.

A more detailed description of the logic aggregation process based on the Logic
Scoring of Preference aggregators can be found in [2, 4], and discussion of relation-
ships of mathematical models of aggregation and observable properties of human
reasoning can be found in [1].

In agreement with the interpretation of attribute suitability degrees, the overall
suitability degree x is interpreted as the degree of truth of assertion that the evaluated
computer system perfectly (i.e. completely) satisfies all stakeholder’s requirements.
Similarly to previous examples, it can also be interpreted as the degree of mem-
bership of the analyzed computer in the fuzzy set of perfectly suitable computers.
In addition, x can also be used as a predictor of the likelihood (or probability) that
at any time in the future the analyzed computer will perfectly satisfy stakeholder’s
needs. In other words, if we have the equivalence between the overall degree of truth,
fuzzy membership, and probability, then any one of them can be used to determine
or approximate the other two. Compared to previous examples, the case of computer
selection has the least visible repetitive properties. Regardless a generally modest
number of previously owned computers, the experiences that are necessary to spec-
ify evaluation criteria (the selection, structure and parameters of attribute criteria,
and the structure and parameters of the suitability aggregation models) can also be
obtained from similar users having similar computers and running similar workload,
as well as from domain expert knowledge and professional literature. In other words,
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wherever decisions are made using professional experiences of stakeholders, evalu-
ators, and domain experts, such knowledge can only come from previous repetitive
experiences accumulated during education, training, practical work and/or solving
similar problems.

5 Discussion and Conclusions

Presented examples show that in the case of repetitive events we can identify an
observable object and select, collect, and analyze one or more of its measurable
attributes. Each selected attribute can be an objective physical property or a percep-
tual variable. In all cases we can assume the existence of a number of measurable
observations of each selected attribute. In such cases the attribute probability distri-
bution function, the fuzzy set membership function, and the degree of partial truth of
the statement claiming the full satisfaction of membership requirements are equiva-
lent interpretations of the same physical reality. The prerequisite for the equivalency
is the repetitive character of the analyzed variable (e.g. the height of driver) and an
appropriate and justifiable interpretation of the concepts of fuzziness, probability,
and partial truth.

Generally, for any observable repetitive attribute a that has the probability distrib-
ution function Pr[a ≤ X ] = Pa(X), amin ≤ a ≤ amax where Pa(X) = 0 for X ≤ amin

and Pa(X) = 1 for X ≥ amax we can define a fuzzy set of “objects that have a large
value of attribute a” (i.e. objects whose value of a is close to amax). The membership
function in such a fuzzy set for an object having a = x is μlarge a(x) = Pa(x). The
degree of truth of the statement “the object having a = x is the largest” isμlarge a(x).

It is important to note that a very large number of cases fit in this model. In partic-
ular, all professional evaluation problems fall in this category. Indeed, all evaluation
criteria are based on evaluator’s previous experiences and reflect repetitive character
of the evaluation process. It is not possible to differentiate good and bad values of
attributes unless the evaluator has knowledge derived from repetitively performing
similar evaluations. If a justifiable evaluation model generates for object Ω a result-
ing degree of suitability S ∈ [0, 1], then S can be equivalently interpreted in three
ways:

(1) S is a degree of truth of the statement “Ω is perfectly satisfying all requirements.”
(2) S is the degree of membership of Ω in a fuzzy set of perfect objects.
(3) S is a degree of likelihood (probability) thatΩ will deliver a perfect performance.

Let us emphasize that in evaluation problems S is a quantitative estimate (or
predictor) of the human percept of the overall (compound) value/quality/suitability.
Thus, there is no objective measurable value that could be compared with S. On the
other hand, everybody understands that there are stakeholders and their goals and
requirements, and that these goals and requirements can regularly be only partially
satisfied. The likelihood of full satisfaction, whatever label is used for it (probability,
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or fuzzy membership, or partial truth), is going to be predicted using the only indi-
cator we have, the overall suitability S. In this situation the concepts of probability,
fuzzy membership, and partial truth become equivalent interpretations of a clearly
observable but objectively nonmeasurable human percept. Of course, the equivalence
of a probability distribution function and a fuzzy set membership function is not a
general mathematical property based on fundamental assumptions or axiomatic ori-
gins of these concepts. However, it is a rather frequent consequence of interpretations
and use of those concepts in the context of observable human reasoning.

The repetitive nature of human experiences is frequently underestimated or
neglected. In many discussions that compare fuzzy and probabilistic approach some
authors use the concept of singular events, as unpredictable events that happen with-
out predecessors and consequently their probability cannot be determined using
frequency-based probability theory. However, it is extremely difficult, if not impos-
sible, to find events without predecessors, and those that might (partially) qualify for
that status usually deserve significantly less attention than the huge majority that has
predecessors and can be characterized as repetitive. Since the observable repetitive-
ness in finite populations (clearly visible in the case of tall drivers) yields probability
distribution function that can also serve as a fuzzy membership function, as well as a
degree of truth of a related assertion, it seems that the situations where the concepts
of probability, fuzzy membership, and partial truth are very close or fully equivalent
significantly dominate the situations where that is not the case.
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Using Extended Tree Kernel to Recognize
Metalanguage in Text

Boris A. Galitsky

Abstract The problem of classifying text with respect to metalanguage and
language-object patters is formulated and its application areas are proposed. We
extend parse tree kernels from the level of individual sentences towards the level of
paragraphs to classify texts at a high level of abstraction. The method targets the
text classification tasks where keyword statistics is insufficient for text classification
tasks. We build a set of extended trees for a paragraph of text from the individual
parse trees for sentences. Conventional parse trees are extended across sentences
based on anaphora and rhetoric structure relations between the phrases in different
sentences. Tree kernel learning is applied to extended trees to take advantage of
additional discourse-related information. We evaluate our approach in the security-
related domain of the design documents. These are the documents which contain a
formal well-structured presentation on how a system is built. Design documents need
to be differentiated from product requirements, architectural, general design notes,
templates, research results and other types of documents, which can share the same
keywords. We also evaluate classification in the literature domain, classifying text in
Kafka’s novel “The Trial” as metalanguage versus novel’s description in scholarly
studies as a mixture of metalanguage and language-object.

Keywords Tree kernel · Formalizing discourse · Language-object and metalan-
guage · Document analysis

1 Introduction

In the majority of text classification problems, keywords statistics is sufficient to
determine a class. Keywords are sufficient information to determine a topic of a
text or document, such as software vs hardware, or pop rock vs punk. However,
there are classification problems where distinct classes share the same keywords,
and document phrasing, style and other kinds of text structure information needs
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to be taken into account. To perform text classification in such domain, discourse
information such as anaphora and rhetoric structure needs to be taken into account.

We are interested in classifying a text belonging to metalanguage or language-
object. If a text tells us how to do things, or how something has been done, we
classify this text as a language-object. If a text is saying how to write a document
which explains how to do things, we classify it as metalanguage. Metalanguage is a
language or symbolic systemused to discuss, describe, or analyze another language or
symbolic system. In theorem proving, metalanguage is a language in which proofs
are manipulated and tactics are programmed, as opposed to the logic itself (the
object-language). In logic, it is a language in which the truth of statements in another
language is being discussed.

Obviously, using just keyword information would be insufficient to differentiate
between texts in metalanguage and language-object. Use of parse trees [11] would
give us specific phrases in use by texts in metalanguage, but still it will not be suffi-
cient for systematic exploration of metalanguage-related linguistic features. It is hard
to identify these features unless one can analyze the discourse structure, including
anaphora, rhetoric relations, and interaction scenarios by means of communicative
language [28]. Furthermore, to systematically learn these discourse features associ-
ated with metalanguage, we need a unified approach to classify graph structures at
the level of paragraphs [5, 8, 14].

The design of syntactic features for automated learning of syntactic structures for
classification is still an art nowadays. One of the approaches to systematically treat
these syntactic features is the set kernels built over syntactic parse trees. Convolution
tree kernel [2] defines a feature space consisting of all subtree types of parse trees
and counts the number of common subtrees as the syntactic similarity between two
parse trees. Tree kernels have found applications in a number of NLP tasks, includ-
ing syntactic parsing re-ranking, relation extraction, named entity recognition [4]
and Semantic Role Labeling [23, 32], relation extraction, pronoun resolution [18],
question classification and machine translation [29, 30].

The kernel’s ability to generate large feature sets is useful to assure we have
enough linguistic features to differentiate between the classes, to quickly model new
and not-well-understood linguistic phenomena in learning machines. However, it
is often possible to manually design features for linear kernels that produce high
accuracy and fast computation time, whereas the complexity of tree kernels may
prevent their application in real scenarios. Support Vector Machines (SVM [31])
can work directly with kernels by replacing the dot product with a particular kernel
function. This useful property of kernel methods, that implicitly calculates the dot
product in a high-dimensional space over the original representations of objects such
as sentences, has made kernel methods an effective solution to modeling sentence-
level structures in natural language processing (NLP).

An approach to build a kernel based on more than a single parse tree has been pro-
posed, however for a different purpose than treating multi-sentence portions of text.
To perform classification based on additional discourse features, we form a single tree
from a tree forest for a sequence of sentences in a paragraph of text. Currently, kernel
methods tackle individual sentences. For example, in question answering, when a
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query is a single sentence and an answer is a single sentence, these methods work
fairly well. However, in learning settings where texts include multiple sentences,
we need to represent structures which include paragraph-level information such as
discourse.

A number of NLP tasks such as classification require computing semantic features
over paragraphs of text containingmultiple sentences. Doing it at the level of individ-
ual sentences and then summing up the score for sentences will not always work. In
the complex classification tasks where classes are defined in an abstract way, the dif-
ference between themmay lay at the paragraph level and not at the level of individual
sentences. In the case where classes are defined not via topics but instead via writ-
ing style, discourse structure signals become essential. Moreover, some information
about entities can be distributed across sentences, and classification approach needs
to be independent of this distribution [12–14]. We will demonstrate the contribution
of paragraph-level approach versus the sentence level in our evaluation.

1.1 Design Documents Versus Design Meta-Documents

We define design document as a document which contains a thorough and well-
structured description of how to build a particular engineering system. In this respect
a design document according to our model follows the reproducibility criteria of
a patent or research publication; however format is different from them. What we
exclude is a document which contains meta-level information relatively to the design
of engineering system, such as how to write design docs manuals, standards design
docs should adhere to, tutorials on how to improve design documents, and others.

We need to differentiate design documents from the classes of documents which
can be viewed as ones containing meta-language, whereas the genuine design doc-
ument consists of the language-object. Below we enumerate such classed of meta-
documents:

(1) design requirements, project requirement document, requirement analysis,
operational requirements

(2) construction documentation, project planning, technical services review
(3) design guidelines, design guides, tutorials
(4) design templates (template for technical design document)
(5) research papers on system design
(6) general design-related notes
(7) educational materials on system design
(8) the description of the company, which owns design documents
(9) resume of a design professional

(10) specifications for civil engineering
(11) functional specifications
(12) ‘best design practices’ description
(13) project proposals
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Naturally, design documents are different from similar kinds of documents on the
same topic in terms of style and phrasing. To extract these features, rhetoric relations
are essential.

Notice that meta-documents can contain object-level text, such as design exam-
ples. Object-level documents (genuine design docs) can contain some author reflec-
tions on the system design process (which are written in metalanguage). Hence the
boundary between classes does not strictly separate metalanguage and language-
object. We use statistical language learning to optimize such boundary, having sup-
plied it with a rich set of linguistic features up to the discourse structures. In the design
document domain, we will differentiate between texts in mostly meta-language and
the ones mostly in language-object.

1.2 Novel in Metalanguage Versus Novel in Language-Object

A mixture of object-language and metalanguage descriptions can be found in lit-
erature. Describing the nature, a historical event, an encounter between people, an
author uses a language-object. Describing thoughts, beliefs, desires and knowledge
of characters about the nature, events and interactions between people, an author uses
a metalanguage. The entities/relations of such metalanguage range over the expres-
sions (phrases) of the language-object. In other words, the physical world is usually
described in language-object, and the mental world (theory of mind, the world of
thoughts) typically combines both levels.

One of the purest examples of use of metalanguage in literature is Franz Kafka’s
novel “The Trial”. According to our model, the whole plot is described in meta-
language, and object-level representation is absent. This is unlike a typical work of
literature, where both levels are employed. In “The Trial” a reader learns the main
character Joseph K. is being prosecuted, his thoughts are described, meeting with
various people related to the trial are presented. However, no information is available
about a reason for the trial, the charge, the circumstances of the deed. The novel is
a pure example of the presence of meta-theory and absence of object-level theory,
from the standpoint of logic. The reader is expected to form the object–level theory
herself to avoid ambiguity in interpretation of the novel.

Exploration of “The Trial” would help to understand the linguistic properties of
metalanguage and language-object. For example, it is easy to differentiate between
a mental and a physical words, just relying on keywords. However, to distinguish
meta-language from language-object in text, one need to consider different discourse
structures, which we will automatically learn from text.

The following paragraph of text can be viewed as a fragment of an algorithm for
how to solve an abstract problem of acquittal. Since it suggests a domain-independent
approach (it does not matter what an accused did), it can be considered as a meta-
algorithm.

‘There are three possibilities: absolute acquittal, apparent acquittal and deferment.
Absolute acquittal is the best, but there is nothing I could do to get that sort of outcome.
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I don’t think there’s anyone at all who could do anything to get an absolute acquittal.
Probably the only thing that could do that is if the accused is innocent. As you are
innocent it could actually be possible and you could depend on your innocence alone.
In that case you will not need me or any other kind of help.’

In some sense this algorithm follows along the lines of a ‘vanilla’ interpreter in
Prolog, a typical example of a meta-program:
achieve_acquittal (true).
achieve_acquittal ((A,B)):- achieve_acquittal (A), achieve_acquittal (B).
achieve_acquittal (A):- clause(A, B), achieve_acquittal (B).
where the novel enumerates various clauses, but never ground terms expressing the
details of a hypothetical crime (no instances of A or B). clause(A, B) is expression of
the format A :- B, where A is a term being defined (a clause head) and B is a sequence
of defining terms (a body of this clause). This interpreter shows multiple possibilities
a term can be proved, similarly to multiple possibilities of acquittal spelled out by
Kafka.

We hypothesize that a text expressing such a meta-program, Kafka’s text, should
have specific sequences of rhetoric relation, infrequent in other texts.Wewill attempt
to find distinct discourse patterns associated with metalanguage and differentiate it
with other texts.

In the literature domain, we will attempt to draw a boundary between the pure
metalanguage (peculiar works of literature) and a mixed level text (a typical work of
literature).

2 Extending Tree Kernel Towards Discourse

To Why can sentence-level tree kernels be insufficient for classification? Important
phrases can be distributed through different sentences. Sowewant to combine/merge
parse trees to make sure we cover the phrase of interest.

For the following text:
This document describes the design of back end processor. Its requirements are

enumerated below.
From the first sentence, it looks like we got the design document. To process

the second sentence, we need to disambiguate the preposition ‘its’. As a result, we
conclude from the second sentence that it is a requirements document (not a design
document).

2.1 Leveraging Structural Information for Classification

How can a sentence structural information be indicative of the class?
The idea of measuring similarity between the question-answer pairs for ques-

tion answering instead of the question-answer similarity turned out to be fruitful
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[23]. The classifier for correct vs incorrect answers processes two pairs at a time,
<q1, a1> and <q2, a2>, and compare q1 with q2 and a1 with a2, producing a com-
bined similarity score. Such a comparison allows to determine whether an unknown
question/answer pair contains a correct answer or not by assessing its distance from
another question/answer pair with a known label. In particular, an unlabeled pair
<q2, a2> will be processed so that rather than “guessing” correctness based on
words or structures shared by q2 and a2, both q2 and a2 will be compared to their
correspondent components q1 and a1 of the labeled pair <q2, a2> on the grounds
of such words or structures. Since this approach targets a domain-independent clas-
sification of answer, only the structural cohesiveness between a question and answer
is leveraged, not ‘meanings’ of an answers.

We take this idea further and consider an arbitrary sequence of sentences instead
of question-sentence and answer-sentence pair for text classification. Our positive
training paragraphs are “plausible” sequences of sentences for our class, and our neg-
ative training paragraphs are “implausible” sequences, irrespectively of the domain-
specific keywords in these sentences.

In our opinion, for candidate answer selection task, such structural information
is important but insufficient. At the same time, for the text classification tasks just
structure analysis can suffice for proper classification.

Given a positive sequence and its parse trees linked by RST relations:
‘A hardware system contains classes such as GUI for user interface, IO for import-

ing and exporting data between the emulator and environment, and Emulator for the
actual process control. Furthermore, a class Modules is required which contains all
instances of modules in use by emulation process.’ (Fig. 1).

And a negative sequence and its linked parse trees:

Fig. 1 A sequence of parse trees and RST relations for a positive example
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Fig. 2 A sequence of parse trees and RST relations for a negative example

Fig. 3 A sequence of parse trees and RST relations for a text to be classified

‘A socio-technical system is a social system sitting upon a technical base. Email
is a simple example of such system. The term socio-technical was introduced in the
1950s by the Tavistok Institute.’ (Fig. 2).

We want to classify the paragraph
‘A social network-based software ticket reservation system includes the follow-

ing components. They are the Database for storing transactions, Web Forms for user
data input, and Business rule processor for handling the web forms. Additionally,
the backend email processing includes the components for nightly transaction exe-
cution.’ (Fig. 3).

One can see that this paragraph follows the rhetoric structure of the top (positive)
training set element, although it shares more common keywords with the bottom
(negative) element. Hence we classify it as a design document text, since it describes
the system rather than introduces a terms (as the negative element does).
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To illustrate the similar point in the question answering domain, we use a simple
query example. If q1 is ‘What is plutocracy?’ and the candidate answers are a1 =
‘Plutocracy may be defined as a state where …’ versus a0 = ‘Plutocracy affects the
wills of people …’, comparisonwith the correct pair formed by q2 = ‘What is a source
control software?’ and a2 = ‘A source control software can be defined as a…’ will
induce the kernel method to prefer a1 to a0. One can see that a1 has a similar wording
and structure to a2, hence < q1, a1 > will get a higher score than < q1, a0 > using
the kernel method. In contrast, the opposite case would occur using a similarity score
matching q1 with a1 as compared with matching q1 with a0, since both a1 and a0

contain keywords plutocracy from q1. This explains why even a bag-of-words kernel
adjusting its weights on question/answer pairs has a better chance to produce good
results than a bag-of-words question/answer similarity.

2.2 Anaphora and Rhetoric Relations for Sentiments
Topicality Classification

I sentiment analysis, we classify sentences and documents with respect to sentiments
they contain. Let us consider the sentiment classes for the following sentences. We
are interested in both polarity and topicality classes:

‘I would not let my dog stay in this hotel’ (Fig. 4)
‘Our dog would have never stayed in this hotel’
‘Filthy dirty hotel, like a dog house’
‘They would not let my dog stay in this hotel’
‘The hotel management did not let me in when I was with my dog’
‘We were not allowed to stay there with our dog’

What one observes is that polarity = negative in both cases, whereas topics are
totally different. Topic1 = ‘hotel is dirty’, and

topic2 = ‘dogs are not allowed’.
This is rather difficult task for keyword-based text classification problems because

both classes share the same keywords.
Notice these classes are different from the topic3 = ‘hotels intended for dogs’,

polarity = ‘neutral’
If you have never been to a dog hotel, now is the time.

Fig. 4 A parse tree for an individual sentence
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Fig. 5 A fragment of text
with a coreference relation

It is even harder to perform classification, when information about ‘staying in
a hotel and having a dog’ is spread through different sentences. An easier case is
anaphora:

‘I arrived to the hotel. It was too bad even for a dog’ (Fig. 5).
The hardest case is when rhetoric structure is needed to link information about a

hotel and a dog:
‘I was traveling for business. My partner invited me to stay at his place, however

it looked like a house for dogs.’
‘I was traveling with my dog for business. I was not going to stay at a hotel but

at my partner’s place, however he turned out to be allergic to dogs. Sadly, the hotel
did not let us in.’ (Fig. 6).

In the above cases, the parts of the parse trees (sub-trees) essential to determine
the meanings occur in different sentences, so needs to be connected. Anaphora is a
natural way to do that, but is not always sufficient. Hence we need rhetoric relations
to link ‘travel, dog owner, hotel’ and permission relationships.

2.3 Anaphora and Rhetoric Relations for Classification Tasks

We introduce a domain where a pair-wise comparison of sentences is insufficient to
properly learn certain semantic features of texts. This is due to the variability of ways
information can be communicated in multiple sentences, and variations in possible
discourse structures of text which needs to be taken into account.

We consider an example of text classification problem, where short portions of
text belong to two classes:

• Tax liability of a landlord renting office to a business.
• Tax liability of a business owner renting an office from landlord.
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Fig. 6 The parse tree and respective coreference arcs for two sentences

‘I rent an office space. This office is for my business. I can deduct office rental
expense from my business profit to calculate net income.

To run my business, I have to rent an office. The net business profit is
calculated as follows. Rental expense needs to be subtracted from revenue.

To store goods for my retail business I rent some space. When I calculate
the net income, I take revenue and subtract business expenses such as office
rent.

I rent out a first floor unit of my house to a travel business. I need to add the
rental income to my profit. However, when I repair my house, I can deduct the
repair expense from my rental income.

I receive rental income from my office. I have to claim it as a profit in my
tax forms. I need to add my rental income to my profits, but subtract rental
expenses such as repair from it.

I advertised my property as a business rental. Advertisement and repair
expenses can be subtracted from the rental income. Remaining rental income
needs to be added to my profit and be reported as taxable profit.’

Note that keyword-based analysis does not help to separate the first three
paragraph and the second three paragraphs. They all share the same keywords
rental/office/income/profit/add/subtract. Phrase-based analysis does not help, since
both sets of paragraphs share similar phrases.

Secondly, pair-wise sentence comparison does not solve the problem either.
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Anaphora resolution is helpful but insufficient. All these sentences include ‘I’ and
its mention, but other links between words or phrases in different sentences need to
be used.

Rhetoric structures need to come into play to provide additional links between
sentences. The structure to distinguish between

‘renting for yourself and deducting from total income’ and
‘renting to someone and adding to income’ embraces multiple sentences. The

second clause about ‘adding/subtracting incomes’ is linked by means of the rhetoric
relation of elaboration with the first clause for landlord/tenant. This rhetoric relation
may link discourse units within a sentence, between consecutive sentences and even
between first and third sentence in a paragraph. Other rhetoric relations can play
similar role for forming essential links for text classification.

Which representations for these paragraphs of text would produce such common
sub-structure between the structures of these paragraphs? We believe that extended
trees, which include the first, second, and third sentence for each paragraph together
can serve as a structure to differentiate the two above classes.

The dependency parse trees for the first text in our set and its coreferences are
shown in Fig. 7. There are multiple ways the nodes from parse trees of different
sentences can be connected: we choose the rhetoric relation of elaboration which
links the same entity office and helps us to form the structure rent-office-space—
for-my-business—deduct-rental-expense which is the base for our classification. We
used Stanford Core NLP, coreferences resolution [19] and its visualization to form
Figs. 1 and 2.

Fig. 7 Coreferences and the set of dependency trees for the first text
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Fig. 8 Extended tree which
includes 3 sentences

Figure8 shows the resultant extended tree with the root ‘I’ from the first sentence.
It includes the whole first sentence, a verb phrase from the second sentence and a
verb phrase from the third sentence according to rhetoric relation of elaboration.
Notice that this extended tree can be intuitively viewed as representing the ‘main
idea’ of this text compared to other texts in our set. All extended trees need to be
formed for a text and then compared with that of the other texts, since we don’t
know in advance which extended tree is essential. From the standpoint of tree kernel
learning, extended trees are learned the same way as regular parse trees.

3 Building Extended Trees

For every arc which connects two parse trees, we derive the extension of these trees,
extending branches according to the arc (Fig. 9).

In this approach, for a given parse tree, we will obtain a set of its extension,
so the elements of kernel will be computed for many extensions, instead of just a
single tree. The problem here is that we need to find common sub-trees for a much
higher number of trees than the number of sentences in text, however by subsumption
(sub-tree relation) the number of common sub-trees will be substantially reduced.

Ifwehave twoparse trees P1 and P2 for two sentences in a paragraph, and a relation
R12 : P1i → P2 j between the nodes P1i and P2 j , we form the pair of extended trees
P1 ∗ P2:

. . . , P1i−2, P1i−1, P1i , P2 j , P2 j+1, P2 j+2, . . .

. . . , P2 j−2, P2 j−1, P2 j , P1i , P1i+1, P2i+2, . . .,

which would form the feature set for tree kernel learning in addition to the original
trees P1 and P2. Notice that the original order of nodes of parse trees are retained
under operation ‘*’.

The algorithm for building an extended tree for a set of parse trees T is presented
below:
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Fig. 9 An arc which
connects two parse trees for
two sentences in a text (on
the top) and the derived set
of extended trees (on the
bottom)

P

P P

P

P

Input:
(1) Set of parse trees T .
(2) Set of relations R, which includes relations Ri jk between the nodes of

Ti and Tj : Ti ∈ T, Tj ∈ T, Ri jk ∈ R. We use index k to range over multiple
relations between the nodes of parse tree for a pair of sentences.
Output: the exhaustive set of extended trees E .

Set E = ∅;
For each tree i = 1 : |T |

For each relation Ri jk, k = 1 : |R|
Obtain Tj

Form the pair of extended trees Ti ∗ Tj ;
Verify that each of the extended trees do not have a super-tree in E
If verified, add to E ;

Return E .

Notice that the resultant trees are not the proper parse trees for a sentence, but
nevertheless form an adequate feature space for tree kernel learning.

To obtain the inter-sentence links, we employed coreferences from Stanford NLP
[19, 24]. Rhetoric relation extractor based on our rule-based approach to finding
relations between elementary discourse units [7, 9, 14]. We combined manual rules
with automatically learned rules derived from the available discourse corpus by
means of syntactic generalization.

Rhetorical Structure Theory (RST [20]) is one of the most popular approach to
model extra-sentence as well as intra-sentence discourse. RST represents texts by
labeled hierarchical structures, called Discourse Trees (DTs). The leaves of a DT
correspond to contiguous Elementary Discourse Units (EDUs). Adjacent EDUs are
connected by rhetorical relations (e.g., Elaboration, Contrast), forming larger dis-
course units (represented by internal nodes), which in turn are also subject to this
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relation linking. Discourse units linked by a rhetorical relation are further distin-
guished based on their relative importance in the text: nucleus being the central part,
whereas satellite being the peripheral one. Discourse analysis in RST involves two
subtasks: discourse segmentation is the task of identifying the EDUs, and discourse
parsing is the task of linking the discourse units into a labeled tree.

3.1 Kernel Methods for Parse Trees

Kernel methods are a large class of learning algorithms based on inner product vector
spaces. Support

Vector machines (SVMs) are mostly well-known algorithms. The main idea
behind SVMs is to learn a hyperplane,

H(�x) = �w · �x + b = 0, (1)

where �x is the representation of a classifying object o as a feature vector, while
�w ∈ �n (indicating that �w belongs to a vector space of n dimensions built on real
numbers) and b ∈ � are parameters learned from training examples by applying the
Structural Risk Minimization principle [31]. Object o is mapped into �x via a feature
function

φ : O → �n,

where O is the set of objects; o is categorized in the target class only if

H(�x) ≥ 0.

The decision hyperplane can be rewritten as:

H(�x) =
⎛

⎝

∑

i=1,...,l

yi αi �xi

⎞

⎠ · �x + b =
∑

i=1,...,l

yi αi �xi · �x + b =
∑

i=1,...,l

yi αi φ(o)i · φ(o) + b, (2)

where yi is equal to 1 for positive examples and to −1 for negative examples

αi ∈ � (with αi ≥ 0, oi ∀i ∈ {1, ..., l})

are the training instances and

K (oi , o) = 〈φ(oi ) · φ(o)〉

is the kernel function associated with the mapping φ·.
Convolution kernels as ameasure of similarity between trees compute the common

sub-trees between two trees T1 and T2. Convolution kernel does not have to compute
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the whole space of tree fragments. Let the set T = {t1, t2, ..., t|T |} be the set of sub-
trees of an extended parse tree, and χi (n) be an indicator function which is equal to
1 if the subtree ti is rooted at a node n, and is equal to 0 otherwise. A tree kernel
function over trees T1 and T2 is

T K (T1, T2) =
∑

n1∈NT1

∑

n1∈NT2

Δ(n1, n2), (3)

where NT 1 and NT 2 are the sets of T1‘s and T2‘s nodes, respectively and

Δ(n1, n2) =
|T |
∑

i=1

χi (n1)χi (n2). (4)

(4) calculates the number of common fragments with the roots in n1 and n2 nodes.

3.2 Learning System Architecture

The architecture of learning system is shown in Fig. 10. Once Stanford NLP
performs parsing and identifies coreferences, VerbNet components obtains verb sig-
natures, and Stanford NLP also builds anaphora relations, we proceed to finding the
same-entity and sub-entity links. After that, we perform segmentation into elemen-
tary discourse units and find RST relations, using our own templates (also, third party
RST parsers can be incorporated).

As a result, we obtain parse thicket for a text as a sequence of parse trees with
additional discourse level arcs linking parse trees for different sentences. For a parse

Build parse tree for 
each sentence

Form entities and 
obtain semantic roles

Build anaphora relations

Perform rhetoric 
parsing and enumerate 

rhetoric relations

Form same-entity links

Combine parse trees into parse
 thicket by linking nodes of

 different sentences with arcs

Build a parse thicket representation 
as a union of extended parse trees 
for each pair of intersentence arcs

Apply tree kernel SVM 
to the formed representation 

Fig. 10 The architecture of learning system
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thicket, we form the set of all phrases and then derive the set of extended phrases
according to inter-sentence arcs. Once we build the totality of extended phrases, we
form a representation for SVM tree kernel learning, which inputs the set of extended
parse trees.

4 Metalanguage and Works of Literature

4.1 Frantz Kafka’s Novel “The Trial”

For the example use of metalanguage we consider Frantz Kafka’s (1883–1924) novel
“The Trial”. This novel, written in 1915, has been puzzling many generations of
literature critics. Kafka’s novels belong to the modernist trends in the literature,
which uses various philosophical concepts and new ways of depicting reality. In his
works, Franz Kafka went largely beyond other modernists, since his novel structure
and language feature very sophisticated artistic expression. The language of Kafka,
apparently devoid of any revelations and interpretations, contains an inexhaustible
material for linguistic theories. Through scientific analysis of the novel “The Trial”,
one can see that the writer’s use of language is a pointer to an understanding of the
underlying aspects of his work. Novel “The Trial” consists of sixteen chapters and an
appendix titled “Dream”. During his life Franz Kafka could not complete this work.
Max Brod, Kafka’s closest friend and executor helped publish this novel and gave it
the title.

Undoubtedly,many unfinishedmanuscripts ofKafkamakes treating hisworkwith
even greater interest, since the absence of ties and open ending always contribute to
the construction of the set of inconsistent theories.

“The Trial” does not represent a complex, multi-passage structure, at the first
glance. The story presented by Kafka is fairly simple. Joseph K. is the alter ego
of the writer. From the first lines of the novel he became involved in a lawsuit. The
reader does not get any information about the reason andmeaning of this trial, instead
the reader is given the common description of its flow and the suspects’ encounters
with a series of law enforcement officials. It turns out that Joseph K. himself does
not know why he ended up in this situation. There are no clues and hints as to why
the hero suddenly became defendants and for what crime he may be judged.

4.2 Use of Metalanguage in the Novel

Incomprehensibility of what is happening in the novel makes us scrutinize the pecu-
liarities of language used by Franz Kafka to describe the events in “The Trial”.

To comprehend the meaning of the novel as a whole, we need to ascend to the
certain level of abstraction. To systematically treat the plot, we consider the text of the
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novel as written in meta-language, and the remaining part about the reason and the
subject of the trial as hypothetically represented in the language-object. Hence what
seems to bemost interesting and informative to the reader is the theory-object (which
is absent), and what is available is the meta-theory (what is explicitly described in
the novel) [10].

A metalanguage includes the relations over the expressions of language-object,
such as the features of the trial flow. On the contrary, a traditional literature style
relies on language-object only, which includes the relations between subjects such as
objects of physical andmentalworld. Inmostworks of literature,metalanguagemight
be present but its role is secondary and its purpose is to present some generalizations
of characters and observations of a writer. However, in “The Trial” the language-
object level is totally absent.

Kafka describes all events in metalanguage only, relatively to the subject of
the trial. It is easy to verify this statement, having taken an arbitrary paragraph.
It describes some discussion of a detail of the trial with some individual involved in
law enforcement, such as the following: Object-level details are absent here.

‘If you want an apparent acquittal I’ll write down an assertion of your innocence
on a piece of paper. The text for an assertion of this sort was passed down to me
from my father and it’s quite unassailable. I take this assertion round to the judges
I know. So I’ll start off with the one I’m currently painting, and put the assertion to
him when he comes for his sitting this evening. I’ll lay the assertion in front of him,
explain that you’re innocent and give him my personal guarantee of it. And that’s
not just a superficial guarantee, it’s a real one and it’s binding.’

We attempt to represent the novel “The Trial” at the meta-level only. One can
observe that the key character meets with other characters to discuss the details of
the trial. All these characters are aware of what is happening, the plot is fully focused
on the trial procedures, but the knowledge of the process itself (the object-level) is
absent. Franz Kafka naturally used his peculiar writing style and way of narration
working on a novel. Many of Kafka’s novels are full with mystery and deep analysis
of characters’ mental states, and the author often uses meta-language as a means of
expression. What are the reasons for it?

In the novel the use of metalanguage symbolizes the impossibility to come up
with a term for the whole trial. The author is so appalled by what he is describing
that he is unable to name it (this name would belong to language-object). Possibly,
the described trial is not correlated with the socio-historical context of the 1910s.
Metalanguage describes all the specific information about Joseph K., for example,
the reader learns from the first pages where Joseph K. lives and what he receives for
breakfast and when. But we cannot say for sure that Kafka describes the physical
reality, not a human condition between sleeping and waking. In other words, the
writer enhances the effect of involvement of the reader in the phantasmagoric and
absurd world with the blurred boundaries between dream and reality.

For Franz Kafka’s representation of sleep and awakening, it is an inexhaustible
source for the exploration of the world and its characters. It was after a restless sleep
(troubled dreams) that Gregor Samsa has turned into an insect in the novel “The
Metamorphosis” of 1912. On the contrary, a partial detachment from the real world
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and the abundance of household items in “The Trial” gives the author an opportunity
to create a completely different reader perception, subject to human comprehension
to a even smaller degree.

4.3 Use of Metalanguage and the Author’s Attachment
to the Novel

Kafka’s scholars consider his biography for better comprehension of his novel. It is
important for “The Trial” since the details of Kafka’s life are similar to Joseph K.’s.
They both occupy an office position (Joseph K. was a bank’s vice president).
Kafka is familiar with bureaucratic structures which includes even cathedrals. All
venues in the novel change as if they are theater decorations, dwellings are instantly
turned into a courtroom. Other characters also belong to the same common bureau-
cratic/mechanical system, as its indispensable parts. Many characters in the novel
are not bright personalities at all, for example, the officers who arrested Joseph K.
The writer aims to convincingly capture the whole bureaucratic world, relying on the
expressiveness of metalanguage instead of satirical motifs. Apparently, the elements
of satire in “The Trial” were deliberately rejected by the author to make the novel
sound as a parable.

Creating a novel in which the metalanguage is the only means of descriptions of
what is happening, Kafka continues the tradition of historical writings and legends.
“The Trial” is a novel where ancient cultural traditions are deeply intertwined with
the subconscious mind of the author. In the story of Josef K., described in the meta-
language, there is a lot of social terms: the court, the law, the judge, the arrest, the
process of accusation. These terms could have been used from ancient times to the
modern era of social development. For example, the process of Joseph K. may well
be a reference to the Last Judgment and his sentence denotes the divine punishment.
In the novel “The Trial” much can be seen from the perspective of theology and
spirituality.

For sure, Franz Kafka believed in an idea, not in a reality, being a modernist.
His idea came from his own subconscious, which can be described by metalanguage
means only [1, 25] to represent processes in which only the metalanguage matters.
All moral reflection of the author, his spiritual studies and innermost thoughts reflect
his special method of expression.

To some extent, the novel can be attributed to the detective genre. The events occur
in the environment Joseph K. is familiar with, and all the characters are described
by the author in a fairly routine manner. Yet “The Trial” does not belong to the
classical detective because its logical constructions cannot be assessed as a truth.
This is because the facts are represented in metalanguage and the object-level facts
are missing, so a reader cannot appreciate a solution to a problem, an inherent part
of a detective novel. Initiation of “The Trial” occurs in the object level outside of
text and cannot be used to accuse the main character.
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Kafka’s use of metalanguage has a significant impact on the perception of the
whole process as something absurd, not subject to any expected rules. All the actions
of Joseph K. cannot be viewed from the standpoint of a legal system and are delib-
erately fairly generic in nature. The writer presents the Court as an omnipotent
organization, but in fact this court makes no investigation of the main character, at
least from what we know from the novel. The investigation itself cannot exist in this
novel, given the style of the description of the whole process to the metalanguage.

The lack of investigation and of disclosure of secrets do not prevent Kafka from
maintaining the suspense until the last pages of the novel. One gets the impression
that the final sentence of Joseph K. in all circumstances of the case may not be an
acquittal. The very first cause of any judicial process lies in the fact of charges being
brought. Metalanguage only emphasizes the bureaucratic proceedings, which is the
foundation and skeleton of the novel.

Endless absurdity of the described process reminds us about the famous novel by
Charles Dickens “Bleak House”. Completed in 1853, “Bleak House” was forerunner
of a new narrative paradigm. It is important to note that the plot of a Dickens novel in
many respects anticipates the history of “TheTrial”. All events of “BleakHouse” take
place during an endless litigation process in which the Court of Chancery determines
the fate of the characters of the novel.

Dickens conducted to a certain extent an artistic experiment, outlining the events in
a very detached way, but not depriving them of a secret meaning. Kafka and Dickens
are united in their desire to express in new linguistic forms the meaninglessness and
injustice of what is happening in the courts. Both writers were looking for the truth,
which is mired in unpleasant courtrooms and stuffy offices. Franz Kafka, perfectly
familiar with the works of Dickens, partially enriched “The Trial” by the narrative
technique of “Bleak House.” But the metalanguage of Kafka does not express deep
personal experiences of the character. Instead, it is limited to the unattached vision
of distant events.

Commenting and clarification of events by the author is absent in “The Trial”.
Interestingly, the nature of the novel is close to the authors’ perception of what is
happening in the society. However, the writer expresses his attitude about the society
implicitly, in the metalanguage. The absence of any background and causes of the
trial makes the reader focus primarily on the fate of Josef K. Perhaps Kafka strongly
felt connection with his main character and considered supplementing the text with
his subjective emotions unnecessary. In addition to the above, Kafka’s metalanguage
hides his deep personal alienation from the system of justice. By the very use of
metalanguage the author emphasizes that any litigation is a priori senseless. Also,
any man is doomed to become a victim of the system, where bureaucratic principles
dominate.

“The Trial” is both illogical and ordered through the use of metalanguage.
Joseph K. was not ready for the trial, but at the same time it is clear that with-
out the involvement of a trial this character would be no longer interesting for the
reader. Kafka carefully hides mentions of the past of the main character, and also
does not give us any opinion about him by the other novel characters. It becomes
difficult for the reader to determine whether Josef K. is guilty or not guilty. Meta-
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language does not provide any clues about previously occurred events in the novel.
The metalanguage of “The Trial” prevents its unequivocal interpretation and leaves
the ending of the novel open and ambiguous.

The expectation of the novel outcome is rather strong. The metalanguage expres-
sive means reinforce the impression of the reader via the seemingly meaningless
wandering of the main character through the courtrooms. Here the author attempts
to create a hostile atmosphere, where the usual course of time is replaced by eternal
awaiting of a sentencing. The conflict is manifested not in the struggle of the main
character for his honor and dignity, but in the endless discussion of details. Having
ruled out by the use of the metalanguage, any information about the reasons for the
charges of Josef K., the writer depicts the stages of the judicial process in detail. Even
the passage of time in the novel is completely subordinated to the trial. Any decision
depends on the unknown higher powers, and the activity of the main character cannot
affect the situation.

Metalanguage of “The Trial” is not only a way to describe events, but it also gives
this novel an artistic value, independent of the historical and philosophical concepts of
the era. Undoubtedly, FranzKafka does not give any answer in the novel, instead, this
novel only raises questions.Writer’s methodmanifests itself in the complete absence
of any reasons and plot ties, so that the boundaries of the reader’s imagination are
unlimited. Thanks to the metalanguage, the writer creates an artistic world where
thoughts and speculations become the only possible form of the perception of the
novel. Through the analysis of “The Trial”, it becomes clear that any conclusions
on the product may not be final. Metalanguage creates a paradoxical situation where
the lack of basic information makes it possible for any interpretations of the text. By
applying a metalanguage in the novel, Franz Kafka included it in the list of works of
literature appealing for new generations of readers.

5 Evaluation

5.1 Baseline Classification Approaches

TF*IDF Nearest Neighbor approach finds a document in the training set which is
the closest to the given one being recognized. Nearest Neighbor feature is imple-
mented via the search in inverse index of Lucene [3] where the search result score
is computed based on TF*IDF model [27]. The query is formed from each sentence
of the documents being classified as a disjunctive query including all words except
stop-words. The resultant classes along with their TF*IDF scores are weighted and
aggregated on the basis of a majority vote algorithm such as [22].

A Naive Bayes classifier is a simple probabilistic classifier based on applying
Bayes’ theorem (fromBayesian statistics) with strong (naive) independence assump-
tions. This classifier assumes that the presence (or absence) of a particular feature
of a class is unrelated to the presence (or absence) of any other feature. For exam-
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ple, a fruit may be considered to be an apple if it is red, round, and about 4 inches
in diameter. Even if these features depend on each other or upon the existence of
the other features, a naive Bayes classifier considers all of these properties to inde-
pendently contribute to the probability that this fruit is an apple. Depending on the
precise nature of the probability model, naive Bayes classifiers can be trained very
efficiently in a supervised learning setting. In many practical applications, parameter
estimation for naive Bayes models uses the method of maximum likelihood. In this
study, we use a Naïve Bayes classifier from WEKA package based on [16].

5.2 Forming Training Datasets

For design documents, we built a web mining utility which searched for public
design documents on the web in a number of engineering and science domains.
We use the following keywords to add to a query for design document: material,
technical, software, pharmaceutical, bio, biotech, civil engineering, construction,
microprocessor, C++, python, java, hardware, processor, architectural, creative,
web.As a result we formed a set of 1200 documents, it turned out we had 90%of non-
design engineering documents of the classes we want to exclude (meta-documents)
and 10% of genuine design documents.

For the literature domain, we collected 200 paragraphs from Kafka’s novel “The
Trial” describing interactionwith people related to the court, as a training set ofmeta-
documents. As a set of object-level documents we manually selected 100 paragraphs
of text in the same domain (scholarly articles about “The Trial”). A good example
of such language-object documents is a Wikipedia article on the novel, which is a
language-object/mixed paragraph (it described the actions of a person):

‘K. visits the lawyer several times. The lawyer tells him incessantly how dire his
situation is and tells many stories of other hopeless clients and of his behind-the-
scenes efforts on behalf of these clients, and brags about his many connections. The
brief is never complete. K.’s work at the bank deteriorates as he is consumed with
worry about his case.’

On the contrary, a paragraph in metalanguage (an abstract note on the procedure
of apparent acquittal) looks like this paragraph which we already sited earlier:

‘If you want an apparent acquittal I’ll write down an assertion of your innocence
on a piece of paper. The text for an assertion of this sort was passed down to me
from my father and it’s quite unassailable. I take this assertion round to the judges
I know. So I’ll start off with the one I’m currently painting, and put the assertion to
him when he comes for his sitting this evening. I’ll lay the assertion in front of him,
explain that you’re innocent and give him my personal guarantee of it. And that’s
not just a superficial guarantee, it’s a real one and it’s binding.’

We split the data into five subsets for training/evaluation portions [17]. For the
design documents, evaluation results were assessed by quality assurance personnel.
For the literature domain, the evaluation was done by the author.
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5.3 Evaluation Results

We report the standard deviation of the recognition accuracy expressed as F-measure
over five folds achieved by different methods. Table1 shows evaluation results for
the both domains, Design document and Literature. Each row shows the results of a
particular classification method.

Keyword statistic-based methods, including Nearest-Neighbor classification and
Naïve Bayes, produced rather poor results. Conversely, a manual rule-based system
produces a very high accuracy result, especially when manually formed rules go
beyond the keywords/phrases and take into account part-of-speech information.

In addition to automated learning, we relied on manual rules for classes. An
increase in accuracy by a few percent is achieved in design documents by using
manually collected cases for of expressions indicating a use of metalanguage. Also,
the rules for writing styles associated with meta-documents have been compiled.
These rules also included regular expressions relying on specific document format-
ting, including a table of content and structure of sections. In the literature domain,
that was not possible. Manual rule performance is shown by grayed rows.

Performance of the tree kernel basedmethods improves as the sources of linguistic
properties become richer. For both domains, there is a few percent improvement by
using RST relations compared with baseline tree kernel SVM which relies on parse
trees only. For the literature domain, the role of anaphora was rather low.

6 Conclusions

In our previous papers we showed how employing a richer set of linguistic informa-
tion such as syntactic relations between words assists relevance tasks [6, 12, 13].
To take advantage of semantic discourse information, we introduced parse thicket
representation and proposed the way to compute similarity between texts based on
generalization of parse thickets [8]. We built the framework for generalizing PTs as
sets of phrases on one hand, and generalizing PTs as graphs via maximal common
subgraphs, on the other hand [14].

In this study we focused on how discourse information can help with a fairly
abstract text classification tasks by means of statistical learning. We selected the
domain where the only difference between classes lays in phrasing and discourse
structures and demonstrated that both are learnable. We compared two sets of lin-
guistic features:

• The baseline, parse trees for individual sentences,
• Parse trees and discourse information,

and demonstrated that the enriched set of features indeed improves the classifi-
cation accuracy, having the learning framework fixed. We demonstrated that the
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Fig. 11 Meta-reasoning chart: mutual relationships between major classes of our interest

baseline text classification approaches perform rather poorly in the chosen classifi-
cation domain. Also, kernel-based learning was unable to reach the performance of
manually structure-based rules, and we hypothesize that a vast amount of discourse
information is not employed in the proposed learning framework.

Meta-reasoning addresses a question of how to give a system its own representa-
tion to manipulate. Meta-reasoning needs both levels for both languages and domain
behavior. We depict out two main classes of interest in Fig. 11.

[26] outlines a general approach to meta-reasoning in the sense of providing a
basis for selecting and justifying computational actions. Addressing the problem of
resource-bounded rationality, the authors provide a means for analyzing and gen-
erating optimal computational strategies. Because reasoning about a computation
without doing it necessarily involves uncertainty as to its outcome, probability and
decision theory were selected as main tools.

A system needs to implement metalanguage to impress peers of being human-like
and intelligent, needs to be capable of thinking about one’s own thinking. Tradition-
ally within cognitive science and artificial intelligence, thinking or reasoning has
been cast as a decision cycle within an action-perception loop [21]. An intelligent
agent perceives some stimuli from the environment and behaves rationally to achieve
its goals by selecting some action from its set of competencies. The result of these
actions at the ground level is subsequently perceived at the object level and the cycle
continues. Meta-reasoning is the process of reasoning about this reasoning cycle. It
consists of both the meta-level control of computational activities and the introspec-
tive monitoring of reasoning. In this study we focused on linguistic issues of text
which describes such cognitive architecture. It turns out that there is a correlation
between a cognitive architecture and a discourse structure used to express it in text.
Relying on this correlation, it is possible to automatically classify texts with respect
to metalanguage they contain.

In our previous studies we considered the following sources of relations between
words in sentences: coreferences, taxonomic relations such as sub-entity, partial
case, predicate for subject etc., rhetoric structure relations and speech acts [8]. We
demonstrated that a number ofNLP tasks including search relevance can be improved
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if search results are subject to confirmation by parse thicket generalization, when
answers occur in multiple sentences. In this study we employed coreferences and
rhetoric relation only to identify correlation with the occurrence of metalanguage in
text.

Traditionally,machine learning of linguistic structures is limited to keyword forms
and frequencies. At the same time, most theories of discourse are not computational,
they model a particular set of relations between consecutive states. In this work we
attempted to achieve the best of both worlds: learn complete parse tree information
augmentedwith an adjustment of discourse theory allowing computational treatment.

In this paper, we used extended parse trees instead of regular ones, leveraging
available discourse information, for text classification. This work describes one of
the first applications of tree kernel to industrial scaleNLP tasks. The advantage of this
approach is that the manual thorough analysis of text can be avoided for complex text
classification tasks where the classes are rather abstract. The feasibility of suggested
approach to classification lays in the robustness of statistical learning algorithms to
unrelated and unreliable features inherent in NLP.

The experimental environment, multi-sentence queries and the evaluation frame-
work is available at https://github.com/bgalitsky/relevance-based-on-parse-trees.

References

1. Aurora, V. 2001. Freudianmetaphor and Surrealistmetalanguage; inMichel Leiris: TheUncon-
scious and the Sea LittéRéalité, Vol. XIII.

2. Collins, M., and Duffy, N. 2002. Convolution kernels for natural language. In Proceedings of
NIPS, 625–32.

3. Croft, B., Metzler, D., Strohman, T. 2009. Search Engines - Information Retrieval in Practice.
Pearson Education. North America.

4. Cumby, C. and Roth D. 2003. On Kernel Methods for Relational Learning. ICML, pp. 107–14.
5. Galitsky, B. 2003. Natural Language Question Answering System: Technique of Semantic

Headers. Advanced Knowledge International, Adelaide, Australia.
6. Galitsky, B. 2012. Machine Learning of Syntactic Parse Trees for Search and Classification of

Text. Engineering Application of AI. 26(3), 1072–91.
7. Galitsky, B. 2013. Transfer learning of syntactic structures for building taxonomies for search

engines. Engineering Applications of Artificial Intelligence. Volume 26 Issue 10, pp. 2504–
2515.

8. Galitsky, B. 2014. Learning parse structure of paragraphs and its applications in search. Engi-
neering Applications of Artificial Intelligence. 32, 160-84.

9. Galitsky, B., Kuznetsov S. 2008. Learning communicative actions of conflicting human agents.
J. Exp. Theor. Artif. Intell. 20(4): 277–317.

10. Galitsky, B., Josep-Lluis de la Rosa, and Boris Kovalerchuk. 2011. Assessing plausibility
of explanation and meta-explanation in inter-human conflict. Engineering Application of AI,
24(8), 1472–1486.

11. Galitsky, B., de la Rosa JL, Dobrocsi, G. 2012. Inferring the semantic properties of sentences
by mining syntactic parse trees. Data & Knowledge Engineering. 81–82, 21–45.

12. Galitsky, B., Gabor Dobrocsi, Josep Lluis de la Rosa 2012. Inferring the semantic properties of
sentences by mining syntactic parse trees. Data & Knowledge Engineering http://dx.doi.org/
10.1016/j.datak.2012.07.003.

https://github.com/bgalitsky/relevance-based-on-parse-trees
http://dx.doi.org/10.1016/j.datak.2012.07.003
http://dx.doi.org/10.1016/j.datak.2012.07.003


96 B.A. Galitsky

13. Galitsky, B., Usikov, D., and Kuznetsov S.O. 2013. Parse Thicket Representations for Answer-
ing Multi-sentence questions. 20th International Conference on Conceptual Structures, ICCS
2013.

14. Galitsky, B., Ilvovsky, D., Kuznetsov SO, and Strok, F. 2013. Improving Text Retrieval Effi-
ciency with Pattern Structures on Parse Thickets, inWorkshop Formal Concept Analysis meets
Information Retrieval at ECIR 2013, Moscow, Russia.

15. Haussler, D. 1999. Convolution kernels on discrete structures. UCSB Technical report.
16. John, G.H. and Langley, P. 1995. Estimating Continuous Distributions in Bayesian Classifiers.

In Eleventh Conference on Uncertainty in Artificial Intelligence, San Mateo, 338–45.
17. Kohavi, R. 1995. A Study of Cross-Validation and Bootstrap for Accuracy Estimation and

Model Selection. International Joint Conference on Artificial Intelligence. 1137–43.
18. Kong, F. and Zhou, G. 2011. Improve Tree Kernel-Based Event Pronoun Resolution with

Competitive Information. Proceedings of the Twenty-Second International Joint Conference
on Artificial Intelligence, 3 1814–19.

19. Lee, H., Chang, A., Peirsman, Y., Chambers, N., Surdeanu, M. and Jurafsky, D. 2013. Deter-
ministic coreference resolution based on entity-centric, precision-ranked rules. Computational
Linguistics 39(4), 885–916.

20. Mann, W., Matthiessen, C. and Thompson, S. 1992. Rhetorical Structure Theory and Text
Analysis. Discourse Description: Diverse linguistic analyses of a fund-raising text. ed. by
Mann, W. and Thompson, S.; Amsterdam, John Benjamins. pp. 39–78.

21. Michael, T., Cox, M.T., and Anita Raja. 2007. Metareasoning: A manifesto.
22. Moore, J.S., and Boyer, R.S. 1991. MJRTY - A Fast Majority Vote Algorithm, In R.S. Boyer

(ed.), AutomatedReasoning: Essays inHonor ofWoodyBledsoe,AutomatedReasoningSeries,
Kluwer Academic Publishers, Dordrecht, The Netherlands, 1991, pp. 105–17.

23. Moschitti, A. 2006. Efficient Convolution Kernels for Dependency and Constituent Syntactic
Trees. 2006. In Proceedings of the 17th European Conference on Machine Learning, Berlin,
Germany.

24. Recasens, M., de Marneffe M-C, and Potts, C. 2013. The Life and Death of Discourse Entities:
Identifying Singleton Mentions. In Proceedings of NAACL.

25. Ricoeur, P. 1975. The Rule of Metaphor: The Creation of Meaning in Language. University of
Toronto Press, Toronto.

26. Russell, S., Wefald, E., Karnaugh, M., Karp, R., McAllester, D., Subramanian, D., Wellman,
M. 1991. Principles ofMetareasoning, Artificial Intelligence, pp. 400–411,MorganKaufmann.

27. Salton, G. and Buckley, C. 1988. Term-weighting approaches in automatic text retrieval. Infor-
mation Processing & Management 24(5): 513—23.

28. Searle, 1969. Speech acts: An essay in the philosophy of language. Cambridge, England:
Cambridge University.

29. Sun, J., Zhang, M., and Tan, C. 2010. Exploring syntactic structural features for sub-tree
alignment using bilingual tree kernels. In Proceedings of ACL, 306–315.

30. Sun, J., Zhang,M., and Tan. C.L. 2011. Tree Sequence Kernel for Natural Language. AAAI-25.
31. Vapnik, V. 1995. The Nature of Statistical Learning Theory, Springer-Verlag.
32. Zhang, M., Che, W., Zhou, G., Aw, A., Tan, C., Liu, T., and Li, S. 2008. Semantic role labeling

using a grammar-driven convolution tree kernel. IEEE transactions on audio, speech, and
language processing. 16(7):1315–29.



Relationships Between Probability
and Possibility Theories

Boris Kovalerchuk

Abstract The goal of a new area of Computing with Words (CWW) is solving
computationally tasks formulated in a natural language (NL). The extreme uncer-
tainty of NL is the major challenge to meet this ambitious goal requiring computa-
tional approaches to handle NL uncertainties. Attempts to solve various CWW tasks
lead to the methodological questions about rigorous and heuristic formulations and
solutions of the CWW tasks. These attempts immediately reincarnated the long-time
discussion about different methodologies to model uncertainty, namely: Probability
Theory, Multi-valued logic, Fuzzy Sets, Fuzzy Logic, and the Possibility theory. The
main forum of the recent discussion was an on-line Berkeley Initiative on Soft Com-
puting group in 2014. Zadeh claims that some computing with words tasks are in
the province of the fuzzy logic and possibility theory, and probabilistic solutions are
not appropriate for these tasks. In this work we propose a useful constructive proba-
bilistic approach for CWW based on sets of specialized K-Measure (Kolmogorov’s
measure) probability spaces that differs from the random sets. This work clarifies the
relationships between probability and possibility theories in the context of CWW.

1 Introduction

Computing with Words (CWW) is a new area [1, 2] that intends to solve compu-
tationally the tasks formulated in a natural language (NL). Examples of these tasks
are: “What is the sum of (about 5) + (about 10)?” and “What is the possibility or
probability that Mary is middle-aged, if she is 43 and is married for about 15 years?”

In these problems we are given information I in the form of membership func-
tions (MFs) such as μabout−5, μabout−15−years, μyoung, μmiddle−aged , and the respec-
tive probability density function (pdfs), e.g., age pdf page. Similarly for other tasks
information I can include a membership function μtall (Height(X)), where X is a
person (e.g., John) and a probability density function of height pH (Height(John)) in
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the height interval U = [u1, un], e.g., u1 = 160 cm and un = 200 cm. The probability
space for PH contains a set of elementary events ei = “Height of John is ui”: e1 =
“Height of John is u1”, e2 = “Height of John is u2”,…, en = “Height of John is un”.

Attempts to solve various CWW tasks lead to the methodological questions about
rigorous and heuristic formulations and solutions of the CWW tasks which have a
tremendous level of uncertainty in both formulations and solutions [3, 4].

These attempts immediately reincarnated the long-time discussion about different
methodologies to model uncertainty [5], namely: probability theory (PrT), multi-
valued logic (MVL), Fuzzy Sets (FS), Fuzzy Logic (FL), and the Possibility theory.
The main forum of the recent discussion was an on-line Berkeley Initiative on Soft
Computing (BISC) group in 2014.

Zadeh claims that some computing with words tasks are in the province of the
fuzzy logic, and probabilistic solutions are not appropriate for these tasks. “Repre-
sentation of grade of membership of probability has no validity” [6].

He uses this clam for producing a much wider claim of fundamental limitation of
the probability theory for computing with words. “Existing logical systems—other
than fuzzy logic—cannot reason and compute with information which is described
in natural language [6].

In this paper, we show that this and similar claims may be true if we only consider
simple probabilistic models and techniques, like the ones used in routine engineer-
ing applications. However, modern probability theory contains more sophisticated
concepts and ideas that go way beyond these techniques. We show that, by using
such more sophisticated concepts and ideas, we can come up with a probabilistic
interpretation of fuzzy sets.

To be more precise, such interpretations have been proposed in the past, e.g., the
interpretation using random sets [7–10]. Unfortunately, the random sets interpreta-
tion is quite complicated, requires mathematical sophistication from users, and often
a lot of data that is not always realistic in many practical applications to provide an
efficient computational tool. In contrast, our interpretation that uses a set of special-
ized Kolmogorov-type probability measures (K-measures, for short), is intuitively
understandable and computationally efficient.

In this discussion Zadeh did not specify his term “no validity”. This led to the
difficulty for an independent observer to test his opinion. To move from an opinion
level to a scientific level we need the independently verifiable criteria to test validity
of an approach that we propose below for the probabilistic solutions.

Any solution of the task to be a valid probabilistic solution must meet criteria of
the Axiomatic Probability Theory (APT):

(1) The K-measure spaces (probability spaces) must be created.
(2) All computations must be in accordance with the APT.

In the course of BISC discussion and as result of it we proposed probabilistic
formulations and solutions that met criteria (1) and (2) for several CWW test tasks
listed below:

(1) “Tall John” (Zadeh’s task) [11],
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(2) “Hiring Vera, Jane, and Mary” that is based on their age and height (Zadeh’s
task), [12],

(3) “Degree of circularity of the shape” [11],
(4) “Probably Very is middle-aged” [11, 12],
(5) “Sum of two fuzzy sets” (Zadeh’s task) [4].

The proposed K-measure based solutions are at least of the same usefulness as a
solution with the fuzzy logic min/max operation. In [4] we proposed several alter-
native explications of task 5 and their valid solutions within APT.

This work focuses on three problems:

P1: Establishing relations between concepts of possibility and probability;
P2: Establishing relations between grades of membership of a fuzzy set and prob-

abilities;
P3: Outlining future rigorous possibility theory.

The paper is organized as follows: problem P1 is considered in Sect. 2, problem
P2 is considered in Sect. 3, problem P3 is considered in Sects. 4 and 5 provides a
conclusion.

Within problem P1 we discuss the following topics:

• Possibilistic Semantics,
• Relationship between possibility and probability in natural language (NL),
• Is NL possibility easier than NL probability for people to use?
• Relation between NL words “possibility” and “probability” and the formal math

probability concept,
• NL possibility versus modal and non-modal probability,
• Can the sum of possibilities be greater than 1?
• Context of probability spaces for modeling possibility.

Within problem P2 we discuss:

• Are fuzzy sets and possibility distributions equivalent?
• Can we model degrees of membership probabilistically by Kolmogorov’s measures

spaces (K-spaces)?
• What is a more general concept fuzzy set or probability?
• Is interpreting grade of membership as probability meaningful?
• Relationship among unsharpness, randomness and axiomatic probability?

Within problem P3 we discuss:

• Possibility as upper probability,
• Should evaluation structure be limited by [0, 1] or lattice?
• Exact numbers vs. intervals to evaluate uncertainty.
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2 Relations Between Concepts of Possibility
and Probability

2.1 Possibilistic Semantics

The literature on the Possibility Theory is quite extensive [8, 9, 13–22]. These studies
mostly concentrate on conceptual developments. The important aspects of empiri-
cal justification of these developments via psychological and linguistic experiments
are still in a very earlier stage. As a result it is difficult to judge whether the cur-
rent possibility concepts are descriptive or prescriptive. A descriptive theory should
reproduce the actual use of the concept of possibility in NL. A prescriptive theory
should set up rules for how we should reason about possibilities. Both theories require
identification of the semantics of the concept of possibility.

Below we outline semantics of possibility in the natural language based on review
in [17]:

• An object/event A that did not yet occur (have not yet been seen) can be a possible
event, Pos(A) ≥ 0.

• The object/event A is possible (not prohibited) if 0 < Pos(A) ≤ 1.
• The possibility of the observed object A is a unitary possibility, Pos(A) = 1.
• If to characterize the object/event A somebody selects the statement “A is possible”

over a statement “A is probable” then the chances for A to occur are lower than
if the second statement would be selected. This is consistent with the common
English phrases “X is possible, but not probable.”, i.e., Pos(X) ≥ Pr(X).

• Types of possible events:

Type 1: Merely possible events are events that may not occur (earthquake) while
occurred in the past, Pos(A) is unknown.
Type 2: Eventual events are events that are guaranteed to occur sooner or later
(rain), Pos(A) = 1

In the Sect. 4.2 we discuss possible deviations from this semantics for some com-
plex situations.

Other aspects of possibilistic semantics are discussed in [14] with four meanings
of the word “possibility” identified:

• Feasibility, ease of achievement, the solution of a problem, satisfying some con-
straints with linguistic expressions such as “it is possible to solve this problem”.

• Plausibility, the propensity of events to occur with linguistic expressions such as
“it is possible that the train arrives on time”.

• Epistemic, logical consistency with available information, a proposition is possible,
meaning that it does not contradict this information. It is an all-or-nothing version
of plausibility.

• Deontic, possible means allowed, permitted by the law.
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The expressions below illustrate the semantic difference between NL concepts of
possibility and probability where it seems that the expressions with word “probable”
are equivalent, but the expressions with word “possible” are not equivalent:

It is not probable that “not A” vs. It is probable that A

It is not possible that “not A” vs. It is possible that A.

2.2 Is Easiness an Argument for Possibility Theory?

Below we analyze arguments for and against the possibility theory based on
[6]. [12] argued for the possibility theory by stating: “Humans find it difficult to
estimate probabilities. Humans find it easy to estimate possibilities.” To support this
claim he presents “Vera’s task” that we reconstruct below from his sketchy descrip-
tion.

Vera is middle-aged and middle-aged can be defined as a probability distribution
or a possibility distribution. Age is discrete. It is assumed that neither probability nor
possibility distributions are given and a person must use his/her judgment to identify
them by answering questions for specific ages, e.g.,

(Q1) What is your estimate of the probability that Vera is 43?

(Q2) What is your estimate of the possibility that Vera is 43?

Zadeh stated that if he would be asked Q1 he “could not come up with an answer.
Nor would anyone else be able to come up with an answer based on one’s perception
of middle-aged.”

Accordingly answering Q2 must be easier than answering Q1. In fact he equates
possibility with a grade of membership. “Possibility is numerically equal to grade of
membership. 0.7 is the degree to which 43 fits my perception of middle-aged, that is,
it is the grade of membership of 43 in middle-aged.” Thus, he is answering question
Q3:

(Q3) What is your estimate of the grade of membership that middle-aged Vera is 43?

This question is a result of interpretation of possibility as a grade of member-
ship. In other words, Zadeh’s statement is not about easiness of possibility versus
probability for humans, but about ability or inability to interpret grades of member-
ship as probabilities or possibilities. We had shown the ability to interpret grades of
membership as probabilities in [12] for Zadeh’s examples “Mary is middle-aged”
and “John is tall”. It is done by reinterpreting probabilistically Zadeh’s own solution
[23] using a set of K-Measure spaces outlined in this paper in Sect. 3.2. For the cur-
rent example “Vera’s age” the reinterpretation is the same. Thus to test easiness of
possibility versus probability for humans other arguments are needed.
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2.3 Words Possibility and Probability Versus Formal
Math Probability

In the BISC discussion Zadeh made several statements:

• “Probabilistic information is not derivable from possibilistic information and vice
versa” [6].

• “A basic reason is that count and boundary are distinct, underivable concepts.”
[6].

• “0.7 is the possibility that Vera is 43 and has no relation to the probability of
middle-aged” [6].

• “The possibility that Hans can eat n eggs for breakfast is independent of the
probability that Hans eats n eggs for breakfast, with the understanding that if the
possibility is zero then so is the probability” [6].

Below we show deficiencies of the first three claims and explain independence
in the last claim in a way that is consistent with probabilistic interpretation of the
concept of possibility. Zadeh bases these statements on claims that, in large measure,
the probability theory is “count-oriented”, fuzzy logic is “fuzzy-boundary-oriented”,
and the possibility theory is “boundary-oriented”.

Making these statements, Zadeh references Chang’s claim [24] that possibility
relates to: “Can it happen?” and probability relates to: “How often?” [25] commented
on these statements, noting that Zadeh has accepted for his claims the frequency inter-
pretation of probability, while there exist five or more, interpretations of probability
[26] and in the same way likely multiple interpretations of possibility can be offered
depending on some features such as the number of alternatives.

Below we list four well-known different meanings of probability and different
people are not equal in using these meanings:

(a) probability as it is known in a natural language (NL) without any relation to any
type of probability theory,

(b) probability as it is known in the frequency-based probability theory,
(c) probability as it is known in the subjective probability theory [27],
(d) probability as it is known in the formal axiomatic mathematical probability

theory (Kolmogorov’s theory).

We show deficiencies of Zadeh’s statement for meanings (b)–(d) in this section
and for meaning (a) later in this paper. It is sufficient to give just a single example
of relations for each (b)–(d) that would interpret the possibility that Vera is 43 as a
respective probability (b)–(d) of middle-aged.

Consider two events e1 = {Vera is middle-aged} and e2 = {Vera is not middle-
aged}. In the formal mathematical theory of probability, events are objects of any
nature. Therefore, we can interpret each of these two events simply as a sequence of
words or symbols/labels, e.g., we can assign the number 0.7 to e1 and the number
0.3 to e2. In this very formal way we fully satisfy the requirement of (d) for 0.7 and
0.3 to be called probabilities in the Kolmogorov’s axiomatic probability theory [28].
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In addition meanings (b) and (c) allow getting 0.7 and 0.3 meaningfully by asking
people questions similar to questions like “What is your subjective belief about
event e?”. An interpretation (b) is demonstrated in depth by Jozo Dujmovic in this
volume [29].

To counter Zadeh’s claim about the example with n eggs it is sufficient to define
two probabilities:

p(Hans eats n eggs for breakfast) and p(Hans can eat n eggs for breakfast).
The last probability is, in fact, the possibility that Hans eats n eggs for breakfast

as the Webster dictionary defines the word “possibility” and we discuss in the next
section in details. The idea of that probability (probability of a modal statement
with the word “can”) was suggested by Cheeseman a long time ago [30]. Thus, we
simply have two different probabilities, because we have different sets of elementary
events {eat, not eat} and {can eat, cannot eat}. Nobody claims and expects that two
probabilities from two different probability spaces must be equal. In the same way,
we have two different probabilities, when we evaluate probabilities of rain with two
sets of elementary events {daytime rain, no daytime rain} and {nighttime rain, no
nighttime rain}.

2.4 Possibility and Probability in Natural Language

The Webster dictionary provides meanings of the words “possibility” and “probabil-
ity” in the Natural Language (NL). Table 1 contrasts Webster NL definitions of these
words. It shows that the major difference is in “will happen”, “is happened” associ-
ated with word “probability” and “might happen” associated with word “possibility”.
In other words, we have different levels of chance to happen.

The word “might” expresses a lower chance to happen. Thus even in the pure NL
setting there is a strong relation between probability and possibility.

Respectively questions Q1–Q2 can be reformulated into equivalent NL forms:

(Q1.1) What is your estimate of the chance that Vera is 43?

(Q2.1) What is your estimate of the chance that Vera might be 43?

Note that question (Q3): “What is your estimate of the grade of membership that
middle-aged Vera is 43?” contains term “grade of membership” which is a part of

Table 1 Webster NL definitions of words possibility and probability

Possibility Probability

a chance that something might exist, happen, or
be true

the chance that something will happen

something that might be done or might happen something that has a chance of happening

abilities or qualities that could make someone
or something better in the future

a measure of how often a particular event will
happen if something (such as tossing a coin) is
done repeatedly
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the professional language not the basic NL, i.e., it requires interpretation. In contrast
Q1.1 and Q2.1 do not contain any professional words and phrases. Note that the
Webster interpretation of possibility is fully consistent with Cheeseman’s modal
probability [30] with the modal word “can” that we discussed above for the modal
event “n people can be in the car”, P(n people can be in the car).

2.5 Experiment: Is Possibility Easier for People than
Probability in NL?

We conducted an experiment asking students to answer the question Q1.1 – Q2.1 in
the form shown below, i.e., to answer questions about probability and possibility as
it follows from the Webster dictionary:

Please provide your personal opinion for the questions below in the following
situation. It is known that Vera is middle-aged.

1. What is the chance that she is 43?

Circle your answer: 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 X
Circle X if it is difficult for you to assign any number.

2. What the chance that she might be 43?

Circle your answer: 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 X
Circle X if it is difficult for you to assign any number.

In these questions we deliberately avoided both words “probability” and “possi-
bility”, but used the word “chance” in combinations with words “is” and “might be”
to provide a meanings of these concepts which is derived from the Webster dictionary.
It is important to distinguish wording from semantics of the concepts of “probabil-
ity” and “possibility”. Questions must preserve semantics of these concepts, but can
be worded differently. The word “chance” is more common in NL and is clearer to
the most of the people. By asking questions with the word “chance” we preserve
the semantics of concepts of “probability” and “possibility” and made the task for
the respondents easier.

A total of 27 sophomore Computer Science university students answered these
questions. Practically all of them are English native speakers and none of them took
fuzzy logic or probability theory classes before. Answering time was not limited, but
all answers were produced in a few minutes. Two strong students took an initiative
and offered formulas and charts to compute the answers and generated answers based
on them. Table 2 shows all answers of this experiment and Table 3 shows the statistical
analysis of these answers.

This experiment leads to the following conclusion:

1. Most of the students (80%) do not have any problem to answer both questions
Q1.1 (probability) and Q2.1 (possibility).



Relationships Between Probability and Possibility Theories 105

Table 2 Answers of respondents

Person Q1.1 Q2.1

1 0.1 0.3

2 0.1 1

3 0.1 1

1 0.2 0.3

2 0.2 1

3 0.3 0.5

4 0.3 0.6

5 0.3 0.9

6 0.3 1

7 0.3 1

8 0.5 0.8

9 0.5 1

10 0.7 0.8

11 0.7 0.9

12 0.8 1

13 0.8 0.6

14 1 0

15 1 0.4

16 0.4 0.1

17 1 1

18 0.4 0.4

19 0.3 0.3

20 0.1 X

21 X 0.3

22 X 1

23 X 0.3

24 X 1

25 X X

26 X X

27 X X

2. Answers produced quickly (in less than 5 min).
3. Answers are consistent with expected higher value for Q2.1 than for Q1.1. The

average answer for Q2.1 is 0.67 and the average answer for Q1.1 is 0.45.
4. Out of 27 students three students found difficult to answer both questions (11.1%

of all respondents).
5. Out of 27 students four students found difficult to answer only question Q1.1

(14.8% of all respondents).
6. Out of 27 students one student found difficult to answer only question Q2.1

(3.7% of all respondents).
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Table 3 Statistical analysis of answers

Characteristic Q1.1 Q2.1

Average answer (all numeric
answers)

0.45 0.67

Std. dev. (all numeric answers) 0.3 0.34

Number of all numeric answers 20 24

Average answer for cases with
answer Q2.1 > answer Q1.1

0.36 0.81

Std. dev. for cases with answer
Q2.1 > answer Q1.1

0.23 0.26

Number of answers where
answer Q2.1 > answer Q1.1

12 12

Average answer for cases with
answer Q1.1 > answer Q2.1

0.63 0.49

Std. dev. for cases with answer
Q1.1 > answer Q2.1

0.37 0.36

Number of answers where
answer Q1.1 > answer Q2.1

4 4

Average answer for cases with
answer Q1.1 = answer Q2.1

0.57 0.57

Std. dev. for cases with answer
Q1.1 = answer Q2.1

0.38 0.38

Number of answers where
answer Q1.1 = answer Q2.1

3 3

Number of respondents who
refused to answer both
questions

3 3

Number of respondents who
refused to answer Q1.1 only

4 0

Number of respondents who
refused to answer Q2.1 only

0 1

Total number of respondents
who refused to answer.

7 4

Thus only conclusion 5 can serve as a partial support for Zadeh’s claim that
answering Q2.1 is impossible. However, it is applicable only to less than 15 % of
participants. The other 85% of people have the same easiness/difficulty to answer
both Q1.1 and Q2.1.

These results seem to indicate that the probabilistic approach to CWW is at least
as good as the possibilistic approach for most of the people who participated in
this experiment. The expansion of this experiment to involve more respondents is
desirable to check the presented results. We strongly believe that experimental work
is necessity in fuzzy logic to guide the production of meaningful formal methods and
the scientific justification of existing formal methods, which is largely neglected.
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2.6 Is Sum of Possibilities Greater Than 1?

Consider a probability space with two events em1 and em2

em1 = “Amay happen”, em2 = “A may not happen”,

Thus, for A = “rain” we will have events

em1 = “rainmay happen”, em2 = “rain may not happen”,

Respectively for A = “no rain” we will have events

em1 = “no rainmay happen”, em2 = “no rainmay not happen”,

Note, that “dry weather” is not equal to “no rain” (negation of rain), because snow
is another part of negation of rain in addition to dry weather.

Next consider another probability space with two events without “may” and “may
not”,

e1 = “A”, e2 = “notA”

Denote probabilities in spaces with “may” and “may not” as Pm and without them
as Pe, respectively. In both cases in accordance with the definition of probability
spaces sums are equal to 1:

Pm(em1) + Pm(em2) = 1, Pe(e1) + Pe(e2) = 1,

e.g., Pm(em1) = 0.4, Pe(em2) = 0.6, and Pe(e1) = 0.2, Pe(e2) = 0.8.
Note that in example Pm(em1) + Pe(e2) = 0.4 + 0.8 = 1.2 > 1. In fact, these

probabilities are from different probability spaces and are not supposed to be summed
up.

The confusion takes place in situations like presented below. Let

em1 = “rain may happen” and e2 = “no rain”

instead of

em2 = “rain may not happen”.

Probability of e2 = “no rain” is probability of a physical event (absence of a
physical event). In contrast probability of em1 = “rain may not happen” is probability
of a mental event. It depends not only on physical chances that rain will happen, but
also on the mental interpretation of the word “might” that is quite subjective.



108 B. Kovalerchuk

This important difference between events e2 and em2 can be easily missed. It
actually happens with a resulting claim that the possibility theory must be completely
different from the probability theory based on such mixing events from different
probability spaces and getting the sum of possibilities greater than 1.

2.7 Context of Probability Spaces

Consider a sum for possibilities of events A and not A: Pos(A) + Pos(not A) and a sum
of probabilities Pr(A) + Pr(not A). For the last sum it is assumed in the Probability
Theory that we have the same context for Pr(A) and Pr(not A) when it is defined
that Pr(A) + Pr(not A) = 1. Removing the requirement of the same context can make
the last sum greater than 1. For instance, let Pr(A) = 0.6 for A = “rain”, which is
computed using data for the last spring month, but Pr(not A) = 0.8 is computed using
data for the last summer month. Thus, Pr(A)+Pr(not A) = 0.6 + 0.8 = 1.4 > 1.

The same context shift can happen for computing Pos(A) + Pos(not A). Moreover,
for mental events captured by a possibility measure checking that the context is the
same and not shifted is extremely difficult. Asking “What is the possibility of the
rain?”, “What is possibility that rain will not happen?”, “What is the chance that rain
may happen?” and “What is the chance that no rain may happen?” without controlling
the context can easily produce the sum that will be greater or less than 1. Sums of
possibility values from such “context-free” questions cannot serve as a justification
for rejecting the probability theory and for introducing a new possibility theory with
the sum greater than 1. The experiments should specifically control that no context
shift happen.

2.8 Natural Language Possibility Versus Modal
and Non-modal Probability

Joslyn [17] provided an example of the difference between probability and possibility
in the ordinary natural language for a six-sided die. Below we reformulate it to show
how this difference can be interpreted as a difference between modal probability [30]
and non-modal probability. A six-sided die has six possible outcomes (outcomes that
can occur). It is applied to both balanced and imbalanced dies. In other words, we can
say, each face is completely possible, possible with possibility 1, Pos(s) = 1 or can
occur for sure. In contrast, different faces of the imbalanced die occur with different
probabilities P(si).

Thus, for all sides si we have Pos(si) = 1, but probability P(si) < 1. Respectively
�i=1:6Pos(si) = 6 and �i=1:6P(si) = 1. At the first glance, it is a strong argument that
possibility does not satisfy Kolmogorov’s axioms of probability, and respectively
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possibility is not probability even from the formal mathematical viewpoint, not only
as a NL concept.

In fact, Pos(si) satisfies Kolmogorov’s axioms, but considered not in a single
probability space with 6 elementary events (die sides), but in 6 probability spaces
with pairs of elementary events: {s1, not s1}, {s2, not s2}, …, {s6, not s6} each.

Consider {s1, not s1} with Pos(s1) as an answer for the question: “What is the
probability that side s1 may occur/happen?” and Pos(not s1) as an answer for the
question: “What is the probability that side s1 may not occur/happen?”. The common
sense answers are Pos(s1) = 1, and Pos(not s1) = 0 that are fully consistent with
the Kolmogorov’s axioms. This approach is a core of our approach with the set of
probability spaces and probability distributions [31–33].

Consider another version of the same situation of mixing of probabilities and
possibilities from different spaces as an incorrect way to justify superadditivity for
both of them. It is stated in [34]: “…probabilistic relationship between p(A) and
p(not A) is fully determined. By contrast, P(A) and P(not A) are weakly dependent
in real life situations like medical diagnosis. For instance, given a particular piece of
evidence, A can be fully possible and not A can be somewhat possible at the same
time. Therefore, a “superadditivity” inequality stands: Pos(A) + Pos(not A) ≥ 1.”

Let us analyze this medical diagnosis example for a pair of events

{A, notA} = {e1, e2} =
= {malignant tumor occurred for the patient, malignant tumor did not occur for the patient}

Then according to the probability theory we must have Pe(e1) + Pe(e2) = 1 and it
seems reasonable if these probabilities will be based on frequencies of the A and not
A under the given evidence. Here in {e1, e2} the physical entity (malignant tumor)
is negated to get e2 from e1, and no modality is involved.

Next consider another pair of events (modal events with the words “might” and
“might not”):

{em1, em2} = {malignant tumor might occur for the patient,malignant tumor might
not occur for the patient}

Having Pm(em1) + Pm(em2) = 1 is also seems reasonable for these events if these
probabilities will be based on frequencies of subjective judgments of experts about
em1 and em2 under given evidence. The experts will estimate the same physical entity
“malignant tumor” for two different (opposite) modalities “can” and “cannot”. In
other words here we negate modality (“can”) not a physical entity (malignant tumor)
as was the case with {e1, e2}. The same property is expected for the events:

{em3, em4} = {benign tumor might occur for the patient,benign tumor might not
occur for the patient}

The pairs {em1, em2} and {em3, em4} differ from another pair that mix them:
{em1, em3} = {malignant tumor might occur for the patient, no malignant tumor

(benign tumor) might occur for the patient}
For this pair, Pm(em1) + Pm(em3) = 1 seems less reasonable. Here in em3 the

physical entity (malignant tumor) is negated, but modality (“might”) is the same. In
essence, em1 and em3 are from different modal probability spaces, and should not
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be added, but operated with as it is done in the probability theory with probabilities
from different probability spaces.

This example shows that probability spaces for modal entities must be built in
a specific way that we identified as N1 below. Let A be a modal statement. It has
two components: a physical entity E and a modal expression M, denote such A as
A = (E, M). Respectively, there are three different not A:

(N1): not A = (E, not M)
(N2): not A = (not E, M)
(N3): not A = (not E, not M)

As we have seen above, it seems more reasonable to expect additivity for N1 than
for N2 and N3. The next example illustrates this for N1 and N2. Consider A = (E, M)
where E = “sunrise”, not E = “sunset”, M = “can”, and not A = (E, not M) for N1,
and not A = (not E, M) for N2.

For N1 the questions are:

“What is the probability that John can watch the sunrise tomorrow?” and

“What is the probability that John cannot watch the sunrise tomorrow?

For N2 these questions are:

“What is the probability that John can watch the sunrise tomorrow?” and

“What is the probability that John can watch the sunset tomorrow?

These questions in the possibilistic form can be:

“What is the possibility that John will watch the sunrise tomorrow?” and

“What is the possibility that John will watch the sunset tomorrow?”

Both probabilities/possibilities P(A) and P(not A) can reach 1 for N2, therefore
building spaces with N1 and N3 should be avoided. The situation is the same as in the
probability theory itself—not every set of events can be used as a set of meaningful
elementary events.

Consider the next example, based on the following joke: “Can misfortune make
a man a millionaire? Yes if he is a billionaire. In this example the first two pairs of
questions are in N1, and the last pair is in N2:

What is the probability that misfortune can make a man a millionaire if he is a
billionaire?

What is the probability that misfortune cannot make a man a millionaire if he is
a billionaire?

What is the possibility that misfortune will make a man a millionaire if he is a
billionaire?

What is the possibility that misfortune will not make a man a millionaire if he is
a billionaire?

What is the possibility that misfortune will make a man a millionaire if he is a
billionaire?
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What is the possibility that negligence will make a man a millionaire if he is a
billionaire?

Consider another example on possibility of n people in the car [30]. Let n = 10
and A is “10 people are in the car”. What is the possibility of “10 people in the car”?
Let Pos(A) = 0.8 then “What is the possibility of not A?”, i.e., possibility of “not 10
people in the car”. We need to define a probability space {A, notA}. Note that “not
10 people in the car” includes 9 people. Thus

Pos(notA) ≥ Pos(9),

Next it is logical to assume that Pos(9) > Pos(10). Thus, Pos(not A) ≥ 0.8 with

Pos(A) + Pos(notA) > 1.

As we noted above such “superadditivity” often is considered as an argument for
the separate possibility theory with superadditivity.

In fact this cannot be such argument because there is a space with normal additivity
(P(A) + p(notA) = 1). In that space we have a different A. It is not an event that 10
people are in the car, but a modal statement, where A = “10 people can be in the
car”, and respectively not A = “10 people cannot be in the car”, e.g., with P(A) = 0.8
and P(notA) = 0.2.

Thus in general superadditivity situations N2 and N3 can be modeled with a Set
(pair) of probability (K-spaces) Spaces (SKS) of N1 type without any superadditivity.
This is in line with our approach [32] discussed above.

Note that superadditivity can really make sense in the probability theory and be
justified, but very differently, and not as an argument for the separate possibility
theory. See a chapter by Resconi and Kovalerchuk in this volume.

3 Relations Between Grades of Membership of Fuzzy Set
and Probabilities

3.1 What is More General Concept Fuzzy Set, Probability
or Possibility?

Joslyn stated [17] that neither is fuzzy theory specially related to possibility theory,
nor is possibility theory specifically related to fuzzy sets. From his viewpoint “both
probability distributions and possibility distributions are special cases of fuzzy sets”.
It is based on the fact an arbitrary fuzzy set can be specialized to be probability or
possibility by imposing additional properties. For probability this property is that the
sum (integral) or all values must be equal to 1. For possibility this property is that
the maximum must be equal to 1.
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The specialization of an arbitrary fuzzy set to probability or possibility can be
done as follows. Let m(x) be a membership function of a fuzzy set on the interval
[a, b]. We can normalize values of m(x) by dividing them by the value S which is the
sum (integral) of m(x) values in this interval and get probabilities, p(x) = m(x)/S.
Alternatively, we can divide m(x) by the value M which is the maximum of m(x)
values in the interval [a, b], pos(x) = m(x)/M .

However, these transformations do not establish the actual relation between theo-
ries: Fuzzy Set Theory (FST), Fuzzy Logic (FL) and Probability Theory (PrT) where
the main role play operations with membership functions m and probabilities p. The
concept of the fuzzy set is only a part of the fuzzy set theory, we should not base the
comparison of the theories based only one concept, but should analyze other critical
concepts such as operations.

Probability theory operations of intersection and union (∩ and ∪) are contex-
tual, p(x ∩ y) = f(p(x), p(y|x)) = p(x)p(y|x), where conditional probability p(y|x)
expresses contextual dependence between x and y. In contrast, operations in FST and
FL, i.e., t-norms and t-conforms are “context-free”,m(x & y) = f (m(x), m(y)), that is
no conditional properties, dependencies are captured. In fact FL, FST present rather
a special case of the Probability Theory because all t-norms are a subset of copulas
that represent n-D probability distributions [4, 35].

Joslyn [17] also made an interesting comment that the same researchers, who
object to confusion of membership grades with probability values, are not troubled
with confusion of membership grades with possibility values. In fact both confusions
have been resolved by:

(In1) interpreting a fuzzy set as a set of probability distributions (SPD) not a
single probability distribution [4, 31, 32].

(In2) interpreting possibility as modal probability as proposed by Cheeseman
[30].

In the next section we illustrate the first interpretation and show how fuzzy sets are
interpreted/modeled by SPD. Note that the interpretation of membership functions
as a single probability distribution is too narrow and often is really confusing. The
interpretation In2 already has been discussed in the previous sections.

3.2 What Is the Relation of a Membership Function
to Probability?

Piegat [25, 36] stated that a membership function of the crisp set is not pdf and not
probability distribution, noting that it only informs that a set element belongs to the
considered set.

While it is true that in general a membership function (MF) is not a pdf or a
probability distribution it is not a necessary to compare them in a typical way, i.e.,
by one-to-one mapping. This relation can be expressed in different ways.
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The relation can be one-to-many similarly to the situation when we compare a
linear function and a piecewise linear function. While these functions differ, a set
of linear functions accurately represents a piecewise linear function. In the case of
MF a set of pdfs represents any MF of a crisp set or a fuzzy set [32]. This technique
uses a set of probability Spaces that are Kolmogorov’s measure (K-Measure) spaces
(SKM) [4].

Let f (x) = 1 be a MF of the interval [a, b]. Consider a pair of events

{e1(x), e2(x)} = {x belongs to [a, b], x does not belong to [a, b]}

with pdf Px(e(x)) = 1, if x belongs to [a, b] else Px(e(x)) = 0. Thus, Px(e1(x)) =
f (x) = 1, Px(e2(x)) = 0 and Px(e1(x)) + Px(e2(x)) = 1. This is a simplest probability
space that satisfies all Kolmogorov’s axioms of probability. A set of these pdfs p =
{Px} for all x from [a, b] is equivalent to MF of the crisp set.

Note that here we use the term probability density function (pdf) in a general
sense as any function with sum(integral) of its values equal to one on its domain. It
can be a traditional pdf defined on a continuous variable or on a set of any nature
continuous or discrete that will be called a set of elementary events. As we will see
below typically these sets will be pairs of NL sentences or phrases.

For a fuzzy set with a membership function f (x) we have probabilities

Px(e1(x)) = f (x), Px(e2(x)) = 1 − f (x)

that satisfy all Kolmogorov’s axioms of probability, where again a set of these pdfs
p = {Px} for all x from [a, b] is equivalent to MF of the fuzzy set 〈[a, b], f 〉.
Figure 1 shows these probability spaces for each x that is human’s height h.

In other words MF is a cross-section of a set of pdfsp. More details are in [32]. The
advantage of MF over a set of pdfs is in compactness of the representation for many
MFs such as triangular MFs. Each of these MFs “compresses” an infinite number
of pdfs. A probability space S(180) is shown as a pair of circles on a vertical line at
point h = 180. As we can see from this figure, just two membership functions serve as
a compact representation of many simple probability spaces. This is a fundamental
representational advantage of Zadeh’s fuzzy linguistic variables [37, 38] versus
multiple small probability spaces.

Fig. 1 Sets of probability
spaces S(h) for elementary
events {short(h), tall(h)} for
each height h
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It is important to note that having two MFs m1(x) and m2(x) for two fuzzy sets
the operations with them must follow the rules of probabilistic operations AND and
OR with sets of respective pdfs p1 and p2 on two sets of probability spaces to be
contextual.

An example of these operations is presented in [4] using convolution-based
approach. In this context it is very important to analyze the relation of t-norms
and t-conorms used in fuzzy logic with sets of probability distributions. One of such
analyses is presented in [4, 35] in this volume.

The common in fuzzy logic “context-free” heuristic min and max operations and
other t-norms and t-conorms for AND and OR operations on fuzzy sets are not
correct probabilistic operations in general. These context-free operations can only
serve as approximations of contextual probabilistic operations for AND and OR
operations. For the tasks where the context is critical context-free operations will
produce incorrect results.

Thus, membership functions and sets of pdfs are mutually beneficial by combining
fast development of pdfs (coming from MFs) and rigor of contextual operations
(coming from probability).

In this sense, fuzzy membership functions and probabilities are complimentary not
contradictory. It would be incorrect to derive from advantages of MFs outlines above
the conclusion that probabilistic interpretation only brings a complication to a simple
fuzzy logic process for solving practical problems. The probabilistic interpretation
of MFs removes a big chunk of heuristics from the solution and brings a rigorous
mechanism to incorporate context into AND and OR operations with fuzzy sets.

3.3 Are Fuzzy Sets and Possibility Distributions Equivalent?

Zadeh [22] defined a possibility distribution as a fuzzy set claiming that possibilistic
concepts are inherently more appropriate for fuzzy theory than probabilistic concepts.

This equivalence was rejected in earlier studies [17] which reference works with
a wider view on the concept of possibility that includes:

• its generalization to the lattice [13],
• involvement of qualitative relations [16],
• the semantics of betting [19],
• measurement theory [21],
• abstract algebra [20].

Other alternatives include:

• modal probabilities [30] and the later work by
• elaborated lattice approach [39].

Also a general logic of uncertainty based on the lattice can be traced to Gains
[18, 40].
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3.4 Is Interpreting Grade of Membership as Probability
Meaningful?

Zadeh [6] objects to equating a grade of membership and a truth value to proba-
bility, but equates a grade of membership and a truth value as obvious. He states
that “equating grade of membership to probability, is not meaningful”, and that
“consensus-based definitions may be formulated without the use of probabilities”.

To support this statement he provided an example of a grade of membership 0.7
that Vera is middle-aged if she is 43. Below we explicate and analyze his statement
for this example that is reproduced as follows.

Grade of Membership that Vera is middle-aged being 43:

GradeMembership(Vera is middle-aged|Age = 43) = 0.7, (1)

Truth value for Age = 43 to be middle-aged,

TruthValue(Age = 43 is middle-aged) = 0.7. (2)

Possibility that Vera is middle-aged for the Age = 43,

Poss(Age = 43| Vera is middle-aged) = 0.7 (3)

Probability that Vera is middle-aged for the Age = 43,

Prob(Vera is middle-aged| Age = 43) = 0.7 (4)

In other words, Zadeh equates (1), (2) and (3) and objects to equating all of them
to (4) as not meaningful and not needed.

Consider a crisp voting model that equates the grade of membership to probability
meaningfully. In this model, the statement “Vera is middle-aged” is classified as true
or false by each respondent. Respectively the grade of membership is defined as the
average of votes. Jozo Dujmovic presented this approach in details in his chapter in
[41] and in this volume [29].

In a flexible voting model the voter indicates a grade of membership on the scale
from 0 to 1 as a subjective/declarative probability of each voter. In the case of mul-
tiple voters the consensus-based grade of membership is defined as the average
of subjective/declarative probabilities of voters. Thus, a meaningful probabilistic
interpretation of a grade of membership exists for long time and is quite simple.

Next we comment on Zadeh’s statement that “consensus-based definitions may be
formulated without the use of probabilities”. If the intent of the whole theory is to get
results like in (1) then it can be obtained without using the word “probability”. In fact
both fuzzy logic and probability theory are interested to get more complex answers
than (1). This leads to the need to justify operations on combination such as t-norms
and t-conorms used in fuzzy logic as normative or descriptive. These operations
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differ from probability operations. Moreover there are multiples of such operations
for both conjunction and disjunction in contrast with the probability theory, where
the conjunction (intersection) and disjunction (union) are unique. Thus each t-norm
and t-conorm must be justified against each other and probabilistic operations. Note
that experimental studies [42, 43] with humans do not justify min t-norm versus
product t-norm, which is a probabilistic operation for independent events. In general
the justification of operations continues to be debated [3, 44] while extensive experi-
mental studies with humans still need to be conducted in the fuzzy logic justification
research.

3.5 Unsharpness of Border And Randomness Versus
Axiomatic Probability

Chang [24] differenced fuzzy logic and probability theory stating that (1) fuzzy sets
theory deals with unsharpness, while the probability theory deals with randomness
and (2) the problems with unsharpness cannot be converted into “randomness prob-
lems”. This statement was made to justify that there are problems which cannot be
solved by using the probability theory, but which can be solved by using the fuzzy
sets and fuzzy logic. In this way, he attempted to counter my arguments that proba-
bility theory has a way to solve Zadeh’s CWW test tasks by using the formal axioms
of probability theory (called by Tschantz [45] axioms of K-measure space).

Tschantz [45] objected to Chang’s statement: “As Boris has said many times,
he is not attempting to convert reasoning about vague words into reasoning about
randomness. He is merely attempting to reuse the formal axioms of Kolmogorov.
While these axioms were first found useful in modeling randomness, the fact that
they are useful for modeling randomness does not mean that they cannot also be
useful for modeling vagueness. To put it another way, someone can use the same
model M to model both X or Y even if X and Y are not the same thing. Thus, I do not
buy CL Chang’s argument that Boris is incorrect. If he [24] shows that vagueness has
some feature that makes it behave in such a way that is so different from randomness
that no model can be good at modeling both, then I would buy his argument. However,
I would need to know what that feature is, what “good” means in this context, and
how he proves that no model can be good at both. It seems far easier to point to some
contradiction or unintuitive result in Boris’s model.”

So far no contradiction or unintuitive results have been presented by opponents
to reject the approach based on the Space of K-Measures.
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4 What Is the Future Rigorous Possibility Theory?

4.1 Is Possibility an Upper Estimate of Probability
for Complex Events?

Below we analyze abilities to interpret possibility Pos as an upper estimate of proba-
bility Pr using the current min-max possibility theory where “&” operator is modeled
as min and “or” operator is modeled as max.

Section 2.4 had shown how questions with words “possibility” and “probabil-
ity” can be reworded to be in a comparable form using their Webster definitions.
Thus Webster leads to the conclusion that possibility must be an upper estimate of
probability in NL for every expression X,

Pos(X) ≥ Pr(X)

Respectively when possibility of A&B is defined as

Pos(A&B) = min(Pos(A), Pos(B))

it gives an upper estimate of Pr(A&B),

Pos(A&B) = min(Pos(A), Pos(B)) ≥ Pr(A&B)

However in contrast when Pos(A or B) is defined as

Pos(A or B) = max(Pos(A), Pos(B))

it gives a lower estimate of Pr(A or B) = P(A) + P(B) - P(A&B)

Pos(A or B) = max(Pos(A), Pos(B)) ≤ Pr(AorB)

Thus, the NL property Pos(X) ≥ Pr(X) does not hold when X = (A or B) in the
min-max possibility theory advocated by Zadeh and others.

Let us compute the possibility of another composite expression X = A&(B or C)
using the min-max possibility theory:

Pos(A&(B or C) = min(Pos(A), Pos(B or C))) =
min (Pos(A), max (Pos(B), Pos(C))).

The value min (Pos(A), Pos(B or C))) is supposed to be an upper estimate for
Pr(A&(B or C)). However, min(Pos(A), max(Pos(B), Pos(C))) is not an upper esti-
mate for Pr(A&(B or C)) because max (Pos(B), Pos(C)) is a lower estimate for
Pr(B or C). The infusion of this lower estimate to min (Pos(A), Pos(B or C))) can
destroy an upper estimate.
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Below we show it with a numeric example. Consider sets A, B and C such that A
has a significant overlap with (B or C) with probabilities

Pr(A) = 0.4, Pr(B) = 0.3, Pr(C) = 0.32, Pr(B or C) = 0.5, Pr(A&(B or C)) = 0.35

From these numbers we see that

Pr(A) = 0.4 < Pr(B or C) = 0.5

Pr(B or C) = 0.5 > max(Pr(B), Pr(C)) = max(0.3, 0.32)) = 0.32

min(Pr(A), Pr(B or C))) = min(0.4, 0.5) = 0.4 =
Pos(A&(B or C)) > Pr(A&(B or C)) = 0.35.

Pos(A&(B or C)) = min(Pr(A), max(Pr(B), Pr(C))) =
min(0.4, 0.32) = 0.32 < Pr(A&(B or C)) = 0.35

Thus, upper estimate 0.4 of probability 0.35 is converted to the lower estimate
0.32 of this probability 0.35.

This confirms that for composite expressions that involve “or” operator, we cannot
ensure that possibility of that expression is an upper estimate of its probability in
the min-max possibility theory. Thus, a future possibility theory should differ from
the current min-max possibility theory to be able to hold the property that Pos(X) ≥
Pr(X) for all composite expressions X.

4.2 Should Evaluation Structure Be Limited by [0, 1]
or Lattice?

In Sect. 3.3 we referenced several studies that generalized the possibility theory to a
lattice (partial order of evaluations) from the full order in [0.1]. However, to the best
of our knowledge, none of the previous studies went beyond a lattice structure. The
lattice assumption means that the absolute positive and negative possibility exists
with max value commonly assigned to be equal to 1 and min value to be equal to
0. It does not mean that x with Pos(x) = 1 always happens, but such x is one of the
real alternatives, e.g., x is physically possible. Similarly Pos(x) = 0 can mean that x
physically cannot happen.

There are NL concepts where this assumption can be too restrictive. Consider the
concept of happiness and a chance that somebody might by absolutely happy. Can
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somebody be absolutely happy (unhappy) to the level that he/she cannot be happier
in the future? The lattice assumption tells that if x is absolutely happy at time t,
Happy(x) = 1, then x cannot be happier later. If x tells that he/she was absolutely
happy yesterday, and even happier today then under the lattice model this person will
be inconsistent or irrational. This person “exceeded” the absolute maximum. Another
example is “possibility of absolute understanding”. What is a chance that somebody
might understand something absolutely today and cannot increase understanding
later? In other words, we question the concept of absolute maximum for possibil-
ities such as absolute happiness, Pos(Happy(x)) = 1 and absolute understanding,
Pos(Understand(x)) = 1. The number of such “unlimited” NL concepts is quite large.

How to build a model to accommodate such behavior? We can simply remove limit
1 (or any constant given in advance) and allow the unlimited values of possibility of
happiness, in this example and, in a general measure of possibility.

Other difficulties for constructing an evaluation medium are that often a set of
possible alternatives is uncertain, and assigning the possibility values to a known
alternative is highly uncertain and difficult. For instance, the NL expression “unlim-
ited possibilities” often means that a set of alternatives is huge, and not fully known,
being uncertain to a large extent. Often it is easier to say that A is more possible
than B, and both alternatives are not fully possible, than to give numeric Pos(A)
and Pos(B). We simply may have no stable landmark for this. The NL expression
“unlimited possibilities” can mean that for a possible A, there can exist a B, which
is more possible than A. The next difficulty is that adding more possible alternatives
to the consideration changes the possibility values. Next the fixed value of max of
possibility, e.g., maxx∈XPos(x) = 1, is not coming from the NL, but is just imposed
by the mathematical formalisms. We advocate the need for developing the formalism
with “unlimited” possibilities.

4.3 From an Exact Number to an Interval

Another common viewpoint is that possibility expresses a less constraining form of
uncertainty than probability [46], and even that the probability theory brings in the
excess of constraints [17] requiring an exact number instead of an interval of belief
and plausibility [Bel, Pl] as in the evidence measure in the belief theory.

Again while it is true that probability is a single number, not an interval, the issue
is not in the formal expansion to the interval, but in the justification of operations to
produce the intervals and operations with intervals. We need well justified empirical
procedures to get them. Without this generalization, the intervals and other alter-
native formalisms have little value. Somebody must bring the “life meaning” to it.
Respectively the claims of successful applications need to be closely scrutinized to
answer a simple question: “Is the application successful because of the method, or in
spite of it?” In other words: “Does this method capture the properties of the applica-
tion better than the alternative methods, in our case the pure probabilistic methods?”
It short, deficiency of one method should not be substituted by deficiency of another
method.
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5 Conclusion

This work clarified the relationships between the probability and the possibility
theories as tools for solving Computing with Words tasks that require dealing with
extreme uncertainty of the Natural Language. Multiple arguments have been provided
to show deficiencies of Zadeh’s statement that CWW tasks are in the province of
the fuzzy logic and possibility theory, and probabilistic solutions are not appropriate
for these tasks. We proposed a useful constructive probabilistic approach for CWW
based on sets of specialized K-Measure (Kolmogorov’s measure) probability spaces.
Next we clarified the relationships between probability and possibility theories on
this basis, outlined a future rigorous possibility theory and open problems for its
development.
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Modeling Extremal Events Is Not Easy:
Why the Extreme Value Theorem Cannot
Be As General As the Central Limit Theorem

Vladik Kreinovich, Hung T. Nguyen, Songsak Sriboonchitta,
and Olga Kosheleva

Abstract In many real-life situations, a random quantity is a joint result of several
independent factors, i.e., a sum of many independent random variables. The descrip-
tion of such sums is facilitated by the Central Limit Theorem, according to which,
under reasonable conditions, the distribution of such a sum tends to normal. In sev-
eral other situations, a random quantity is a maximum of several independent random
variables. For such situations, there is also a limit theorem—the Extreme Value The-
orem. However, the Extreme Value Theorem is only valid under the assumption that
all the components are identically distributed—while no such assumption is needed
for the Central Limit Theorem. Since in practice, the component distributions may
be different, a natural question is: can we generalize the Extreme Value Theorem to a
similar general case of possible different component distributions? In this paper, we
use simple symmetries to prove that such a generalization is not possible. In other
words, the task of modeling extremal events is provably more difficult than the task
of modeling of joint effects of many factors.
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1 Sums and Maxima of Independent Factors: Formulation
of the Problem

Why normal distributions are ubiquitous: sums ofmany independent factors. In
many practical situations, we have a joint effects of many independent small factors.
This happens, e.g., in measurements, when:

• after eliminating all major sources of possible measurement error,
• we end up with a measurement error which results from a joint effect of multiple
difficult-to-eliminate independent sources of measurement uncertainty.

In this case, the measurement error—i.e., the difference ΔX = ˜X − X between the
measurement result ˜X and the actual value X of the corresponding quantity—can be

represented as a sumΔX =
n
∑

i=1
Xi of a large number n of small independent random

variables Xi .
The description of the resulting probability distribution for this sum ΔX is facil-

itated by the well-known Central Limit Theorem, according to which, under some
reasonable conditions, the distribution of such a sum tends to Gaussian as n tends to
infinity; see, e.g., [13]. This limit result means that for large n, the distribution of the
sum ΔX is close to Gaussian.

This is indeed the case for most measuring instruments: experimental analysis
shows that for about 60% of them, the measurement error is normally distributed [10,
11]. The Central Limit Theorem also explains why normal distribution is ubiquitous
in many other areas as well: the familiar bell-shaped curve indeed describes many
phenomena, from distribution of people by height or by weight to distribution of
molecules by velocity.

Extremal events: maxima of many independent factors. In many other practical
situations, we are interested in describing the maxima of several independent factors.
For example, in structural engineering, to estimate the structure’s stability under
catastrophic events such as hurricanes and earthquakes, it is important to estimate
the probability that this structure collapses—i.e., that in one of its components,
the tension exceeds the stability threshold. The condition that one of the tension

values Xi exceeds the threshold x is equivalent to X ≥ x , where X
def= max

i
Xi is the

maximum of several independent components. Thus, to study such extremal events,
it is important to know the probability distribution of such maxima.

Similar arguments show the need to study similar maxima in earth sciences, in
finances, in hydrology, and in many other areas where rare disastrous events are
possible; see, e.g., [1–7, 9, 12].

Limit theorems for extreme events: what is known. Similarly to the Central Limit
Theorem that describes the limit of sums, there are the limit theorems that describe the
limits of maxima of many independent random variables. The most well-known of
these limit theorems is theExtreme Value Theorem (also known as theFisher-Tippett-
Gnedenko Theorem), according to which, if we have a sequence of independent
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identically distributed random variables Xi and the distributions of their maxima

Mn
def= max(X1, . . . , Xn)has a limit, then this limit has oneof the following forms [5]:

• Weibull law, with cumulative distribution function (cdf)

F(x) = exp

(

−
∣

∣

∣

∣

x − b

a

∣

∣

∣

∣

α)

for x ≤ b and F(x) = 1 for x ≥ b;

• Gumbel law F(x) = exp

(

− exp

(

b − x

a

))

; and

• Fréchet law F(x) = exp

(

−
(

x − b

a

)−α
)

for x > b and F(x) = 0 for x ≤ b.

Formulation of the problem: what is available for the central limit theorems but
missing for extreme value theorems. In many formulations of the Central Limit
Theorem, it is not necessary to require that all components random variables Xi are
identically distributed. These theorems are applicable to many situations in which
different variables Xi have different distributions.

In contrast, the Extreme Value Theorem is only known for the case when all the
component random variables Xi are identically distributed. In practical applications,
the distributions of the corresponding random variables Xi—e.g., variables describ-
ing stability of different part of the construction—are, in general, different. A natural
question arises: can we generalize the Extreme Value Theorem so that it can be
applied to the case when we have different distributions Xi?

What we prove in this paper. In this paper, we prove that such a generalization is
not possible. In this sense, the task of modeling extremal events is provably harder
than the task of modeling a joint effect of several factors.

2 Analysis of the Problem

What do we mean by the desired generalization? Both in case of the Central
Limit Theorem and in the case of the Extreme Value Theorem, we have a finite-
parametric family of limit distributions such that, under certain reasonable conditions,
the distribution of the corresponding sum or maxima tends to one of the distributions
from this class.

From this viewpoint, when we say that we are looking for a generalization of
the Extreme Value Theorem—which would be similar to the current (generalized)
versions of the Central Limit Theorem—we mean that:

• we are looking for a finite-dimensional family F of probability distributions,
• such that, that, under certain reasonable conditions, the distribution of the corre-
sponding maxima tends to one of the distributions from the class F .
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Let us describe which properties of the class F follow from this desired description.

First desired property: the classF should be invariant under shifts and scalings.
We are interested in the distributions of physical quantities Xi . Of course, in all
data processing, we deal with the numerical values of the corresponding physical
quantities. The numerical value of a quantity depends on the choice of a measuring
unit and on the choice of a starting point. For example, we can measure time in years
or days or seconds, we can start measuring time with year 0 or with year 1950 (as is
sometimes done in astronomical computations), etc.

When we change a starting point for measuring X by a new starting point which
is smaller by b units, then the numerical value X changes to X ′ = X + b. This shift
changes the numerical expression for the cdf: instead of the original probability
F(x) = Prob(X ≤ x) that X ≤ x , for X ′ = X + b, we have

F ′(x) = Prob(X ′ ≤ x) = Prob(X + b ≤ x) = Prob(X ≤ x − b) = F(x − b).

When we change a measuring unit to a new one which is a > 0 times smaller,
then the numerical value X changes to X ′ = a · X . For example, if instead of meters,
we use centimeters, a unit which is a = 100 times smaller, then all numerical values
of length are multiplied by 100: e.g., X = 2 m becomes X ′ = 200 cm. This scaling
changes the numerical expression for the cdf: instead of the original probability
F(x) = Prob(X ≤ x) that X ≤ x , for X ′ = a · X , we have

F ′(x) = Prob(X ′ ≤ x) = Prob(a · X ≤ x) = Prob
(

X ≤ x

a

)

= F
( x

a

)

.

In general, if we change both the starting point and the measuring unit, we get a
new cdf

F ′(x) = F

(

x − b

a

)

.

If we perform this transformation, then all the values Xi are replaced by the new
values X ′

i = a · Xi + b. For the maximum, we similarly have

M ′
n = max(X ′

1, . . . , X ′
n) = max(a · X1 + b, . . . , a · Xn + b) =

a · max(X1, . . . , Xn) + b = a · Mn + b.

Thus, if in the original units, we had a limit distribution F(x), in the new units, we

will have a limit distribution F ′(x) = F

(

x − b

a

)

.

The desired limit theorem should not depend on the choice of the starting point
or on the choice of a measuring unit. Thus, it is reasonable to require that if the class
F of limit distributions contains a cdf F(x), then it should also contain a re-scaled

and shifted distribution F ′(x) = F

(

x − b

a

)

.
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Second desired property: the class F should be closed under multiplication of
cdfs. Let us assume that F(x) and F ′(x) are two cdfs from the desired class F . By
definition of the class F , all distributions from this class are limits of distributions
of the maxima. In particular:

• the cdf F(x) is the limit of the distributions Fn(x) of Mn = max(X1, . . . , Xn) for
some sequence of independent random variables Xi , and

• the cdf F ′(x) is the limit of the distributions F ′
n(x) of M ′

n = max(X ′
1, . . . , X ′

n) for
some sequence of independent random variables X ′

i .

Then, for a combined sequence X ′′
i

def= X1, X ′
1, . . . , Xn, X ′

n, . . ., the corresponding
maxima will have the form

M ′′
2n = max(X1, X ′

1, . . . , Xn, X ′
n) =

max(max(X1, . . . , Xn),max(X ′
1, . . . , X ′

n)) = max(Mn, M ′
n).

The distribution of Mn is close to F(x), the distribution of M ′
n is close to F ′(x). The

cdf F ′′
2n(x)

for the maximum M ′′
2n can be thus described as follows:

F ′′
2n(x) = Prob(M ′′

n ≤ x) = Prob(max(Mn, M ′
n) ≤ x) =

Prob(Mn ≤ x & M ′
n ≤ x).

Since the variables Xi and X ′
i are independent, their maxima Mn and M ′

n are also
independent, so

F ′′
2n(x) = Prob(Mn ≤ x & Mn ≤ x) = Prob(Mn ≤ x) · Prob(M ′

n ≤ x),

i.e., F ′′
2n(x) = Fn(x) · F ′

n(x). In the limit, the distribution of Mn tends to F(x) and
the distribution of M ′

n tends to F ′(x), so the distribution for the new sequence tends
to the product F(x) · F ′(x).

Thus, with every two cdfs F(x) and F ′(x), the class F should also contain their
product F(x) · F ′(x).

The class F should be finite-dimensional. The previous property is easier to
describe if we consider logarithms ln(F(x)): the logarithm of product of the cdfs is
the sum of their logarithms, so the class L of such logarithms should be closed under
addition.

One can easily check that if the original classF is closed under shifts and scalings,
then the classL of logarithms of functions F(x) ∈ F should also be similarly closed.

Each such class can be naturally extended to a linear space. We can show that this
space should also be closed under shift and scaling.

The fact that the original set is finite-dimensional (= finite-parametric) implies
that this space should also be finite-dimensional, i.e., all its functions should have
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the form
�(x) = C1 · e1(x) + · · · + Cm · em(x),

wherem is the dimension of this space, ei (x) are given functions, andCi are arbitrary
real values.

Now, we are ready to formulate and prove our main result.

3 Definitions and the Main Result

Definition Wesay that a finite-dimensional linear spaceL of differentiable functions
is shift- and scale-invariant if with every function �(x) and for every two real numbers
a > 0 nd b, this class also contains the function

�′(x) = �

(

x − b

a

)

.

Proposition For every shift- and scale-invariant finite-dimensional linear space L
of differentiable functions, all its elements are polynomials.

Comment. All the proofs are given in the following section.

Corollary If F(x) is a cdf, then its logarithm ln(F(x)) cannot be an element of a
shift- and scale-invariant finite-dimensional linear space.

Discussion. This result shows that a finite-dimensional limit class F is not possible.
Thus, the Extreme Value Theorem indeed cannot be extended to the general case
when variables Xi are not necessarily identically distributed.

4 Proofs

Proof of the Proposition. The main ideas of this proof can be found in [8].

1◦. The fact that the linear space L is shift-invariant means, in particular, that for
every basis function ei (x) and for every real value b, the shifted function ei (x + b)

also belongs to this linear space. Since all the function from the linear space are linear
combinations of the basis functions e1(x), . . . , em(x), this means that for every b,
there exist values Ci, j (b) for which

ei (x + b) = Ci,1(b) · e1(x) + · · · + Ci,m(b) · em(x). (1)

For each b, we can take m different values x1, . . . , xm , and get m resulting equalities:



Modeling Extremal Events Is Not Easy … 129

ei (x1 + b) = Ci,1(b) · e1(x1) + · · · + Ci,m(b) · em(x1);

. . .

ei (x j + b) = Ci,1(b) · e1(x j ) + · · · + Ci,m(b) · em(x j ); (2)

. . .

ei (xm + b) = Ci,1(b) · e1(xm) + · · · + Ci,m(b) · em(xm).

We thus get a system of m linear equations for m unknowns Ci,1(b), …, Ci,m(b).
By using Cramer’s rule, we can describe the values Ci, j (b) as ratios of polynomials
in terms of the coefficients e j (xk) and the right-hand sides ei (x j + b). Since the
functions ei (x) are differentiable, we can conclude that the dependence Ci, j (b) on b
is differentiable as well.

2◦. We can now combine the Eq. (1) corresponding to different functions ei (x). As
a result, we get the following system of m equations:

e1(x + b) = C1,1(b) · e1(x) + · · · + C1,m(b) · em(x);

. . .

ei (x + b) = Ci,1(b) · e1(x) + · · · + Ci,m(b) · em(x); (3)

. . .

em(x + b) = Cm,1(b) · e1(x) + · · · + Cm,m(b) · em(x).

Differentiating both sides of these equations by b and taking b = 0, we get the
following system of differential equations:

de1(x)

dx
= c1,1 · e1(x) + · · · + c1,m · em(x);

. . .

dei (x)

dx
= ci,1 · e1(x) + · · · + ci,m · em(x); (4)

. . .

dem(x)

dx
= cm,1 · e1(x) + · · · + cm,m · em(x),

where we denoted ci, j
def= dCi, j (b)

db |b=0
.



130 V. Kreinovich et al.

We have a system (4) of linear differential equations with constant coefficients. It
is known that a general solution to this system is a linear combination of expressions
of the type xk · exp(λ · x), where:

• the value λ is a (possible complex) eigenvalue of the matrix ci, j , and
• the value k is a natural number; this number should be smaller than the multiplicity
of the corresponding eigenvalue.

Thus, each function ei (x) is such a linear combination.

3◦. Let us now use scale-invariance. The fact that the linear spaceL is scale-invariant
means, in particular, that for every basis function ei (x) and for every real value a, the
shifted function ei (a · x) also belongs to this linear space. Since all the function from
the linear space are linear combinations of the basis functions e1(x), . . . , em(x), this
means that for every a, there exist values Ai, j (a) for which

ei (a · x) = Ai,1(a) · e1(x) + · · · + Ai,m(a) · em(x). (5)

For each a, we can take m different values x1, . . . , xm , and get m resulting equalities:

ei (a · x1) = Ai,1(a) · e1(x1) + · · · + Ai,m(a) · em(x1);

. . .

ei (a · x j ) = Ai,1(a) · e1(x j ) + · · · + Ai,m(a) · em(x j ); (6)

. . .

ei (a · xm) = Ai,1(a) · e1(xm) + · · · + Ai,m(a) · em(xm).

We thus get a system of m linear equations for m unknowns Ai,1(a), …, Ai,m(a).
By using Cramer’s rule, we can describe the values Ai, j (a) as ratios of polynomials
in terms of the coefficients e j (xk) and the right-hand sides ei (a · x j ). Since the
functions ei (x) are differentiable, we can conclude that the dependence Ai, j (a) on
a is differentiable as well.

4◦. We can now combine the Eq. (5) corresponding to different functions ei (x). As
a result, we get the following system of m equations:

e1(a · x) = A1,1(a) · e1(x) + · · · + A1,m(a) · em(x);

. . .

ei (a · x) = Ai,1(a) · e1(x) + · · · + Ai,m(a) · em(x); (7)

. . .
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em(a · x) = Cm,1(a) · e1(x) + · · · + Am,m(a) · em(x).

Differentiating both sides of these equations by a and taking a = 1, we get the
following system of differential equations:

x · de1(x)

dx
= a1,1 · e1(x) + · · · + a1,m · em(x);

. . .

x · dei (x)

dx
= ai,1 · e1(x) + · · · + ai,m · em(x); (8)

. . .

x · dem(x)

dx
= am,1 · e1(x) + · · · + am,m · em(x),

where we denoted ai, j
def= d Ai, j (a)

da |a=1
.

5◦. To solve this new system of equations, we can introduce a new variable t
def= ln(x),

for which
dx

x
= dt . Here, x = exp(t), so for the new functions Ei (t)

def= ei (exp(t)),

the system (8) takes the following form:

d E1(t)

dt
= a1,1 · E1(t) + · · · + a1,m · Em(t);

. . .

d Ei (t)

dt
= ai,1 · E1(t) + · · · + ai,m · Em(t); (9)

. . .

d Em(x)

dx
= am,1 · E1(t) + · · · + am,m · Em(t).

This is a system of linear differential equations with constant coefficients; so, each
function Ei (t) is linear combination of the expressions of the type t k · exp(λ · t),
Thus, for ei (x) = Ei (ln(x)), we conclude that each function ei (x) is a linear com-
bination of the expressions

(ln(x))k · exp(λ · ln(x)) = (ln(x))k · xλ.
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6◦. We have proven that:

• on the one hand, each function ei (x) is a linear combination of the expressions
xk · exp(λ · x), where k is a natural number;

• on the other hand, each function ei (x) is a linear combination of the expressions
(ln(x))k · xλ.

One can easily see that the need to be represented in the second form excludes
the possibility of λ �= 0. Thus, each function ei (x) is a linear combination of the
expressions of the type xk with natural k—i.e., a polynomial. Every function from
the linear space L is a linear combination of the basis functions ei (x) and is, thus,
also a polynomial.

The proposition is proven.

Proof of the Corollary. Let us prove this result by contradiction. Let us assume
that for some cdf F(x), its logarithm ln(F(x)) belongs to a shift-and scale-invariant
linear space L. Due to Proposition, this implies that this logarithm is a polynomial
P(x): ln(F(x)) = P(x) and thus, F(x) = exp(P(x)).

When x → −∞, we have F(x) → 0, so we should have

P(x) = ln(F(x)) → −∞.

For the corresponding polynomial P(x) = a0 · xk + a1 · xk−1 + · · · , thismeans that:

• either k is even and a0 < 0,
• or k is odd and a0 > 0.

When x → +∞, then:

• in the first case, we have P(x) → −∞, while
• in the second case, we have P(x) → +∞.

However, we should have F(x) → 1 and thus, P(x) = ln(F(x)) → ln(1) = 0.
This contradiction shows that our assumption was wrong, and logarithms for cdfs

cannot belong to shift-and scale-invariant linear spaces.
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Information Quality and Uncertainty

Marie-Jeanne Lesot and Adrien Revault d’Allonnes

Abstract The quality of a piece of information depends, among others, on the
certainty that can be attached to it, which relates to the degree of confidence that
can be put in it. This paper discusses various components to be considered when
assessing this certainty level. It shows that they cover a wide range of different
types of uncertainty and provide a highly relevant application domain for theoretical
questioning about uncertainty modelling. It also describes several frameworks that
have been considered for this task.

Keywords Information scoring · Information processing · Uncertainty type ·
Competence · Reliability · Plausibility · Credibility · Linguistic uncertainty

1 Introduction

Information quality (see e.g. [1]) and its implementation in the domain of information
evaluation (see e.g. [2]) aim at providing guidance and help to users in the drowning
quantity of information they are nowadays overwhelmed with, in particular due to
the dramatic increase of Web usage, e.g. through blogs and social networks, such as
Facebook and Twitter. One specificity of these newmedia is that everyone can partic-
ipate in the information spread and be a source of information, making the question
of a relevance measure of the available information crucial. As a consequence, it is
necessary to dispose of tools for automatically assessing their quality: there is an
acute need for automatic methods to identify the “best”, e.g. understood as the most
useful, pieces of information.
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Numerous criteria and properties have been proposed and considered to that aim
[1, 2]. This paper1 focuses on the certainty dimension, numerically evaluated as a
degree of certainty that can be attached to any piece of information. In a schematic
view, it exploits the argument according to which a certain piece of information is
worthier than a doubtful one. Insofar, it is related to the task that aims at assessing the
trust that can be put in a piece of information. It can be underlined that such a degree
of trust can mean either evaluating the reality of the fact the piece of information
reports [3–5] or the extent to which the rater is convinced, based on the process with
which he forms an opinion about this piece of information [6–8].

Even if uncertainty is only one of its components, information quality appears as a
highly relevant application framework for the theoretical domain of uncertaintymod-
elling. Indeed, it turns out to be a very challenging one, raising critical requirements
that lead to question existing models and possibly to develop new ones. As discussed
in this paper, informationprocessing involves several types of uncertainty thatmust be
distinguished, appropriately modelled and possibly combined: information-related
uncertainty covers a wide spread spanning over several dimensions. As detailed in
the following, one can mention distinctions between objective and subjective uncer-
tainty, as well as between general versus contextual uncertainty.

This paper first discusses various kinds of uncertainty that can be attached to a
piece of information in Sect. 2, organising them according to their cause, i.e. the
characteristic of the considered piece of information that triggers them. Section3
discusses the two axes objective-subjective and general-contextual. Section4 briefly
describes some theoretical frameworks that have been proposed tomodel uncertainty
for information evaluation.

2 Sources of Uncertainty in the Information Processing
Framework

This section discusses 5 sources of uncertainty that can be considered in the frame-
work of information processing, structuring them according to their cause: it distin-
guishes the uncertainties respectively triggered by the content of a piece of informa-
tion, its source, its context, its formulation and its automatic extraction.

In order to illustrate these types, it considers the following fictitious piece of
information together with two basic meta-data, namely author and publication date:

On February 15th 2015, the International Olympic Committee declared
“In 2048, the Summer Olympic Games will probably take place in November”

1This paper is based on part of the panel which has been organised by Prof. Kovalerchuk at
IPMU2012 on the general topic “Uncertainty Modelling”.
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2.1 Content-Related Uncertainty: What is Said?

The degree of uncertainty attached to a piece of information obviously depends
on its content, i.e. the answer to the question “what does it say?”: for the running
example, it for instance relates to the assertion that can be schematically written as
“2048 Summer Olympic Games dates = November”.

More precisely, the piece of knowledge provided by the considered information
can trigger a surprise effect that influences its uncertainty level: an unexpected fact
can, at least at first, appear as more uncertain than a known one. The surprise effect
can be measured with respect to two types of background, leading to distinguish
between the notions of plausibility and credibility.

Knowledge context: plausibility Surprise can be defined as compared to the per-
sonal background of the information rater, i.e. as the compatibility of the considered
piece of information with his/her knowledge, which is defined as plausibility [8].

For instance for the running example, the asserted datemay appear highly atypical,
in particular to people living in the North hemisphere, who usually do not associate
November with summer. As a consequence, they may receive the information with
more caution and consider it as more uncertain than people living in the South
hemisphere. Along the same lines, for someone with knowledge about the history
of the Olympic Games, for instance knowing that the situation where the summer
games take place inNovember already occurred (in 1956, for theMelbourneGames),
the fact may appear as less uncertain.

Plausibility can be considered as the first component in the conviction establishing
process [8], that determines an a priori confidence level attached to a considered piece
of information.

Other information context: credibility Surprise can also be defined with respect
to other available pieces of information, e.g. other assertions provided in the same
period regarding the location and dates of the Olympic Games: in this case, the con-
sidered piece of information is compared to other statements, building the credibility
component [3, 8].

More precisely, the assessment of credibility relies on the identification of cor-
roboration or invalidation of the considered piece of information, defining another
type of background for the evaluation of its attached uncertainty. This dimension
both depends on the content of the information and the context of its assertion, it is
more detailed in the section discussing the latter (Sect. 2.3).

2.2 Source-Related Uncertainty: Who Says it?

The uncertainty attached to an assertion also depends on its source, i.e. the answer
to the question “who says it?”: for the running example, it for instance relates to the
fact that the International Olympic Committee provides it, who can be considered
as a qualified source. The question is then to define the characteristics that make a



138 M.-J. Lesot and A. Revault d’Allonnes

source “qualified”, this section discusses some of them, a more complete discussion
can be found in [9] for instance.

It must be underlined that, altogether, the qualification of a source is contextual:
it may not be the same for all pieces of information and may for instance depend on
their topics, i.e. on their contents. However, some of its components remain topic-
independent and general.

Source trustworthiness: reliability The reliability of the source corresponds
to an a priori assessment of its quality, independently of the considered piece of
information: it indicates whether, in general, the assertions it provides can be trusted
or should be considered with caution.

In the seminal model for information evaluation [3], reliability plays a major role:
this model represents the information score as a bi-gram defined as the concatenation
of two symbols measured on two discrete graded scales associated to linguistic
labels. The first one is called reliability, although it may depend on several distinct
dimensions [10]: its explicit and direct presence in the final score underlines its
crucial role.

This subjective dimension, that may take different values for different raters, is
difficult to define formally and thus to measure. It can be related to the concept
of source reputation although the latter may be as difficult to model and quantify.
In the case of Twitter sources, it has for instance been proposed to establish it from
measurable quantities such as the number of followers or the source social status [11].

Reliability can also be assessed by comparing previous source assertions with
the ground truth when the occurrence of events has make it possible to establish
whether the source was right or wrong [12, 13]. This approach highlights the fact
that reliability is a dynamic concept whose measure should evolve with time. It also
relates this dimension to validity [4], according to which if the source produces a
piece of information, then the latter is true.2

Another component of reliability can be derived from the formulation used by
the source: the number of citations that are contained in its publications allows
to evaluate the extent to which it cites its own sources [9, 14, 15]. Now, offering
a possibility to track back the origin of the provided information contributes to
its reliability. Another indication can be derived from the amount of grammatical
and spelling errors [9, 14, 15]: it is argued that a grammatically mistake-free text
advocates for analysis capacity and critical way of thinking, which are desirable
qualities for reliable sources. Although these quantities are related to the question
“how is it said”, discussed in Sect. 2.4, they capture an uncertainty originated from the
source, allowing to infer some of the source characteristics, whereas the components
described in Sect. 2.4 measure uncertainty originated from the expression itself.

Source expertise level: competence A distinct component of source-related
uncertainty comes from its competence, that measures the extent to which it is
entitled to provide the information, i.e. whether it is legitimated to give it [7, 9].

2Conversely, a source is said to be complete if, when a piece of information is true, the source
provides it [4]. This useful characterisation, related both to the source omniscience and “sharing
communication type”, is however less central for the assessment of the information uncertainty.
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In the considered example, it can for instance be considered that the IOC is much
more competent than a taxi driver would be, leading to a lower uncertainty regarding
the date of the 2048 Olympic Games than would occur if the latter provided the
information.

Competence relates to the source expertise and appears to be a topic-dependent
component: the IOC would be significantly less competent to provide information
about theWorld Football Champions’ cup; likewise, the taxi driver would be a legiti-
mate source about efficient routes or traffic jams for instance, leading to less uncertain
pieces of information regarding these topics.

It is worth noticing that two types of competence can be distinguished, an essential
one and a more accidental one, that respectively apply to experts and witnesses [9].
Indeed, an essential competence can be established from the source fields of study
and possibly diplomas, or from official roles: they provide a theoretical expertise and
indeed entitle a source to make assertions about a given topic. On the other hand, a
geographical or temporal proximity to an event provides an empirical competence,
granting witnesses a local expertise level.

Source intention The assessment of the certainty degree attached to a piece of
information, or the degree of trust put in it, can also depend on source characteristics
even more difficult to establish, related to its intention: indeed, a source may for
instance pursue an aim of desinformation, with the intention to lure the information
rater. The certainty degree should obviously be reduced in such a communication
paradigm, if it can be recognised as such.

This dimension is related to a sincerity feature, which captures the tendency of
the source to tell the truth or not (see also [4]): it can be considered that sincerity
is a general characteristic of the source, describing its global tendency, whereas its
intention is more contextual and varies for each piece of information. Sincerity can
be considered as being related to the source reliability, as they both depend on the
truth of the source assertions. The notion of sincerity may be seen as integrating a
judgment component, that takes into account the source intention when interpreting
the reason why it is wrong.

Source implication Another source characteristic is captured by its commitment
degree, i.e. the extent to which it is involved in the propagation of the informa-
tion it produces. Commitment depends on what the source may loose if it produces
erroneous information, and, insofar, can be seen as related to its reputation.

It has for instance been proposed, in the case of Twitter sources, to measure the
commitment degree as a function of the energy they put in their accounts [9, 15], in
turn quantified by the richness of their profile, e.g. the number of filled fields, the
presence of a picture or the number of publications.

The source commitment also influences the uncertainty that can be attached to
its assertions, under the interpretation that a highly committed source should be less
prone to produce erroneous content and may be trusted.

Successive sources: hearsay A specific case for the evaluation of the source of
an information occurs when the piece of information is not directly obtained, i.e.
when it results from a series of successive sources, following a scheme of the form
“S1 says that S2 says that … Sn says that F” where F is the fact and Si , i = 1, . . . , n
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the sources. Dedicated models have been proposed to process such cases, see e.g.
[16, 17].

Indeed, for such pieces of information, all previous source-uncertainty related
components are measured not with respect to F (except for Sn) but, for Si , with
respect to “Si+1 says that… Sn says that F”: competence then for instance measures
whether Si is entitled to report the assertions of Si+1.

2.3 Context-Related Uncertainty: When is it Said?

Another meta-data that influences the certainty attached to a considered piece of
information relates to the context of its assertion, understood as the global answer
to the question “when is it said?”. Different components can be considered, a purely
temporal one as well as a more global one that depends on other available assertions.

Temporal context The date associated to an assertion contributes to the certainty
level that can be attached to it, both in comparison with the date of the reported event
and with the current date.

Indeed, the gap between the reported event and the assertion influences the uncer-
tainty: information provided too much in advance may be considered with caution,
decreasing their certainty level. For instance for the running example, if the assertion
is about the Olympic Games in 2084, it may be interpreted as less certain.

On the other hand, a comparisonwith the current date can influence the importance
that should be granted to a considered piece of information: when faced with an
information stream, it can be useful to take into account older, and possibly out-of-
date, pieces of information to a lesser degree than the more recent ones. It has for
instance been proposed to associate each assertion with a currentness score [5], so as
to weight down the pieces of information according to their possible obsolescence. It
can be underlined that such amodel makes the evaluation sensitive to the information
order, possibly leading to different results if a piece of information I1 is published
before I2 or reciprocally. Such a behaviour can be considered as a realistic approach
to model the uncertainty evolution when faced with an information stream.

It can be noted that beside these relative date comparisons, with respect to the
information content and the current date, an absolute effect can be considered: some
dates do bear meaning and influence the evaluation of their content. This component
depends on a cultural dimension that makes difficult its general implementation. For
instance, one can consider that information produced on April 1st is less certain than
others; announcements contained in election campaigns may also require a specific
processing.

Other assertion context: credibility The evaluation of the uncertainty attached
to a piece of information classically includes a cross-checking step, aiming at identi-
fying complementary information backing up or undermining it: confirmations and
invalidations respectively increase and decrease its certainty level. The credibility
dimension can be understood as a degree of confirmation resulting from comparison
of the piece of information to be rated with the available information [3, 5, 7, 18].
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In the seminal model [3], the second symbol of the bigram measures this confir-
mation degree, as indicated by the description it is accompanied by. It can be under-
lined that its linguistic labels mainly describe the information certainty, across the
scale improbable, doubtful, possibly true, probably true, confirmed by other sources,
showing the relation with this underlying essential component.

The principle of credibility evaluation [5, 7] consists in aggregating several asser-
tions, said to be homologous, that refer to the same content. It thus depends on the
choice of a similarity measure that measures the degree of confirmation by assessing
the extent to which an homologous piece of information corroborates the informa-
tion to be rated (see e.g. [5] for a discussion on such eligible measures and their
components).

The aggregation step can take into account various dimensions, among which the
previous degree of confirmation, the individual uncertainty attached to the homolo-
gous information [5, 7, 18], but also the relations between the sources [5]: one can
consider a refined notion of confirmation and invalidation, weighting them according
to affinity or hostility relations between sources. Indeed, a confirmation provided by
sources known to be in affinity relation should have a lower influence than a confir-
mation by independent, not to say hostile, sources: friendly sources are expected to
be in agreement and to produce somehow redundant information.

As the temporal component, the credibility dimension makes uncertainty evalua-
tion sensitive to the order of the pieces of information in a stream, taking into account
more subtle relations than their publication dates only. This dynamical behaviour,
source of many a theory of argumentation, considers that two confirmations followed
by an invalidation may lead to a different level of uncertainty than a confirmation
followed by a contradiction and another confirmation might [18].

2.4 Formulation-Related Uncertainty: How is it Said?

Thewords used in a piece of information play amajor role on the attached uncertainty
level, both because of the imprecision they convey and the uncertainty they intrinsi-
cally convey. The additional role of linguistic quality, that influences the assessment
of the source reliability, has been discussed in Sect. 2.2.

Natural language is often imprecise (see e.g. [19]), allowing for fuzziness of the
conveyed message, which can lead to uncertainty: if, for instance, the IOC asserts
that the 2048 Games will take place “around the end of the year”, some uncertainty
is attached to the fact that the games will take place in November. In this case,
uncertainty arises from the approximate compatibility between the rated piece of
information and the query (e.g. regarding the Games date): only a partial answer
is available. Such imprecision also plays a role in the identification of homologous
information involved in the cross-checking step of credibility assessment discussed
in Sect. 2.3.

Beside imprecision, the used words also convey uncertainty: they give indication
regarding the source own level of uncertainty and influence the overall evaluation of
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the uncertainty [20]. In the case of the considered example for instance, the linguistic
expression contains the adverb “probably” whose presence increases the uncertainty
of the final evaluation.

Linguistic works (see e.g. [21, 22]) propose classification of uncertainty bearing
terms, making it possible to assess the global expressed uncertainty. Such terms
include adjectives (such as certain, likely or improbable), modal verbs (e.g. may,
might, could, should), adverbs (such as certainly, possibly or undeniably) or complex
idiomatic structures. Modifiers such as “very” can be used to reinforce or weaken
the previous linguistic tags.

2.5 Automatic Processing-Related Uncertainty:
How is it Extracted?

Afifth level of uncertainty comes from the fact that the available pieces of information
are automatically processed, which can introduce errors in the content identification
and thus for many of the components mentioned in the previous sections.

Indeed, the evaluation of the uncertainty attached to a piece of information accord-
ing to the previously cited dimensions for instance include the use of tools for named
entity detection, event and relationship identification and date extraction [22]. They
also require to solve difficult linguistic tasks, as negation handling and anaphora
resolution, that still are challenges for automatic text processing systems. These
uncertainties can be measured automatically, for instance through performance rates
of the corresponding methods, i.e. using recognition rate, recall or precision.

Among the examples of the encountered difficulties, one can for instance mention
possible errors in the text topic identification, possibly leading to erroneous assess-
ment of the source competence (see Sect. 2.2). Similarly, the identification of the
date in the processed document may result in mistakes in the evaluation of the tem-
poral content (see Sect. 2.3). The most impacted dimension is probably credibility
(Sect. 2.3), that relies on the extraction of homologous pieces of information, and
therefore both on all the documents processing and the computation of their similar-
ities. It can be noticed that this task is sometimes performed semi-automatically, in
order to guarantee its quality, crucial for the whole system [5].

3 Uncertainty Types for Information

Form a formal point of view, the various uncertainty types discussed in the previous
section can be classified according to two axes, opposing objective versus subjective
uncertainties as well as general versus contextual ones.

It can be underlined that the considered uncertainties also differ in their very
nature: for instance, some express structural doubts about the phenomena, as con-
tent plausibility or recognition rate for instance, whereas the linguistically triggered
uncertainty on the other hand captures an imprecision level.
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Objective versus subjective uncertainty A first axis discriminating the listed
uncertainty types refers to the position of the rater and his/her implication in the
evaluation: some of them actually do not depend on the rater and constitutes objective
dimensions, whereas others are subjective.

Indeed, the evaluation of the uncertainty triggerend by the automatic processing
step for instance is objective and can be automatically measured. Similarly, the
evaluation of the degree of confirmation between two pieces of information, i.e.
the credibility dimension, does not depend on the rater and is identical for all users.

On the other hand, the plausibility dimension is subjective: it is measured by
comparison to the rater’s background knowledge and therefore varies from one rater
to another. Likewise, most source evaluation criteria can be considered as subjective:
for instance, not all users may agree on the competence fields of a given source, nor
on its intention.

General versus contextual uncertainty Another discriminating axis refers to
the dependence of the dimension to the rated piece of information: some criteria are
evaluated generally, a priori, i.e. independently of any information, whereas others
characterise the considered one.

As an example, the source reliability does not dependon the rated piece of informa-
tion and similarly applies to all the source assertions. The category of general criteria
also involve the evaluation of the uncertainty triggered by automatic processing step,
which is measured globally, for all types of information. Similarly, the measure of
the formulation-related uncertainty relies on a linguistic modelling of uncertainty
expression: the latter is built generally, not for a specific piece of information.

On the other hand, the source competence for instance is topic-dependent and thus
varies from one piece of information to the other. In that sense, it is considered to
be contextual. Obviously, the content credibility, as well as the temporal dimension,
are contextual too.

4 Formal Frameworks for Information Scoring

As discussed in the previous sections, the uncertainty to be considered in the domain
of information quality covers different types. As a consequence, distinct formal
frameworks have been considered to represent it or some of its components. A cen-
tral issue is to dispose of aggregation operators to combine the individual uncertainty
scores obtained for each considered component. It can be observed that some propo-
sitions focus on this aggregation issue, in amulti-criteria aggregation approach, using
for instance Choquet integrals [9].

This section briefly discusses themain existing uncertaintymodelling frameworks
applied to the case of information evaluation, distinguishing them depending on
whether they model symbolic, ordered or numerical uncertainties.

Symbolic framework Symbolic approaches in the domain of information evalu-
ation include logical representation, in particular in the framework of modal logics
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[4, 23–25], that allow to perform logical inferences to characterise the sources and the
pieces of information. However, they usually do not model the attached uncertainty.

The first formal framework for information evaluation considering uncertainty
has been proposed in the seminal model [3]: it represents the information score as
a bi-gram defined as the concatenation of two symbols measured on two discrete
graded scales associated to linguistic labels: according to the descriptions they are
accompanied by, the first one captures the source reliability and the second one the
information credibility. However it has been shown [6, 10, 26] that this symbolic
approach raises some difficulties, among others regarding themanipulation and com-
parison of the obtained scores.

Ordered framework: extended multivalued logic In order to ease the manipu-
lation of uncertainty scores, it has been proposed to exploit an extended multivalued
logic framework [8, 27] to model the process of trust building: trust can be defined
on a single discrete graded scale, clarified with linguistic labels, improving the leg-
ibility of a unique degree with a semantic interpretation. Moreover, this framework
is equipped with formal tools to combine the truth degrees through logical opera-
tions that generalise conjunction, disjunction or implication, as well as arithmetical
ones [28].

The extension [8, 27] of classical multivalued logic consists in introducing an
additional degree that allows to distinguish between facts that are ‘neither true nor
false’, i.e. that have a neutral truth value, and facts whose truth values cannot be eval-
uated: it makes it possible to distinguish between ignorance and neutral knowledge,
which is for instance required to distinguish between a source whose reliability is
unknown from a source with intermediate reliability.

Numerical frameworks: probability, possibility and evidence Probability the-
ory is one of the most frequent framework used to model uncertainties. In the case
of information evaluation, it can for instance naturally be used to quantify the uncer-
tainty related to the extraction process, e.g. to measure error recognition rates of
the applied automatic tools. However, many components of information evaluation
uncertainty cannot be considered as having a probabilistic nature. Moreover, they
need to distinguish between ignorance and uniform distribution, as sketched above,
which cannot be implemented in the probabilistic framework. Furthermore, prob-
abilities impose strong axiomatic constraints, restricting the choice of aggregation
operators. Finally, probability theory often requires to set a priori distributions, which
may be a difficult task in the case of information evaluation.

Possibility theory [29] allows to represent the ignorance case separately from the
neutral one and offers awide variety of aggregation operators allowing tomodelmany
different behaviours for the combination of the considered uncertainty dimensions. It
has for instance be applied to assess the uncertainty that can be attached to an event e,
to answer the question “did e take place?”, based on a set of pieces of information,
enriching the binary answer yes/no with a confidence level [5].

The theory of belief functions [30] generalises the probability and the possibility
theories, offering a very rich expression power. It has been applied to information
evaluation in particular to the issues of reported information [16, 26] and source
reliability measures [25, 31].
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5 Conclusion

This chapter considered the issue of uncertainty in the domain of information eval-
uation, discussing the various types of uncertainty that can be attached to a piece of
information, describing either the event it reports or its intrinsically attached trust.
Many components can be distinguished, whose combination builds to a complex
notion for which several theoretical frameworks have been considered, so as to cap-
ture its diverse facets.

Among other topics related to uncertainty in the context of information evalua-
tion, dynamics and validation offer challenging issues opening the way to research
directions. The need for modelling the temporal evolution of uncertainty comes from
the availability of information streams, beyond the individual pieces of information,
as briefly mentioned previously. It also comes from the possible evolution of the
general components of the source characteristics: if, for instance, the reliability of
a source proves to change over time, it may require to re-evaluate the uncertainty
attached to previously assessed pieces of information this source had provided, and,
consequently, also to the information they are analogous to.

The issue of validation aims at assessing the quality of the proposed uncertainty
models, both regarding the considered components and the chosen formal framework.
Now its difficulty comes from the lack of data allowing to perform empirical studies:
in the case of real data, it is difficult to dispose of expected scores to which the
computed ones can be compared. The use of artificial data raises the challenge of
their realistic generation controlling their relevance.
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Applying Anomalous Cluster Approach
to Spatial Clustering

Susana Nascimento and Boris Mirkin

Abstract The concept of anomalous clustering applies to finding individual clus-
ters on a digital geography map supplied with a single feature such as brightness or
temperature. An algorithm derived within the individual anomalous cluster frame-
work extends the so-called region growing algorithms. Yet our approach differs in
that the algorithm parameter values are not expert-driven but rather derived from the
anomalous clustering model. This novel framework successfully applies to the issue
of automatically delineating coastal upwelling from Sea Surface Temperature (SST)
maps, a natural phenomenon seasonally occurring in coastal waters.

1 Introduction

In our previous work [1, 2], we automated the process of delineation of upwelling
regions and boundaries using a fuzzy clusteringmethod supplementedwith the anom-
alous cluster initialization process [3].Yet thatmethod operates over temperature data
only, without any relation to the spatial arrangement of the pixels involved. There-
fore, we decided to modify the anomalous cluster framework in such a way that it
applies to the pixels spatially located on geographical maps. We apply the view that
an upwelling region grows step-by-step by involving nearest cold water pixels. The
process is controlled by a function expressing the similarity of pixel temperatures to
those already in the region. In a self-tuning version of the algorithm the homogeneity
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threshold is locally derived from the approximation criterion over a window around
the pixels under consideration. This window serves as a boundary regularize.

The paper is organized in three main sections. Section2 describes a version of
the anomalous cluster model and method relevant to the task. Section3 describes
a modification of this method applicable to clustering pixels according to the sea
surface temperature maps. Section4 gives a glimpse on application of the method
to real temperature map data. Conclusion outlines the contents and sketches future
work.

2 Anomalous Cluster Model and Alternating Method
to Optimize It

Consider a set of objects P characterized by just one feature x so that, for every
p ∈ P , x(p) is a real number representing the value of the feature at p. A subset
C ⊆ P will be characterized by a binary vector z = (z p) such that z p = 1 if p ∈ C
and z p = 0 otherwise. We find such a C that approximates the feature x as closely as
possible. To adjust the quantitative expression of C with z to the measurement scale
of x , vector z should be supplied with an adjustable scaling coefficient λ. Also, a
preliminary transformation of the x scale can be assumed by shifting the zero point
of x into a point of interest, e.g. the mean value of x . Therefore, following Mirkin
[3, 4], an approximation model can be stated as

yp = λz p + ep (1)

where yp are the preprocessed feature values, z = (z p) is the unknown cluster mem-
bership vector and λ is the scaling factor value, also referred to as the cluster intensity
value [3, 4]. The items ep represent errors of the model; they emerge because the
vector λz p may have only two different values, 0 and λ, whereas rescaled feature
y may have different values. Anyway, the model requires that the errors should be
made as small as possible.

Consider the least squares criterion Φ2 = ∑

p∈P e
2
p = ∑

p∈P(yp − λz p)2 for fit-
ting the model (1).

This is amore or less conventional statistics criterion. Yet in the clustering context,
Φ2 bears a somewhat unconventional meaning. Indeed, any z p = 0 contributes y2

p to
Φ2 independently of the λ value. Therefore, to minimize the criterion, z p = 0 should
correspond to those objects at which pre-processed feature values y(p) are zero or
near zero. In contrast, those objects p ∈ P at which maximum or almost maximum
absolute values of the feature hold, should be assigned with z p = 1. Moreover, these
must be either maximum positive values or minimum negative values but not both.
Indeed, as it is well known, the optimum λ at any given C must be the average of
y(p) over all p ∈ C , λ(C) = ∑

p∈C yp/|C |. Substituting this value into criterionΦ2,
one can easily derive the following decomposition
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Φ2 =
∑

p∈P

y2
p − λ2(C)|C | (2)

or, equivalently,
∑

p∈P

y2
p = |C |λ2(C) + Φ2. (3)

The latter expression is a Pythagorean decomposition of the data scatter (on the
left) in explained and unexplained parts. The smaller the unexplained part, Φ2, the
greater the explained part,

g2(C) = |C |λ2(C). (4)

Equation (4) gives an equivalent reformulation to the least-squares criterion: an opti-
mal C must maximize it. This cannot be achieved by mixing in C objects with both
high positive and high negative y values because this would make the average λ(C)

smaller.
Therefore, an optimal C must correspond to either highest positive values of y or

lowest negative values of y. Assume, for convenience, the latter case and consider
a local search algorithm for finding a suboptimal C by adding objects one by one
starting from a singletonC = {p}.What singleton?Of course that one corresponding
to the lowest negative value of y, to make the value of criterion (4) as high as possible.

In publications [3, 4] only local search algorithms were considered. In these algo-
rithms, entities are added (or removed) one by one to warrant a maximum possible
local increment of the criterion until that becomes negative. Here, we develop a
method which is more suitable for temperature map data. In this new method itera-
tions are carried on in a manner similar to that of the well known clustering k-means
method which is described in every text on data mining or clustering (see, for exam-
ple [3]). Specifically, given a central value c = λ(C), we add to cluster C all the
relevant objects at once, after which the central value is recomputed and another
iteration is applied. The computations converge to a stable solution that cannot be
improved with further iterations.

To arrive at this “batch” clustering method, let us derive a different expression for
the criterion Φ2 by “opening” parentheses in it. Specifically, since z2p = z p because
z p accepts only 0 and 1 values, we may have

Φ2(C,λ) =
∑

p∈P

(yp − λz p)
2 =

∑

p∈P

y2
p − 2λ

∑

p∈P

(yp − λ/2)z p (5)

As the data scatter
∑

p∈P y2
p is constant, minimizing (5) is equivalent to maximizing

the scoring function

f (C,λ) =
∑

p∈P

λ(yp − λ/2)z p =
∑

p∈C
λ(yp − λ/2). (6)
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This can be rewritten as

f (C,λ,π) =
∑

p∈C

(

λyp − π
)

(7)

whereπ is a parameter that is, optimally, equalsπ = λ2/2, and yet can be considered a
user-defined threshold in criterion (7). This criterionmay be considered as depending
on two variables, that are to be determined: λ and C . Therefore, the method of
alternating optimization can be applied to maximize it. Each iteration of this method
would consist of two steps. First, given λ, find all p ∈ P such that λyp > π and put
them all as C . Of course, these y-values must be negative since λ < 0 in our setting.
Second, given aC , find λ as the within-C average of yp. Since both steps are optimal
with respect to the corresponding variable, this method increases the value of g2 at
each step and, therefore, must converge because there are a finite number of different
subsets C . In the follow-up the alternating anomalous clustering algorithm will be
referred to as AA-clustering.

3 Adapting AA-clustering to the Issue of Delineating
Upwelling Areas on Sea Surface Temperature Maps

Consider the set of pixels of a Sea Surface Temperature (SST) map of an ocean part
as the set P , the feature x being the surface temperature. Such maps are used in
many applications of which we consider the problem of automatic delineation of
coastal upwelling. This is a phenomenon that occurs when the combined effect of
wind stress over the coastal oceanic waters and the Coriolis force cause these surface
waters to move away from the coast. Therefore, deep, cold and nutrient-rich waters
move to the surface to compensate for the mass deficiency due to this surface water
circulation. As such, it has important implications in ocean dynamics and for the
understanding of climate models. The identification and continuing monitoring of
upwelling is an important part of oceanography.

Unfortunately the current state is far from satisfactory. Although a number of
approaches for segmentation of upwelling have been proposed, they suffer from too
complex computational processes needed to get more or less satisfactory results (see,
for instance, [5–9]).

Therefore, we decided to apply the self-tuning AA-clustering to pixels of the
temperature map starting from the coldest pixel which, in fact, corresponds to the
nature of upwelling.

Let P = R × L be a map under consideration where R is the set of rows and
L , the set of columns, so that a pixel p can be presented as p = (i, j) where i ∈ L
is its row coordinate and j ∈ L its column coordinate. Then a corresponding sea
surface temperature map can be denoted as x = (x(i, j)), for all i ∈ R and j ∈ L .
First of all, let us center the temperature, that is, subtract the average temperature
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t∗ = mean(x) of the temperature map x from the temperature values at all pixels in
R × L . Let the centered values be denoted as t (i, j), (i, j) ∈ R × L . The algorithm
finds a cluster C ⊆ R × L in the format of a binary map Z(R, L) with elements
zi j defined as zi j = 1 if (i, j) ∈ C and zi j = 0, otherwise. Since the pixels are not
just arbitrary objects but rather elements of a spatial grid, we need to introduce this
property into the AA clustering approach.

For this purpose, let us consider each pixel p = (i, j) as an element of a square
window of a pre-specified size W (i, j) centered at p. Based on preliminary exper-
imentation we define the window size as 7 × 7 (pixels). The usage of a window
system appears to be useful not only as a device for maintaining continuity of the
cluster C being built, but also that its boundary is of more or less smooth shape. We
refer to the pixels in window W (i, j) as the neighborhood of p = (i, j).

The algorithm starts by selecting a seed pixel, o = (io, jo), as a pixel with the
lowest temperature value. The clusterC is initialized as the seed o = (io, jo) together
with pixels within the window W (io, jo) satisfying the similarity condition

c × t (i, j) ≥ π, (8)

where c is the reference temperature taken at the start as the temperature of the
seed pixel o, and π, a similarity threshold, as described in the previous section. For
convenience, let us refer to pixels in cluster C as labeled.

Once cluster C is initialized, its boundary set F is defined as the set of such
unlabeled pixels, that their neighborhood intersects the cluster. Therefore,

F = {

(i ′, j ′) /∈ C |W (i ′, j ′) ∩ C �= 	}

(9)

Then the algorithm proceeds iteratively expanding the cluster C step by step by
dilating its boundary F until it is empty. For each boundary pixel (i ′, j ′) in F we
define the boundary expansion region as the subset of pixels (i, j) of C that intersect
the exploring window centered at pixel (i ′, j ′), that is, (i, j) ∈ W (i ′, j ′) ∩ C , and
we define c∗ as the average temperature of those pixels.

The homogeneity criterion of the algorithm is defined by the following sim-
ilarity condition (10). This condition involves the reference temperature c∗ =
mean

(

T
(

W (i ′, j ′) ∩ C
))

, the mean temperature of the window pixels within the
expanding region:

c∗ × t (i ′, j ′) ≥ π (10)

Therefore, in the following text we take the self-tuned value for the similarity
threshold as half the squared average temperature over the cluster C .

A more or less smooth shape of the growing region is warranted by the averaging
nature of the similarity criterion and by involving windows around all pixels under
consideration in the frontline.

This method, called Seed Expanding Cluster (SEC) [25], is a specific case of
Seeded Region Growing (SRG) approach introduced by Adams and Bischof [10]
for region based image segmentation (see also [11–14]). The SRG approach tries to
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find a region which is homogeneous according to a certain feature of interest such as
intensity, color, or texture. The algorithm follows a strategy based on the growth of a
region, starting fromone or several ‘seeds’ and by adding to them similar neighboring
pixels. The growth is controlled by using a homogeneity criterion, so that the adding
decision is generally taken based only on the contrast between the evaluated pixel
and the region. However, it is not always easy to decide when this difference is small
(or large) enough to make a reasonable decision.

The Seeded Region Growing image segmentation approach has been widely used
in various medical image applications like magnetic resonance image analysis and
unsupervised image retrieval in clinical databases [15–18]. The approach has been
also successfully applied in color image segmentation with applications in medical
imaging, content-based image retrieval, and video [14, 19, 20], as well as in remote
sensing image analysis [21, 22].

Main challenging issues that arise with SRG methods are:

(i) selection of the initial seed(s) in practical computations to find a good segmen-
tation;

(ii) choosing the homogeneity criterion and specifying its threshold;
(iii) efficiently ordering pixels for testingwhether they should be added to the region.

Most approaches of SRG involve homogeneity criteria in the format of the differ-
ence in the feature of interest between its value at the pixel to be labeled and themean
value at the region of interest [10, 11, 13, 14]. Aweak point of these algorithms is the
definition of the non-homogeneity threshold at which the pixels under consideration
are considered as failing the homogeneity test and, therefore, cannot be added to the
region. Such a definition is either expert driven or supervised in most of the currently
available algorithms [11, 14].

Many SRG algorithms grow the regions using a sequential list which is sorted
according to the dissimilarity of unlabeled pixels to the growth region [10, 14, 15].
The disadvantage is that the segmentation results are very much sensitive to this
order.

As can be readily seen, our approach avoids these issues altogether. It utilizes
a mathematically derived, though somewhat unusual, homogeneity criterion, in the
format of a product rather than the conventional difference between the pixel and the
mean of the region of interest. To this end, we first subtract the average temperature
value from all the temperature values. This process is implemented by using the con-
cept of window of a pre-specified size around the pixels under consideration: only
those within the window are involved in the comparison processes. This provides for
both the spatial homogeneity and smoothness of the growing region. Indeed, only
borderline pixels are subject to joining in, because the windows around remote pixels
just do not overlap the growing region. Therefore, there is no need in specifying the
order of testing for labeling among pixels: all those borderline pixels can be consid-
ered and decided upon simultaneously. The process starts from a cluster consisting
of just one pixel, the coldest one, according to the approximation clustering criterion.
The preprocessed temperature of this pixel is negative with a relatively large absolute
value. Our region growing process initializes with a fragment of the coldest pixels,
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which is rather robust. Moreover, the simultaneous borderline labeling considerably
speeds up the SRG procedure.

In our experiments, we used also the similarity threshold π derived according to
Otsu’s thresholding method [23]. This method fine-tunes the similarity threshold by
finding the maximum inter-class variance that splits between warm and cold waters,
and is considered one of the most popular threshold method in the literature [24].

4 Experimental Testing

The newly developed method and its Otsu’s competitor have been applied to a group
of 28 images of size 500 × 500 showing the upwelling phenomenon in Portugal
coastal waters; a detailed description can be found in [25]. The selected images
cover different upwelling situations. Specifically:

(i) SST imageswith awell characterized upwelling situation in termsof fairly sharp
boundaries between cold and warm surface waters measured by relatively con-
trasting thermal gradients and continuity along the coast (two topmost images);

(ii) SST images showing distinct upwelling situations related to thermal transition
zones offshore from the North toward the South and with smooth transition
zones between upwelling regions;

(iii) noisy SST images with clouds, so that information for defining the upwelling
front is lacking (fourth-line image).

Figure1 (left column) illustrate these types of situations. These images have
been manually annotated by expert oceanographers regarding the upwelling regions
(binary ground truth maps), which are shown in the right column of Fig. 1.

Here we report of experiments on the SECmethod at which the value of parameter
π has been determined by either as the optimal λ2/2 (SelfT-SEC) or by using the
Otsu method (Otsu-SEC) applied to ground truth maps.

To compare the performance of seed region growing algorithms, we use the pop-
ular precision and recall characteristics, as well as their harmonic mean, the F-
measure. Precision corresponds to the probability that the detection is valid, and
recall to the probability that the ground truth is detected.

Overall, the segmentations are rather good, with 82%of F-scores ranging between
0.7 and 0.98. On analyzing segmentations obtained by the self-tuning threshold ver-
sion of the algorithm we obtained good results in 75% of the cases. The majority of
the lower value scores occur for the images with weak gradients. Figure2 (left col-
umn) illustrates the segmentation results obtained by the self-tuning SEC algorithm
for three SST images presented in Fig. 1.

By comparing the relative performances of the two unsupervised thresholding
versions of SEC algorithm (Otsu-SEC and SelfT-SEC), we came up with the follow-
ing conclusions. The Otsu-SEC wins in 53.6% of the cases whereas the self-tuning
version wins in 46.4% of images.
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1998AUG02

1998AUG12

1998JUL15

1998SEP11

Fig. 1 Four SST images of Portugal showing different upwelling situations (left column); corre-
sponding binary ground-truth maps (right column)
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1998AUG02

1998AUG12

1998JUL15

1998SEP11

Fig. 2 Upwelling areas found by the self-tuning version of SEC algorithm on SST images of
Portugal and her coastal waters (left column) versus the binary ground-truth maps (right column)
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The two versions of the algorithm are implemented in MatLab R2013a. The
experiments have been run on a computer with a 2.67GHz Intel(R) core(TM) i5
processor and 6 Gbytes of RAM. The operating system is Windows 8.1 Pro, 64-bit.
The elapsed time of segmentation of an SST image with the Otsu’s thresholding
version takes 25 s, whereas the self-tuning version takes 22 s for the task.

5 Conclusion

We have proposed a new method for image segmentation combining ideas of AA
clustering and Seed Region Growing. This algorithm involves a novel homogeneity
criterion (10), no order dependence of the pixel testing, and a versionwith self-tuning
threshold derived from the approximation criterion.

The Otsu’s version of the algorithm leads to high F-measure values at segmenting
SST images showing different upwelling situations. The self-tuning version of the
algorithm succeeds at all images presenting contrasting gradients between the coastal
cold waters and the warming offshore waters of the upwelling region, and at some
images with weak gradients for upwelling.

Further research should be directed toward both extending the SEC algorithm to
situations with many clusters and applying it to other image segmentation problems.
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Why Is Linear Quantile Regression
Empirically Successful: A Possible
Explanation

Hung T. Nguyen, Vladik Kreinovich, Olga Kosheleva,
and Songsak Sriboonchitta

Abstract Many quantities describing the physical world are related to each other.
As a result, often, when we know the values of certain quantities x1, . . . , xn , we can
reasonably well predict the value of some other quantity y. In many application, in
addition to the resulting estimate for y, it is also desirable to predict how accurate is
this approximate estimate, i.e., what is the probability distribution of different possi-
ble values y. It turns out that in many cases, the quantiles of this distribution linearly
depend on the values x1, . . . , xn . In this paper, we provide a possible theoretical
explanation for this somewhat surprising empirical success of such linear quantile
regression.

1 Formulation of the Problem

What is regression: a brief reminder. Many things in the real world are related to
each other. As a result, if we know the values of some quantities x1, . . . , xn , then we
can often reasonable well estimate the value of some other quantity y.

In some cases, the dependence of y on x1, . . . , xn is known. In many other situa-
tions, we do not know this dependence, so we need to find this dependence based on
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the empirical data. The desired dependence of y on x1, . . . , xn is known as a regres-
sion function y ≈ f (x1, . . . , xn), and the methodology of determining the regression
function from the empirical data is known as regression analysis.

In many practical situations, the dependence of y on x1, . . . , xn is well described
by a linear function

y ≈ β0 +
n∑

i=1

βi · xi . (1)

Such linear dependence is known as linear regression.

What is quantile regression. Traditionally, the emphasis of regression analysis has
been on finding the actual dependence y ≈ f (x1, . . . , xn). However, finding this
dependence is not enough. As we have mentioned earlier, the value f (x1, . . . , xn)
is only an approximation to y. It is good to know this approximation, but it is also
important to know how accurate is this approximation. In other words, we want
to know not only the estimate of y for given xi , we also want to know how the
conditional probability distribution of y depends on the inputs x1, . . . , xn .

One of the empirically efficient ways for finding this dependence is the method
of quantile regression. One of the possible ways to describe the conditional prob-
ability distribution P(y | x1, . . . , xn) is to describe, for each probability p, the p-th
quantile yp of this distribution, i.e., that value for which the conditional probability
Prob(y ≤ yp | x1, . . . , xn) is equal to p. In particular:

• for p = 0.5, we get the median,
• for q = 0.25 and q = 0.75, we get the quartiles, etc.

One of the most empirically successful methods of describing the dependence
of the conditional probability distribution on xi is a method of quantile regression,
when, for each p, we find a regression function yp = f p(x1, . . . , xn) that describes
the dependence of the corresponding quantile yp on the inputs xi .

In particular, somewhat surprisingly, inmany practical situations, this dependence
turns out to be linear:

yp ≈ β0,p +
n∑

i=1

βi,p · xi (2)

for appropriate coefficients βi,p; see, e.g., [2–6].

Why is linear quantile regression empirically successful?Why is this linear quan-
tile regression empirically successful in many practical applications? In this paper,
we provide a possible explanation for this empirical success.

The structure of this paper is as follows. First, in Sect. 2, we provide fundamental
reasons why linear regression is often empirically successful. In Sect. 3, we expand
this result to the case of interval uncertainty, when instead of predicting the exact
value of the quantity y, we predict the interval of its possible values. Finally, in Sect. 4,
we show how this result can be expanded from interval to probabilistic uncertainty—
thus explaining the empirical success of linear quantile regression.
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2 Why Linear Regression Is Often Empirically Successful:
A General Explanation

What we do in this section. Our goal is to explain why linear quantile regression is
empirically successful. To explain this empirical phenomenon, let us first provide a
possible explanation of why linear regression in general is empirically successful.

Empirical fact. Linear regression is empirically successful in many real-life situa-
tions, often in situations when the known empirical dependence is non-linear.

In this section, we will provide a possible explanation for this empirical fact.

Basis for our explanation: possibility of different starting points for measuring
the corresponding quantities. We are interested in the dependence between the
quantities xi and y. To describe this dependence between quantities, we describe the
dependence between the numerical values of these quantities.

The difference between the quantity itself and its numerical value may be per-
ceived as subtle but, as will show, this difference is important—and it provides the
basis for our explanation. The reason why there is a difference in the first place is
that the numerical value of a quantity depends on the starting point for measuring
this quantity. If we change this starting point to the one which is a units earlier, then
all the numerical values of this quantity change from the previous value x to the new
value x + a.

For example, we can start measuring temperature with the absolute zero (as in
the Kelvin scale) or with the temperature at which the ice melts (as in the Celsius
scale), the corresponding numerical values differ by a ≈ 273◦. Similarly, we can
start measuring time with the birth year of Jesus Christ or, as the French Revolution
decreed, with the year of the French Revolution.

It may be not so clear, but whenwe gaugemany economic and financial quantities,
there is also some arbitrariness in the selection of the starting point. For example,
at first glance, unemployment is a well-defined quantity, with a clear starting point
of 0%. However, economists who seriously study unemployment argue that starting
it from 0 is somewhat misleading, since this may lead to an unrealistic expecta-
tion of having 0 unemployment. There is a natural minimal unemployment level of
approximately 3%, and a more natural way of measuring unemployment is:

• not by its absolute value,
• but by the amount by which the current unemployment level exceeds its natural
minimum.

Similarly, a person’s (or a family’s) income seems, at first glance, like a well-
defined quantity with a natural starting point of 0. However, this does not take into
account that 0 is not a possible number, a person needs to eat, to get clothed. Thus,
a more reasonable way to gauge the income is:

• not by the absolute amount,
• but by how much the actual income exceeds the bare minimum needed for the
person’s survival.
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The changes in the starting points should not affect the actual form of the
dependence. In general, we can have different starting points for measuring each
of the input quantities xi . As a result, for each i , instead of the original numerical
values xi , we can have new values x ′

i = xi + ai , for some constants ai .
The change in the starting point:

• changes the numerical value, but
• does not change the actual quantity.

Thus, it is reasonable to require that the exact form of the dependence between xi
and y should not change if we simply change the starting points for all the inputs.

Of course, even for the simplest dependence y = x1, ifwe change the starting point
for x1, then the numerical value of y will change as well, by the same shift—and thus,
while the numerical value of y changes, the quantity y does not change—because the
change in the starting point for x1 simply implies that we correspondingly change
the starting point for y.

In general, it is therefore reasonable to require that for each combination of shifts
a1, . . . , an:

• once we shift the inputs to x ′
i = xi + ai and apply the function f to these shifted

values,
• the resulting value y′ = f (x ′

1, . . . , x
′
n) should simply be obtained from the original

pre-shifted value y = f (x1, . . . , xn) by an appropriate shift:

y′ = y + s(a1, . . . , an).

Thus, we arrive at the following definition.

Definition We say that a function f (x1, . . . , xn) is shift-invariant if for every tuple
(a1, . . . , an) there exists a value s(a1, . . . , an) such that for all tuples (x1, . . . , xn),
we have

f (x1 + a1, . . . , xn + an) = f (x1, . . . , xn) + s(a1, . . . , an). (3)

The desired dependence should be continuous. The values xi are usually only
approximately known—theyusually come frommeasurements, andmeasurement are
always approximate. The actual values xacti of these quantities are, in general, slightly
different from the measurement results xi that we use to predict y. It is therefore
reasonable to require that whenwe apply the regression function f (x1, . . . , xn) to the
(approximate) measurement results, then the predicted value f (x1, . . . , xn) should
be close to the prediction f (xact1 , . . . , xactn ) based on the actual values xacti .

In other words, if the inputs to the function f (x1, . . . , xn) change slightly, the
output should also change slightly. In precise terms, this means that the function
f (x1, . . . , xn) should be continuous.
Now that we have argued that the regression function be shift-invariant and con-

tinuous, we can explain why linear regression is empirically successful.
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Proposition Every shift-invariant continuous function f (x1, . . . , xn) is linear, i.e.,
has the form

f (x1, . . . , xn) = β0 +
n∑

i=1

βi · xi (4)

for appropriate coefficients βi .

Proof Substituting the values xi = 0 into the equality (3), we conclude that

f (a1, . . . , an) = f (0, . . . , 0) + s(a1, . . . , an) (5)

for all possible tuples (a1, . . . , an). In particular, this is true for the tuples (x1, . . . , xn)
and (x1 + a1, . . . , xn + an), i.e., we have:

f (x1, . . . , xn) = f (0, . . . , 0) + s(x1, . . . , xn) (6)

and
f (x1 + a1, . . . , xn + an) = f (0, . . . , 0) + s(x1 + a1, . . . , xn + an). (7)

Substituting the expressions (6) and (7) into the equality (3) and cancelling the
common term f (0, . . . , 0) in both sides of the resulting equality, we conclude that

s(x1 + a1, . . . , xn + an) = s(x1, . . . , xn) + s(a1, . . . , an) (8)

Such functions are known as additive.
From the equality (5), we conclude that

s(a1, . . . , an) = f (a1, . . . , an) − f (0, . . . , 0). (9)

Since the function f (a1, . . . , an) is continuous, we can conclude that the function
s(a1, . . . , an) is continuous as well. So, the function s(x1, . . . , xn) is continuous and
additive.

It is known (see, e.g., [1]) that every continuous additive function is a homogeneous
linear function, i.e., has the form

s(x1, . . . , xn) =
n∑

i=1

βi · xi (10)

for some real numbers βi . Thus, from the formula (5), we can conclude that

f (x1, . . . , xn) = β0 + s(x1, . . . , xn) = β0 +
n∑

i=1

βi · xi , (11)
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where we denoted β0
def= f (0, . . . , 0).

The proposition is proven.

Comment. It is easy to see that, vice versa, every linear function (4) is continuous
and shift-invariant: namely, for each such function, we have:

f (x1 + a1, . . . , xn + an) = β0 +
n∑

i=1

βi · (xi + ai ) =

β0 +
n∑

i=1

βi · xi +
n∑

i=1

βi · ai = f (x1, . . . , xn) + s(a1, . . . , an),

where we denoted s(a1, . . . , an)
def= ∑

i=1
βi · ai .

3 Case of Interval Uncertainty

Description of the case. In the previous section, we have shown that when we try
to predict a numerical value y, then it is often beneficial to use linear regression. As
we have mentioned, predicting a single value y is often not enough:

• in addition to the approximate value y,
• it is also necessary to know how accurate is this approximate value, i.e., which
values y are possible.

Because of this necessity, in this section, we consider a situation, in which, for each
inputs x1, . . . , xn:

• instead of predicting a single value y,

• we would like to predict the interval
[
y(x1, . . . , xn), y(x1, . . . , xn)

]
of all the

values of y which are possible for given inputs x1, . . . , xn .

Why linear regression. In the case of interval uncertainty, instead of a single regres-
sion function y = f (x1, . . . , xn), we have two regression functions:

• a regression function y = f (x1, . . . , xn) that describes the lower endpoint of the
desired interval, and

• a regression function y = f (x1, . . . , xn) that describes the upper endpoint of the
desired interval.

It is reasonable to require that each of these two functions is

• continuous, and
• does not change if we change the starting points for measuring the inputs—i.e., is
shift-invariant (in the sense of the above Definition).
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Thus, due to our proposition, each of these functions is linear, i.e., we have

f (x1, . . . , xn) = β
0
+

n∑

i=1

β
i
· xi (12)

and

f (x1, . . . , xn) = β0 +
n∑

i=1

βi · xi . (13)

for appropriate values β
i
and βi .

4 Case of Probabilistic Uncertainty

Description of the case. We consider the situation in which for each combination
of inputs x1, . . . , xn , in addition to the set of possible values of y, we also know the
probability of different possible values of y. In other words, for each tuple of inputs
x1, . . . , xn , we know the corresponding (conditional) probability distribution on the
set of all possible values y.

What is the relation between a probability distribution and the set of possible
values? From the previous section, we know how to describe regression in the case
of interval uncertainty. We would like to extend this description to the case of prob-
abilistic uncertainty. To be able to do that, let us recall the usual relation between the
probability distribution and the set of possible values.

This relation can be best illustrated on the example of the most frequently used
probability distribution—the normal (Gaussian) distribution, with the probability
density

ρ(y) = 1√
2π · σ

· exp
(

− (y − μ)2

2σ2

)
. (14)

The ubiquity of this distribution comes from the Central Limit Theorem, accord-
ing to which the probability distribution caused by the joint effect of many small
independent random factors is close to Gaussian; see, e.g., [7].

From the purely mathematical viewpoint, a normally distributed random variable
can attain any real value. Indeed, the corresponding probability density is always
positive, and thus, there is always a non-zero probability that we will have a value
far away from the mean μ.

However, values which are too far from the mean have such a low probability that
from the practical viewpoint, they are usually considered to be impossible. It is well
know that:

• with probability 95%, the normally distributed random variable y is inside the
two-sigma interval [μ − 2σ,μ + 2σ];
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• with probability 99.9%, y is inside the three-sigma interval [μ − 3σ,μ + 3σ], and
• with probability 1–10−8, y is inside the six-sigma interval [μ − 6σ,μ + 6σ].

In general, a usual way to transform a probability distribution into an interval of
practically possible values is to use a confidence interval, i.e., an interval for which
the probability to be outside this interval is equal to some pre-defined small value
p0. A usual way to select such an interval is to select the bounds y and y for which:

• the probability to have y smaller than y is equal to
p0
2
, and

• the probability to have y larger than y is equal to
p0
2
.

One can easily see that:

• the lower endpoint y of this confidence interval is the quantile yp0/2, and
• the upper endpoint y of this confidence interval is the quantile y1−p0/2.

Depending on the problem, we can have different probabilities p0, so we can have
all possible quantiles.

Conclusion: why linear quantile regression is empirically successful. For each
combination of inputs x1, . . . , xn , based on the related (conditional) probability dis-
tribution of y, we can form the interval of practically possible values, in which both
endpoints are quantiles yp corresponding to some values p.

In the previous section, we have shown that reasonable requirements imply that
each of these endpoints is a linear function of the inputs. Thus, we conclude that for
each p, we have

yp ≈ β0,p +
n∑

i=1

βi,p · xi , (2)

for appropriate values βi,p.
This is exactly the formula for linear quantile regression. Thus, we have pro-

vided the desired first-principles for linear quantile regression formulas. The exis-
tence of such a justification can explain why linear quantile regression is empirically
successful.
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A Rapid Soft Computing Approach
to Dimensionality Reduction in Model
Construction

Vesa A. Niskanen

Abstract A rapid soft computing method for dimensionality reduction of data sets
is presented. Traditional approaches usually base on factor or principal compo-
nent analysis. Our method applies fuzzy cluster analysis and approximate reasoning
instead, and thus it is also viable to nonparametric and nonlinear models. Compar-
isons are drawn between the methods with two empiric data sets.

Keywords Dimension reduction · Factor analysis · Principal component analysis ·
Fuzzy cluster analysis · Fuzzy reasoning

1 Introduction

In model construction large observation or input variable sets arouse various prob-
lems and thus we usually attempt to simplify our examinations by applying data
compression or dimensionality reduction. Then we may operate with fewer obser-
vations or variables. In statistical multivariate analysis this means that in the former
case we may compress our data matrices by applying cluster analysis (CA), whereas
the number of variables is reduced by combining similar original variables for vari-
able groups with suchmethods as the principal component analysis (PCA) and factor
analysis (FA) [1].

Today soft computing (SC) systems have also proven to be useful in statistical
modeling and model construction in general, and its CA and regression models pro-
vide good examples of these [2–4]. On the other hand, we still face certain challenges
when applying SC techniques to dimensionality reduction.

One open problem is how to reduce the dimensionality in our data matrix if the
traditional PCA and FA approaches are insufficient. Typical limitations of PCA and
FA are that they are only appropriate for linear models, their data sets should be
sufficiently large and their variables are expected to be normally distributed [1, 5].
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In many practical cases, however, actual relationships are nonlinear and/or sample
sizes are small. In such situations, SC techniques have often been very successful in
data processing. It is therefore reasonable to believe that SC techniques will be also
efficient in reducing dimensionality.

Below we apply SC models to dimensionality reduction and we aim at a simple
and an easily understandable method that is also robust and good in practice. This
approach thus provides us with a “quick-and-dirty” method in the practice of model
construction.We also attempt to draw an analogy between our approach and the PCA
and FA. Some SC approaches to dimensionality reduction are available already, but
they seem to be fuzzified versions of PCA or FA [6–18].

On the other hand, some papers have applied fuzzy similarity measures to this
problem area, but they do not seem to correspond with the theoretical background or
the goodness criteria of PCA and FA [13, 14]. Our approach, in turn, applies fuzzy
similarity measures but we also yield and assess our outcomes according to PCA
and FA and their goodness criteria. We also maintain Lotfi Zadeh’s original idea on
fuzzy systems, viz. instead of only using fuzzy mathematics or set theory, we also
apply fuzzy reasoning in an understandable manner [19–21]. Thanks for the good
available fuzzy methods in CA and approximate reasoning, that are well-known in
the fuzzy community already, we adopt a general, a meta-level, approach, and thus
detailed calculations are precluded.

Section2 presents basic ideas on PCA and FA. Section3 introduces our method.
Section4 provides two real-world examples. Section5 concludes our examination.

2 Dimensionality Reduction in Statistics

In the explorative studies in human sciences [22]we aimat reducing the number of the
original variables by grouping first the similar variables and then specifying such new
variables that constitute these variable groups. These new variables are often referred
to as sumvariables because they are usually the (possiblyweighted) sums the original
variables. In this manner we may understand better the nature of our data and can
perform simpler calculations. We may even attempt to find new “latent” variables
behind the original variables in which case we can also label these new variables
according to our interpretations, if necessary. For example, if we notice that a certain
group of variables in our data matrix actually measures the same general feature,
such as person’s mathematical skills, from various standpoints, we may specify the
sum variable “mathematical skills” that captures the meanings of the corresponding
original variables. In the confirmatory studies, in turn, we may apply the available
background theories to our dimensionality reduction.

In the traditional statistics we may specify our sum variables directly on our
intuitive basis by calculating the sums of the selected original variables. We may
also apply PCA or FA, in which case the obtained sum variables are referred to as
principal components or factors, respectively. In fact, these methods operate with
the standard scores of the original variables, i.e., for each variable its mean is sub-
tracted from the observations, and then these differences are divided by its standard
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deviation, standard score = (observation−mean)/standard deviation. This transfor-
mation indicates us how the observations are distributed around the mean in the units
of the standard deviation. Hence, when in PCA and FAwe calculate the sum variable
values for the original observations, viz. the principal component or factor scores,
we also obtain the standard scores, and this may complicate the interpretation of our
outcomes. Thus simpler sum variable specifications are also available, and these are
discussed below.

We usually proceed as follows with the traditional PCA and FA [1]:

1. We assume that there are sufficiently high linear inter-correlations between the
original variables, because the similarities between the variables are usually based
on these correlations.

2. We also assume that the sample size is sufficiently large (e.g., at least five obser-
vations per variable), outliers are excluded, and the variables are measured at least
at the level of good ordinal scales. In FA the variables should also be normally
distributed and multicollinearity is not accepted.

3. We calculate the so-called principal component or factor loadings that are the cor-
relations between the original variables and the principal components or factors.

4. We apply rotation to these components or factors in order to better interpret our
loadings.

5. We select the appropriate principal components or factors, and these will be used
in our sum variable specifications.

One distinction between the PCA and FA is that in the former case we always
obtain the same unique components, whereas in FA the factors may vary according
to the established number of factors.

In a sense, PCA and FA aim to find variable clusters according to the linear inter-
correlations between the variables. The variable groups having intercorrelations will
constitute variable clusters, and thus the obtained components or factors are the
corresponding cluster centers. The principal component or factor loadings may now
be regarded as being the “degrees of membership” of the variables to these clusters.
Another approach is to consider that the principal components or factors span such
vector spaces in which the loadings of the variables denote their coordinates.

On the other hand, we may also assume that in dimensionality reduction we aim
to find clusters of variables according to their distances, and thus we can apply CA or
multidimensional scaling. Hence, instead of the so-calledQ-techniques of clustering,
we are now applying the R-techniques [23]. In practice, when our data set is not too
large, we may then operate with the transposed version of the original data matrix
and then apply CA, and this approach is adopted below. We also apply fuzzy rule-
based reasoning in our analyses. Thanks for the good fuzzy clustering techniques and
usable approximate reasoning methods, the SC approach is more robust, applicable
and user-friendly than the traditional methods.
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Table 1 Example of a data matrix and its principal components

Case nr. Variables and principal components

X1 X2. . . Xn C1 C2. . . Cq≤n

1 X11 X12 X1n C11 C12 C1q

2 X21 X22 X2n C21 C22 C2q

. . . . . . . . .

m Xm1 Xm2. . . Xmn Cm1 Cm2 Cmq

3 Soft Computing and Dimensionality Reduction

Our SC approach below applies both fuzzy clustering and approximate reasoning
directly to dimensionality reduction. In this manner we may also apply dimension-
ality reduction in a nonparametric manner to nonlinear data sets. Since we adopted a
meta-level approach, i.e., only methods of general nature are considered and detailed
mathematical analyses are precluded, we apply the prevailing fuzzy clustering meth-
ods and fuzzy rule-based models, and these have also proved to be useful in practice.
However, for the sake of consistency, our goodness criteria for the outputs are those
of PCA and FA. In this respect fuzzymountain clustering [24, 25] and fuzzy c-means
clustering methods [10, 11, 26–34] are analogous to PCA and FA, respectively.

For example, in mountain clustering and PCA we specify the unique outputs
iteratively one at a time starting from the densest or largest group of observations
or variables, whereas within the fuzzy c-means method and FA our outcomes vary
according to the established number of clusters or factors. We focus on the moun-
tain clustering method and PCA below, because these techniques may bring better
understanding to our approach.

Given now the original data matrix with m cases or observations (rows) and n
variables (columns), ifwe apply fuzzy clusteringmethod to dimensionality reduction,
we may proceed as follows (Table1).

1. We focus on such groups of variables that are close to each other. In other words,
the distances between these variables, Xi, are small. In practice, we may operate,
for example, with their standard scores, ZXi, and our task stems from the calcu-
lation of the norms, ||ZXi − ZXj|| (i �= j). Alternative transformations may also
be used, but in any case the original variables should be transformed into similar
scales, because otherwise our variables have unequal weights.

2. Ourmethod uses the transpose of the original datamatrix (columns become rows),
and then we apply fuzzy cluster analysis to the variables.

3. The obtained cluster centers of the variables, Ck, will be our “principal com-
ponents” or “factors”, and our loadings are now the correlations between the
variables and these centers. We may also use linguistic values in this context.

4. We assess the goodness of our outcomes by applying such prevailing criteria as
the communalities and eigenvalues of the variables.
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When we specify the sum variables according to our loadings, we use functions
that express sufficiently well the relationships between the variables and the cluster
centers. Traditionally we may apply linear regression analysis in order to obtain such
corresponding sum variables, Sk ≈ Ck,

Sk =
∑

i

wik · ZXi, (i = 1, 2, . . ., n), (1)

in which Ck is the dependent variable, the weights, w, are the regression coefficients
and ZX are the standard scores of the original variables [1, 5, 35–37]. This method
is used for calculating the principal component or factor scores.

However, (1) also includes the irrelevant variables in the sum variables, i.e., the
variables with low loadings, and thus it may yield more or less misleading outcomes.
Hence, in practice, we quite often simply calculate the sum of the relevant variables
in each component, i.e., we only select the variables with the high loadings. In the
case of the similar original scales we prefer the averages of these variables. This
idea is widely used in PCA and FA in the human sciences. We may then justify our
decisions by applying item analysis with Cronbach’s alpha reliability coeffiecients,
which are based on correlation coefficients, even though this method is not foolproof
for this task [1, 5]. Another, sometimes more reliable method is based on the factor
score covariance matrix [1]. The former usually minimizes and the latter maximizes
the reliability coefficients.

Within our SC framework, we may also apply the fuzzy rule-based models, F ,
for all relevant variables in a component, i.e., the cluster center, Ck, is the dependent
variable in the model

Sk = Fk(Xq, . . .,Xr), q ≥ 1, r ≤ n, (2)

Method (2) seems better in practice because it is also appropriate for nonlinear
relationships.

Our SC approach may nevertheless arouse problems if variable clusters are
unavailable or we have large observation sets. In the former case it may be diffi-
cult to find plausible cluster centers with any method, and the latter case may lead to
quite heavy computations due to the large number of parameters.

Below we apply the idea on mountain clustering that is analogous to PCA
[24, 25]. Hence, our method specifies the first cluster center according to the great-
est or densest variable cluster. The second center is assigned to the second densest
cluster with the restriction that it is not in the neighborhood of the first cluster. The
next center, in turn, belongs to the third densest cluster, but it should also locate far
from the previous clusters, and so forth. The number of cluster centers is determined
by the user in the manner of PCA.

From the mathematical standpoint, the general idea for our clustering is that our
first cluster center, C1, is obtained when we minimize this type of penalty function,

�iµC1(ZXi) · ||ZXi − C1||, i = 1, 2, . . ., n, (3)



174 V.A. Niskanen

in which µ is an appropriate fuzzy triangular or bell-shaped membership function
with its maximum value at C1. This method finds the vector C1 to be the center of
the densest variable cluster.

The second cluster center, C2, should represent the second densest cluster, and thus
the neighborhood ofC1 should be excluded fromour analysis. Hence, ourminimizing
penalty function should now also contain the exclusion function, Ex, that excludes
the first cluster,

�iExC2(ZXi) · µC2(ZXi) · ||ZXi − C2||, i = 1, 2, . . ., n, (4)

in which, for example, ExC2(ZXi) = (1 − µC1(ZXi))
s(s > 1). This means that in the

second round the variables close to C1are irrelevant.
In the third round, the variables close to C1 and C2 are irrelevant, i.e.,

ExC3(ZXi) = min(ExC2(ZXi), (1 − µC2(ZXi))
s) (5)

and the penalty function for C3 is

�i(ExC3(ZXi) · µC3(ZXi) · ||ZXi − C3||, i = 1, 2, . . ., n. (6)

We will continue till all the values of ExCi(ZXi) are small, this meaning that we
have examined all variable clusters.

These operationsmaybe carried out convenientlywith suchmethods as the genetic
algorithms if custom-made models are preferred. We may also apply the original
mountain clustering method directly, if the number of variables is sufficiently large.
Below we will provide examples with the empiric data sets.

4 Real-World Examples

We examine below two real-world data sets with both PCA and our SC method. We
aim to demonstrate that our method, that is simpler and more robust than PCA and
FA, is also plausible for dimensionality reduction. We use MatlabTM version 2014b
and IBM SPSSTM version 22 in our calculations.

4.1 The Iris Data

Fisher’s Iris data is the widely-used benchmark data in cluster analysis. Fuzzy clus-
tering methods have already proved their usability in this context of grouping the
objects, but only some indirect methods have been suggested for dimensionality
reduction of variables. This data set is challenging to us because it contains prob-
lematic clusters.
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Fig. 1 Scatter plots of flowers in the Iris data

The Iris data contains 150 of these flowers and four feature variables that measure
in millimeters their Sepal lengths (Sl), Sepal widths (Sw), Petal lengths (Pl) and
Petal widths (Pw; Fig. 1). In the cluster analysis for these flowers we should find three
clusters, and good fuzzy CAmethods are able to perform this. Since sufficiently high
inter-correlations prevail between the variables, we may also attempt to use PCA and
our SC method for dimensionality reduction.

4.1.1 The PCA Approach

In PCA the values of the inter-correlations between our variables may first be ana-
lyzed with such rules of thumb as the Kaiser-Mayer-Olkin measure and Bartlett’s
test, and if the former yields values greater than 0.6 and the latter rejects its null
hypothesis, our correlations seem to be sufficiently high [1, 5]. In our data the for-
mer yields 0.54 and the latter rejects the null hypothesis (at the level of significance
<0.05). Hence, the former value is not fully satisfactory, but the latter fulfills the
conditions.

On the other hand, the communalities of the variables are higher than 0.9, and
hence we assume that PCA is justified with all our feature variables in this con-
text. The communalities are the rsquares in those regression models in which the
feature variable is the dependent variable and the principal components are the
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independent variables. Hence, the communalities indicate how well the selected
principal components can explain or predict the variances of the variables.

PCA yields first at the extraction stage the initial component loadings (i.e., the
correlations between the variables and the components) for the variables in each
component by starting from the largest variable group. In the first component we
thus obtain the highest absolute values of the loadings, the second component has the
second highest values, and so forth. There is also the restriction that the components
must be orthogonal, i.e., they have no intercorrelations.

We also calculate the sums of squares of these loadings in each component, and
these sums are referred to as the eigenvalues. We are usually interested in those
principal components that yield eigenvalues greater than or equal with unity. The
sums of the eigenvalues of our components divided by the number of the original
variables, in turn, reveals us how much our components explain of the total variance
of our variables.

In order to better understandour outputs, rotation is also carried out, and itmodifies
our original principal component loadings. The rotation aims to yield either high
or low loadings, and in addition to the orthogonal methods, we may now apply
oblique methods. The latter methods allow intercorrelations between the principal
components, and this situation is usual in the human sciences. However, unlike in
orthogonal rotation, in oblique rotation the loadings are not the correlations between
the components and variables, but rather the weights that show us the importance
of the variables in each component. Typical examples of orthogonal and oblique
methods are Varimax and Promax, respectively.

Summing up the foregoing measures, given a table of original or orthogonally
rotated principal component loadings, the row-wise sums of squares of the loadings
yield the communalities, whereas the corresponding column-wise values yield the
eigenvalues.

We prefer the oblique “Procrustean” Promax method in rotation below, and
these principal component loadings are presented in Table2 and Fig. 2 (the loadings
less than the absolute value of 0.3 are omitted below because they are irrelevant).
We select two principal components, because they already explain approximately
96% of the total variance of the variables (i.e., the sum of these two eigenvalues/

Table 2 Rotated component matrix of Iris data

Component

1 2

Sepal_length 1.000

Petal_length 0.933

Petal_width 0.929

Sepal_width 1.000

Extraction Method: Principal Component Analysis, Rotation Method: Promax with Kaiser Nor-
malization, Rotation converged in 3 iterations
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Fig. 2 Component plot in the rotated space with the Iris data

Table 3 The intercorrelations between the variables and the components in Iris data

Component

1 2

Sepal_length 0.982 −0.455

Petal_length 0.962 −0.407

Petal_width 0.938

Sepal_width −0.307 0.995

Extraction Method: Principal Component Analysis, Rotation Method: Promax with Kaiser Nor-
malization

4×100% = 96%) even though the eigenvalue of the second component was slightly
less than unity.

We notice that, according to the first component in our rotated table, we may
generate a sum variable that includes the variables Sepal length, Petal length and
Petal width. The second component only includes one high loading, viz. for Sepal
width. Hence, instead of the original variables, we may use two principal variables
within the Iris data, if necessary. Table3 presents the loadings that are also the
correlations between the variables and the components because in oblique rotation
the loadings in Table2 are not correlations (as in the orthogonal rotation). The latter
loadings are better comparable with our SC analyses below. We notice that these
loadings are slightly more blurred with respect to sum variable specification. Both
of these loading tables are nevertheless used in the conduct of inquiry.

According to Table4, that presents the regression coefficients for the component
scores, our first sum variable would now be
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Table 4 Component score coefficient matrix for Iris data

Component

1 2

Sepal_length 0.366 −0.200

Petal_length 0.005 −0.923

Petal_width 0.339 −0.140

Sepal_width −0.338 −0.097

Extraction Method: Principal Component Analysis, Rotation Method: Promax with Kaiser Nor-
malization

S1 = 0.366 · ZSl + 0.005 · ZSw + 0.339 · ZPl + 0.338 · ZPw (7)

if this prevailing method is applied to the standardized feature variables. Since Sepal
width is irrelevant to S1 and the rest of the loadings are quite similar, in practice we
may use for the original variables their nonweighted sum instead,

S1 = Sl + Pl + Pw, (8)

or their average, if their standard scores are used. In item analysis Cronbach’s alpha
is greater than 0.9 for S1, and this result also corresponds to this sum variable con-
struction.

Hence, PCA provided us with one plausible sum variable, and this was due to the
high linear intercorrelations between the feature variables.

4.1.2 The Soft Computing Approach

If we apply our SCmethod, we principally utilize the distances between the variables
and, in the manner of the PCA, we operate with the standard scores of the original
variables. Then, within the Iris data, we notice in the dendrogram in Fig. 3 that Sepal
width is clearly distinct from the others and the rest of the feature variables seem to
belong to same cluster. The multidimensional scaling analysis (SPSS Proxcal), that
allocates the variables into a 2-D space according to their distances, also seems to
support quite well this resolution (Fig. 4). Hence, it seems that we may specify one
sum variable as above.

According to our cluster analysis approach, we will proceed as follows:

1. We specify two cluster centers, and these are our principal components, Ci. The
correlations between the variables and principal components will be our compo-
nent loadings.

2. The communalities are the rsquares of the fuzzy models Fi: (C1,C2) → ZXi,
i = 1, 2, …, n, i.e., we consider how well our components explain or predict the
variables.

3. The eigenvalues are the squared column-wise sums of the loadings as above.



A Rapid Soft Computing Approach to Dimensionality Reduction … 179

Fig. 3 Dendrogram based on the average linkage method and distances between four standard
score variables in the Iris data

Fig. 4 The locations of the
standardized variables
according to the
multidimensional scaling
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Table 5 Intercorrelations between the standardized variables and principal components in the Iris
data

Variable C1 C2 Communalities

ZSepal length 0.999 1.000

ZSepal width 1.000 1.000

ZPetal length 0.888 0.944

ZPetal width 0.838 0.873

Eigenvalues 2.49 1.000

Table 6 Rmse values of the fuzzy models Fij: Cj → ZXi

C1 C2

ZX1 0.042 0.342

ZX2 0.282 0.001

ZX3 0.099 0.503

ZX4 0.134 0.522

4. The final sum variable, S1, only constitutes the relevant variables of the first
principal component, and its specification is similar to that of the PCA method.
We may apply the fuzzy model S1 = F1(ZX1, ZX3, ZX4) by using C1 as the
dependent variable instead, if necessary.

Our mountain clustering method for the feature variables seems to yield two plau-
sible cluster centers, and the corresponding principal components contain sufficiently
high loadings. We used Matlab’s Fuzzy Logic Toolbox and Takagi-Sugeno reason-
ing for these tasks [38]. Table5 presents these correlations, or loadings (the absolute
values less than 0.3 are omitted as above). This Table is analogous to Table3 within
the PCA. For the illustrative purposes, we also calculated the corresponding rmse
values, and naturally they were consistent with our loadings (Table6).

Table5 also presents the communalities and eigenvalues, and fuzzy rule-based sys-
temswith seven rules andTakagi-Sugeno reasoningwere used in an above-mentioned
manner in this context. Our eigenvalues and communalities indicate that two com-
ponents yield high loadings and all the variables are relevant in this context. These
values also correspond to the PCA outcomes above. There is a slight negative corre-
lation between C1 and C2, and in this respect we have an oblique resolution.

Figure5 depicts the locations of our variables in the principal component space and
it also corresponds quite well to the PCA approach. Figure6 depicts the locations
of the variables as well as the principal components based on the PCA and our
method when the multidimensional scaling is applied. We notice that our outcomes
are slightly dissimilar to those of the PCA. In fact, our components are closer to
singular variables and thus we should possibly fine-tune our model. This procedure
is nevertheless precluded here because we have adopted the meta-level approach and
our outcomes are already sufficiently plausible.
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Fig. 5 The loadings of the standardized variables in the principal component space with Iris data

Fig. 6 The locations of the
standardized variables as
well as the PCA components
(Pca) and SC components
(Fc) according to the
multidimensional scaling
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Fig. 7 Scatterplots of the
PCA (Pca) and SC (Fc)
components in the Iris data

If we will generate the linear sum variable, S1 ≈ C1, it would be similar to that of
(7). The corresponding fuzzy-model approach, in turn, will base on the rule-based
system, F1,

S1 = F1(Sl,Pl,Pw) (9)

when C1 is used as the dependent variable in the model construction.
The intercorrelations between the PCA and our components are depicted in Fig. 7,

and, as expected, they indicate high positive correlations.
Since fuzzy systems are now applied, we could also establish that the closer the

variables are to the components, the higher their degrees of membership, and vice
versa. We could even replace our loadings with these memberships, if necessary.
However, then the comparison between the distinct component extractions would be
more difficult than in the case of correlations.

4.2 The World95 Data

Our second example deals with the benchmark data collected within the international
world survey from 109 countries in 1995 (World95 data), and this is included in the
SPSS example data sets, inter alia [39]. We focus on seven variables, Average female
life expectancy, Average male life expectancy, People who read (%), Population
increase (% per year), Daily calorie intake, Log (base 10) of GDP per capita and
Birth to death ratio. Figure8 depicts the inter-correlations between our variables.
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Fig. 8 Scatter plots of
variables in the World95 data

4.2.1 The PCA Approach

We used again PCA with Promax oblique rotation. Both the Kaiser-Mayer-Olkin
measure and Bartlett’s test now fulfilled the conditions on the satisfactory inter-
correlations. The communalities were at least 0.91 and thus all the original variables
seemed relevant in our analysis. We selected three components, even though only
two components had eigenvalues higher than unity, because our decision seemed to
reflect better the variable groups. These components explained approximately 95%
of the total variance of the variables. The first two components have a quite high
correlation (.753), and thus oblique rotation is justified.

Table7 and Fig. 9 indicate that three variables have high loadings in the first
principal component (the loadings less than 0.3 are omitted). The second and the
third components seem to include two variables with high loadings. In our outcome
Population increase is not having a clear membership to any component. Since the
foregoing table will not yield the correlations in oblique rotation, Table8 presents the
corresponding loading matrix based on the correlations between the variables and
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Table 7 Rotated component matrix of Word95 data

Component

1 2 3

Average female life
expectancy

0.849

Average male life
expectancy

0.830

People who read (%) 1.000

Population increase
(% per year)

−0.432 0.759

Daily calorie intake 0.951

Log (base 10) of
GDP/CAP

0.767

Birth to death ratio 1.000

Extraction Method: Principal Component Analysis, Rotation Method: Promax with Kaiser Nor-
malization

Fig. 9 Component plot in
the rotated space with the
World95 data

components. We notice that if we relied on this, the sum variable specification would
be more problematic, but on the other hand, these values are better comparable to
our SC-method outputs below.
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Table 8 The intercorrelations between the variables and the components in the World95 data

Component

1 2 3

Average female life
expectancy

0.973 0.815

Average male life
expectancy

0.955 0.807

People who read (%) 0.955 0.672 −0.396

Population increase
(% per year)

−0.668 −0.569 0.892

Daily calorie intake 0.733 −0.968 −0.349

Log (base 10) of
GDP/CAP

0.800 0.941 −0.373

Birth to death ratio 970

Extraction Method: Principal Component Analysis, Rotation Method: Promax with Kaiser Nor-
malization

If we specify now three sum variables, we may proceed as above by merely calcu-
lating the sums of those variables that have high loadings in the principal components.
For example,

S2 = Daily calorie intake + Log (base 10) of GDP per CAP, (10)

or their averages, if the standard scores are used.
Hence, it seems plausible to specify sum variables among this data set even though

now this task ismore challenging thanwith the Iris data.Nextwe apply ourSCmethod
to this task.

4.2.2 The Soft Computing Approach

When our SC method is applied to three components, the correlation between the
first two components is −0.565, and thus in this respect we also apply an “oblique”
method. According tomultidimensional scaling, three cluster centers also seem plau-
sible, even though clear clusters are now unavailable (Fig. 10).

Our intercorrelations between the variables and the components seem somewhat
distinct from the PCA outcomes with oblique loadings (Table9, Figs. 11 and 12).
Now the first component seems to comprise three variables common to both the PCA
and SC approaches. In the SCmodel ZLog (base 10) of GDP per CAP is also having a
high loading in the first component, and the same outcome is found in the correlation
Table8 above, and we must bear in mind that this table presents the correlations
between the variables and the components in the manner of our SC method. The
third component in PCA and the second component in the SC approach, in turn,
provide quite similar outcomes.
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Fig. 10 The locations of the
standardized variables
according to the
multidimensional scaling

Table 9 Intercorrelations between the standardized variables and principal components in the
World95 data

Variable C1 C2 C3 Communalities

ZAverage femal
life expectancy

0.999 0.999

ZAverage male
life expectancy

0.982 0.982

ZPeople who
read (%)

0.771 0.795

ZPopulation
increase (% per
year)

0.999 1.000

ZDaily calorie
intake

1.000 1.000

ZLog (base 10) of
GDP per CAP

0.837 0.876

ZBirth to death
ratio

0.816 0.939

Eigenvalues 3.261 1.665 1.000

Hence, the variables ZLog (base 10) of GDP per CAP and ZDaily calorie intake
seem to yield distinct outcomes, but even in this case the correlation Table8 corre-
sponds quite well to our results. Figure13 depicts the scatter plots of our components.
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Fig. 11 The loadings of the standardized variables in the principal component space with World95
data

Fig. 12 The locations of the
standardized variables as
well as the PCA components
(Pca) and SC components
(Fc) according to the
multidimensional scaling

As regards our communalities (that were calculated according to the fuzzy models)
and eigenvalues, they seem to fulfill the given conditions.

Our sumvariables, again, are the sums of the relevant variables in each component,
for example,
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Fig. 13 Scatter plots of the PCA (Pca) and SC (Fc) components in World95 data

S2 = Population increase (%per year) + Birth to death ratio, (11)

or, by applying the corresponding fuzzy model,

S2 = F2(Population increase(%per year),Birth to death ratio), (12)

with the dependent variable C2 (Fig. 14).
Hence, in this context the SC method yields somewhat distinct outcomes, and

this is due to our clustering approach and merely tentative calculations based on
our general approach. In addition, the three-component approach seemed not fully
justified in this context. On the other hand, in the human sciences the variables in
the real world data often contain quite much noise and borderline cases.
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Fig. 14 A fuzzy model fitting to sum variable S2 = F (Population increase (% per year), Birth to
death ratio)

5 Conclusions

We have considered above how the dimensionality reduction analogous to PCAmay
be carried out with fuzzy clusteringmethod and fuzzy reasoning in an understandable
manner, and two real-world data sets were also used as examples. Such prevailing tra-
ditional methods as PCA and FA are only appropriate to fairly limited usage because
they presuppose linear correlations between the variables and normally distributed
data sets, inter alia. Our SC approach, in turn, also seems usable to nonlinear and
nonparametric data sets. The central idea in our approach is that we use fuzzy clus-
tering method for finding the appropriate cluster centers to our variables, and these
centers provide a basis for our sum variable construction.

In order to draw comparisons to the traditional approaches, our component load-
ings and goodness criteria based on various intercorrelations and rsquares between
the variables and the principal components, and in this context we also applied fuzzy
reasoning. However, in the long term we could replace the loadings with the degrees
membership, as well as use even more fuzzy reasoning models. The loadings could
also be linguistic values, if necessary. In this manner we could even better attain Lotfi
Zadeh’s recent idea on the fuzzy extended logic.

Since the SC community can already provide us with good model construction
methods, we did not formulate any novel calculation technics but rather we focused
at meta-level on constructing a tentative and an analogous system to PCA. Our con-
tribution was to apply the fuzzy R-technique to data matrix and then construct fuzzy
models for assessing the goodness of our outcomes with the loadings, communalities
and eigenvalues. We also used fuzzy models for sum variable specifications because
they are also appropriate to nonlinear cases.
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We still have some open questions. First, due to the clustering approach, we
encounter such their prevailing problems as the nonspherical clusters, selection of
the correct metrics or the appropriate number of clusters. The lack of variable clusters
or the great number of observations and original variables may also arouse problems.

Second, we still expect such standard goodness criteria for our dimensionality
reduction within SC that may replace those of the PCA and FA. Examples of these
are communalities and eigenvalues. Finally, if the degrees of membership are used
for loadings, we still have various alternatives for specifying them.

One new frontier is to apply the fuzzy c-means clustering to this problem area,
and this method would be analogous to FA. This is an interesting topic for the future
studies and now it was mainly precluded due to the lack of space.

Despite the foregoing open problems, our SC approach seems nevertheless
promising in practice as a “quick-and-dirty”method for the dimensionality reduction.
However, further studies are still expected in this problem area.
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Physics of the Mind, Dynamic Logic,
and Monotone Boolean functions

Leonid I. Perlovsky

Abstract The chapter discusses physics of themind, amathematical theory of higher
cognition developed from the first principles, including concepts, emotions, instincts,
the knowledge instinct, and aesthetic emotions leading to understanding of the emo-
tions of the beautiful. The chapter briefly discusses neurobiological grounds as well
as difficulties encountered by previous attempts at mathematical modeling of the
mind encountered since the 1950s. Themathematical descriptions are complemented
with detailed conceptual discussions so the content of the chapter can be understood
without necessarily following mathematical details. Formulation of dynamic logic in
terms ofmonotone Boolean functions outlines a possible future direction of research.

Keywords Physics of themind ·Concepts ·Cognition ·The instinct for knowledge ·
Aesthetic emotions · Beautiful · Cognitive science · Psychology · Dynamic logic ·
Monotone boolean functions

1 Mechanisms of the Mind

How the mind works has been a subject of discussions for millennia, from Ancient
Greek philosophers to mathematicians, to modern cognitive scientists [1]. This
chapter describes physics of the mind, a mathematical theory built from the first
principles including dynamic logic, higher cognitive functions, and its further devel-
opment usingmonotoneBoolean functions. This technique could serve two purposes.
First, it would lead to the development of smart computers and intelligent robots.
Second, it would help to unify and clarify complex issues in philosophy, psychol-
ogy, neurobiology, and cognitive science. This chapter is a step toward developing
“physics of the mind,” a theory of the mind concentrating on developing a mathe-
matical model of the mind from a limited number of the first principles.

A broad range of opinions exists about the mathematical methods suitable
for the description of the mind. Founders of artificial intelligence, including
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Newell and Minsky [64] and Marvin [62], thought that formal logic was sufficient
and no specific mathematical techniques would be needed to describe the mind.
An opposite view was advocated by [37, 67], suggesting that the mind cannot be
understood within the current knowledge of physics; new unknown yet physical phe-
nomena will have to be accounted for explaining the working of the mind; quantum
computational processes are necessary for understanding the mind [27, 37, 67]. This
chapter develops a point of view that the main difficulty toward a mathematical the-
ory of the mind since the 1950s has been using logic, and the new mathematical
theory of dynamic logic enables explaining the mind from the “the first principles”
[68, 69, 71, 91, 95].

This chapter presents a mathematical theory of dynamic logic proposed to be
intrinsic to operations of themind, a suggestion that have been experimentally proven
[6, 56]. It discusses difficulties encountered by previous attempts at mathematical
modeling of the mind and how the new theory overcomes these difficulties. I show
an example of solving a problem related to perception that was unsolvable in the
past, argue that the theory is related to an important mechanism of “the knowledge
instinct”, KI, as well as to other cognitive functions, including interactions of lan-
guage and cognition. I discuss neurobiological foundations, cognitive, psychological,
and philosophical connections, experimental verifications, and further mathematical
developments using monotone Boolean functions originally developed jointly with
Prof. Boris Kovalerchuk [50–53, 109, 110].

2 Logic and the Mind

For a long time logic was considered the best way to deduce scientific truths. In
the 1930s [23] proved that logic is inconsistent and cannot serve this foundational
purpose, nevertheless artificial intelligence, mathematical and psychological mod-
els of the mind until today are logical, misleading intuitions of psychologists and
mathematicians modeling the mind.

The beginning of this story is usually attributed to Aristotle, the inventor of logic.
He was proud of this invention and emphasized, “nothing in this area existed before
us” (Aristotle, IV BCE). However, Aristotle did not think that the mind works log-
ically; he invented logic as a supreme way to argument already discovered truths,
not as a theory of the mind. To explain the mind, Aristotle developed a theory of
forms, the fundamental mechanism of the mind as a process, in which an illogical
“form-as-potentiality” “meets matter” and becomes a logical “form-as-actuality”.
Today this process is called an interaction between top-down and bottom-up neural
signals (BU, TD). A mathematical model of this process, dynamic logic is described
later.

During centuries following Aristotle not all subtleties of his thoughts were under-
stood. With the advent of science, the idea that intelligence is equivalent to logic
was gaining grounds. In the 19th century mathematicians turned their attention to
logic. George Boole thought that Aristotle did not complete a theory of the mind, and
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it should be improved by making logic more exact. The foundation of logic, since
Aristotle (Aristotle, IV BCE, c), was the law of excluded middle (or excluded third):
every statement is either true or false, any middle alternative is excluded.

Boole thought that the contradictionbetween exactness of the lawof excluded third
and vagueness of language should be corrected, and a new branch of mathematics,
formal logic was born. Prominent mathematicians contributed to the development of
formal logic including, in addition to Boole, Gottlob Frege, Georg Cantor, Bertrand
Russell, David Hilbert, and Kurt Gödel. Logicians ‘threw away’ uncertainty of lan-
guage and founded formal mathematical logic based on the law of excluded middle.
Hilbert developed an approach named formalism which rejected the intuition as a
part of scientific investigation and thought to define scientific objects formally in
terms of axioms or rules. Hilbert was sure that his logical theory also described
mechanisms of the mind, “The fundamental idea of my proof theory is none other
than to describe the activity of our understanding, to make a protocol of the rules
according to which our thinking actually proceeds” (see [31]). In the 1900 he for-
mulated famous Entscheidungsproblem: to define a set of logical rules sufficient
to prove all past and future mathematical theorems. This entailed formalization of
scientific creativity and the entire human thinking. This illustrates the difference
between mathematics and physics, whereas mathematics concentrates on internal
structure of the theory, physics concentrates on the fundamental laws of nature and
their mathematical description.

Almost as soon as Hilbert formulated his formalization program the first hole
appeared. In 1902 Russell exposed an inconsistency of formal procedures by intro-
ducing a set R as follows: R is a set of all sets which are not members of them-
selves. Is R a member of R? If it is not, then it should belong to R according to
the definition, but if R is a member of R, this contradicts the definition [103]. Thus
either way we get a contradiction. This became known as the Russell’s paradox.
Its jovial formulation is as follows: A barber shaves everybody who does not shave
himself. Does the barber shave himself? Either answer to this question (yes or no)
leads to a contradiction. This barber, like Russell’s set can be logically defined, but
cannot exist. For the next 25years mathematicians where trying to develop a self-
consistent mathematical logic, free from paradoxes of this type. But in 1931, Gödel
proved that it is not possible, formal logic was inexorably inconsistent and self-
contradictory [23].

Belief in logic has deep psychological roots related to functioning of the human
mind. A major part of any perception and cognition, illogical Aristotelian process
involving forms-as-potentialities is not accessible to consciousness. We are con-
scious about the ‘final states’ of these processes, crisp forms-as-actualities which
are perceived by our minds as ‘concepts’ approximately obeying formal logic. For
this reason prominent mathematicians believed in logic. Even after Gödelian proof,
founders of artificial intelligence still insisted that logic is sufficient to explain how
the mind works.
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3 Cognition, Logic, and Complexity

Object perception involves signals from sensory organs and mental representations
of objects. During perception, the mind associates subsets of signals corresponding
to objects with object representations in the memory. This recognition activates brain
signals leading to mental and behavioral responses.

Mathematicalmodels of this recognition step in this seemingly simple association-
recognition-understanding process has not been easy, a number of difficulties have
been encountered over the last sixty years. These difficulties were summarized under
the notion of combinatorial complexity, CC, [70]. CC refers tomultiple combinations
of various elements in a complex system; for example, recognitionof anobject usually
requires concurrent recognition of the multiple elements of the scene that could
be encountered in various combinations. CC is prohibitive because the number of
combinations is very large: for example, the number of combinations of 100 elements
(not too large a number) is 100100, exceeding the number of all elementary particle
events in the life of the Universe; no computer would ever be able to compute that
many combinations.

It has been proven that CC is mathematically similar to the Gödelian incomplete-
ness. Therefore using logic leads to CC. But logic is used by all popular mathematical
approaches to developing “cognitive algorithms” and modeling the mind, even fuzzy
logic and neural networks, approaches specifically designed to overcome limitations
of logic, still use logic in their training or learning procedures, every training exam-
ple is a separate logical statement (e.g. “this is food”). CC of engineering algorithms
and mathematical approaches to theories of the mind is related to the fundamental
inconsistency of logic.

4 Fundamental Mechanisms of the Mind

Concepts are representations of the world events in the mind. According to [40], they
are the contents of pure reason. They model events or simulate them. For this reason
[7] calls them “simulators”, [35] prefers to use the word model.

Instincts are sensory-like neural mechanism measuring vital bodily parameters.
When these parameters are outside safe bounds, the instinctual mechanism sends
evaluative neural signals to decision-making parts of the brain [26].

Emotions refer to many different mechanisms in the mind and body. According
to [26] emotional signals evaluate concepts for the purpose of instinct satisfaction.
Recognition of objects or situations that can potentially satisfy vital needs of the
organism (instincts) receive preferential attention. A number of neural and physio-
logical realizations of this mechanism have been identified [22].



Physics of the Mind, Dynamic Logic, and Monotone Boolean functions 197

Aesthetic emotions [41] emphasized the role of emotions in learning: aesthetic
emotions are related to learning; they are judgments about correspondence between
an object-event and its concept, which today we relate to interactions between BU
and TD neural signals. Grossberg and Levine [26] theory of instinctual drives and
emotions has been developed along Kantian ideas by introducing KI [71, 74, 75,
77, 98]. KI is an instinct measuring similarities between object-events and their
concepts. Satisfactions or dissatisfactions of KI are indicated by aesthetic emotions
[92, 93] that drive improvement of concepts in correspondence with experience. KI
and aesthetic emotions are the foundations of all human higher cognitive abilities
[58, 72, 82, 92], including emotions of the beautiful.

Emotions evaluating satisfaction or dissatisfaction of the knowledge instinct are
not directly related to bodily needs. Therefore, they are ‘spiritual’ or aesthetic emo-
tions. I would like to emphasize that aesthetic emotions are not peculiar to perception
of art; they are inseparable from every act of perception and cognition. In the next
sections we describe a mathematical theory of conceptual-emotional recognition
and understanding. As we discuss, in addition to concepts and emotions, it involves
mechanisms of intuition, imagination, conscious, and unconscious. This process is
intimately connected to an ability of the mind to think, to operate with symbols and
signs. The mind involves a hierarchy of multiple layers of concept-models, from
simple perceptual elements to concept-models of objects, to relationships among
objects, to complex scenes, and up the hierarchy… toward the concept-models of
the meaning of life and purpose of our existence. Hence the tremendous complexity
of the mind, yet relatively few fundamental principles of the mind organization go a
long way explaining this system. The mind is not a kludge [84].

5 Physics of the Mind

Physics of the mind is different from psychology in that it searches for the fundamen-
tal principles of the mind. Among these principles are mechanisms of dynamic logic,
concept-models, emotions, the knowledge instinct, and aesthetic emotions discussed
above. Fewmore fundamental principles will be gradually introduced and discussed.
These fundamental mechanisms are organized in a multi-layer, hierarchical system
[25, 71]. The mind is not a strict hierarchy; there are multiple feedback connec-
tions among several adjacent layers, this approximately-hierarchical organization is
another fundamental principle. At each layer there are concept-models encapsulat-
ing the mind’s knowledge; they generate TD signals interacting with BU signals; the
interaction between TD and BU neural signals is a fundamental principle constitut-
ing the essence of thinking and cognition. These interactions are governed by the
knowledge instinct, which drives concept-model learning, adaptation, and formation
of new concept-models for better correspondence to experience.
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I begin with describing a basic mechanism of interaction between TD and BU
signals between two adjacent hierarchical layers. At each layer, output signals are
concepts recognized in (or formed from) BU signals. BU signals are associated with
(or recognized, or grouped into) concepts according to themodels and the knowledge
instinct at this layer. This general structure of the theory of the mind corresponds
to our knowledge of neural structures in the brain; although it is a physical intu-
ition of the general principle, not necessarily one-to-one mapping to actual neural
connections. How actual brain neuronal connection “implement” models and the
knowledge instinct is an area of active research. The knowledge instinct is modeled
mathematically as maximization of a similarity measure between bottom-up and
top-down signals. In the process of learning and understanding input signals, models
are adapted for better representation of the input signals so that similarity between
the models and signals increases. This increase in similarity satisfies the knowledge
instinct and is felt as aesthetic emotions.

5.1 The Knowledge Instinct

At a particular hierarchical layer, we enumerate neurons by index n = 1, ... N. These
neurons receive BU signals, X(n), from lower layers in the processing hierarchy.
X(n) is a field of BU neuronal synapse activations, coming from neurons at a lower
layer. Each neuron has a number of synapses; for generality, we describe each neuron
activation as a set of numbers,X(n) = {Xd(n), d= 1, ... D}. TD, or priming signals to
these neurons are sent by concept-models,Mm(Sm, n);we enumeratemodels by index
m= 1, ...H.Eachmodel is characterized by its parameters,Sm; in the neuron structure
of the brain they are encoded by strength of synaptic connections,mathematically, we
describe them as a set of numbers, Sm ={Sam, a= 1, ... A}.Models represent signals
in the following way. Say, signal X(n), is coming from sensory neurons activated by
object m, characterized by parameters Sm. These parameters may include position,
orientation, or lighting of an object m. Model Mm(Sm, n) predicts a value X(n) of a
signal at neuron n. For example, during visual perception, a neuron n in the visual
cortex receives a signal X(n) from retina and a priming signal Mm(Sm, n) from an
object-concept-modelm. A neuron n is activated if both BU signal from lower-layer-
input and TD priming signal are strong. Various models compete for evidence in the
BU signals, while adapting their parameters for better match as described below. This
is a simplified description of perception. Themost benign everyday visual perception
uses many layers from retina to object perception. Perception of minute features,
or everyday objects, or cognition of complex abstract concepts is due to the same
mechanism described below. Perception and cognition involve models and learning.
In perception, models correspond to objects; in cognition models correspond to
relationships, situations, and more abstract entities.
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Learning is an essential part of perception and cognition, and it is driven by the
knowledge instinct. It increases a similarity measure between the sets of models
and signals, L({X},{M}). The similarity measure is a function of model parameters
and associations between the BU and TD signals. For concreteness I refer here to
an object perception using a simplified terminology, as if perception of objects in
retinal signals occurs in a single layer.

In constructing a mathematical description of the similarity measure, it is impor-
tant to acknowledge two principles. First, the exact content of the visual field is
unknown before perception occurred. Important information could be contained in
any BU signal; therefore, the similarity measure is constructed so that it accounts for
all input information, X(n),

L({X}, {M}) =
∏

n∈N
l(X(n)). (1)

This expression contains a product of partial similarities, l (X(n)), over all BU
signals; therefore it forces themind to account for every signal (even if one term in the
product is zero, the product is zero, the similarity is low and the knowledge instinct
is not satisfied); this is a reflection of the first principle. Second, before perception
occurs, the mind does not know which retinal neuron corresponds to which object.
Therefore a partial similarity measure is constructed so that it treats each model as an
alternative (a sum over models) for each input neuron signal. Its constituent elements
are conditional partial similarities between signal X(n) and model Mm, l (X(n)|m).
Thismeasure is “conditional” on objectm being present,1 therefore, when combining
these quantities into the overall similarity measure, L, they are multiplied by r(m),
which represent the measure of object m actually being present. Combining these
elements with the two principles noted above, a similarity measure is constructed as
follows:

L({X}, {M}) =
∏

n∈N

∑

m∈M
r(m)l(X(n)|m). (2)

The structure of (2) follows standard principles of the probability theory: a sum-
mation is taken over alternatives,m, and various pieces of evidence, n, aremultiplied.
This expression is not necessarily a probability, but it has a probabilistic structure.
The name “conditional partial similarity” for l (X(n)|m) (or simply l (n|m)) follows
the probabilistic terminology. If learning is successful, l(n|m) becomes a conditional
probability density function, a probabilisticmeasure that signal in neuronn originated
from object m. Coefficients r(m), called priors in probability theory, contain prelim-
inary biases or expectations, expected objects m have relatively high r(m) values;
their true values are usually unknown and should be learned, like other parameters

1Mathematically, the condition that the object m is present with 100% certainty, is expressed by nor-
malization condition:

∫

l(X|m)dX = 1. We should also mention another normalization condition:
∫

l(X(n))dX(n) = 1, which expresses the fact that, if a signal is received, some object or objects
are present with 100% certainty.
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Sh. If learning is successful, L approximates a total likelihood of observing signals
{X(n)} coming from objects described by models {Mm} and leads to near-optimal
Bayesian decisions.

Note. In the probability theory, a product of probabilities usually assumes that
evidence is independent. Expression (2) contains a product over n, but it does not
assume independence among various signals X(n). There is a dependence among
signals due to models: each model Mm(Sm, n) predicts expected signal values in
many neurons n.

During the learning process, concept-models are constantly modified. From time
to time a system forms a newconcept,while retaining an old one aswell; alternatively,
old concepts are sometimes merged or eliminated. Even so functional forms of mod-
els, Mm(Sm, n), are fixed and learning-adaptation involves only model parameters,
Sm, still structural variation of models can be achieved as we discuss below [73, 74].
Formation of new concepts andmerging or elimination-forgetting of old ones require
a modification of the similarity measure (2); the reason is that more models always
result in a better fit between the models and data. This is a well known phenomenon,
a similarity measure fit to the data is biased toward a larger value. To obtain an unbi-
ased estimation the similarity (2) should be reduced by using a “penalty function,”
p(N,M) that grows with the number of models M, and this growth is steeper for a
smaller amount of data N. For example, an asymptotically unbiased maximum likeli-
hood estimation leads to multiplicative p(N, M) = exp(−Npar/2), where Npar is a total
number of adaptive parameters in all models (using this penalty function is known
as Akaike Information Criterion, see [74] for further discussion and references).

5.2 Dynamic Logic

The learning process consists in estimating model parameters S and associating sig-
nals with concepts by maximizing the similarity (2). Note, all possible combinations
of signals and models are accounted for in expression (2). This can be seen by
expanding a sum in (2), and multiplying all the terms; it would result in MN items,
a huge number. This is the number of combinations between all signals (N) and all
models (M). Here is the source of CC of many popular algorithms. For example, a
popular multiple hypothesis testing algorithm [106] attempts to maximize similarity
L over model parameters and associations between signals and models, in two steps.
First it takes one of the MN items, that is one particular association between signals
and models; and maximizes it over model parameters. Second, the largest item is
selected (that is the best association for the best set of parameters). Such a program
inevitably faces a wall of CC, the number of computations on the order of MN.

Our theory solves this problem by using dynamic logic [68, 71, 74]. An important
aspect of dynamic logic is matching vagueness or fuzziness of similarity measures to
the uncertainty of models. Initially, parameter values are not known, and uncertainty
of models is high; so is the fuzziness of the similarity measures. In the process
of learning, models become more accurate and the similarity measure more crisp,
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the value of the similarity increases. This is the mechanism of dynamic logic in
which vague models-representations evolve into crisp models-representations. This
vague-to-crisp process is a mathematical description of the Aristotelian theory of the
mind, in which illogical “forms-as-potentialities” “meet matter” and turn into logical
“forms-as-actualities” [1].

Mathematically it is described as follows. First, assign any values to unknown
parameters, {Sm}. Then, compute association variables f(m|n),

f(m|n) = r(m) l (X(n)|m)/
∑

m′∈M
r(m′)l(X(n)|m′). (3)

Equation (3) looks like the Bayes formula for a posteriori probabilities; if l (n|m)
in the result of learning become conditional likelihoods, f(m|n) become Bayesian
probabilities for signal n originating from object m. The next step defines a joint
dynamics of the association variables and model parameters,

df(m|n)/dt = f(m|n)
∑

m′∈M
[δmm′ − f(m′|n)] · [∂lnl(n|m′)/∂Mm′]∂Mm′/∂Sm′ · dSm′/dt, (4)

dSm/dt =
∑

n∈N
f(m|n)[∂lnl(n|m)/∂Mm]∂Mm/∂Sm, (5)

here

δ
mm′

is 1 if m = m′, 0 otherwise. (6)

The following theorem was proven [71].

Theorem Equations (3) through (6) define a convergent dynamic system with sta-
tionary states defined by max{Sm}L.

It follows that the stationary states of the system are the maximum similarity
states satisfying the knowledge instinct. When partial similarities are specified as
probability density functions (pdf), or likelihoods, the stationary values of parameters
{Sm} are asymptotically unbiased and efficient estimates of these parameters [15].
A computational complexity of the MF method is linear in N.

In plain English, this means that dynamic logic is a convergent process. It con-
verges to the maximum of similarity, and therefore satisfies the knowledge instinct.
Several aspects of this convergence are discussed in the next section. If likelihood is
used as similarity, parameter values are estimated efficiently (that is, in most cases,
parameters cannot be better learned using any other procedure). Moreover, as a part
of the above theorem, it is proven that the similarity measure increases at each itera-
tion (until the system receives new data). The psychological interpretation is that the
knowledge instinct is satisfied at each step: a modeling field system with dynamic
logic enjoys learning.
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5.3 Example of Dynamic Logic Operations

Finding patterns below noise could be an exceedingly complex problem. If an exact
pattern shape is not known and depends on unknown parameters, these parameters
should be found by fitting the pattern model to the data. However, when location and
orientation of patterns are not known, it is not clear which subset of the data points
should be selected for fitting. A standard approach for solving this kind of problems,
as discussed, multiple hypothesis testing [106] tries all combinations of subsets and
models, it faces combinatorial complexity. In this example, we are looking for ‘smile’
and ‘frown’ patterns in noise shown in Fig. 1a without noise, and in Fig. 1b with
noise, as actually measured. The image size in this example is 100× 100 points (N
= 10,000). The true number of patterns is 3 plus 1 for noise. The number of patterns
is not known, therefore, at least 4 patterns +1 noise (= 5) should be fit to the data, to
decide that 3 patterns fit best. This yields an incomputable combinatorial complexity
MN = 510,000 = 103,000.

Nevertheless, this problem unsolvable due toCCbecomes solvable using dynamic
logic, as illustrated in Fig. 1: (c) illustrates initial vague dynamic logic state, corre-
sponding to randomly selected parameter values; on the first iteration, (d), vagueness
is somewhat reduced; (d) through (h) show improved models at various iteration
stages (total of 22 iterations). Between iterations (d) and (e) the algorithm decided,
that it needs three Gaussian models for the ‘best’ fit. There are several types of mod-
els: one uniform model describing noise (it is not shown) and a variable number of
blob models and parabolic models, which number, location and curvature are esti-
mated from the data. Until about stage (g) the algorithm used simple blob models, at
(g) and beyond, the algorithm decided that it needs more complex parabolic models
to describe the data. Iterations stopped at (h), when similarity stopped increasing.

5.4 The Mind Hierarchical Organization

The previous sub-sections described a single processing layer of a cognitive mind
system. At each layer of a hierarchy there are BU signals from lower layers, models,
similarity measures (2), aesthetic emotions, which psychologically measure satis-
faction of KI, and mathematically are changes in similarity (2), and actions; actions
include adaptation, behavior satisfying the knowledge instinct—maximization of
similarity, equations (3) through (6). An input to each layer, the BU signals are a set
of signals X(n), or in neural terminology, an input field of neuronal activations. The
result of learning at a given layer are activated models, or concepts m recognized in
the BU signals n; these models along with the corresponding instinctual signals and
emotions may activate behavioral models and generate behavior at this layer.

The activated models initiate other actions. They serve as input signals to the
next, higher processing layer, where more general concept-models are recognized
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Fig. 1 (Continued)
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�Fig. 1 Finding ‘smile’ and ‘frown’ patterns in noise, an example of dynamic logic operation: a
true ‘smile’ and ‘frown’ patterns are shown without noise; b actual image available for recognition
(signal is below noise, signal-to-noise ratio is between –2 dB and –0.7 dB); c an initial fuzzy blob-
model, the fuzziness corresponds to uncertainty of knowledge; d through h show improved models
at various iteration stages (total of 22 iterations). Between stages d and e the algorithm tried to fit
the data with more than one model and decided, that it needs three blob-models to ‘understand’ the
content of the data. There are several types of models: one uniform model describing noise (it is
not shown) and a variable number of blob-models and parabolic models, which number, location
and curvature are estimated from the data. Until about stage g the algorithm ‘thought’ in terms of
simple blob models, at (g) and beyond, the algorithm decided that it needs more complex parabolic
models to describe the data. Iterations stopped at (h), when similarity (2) stopped increasing. This
example is discussed in more details in [93]

Fig. 2 The hierarchical
cognitive system. At each
layer of a hierarchy there are
models, similarity measures,
and actions (including
adaptation, maximizing the
knowledge
instinct—similarity). High
levels of partial similarity
measures correspond to
concepts recognized at a
given layer. Concept
activations are output signals
at this layer and they become
BU input signals to the next
layer, propagating
knowledge up the hierarchy

or created. Output signals from a given layer, serving as input, BU to the next layer,
could be model activation signals, am, defined as

am =
∑

n∈N
f(m|n). (7)

In addition, output signals may include model parameters. The hierarchical cog-
nitive system is illustrated in Fig. 2. Within the hierarchy of cognition, each concept-
model finds its “mental” meaning and purpose at a higher layer (in addition to other
purposes). For example, consider a concept-model “chair.” It has a “behavioral”
purpose of initiating sitting behavior (if sitting is required by the body), this is the
“bodily” purpose at the same hierarchical layer. In addition, it has a “purely mental”
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purpose at a higher layer in the hierarchy, a purpose of helping to recognize a more
general concept, say of a “concert hall,” which model contains rows of chairs.

Amathematical formulation of the hierarchical similarity is a product of similarity
measures at every layer. We denote similarity (1) at the layer h as L(h). Then, the
total similarity is

L =
∏

h∈H
L(h). (8)

In this total hierarchical similarity, concepts formed at the level h become BU
signals for the layer h+1, whereas concepts formed at the level h+1 become TD
signals for the layer h. Whereas conditional similarities l (n|m) in Eq. (2), used in the
example of Fig. 1 were designed for this example using specific functional shapes
corresponding to image patterns, now a uniform conditional similarity is needed,
suitable for every hierarchical level and capable to be learned for all current and
future concepts. This new conditional similarity is based on the idea that higher-
level concepts are formed from subsets of the BU signals. For simplicity of notations
for now we leave out the index h. At every level in the hierarchy, each higher-level
concept-model m is characterized by parameters-probabilities, pm = (pm1, .. pmi, ...),
where pmi is the probability of BU signal xni being part of the higher model m. The
model-conditional similarity measures, l (n|m), are defined as follows,

l(n|m) =
∏

i=1

pmi
xni(1 − pmi)

(1−xni). (9)

Applying the dynamic logic learning equation we obtain a surprisingly simple
learning-estimation equation for the model parameters, pmi,

pmi =
∑

n∈N
f(m|n)xni/

∑

n′∈N
f(m|n′). (10)

The dynamic logic learning converges in few iterations [97]. Equations (8, 9, 10)
complete the definition of the hierarchical system of the mind.

Models at higher layers in the hierarchy are defined as subsets of lower-level
models and therefore more general than models at lower layers. For example, at
the very bottom of the hierarchy, if we consider vision system, models correspond
(roughly speaking) to retinal ganglion cells and perform similar functions; they detect
simple features in the visual field; at higher layers, models correspond to functions
performed at V1 and higher up in the visual cortex, that is detection of more com-
plex features, such as contrast edges, their directions, elementary moves, etc. Visual
hierarchical structure and models are studied in details ([24, 111]). At still higher
cognitive layers, models correspond to objects, to relationships among objects, to
situations, and relationships among situations, etc. [71, 97]. Still higher up are even
more general models of complex cultural notions and relationships, like family, love,
friendship, and abstract concepts, like law, rationality, etc. Contents of these models
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correspond to cultural wealth of knowledge, including writings of Shakespeare and
Tolstoy.

Let me repeat that concept-models at every layer evolved in evolution with the
purpose to unify lower-level concepts. This is the fundamental organizational princi-
ple of the hierarchy that helps us to understand contents andmeanings of the concepts
near the top of the hierarchy. These “top” concepts evolve with the purpose to unify
the entire life experience. We perceive these concepts as the meaning of life. This
clarifies Kantian conclusion that at the top of the hierarchy of the mind, there are
concept-models of the meaning and purpose of our existence, unifying our knowl-
edge, and the corresponding behavioral models aimed at achieving this meaning.

We discussed that satisfaction of the knowledge instinct is accompanied with
aesthetic emotions. At lower levels of the hierarchy, say belowobjects, these aesthetic
emotions usually are below the threshold of consciousness. Near the top of the
hierarchy, where concepts address meanings important for life, aesthetic emotions.

6 Higher Cognition, Beautiful, and the Dual Hierarchy

We discussed that satisfaction of the knowledge instinct is accompanied by aesthetic
emotions.At lower levels of the hierarchy, say belowobjects, these aesthetic emotions
usually are below the threshold of consciousness. We are not getting emotionally
excited when we understand an everyday object, say a refrigerator. Near the top of
the hierarchy,where concepts addressmeanings important for life, aesthetic emotions
acquire similarly important meanings. Aesthetic emotions felt when understanding
the meaning and purpose of life are emotions of the beautiful [83]. The essential
aspects of this theory of the beautiful follows the Kantian aesthetics (1790), the
following mathematical theory helps understanding the details that have escaped
Kantian analysis.

Can thismathematical analysis be used for exactly elucidatingwhat is themeaning
of life and emotions of the beautiful? The answer is unexpectedly negative: there
cannot be a clear-cut prescription forwhat themeaning of life is andwhat the beautiful
is. This negative answer is not entirely unexpected, it corresponds to our intuitions
about these highest concepts and emotions. And yet, it calls for clarification of how it
is possible that mathematical descriptions leads to denial of clear-cut definitions. To
say it more exactly, the mathematical analysis clarifies the meanings of these highest
concepts and emotions [92], as well as the corresponding meaning of “exactness.”

Let us examine more closely exactness of perception of everyday objects. Look
at an object in front of you, then close eyes and imagine this object with closed
eyes. Imaginations are not as exact as perception of objects with opened eyes, it is
impossible to recollect all the details with closed eyes. We know the mechanism of
visual imagination: imagination, say of an object, is experiencing a neural projections
of the object concept-model-representation onto the visual cortex. Vagueness of
imaginations testifies to the vagueness of concept-representations. This fact has been
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proven in [6, 80]. Moreover this publication demonstrated that vague states and
processes in the mind are also less accessible to consciousness.

If representations of the everyday objects are vague and not completely conscious,
what does it say about representations near the top of the hierarchy. These “top”
representations built on multiple layers of representations throughout the hierarchy
must be much vaguer and much less conscious. But does not it contradict our ability
to discuss in details themeaning of life andwhat is beautiful? To answer this question
we have to analyze the difference between cognition and language, and the function
of language in cognition.

6.1 Language and Cognition in Thinking

Do we think with language, or is language just a communication device used for
expression of completed thoughts? What is a difference between language and cog-
nition?Chomsky [12] suggested that these two abilities are separate and independent.
Cognitive linguistics emphasizes a single mechanism for both [16]. Evolutionary lin-
guistics considers the process of transferring language fromone generation to the next
one [11, 13, 34]. This process is a “bottleneck” that forms the language. Brighton,
Smith, and Kirby [10] demonstrated emergence of compositional language due to
this bottleneck. Still, none of these approaches resulted in a computational theory
explaining how humans acquire language and cognition. Below I discuss a computa-
tional model overcoming previous difficulties and unifying language and cognition
as two separate and closely integrated abilities. I identify their functions and discuss
why human thinking ability requires both language and cognition. The fundamental
difference between language and cognition is that language does not directly interacts
with the world, language is learned from culturally evolved surrounding language.
Cognition interacts with the world and is learned from experience in real world under
the guidance of language.

We have discussed the difficulty of mathematical models of cognition, it is related
to a need to consider combinations of sensor signals, objects, and events. The number
of combinations is very large and even a limited number of signals or objects form a
very large number of combinations, exceeding all interactions of all elementary par-
ticles in a lifetime of the Universe, a combinatorial complexity, CC. This difficulty
in modeling the mind has been overcome by dynamic logic. Whereas classical logic
considers static statements such as “this is a chair,” dynamic logic models processes
from vague to crisp representations. These processes do not need to consider com-
binations, an initial vague state of a “chair” matches any object in the field of view,
and at the end of the process it matches the chair actually present, without CC.

Yet, there remains another difficulty, similar still even more complex. It is related
to the fact that “events” and “situations” in the world do not exist “ready for cogni-
tion.” There are many combinations of percepts and objects, a near infinity, events
and situations important for understanding and learning have to be separated from
those that are just randomcollections ofmeaningless percepts or randomobjects [97].
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Events and situations recognized by non-human animals are very limited compared
to human abilities to differentiate events in the world. Human cognitive abilities
acquire their power due to language. Language is “easier” to learn than cognitive
representations for the following reason, language representations: words, phrases
exist in the surrounding language “ready-made,” created during millennia of cultural
evolution. Therefore language could be learned without much real-life experience;
only interactions with language speakers are required. Every child learns language
early in life before acquiring full cognitive understanding of events and their cog-
nitive meanings. Thus language is learned early in life with only limited cognitive
understanding of the world [78, 87, 91]. Cognitive representations of situations and
abstract concepts are vague. Throughout the rest of life, language guides acquisi-
tion of cognitive representations from experience. Vague cognitive representations
become more crisp and concrete. Thinking involves both language and cognition,
and as we discuss later thinking about abstract ideas usually involves language more
than cognition, not too different from thinking by children.

6.2 The Dual Hierarchy

A mathematical description of this interacting language-cognition system, connect-
ing language, world and cognition, requires the dual hierarchy illustrated in Fig. 3.
Cognitive hierarchy from sensor-motor percepts near “bottom,” to objects “higher
up,” to situations, and to still more abstract cognitive representations have been
illustrated in Fig. 2 and mathematically modeled in the previous sections. Language
representations are organized in a parallel hierarchy from sounds, and words for
objects and situations, to phrases, and to more abstract language representations.
Our previous discussion is mathematically modeled as a dual hierarchy [78, 87, 91,
97] illustrated in Fig. 3.

Language is learned from the surrounding language, where it exists “ready-made”
for cognition, and therefore after 5 or 7 language representations are crisp and con-
scious throughout the hierarchy. But cognitive representations, as discussed are vague
and less conscious. For this reason abstract concepts are mostly known to us through
language. This explains why concepts at the top of the hierarchy, such as meaning
of life, and the corresponding emotions of the beautiful can be discussed in great
details, still their exact contents are not known.

Hierarchical organization of cognition and related brain structures are reviewed
in [4]. In particular, anterior-posterior axis corresponds to a gradient of abstract-
concrete cortex functions. Hierarchical organization of language functions is also
well established. However, hierarchical organization of language does not corre-
spond to a particular spatial axis in the brain, it is distributed [100]. Therefore, the
dual hierarchy in Fig. 3 is a functional hierarchy not organized along a spatial axis in
the brain as in this figure. A fundamental aspect of acquiring language is interaction
with the surrounding language as well as between BU and TD representations. Lan-
guage learning is grounded in experience with the surrounding language. Learning
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Fig. 3 The dual hierarchy. Language and cognition are organized into approximate dual hierarchy.
Learning language is grounded in the surrounding language throughout the hierarchy. Cognitive
hierarchy is grounded in experience only at the very bottom

of cognitive mental representations is directly grounded in experience only at the
very bottom of the hierarchy; the rest of the hierarchy is located inside the brain. But
in addition to interactions between BU and TD signals (indicated in Fig. 3 by vertical
arrows), cognition interacts with language representations, and learning cognition is
grounded in experience guided by language. In this interaction a lower layer repre-
sentations are organized in more abstract and general concept-representations at a
higher layer.

The dual model makes a number of experimentally testable predictions, and some
of these have been confirmed [78, 87, 91, 95, 97]. It explains functions of lan-
guage and cognition in thinking: cognitive representations model surrounding world,
relations between objects, events, and abstract concepts. Language stores culturally
accumulated knowledge about the world, yet language is not directly connected to
objects, events, and situations in the world. Language guides acquisition of cognitive
representations from random percepts and experiences, according to what is consid-
ered worth learning and understanding in culture. Events that are not described in
language are likely not even noticed or perceived in cognition. (2)Whereas language
is acquired early in life, acquiring cognition takes a lifetime. The reason is that
language representations exist in surrounding language “ready-made,” acquisition
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of language requires only interaction with language speakers, but does not require
much life experience. Cognition on the opposite requires life experience. (3) This is
the reason why abstract words excite only language regions of brain, whereas con-
crete words excite also cognitive regions [8]. The dual model predicts that abstract
concepts are often understood as word descriptions, but not in terms of objects,
events, and relations among them. (4) This model explains why language is acquired
early in life, whereas cognition takes a lifetime. It also explains why children can
acquire the entire hierarchy of language including abstract words without experience
necessary for understanding them. (5) Since dynamic logic is the basic mechanism
for learning language and cognitive representations, the dual model suggests that
language representations become crisp after language is learned (5–7years of age),
however cognitive representations may remain vague for much longer; the vagueness
is exactly the meaning of “continuing learning”, this takes longer for more abstract
and less used concepts. (6) The dual model gives mathematical description of the
recursion mechanism [97]. Whereas Hauser et al. [30] postulate that recursion is a
fundamental mechanism in cognition and language, the dual model suggests that
recursion is not fundamental, hierarchy is a mechanism of recursion.

(7) Another mystery of human-cognition, not addressed by cognitive or language
theories, is basic human irrationality. This has been widely discussed and experimen-
tally demonstrated following discoveries of Tversky and Kahneman [108], leading
to the 2002 Nobel Prize. According to the dual hierarchy model, the “irrationality”
originates from the dichotomy between cognition and language. Language is crisp
and conscious while cognition might be vague and ignored when making decisions.
Yet, collective wisdom accumulated in language may not be properly adapted to
one’s personal circumstances, and therefore be irrational in a concrete situation. In
the 12th c. Maimonides wrote that Adam was expelled from paradise because he
refused original thinking using his own cognitive models, but ate from the tree of
knowledge and acquired collective wisdom of language [57].

6.3 Emotional Prosody and Its Cognitive Function

The language instinct drives the development of the language part of the dual hierar-
chy [99]. The knowledge instinct drives the development of the cognitive hierarchy
and the language guidance of the cognition, indicated by a wide horizontal arrow in
Fig. 3. These neural connections have to be developed and maintained. This requires
motivation, in other words, emotions. These aesthetic emotions corresponding to the
KI must be in addition to utilitarian meanings of words, otherwise only practically
useful words would be connected to their cognitive meanings. Also these emotions
must “flow” from language to cognition and they must act fast, so that language
is able to perform its cognitive function of guiding acquisition of cognitive repre-
sentations, organizing experience according to cultural contents of language. These
emotions therefore must be contained in language sounds, before cognitive contents
are acquired [90].
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This requirement of emotionality of language sounds is surprising and contradic-
tory to assumed direction of evolution of language. Evolution of the language ability
required rewiring of human brain in the direction of freeing vocalization from uncon-
trollable emotions [19, 79]. Still, the dual model requires that language sounds be
emotional. This emotionality is necessary to motivate connecting sounds and cogni-
tivemeanings. Emotionality of human voice ismost pronounced in songs [81, 85, 88,
90]. Emotions of everyday speech are low, unless affectivity is specifically intended.
We may not notice emotions in everyday “non-affective” speech. Nevertheless, this
emotionality is important for developing the cognitive part of the dual model. If
language is highly emotional, speakers are passionate about what they say, however
evolving new meanings might be slow, emotional ties of sounds to old meanings
might be “too strong.” If language is low-emotional, new words are easy to create,
however motivation to develop the cognitive part of the dual model might be low, the
real-world meaning of language sound might be lost. Cultural values might be lost
as well. Indeed languages differ in how strong are emotional connections between
sounds and meanings. This leads to cultural differences. Thus the dual model leads
to Emotional Sapir-Whorf Hypothesis [76, 79, 86]. Strength of emotional connec-
tions between sound and meaning depends on language inflections. In particular,
after English lost most of its inflections, it became a low emotional language, pow-
erful for science and engineering. At the same time English is losing autonomous
connections to cultural values that used to be partially inherent in language sounds.
Fast change of cultural values during recent past in English-speaking cultures is usu-
ally attributed to progress in thinking, whereas effects of change in emotionality of
language sounds have not been noticed.

6.4 Musical Emotions

At lower levelsKI acts automatically: sensory-motor experiences are directly embod-
ied. But at higher levels abstract knowledge is called abstract exactly because it does
not exist pre-formed in the world, it is created through the interaction of the world
and the mind. But cognitive dissonance (CD), a mechanism opposite to KI, might
interfere at higher levels. CD is a discomfort caused by holding conflicting cognitions
[14, 21, 29]. This discomfort is usually resolved by devaluing or discarding the con-
flicting cognition. This discarding often occurs below the level of consciousness; it is
fast and momentary [36]. It is also known that the majority of new knowledge origi-
nates through the differentiation of previous knowledge, which is the mechanism for
several broad empirical laws: Zipf’s law, the power law, Pareto law emergewhen new
entities (or usage) evolve from pre-existing ones [65, 66, 105]. Therefore, almost all
knowledge contradicts other knowledge to some extent and according to CD theory,
any knowledge should be discarded before its usefulness becomes established.

As language began emerging, every word brought new knowledge. However, CD
should have interfered with this process. Before the usefulness of new knowledge
could be established, it should have been discarded along with language [89]. To
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overcome CD and enable the evolution of language and knowledge, a word should
“grab attention” preconsciously. Emotion of prosody accomplishes this [91]. This
same mechanism is alive and well today. Over millions of years many musical and
prosodial emotions have evolved and have been culturally inherited by everyone. Yet
the diversity of culture is “toomuch” for somepeople, leading to newknowledgeoften
being discarded in school and later. Recall that Einstein never received a Nobel Prize
for Theory of Relativity. The emotions of language prosody embody the meanings of
language and connect sounds to cognitivemeanings in everyday conversations aswell
as in science (experimental evidence is discussed below). While language evolved
toward more semantic and less emotional sounds, emotionality of voice, inherited
from our animal past, evolved toward stronger emotions, to songs and music. And
today song lyrics may affect us stronger than the same text without music.

Did music evolve to connect abstract thoughts and KI? This hypothesis has been
confirmed experimentally. In [3] children devalued a toy if they could not play with
it. The desire ‘to have’ contradicts the inability ‘to attain’; this creates CD, which is
resolved by discarding the contradiction. This experiment repeated many times [14]
was first described in Aesop’s fable 2500years ago: the fox unable to attain the grape
devalues a contradictory cognition by deciding: “the grape is sour.”

Does music help in overcoming CD? [60, 85, 86] have reproduced the above
experiment with music in the background and observed that the toy is not deval-
ued. Another experiment demonstrated that academic test performance may improve
while listening to music. Perlovsky and Cabanac [94] demonstrated (1) that students
allocate less time to more difficult and stressful tests (as expected from CD theory),
and (2) with music in the background students can tolerate stress, allocatemore time
to stressful tests, and improve grades. These experiments confirmed the hypothesis
that music helps in overcoming CD. It is likely that music emerged and evolved for
a fundamental cognitive function: music makes the accumulation of knowledge and
human evolution possible.

For thousands of years philosophers and psychologists wondered about the origin
of dissonances and consonances. Masataka and Perlovsky [61] demonstrated that
consonant music helps “everyday” decision-making in the presence of cognitive
interfering evidence,whereas dissonantmusic increases interference effects. Ismusic
limited to a few emotions, or does every musical phrase evoke a different shade of
emotion? Researchers take opposite sides of this issue [17, 38, 39, 44, 107, 112].

How can multiplicity of emotions be explained and justified from a cognitive and
evolutionary standpoint, and why has this ability emerged? The proposed hypothesis
relating music to CD suggests the following explanation. CD produces a variety of
emotional discomforts, different emotions for every combination of knowledge—in
other words, a huge number of emotions. Most of these emotions are barely noticed
because they lie below the level of consciousness, and in these unconscious states
they produce disincentives for knowledge. Music helps to overcome these emotional
discomforts by developing a huge number of conscious musical emotions. The mind
being conscious of the multiplicity of emotions can bring into consciousness emo-
tions of CD, and thus be prepared to tolerate them. We enjoy even sad and difficult
musical emotions for their positive effect of overcoming difficult CD. Possibly this



Physics of the Mind, Dynamic Logic, and Monotone Boolean functions 213

explains the mysterious enjoyment of sad music: it helps us to overcome CD of
life’s unavoidable disappointments, including the ultimate one, the knowledge of
our finiteness in the material world.

Melody, harmony, and other musical devices produce complex, uniquely human
musical emotions—they are related to knowledge and therefore are aesthetic emo-
tions ([9, 96]). They expand KI toward a differentiated instinct sensitive not only to
unifying knowledge and the world, but also to unifying multiplicity of contradictions
among various aspects of knowledge. While CD split our psyche into differentiated
knowledge, KI and music unify our psyche. Musical emotions embody abstract
knowledge and unify our mental life, language, and body.

These are the reasons why music affects us so strongly. Music connects thinking
and intuition to the world. Our spiritual life is embodied through music. Uniquely
human refined musical emotions embody our abstract thoughts from the everyday
to the most exalted experience. Our highest mental representations near the top
of the mental hierarchy attempt to unify our entire life experience. As discussed
we perceive them as the meaning of life; their cognitive representations are vague
but their feelings are strong, we feel them as emotions of the beautiful [82, 83].
These representations cannot be matched to anything “objectively existing” in the
world outside of our brain-mind. Their deep meanings have been created in cultural
evolution. Every individual human being receives this cultural knowledge through
language.However, this culturalwisdom is not received in an embodied form. Itmight
remain as meaningless disembodied text in books. It is up to everyone’s personal
effort to create an embodied meaning of life from one’s own life experience. Music
helps us to embody the meaning of life. The beautiful and sublime, art and religious
experience, emotions that embody the meaning of life, as well as the highest spiritual
experiences are all embodied through music.

For thousands of years music has been an unexplainable mystery. Aristotle [2]
listed the power of music among the great unsolved problems. Darwin wrote (1871)
that musical ability “must be ranked amongst the most mysterious with which (man)
is endowed.” Nature published a series of essays on music [20]. The authors of these
essays agreed that “none... has yet been able to answer the fundamental question:
why does music have such power over us?” [5]. Today with the help of the physical
theory of the mind we have an answer to this question.

7 Future Mathematical Development. Monotone Boolean
Functions

This section uses mathematical formalization of dynamic logic for further develop-
ment of the foundation of the mathematical theory of the mind formulated above;
here we name the above theory modeling field theory, MFT. This section is based on
previous joint development with Prof. Boris Kovalerchuk [50–53, 109].



214 L.I. Perlovsky

Empirical data, E is any data that can be used to identify a model. In logical
terms it is defined as a pair

E = <A,�>,

where A is a set of objects, � ={Pi} is a signature, that is a set of predicates Pi of
arity ni, e.g., predicate P1(x,y) with ni = 2 can mean that length of x is no less than
the length of y, l(x) ≥ l(y).

Definition The pair <A, �> is called an empirical system in Krantz et al. [55].

Definition A pair <A, �> is knows in logic as amodel (of the system of axioms
T) [59].

Alfred Tarski proposed the name ‘model theory’ in 1954 [32]. A variety of other
names are also used that include a relational system Krantz et al. [55], a protocol
of experiment ([47, 104]). To distinguish this model from model in MFT we will
also call this model a logic model or first-order model [33]. Application of algebraic
methodology to System Software is presented in [102].

The next important concept in MFT is a concept of a priori model (of reality),
M. In logic formalization it can be matched with a system of axioms T.

Definition A system of axioms T is a set of closed first order logic (FOL) formulas
(sentences) in the signature �.

This means that every variable xi is presented in the formula with the existential
(∃) or the universal (∀) quantifier, e.g., ∀ xi∃xj P1(xi, xj).

The quick comparison ofMFT and logic approaches in these two concepts reveals
a fundamental difference between them. Logic is going from a very formal (syntac-
tical) axiomatic system T to something more real called a model AT = <AT,�> of
that formal system T. MFT is going in the opposite way—from very informal reality
to more formal models. As a result the concepts of a model are quite different in two
theories. Empirical data in MFT is a model E = <A,�> in logic, if we interpret
empirical data as an empirical system E [55]. On the other hand MFT model is not
a model in logic it leans more to a set of axioms about the class of the logic models.

This difference was well described in Hodges [32]: “To model a phenomenon is
to construct a formal theory that describes and explains it. In a closely related sense,
you model a system or structure that you plan to build, by writing a description of
it. These are very different senses of ‘model’ from that in model theory: the ‘model’
of the phenomenon or the system is not a structure but a theory, often in a formal
language”.

The next MFT concept is a similarity measure L(M, E) between empirical data
E and a priory model M that is assigned individually to each specific problem and E:

L : {(M,E)} → R,

where r is a set or real numbers.
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The closest concept in the logic for this concept is a statement that m = <a,�>

is a model of the system of the axioms t.

Definition Pair e= <a,�> is amodel of the system of the axioms t if every formula
from t is true on e.

Definition Boolean similarity measure b(t, e) is defined to be equal to 1, l(t, e) = 1,
if m is a model of t, else l(t, e) = 0.

7.1 Concept of Uncertainty, Generality and Simplicity

7.1.1 Uncertainty, Generality and Simplicity Relations Between Models

Below we introduce concepts of uncertainty, generality and simplicity relations.
These concepts can be applied to both logic and MFT models.

Notation An uncertainty relation between models is denoted as “≥Mu”, relation
Mi ≥Mu Mj is read: “Model Mi is equal in uncertainty or more uncertain than model
Mj” or “Model Mj is no less certain than model Mj” This relation is a partial order.

Notation A generality relation between models is denoted as “≥Mg” and relation
Mi ≥Mg Mj is read: “Model Mj is a specialization of the measure Mi” or “Model
Miis a generalization of the measure Mj”. This relation is a partial order too.

Notation A simplicity relation between model is denoted as “≥Ms” and relation
Mi ≥Ms Mj is read: “Model Mi is equal in simplicity of simpler than Model Mj”.
This relation also is a partial order.

For the MFT models that are represented as a system of axioms the generality
relation can be defined as follows.

Definition Ti ≥genTj if and only if Ti ⊂Tj, i.e., system of axioms Tiis equal to or
more general than the system of axioms Tj if and only if Ti contains less axioms than
Tj,Ti ⊂Tj.

7.1.2 Uncertainty, Generality and Simplicity Relations Between
Similarity Measures

Below we introduce concepts of uncertainty, generality and simplicity relations for
similarity measures. These concepts can be applied to both logic andMFT similarity
measures.

Notation An uncertainty relation between similaritymeasures is denoted as “≥Lu”
and relationLi ≥Lu Lj is read: “MeasureLi is equal to in uncertainty ormore uncertain
than measure Lj”. This is a partial order relation.
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Notation A generality relation between similarity measures is denoted as “≥Lg”
and relation Li ≥Lg Lj is read: “Measure Lj is a specialization of measure Li and
measure Liis a generalization of the measure Lj” This relation also is a partial order.

Notation A simplicity relation between similarity measures is denoted as “≥Ls”
and relation Li ≥Ls Lj is read: “Measure Lj is equal in simplicity or simpler than
measure Li”. This relation also is a partial order.

Definition Mapping F between a set of models {M} and a set of similarity
measures {L}

F : {M} → {L}

is called a match mapping if F preserves uncertainty, generality and simplicity
relations betweenmodels andmeasures in the formof homomorphism from relational
system <{M},≥Mg,≥Mu> to relational system <{L},≥Lg,≥Lu>, i.e.,

∀Ma,Mb(Ma ≥Mg Mb⇒F(Ma) ≥Lg F(Mb)),

∀Ma,Mb(Ma ≥Mu Mb⇒F(Ma) ≥Lu F(Mb)).

A homomorphism in contrast with an isomorphism allows several models to be
mapped to the same similarity measure L.

Specific match mappings may need additional properties such as simplicity rela-
tion betweenmodels, that is if twomodels that are equal in generality and uncertainty
the preference is given to a simpler one.

7.2 Partial Order of Models

Two different models can be at the same level of uncertainty (M1 =u M2), one
model can be more uncertain than another one (M1 >u M2), or these models can be
incomparable for uncertainty. Symbol “≥u” is also can be viewed as a disjunction of
relations >u and =u.

Wemay definemodel uncertainty in such way that two different quadratic models
M1: 2x2 +3y andmodelM2: 5x+4y2 will have the same level of uncertaintyM1 =uM2.
The number of unknown coefficients is a possible ways to do this. For M1 and M2

these numbers m1 and m2 are equal to zero. All coefficients are known and thus both
models are certain.

Definition NUCmeasure of polynomial model uncertainty is defined as the Number
of Unknown Coefficients (NUC) in the model.

The generality relation between models M1 and M2 can also be defined. For
instance, it can be the highest power n of the polynomial model. Both models M1

and M2 are quadratic with n1 = n2 = 2 and, thus, have the same generality.
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Definition HP measure of polynomial model generality is defined as the Highest
Power n of the polynomial model.

Alternatively we may look deeper and notice that M1 contains x2 andM2 contains
y2. We may define the generality of a polynomial model as its highest polynomial
variable,which are x2 for M1 and y2 for M2. We cannot say that one of them is more
general and can call them incomparable in generality.

Definition HPV measure of polynomial model generality is defined as the Highest
Power Variable (HPV) of the polynomial model.

Consider model M3: 5x + by2. Using NUC measure this model is more uncertain
than model M2: 5x+4y2, M3>MuM2, because coefficient b in M3 is not known, that
is NUC for M2 is n2 = 0 and NUC for M3 is n3 = 1 and n3>n2.

We can also consider M3 as more general than M2: 5x+4y2, M3>Mg M2, because
M2 is a specialization of M3 with b = 4. Similarly model M4: ax+cx2+by2 is more
general and uncertain than models M1: 2x2 +3y, M2: 5x+4y2 and M3: M3: 5x + by2,
because all coefficients in M4 are uncertain, but none of the coefficients is uncertain
in M1, M2 and M3. In these examples uncertainty and generality are consistent and
it is hard to distinguish them. In the next section we provide an example with clear
difference between them. To formalize this idea we need to introduce some concepts
that also will be described in the next section.

7.3 Examples

7.3.1 Uncertainty and Generality of Polynomial Models

In this section we discuss uncertainty and generality of polynomial models based on
a parameterization idea. At first we consider an example of models with increasing
levels of uncertainty:

Level 0: 3x + 4y + 5y2. All coefficients are known at level 0 (no uncertainty).
Level 1: ax + 4y + 5y2. One coefficient is unknown at level 1.
Level 2: ax + by + 7y2. Two coefficients are unknown at level 2.

We may notice that models 3x + 4y + 5y2, ax + 4y + 5y2and ax+by+7y2 form a
chain from a more specific model (level 0) to a less specific model (level 2) as well
as from a more certain model to a more uncertain model.

In contrast models 3x + 4y + 5y2, ax + 9y + 5y2and ax + by + 7y2 form an
increasing uncertainty chain by UNC measure, but they do not form an increasing
generality. We cannot get 3x + 4y + 5y2 by specializing ax+9y+5y2and ax + by +
7y2, because y coefficients 4 and 9 are different. Similarly we cannot get ax + 9y
+ 5y2 by specializing ax + by + 7y2, because y2 coefficients 5 and 7 are different.
This example illustrates the difference between uncertainty and generality relations.

Another example provides us five models at five uncertainty levels:
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Uncertainty level n = 4: M4 = ax2+ by + cx + d
Uncertainty level n = 3: M3 = ax2+ by + 7x + 10
Uncertainty level n = 2: M2 = ax2+3y + 7x + 10
Uncertainty level n = 1: M1 = x2+ 3y+7x+10
Uncertainty level n = 0: M0 = 9x2+3y + 7x + 10

Models M4, M3, M2, M1, M0 form a uncertainty decreasing chain with UNC uncer-
tainty relation defined above:

M4 >Mu M3 >Mu M2 >Mu M1 >Mu M0

They also form a generality decreasing chain

M4 >Mg M3 >Mg M2 >Mg M1 >Mg M0

Here model M3 can be obtained by specialization of parameters of model M4 and
so on, but we did not define the generality concept for them formally yet. Below it
is done by using parameterization approach.

Each consideredmodel has 4 parameters, p1, p2, p3, and p4. For instance, formodel
M2 = ax2+3y +7 x +10 parameter p1 = 1 represents uncertainty of ax2, where
coefficient a is unknown. Similarly, p2 =p3 =p4 = 0, because further coefficients
3, 7 and 10 are known. In this notation we can represent each model as a Boolean
vector, vi =(vi1, vi2, ..,vik,…, vin):

M4 : v4 = 1111;M3 : v3 = 1110;M2 : v2 = 1100;M1 : v1 = 1000;M0 : v0 = 0000.

Definition Parametric model Mi is no less general than model Mj if

vi ≥ vj, i.e.,∀ k vik ≥ vjk.

In accordance with this definition we have

1111 ≥ 1110 ≥ 1100 ≥ 1000 ≥ 0000

that is isomorphic to M4 >Mg M3 >Mg M2 >Mg M1 >Mg M0.

7.4 Uncertainty and Generality of Kernel Models

In this section we discuss uncertainty and generality of parametric kernel models.
Consider a model that consists of n Gaussian kernels. Each kernel Ki has two para-
meters, pi1 and pi2 that are mean and standard deviation respectively (or covariation
matrix in a multidimensional case). We define the following levels of uncertainty:
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Level 0: All 2n coefficients pi1 and pi2 are known at level 0 (no uncertainty).
Level 1: Only one coefficient is unknown at level 1.
Level 2: Two coefficients are unknown at level 2.
Level 2n: All 2n coefficients are unknown at level 2n.

Consider level n with all pi1are known and all pi2are not known. Assume also that
the maximum possible value p2max of all pi2 is known. This value is considered as a
priory value of pi2for all i in the initial a priory model M0. Assume that a learning
operator C(M0, E) produced a model M1 that shrinks the standard deviation max
value p2max, to smaller numbers pi2max(M1) for i = 1.

The similarity measure S(M1, E) can be defined by kernel overlap. If kernels
do not overlap in the 2 standard deviations, ±2pi2max(M1) then S(M1, E) = 1, else
S(M1, E) < 1.

Now we can apply learning operator C(Mj, E) and produce a chain of models,
where each model Mj+1 is more specific then model Mj with decreasing parameters
pi2.

Mn >Mg MMn−1....Mj+1 >Mg Mj....M2 >Mg M1 >Mg M0.

Each considered model has 2n parameters, p11, p12, p21, p22,…, pn1, pn2. We
already assumed that n parameters pi1 are known. Nowwe encode known parameters
as 1 and unknown as 0, thus we have for model M0 a 2n-dimensional Boolean vector

v0 = (v01, v02, .., v0k, . . ., v0n) = (1010. . ..10)

In this notation we can represent each model for n = 3

M3 : v2 = 111111;M2 : v2 = 011111;M1 : v1 = 011110;M0 : v0 = 101010.

and

111111 ≥ 011111 ≥ 011110 ≥ 101010.

that is consistent with M3 >Mg M2 >Mg M1 >Mg M0.
Amore detailed uncertainty parameterization can be developed if Boolean vectors

are substituted by k-valued vectors ui = (ui1, ui2, ..,uik,…, uin) with

uij ∈ U = {0, 1/(k − 1), 2/(k − 1), . . .k − 2/(k − 1), 1}.

Definition Parametric model Mi is no less general than model Mj if

ui ≥ uj, i.e.,∀ k vim ≥ vjm.
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Above we encoded known parameters as 1 and unknown as 0. Now we can assign
a level of parameter uncertainty ui2 by computing pi2(Mj)/pi2max and assigning ui2 as
a nearest number from {0, 1/(k-1), 2/(k-1), …k-2/(k-1), 1}, e.g., let pi2(Mj)/pi2max =
0.75, but the nearest k-value if 0.8, then ui2 = 0.8.

7.5 Similarity Maximization

Now we can define a similarity maximization problem in MFT using the definition
of the similarity measure provided above.

Definition A similarity Lfin measure is called a final similarity measure if

∀M,E,Li Li(M,E)≥LuLfin(M,E)

The goal of setting up the final similarity measure is to set up the level of certainty
of model similarity of the data that we want to reach.

Definition The static model optimization problem (SMOP) is to find a model Ma

such that

Lfin(Ma,E) = Max i∈ILfin(Mi,E) (11)

subject to conditions (12) and (13):

∀Mj Lfin(Ma,E) = Lfin(Mj,E) ⇒ Ma ≥Mu Mj, (12)

∀Mj((Lfin(Ma,E) = Lfin(Mj,E)& ((Mj ≥Mg Ma)v((Ma ≥ MgMj))) ⇒
Ma ≥Mg Mj)) (13)

The goal of conditions (12) and (13) is prevent model overfitting. In addition
conditions (12) and (13) can be beneficial computationally if further specification of
the model requires more computations.
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Condition (12) means that if Ma and Mj have the same similarity measure with E,
Lfin(Ma, E) = Lj(Mj, E), then uncertainty of Ma should be no less than uncertainty
of Mj. Say if model Ma has three uncertain coefficients and model Mj has only one
uncertainty coefficient then we prefer model Ma.

Condition (13) means that if Ma and Mjhave the same similarity measure with E,
La(Ma, E) = Lj(Mj, E), and Mjand Ma are comparable relative to generality relation
“≥ Mg” then Ma should be no less general than Mj, Mj≥MuMa. This means that
model Mj can be obtained by specification of model Ma. Say if models Ma and Mj

have all the same coefficients, but coefficient c, and c can be any number from [1, 3]
in Ma then we would prefer this model to a model Mj with a more specific c = 2.1.

Definition The dynamic logic model optimization (DLPO) problem is to find a
model Ma such that

La(Ma,E) = Maxi∈ILi(Mi,E) (14)

subject to conditions (14) and (15):

∀Mj La(Ma,E) = Lj(Mj,E) ⇒ Ma ≥Mu Mj, (15)

∀Mj((Lfin(Ma,E)= Lj(Mj,E)& ((Mj ≥Mg Ma)v((Ma ≥Mg Mj))) ⇒
Ma ≥Mg Mj)). (16)

This is a non-standard optimization problem. In standard optimization problems the
optimization criterion L is static, which is given at the beginning of the optimization
process and is not changed in the course of the optimization and does not depend on
the model Mi to be optimized. Only models Mi are changed in the standard (static)
optimization process:

Maxi∈IL(Mi,E). (17)

In the dynamic logic model optimization problem the criterion L is changing
dynamically with models Mi . MFT shows that this is an effective way to cut down
computational (combinatorial) complexity of finding an optimal model. Since the
focus of MFT approach is in cutting computational complexity (CC) of model
optimization a dual optimization problem can be formulated.

Definition Mapping {M}→{M} is called a learning (adaptation) operator C,

C(Mi,E) = Mi+1,

where E are data andMi≥MuMi+1, Mi≥MgMi+1, this operation represents a cognitive
learning process c of a new model mi+1 from a given model mi and data e. in other
words it is an adaptation of model mi to data e that produce model mi+1.
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Definition Anoptimization problemoffinding a shortest sequenceofmatchedpairs
(Mi, Li) of models Mi and optimization criteria (similarity measures) Li that solves
the optimization problem (4)–(6) for a given data E is called a dual dynamic logic
model optimization (DDLMO) problem, that is finding a sequence of n matching
pairs

(M1,L1), (M2,L2), . . ., (Mn,Ln)

such that
L(Mn,E) = Maxi∈IL(Mi,E).

∀MiLi = F(Mi),C(Mi,E) = Mi+1,Mi ≥Mu Mi+1,Mi ≥Mg Mi+1, Mn = Ma,Ln = La

This means finding a sequence of more specific and certain models for given data
E, matching operator F and learning operator C that maximizes L(Mi, E).

7.6 Monotonicity, Monotone Boolean and K—valued
Functions

We consider a Boolean function f: {0,1}n → {0,1}.

Definition A Boolean function f is a monotone Boolean function if:

∀ vi ≥ vj & ⇒ f(vj) ≥ f(vi).

This means that

∀ (vi ≥ vj & f(vi) = 0) ⇒ f(vj) = 0

∀ (vi ≥ vj & f(vj) = 1) ⇒ f(vi) = 1.

Function f is a non-decreasing decreasing function.
Now we consider fixed E, Mi parameterized by vi and explore interpretation of

L(Mi, E) as f(vi), i.e., L(Mi, E) = f(vi). Let us assume for now that L(Mi, E) has
only two values (unacceptable-0 and acceptable-1). Later on it can be generalized to
a k-value case. If L(Mi, E) is monotone then

∀vi ≥ vj ⇒ L(Mi,E)) ≥ L(Mj,E),
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e.g., if L(M3−1110, E) = L(M2−1100, E) = 0 then

∀ (vi ≥ vj & L(M3−1110,E) = 0) ⇒ L(M2−1100,E) = 0 (18)

∀ (vi ≥ vj & L(M2−1100,E) = 1) ⇒ L(M3−1110,E) = 1 (19)

This means that if a model with more unknown parameters vi failed then a model
with less unknown parameters vj will also fail. In other words, if at higher level of
uncertainty the model in not acceptable L(Mi, E) = 0, then it can not be acceptable
on the lower level of uncertainty, Lj(Mj, E)= 0. If we conclude that a quadratic poly-
nomial model (M2) is not acceptable, L(M2, E) = 0, then a more specific quadratic
model M3 also cannot be acceptable, L(M3, E) = 0. Thus, we do not need to test
model M3. This is an idea how monotonicity can help to decrease computational
complexity. To be able to use this principle of monotonicity in a task we need to
check that it takes place for that task.

In essence, we can use

∀(vi ≥ vj & f(vi) = 0) ⇒ f(vj) = 0

for rejection models and we can use

∀ (vi ≥ vj & f(vj) = 1) ⇒ f(vi) = 1

for confirming models.
In the case ofmodel rejection test for data E themain focus is not quick building a

model but quick rejecting a model M (Popper’s principle). In essence the test L3(M3,
E)= 0means that thewhole class of themodelsM3 with 3 unknown parameters fails.
For testing M3positively for data E we need to find 4 correct parameters. This may
mean searching in a large 4-D parameter space [−100,+100]4 for single vector, say
(p1, p2, p3, p4) = (9, 3, 7, 10), if each parameter varies in the interval [−100, 100].
For rejection we may need only, 4 training vectors (x,y,u) from data E and 3 test
vectors. The first four vectors will allow us to build a quadratic surface in 3-D as
a model. We would just need to test that three test vectors from E do not fit this
quadratic surface.

Definition K-valued function f of n variable f: Un → U is called a monotone k-
valued function if

ui ≥ uj⇒f(ui) ≥ f(uj)

This function can be applied similarly in the case when we have more uncertainty
levels between 0 and 1.
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7.7 Search Process

7.7.1 Search Process in Monotone Functions Terms

In the optimization process we want to keep a track of model rejections and be able
to guide dynamically what model will be tested next to minimize the number of tests.
This is a part of dynamic logic in MFT that we formalize below using the theory of
Monotone Boolean and k-valued Functions. Formulas (a) and (b) are key formulas
to minimize tests, but we need the whole strategy how to minimize the number of
tests and formalize it. One of the ways of formalization is to minimize Shannon
function ϕ [28, 45].

minA∈Amaxf∈F ϕ(f,A),

whereA is a set of algorithms, F is a set ofmonotone functions andϕ(f,A) is a number
of tests that algorithm A does to fully restore function f. Each test means computing
a value f(v) for a particular vector v. In the theory of monotone Boolean functions it
is a assumed that there is an oracle that is able to produce the value f(v), thus each
test is equivalent to a request to the oracle [28, 45, 48, 49]. Minimization of Shannon
function means that we search for the algorithm that needs smallest number of tests
for its worst case (function f that needs maximum number of tests relative to other
functions). This is a classic min-max criterion.

It was proven in [28, 45] that

minA∈Amaxf∈F ϕ(f,A) =
(

n

n/2�

)

+
(

n

(n/2� + 1

)

,


x� is a floor of x (an integer that smaller than x and closest to x).
The proof of this theorem allows us to derive an algorithm based on the struc-

ture called Hansel chains. These chains designed by Hansel cover the whole n-
dimensional binary cube {1,0}n. The steps of the algorithm are presented in detail in
[48]. The main idea of these steps is building Hansel chains, starting from testing his
smallest chains, expanding each tested value using (a) and (b) formulas presented
above and test values that are left not expanded on the same chains then move to
larger chains until no chains left.

In mathematical terms the goal of the search is to find a smallest lower unit v,
i.e., a Boolean vector such that f(v) = 1, and for every w < v f(w) = 0, and for every
u>v |u| > |v|. A less challenging problem could be to find any lower unit of f.

The difference of the approach based on the Hansel chains from traditional one
when individual parameters are added sequentially to the list of certain parameters is
that the simple sequence does not optimize Shannon function, that is it may require
more steps than Hansel chains. Mathematical results are also known for k-valued
monotone functions [42, 43].
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7.7.2 Search in Logic and Probabilistic Terms

The search problem in logic terms can be formulated as a satisfiability problem:
Find a system of axioms Ta such that

La(Ta,E) = 1

subject to the condition

∀TjLa(Ta,E) = Lj(Tj,E) ⇒ Tj ≥Mu Ta,

i.e., if Ta and Tjhave the same similarity with E, La(Ta, E) = Lj(Tj, E), then Ma

should have a lower uncertainty than Tj, e.g., Tj≥MuMa.

If a similarity measure is defined as a probabilistic measure with values in [0,
1] then the probabilistic version of the task of finding system of axioms T for model
A that maximizes a probabilistic similarity measure is:

Maxi∈IL(Mi,E),

where L = F(Mi) and I is a set of models. This task can be further developed by
using Occam principle—to select the simplest model out of two equally appropriate.

7.8 Summary of Formalization

In this section formalization of the concept of the dynamic logic in the terms of
the first order logic, logic model theory and theory of Monotone Boolean functions
has been introduced. It concentrates on the main idea of dynamic logic of matching
levels of uncertainty of the problem/model and levels of uncertainty of the evaluation
criterion used dramatically minimize search for model identification. When a model
becomes more certain then the evaluation criterion is also adjusted dynamically to
match an adjusted model. This dynamic logic process of model construction is likely
mimics a process of a natural evolution.

This section introduced the concepts of partial order on the models with respect
to their uncertainty, generality and simplicity. These concepts are also introduced for
similaritymeasures and examples provided for models andmeasures. Next these par-
tial orders are represented using a set of Boolean parameters. The theory ofmonotone
Boolean functions is used for guiding and visualizing search in the parameter space
in the dynamic logic setting.

The proposed formalization creates a framework for developing specific applica-
tions, that will consist of a sets of models, matching similarity measures, processed
for testing them andmodel learning processed for specific problems in pattern recog-
nition, data mining, optimization, cognitive process modeling and decision making.
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Further theoretical studies may reveal a dipper links with classical optimization
search processes and significantly advance then by adding an extra layer of actual
constructing optimization criteria not only using them.

In the area of logic further theoretical studies may also reveal a dipper links with
classical logic problems such as decidability, completeness and consistency.

In the areas of machine learning further theoretical studies may also reveal a
dipper links with analytical machine learning [63], inductive and probabilistic logic
programming [18, 101], relational machine learning [54], where a priory models
play a critical role in the learning process.

8 Conclusion

This chapter summarizes previous development of physics of the mind, a theory
of cognition based on fundamental principles of the mind operation, and dynamic
logic a mathematical foundation of the physics of the mind that enables to overcome
combinatorial complexity, which has prevented previous developments of cognitive
theories since the 1950s. Mathematical formulations of the fundamental principles
of the mind have been presented including dynamic logic, the knowledge instinct,
mechanisms of concepts, emotions, aesthetic emotions, emotions of the beautiful,
language, the dual model of the interactions between language and cognition, includ-
ing the fundamental role of prosodial emotions in this interaction. Physics of the
mind predicted a number of psychological phenomena, many of which have been
confirmed in experiments.

The chapter concludes with the development of mathematical formalization of
dynamic logic using first order logic, logic model theory, and monotone Boolean
functions that could be used for further mathematical development.
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Fuzzy Arithmetic Type 1 with Horizontal
Membership Functions

Andrzej Piegat and Marek Landowski

Abstract The chapter shortly (because of the volume limitation) presents multidi-
mensional fuzzy arithmetic based on relative-distance-measure (RDM) and horizon-
tal membership functions which considerably facilitate calculations. This arithmetic
will be denoted as MD-RDM-F one. It delivers full, multidimensional problem solu-
tions that further enable determining, in an accurate and unique way, various rep-
resentations of the solutions such as span (maximal uncertainty of the solution),
cardinality distribution of possible solution values, center of gravity of the solution
granule, etc. It also allows for taking into account relations and dependencies exist-
ing between variables, what is absolutely necessary e.g. in calculations with fuzzy
probabilities that always should sum up to 1 or in equation system solving.

Keywords Fuzzy arithmetic · Fuzzy mathematics · Uncertainty theory · Granular
computing · Soft computing

1 Introduction

Fuzzy arithmetic [10–12, 15, 17–19, 25–27, 34] is extension of interval arithmetic
[20, 22–24, 28–32] from calculation on standard intervals to calculation on fuzzy
intervals and fuzzy numbers. This arithmetic is connected with uncertainty theory
[6], soft computing [14], granular computing [25], grey systems [21], etc. It is nec-
essary for solving problems of Computing with Words [37, 38], for solving linear
and nonlinear equations and fuzzy equation systems [1, 2, 5, 7, 8, 13] which occur
in many real problems of economy, engineering, medicine, environmental protec-
tion, etc. [3, 4, 9, 16, 17, 36, 39]. Fuzzy arithmetic has been developed for many
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Fig. 1 Trapezoidal
membership function or a
fuzzy interval

years. There exist many methods of fuzzy arithmetic such as L-R arithmetic [10, 17,
18, 26], fuzzy arithmetic based on discretized fuzzy numbers and Zadeh’s extension
principle, fuzzy arithmetic based on decomposed fuzzy numbers (α-cuts and Moore
interval arithmetic), standard fuzzy arithmetic based on decomposed fuzzy numbers,
advanced fuzzy arithmetic based on transformation method or on extended trans-
formation method [17], constrained fuzzy arithmetic [19] and other. Overview of
many methods can be found in [12, 17, 25]. Simpler types of fuzzy arithmetic (FA)
allow for analytical determining (by hand) of solutions. More complicated methods
determine solutions numerically and require computer application. The fact that new
types of FA have been developed all the time means that existing methods of FA are
not ideal and can be improved. Such improvement proposal in form of MD-RDM-
F arithmetic will be presented in this chapter. Concept of this arithmetic has been
elaborated by A. Piegat. This arithmetic uses horizontal membership functions (hor-
izontal MFs). They were already, introductory presented in [35, 36]. Figure1 shows
a trapezoidal MF (fuzzy interval).

A vertical model (1) of the fuzzy interval from Fig. 1 expresses the dependence
μ = f (x) in the usual way known from literature of fuzzy sets.

μ(x) =
⎧

⎨

⎩

(x − a)/(b − a) for x ∈ [a, b]
1 for x ∈ (b, c]
(d − x)/(d − c) for x ∈ (c, d]

(1)

Formula (1) expresses unique dependence of the “vertical” variable μ from the
“horizontal” variable x . However, a question can be asked: can a “horizontal” model
of MF x = f (μ) be determined? It seems impossible because such dependence
would be not unique and thus it would not be function. However, let us consider
horizontal cut of the MF on level μ, which further on will be called not α-cut but
μ-cut, Fig. 2a.

Variable αx , αx ∈ [0, 1], called RDM-variable [20, 30, 31] determines relative
distance of a point x∗ ∈ [xL(μ), xR(μ)] from the origin of the local coordinate-
system positioned on the left side of MF-cut made on level μ, Fig. 2. Thus, this
variable introduces Cartesian-coordinate-system inside of interval. The left border
xL(μ) and the right border xR(μ) of MF is determined by formula (2).
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(a) (b)

Fig. 2 Visualization of μ-cut (a) and of the horizontal approach to description of membership
functions (b)

Fig. 3 Horizontal
membership function
x = (1 + 2μ) + (4 −
3μ)αx , αx ∈ [0, 1],
corresponding to the
function shown in Fig. 2, as
unique function in 3D-space

xL = a + (b − a)μ, xR = d − (d − c)μ (2)

The left border xL(μ) is transformed into the right border xR(μ) by the RDM-
variable αx . Contour line x(μ, αx ) of constant values of αx is determined by for-
mula (3).

x(μ, αx ) = xL + (xR − xL)αx , αx ∈ [0, 1] (3)

This line is set of points lying at equal relative distance αx from the left bor-
der xL(μ) of MF. Precise form of formula (3) given by formula (4) can be called
horizontal membership function.

x = [a + (b − a)μ] + [(d − a) − μ(d − a + b − c)]αx , αx ∈ [0, 1] (4)

Formula (4) describes function x = f (μ, αx ), which is function of two variables
defined in 3D-space. As Fig. 3 shows, this function is unique.

Because the horizontal function x = f (μ, αx ) defines not one value of variable
x but a set of possible values of this variable corresponding to a given μ-cut level, it
defines an information granule andwill be denoted as xgr . In this chapter the horizon-
tal model (4) for the trapezoidal MF was shown. However, if b = c then model (4)
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describes triangular MF and if a = b and c = d then it describes rectangular MF.
Figure2 presents MF with line borders xL(μ) and xR(μ). However, the borders can
also be nonlinear, e.g. of Gauss-type. To derive formulas for horizontal MF in this
case, nonlinear formulas for the left and right border of theMF should be determined
and inserted in the general formula (2).

2 Basic Operations of MD-RDM-F Arithmetic

Let xgr (μ, αx ) be horizontal MF representing fuzzy interval X and ygr (μ, αy) be
horizontal MF representing fuzzy interval Y , formula (5) and (6).

X : xgr = [ax + (bx − ax )μ] + [(dx − ax ) − μ(dx − cx + bx − ax )]αx , μ, αx ∈ [0, 1]
(5)

Y : ygr = [

ay + (by − ay)μ
] + [

(dy − ay) − μ(dy − cy + by − ay)
]

αy , μ, αy ∈ [0, 1]
(6)

Addition X + Y = Z of two independent intervals

X + Y = Z : xgr (μ, αx ) + ygr (μ, αy) = zgr (μ, αx , αy), μ, αx , αy ∈ [0, 1] (7)

Example: for xgr (μ, αx ) = (1 + 2μ) + (4 − 3μ)αx representing trapezoidal MF
(1, 3, 4, 5) and ygr (μ, αy) = (1 + μ) + (3 − 2μ)αy representingMF (1, 2, 3, 4) the
sum is given by (8).

zgr (μ, αx , αy) = xgr (μ, αx ) + ygr (μ, αy) = (2 + 3μ) + (4 − 3μ)αx + (3 − 2μ)αy,

μ, αx , αy ∈ [0, 1]
(8)

If we are interested in the span s(zgr ) of the 4-D result granule zgr (μ, αx , αy) then
it can be determined with known methods of function examination, formula (9).

s(zgr ) =
[

min
αx ,αy

zgr
(

μ, αx , αy
)

,max
αx ,αy

zgr
(

μ, αx , αy
)

]

(9)

In frame of the function examination its extremes should be found. The extremes
can lie onborders of the functiondomain or inside of it, in zeroingpoints of derivatives
in respect of RDM-variables. Because the addition result function is monotonic,
its extrema lie on the domain borders. Examination of function (8) shows that its
minimum corresponds to αx = αy = 0 and maximum to αx = αy = 1. Thus, the
span of the result granule is finally expressed by formula (10).

s(zgr ) = [2 + 3μ, 9 − 2μ], μ ∈ [0, 1] (10)
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One should noticed that span of the 4D-result zgr (μ, αx , αy) is not the full result
but only 2D-information about the maximal uncertainty of the result. On the basis
of formula (9) determining the full, multidimensional addition result, apart from the
span also other features of the result can be determined, such as cardinality distribu-
tion card(z) of all possible result values, position of center of gravity (xCof G, yCof G),
core position core(z) etc. However, it is not discussed in this chapter because of its
volume limitation.

Subtraction X − Y = Z of two independent intervals

X − Y = Z : xgr (μ, αx ) − ygr (μ, αy) = zgr (μ, αx , αy), μ, αx , αy ∈ [0, 1] (11)

xgr and ygr are determined by general formulas (5) and (6). If xgr (μ, αx ) =
(1 + 2μ) + (4 − 3μ)αx and ygr (μ, αy) = (1 + μ) + (3 − 2μ)αy then the subtrac-
tion result is given by (12).

zgr = xgr − ygr = μ + (4 − 3μ)αx − (3 − 2μ)αy, μ, αx , αy ∈ [0, 1] (12)

If we interested in span s(zgr ) of the 4D-result granule, then it can be determined
from (13). Min(zgr ) corresponds in this formula to αx = 0, αy = 1 and max(zgr ) to
αx = 1, αy = 0.

s(zgr ) =
[

min
αx ,αy

zgr ,max
αx ,αy

zgr
]

= [−3 + 3μ, 4 − 2μ], μ ∈ [0, 1] (13)

Multiplication XY = Z of two independent intervals

XY = Z : xgr (μ, αx )y
gr (μ, αy) = zgr (μ, αx , αy), μ, αx , αy ∈ [0, 1] (14)

xgr and ygr are determined by general formulas (5) and (6). If xgr (μ, αx ) = (1 +
2μ) + (4 − 3μ)αx and ygr (μ, αy) = (1 + μ) + (3 − 2μ)αy then the multiplication
result zgr is given by (15).

zgr = xgr · ygr = [(1 + 2μ) + (4 − 3μ)αx ][(1 + μ) + (3 − 2μ)αy], μ, αx , αy ∈ [0, 1]
(15)

If we are interested in span s(zgr ) of the result, then it is expressed by formula (16),
where min(zgr ) corresponds to αx = αy = 0 and max(zgr ) to αx = αy = 1.

s(zgr ) =
[

min
αx ,αy

zgr ,max
αx ,αy

zgr
]

= [(1 + 2μ)(1 + μ), (5 − μ)(4 − μ)] (16)

Division X/Y of two independent intervals

X/Y = Z : xgr (μ, αx )/y
gr (μ, αy) = zgr (μ, αx , αy), μ, αx , αy ∈ [0, 1], 0 /∈ Y

(17)



238 A. Piegat and M. Landowski

xgr and ygr are determined by general formulas (5) and (6). If xgr (μ, αx ) = (1 +
2μ) + (4 − 3μ)αx and ygr (μ, αy) = (1 + μ) + (3 − 2μ)αy then the division result
zgr is given by (18).

zgr = xgr/ygr

= [(1 + 2μ) + (4 − 3μ)αx ]/[(1 + μ) + (3 − 2μ)αy], μ, αx , αy ∈ [0, 1] (18)

If we are interested in span s(zgr ) of the multidimensional result then it is expressed
by (19).

s(zgr ) =
[

min
αx ,αy

zgr ,max
αx ,αy

zgr
]

= [(1 + 2μ)/(4 − μ), (5 − μ)/(1 + μ)] (19)

3 Some Mathematical Properties of MD-RDM-F
Arithmetic

Commutativity
MD-RDM-F arithmetic is commutative. For any fuzzy intervals X and Y Eqs. (20)
and (21) are true.

X + Y = Y + X (20)

XY + Y X (21)

Associativity
MD-RDM-F arithmetic is associative. For any fuzzy intervals X,Y, Z Eqs. (22)
and (23) are true.

X + (Y + Z) = (X + Y ) + Z (22)

X (Y Z) = (XY )Z (23)

Neutral Elements of Addition and Multiplication
In MD-RDM-F arithmetic there exist additive and multiplicative neutral elements
such as degenerate fuzzy interval 0 and 1 for any interval X , as shown in Eqs. (24)
and (25).

X + 0 = 0 + X = X (24)

X · 1 = 1 · X = X (25)

Inverse Elements in MD-RDM-F Arithmetic
In MD-RDM-F arithmetic an element (fuzzy interval) −X : −xgr = −[a + (b −
a)μ] − [(d − a) − μ(d − a + b − c)]αx , αx ∈ [0, 1] is an additive inverse element
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of fuzzy interval X : xgr = [a + (b − a)μ] + [(d − a) − μ(d − a + b − c)]αx ,
αx ∈ [0, 1]. It is explained by formula (26).

X − X : xgr − xgr = {[a + (b − a)μ] + [(d − a) − μ(d − a + b − c)]αx }
− {[a + (b − a)μ] + [(d − a) − μ(d − a + b − c)]αx } = 0,
μ, αx ∈ [0, 1]

(26)

If parameters of two fuzzy intervals are equal:ax = ay ,bx = by , cx = cy ,dx = dy ,
then interval −Y is only then the additive inverse interval of X when also the
inner RDM-variables are equal, αx = αy , which means full coupling (correlation)
of both uncertain values modeled by the intervals. A multiplicative inverse element
of fuzzy interval X :xgr=[a + (b − a)μ]+[(d − a)−μ(d − a)−μ(d − a + b − c)]
αx , αx ∈ [0, 1], if 0 /∈ X , in MD-RDM-F arithmetic is 1/X : xgr = 1/ =
[a + (b − a)μ] + [(d − a) − μ(d − a) − μ(d − a + b − c)αx , αx ∈ [0, 1]. The
above is explained by formula (27).

X/X : xgr/xgr = {[a + (b − a)μ] + [(d − a) − μ(d − a + b − c)]αx }
/ {[a + (b − a)μ] + [(d − a) − μ(d − a + b − c)]αx } = 1,
μ, αx ∈ [0, 1]

(27)

It should be noted that if parameters of two fuzzy intervals X and Y are equal:
ax = ay , bx = by , cx = cy , dx = dy , then interval 1/Y is the multiplicative inverse
interval of X only when also the inner RDM-variables are equal, αx = αy , which
means full coupling (correlation) of both uncertain values modeled by the intervals.
Full or partial couplings between uncertain variables occur in many real problems.

Sub-distributive Law
The sub-distributive law is given by (28).

X (Y + Z) = XY + X Z (28)

In MD-RDM-F arithmetic this law holds. Proof: for any three fuzzy intervals
described in terms of the RDM horizontal notation,

X : xgr = [ax + (bx − ax )μ] + [(dx − ax ) − μ(dx − ax + bx − cx )]αx , αx ∈ [0, 1]

Y : ygr = [ay + (by − ay)μ] + [(dy − ay) − μ(dy − ay + by − cy)]αy, αy ∈ [0, 1]

Z : zgr = [az + (bz − az)μ] + [(dz − az) − μ(dz − az + bz − cz)]αz, αz ∈ [0, 1]

analysis of the sub-distributive law results in conclusions expressed by (29).
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X (Y + Z) : xgr (ygr + zgr ) =
= {[ax + (bx − ax )μ] + [(dx − ax ) − μ(dx − cx + bx − ax )]αx }
· {[ay + (by − ay)μ] + [(dy − ay) − μ(dy − cy + by − ay)]αy

+[az + (bz − az)μ] + [(dz − az) − μ(dz − cz + bz − az)]αz}
= {[ax + (bx − ax )μ] + [(dx − ax ) − μ(dx − cx + bx − ax )]αx }
· {[ay + (by − ay)μ] + [(dy − ay) − μ(dy − cy + by − ay)]αy}
+ {[ax + (bx − ax )μ] + [(dx − ax ) − μ(dx − cx + bx − ax )]αx }
· {[az + (bz − az)μ] + [(dz − az) − μ(dz − cz + bz − az)]αz}
= xgr ygr + xgr zgr : XY + X Z , μ, αx , αy, αz ∈ [0, 1]

(29)

Because in MD-RDM-F arithmetic the sub-distributive law holds transformations of
equations are admissible because they do not change the result.

Cancellation Law for Addition
Cancellation law (30) for addition of fuzzy intervals holds both for the standard
C-αC-F arithmetic and for MD-RDM-F one.

X + Z = Y + Z ⇒ X = Y (30)

Cancellation Law for Multiplication
This law has form of (31).

X Z = Y Z ⇒ X = Y (31)

Let us assume, for simplicity, three triangle fuzzy numbers: X = (1, 2, 3), Y =
(2, 2.5, 3) and Z = (−1, 0, 1).

The fuzzy numbers are expressed in terms of horizontal MFs (32).

X = {x : x = [ax + (bx − ax )μ] + (dx − ax )(1 − μ)αx , μ, αx ∈ [0, 1]} (32)

Fuzzy numbers X = (1, 2, 3), Y = (2, 2.5, 3), Z = (−1, 0, 1) are expressed
by (33).

X = {x : x = (1 + μ) + 2(1 − μ)αx , μ, αx ∈ [0, 1]}
Y = {y : y = (2 + 0.5μ) + (1 − μ)αy, μ, αy ∈ [0, 1]}
Z = {z : z = (−1 + μ) + 2(1 − μ)αz, μ, αz ∈ [0, 1]}

(33)

Now, particular products can be calculated, (34).

X Z = {xz : xz = [(1 + μ) + 2(1 − μ)αx ][(−1 + μ) + 2(1 − μ)αz]}
Y Z = {yz : yz = [(2 + 0.5μ) + (1 − μ)αy][(−1 + μ) + 2(1 − μ)αz]}
where μ, αx , αy, αz ∈ [0, 1]

(34)

Analysis of products X Z andY Z given by (34) shows that these products are different
because Y �= Z . If necessary, in frame ofMD-RDM-F arithmetic, on the basis of (34)
spans of X Z and Y Z can be calculated, formulas (35) and (36).
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s(X Z) =
[

min
αx ,αz

X Z ,max
αx ,αz

X Z

]

= [(3 − μ)(−1 + μ), (3 − μ)(1 − μ)]
μ, αx , αz ∈ [0, 1]

(35)

Because X Z and Y Z aremonotonic functions, min(X Z) occurs on its domain border
for αx = 1, αy = 0. Max(X Z) occurs for αx = 1, αz = 1. Min(Y Z) occurs for αy =
1 and αz = 0, and max(Y Z) for αy = 1 and αz = 1, αx , αy, αz ∈ [0, 1].

s(Y Z) =
[

min
αy ,αz

Y Z ,max
αy ,αz

Y Z

]

= [(3 − μ)(−1 + μ), (3 − μ)(1 − μ)]
μ, αy, αz ∈ [0, 1]

(36)

As formula (33) shows precise, multidimensional products X Z and Y Z are different.
Only their spans (35) and (36), in this special case, are identical. However, the spans
are not precise multiplication results of the intervals, they only are information about

Fig. 4 3D-projection of the
4D result granule of
multiplication
X Z = (1, 2, 3)(−1, 0, 1) of
two fuzzy numbers from the
full space X Z × μ × X × Z
on the space μ × X × Z

Fig. 5 3D-projection of the
4D result-granule of
multiplication
Y Z = (2, 2.5, 3)(−1, 0, 1)
of two fuzzy numbers from
the full space
Y Z × μ × Y × Z on the
space μ × Y × Z
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Fig. 6 Span function
min s = fL (μ) and
max s = fR(μ) identical for
two different 4D
multiplication results
X Z = (1, 2, 3)(−1, 0, 1)
and Y Z = (2, 2.5, 3)
(−1, 0, 1)

the results. To better understand this on Figs. 4 and 5 were presented 3D-projections
of 4D-products X Z and Y Z . Values of the fourth variable z were shown on this
projections by contour lines of constant z-values. On these figures also cuts were
shown which generate the span function shown in Fig. 6. The span functions s(X Z)

and s(Y Z) are identical in this case. They inform about the span width on particular
μ-levels.

4 Paradox of Hukuhara Difference

Let us assume triangle fuzzy numbers X = (4, 6, 9) and Y = (0, 2, 3). The standard
difference Zs of these numbers has form (37).

Zs = X − Y = (4, 6, 9) − (0, 2, 3) = (4 − 3, 6 − 2, 9 − 0) = (1, 4, 9) (37)

However, equation Zs = X − Y is not equivalent to X = Y + Zs (38).

Y + Zs = (0, 2, 3) + (1, 4, 9) = (1, 6, 12) �= X = (4, 6, 9) (38)

This was the reason of introducing byHukuhara the secondway of interval difference
calculation ZH that is achieved on the basis of equation X = Y + ZH [4, 33], later
called Hukuhara difference (H-difference). Before Hukuhara, this difference had
been developed by Kaucher. Hence, it also can be called Kaucher-difference.

Definition 1 Given X,Y ∈ F , the H-difference ZH of X and Y is defined by
X � Y ⇔ X = Y + ZH : if X � Y exists, it is unique and its μ-cuts are [X − Y ]μ.

Example of H-difference ZH of X and Y is given by (39).

X = Y + ZH = (4, 6, 9) = (0, 2, 3) + (zH1, zH2, zH3)

= (zH1, 2 + zH2, 3 + zH3) : ZH = (4, 4, 6)
(39)

H-difference is frequently used in solving e.g. fuzzy differential equations
[25, 33], but not only. Introducing H-difference in fuzzy arithmetic created a
very strange and paradoxical situation. Now, there exist two different ways of the
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difference calculation: the standard way from equation Zs = X − Y and Hukuhara-
way from equation X = Y + ZH . However, to be on this trail, one could also add
two next ways of the difference calculation: difference Z3 calculated from equation
Y = X − Z3 and difference Z4 calculated from equation X − Y − Z4 = (0, 0, 0)! It
is a paradoxical situation. The paradox of many various differences Z = X − Y
does not exist in MD-RDM-F arithmetic, where only one difference of fuzzy
numbers and intervals exist, and equations Z = X − Y , X = Y + Z , Y = X − Z ,
X − Y − Z = (0, 0, 0) are equivalent! What was said above will now be explained.
Formulas (40) and (41) present horizontal models of fuzzy numbers X = (4, 5, 6)
and Y = (0, 2, 3).

X = {x : x = 4 + 2μ + 5(1 − μ)αx , μ, αx ∈ [0, 1]} (40)

Y = {y : y = 2μ + 3(1 − μ)αy, μ, αy ∈ [0, 1]} (41)

Formula (42) shows their difference Zs = X − Y calculated in terms of MD-
RDM-F arithmetic.

Zs = X − Y
= {zs = x − y : x − y = [4 + 2μ + 5(1 − μ)αx ] − [2μ + 3(1 − μ)αy],
μ, αx , αy ∈ [0, 1]}

(42)

Formula (43) shows H-difference ZH calculated from equation X = Y + ZH .

ZH : X = Y + ZH

= {zH : x = y + zH = [4 + 2μ + 5(1 − μ)αx ] = [2μ + 3(1 − μ)αy] + zH :
zH = [4 + 2μ + 5(1 − μ)αx ] − [2μ + 3(1 − μ)αy], μ, αx , αy ∈ [0, 1]}

(43)
As (43) shows H-difference ZH calculated from equation X = Y + ZH is identi-

cal as the difference Zs calculated in the standard way from equation Zs = X − Y .
Similar results are achieved if the difference Z is calculated from other possi-
ble formulas Y = X − Z or X − Y − Z = (0, 0, 0). It means that in MD-RDM-
F arithmetic all possible equations forms Z = X − Y , X = Y + Z , Y = X − Z ,
X − Y − Z = (0, 0, 0) are equivalent. If we are interested in span s(Z) of the dif-
ference then it can be calculated from (44).

s(Z) =
[

min
αx ,αy

Z ,max
αx ,αy

Z

]

=
[

min
αx ,αy

(4 + (1 − μ)(5αx − 3αy)),max
αx ,αy

(4 + (1 − μ)(5αx − 3αy))

] (44)

Because Z = f (μ, αx , αy) ismonotonic function, its extrema occur on its domain
borders. Examination of this function shows that its minimum occurs for αx = 0,
αy = 1 and the maximum for αx = 1 and αy = 0. Thus, span s(Z) is determined by
formula (45).
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s(Z) = [1 + 3μ, 9 − 5μ] (45)

It shouldbeoncemore reminded that span s(Z)of thedifference Z = f (μ, αx , αy)

is not the difference itself but only a 2D-representation of it.

5 Application Example of Fuzzy RDM-Arithmetic
with Horizontal Membership Functions

Experts have formulated following prognoses of economic growth in a country:
“Strong economic growth (SG) will take place with a medium (M) probability, mod-
erate growth with a less than medium (LM) probability, stabilization of the growth
(ST) will occur with a small probability (S) and recession (R) with a very small (VS)
probability.” Experts are also of the opinion thatM ≥ LM ≥ S ≥ V S independently
of how large are precise values of particular probabilities. Fuzzy definitions of under-
standing linguistic values of growth are given in Fig. 7 and of probability in Fig. 8.

The task consists in determining expected value of the economic growth xgrexp in
multidimensional granular form and its 2D-representation in form of span s(xgrexp) =
f (μ).
Horizontal MFs of particular linguistic values of economic growth are given

by (46) and of probability by (47), αi and β j are RDM-variables.

Fig. 7 Membership
functions of linguistic values
of the economic growth

Fig. 8 Membership values
of linguistic values of
probability
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xR = (−8 + 4μ) + αR(8 − 8μ)

xST = (−4 + 4μ) + αST (8 − 8μ)

xMG = 4μ + αMG(8 − 8μ)

xSG = (4 + 4μ) + αSG(8 − 8μ)

μ, αR, αST , αMG, αSG ∈ [0, 1]

(46)

pV S = [βV S (1 − μ)] /6
pS = [μ + βS (2 − 2μ)] /6
pLM = [(1 + μ) + βLM (2 − 2μ)] /6
pM = [(2 + μ) + βM (2 − 2μ)] /6
μ, βV S, βS, βLM , βM ∈ [0, 1]

(47)

Precise numerical values pV S, pS, pLM , pM are not known. However, it is known
that their values have to sum to 1, condition (48).

pV S + pS + pLM + pM = 1 (48)

Also, experts are of the opinion that between probability values order relations (49)
exist.

pS ≥ pV S, pLM ≥ pS, pM ≥ pLM (49)

After inserting in condition (48) horizontal MFs given by formulas (47) a new
RDM-form (50) of this condition is achieved.

βV S + 2 (βS + βLM + βM) = 3
βV S, βS, βLM , βM ∈ [0, 1] (50)

After inserting in conditions (49) horizontal MFs given by (47) a new RDM-
form (51) of these conditions is achieved.

βV S − 2βS ≤ μ/ (1 − μ)

βS − βLM ≤ 0.5/ (1 − μ)

βLM − βM ≤ 0.5/ (1 − μ)

μ, βV S, βS, βLM , βM ∈ [0, 1]
(51)

Expected value of the economic growth expresses formula (52).

xgrexp = xR pV S + xST pS + xMG pLM + xSG pM (52)

After inserting in (52) horizontal MFs given by (46) and (47) formula (53) has been
achieved. It expresses the granular form of the expected growth value xgrexp with use
of RDM-variables.
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xgrexp = 1/6{[(−8 + 4μ) + αR(8 − 8μ)][βV S (1 − μ)]
+ [(−4 + 4μ) + αST (8 − 8μ)][μ + βS (2 − 2μ)]
+ [4μ + αMG(8 − 8μ)][(1 + μ) + βLM (2 − 2μ)]
+ [(4 + 4μ) + αSG(8 − 8μ)][(2 + μ) + βM (2 − 2μ)]}
μ, αR, αST , αMG, αSG, βV S, βS, βLM , βM ∈ [0, 1]

(53)

Formula (53) shows how simply calculations with horizontal MFs can be made.
They are inserted in mathematical formulas as usual numbers in formulas of the
classic mathematics. Formula (53) defines a multidimensional information granule
xgrexp = f (μ, αR, αST , αMG, αSG, βV S, βS, βLM , βM) or with other words, the full,
multidimensional set of possible values of the expected growth x . They can be gener-
ated only by values of RDM-variables which satisfy conditionμ, αR , αST , αMG , αSG ,
βV S , βS , βLM , βM ∈ [0, 1] and conditions (50), (51). For example, set of RDM-values
αR = αST = αMG = αSG = 1/8 and βV S = βS = βM = 1/3 and βLM = 2/3 satis-
fies the required conditions and generates for the level μ = 0 one of possible growth
value x = 1.9. Another value set of μ, αR, αST , αMG, αSG, βV S, βS, βLM , βM will
generate, in the general case, another value of possible growth x . The set of possi-
ble point-solutions xgrexp = f (μ, αR, αST , αMG, αSG, βV S, βS, βLM , βM) determined
by (53) and conditions (50), (51) creates in the space information granule of irregu-
lar form which is not a hyper-cubicoid. This multidimensional granule is difficult to
imagine. Hence, scientists usually try to determine its simplified 2D-representation
s(xgrexp) called “span” or “spread” being the widest 2D-cut through the solution gran-
ule or its widest 2D-shadow. It is expressed by (54).

s
(

xgrexp
) = [min xgrexp(μ, αR, αST , αMG, αSG, βV S, βS, βLM , βM),

max xgrexp(μ, αR, αST , αMG, αSG, βV S, βS, βLM , βM)]
μ, αR, αST , αMG, αSG, βV S, βS, βLM , βM ∈ [0, 1]

(54)

Values min xgrexp and max xgrexp have to be determined with taking into account condi-
tions (50) and (51). Analysis of (53) allows for detection that min xgrexp occurs only
for αR = αST = αMG = αSG = 0 and max xgrexp for αR = αST = αMG = αSG = 1.
Hence, formula (54) can be simplified to (55).

s
(

xgrexp
) = [min xgrexp(μ, 0, 0, 0, 0, βV S, βS, βLM , βM),

max xgrexp(μ, 1, 1, 1, 1, βV S, βS, βLM , βM)]
μ, βV S, βS, βLM , βM ∈ [0, 1]

(55)

Determining optimal values of RDM-variables βV S, βS, βLM , βM is not always easy
because they are coupled (correlated) by conditions (50) and (51). Determining of
their optimal values can be realized analytically (in this case extremes occur on
borders of the solution domain). However, analytical domain examination for various
levels of membership μ would take too much work. Therefore, an easier way can be
used: numerical examination of the domain with MATLAB for particular variables
μ, βV S, βS, βLM , βM changedwith appropriately small descretization stepΔ ≤ 0.01.
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In the result of such a numerical searching the span-MF has been found as shown
in Fig. 9.

For example, on the membership level μ = 0 the minimal value of x = −1 and
it occurs for αR = αST = αMG = αSG = 0 and βV S = 1, βS = 0.75, βLM = 0.25,
βM = 0 and the maximal value of x = 10.67 and it occurs for αR = αST = αMG =
αSG = 1 andβV S = βS = 0,βLM = 0.5,βM = 1. Another simple 1D-representation
of the solution span can be position of its center of gravity xCoG = 4.96 or position
xμ=1 = 5.33 of the highest membership of the span (Fig. 9) and of the solution gran-
ule xgrexp. However, one should always realize that a simplified representation of the
solution is not the solution itself and that without the full-dimensional solution set
xgrexp it is not possible (in the general case) to precisely determine solution representa-
tions. Figure10 shows span s(xgrexp) of the solution granule x

gr
exp determined without

constraint conditions (50) and (51).
One can see (compare supports in Figs. 9 and 10) that uncertainty of the span

s(xgrexp) determined without taking into account constraint conditions (50) and (51) is
greater thanwhen these conditions are taken into account (forμ = 0 supports’ widths
are correspondingly equal to 14.66 and 11.67). Thus, application of RDM-variables
allow for decreasing of solutions uncertainty because they allow for modeling and
taking into account dependences existing between variables occurring in problems.

Fig. 9 Membership function
of the span s(xgrexp) of the
multidimensional solution
granule xgrexp of the expected
economic growth x[%]
achieved with taking into
account constraint
conditions (50) and (51),
CoG—center of gravity
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Fig. 10 Membership
function of the span s(xgrexp)
of the multidimensional
solution granule xgrexp of the
expected economic growth
x[%] achieved without
taking into account
constraint conditions (50)
and (51)
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6 Conclusions

The paper shows how in terms ofMD-RDM-F arithmetic basic operations as addition
subtraction, multiplication and division should be carried out. It also shows certain
significant properties of this arithmetic.Arithmetic operations are carried outwith use
of horizontalMFs, in an easyway, without the extension principle. NewMD-RDM-F
arithmetic has many advantages. Not all of them could be presented in this chapter
because of its volume limitation. MD-RDM-F arithmetic delivers full-dimensional,
precise problems’ solutions that are multidimensional information granules.Without
possessing this full-dimensional solution one cannot precisely and uniquely deter-
mine the solution span that is measure of the solution uncertainty. Instead, the span
is what standard methods of fuzzy arithmetic try directly to determine. Unfortu-
nately, in the general case it is not possible. Therefore the present fuzzy arithmetic
is characterized by many paradoxes, as e.g. paradox of Hukuhara difference. On
the basis of the full-dimensional solution achieved with MD-RDM-F arithmetic not
only precise and unique solution span can be determined but also other solution rep-
resentations as 2D cardinality distribution of all possible solutions, the core of the
solution, center of gravity (CofG) of the solution, etc. MD-RDM-F arithmetic has
such important mathematical properties as inverse additive element, inverse multi-
plicative element. In this arithmetic hold such very important laws as sub-distributive
law X (Y + Z) = XY + X Z and cancellation law I F(X Z = Y Z)T HEN (X = Y ).
With use ofMD-RDM-Farithmetic both linear and nonlinearmultidimensional equa-
tions and equation systems can relatively easily be solved. In solving them very help-
ful are RDM-variables that allow for taking into account couplings existing between
particular intervals. These possibilities will be shown in next publications of authors.
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Copula as a Bridge Between Probability
Theory and Fuzzy Logic

Germano Resconi and Boris Kovalerchuk

Abstract This work shows how dependence in many-valued logic and probability
theory can be fused into one concept by using copulas and marginal probabilities. It
also shows that the t-norm concept used in fuzzy logic is covered by this approach.
This leads to a more general statement that axiomatic probability theory covers logic
structure of fuzzy logic. This paper shows the benefits of using structures that go
beyond the simple concepts of classical logic and set theory for the modeling of
dependences.

1 Introduction

Modern approaches for modeling uncertainty include Probability Theory (PT),
Many-Valued Logic (MVL), Fuzzy Logic (FL), and others. PT is more connected
with the classical set theory, classical propositional logic, and FL is more connected
with fuzzy sets and MVL. The link of the concept of probability with the classical
set theory and classical propositional logic is relatively straightforward for the case
of a single variable that is based on the use of set operations and logic propositions.
In contrast, modeling joint probability for multiple variables is more challenging
because it involves complex relations and dependencies between variables. One of
the goals of this work is to clarify the logical structure of a joint probability for
multiple variables. Another goal is to clarify links between different logics and joint
probability for multiple variables.

Differences between concepts of probability, fuzzy sets, possibility and other
uncertainty measures have been studied for a long time [1]. Recently several new
attempts have been made to connect the concepts of probability, possibility, and
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fuzzy logic into a single theory. Dubois, Prade and others [2–7] discuss conditional
probability and subjective probability as a mixed concept that includes both fuzzy
and probability concepts.

In [8–11] we proposed the Agent-based Uncertainty Theory (AUT) with a model
for fuzzy logic and many-valued logic that involves agents and conflicts among
agents. Later we extended AUT, providing a more formal description of uncertainty
as the conflict process among agents with the introduction of a: new concept denoted
as an active set [12]. This agent-based approach to uncertainty has a connection with
the recent works in the theory of team semantics [13], and dependence/independence
logic [13, 14].

The dependence logic [13–21] assumes that the logic truth value of a particular
proposition depends on the truth value of other propositions. Dependence logic is
based on team semantics, in which the truth of formulas is evaluated in sets of
assignments provided by a team, instead of single assignments, which is common
in the classical propositional logic, which is truth functional. The basic idea of
dependence logic is that certain properties of sets cannot be expressed merely in terms
of properties satisfied by each set individually. This situation is more complex than
that which is considered in the classical logic approach. It is closer to the agent-based
uncertainty theory [8], and the active sets [12] that deal with the sets of assignments,
generated by teams of agents, which can conflict and produce uncertainty of the truth
value, leading to a many-valued logic. Dependence logic is a special type of the first
order predicate logic. While the goal to go beyond truth-functionality is quite old
in fuzzy logic [22] and the dependence logic is not the first attempt outside of the
fuzzy logic, the major issue is that to reach this goal in practice we need more data
than truth-functional algorithms use. The current survey of attempts to go beyond
truth-functionality is presented in [23].

In PT and statistics, a copula is a multivariate probability distribution function
for “normalized” variables [24]. In other words, copula is a multivariate composi-
tion of marginal probabilities. The copula values represent degrees of dependence
among values of these variables when the variables are “cleared” from differences in
scales and frequencies of their occurrence. This “clearing” is done by “normalizing”
arguments of copula to uniform distributions in [0, 1] interval.

Quite often the probabilistic approach is applied to study the frequency of indepen-
dent phenomena. In the case of dependent variables, we cannot derive a joint proba-
bility p(x1, x2) as a product of independent probabilities, p(x1)p(x2) and must use
the multidimensional probability distribution with dependent valuables. The com-
mon technique for modeling it is a Bayesian network. In the Bayesian approach, the
evidence about the true state of the world is expressed in terms of degrees of belief
in the form of Bayesian conditional probabilities. These probabilities can be causal
or just correlational.

In the probability theory, the conditional probability is the main element to express
the dependence or inseparability of the two states x1 and x2. The joint probability
p(x1, x2, . . ., xn) is represented via multiple conditional probabilities to express the
dependence between variables. The copula approach introduces a single function
c(u1, u2) denoted as density of copula [25] as a way to model the dependence or
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inseparability of the variables with the following property in the case of two vari-
ables. The copula allows representing the joint probability p(x1, x2) as a combina-
tion (product) of single dependent part c(u1, u2) and independent parts: probabilities
p1(x1) and p2(x2).

It is important to note that probabilities p1(x1) and p2(x2) belong to two different
pdfs which is expressed by their indexes in p1 and p2. Below to simplify notation
we will omit these indexes in similar formulas.

The investigation of copulas and their applications is a rather recent subject of
mathematics. From one point of view, copulas are functions that join or ’couple’ one-
dimensional distribution functions u1 and u2 and the corresponding joint distribution
function.

Copulas are of interest not only in probability theory and statistics, but also in many
other fields requiring the aggregation of incoming data, such as multi-criteria decision
making [26], and probabilistic metric spaces [27, 28]. Associative copulas are special
continuous triangular norms (t-norms for short, [29, 30]). They are studied in several
domains such as many-valued logic [31], fuzzy logic and sets [32], agent-based
uncertainty theory and active sets, along with t-conorms to model the uncertainty.

2 Copula: Notation, Definitions, Properties, and Examples

2.1 Notation, Definitions and Properties

Definitions and properties below are based on [24, 33–36].
A joint probability distribution is

p(x1x2, . . .xn) =
p(x1)p(x2|x1)p(x3|x1, x2). . .p(xn|x1, x2, . . . , xn−1).

A function c(u1, u2) is a density of copula for p(x1, x2) if

p(x1, x2) = c(u1u2)p(x1)p(x2) = p(x1)p(x2|x1)

where u1 and u2 are inverse functions,

du1(x1)

dx1
= p(x1), u1(x1) =

x1∫

−∞
p(s)ds,

du2(x2)

dx2
= p(x2), u2(x2) =

x2∫

−∞
p(r)dr
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To simplify notation of u1(x1), u2(x2), . . ., un(xn) sometimes we will write u1,
u2, . . ., un omitting arguments.

A cumulative function C(u1(x1), u2(x2)) with inverse functions ui as arguments
is called a copula and its derivative c(u1, u2) is called a density of copula:

C(u1(x1), u2(x2)) =
x1∫

−∞

x2∫

−∞
c(u1(s), u2(r)p(s)p(r)dsdr =

=
x1∫

−∞

x2∫

−∞
c(u1(s), u2(r)du1(s)du2(r)

c(u1, u2) = ∂2C(u1,u2)
∂u1∂u2

Copula properties for 2-D case:

p(x1)p(x2|x1) = ∂2C(u1, u2)

∂u1∂u2
p(x1)p(x2)

p(x2|x1) = ∂2C(u1, u2)

∂u1∂u2
p(x2)

,

Copula properties for 3-D case:
Joint density function:

p(x1, x2, xn) = p(x1)p(x2|x1)p(x3|x1, x2) =
c(u1, u2, u3)p(x1)p(x2)p(x3)

Copula, copula density, joint and conditional probabilities.
Below in c(u1, u2, u3) we omitted arguments s1, s2, s3 of u1, u2, u3 for simplicity.

C(u1(x1), u2(x2), u3(x3)) =
x1∫

−∞

x2∫

−∞

x3∫

−∞
p(s1, s2, s3)ds1ds2ds3 =

x1∫

−∞

x2∫

−∞

x3∫

−∞
c(u1, u2, u3)p(s1)p(s2)p(s3)ds1ds2ds3 =

x1∫

−∞

x2∫

−∞

x3∫

−∞
p(s1)p(s2|s1)p(s3|s1, s2)ds1ds2ds3

p(x1) = du1

dx1
, p(x2) = du2

dx2
, p(x3) = du3

dx2



Copula as a Bridge Between Probability Theory and Fuzzy Logic 255

C(u1, u2, u3) =
x1∫

−∞

x2∫

−∞

x3∫

−∞
c(u1, u2, u3)p(s1)p(s2)p(s3)ds1ds2ds3

c(u1, u2, u3) = ∂3C(u1, u2, u3)

∂u1∂u2∂u3

p(x1, x2, xn) = p(x1)p(x2|x1)p(x3|x1, x2) =
∂3C(u1, u2, u3)

∂u1∂u2∂u3
p(x1)p(x2)p(x3)

p(x2|x1)p(x3|x1, x2) = ∂2C(u1, u2, u3)

∂u1∂u2
p(x2)p(x3|x1, x2) =

∂3C(u1, u2, u3)

∂u1∂u2∂u3
p(x2)p(x3)

∂2C(u1, u2, u3)

∂u1∂u2
p(x3|x1, x2) = ∂3C(u1, u2, u3)

∂u1∂u2∂u3
p(x3)

p(x3|x1, x2) = ∂3C(u1, u2, u3)

∂u1∂u2∂u3

1
∂2C(u1,u2,u3)

∂u1∂u2

p(x3)

Copula properties and definitions for general n-D case:

p(xn|x1, x2, . . . , xn−1) =
= ∂nC(u1, u2, . . . , un)

∂u1, . . . , ∂un

1

∂n−1C(u1, u2, . . . , un)

∂u1, . . . , ∂un−1

p(xn)

Conditional copula:

c(xn|x1, x2, . . . , xn−1) =
= ∂nC(u1, u2, . . . , un)

∂u1, . . . , ∂un

1

∂n−1C(u1, u2, . . . , un)

∂u1, . . . , ∂un−1

Density of copula:

∂nC(u1, u2, . . . , un)

∂u1, . . . , ∂un
= c(u1, u2, . . . , un)
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2.2 Examples

When u(x) is a marginal probability Fi(x), u(x) = Fi (x) and u is uniformly dis-
tributed, then the inverse function x(u) is not uniformly distributed, but has values
concentrated in the central part as in the Gaussian distribution. The inverse process
is represented graphically in Figs. 1 and 2.

Consider another example where a joint probability density function p is defined
in the two dimensional interval [0, 2]×[0, 1] as follows,

p(x, y) = x + y

3

Then the cumulative function in this interval is

C(x, y) =
x

∫

−∞

y
∫

−∞
p(s, r)dsdr =

x
∫

−∞

y
∫

−∞

s + r

3
dsdr = xy(x + y)

6
(1)

Next we change the reference (x, y) into the reference (u1, u2). For

p(x1) = du1

dx1
, p(x2) = du2

dx2

Fig. 1 Relation between
marginal probability Fi(x)
and the random variable x
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Fig. 2 Symmetric joint probability and copula

and use the marginal probabilities

u1(x) =
∫ x

−∞
p(s)ds, u2(y) =

∫ y

−∞
p(r)dr

to get

u1(x) = C(x, 1) = x(x + 1)

6
, x ∈ [0, 2]

u2 = C(2, y) = y(y + 2)

6
y ∈ [0, 1]

This allows us to compute the inverse function to identify the variables x and y
as functions of the marginal functions u1 and u2:

x(u1) =
√

1 + 24u1 − 1

2
y(u2) = √

1 + 3u2 − 1

Then these values are used to compute the copula C in function (1),
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C(u1, u2) =
√

1 + 24u1 − 1

2
(
√

1 + 3u2 − 1)

√
1 + 24u1 − 1

2
+ (

√
1 + 3u2 − 1)

6

=
√

1 + 24u1 − 1

2
(
√

1 + 3u2 − 1)

√
1 + 24u1 − 1

2
+ (

√
1 + 3u2 − 1)

6

(2)

3 Approach

3.1 Meaning of Copulas

The main idea of the copula approach is transforming a multivariate probability
distribution F(x1, x2, . . ., xn) into a “normalized” multivariate distribution called
a copula. The normalization includes transforming each of its arguments xi into
the [0, 1] interval and transforming the marginal distributions Fi(xi) into uniform
distributions. The main result of the copula approach (Sklar’s Theorem [24, 35, 36])
is the basis for this. It splits modeling the marginal distributions Fi(x) from the
modeling of the dependence structure that is presented by a normalized multivariate
distribution (copula).

What is benefit of splitting? The copula is invariant under a strictly increasing
transformation. Thus variability of copulas is less than the variability of n-D prob-
ability distributions. Therefore the selection of the copula can be simpler than the
selection of a generic n-D probability distribution.

Next building a multivariate probability distribution, using the copula, is relatively
simple in two steps [37, 38]:

(1) Selecting the univariate margins by transforming each of the one-factor distri-
butions to be a uniform by setting ui = Fi(xi) where the random variable ui is
from [0, 1].

(2) Selecting a copula connecting them by using the formula (3).

C(u1, u2, . . . , un) = F−1(F−1
1 (u1), F−1

2 (u2), . . . , F−1
n (un)) (3)

These selections are done by using available data and a collection of parametric
models for the margins Fi(xi) and the copula to fit the margins and the copula
parameters with that data.

Next the property
∂nC(u1, u2, . . . , un)

∂u1, . . . , ∂un
= c(u1, u2, . . . , un) is used to produce

pdf

p(x1, x2, . . ., xn) = c(u1, u2, . . ., un)p(x1)p(x2). . .p(xn)
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where c is a copula density. Another positive aspect of using copulas is the abilities
to generate a significant number of samples of n-D vectors that satisfy the copula
probability distribution. After a copula in a “good” analytical form is approximated
from the limited given data, a copula distribution can be simulated to generate more
samples of data distributed according to it.

This is a known practical value of copulas. Does it ensure the quality/value of
the produced multivariate distribution? It is noted in [24] that copulas have limited
capabilities for constructing useful and well–understood multivariate pdfs, and much
less for multivariate stochastic processes, quoting [39]: “Religious Copularians have
unshakable faith in the value of transforming a multivariate distribution to its copula”.
These authors expect future techniques that will go beyond copulas. Arguments of
heated discussions on copulas can be found in [40]. The question “which copula to
use?” has no obvious answer [24]. This discussion reminds us a similar discussion
in the fuzzy logic community on justification of t-norms in fuzzy logic.

3.2 Concept of NTF-Logical Dependence

Dependences traditionally are modeled by two distinct types of techniques based
on the probability theory or logic (classical and/or many-valued). It is commonly
assumed that dependencies are either stochastic or non-stochastic. Respectively it is
assumed that if the dependence is not stochastic then it must be modeled by methods
based on the classical and many-valued logic not by methods based on the probability
theory.

This is an unfortunate and too narrow interpretation of probabilistic methods.
In fact Kolmogorov’s measures (K-measures) from the probability theory allow
modeling both stochastic and non-stochastic “logical” dependencies (both classical
and multi-valued). The basis for this is simply considering these measures as gen-
eral measures of dependence, not as the frequency-based valuations of dependence.
For instance, we can measure the dependence between two circles by computing a
ratio S/T, where S is the area of their overlap and T is the total area of two circles.
This ratio satisfies all of Kolmogorov’s axioms of the probability theory, which is
a “deterministic” method to measure the dependence in this example without any
frequency.

Moreover, many dependencies are a mixture of stochastic and non-stochastic com-
ponents. These dependencies also can be modeled by K-measures. Below we show
this. Consider a dependency that is a mixture of stochastic and non-stochastic com-
ponents. We start from a frequency-based joint probability distribution F(x1, . . ., xn)
and extract from it a dependence that is not a stochastic dependence, but is a “logi-
cal”, “deterministic” dependence. How do we define a logical dependence?

We will call dependence between variables x1, . . ., xn a Non-Truth-Functional
Logical Dependence (NTF-logical dependence) if it is derived from F , but does not
depend on the frequencies of occurrence of x1, . . ., xn.
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Fig. 3 Asymmetric joint probability and symmetric copula

How do we capture this logical dependence? We use a copula approach outlined
above. First we convert (normalize) all marginal distributions Fi(xi) of F to uniform
distributions u1, . . ., un in [0, 1]. This will “eliminate” the dependence from fre-
quencies of variables and differences in scales of variables. Next we build a copula:
dependence C between u1, . . ., un, C: {(u1, . . ., un)} →[0, 1].

Figure 3 illustrates the difference between two dependencies. The first one is
captured by F and the second one is captured by C . Copula C tells us that the logical
dependence between x1 and x2 is symmetric, but differences in frequencies make the
dependence asymmetric that is captured by F .

A similar idea is used in machine learning and data mining for discovering depen-
dencies in data with imbalanced classes. For instance, in cancer diagnostics we can
get many thousands of benign training cases and fortunately a much less number of
malignant training cases. The actual discovery of the dependency (diagnostic rule)
is conducted by selecting a similar number of training cases from both classes [41]
which can be done by “normalizing” the marginal distributions of training data to
the uniform distributions in each class in a coordinated way.

If F is not based on the frequencies then the interpretation of the marginal distrib-
utions is not that obvious. We still can formally convert marginal distributions Fi(xi)
to uniform distributions and analyze two distributions F and C . In this case both dis-
tributions can be considered as logical dependencies. Here the copula will indicate
dependence where some properties F are eliminated (lost). The usefulness of such
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elimination must be justified in each particular task. In essence we should show that
eliminated properties are not about the mutual dependence of the variables, but are
about other aspects of the variables, or even completely irrelevant, insignificant or
“noise”.

Note that the defined logical dependence is not expressed in the traditional logic
form, e.g., as a propositional or first order logic expression, but as a copula, that is a
specialized probability distribution. In fact, the copula corresponds to a set of logical
expressions

{(x1 = a1)&(x2 = a2)&. . .&(xn = an) with probability c(x1, x2, . . ., xn)}

where c is a copula density.
The interpretation of copula as NTF-dependence is one of the key new points of

this work showing how dependence in many-valued logic and probability theory can
be fused in one concept by using copulas and marginal probabilities to clarify the
relations between PT, FL and MVL. The next sections elaborate this approach.

3.3 Copula and Conditional Probability

Conditional probabilities capture some aspects of dependence between variables that
include both frequency-based and logic based aspects. The relations between copula
density and conditional probability are as follows as has been shown in Sect. 2:

p(x2|x1) = c(u1, u2)p(x2) p(x1|x2) = c(u1, u2)p(x1)
p(x2|x1)/p(x2) = c(u1, u2) p(x1|x2)/p(x1) = c(u1, u2)

This shows that copula density as a “frequency-free” dependence can be obtained
from frequency-dependent conditional probabilities p(x1|x2) by “normalizing” it.
We also can see that

p(x2|x1) ≤ c(u1, u2)

p(x1|x2) ≤ c(u1, u2)

because p(x2) ≤ 1. In other words, frequency-free measure of dependence is no
less than max of conditional probabilities:

max(p(x1|x2), p(x2|x1)) ≤ c(u1, u2)

In a logical form copula density represents a measure c(u1, u2) of dependence for
the conjunction,

(x1 = a1) & (x2 = a2)
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In contrast the conditional probabilities p(x1|x2) and p(x2|x1) represent measures
of dependence for the implications:

(x1 = a1) ⇒ (x2 = a2), (x2 = a2) ⇒ (x1 = a1).

In a general case the relation between conditional probability and copula involves
conditional density of copula as shown in Sect. 2.

p(xn|x1, . . . , xn−1) = c(xn|x1, . . . , xn−1)p(xn)

This conditional density of copula also represents a frequency-free dependence
measure.

3.4 Copulas, t-norms and Fuzzy Logic

Many copulas are t-norms [42], which are the basis of many-valued logics and
fuzzy logic [31, 32]. Many-valued logics, classical logic, and fuzzy logic are truth-
functional: “…the truth of a compound sentence is determined by the truth values of
its component sentences (and so remains unaffected, when one of its component sen-
tences is replaced by another sentence with the same truth value)” [31]. Only in very
specific and simple for modeling cases, probabilities and copulas are made truth-
functional. This is a major difference from t-norms that are truth-functional. The
impact of the truth functionality on fuzzy logic is shown in the Bellman-Giertz the-
orem [43]. Probability theory, fuzzy logic and many-values logics all used t-norms,
but not in the same way.

The concept of copula and t-norm are not identical. Not every copula is a
t-norm [42] and only t-norms that satisfy the 1-Lipschitz condition are copu-
las [44]. Equating t-norms with copulas would be equating truth-functional fuzzy
logic with probability theory that is not truth-functional. A joint probability den-
sity p(x1, x2) in general cannot be made a function of only p(x1) and p(x2). A
copula density or a conditional probability is required in addition due to properties
p(x1, x2) = c(x1, x2) p(x1)p(x1) and p(x1, x2) = p(x1|x2)p(x2). In this sense the
probability theory is more general than fuzzy logic, because it covers both truth-
functional and non-truth functional dependences. Thus, in some sense fuzzy logic
with t-norms represents the “logic of independence”. On the other side, the copula
gives a probabilistic interpretation of the fuzzy logic t-norms as well as interpretation
of fuzzy logic theory as a many-valued logic.

Postulating a t-norm is another important aspect of the differences in the usage
of copulas in FL and PT. In FL and possibility theory, a t-norm, e.g., min(x1, x2) is
often postulated as a “universal” one for multiple data sets, without the empirical
justification for specific data.

In PT according to Sklar’s Theorem [24, 35, 36], the copula C(u1, . . . , un) is
specific/unique for each probability distribution F with uniform marginals. If this
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copula happened to be a t-norm, then it is a unique t-norm, and is also specific for
that probability distribution.

This important difference was also pointed out in [45]: “In contrast to fuzzy
techniques, where the same “and”-operation (t-norm) is applied for combining all
pieces of information, the vine copulas allow the use of different “and”-operations
(copulas) to combine information about different variables.” Note that the copula
approach not only allows different “and”-operations but it will actually get different
“and”-operations when underlying joint probability distributions differ. Only for
identical distributions the same “and”-operations can be expected.

The t-norm min(x1, x2) is a dominant t-norm in FL and possibility theory. This
t-norm is known in the copula theory as a comonotonicity copula [46]. It satisfies a
property

P(U1 ≤ u1, . . ., Ud ≤ ud) = P(U ≤ min{u1, . . ., ud}) = min{u1, . . ., ud}, u1, . . ., ud ∈ [0, 1]

where a single random uniformly distributed variable U ∼ U[0, 1] produced the
random vector (U1, . . ., Ud) ∈ [0, 1]d. The variables of the comonotonicity copula
are called comonotonic or perfectly positively dependent variables [47].

3.5 Forms of Dependence Based on Common Cause and
Direct Interaction

Forms of dependence. Dependence can take multiple forms. One of them is depen-
dence with common source/cause, i.e., a third object S is a cause of the dependence
between A and B. We will call it as third-party dependence. In dancing music, S
serves as the third party that synchronizes dancers A and B. In physics such a type of
dependence is often apparent in synchronization of events, e.g., in laser photon syn-
chronization the source for the photon synchronization is interaction of the photons
in a crystal.

Technically the dependencies between A and B in these cases can be discov-
ered by using the correlation methods, which includes computing the copulas and
the conditional probabilities p(A|B), p(B|A). However, correlation methods do not
uncover the type of dependency, namely third-party dependence or dependence as a
result of direct local interaction of objects A and B. The last one is a main type of
laws in the classical physics.

Historically correlation based dependencies (e.g., Kepler’s laws) were augmented
later by more causal laws (e.g., Newton’s laws). It was done via accumulation of more
knowledge in the physics area and much less by more sophisticated mathematical
methods for discovering the causal dependencies. This is an apparent now in con-
structing Bayesian networks (BN) where causal links are mostly built manually by
experts in the respective field. Links build by discovering correlations in data are still
may or may not be causal.



264 G. Resconi and B. Kovalerchuk

4 Physics and Expanding Uncertainty Modeling
Approaches

This section provides physics arguments for expanding uncertainty modeling
approaches beyond current probability theory and classical and non-classical log-
ics to deal with dependent/related evens under uncertainty. After that we propose a
way of expanding uncertainty modeling approaches. The first argument for expan-
sion is from the area of duality of particles and waves and the second one is from the
area of Bell’s inequality [48, 49]. The dependencies studied in the classical physics
can be described using the classical logic and the classical set theory.

Logic operates with true/false values assigned to states of particles. To establish
the true state of a particle without involving fields it is sufficient to know the state
of the individual particle without considering all the others particles. In this sense
particles are independent one from the others. In this sense the classical logic and
the associated set theory are the conceptual instruments to study classical physics.
In quantum physics with the “entanglement” the states of all particles are “glued” in
one global entity where any particle is sensitive or dependent to all the others. In this
sense the information of any individual particle (local information) is not sufficient to
know the state of the particle. We must know the state of all the other particles (global
information) to know the state of one particle. The physical phenomena that are
studied in the quantum physics have more complex (non-local) dependencies where
one physical phenomenon is under the influence of all the other phenomena both local
and non-local. These dependencies have both stochastic probabilistic component
(that can be expressed by a joint probability) and a logic component that we express
by copula.

4.1 Beyond Propositional Logic and Probability Theory

Particles and waves are classically considered as distinct and incompatible concepts
because particles are localized and waves are not [50]. In other words, particles
interact locally or have local not global dependence, but waves interact non-locally
possibly with all particles of its media [51]. The classical propositional logic and set
theory have no tools to deal with this issue and new mechanisms are needed to deal
with it. The global dependence (interaction with non-local elements of the media)
is a property of the structure of the media (whole system). Feynman suggested a
concept of the negative probability that later was developed by Suppes and others
[51–54] to address such issues.

Limitations of probability theory. Kolmogorov’s axioms of PT deal only with
one type of dependence: dependence of sets elementary events in the form of their
overlap that is presence of the common elements in subsets. This is reflected in the
formula for probability of the union A ∪ B:
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p(A ∪ B) = p(A) + p(B) − p(A ∩ B).

where dependence is captured by computing p(A ∩ B) and subtracting it to get
p(A ∪ B).

While capturing overlap is a huge advantage of PT over truth-functional logics
(including fuzzy logic and possibility theory) that do not take into account overlap
A ∩ B. However, axioms of the probability theory do not include other depen-
dencies. In fact, PT assumes independence of each elementary event from other
elementary events, requiring their overlap to be empty, ea ∩ eb = ∅.

What are the options to deal with the restriction of the probability theory in the
tasks where more dependencies must be taken into account?

We have two options:

• The first option is to choose other elementary events that will be really independent.
• The second one is incorporating relations into a new theory.

The first option has difficulty in quantum physics. Particles are dependent and
cannot serve as independent elementary events. This creates difficulties for building
a classical probabilistic theory of particles. Next, at a particular time, we simply may
have no other candidates for elementary events that would be more elementary than
particles.

Generalization of Probability The previous analysis shows that we need to
explore the second option: adding relations between elementary events and their
sets. Below we propose a generalization of the probability for dependent events that
we call relation-aware probability.

Let {R+
i (A, B)} be a set of “positive relations” and {R−

j (A, B)} be a set of
“negative relations” between sets A and B. Positive relations increase probability
p(A ∪ B) and negative relations decreases probability p(A ∪ B).

Next we introduce probability for relations {p(R+
i (A, B))}, {p(R−

j (A, B))} and
define the relation-aware probability of the union:

p (A ∪ B) = p (A) + p (B) +
n

∑

i=1

p(R+
i (A, B)) −

m
∑

j

p(R−
j (A, B))

The classical formula

p (A ∪ B) = p (A) + p (B) − p(A ∩ B)

is a special case of this probability with the empty set of positive relations and with
a single negative relation, R (A, B) ≡ A ∩ B = ∅ that is intersection of A and B is
not empty. A negative relation can work as “annihilator”. A positive relation between
A and B can work as a catalyst to increase A or B. For instance, we can get

p (A ∪ B) = p (A) + p (B) + 0.2p (A) + 0.1p(B) − p(A ∩ B).
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As a result, the relation-aware probability space can differ from Kolmogorov’s prob-
ability space having the more complex additivity axioms.

Another potential approach is associated with changing the classical logic into
logics that allow conflicts, e.g., fuzzy logic, agent model of uncertainty [8], and
active sets [12]. This will make the paradox more apparent due to abilities to embed
the conflict via gradual measures of uncertainty such as known in fuzzy logic, and
many-valued logic.

4.2 Beyond the Set Theory: Bell Inequality

Consider sets S1-S8 formed by three circles A, B and C as shown in Fig. 4, e.g.,
S1 = A ∩ B ∩ C and S8 = AC ∩ BC ∩ CC for complements of A, B and C. These sets
have the following classical set theory properties that include the Bell’s inequality

(A ∩ BC) ∪ (B ∩ CC) = S1 ∪ S7 ∪ S4 ∪ S6

A ∩ CC = S7 ∪ S4

A ∩ CC ⊆ (A ∩ BC) ∪ (B ∩ CC)
∣

∣A ∩ CC
∣

∣ ≤ ∣

∣(A ∩ BC) ∪ (B ∩ CC)
∣

∣

Next consider the correlated (dependent) events, for instance we can have an
event with the property A, and another event with a negated property AC. This is a
type of dependence that takes place for particles. Consider an event with property
A ∩ CC that is with both properties A and CC at the same time. We cannot measure
the two properties by using one instrument at the same time, but we can use the
correlation to measure the second property, if the two properties are correlated. We
can also view an event with property A ∩ CC as two events: event e1 with property
A and e2 with the property C in the opposite state (negated). The number of pairs
of events (e1, e2) is the same as the number of events with the superposition of A
and CC , A ∩ CC . In [49] d’Espagnat explains the connection between the set theory

Fig. 4 Set theory
intersections or elements

S1 

A
B

C

S2 

S6 

S5 

S4 

S3 

S7 

S8 
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and Bell’s inequality. It is known that the Bell’s inequality that gives us the reality
condition is violated [48].

How to reconcile the logic Bell’s inequality and its violation in physics? The Bell
inequality is based on the classical set theory that is consistent with the classical
logic.

The set theory assumes empty overlap (as a form of independence) of elementary
units. For dependent events the Bell’s inequality does not hold. Thus the logic of
dependence (logic of dependent events) must differ from the logic of independence
(logic of independent events) to resolve this inconsistence. It means that we should
use a theory that is beyond the classical set theory or at least use the classical set
theory differently. The dependence logic [14, 15] is one of the attempts to deal with
these issues.

4.3 Dependence and Independence in the Double Slit
Experiment

The double slit experiment involves an electron gun that emits electrons through
a double slit to the observation screen [55, 56]. Figure 5 [51] shows theoretical
result of the double slit experiment when only the set theory is used to combine
events: one event e1 for one slid and another event e2 for the second slid. In this set-
theoretical approach it is assumed that events e1 and e2 are elementary events that do
not overlap, (e1 ∩ e2) = ∅, independent). In this case, the probability p (e1 ∩ e2) = 0
and the probability that either one of these two events will occur is p (e1 ∪ e2) =
p (e1) + p(e2). The actual distribution differs from distribution shown in Fig. 5 [51].

As an attempt to overcome this dependence difficulty and related non-monotonicity
in quantum mechanics the use of upper probabilities, with the axiom subadditivity,
has been proposed [51–54].

Below we explore whether the copula approach and relation-aware probability
can be helpful in making this dependence evident and explicit. The relation-aware
probability is helpful, because it explicitly uses the relations that are behind the
dependences. This is its advantage relative to negative probabilities. The axioms of
negative probability have no such components.

Fig. 5 [51]. Distribution of
independent particles
(events)
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The value of the copula approach for this task needs more explorations. Copula
allows representing the actual distribution F as a composition that includes the
copula. The actual distribution is [51]

p(α1, α2) = k cos2(α1 − α2)

Respectively its copula is

C(F(α1), F(α2)) = k sin2[A · B − C · D] = C(u1, u2) (4)
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This copula represents the dependence with the eliminated impact of marginal
distributions via conversion of them into the uniform distribution. In this way the
copula has the meaning of graduate dependence between variables resembling the
many-valued logic, and t-norm compositions of variables. This is a valuable property.
Thus while the copula is still a probability distribution it also represents a gradual
degree of truth and falseness. The copula (5) is tabulated as follows:

M1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0.846 0.7 0.561 0.43 0.307 0.192 0.088 0
0.846 1 0.969 0.899 0.805 0.692 0.56 0.401 0.125
0.7 0.969 1 0.979 0.923 0.839 0.725 0.572 0.25

0.561 0.899 0.979 1 0.982 0.93 0.843 0.708 0.375
0.43 0.805 0.923 0.982 1 0.982 0.927 0.82 0.5
0.307 0.692 0.839 0.93 0.982 1 0.98 0.909 0.625
0.192 0.56 0.725 0.843 0.927 0.98 1 0.973 0.75
0.088 0.401 0.572 0.708 0.82 0.909 0.973 1 0.875
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It has the same form in its extreme values as classical logic equivalence relation
(≡).
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y = x1 ≡ x2 =
⎡

⎣

1 0
1 1 0
0 0 1

⎤

⎦

This link is also evident from [42, p. 182]:

C(x, 0) = C(0, x) = 0, C(x, 1) = C(1, x) = x

which is true for all x from [0, 1] including x = 1.

5 Conclusion and Future Work

This paper had shown the need for a theory beyond the classical set theory, classical
logic, probability theory, and fuzzy logic to deal with dependent events including
the physics paradox of particles and waves and the contradiction associated with the
Bell inequality.

It is shown that the copula approach and relation-aware probability approach are
promising approaches to go beyond the limitations of known approaches of PT, FL,
MVL, and the classical set theory. Specifically copula and relation-aware proba-
bility approaches allow making dependences between variables in multidimensional
probability distributions more evident with abilities to model the dependencies and
relations between multiple variables more explisit.

It is pointed out that the concept of copula is more general than the concept of
t-norm. Therefore the probability theory in some sense is more general than fuzzy
logic, because it covers both truth-functional and non-truth functional dependences.

The third-party dependence, direct local interaction and causal dependence are
analyzed concluding that discovering causal dependencies is far beyond current
approaches in PT, FL, and MVL.

We introduced the concept of a Non-Truth-Functional Logical Dependence (NTF-
logical dependence) derived as a copula from multidimensional probability distrib-
ution that does not depend on the frequencies of occurrence of variables. The inter-
pretation of copula as NTF-dependence is one of the key of new points of this work.
It shows how dependence in many-valued logic and probability theory can be fused
in one concept by using the copulas and marginal probabilities to clarify the rela-
tions between PT, FL, and MVL to give a “frequency-free” dependence measure. It
shows how, starting from probability and specifically from conditional probability,
we introduce “logic” dependence.

We conclude that presence of t-norms in both probability theory (in copulas), and
in fuzzy logic, creates a new opportunity to join them using t-norm copulas as a
bridge.

Future directions are associated with linking the proposed approaches with depen-
dence logic. Dependence logic proposed in 2007 [14] was later expanded to the
contexts of modal, intuitionistic and probabilistic logic. Its goal is modeling the
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dependencies and interaction in dynamical scenarios. It is a type of first-order logic,
and a fragment of second-order logic. While it claims applications in a wide range of
domains from quantum mechanics to social choice theory, it still is in earlier stages
of applications.

Another future opportunity to build the more realistic uncertainty modeling
approaches is associated with the involvement of agents. Agents and teams of agents
often are a source of input data, and the values of probabilities, copulas, and t-
norms. The situation, when these agents are in a total agreement, can be modeled as
a total dependence of their valuations, graduated or discrete (True/False). When a
team of agents is in a conflict with each other in the valuation of the same attribute,
they provide conflicting degrees of truth/falseness, which require adequate model-
ing approaches [8]. Active sets [12] that represent sets of agents can be a bridge
between the many-valued logic, and fuzzy sets for providing the interpretable input
data (valuations).
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Note to the Polemics Surrounding
the Second Gödel’s Theorem

Klimentij Samokhvalov

Abstract An extensive philosophical debate continues for years about impact of
arithmetization of metamathematics on the Hilbert program with many papers pub-
lished. Many of these works claim a death-blow to Hilbert’s Program by Gödel’s
Second Incompleteness Theorem. This note provides a short and understandable
argument that in fact Gödel’s Second Incompleteness Theorem does not deliver the
notorious death-blow (the coup de grace) to Hilbert’s Program.

Keywords Primitive recursive arithmetic · Gödel’s numbering · Gödel’s canonical
Consis · Second Gödel’s incompleteness theorem · Hilbert’s program

1 Introduction

A philosophical debate about the impact of arithmetization of metamathematics on
the Hilbert program intensified after publishing “Arithmetization of metamathemat-
ics in a general setting” by Feferman [1] in 1960. The general content and the course
of this debate are presented in excellent reviews [2, 3] that include an extensive
bibliography. However, in our opinion, this “drama of ideas” requires the additional
analysis that is provided below.

Let S be a formal system in the first order language with signature

(+, ·,′ , 0,≈).

It is assumed that S includes Primitive Recursive Arithmetic (PRA). We say that
S is consistent if and only if an arithmetic sentence X exists, for which it is not true
that X is provable in S.
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Symbolically,

CON(S) ⇔ ∃X (it is not true that �S X), (1)

where CON(S) is an acronym for “S is consistent”, and �S . . . is an abbreviation
for “… is provable in S”. Due to (1), it is clear that for any particular arithmetical
formula P , the implication

(It is not true that �S P) ⇒ CON(S) (2)

takes place. It is also clear that the reverse implications, generally speaking, are not
true. For example, the implication

CON(S) ⇒ (it is not true that �S 0 ≈ 0)

is not true. In fact, the sentence 0 ≈ 0 is provable in PRA, and S includes PRA.
It is also clear that the secondGödel’s incompleteness theorem can effectively find

a certain special case, wherein the reverse implication is true. In fact, this theorem
says:

CON(S) ⇔ (it is not true that �S ConS), (3)

where ConS is a canonical Gödel’s consis (definite arithmetical formula of some
special type).

Note that only finite provable statements are credible for staunch Hilbertians.
Therefore, if the second Gödel’s theorem is generally intended to have at least some
value for them, it must be acknowledged that the equivalence (3) is proved by finite
means.

Moreover, in terms of Hilbertians, this finitely establishing equivalence (3) fully
covers the content of the given theorem. So, for Hilbertians everything else that is
usually attributed to Gödel’s second theorem is idle talk.

This includes the following usual formulation of Gödel’s second theorem:

if the system S is consistent, then the arithmetic sentence ConS that
expresses consistency of S in S is not provable in S.

In this formulation, the phrase in italics is redundant. For, whatever it meant, the
actual finite proof of the theorem is independent of it.

In this finite proof, ConS appears simply as a specific formal formula in language
S, with respect to which it is important to know in advance only one thing: whether
this formula is provable or not provable in S. It does not matter in this case at all,
whether it expresses something or does not express anything, whether it is true or
false, understandable or not, etc.
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2 What Is “Expressed” by Gödel’s Theorem?

When somebody says: “A formula ConS ‘expresses’ consistency of S in S”, we
can ask: “What is this specific formula ‘expresses’ in a different choice of Gödel’s
numbering?”. Then it becomes clear that in fact ConS “expresses” not a property of
the system S, which is the consistency of S, but the certain property of an ordered
pair (g, S), where g is Gödel’s numbering. Substituting one for the other is logi-
cally incorrect. In this circumstance one can see some inadequacy of arithmetized
metamathematics to metamathematics envisioned by Hilbert initially.

On the other hand, finitely established equivalence (3) does not say anything about
whether non-arithmetic meta-statement CON(S) or non-arithmetic meta-statement
(It is not true that �S ConS) are finitely provable or not.

Therefore, the second Gödel’s theorem is not “a fatal blow to Hilbert’s program”.
The natural context of both Gödel’s incompleteness theorems is just the incom-

pleteness of sufficiently strong consistent formal systems, rather than the question
of the absence or presence of the finite proof of their consistence.

3 Afterword

Sadly, of course, a finite proof of the consistency of arithmetic is still not found.
However, it should be remembered that Hilbert described the concept of a finite
proof somewhat vaguely and never gave a precise definition of this concept, relying
on the ability to immediately recognize, as soon as some reasoning is there, whether
it is finite, or not [4].

It is not hard to guess here that Hilbert, like all rational people, was well aware
that even a well-deserved trust in something is always an empirical psychological
fact, which can be established in advance only as probable, and only within some
empirical hypothesis. However, it was certainly distasteful for Hilbert, who was
prone to some form of Kantian philosophy to base mathematics on the empirical
hypotheses. Naturally, therefore, he described the concept of finite proof without
giving exact definition.
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Ontological Data Mining

Evgenii Vityaev and Boris Kovalerchuk

Abstract We propose the ontological approach to Data Mining that is based on:
(1) the analysis of subject domain ontology, (2) information in data that are inter-
pretable in terms of ontology, and (3) interpretability of Data Mining methods and
their results in ontology. Respectively concepts of Data Ontology and Data Mining
Method Ontology are introduced. These concepts lead us to a new Data Mining
approach—Ontological Data Mining (ODM). ODM uses the information extracted
from data which is interpretable in the subject domain ontology instead of raw data.
Next we present the theoretical and practical advantages of this approach and the
Discovery system that implements this approach. The value of ODM is demonstrated
by solutions of the tasks from the areas of financial forecasting, bioinformatics and
medicine.

1 Introduction

At the International Workshop on Philosophies and Methodologies for Knowledge
Discovery (22–26 August 2005, Copenhagen, Denmark) it was pointed out that any
KDD&DM (Knowledge Discovery in Data Bases and Data Mining) method has its
own ontology [1–4]. Any KDD&DM method explicitly or implicitly assume:
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1. some types of input data;
2. some language for data interpretation and hypothesis class construction (knowl-

edge space of the KDD&DM method);
3. confirmed hypothesis in this language.

By the ontology ofKDD&DM&MLmethodwemean the language for construct-
ing hypotheses. At the same time any subject domain also has its own ontology that
includes the systemof notions for description of objects. Ifwe apply someKDD&DM
&ML method for solving a task in the given subject domain, we want to get results
that are interpretable in the ontology of that subject domain. For that purpose we
need a following requirement.

Requirement.For the interpretability of the KDD&DM & ML results, the ontology
of KDD&DM & ML method must be interpretable in the ontology of the subject
domain.
For example, to apply a classificationmethod that uses a language of spherical shapes
for hypotheses, we need interpret spherical shapes in the ontology of the subject
domain.

The knowledge extracted by a KDD&DM method on some data is a set of con-
firmed hypothesis that are interpretable in the ontology of the KDD&DM method
and at the same time in the ontology of the subject domain.

The subject domain ontology induces data ontology. We need to emphasize that
quantities in data are not numbers themselves, but numbers with their interpretation.
For example, abstract numbers 200, 3400, 300, 500 have three different interpreta-
tions shown in Table1.

For every quantity there are relations and operations that are meaningful for this
quantity. This interpretation of quantities is a core approach of the Representational
Measurement Theory (RMT) [5–7]. The RMT interprets quantities as empirical

Table 1 Values and their interpretation

Interpretation Values Meaningful operations

Abstract numbers 5, 3400, 360, 500 Meaning of 360>5 is not
clear. These numbers can be
just labels

Abstract angles 5, 3400, 360, 500 360 meaningfully greater that
5. It is implicitly assumed that
angles are rotational angles

Azimuth angles 5, 3400, 360, 500 Azimuth operations. 360
meaningfully less that 5,
because Azimuth 360 =
Azimuth 0

Rotational angles 5, 3400, 360, 500 Rotational angle operations.
360 meaningfully greater that
5 if the angle represents the
rotation time



Ontological Data Mining 279

systems—algebraic structures defined on objects of subject domain with a set of
relations and operations interpretable in the subject domain ontology.

More specifically, main statements of the measurement theory relative to data
mining issues are as following [5–7]:

• numerical representations (scales) of quantities and data are determined by the
corresponding empirical systems;

• scales are unique up to a certain sets of permissible transformations such as chang-
ing measurement units from meters to kilometers for ratio-scales;

• KDD&DM &ML methods need to be invariant relative to the sets of permissible
transformations of quantities in data.

To obtain data ontology in accordance with the measurement theory, we need to
transform data into many-sorted empirical systems. This transformation is described
in [3, 8] for such data types as pair comparisons, binary matrices, matrices of order-
ings, matrices of proximity and an attribute-based matrix. Such transformation faces
the following problem. Many physical quantities possess an interpretable operation
• which has all formal properties of the usual addition operation. However, medicine
and other areas may have no empirical interpretation for that operation. For example,
empirical system of physical pressure, measured by a tonometer, have operation •
as physical quantity, but have no this operation as medical quantity, because it is
not interpretable in medicine. In that case, the • operation should be removed from
the empirical system of pressure in medicine, and the corresponding scale should be
reconsidered. The order relation for pressure is obviously interpretable in medicine,
and it can be included in the empirical system of the pressure. Thus, data ontology
and scales strongly depend on the subject domain ontology.

Consider another example from the area of finance. What is the ontology of
financial time series? It also can be considered from points of view (onthologies) of:
(1) a trader-expert, (2) one of the mathematical disciplines, (3) technical analysis,
(4) trade indexes etc. We need to specify the ontology of a subject domain before
determining the data ontology.

If a KDD&DM & ML method uses operations or relations that are not inter-
pretable in the data ontology and hence in the subject domain ontology, then it may
obtain non-interpretable results. For example, the average patients’ temperature in
the hospital has no medical interpretation. If all relations and operations, which are
used in the method, are included in the data ontology, then the algorithm results will
be interpretable in the subject domain ontology and hence invariant relative to the
permissible transformations of scales of the used data.

Thus, to avoid the non-invariance of the method and non-interpretability of its
results, we need to use only relations and operations from the data ontology. It
means that hypotheses tested by the method must include only these relations and
operations. However, as we pointed out above, scales of quantities depend on the
data ontology. Hence, the invariance of the method cannot be established before we
revise the scales of all quantities based on the data ontology.
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2 Relational (Ontological) Approach to Data Mining

Since in any application of KDD&DM & ML methods we need to established data
ontology and transform data into many-sorted empirical systems, we proposed a
Relational Data Mining (RDM) approach [1–3, 9] to knowledge discovery that is
working directly with the data presented as many-sorted empirical systems. We also
developed a software system “Discovery” that implements this approach in a rather
general form and extracts knowledge from the many-sorted empirical systems for
various classes of hypothesis.

Thus, Relational Data Mining approach consists of the following stages:

1. transform data into many-sorted empirical systems according to data ontology;
2. use background knowledge expressed in the first-order logic for learning and

forecasting;
3. determine, for corresponding Data Mining task, the hypothesis class in terms of

many-sorted empirical system;
4. acquire knowledge, by testing hypotheses from the hypothesis class on many-

sorted empirical systems;
5. use acquired knowledge for predictions, classifications, pattern recognition etc.

Relational Data Mining approach provides following possibilities that cannot be
performed by other Data Mining methods:

• analyze data with unusual scales. Traditionally DataMining methods use only few
scale types, but in the measurement theory, there are known hundreds scale types;

• perform data exploration—when we can simultaneously vary data ontology, infor-
mation extracted from data and hypothesis classes. The appropriate version of the
system discovery was developed and applied for several tasks [10];

• acquire knowledge for data onthologies for which there are no Data Mining meth-
ods with appropriate set of relations and operations. Below we give examples of
such data onthologies and corresponding hypotheses.

Relational Data Mining approach and Discovery system use logic-probabilistic
techniques related to the Probabilistic Logic Programming for knowledge acquisi-
tion. However, there is a problem of probability and logic synthesis for this approach.
This problem was discussed at the series of conferences with the title Progic (Prob-
ability+Logic, 2006–2013) [11]. In the framework of our approach, we propose a
new solution to this problem based on special semantic probabilistic inference [9,
12–14]. The software systemDiscovery implements the semantic probabilistic infer-
ence in the process of hypotheses testing and prediction. We demonstrated in series
of experiments that, in contrast with the Probabilistic Logic Programming the Dis-
covery system can acquire knowledge from data with a significant noise level, for
example, in financial forecasting [8]. Moreover, the Discovery system acquire max-
imal specific rules, for which we prove that they are predict without contradictions
[9, 13].
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3 Applications of Relational Data Mining

In the frame of Relational Data Mining approach, some problems were solved in the
area of financial forecasting, bioinformatics, medicine, and other areas [15]. Here
we present data onthologies and hypotheses classes for these tasks.

3.1 Financial Forecasting

As data ontology for the S&P500 (close) forecasting, we used information about
local maxima and minima and their order interconnections. In some experiments we
used information about weekdays with second and third differences between prices
for these days [8, 16].

As objects, we used the periods for five consequent days for which the following
relations and operations where determined:

1. function wd(a) that display five consequent days, for example wd(a)=
〈1, 2, 3, 4, 5〉 means 5 days beginning from Monday;

2. first order difference:

Δij(at) = (SP500(aj
t) − SP500(ai

t))/SP500(ai
t), i < j, i, j = 1, . . . , 5,

where at—5 days, aj
t , ai

t—corresponding i-th and j-th day of the 5 days. This
function represents the difference of SP500C between the i-th and j-th days,
normalized relative the i-th day;

3. second order difference, i.e., the difference between two first order differences

Δijk(at) = Δjk(at) − Δij(at).

In this ontology, we stated following classes of hypotheses:

1. (wd(a) = wd(b) = 〈d1, . . . , d5〉)&(Δ(a) ≤ Δ(b))ε1 ⇒ (SP500(a5) ≤ SP500
(b5))ε0, where Δ(a), Δ(b)—arbitrary first or second order differences for 5 days
periods a and b with the same sequences of days; ε1, ε0 = 1 (0) if relation has
no (has) negation, for example A1 means simply A, while A0 means “not A”.
The example of the discovered regularity on real SP500C data for that hypotheses
class is:
IF for any 5-day objects a and b beginning from Tuesday,
AND the SP500 difference Δ12(at) is smaller the difference Δ12(bt),
THEN the target stock for the last day of a will be greater than for the last day
of b.
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2. At the same time, hypotheses with two differences in the premise where tested:

(wd(a) = wd(b) = 〈d1, . . . , d5〉)&(Δ(a) ≤ Δ(b))ε1&(Δ(a) ≤ Δ(b))ε2

⇒ (SP500(a5) ≤ SP500(b5))ε0,

3. The hypotheses with three and more relations at the premise also where tested:

(wd(a) = wd(b) =〈d1, . . . , d5〉)&(Δ(a) ≤ Δ(b))ε1& . . .&(Δ(a) ≤ Δ(b))εk

⇒ (SP500(a5) ≤ SP500(b5))ε0.

For example, one of the tested statements was:
IF for any 5-day objects a and b with weekdays 〈d1, . . . , d5〉,
the SP500C difference Δ12(at) is smaller than Δ12(bt)

AND the SP500C difference Δ23(at) is greater than Δ23(bt)

AND the SP500C difference Δ123(at) is greater than Δ123(bt)

AND …
THEN the target stock for the last day of a will be greater than for the last day

of b.
The example of rules discovered by the system Discovery is as follows:
IF Current 5days end on Monday and there are some other (“old”) 5 days (from

the history of years 1984–1996) that end on Monday too
AND the relative SP500C difference between Tuesday and Thursday for the old

5 days is not greater than between Tuesday and Thursday for the current 5 days
AND the relative SP500C difference between Tuesday and Monday for the old 5

days is greater than between Tuesday and Monday for the current 5 days
AND the relative difference between SP500C differences for Tuesday, Wednesday

and Wednesday, Thursday for the old 5 days is not greater than for the pairs of days
for the current 5 days

AND we omit linguistic description of (Δ245(at) > Δ245(bt)), which is similar to
previous one

THEN the target value for Monday from the current 5days should be not greater
than the target value for the Monday from the old 5 days, i.e., we forecast that a
target stock 5 days ahead from the current Monday will grow not greater than it was
5 days ahead from the old Monday.

3.2 DNA Regulatory Regions Analysis

We asked experts of the Institute of Cytology and Genetics SD RAS about the infor-
mation that is needed for the solution of the analysis of regulatory regions. From their
point of view this information is the following: distance between valuable DNA sig-
nals that may vary in some range, repetition of signals, some DNA intervals which
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Fig. 1 Structure of complex signal

have a specific place relative to transcription start, and hierarchy of signals. Cor-
responding relations and operations where defined and hypothesis in these terms
where formulated as a notion of a Complex Signals (CSs), which is defined recur-
sively based on elementary signals and operations applied to them, see Fig. 1 [17,
18]. The recursive definition of the Complex Signal is following:

+1 bp- 79 bp - 32 bp +20 bp- 14 bp

(M73820)

+1 bp- 41 bp - 29 bp +20 bp- 12 bp

(J00749)

+1 bp- 96 bp - 31 bp +20 bp- 22 bp

(U02293)

+1 bp- 75 bp - 33 bp +20 bp- 21 bp

(M26856)

+1 bp- 95 bp - 32 bp +20 bp- 23 bp

(J03071)

+1 bp- 84 bp - 33 bp +20 bp- 7 bp

(K01877)

- 35 bp -20 bp

- 29 bp -23 bp

- 36 bp  -21 bp

- 34 bp  -19 bp

- 36 bp  -20 bp

Fig. 2 Schematic localization of the complex signal CW GNRGCN < NGSYMTAM <

MAGKSHCN in promoters of endocrine system genes. The promoter sequences are aligned relative
to the transcription start (position +1 bp), indicated by arrows. The EMBL identifiers of the pro-
moters studied are given in parentheses to the left. The eight-bp oligonucleotide motifs composing
the complex signal are shown as dashed rectangles; positions of the first nucleotides are indicated
relative to the transcription start. The black rectangles mark experimentally defined positions of the
TATA-box indicated in the TRRD database. Positions of its first and last nucleotides are italicized
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1. the elementary signal is CS;
2. the result of the “repetition” or “interval” operation applied to CS is CS;
3. the result of the “distance” operation applied to a pair of CSs is CS.

Elementary signals are indivisible signals which are characterized by a name and
location in the sequence. It may be nucleotide, motive, transcription factor binding
site and any other signal. Figure1 illustrates such signals. The examples of the com-
plex signals are presented on the Fig. 2 [17, 18]. As elementary signals there where
motifs of length 8 bp that were pre-selected as specific for the set of promoters by
the program ARGO [19].

3.3 Breast Cancer Diagnostic System

Expert J.Ruiz (Baton RougeWomen hospital) defined 11 features, for developing the
breast cancer diagnostic system [2, 20]. These features constituted the data ontology.

Table 2 Discovered breast cancer diagnostic rules

Diagnostic rule F-criteria Value of
F-criteria

Diagnosis
Round-Robin
test (%)

0.01 0.05 0.1

IF NUMber of calcifications per cm2

between 10 and 20
0.0029 + + + 93.3

AND VOLume > 5cm3 0.0040 + + +

THEN Malignant

IF TOTal # of calcifications >30 0.0229 – + + 100.0

AND VOLume > 5cm3 0.0124 – + +

AND DENSITY of calcifications is
moderate

0.0325 – + +

THEN Malignant

IF VARiation in shape of calcifications
is marked

0.0044 + + + 100.0

AND NUMber of calcifications is
between 10 and 20

0.0039 + + +

AND IRRegularity in shape of
calcifications is moderate

0.0254 – + +

THEN Malignant

IF variation in SIZE of calcifications is
moderate

0.0150 – + + 92.86

AND variation in SHAPE of
calcifications is mild

0.0114 – + +

AND IRRegularity in shape of
calcifications is mild

0.0878 – – +

THEN Benign
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Using this ontology and data in terms of this ontology the set of regularities was
discovered. Table 2 some of these regularities are presented.

4 Representative Measurement Theory

In accordance with the measurement theory, numerical representations of quanti-
ties and data are determined by empirical systems. In this section we present main
definitions of the measurement theory [5–7].

An empirical system is a relational structure that contains a set of objects A,
k (i)—ary relations P1, . . . , Pn and k (j)—ary operations ρ1, . . . , ρm defined on A,

A = 〈A, P1, . . . , Pn, ρ1, . . . , ρm〉.

Every relation Pi is a Boolean function (a predicate) with k (i) arguments from
A, and ρj is the k (j) argument operation on A. System R

R = 〈R, T1, . . . , Tn, S1, . . . , Sm〉

is called a numerical system of the same type as a system A, if R is a subset of Rem,
m ≥ 1, Rem is a set of m-tuples of real numbers, every relation Ti has the same arity
k(i) as the corresponding relation Pi, and every real-value function Sj has the same
arity k(j) as the corresponding operation ρj.

A numerical systemR is called a numerical representation of the empirical system
A, if a (strong) homomorphism φ : A → R exists such that:

Pi(a1, . . . , ak(i)) ⇒ Ti(φ(a1), . . . , φ(ak(i))), i = 1, . . . , n;

φ(ρj(a1, . . . , ak(j))) = Sj(φ(a1), . . . , φ(ak(j))), j = 1, . . . , m.

The strong homomorphism means that, if predicate Ti(φ(a1), . . . , φ(ak(i))) is
true on 〈φ(a1), . . . , φ(ak(i))〉, then there exists tuple 〈b1, . . . , bk(i)〉 in A, such that
Pi(b1, . . . , bk(i)) is true and φ(b1) = φ(a1), . . . , φ(bk(i)) = φ(ak(i)). We will denote
such homomorphism between the empirical system A and numerical system R as
� : A → R. Thus, the numerical system R represents a relational structure in com-
putationally tractable form with a complete retention of all the properties of the
relational structure.

In the measurement theory, the following problems are considered:

(1) find a numerical representation R for an empirical system A;
(2) prove a theorem that homomorphism � : A → R exists;
(3) define the set of all possible automorphisms f : R → R (the uniqueness theo-

rems), such that f� is also homomorphism f � : A → R.
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Example A relational structure A = 〈A, P〉 is called a semi-ordering, if for all a, b, c,
d ∈ A the following axioms are satisfied:

¬P(a, a);
P(a, b)&P(c, d) ⇒ (P(a, d) ∨ P(c, b));
P(a, b)&P(b, c) ⇒ ∀d ∈ A(P(a, d) ∨ P(d, c)).

Theorem 1 If A = 〈A, P〉 is a semi-ordering and A/ ≈ is finite, then there exists a
function U : A → Re, such that:

P(a, b) ⇔ U(a) + 1 < U(b).

There are hundreds of numerical representations known in themeasurement theory
with few most commonly used. The strongest one is called the absolute data type
(absolute scale). The weakest numerical data type is the nominal data type (nominal
scale). There is a spectrum of data types between them. They allow us comparing,
ordering, adding, multiplying, dividing values and so on. The classification of these
data types is presented in Table3. The basis of this classification is a transformation
group. The strongest absolute data type does not permit transformations of data
at all, and the weakest nominal data type permits any one-to-one transformation.
Intermediate data types permit different transformations such as positive affine, linear
and others (see Table3).

The transformation groups are used to determine the invariance of a regularity.
The regularity expression must be invariant to the transformation group; otherwise it
will depend not only on the nature, but on the subjective choice of the measurement
units.

Table 3 Classification of data types

Transformation Transformation group Data type (scale)

X → f (x), F:Re → (onto) Re, 1 → 1
transformation group

Nominal

X → f (x), F:Re → (onto) Re monotone
transformation group

Order

X → rx + s, r > 0 Positive affine group Interval

X → txr, t, r > 0 Power group Log-interval

X → x + s Translation group Difference

X → tx, t > 0 Similarity group Ratio

X → x Identity group Absolute
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5 Data Ontology in Different Subject Domains

From the measurement theory point of view, data is a many-sorted empirical system
A with the sets of relations and operations interpretable in the domain theory. For
instance, a “stock price” data type can be represented as a relational structure A =
〈A; {≤,=,≥}〉 with nodes A as individual stock prices and arcs as their relations
{≤,=,≥}. As we pointed out scales are strongly depend on the subject domain
ontology.

Let us consider the specificity of domain anthologies for different subject domains.
We consider six different cases:

Physical data in physical domains.
Physical data in non-physical domains.
Non-physical data in non-physical domains.
Nominal discrete data.
Non-quantitative and non-discrete data.
Mix of data.

1. Physical data in physical domains. Data contain only physical quantities, and
the subject domain is physics. This is a realm of physics with well-developed data
ontology and measurement procedures. In this case, the measurement theory [6]
provides formalized relational structures for all physical quantities and KDD&DM
methods can be correctly applied.

2. Physical data for non-physical domains. The data contain physical quantities,
but the subject domain is not physics. The ontology of the subject domainmay refer to
finance, geology,medicine, and other areas. In these cases data ontology is not known,
as we pointed out above for the pressure in medicine. If the quantity is physical,
then we can define the relational structure using the measurement theory. However,
the physically interpretable relations of the relational structure are not necessarily
interpretable in ontology of subject domain. If a relation is not interpretable, it should
be removed from the relational structure.

3.Non-physical data in non-physical domains. For non-physical quantities, data
ontology is virtually unknown. There are two sub-cases:

Non-numerical data types. In [3, 8] it was developed a procedure for transforma-
tion the following representations of data into data ontology (many-sorted empirical
systems): pair-wise and multiple comparison data types, attribute-based data types,
and order, and coherence matrixes.

Numerical data types. Here, we have ameasurer x(a), which produces a number as
a result of ameasurement procedure applied to an objecta. Examples ofmeasurers are
psychological tests, stock market indicators, questionnaires, and physical measuring
instruments used in non-physical areas.

For this case let us define a data ontology as the set of relations and operations
for the measurer x(a). For any numerical relation R(y1, . . . , yk) ⊂ Rek and operation
S(x1, . . . , xm) : Rem → Re, where Re is the set of real numbers, an relation PR on
Ak and an operation ρS : Am → A can be defined as follows



288 E. Vityaev and B. Kovalerchuk

PR(a1, . . . , ak) ⇔ R(x(a1), . . . , x(ak)), ρS(a1, . . . , am) = s(x(a1), . . . , x(am)).

We should find such relations R and operations S that have interpretation in the
subject domain ontology. The set of obtained interpretable relations is not empty,
because at least one relation (P=) has an empirical interpretation: P=(a1, a2) ⇔
x(a1) = x(a2). In the measurement theory, many sets of axioms were developed for
data, having only ordering and equivalence relations. For instance, given weak order
relation <y (for the attribute y) and n equivalence relations ≈x1 , . . . , ≈xn for the
attributes x1, . . . , xn one can construct a complex relation G(y, x1, . . . , xn) ⇔ y =
f (x1, . . . , xn) (defined by the axiomatic system) between y and x1, . . . , xn, such that
f (x1, . . . , xn) is a polynomial [6]. A polynomial function uses multiplication, power
and sum operations. Hence, these operations can be defined for y, x1, . . . , xn using
only relations <y,≈x1 , . . . , ≈xn . Ordering and equivalence relations are usually
empirically interpretable in the ontology of various subject domains.

4. Nominal discrete data types. Here, all numbers can be considered as names, and
canbe easily represented as predicateswith a single variable. So, data are interpretable
in the corresponding relational structures, because there is no difference between the
numerical and empirical systems.

5. Non-quantitative and non-discrete data types. Data contain no quantities and
discrete variables, but do contain ranks, orders and other non-numerical data types.
This case is similar to the above item 3a.

6. Mix of data types. All the mentioned difficulties arise in this case.

6 Invariance of the KDD&DMMethods

The results of the KDD&DM & ML methods must not depend on the subjective
choice of themeasurement units, but usually it is not the case. Let us define the notion
of invariance of a KDD&DM & ML method. To that end, we will use the common
(attribute-based) representation of a supervised learning [21, 22] (see Fig. 3), where:

W={w} is a training sample;
X(w) = (x1, . . . , xn) is the tuple of values of n variables (attributes) for training

sample w;
Y(w) is the target function assigning the target value for each training example w;
The result of the learning of some KDD&DM & ML method M on the training

sample {〈X(w), Y(w)〉}, w ∈ W is a rule J

J = M ({〈X(w), Y(w)〉}) ,

that predicts values of the target function Y(w). For example, consider w with
unknown value Y(w), but with known values of all attributes X(w), then

J(X(w)) = Y(w),



Ontological Data Mining 289

Population

Representation of the training examples by
description 1 n(x ,..., x )

Target values 
Y(w) 

Assigning (learning) 
rule/classifier J by the method M 

M({X(w),Y(w}) = J, 
J(X(w)) ~ Y(w)

X(w) 

Training 
sample 
W={w} 

1 n{X(w)} {(x ,..., x )}

Assigning target values
to training examples 

Y(w) 

Fig. 3 Representation of a supervised learning

where J(X(w)) is a value generated by the rule J. The resulting rule J can be an
algebraic expression, a logic expression, a decision tree, a neural network, a complex
algorithm, or a combination of these models.

If attributes (x1, . . . , xn, y) are determined by the empirical systems A1, . . . , An,

B having the transformation groups g1, . . . , gn, g respectively, then the transforma-
tion group G for all attributes is a product G = g1 × · · · × gn × g.

The KDD&DM&MLmethod M is invariant relative to the transformation group
G iff for any g∈G rules

J = M(〈X(w), Y(w)〉), Jg = M(〈gX(w), gY(w)〉),

produced by the method M, generate the same results for any w ∈ W

gJ (X (w)) = Jg(g (X (w))).

If the method is not invariant (that is the case for majority of the methods),
then predictions generated by the method depend on the subjective choice of the
measurement units.

The invariance of the method is closely connected to the interpretability of its
results. The numerical KDD&DM & ML methods assume that operations such as
+, –, *, / can be used in an algorithm despite their possible non-interpretability. In
this case, the method can be non-invariant and can deliver non-interpretable results.
In contrast a KDD&DM & ML method M is invariant if it uses only information
from empirical systems A1, …, An,B as data and produces rules J that are logical
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expressions in terms of these empirical systems. This approach is a core of the
Relational Data Mining.

7 Relational Methodology for the Analysis of KDD&DM
Methods

A non invariant KDD&DM & ML method M : {X (w)} → J can be analyzed and
another invariant method can be created based on M. Let us define a many-sorted
empirical systemA(W) that is a product of empirical systemsA1, . . . , An, B bound on
the set W. Next we define transformation W → A(W ) of data W into a many-sorted
empirical system A(W ), and replace the numeric representation

W → {〈X(w), Y(w)〉}

by the transformation

W → A(W ) → {〈X(w), Y(w)〉} .

Based on method M :{〈X(w), Y(w)〉} → J , we define a new method
ML : A(W ) → J such that

ML(A(W )) = M({〈X(w), Y(w)〉}) = J,

using transformation W → A(W ) → {〈X(w), Y(w)〉}. Thus, method ML uses only
interpretable information from data A(W ) and produces the rule J using method M.

Let us analyze the transformation of the interpretable information A(W ) into the
rule J through the method M. If we apply only interpretable relations and operations
from the method M (and change non interpretable ones to appropriate interpretable)
to the interpretable information A(W ), we may extract some logical rule JL from rule
J. This rule JL will contain only interpretable information from the rule J, expressed
in terms of empirical system A(W ).

Let us define the next method

MLogic : A(W ) → JL,

where rule JL is a set of logical rules in terms of empirical system A(W ), produced
by method M, and interpretable information A(W ).

The methodMLogic is obviously invariant. If we consider all possible data for the
method M, and all rules JL, that may be produced by the MLogic method, then we
will obtain a class of rules (hypotheses) {JL} (knowledge space) of the method M.
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As a result we obtain the ontology of the particular KDD&DM&ML method M
as:

1. empirical system A(W) as a types of input data;
2. the set of relations and operations of the empirical system A(W ) as a language for

data interpretation and hypothesis class {JL} construction (knowledge space);
3. discovered regularities as confirmed hypotheses.

Relational (ontological) approach to data mining includes (1) using an empiri-
cal system A(W ) as a form of the types of input data, (2) testing any hypotheses
class {JL} in terms of empirical system A(W ) and (3) produce regularities as con-
firmed hypotheses. In this sense Relational (ontological) approach to data mining
approximates any other Data Mining method.
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