
A Hybrid Relational Modelling Language

He Jifeng and Li Qin(B)

Shanghai Key Laboratory of Trustworthy Computing,
International Research Center of Trustworthy Software,

East China Normal University, Shanghai, China
qli@sei.ecnu.edu.cn

Abstract. Hybrid systems are usually composed by physical compo-
nents with continuous variables and discrete control components where
the system state evolves over time according to interacting laws of dis-
crete and continuous dynamics. Combinations of computation and con-
trol can lead to very complicated system designs. We treat more explicit
hybrid models by proposing a hybrid relational calculus, where both
clock and signal are present to coordinate activities of parallel compo-
nents of hybrid systems. This paper proposes a hybrid relational mod-
elling language with a set of novel combinators which support complex
combinations of both testing and signal reaction behaviours to model the
physical world and its interaction with the control program. We provide
a denotational semantics (based on the hybrid relational calculus) to the
language, and explore healthiness conditions that deal with time and
signal as well as the status of the program. A number of small examples
are given throughout the paper to demonstrate the usage of the language
and its semantics.

Keywords: Formal language and semantics · Unifying theories
of programming · Relation calculus · Hybrid systems

1 Introduction

Hybrid system is an emergent area of growing importance, emphasising a sys-
tematic understanding of dynamic systems that combine digital and physical
effects. Combinations of computation and control can lead to very complicated
system designs. They occur frequently in automotive industries, aviation, factory
automation and mixed analog-digital chip design.
The basic conceptional definition of a hybrid system includes a direct specifica-
tion of its behaviours associated with both continuous and discrete dynamics and
their non-trivial interactions [dSS00,Bra95]. The states of hybrid systems evolve
over time according to interacting laws of discrete and continuous dynamics. For

This work was supported by Shanghai Knowledge Service Platform Project (No.
ZF1213), Doctoral Fund of Ministry of Education of China (No. 20120076130003)
and the NSFC-Zhejiang Joint Fund for the Integration of Industrialization and
Informatization (No. U1509219).

c© Springer International Publishing AG 2017
T. Gibson-Robinson et al. (Eds.): Roscoe Festschrift, LNCS 10160, pp. 124–143, 2017.
DOI: 10.1007/978-3-319-51046-0 7

A Hybrid Relational Modelling Language 125

discrete dynamics, the hybrid system changes state instantaneously and discon-
tinuously; while during continuous transitions, the system state is a continuous
function of continuous time and varies according to a differential equation.
Hybrid system modelers mix discrete time reactive systems with continuous
time ones. Systems like Simulink treat explicit models made of Ordinary Differ-
ential Equations, while others like Modelica provide more general implicit mod-
els defined by Differential Algebraic Equations. A variety of models for hybrid
systems have been developed, such as hybrid automata [ACH93,Hen96,Tav87],
phase transition system [MMP91], declarative control [Koh88], extended state
transition system [ZH04], and hybrid action systems [RRS03,Ben98]. Platzer
proposed a logic called Differential Dynamic Logic for specifying properties of
hybrid systems [Pla08,Pla10]. His hybrid systems analysis approach has also
been implemented in the verification tool KeYmaera for hybrid systems. We
refer the readers to [CPP06] for an overview of languages and tools related to
hybrid systems modeling and analysis.
There are a number of specification languages developed for hybrid systems.
Inspired by the work in [He94], Zhou et al. [ZWR96] presented a hybrid vari-
ant of Communicating Sequential Processes (HCSP) [Hoa85] as a language for
describing hybrid systems. They gave a semantics in the extended duration cal-
culus [ZH04]. Rönkkö et al. [RRS03] extended the guarded command language
[Dij76] with differential relations and gave a weakest-precondition semantics in
higher-order logic with built in derivatives. Rounds and Song [RS03] developed
a hybrid version of the π-calculus [Mil99] as a modelling language for embed-
ded systems. Modelling languages for hybrid systems further include SHIFT
[Des96] for networks of hybrid automata, and R-Charon for reconfigurable sys-
tems [Kra06].
Rather than addressing the formal verification of hybrid systems using simulation
based approaches or model checking, this paper focuses on a general framework.
It uses a simple hybrid modelling language to model non-trivial interactions
between hybrid dynamics. This language captures the defining features of the
hybrid systems such as monitoring physical variables over continuous time, asyn-
chronous reacting to control signals, etc. Following the UTP approach advocated
in [HH98], we build a mathematical theory of the hybrid relations as the founda-
tion of the hybrid modelling languages. This is a presentation within predicate
calculus of Tarski’s theory of relations [Tar41], enriched with his fixed point
theory [Tar55]. We show that the hybrid relational calculus is a conservative
extension of the classical relational calculus, i.e., all the algebraic laws of the
operators remain valid in the new calculus.
The rest of the paper is organised as follows.
The hybrid relational modelling language is proposed in Sect. 2. Its semantical
model is provided in Sect. 3 with UTP approaches. Section 3.1 adds continu-
ous variables into the alphabet of relations to record the continuous dynamic
behaviors of the hybrid system.

126 H. Jifeng and L. Qin

In Sect. 3.2, healthiness conditions placed on hybrid relations are proposed to
ensure that the hybrid relations satisfy additional desirable properties related to
clocks, signals and intermediate observations between initiation and termination.
Sections 3.3 to 3.5 give a denotational semantics to every primitive command and
combinator in the hybrid modelling language including the concurrent composi-
tion and the novel synchronous constructs until and when proposed to specify
the interactions between components.
The paper ends with Sect. 4 for conclusion and future works.

2 A Hybrid Modelling Language

This section presents a hybrid modelling language, which extends the guarded
command language [Dij76] by adding output command, synchronisation con-
structs and parallel operator. The syntax of the hybrid modelling language is as
follows where x is a discrete variable, v is a continuous variable and s is a signal.

AP :: = skip | chaos | idle | x := e | x ← v | !s | delay | delay(δ)

EQ :: = R(v, v̇) | EQ init (v = e) | EQ|EQ

P :: = AP | P � P | P ;P | P � b(x) � P | P‖P | μX • P (X) |
EQ until g | when(G) | timer c • P | signal s • P

g :: = I | signal | test | g · g | g + g

test :: = true | v ≥ e | v ≤ e | ¬test | test ∧ test | test ∨ test

G :: = g& P | G[]G

AP is a collection of atomic commands. skip is an atomic program that termi-
nates immediately without changing any state value. chaos is an atomic program
that diverges immediately. idle is an atomic program that never terminates and
does not send out signals. x := e is the conventional assignment which assigns
the value of a discrete expression e to a discrete variable x. x ← v samples the
current value of a continuous variable v and assigns it to a discrete variable x.
!s emits a signal s. delay acts like skip but its terminating time is unknown in
advance. delay(δ) keeps idle and terminates after δ time units.
EQ contains statements for continuous dynamics. R(v, v̇) is a differential rela-
tion specifying the dynamics of the continuous variable v. EQ init v0 assigns
the initial value v0 to the continuous variable v governed by EQ. EQ|EQ is a
conjunction of two dynamics.
P lists all combinators in the hybrid language. The first line includes classic
sequential composition operators, parallel composition operators and recursion
operator. The first two structures in the second are new hybrid structures spec-
ifying the interactions between the continuous and discrete components of the
hybrid system. They will be introduced in detail in Sect. 3.5. The last two oper-
ations of P are hiding operators for timers and signals.

A Hybrid Relational Modelling Language 127

The last three lines of the syntax comprise the structure of a guard command
language for G which is a core element of the new hybrid structures. The guard
condition g can be a signal, a value test and their combination. The notation I
stands for a guard condition which will always be triggered immediately. g&P
is a reactive structure that will execute P when g is triggered. G[]G stands for a
guarded choice operator.

Example 1 (Temperature control system). Consider a simple hybrid system con-
trolling the temperature of a room. We use a continuous variable θ to record the
room temperature and a discrete variable H : {on, off} to denote the status of
the heater. When the room temperature is below 19 degrees, the heater will be
turned on and when the temperature exceeds 20, the heater will be turned off.
Let Δ be the changing rate of the temperature, the specification of such system
in our modelling language is as follows.

H := off ; (θ̇ = −Δ init θ = 25) until (θ ≤ 19);

when
(

θ ≤ 19 & (H := on; (θ̇ = Δ) until θ ≥ 20) []
θ ≥ 20 & (H := off ; (θ̇ = −Δ) until θ ≤ 19)

)∗

where P ∗ stands for the recursive program μX • (P ;X).

3 Semantical Model

The semantics of the hybrid language is defined based on the UTP theory. We
will first choose the alphabet and healthiness conditions for the hybrid programs
and provide the denotational semantics for every command and combinator. We
refer the readers to [HH98] for the basic notations of UTP theory. And for the
lack of space, we omit all proofs of the theorems in this section.

3.1 Alphabet

The hybrid programs studied in this paper are formalised with hybrid relations
with an enlarged alphabet including continuous variables.

Definition 1 (Hybrid Relation).
A hybrid relation is a pair (αP, P), where P is a predicate containing no free
variables other than in αP . Its alphabet αP contains sets of input and output
discrete variables and a set conαP of continuous variables.

αP = inαP ∪ outαP ∪ conαP

The input variable set inαP =df {st, t, pos} ∪ PV ar ∪ ClockV ar

where
st, st′ ∈ {term, stable, div} represent the program status at its start and finish
time respectively. The meanings of program status term, stable, div are intro-
duced in Sect. 3.2.

128 H. Jifeng and L. Qin

t, t′ ∈ Time (of the type non-negative real numbers) are discrete variables denot-
ing the start and end time instances of the observation one makes during the
execution of the program.

pos : N (of the type nature numbers) is a variable introduced to facilitate the
mechanism for describing the dependency of the signals. Its value will be recorded
in the clock of each signal when it is emitted. The detailed usage will be demon-
strated later associated with the clock variables.

PV ar denotes the set of discrete program variables.

ClockV ar denotes the set of clock variables

ClockV ar =df {s.clock | s ∈ InSignal ∪ OutSignal}
where InSignal and OutSignal stand for the sets of input signals and output
signals respectively with the constraint InSignal ∩ OutSignal = ∅.
A clock variable s.clock is a sequence of pairs with the type Time × N. For a
pair (τ, p) as an entry of the sequence, τ stands for the time instant at which
s occurs, while p denotes its emitting position in the queue of the dependent
signals that are observed at the same instant. For example, if the emission of s2
depends on the emission of s1 at time τ , then we have (τ,m) ∈ s1.clock and
(τ, n) ∈ s2.clock with m < n.

The output alphabet contains the dashed variables from input alphabet.

outαP = {x′ | x ∈ inαP}
The continuous variables in conαP are mappings from time to corresponding
physical status of the physical components, i.e., of the type Time → Real. The
set conαP = ownαP ∪ envαP is divided into two sets: ownαP and envαP
where the former comprises those continuous variables owned by the relation,
and the latter denotes the set of variables that are accessible by P but managed
by the environment. The set ownαP = phyαP ∪ timerαP includes a special
subset timerαP to specify the timers owned by P .
A refinement order can be defined over hybrid relations as follows.

Definition 2 (Refinement).
Let P and Q be hybrid relations with the same alphabet A. We will use the nota-
tion P � Q to abbreviate the formula ∀x, y, ..., u, v • (P ⇒ Q) where x, y, ..., u, v
are all the variables of the alphabet A.

3.2 Healthiness Conditions

In this section, we will introduce healthiness conditions one by one and show
that every healthiness condition obtains a subset of the previous domain and
the healthy programs form a complete lattice w.r.t. the refinement order.

Time.
To describe the dynamical behaviour of physical components we will focus on

A Hybrid Relational Modelling Language 129

those hybrid relations in which the termination time is not before its initial time.
As a result, we require a hybrid relation P to meet the following healthiness
condition:

(HC1)P = P ∧ (t ≤ t′)

A hybrid relation is called HC1-healthy if it satisfies the condition HC1.
We introduce a function H1 to turn a hybrid relation into a HC1-healthy hybrid
relation:

H1(P) =df P ∧ (t ≤ t′)

It is trivial to show that H1 is monotonic and idempotent.

Signals.
Signals are means of communications and synchronisations between different
components and between a program with its environment. In general, a signal,
denoted by its name, has two types of status, i.e., either presence or absence.
A signal is present if it is received by a program from its environment, or it is
emitted as the result of an output command.
For any signal s, we use a clock variable s.clock to record the time instants at
which s has been present. As usual, we adopt s.clock and s.clock′ to represent
the values at the start time t and the finish time t′ correspondingly. s.clock has
to be a subset of s.clock′ since the latter may be added some time instants of
[t, t′] at which the signal s is present. Consequently, we require a hybrid relation
P to meet the following healthiness condition:

(HC2)P = P ∧ inv(s)

where inv(s) =df (s.clock ⊆ s.clock′) ∧ (s.clock′ ⊆ (s.clock ∪
[t, t′] × N))

H2(P) =df P ∧ inv(s)

It is trivial to prove that the order in which H1 and H2 are composed is irrel-
evant, i.e., H1 ◦ H2 = H2 ◦ H1. With this fact, we can define a composite
mapping H12 =df H1◦H2. And it can be proved that HC1 and HC2-healthy
hybrid relations are closed under choice, conditional and sequential composition.

Theorem 1.

(1) H12(P) � H12(Q) = H12(P � Q)
(2) H12(P) � b � H12(Q) = H12(P � b � Q)
(3) H12(P);H12(Q) = H12(H12(P);H12(Q))

For simplicity, we will confine ourselves to HC1 and HC2-healthy hybrid rela-
tions in the next section.

Intermediate Observation and Divergence.
In this section, we add logical variables st and st′ to the input alphabet and the
output alphabet of a hybrid relation to describe the program status before it

130 H. Jifeng and L. Qin

starts, and the status it completes respectively. These variables range over the
set {term, stable, div}, where
st = term indicates the predecessor of the hybrid program terminates success-
fully. As a result, the control passes to the current hybrid program.
st = stable indicates its predecessor is waiting for ignition. Therefore, the hybrid
program can not start its execution because its predecessor has not finished yet.
st = div indicates the behaviour of the predecessor becomes chaotic, and it can
not be rescued by the execution of the current hybrid program.
Here we propose an order < over the set of program status:

div < stable < term
This order can be adopted to define the merge mechanism for the parallel com-
position operator in Sect. 3.5.

Example 2 (Atomic Hybrid Relations).

Let PV ar be a set of discrete data variables, and

A =df {st, t, pos} ∪ PV ar ∪ {s.clock | s ∈ OutSignal}
(1) The hybrid relation skip does nothing, and terminates immediately.

skip =df IIA � (st �= div) � H12(⊥A)
where IIA is the identity relation over set A and ⊥A =df true.

(2) chaos represents the worst hybrid program, and its behaviour is totally
unpredictable.
chaos =df H12(⊥A) � st = term � skip

(3) delay behaves like hybrid program skip except its termination time is
unknown in advance.
delay =df H12(IIA\{t}) � st = term � skip

From Theorem 1 it follows that these atomic hybrid programs are HC1 and
HC2 healthy. Note that the above atomic hybrid relations have no constraints
to the continuous variables. �

The healthiness conditions relevant to st are proposed to capture the interme-
diate observation (HC3) and divergence (HC4) features of hybrid programs.
A hybrid program P remains idle until its sequential predecessor terminates
successfully. This constraint requires P to satisfy the following healthiness con-
dition:

(HC3) P = P � st = term � skip
We can prove that all atomic hybrid programs of Example 2 are HC3-healthy.

H3(P) =df P � st = term � skip
A HC3-healthy program has skip as its left unit and chaos as its left zero.

Theorem 2 (Left unit and left zero).

(1) skip;H3(P) = H3(P)
(2) chaos;H3(P) = chaos

A Hybrid Relational Modelling Language 131

Once a hybrid program enters a divergent state, its future behaviour becomes
uncontrollable. This requires it to meet the following healthiness condition:

(HC4) P = P ; skip
H4(P) =df P ; skip

HC4-healthy programs are closed under choices, conditional and sequential com-
position.

Theorem 3.

(1) H4(P) � H4(Q) = H4(P � Q)
(2) H4(P) � b � H4(Q) = H4(P � b � Q)
(3) H4(P);H4(Q) = H4(P ;Q) provided that Q is HC3-healthy.

The composition order of H3 and H4 is irrelevant, i.e., H4 ◦ H3 = H3 ◦ H4.
Define H =df (H1 ◦ H2 ◦ H3 ◦ H4). We can prove that H is monotonic and
idempotent and H = H3 ◦ H4.
The mapping H distributes over non-deterministic choice, conditional and
sequential composition.

Theorem 4.

(1) H(P) � H(Q) = H(P � Q)
(2) H(P) � b � H(Q) = H(P � b � Q)
(3) H(P);H(Q) = H(H(P);H(Q))

The distributivity of H over parallel operators will be shown in Sect. 3.5. To sum-
marize, the healthy hybrid program domain is closed under these composition
operators.

Theorem 5.
The domain of healthy hybrid programs P =df {P | P = H(P)} and the refine-
ment order � forms a complete lattice L =df (P,�).

3.3 Atomic Commands

The definitions of atomic commands skip, chaos and delay are already given
in Example 2. One can verify that they are all healthy w.r.t. the mapping H.
Let e be an expression with only discrete variables. Assignment x := e assigns
the value of e to the discrete variable x instantaneously. It supports the discrete
state change of the hybrid programs.

(x := e) =df H(IIinα[e/x])

Let v be a continuous variable in ownα. Assignment x ← v assigns the current
value of v to the discrete variable x instantaneously. It provides a direct way
in the language for sampling the value of a continuous variable to a discrete
program variable.

(x ← v) =df H(IIinα\{x} ∧ x′ = v(t′))

The output command !s emits signal s, and then terminates immediately. Its

132 H. Jifeng and L. Qin

execution does not take time.

!s =df H(IIinα[(s.clock ∪ {(t, pos)})/s.clock])

The program idle never terminates, and keeps stable status forever.

idle =df H(IIB ∧ time−passing ∧ st′ = stable)

where

B =df {s.clock | s ∈ OutSignal}
time−passing =df

∧
c∈timerα ∀τ ∈ [t, t′) • (ċ(τ) = 1)

Let δ ≥ 0. The delay command delay(δ) suspends the execution δ time units.

delay(δ) =df H

⎛
⎜⎝

IIB ∧ time−passing ∧(
(t′ − t) < δ ∧ st′ = stable ∨
(t′ − t) = δ ∧ II{pos}∪PV ar ∧ st′ = term

)
⎞
⎟⎠

Notice that the difference between delay and delay(δ) is that the end time t′

of delay is unspecified (arbitrarily after its start time).

3.4 Dynamics of Continuous Variables

Let v be a continuous variable used to model the status of a physical device. The
continuous transitions of v governed by the physical laws can usually be specified
by a hybrid relation R(v, v̇), whose dynamic behaviour over an interval [t, t′] is
described by

R =df ∀τ ∈ [t, t′) • R(v, v̇)(τ)

Let e be an expression with only discrete variables. The hybrid relation
R init (v = e) sets the value of e as the initial value of continuous variable v.

R init (v = e) =df R ∧ (v(t) = e)

Let R1 and R2 be hybrid relations of distinct variables v and w. Their compo-
sition R1 | R2 is simply defined as the conjunction of R1 and R2:

R1 | R2 =df R1 ∧ R2

Differential equation v̇ = f(v) and differential-algebraic equation (F (v, v̇, t) = 0)
are both seen as a special kind of hybrid relations over continuous variable v.

Example 3. Let v be a continuous variables over continuous time c. A differential-
algebraic equation F (v, v̇, c) = 0 can be treated as a hybrid relation where

DF =df (t ≤ t′) ∧ ∀τ : [t, t′) • (F (v(τ), v̇(τ), τ) = 0) �
The refinement order defined for hybrid relations in Sect. 3.1 can be applied to
the relation R.

Definition 3.
Assume that R1(v, v̇) and R2(v, v̇) are equipped with the same alphabet (say
{v}), we define

R1 � R2 =df ∀t, t′,∀v • (R1 ⇒ R2)

A Hybrid Relational Modelling Language 133

It means that if a continuous variable v is a solution of R1, then it is also a
solution of R2. In other terms, R1 can be considered as a refinement of R2 since
any continuous evolvement it allows for the continuous variable v is also allowed
by R2.

3.5 Combinators

Let P and Q be hybrid programs, the combinators of the hybrid language
include the classic sequential operators, parallel operators and recursion oper-
ators. Besides, it has two hybrid reactive structures specifying the interactions
between the continuous and discrete components of the system. In this section,
we will give the definitions of the combinators.

Sequential Operators.
The sequential programming operators, including nondeterministic choice
P � Q, conditional choice P � b � Q and sequential composition P ;Q can be
defined by the same predicates as in [HH98] but over the enriched alphabet for
hybrid relations satisfying healthiness conditions. For lack of space, we only give
the definition of P ;Q for example.

Definition 4 (Sequential Composition).
Let P and Q be hybrid relations with outαP = {x′ | x ∈ inαQ}, ownαP =
ownαQ and envαP = envαQ. The sequential composition P ;Q is defined by
the following predicate:

P ;Q =df ∃m • P [m/x′] ∧ Q[m/x]

with α(P ;Q) =df inαP ∪ outαQ ∪ conαP .

The sequential composition operator enjoys the same set of algebraic laws as its
counterpart given in [HH98].

Parallel Operators.
Before we get to the definition of the parallel composition of hybrid programs, we
first revisit two notions of parallel composition operators that will be employed
in the definition.

Definition 5 (Disjoint Parallel Operator).
Let P and Q be hybrid relations with disjoint outα and ownα. The notation
P | Q represents the following hybrid relation

P | Q =df P ∧ Q

with inα(P | Q) =df inαP ∪ inαQ, ownα =df ownαP ∪ ownαQ and
envα =df (envαP \ ownαQ) ∪ (envαQ \ ownαP).

The operator | is symmetric and associative. It distributes over conditional, and
has II∅ as its unit. Moreover, | and ; satisfy the mutual distribution law.
For programs whose outα and ownα are overlapped, we employ a parallel by
merge operator to merge the results of the parallel components.

134 H. Jifeng and L. Qin

Definition 6 (Merge Mechanism).
A merge mechanism M is a pair (x : Val, op), where x is a variable of type Val,
and op is a binary operator over Val.

Definition 7 (Parallel by Merge).
Let P and Q be hybrid relations with the shared output x′ and its merge mecha-
nism M = (x : Val, op). We define their parallel composition by merge, denoted
P ‖M Q, as follows:

P ‖M Q =df ∃m, n : Val •
(

P [m/x′] ∧ Q[n/x′] ∧
x′ = op(m, n)

)

with inα(P ‖M Q) =df inαP ∪ inαQ, ownα(P ‖M Q) =df ownαP ∪ ownαQ
and envα(P ‖M Q) =df (envαP \ ownαQ) ∪ (envαQ \ ownαP).

With the above notions of parallel operator, we can define the semantics of
general parallel composition P ‖ Q. We need to merge the program status st
and the pos variables from both components.

For st, we select the merge operator for the program status as the greatest lower
bound, i.e., glb (remember that we have the order div < stable < term).

For pos, we select the merge operator as max which selects the greater value.

Definition 8 (Parallel Operator for Hybrid Programs).

Let P and Q be hybrid programs satisfying the following conditions:

PV ar(P) ∩ PV ar(Q) = ∅, ownα(P) ∩ ownα(Q) = ∅,
timerα(P) ∩ envα(Q) = ∅, timerα(Q) ∩ envα(P) = ∅ and

OutSignal(P) ∩ OutSignal(Q) = ∅
The parallel composition P ‖ Q is equipped with the following alphabet:

PV ar =df PV ar(P) ∪ PV ar(Q), phyα =df phyα(P) ∪ phyα(Q),

timerα =df timerα(P) ∪ timerα(Q),

envα =df (envα(P) \ ownα(Q)) ∪ (envα(Q) \ ownα(P)),

InSignal =df (InSignal(P)\OutSignal(Q))∪(InSignal(Q)\OutSignal(P)),

OutSignal =df OutSignal(P) ∪ OutSignal(Q).

The dynamic behaviour of P ‖ Q is described by

P ‖ Q =df (((P ;delay) ‖M Q) ∨ (P ‖M (Q;delay))); skip

where the merge mechanism M is defined by

M =df ((st, pos) :

(
({term, stable, div}, N),

(glb, max)

)

The delay commands are used to synchronise the end time of the two compo-
nents and the successive skip command makes the program satisfy HC4. The

A Hybrid Relational Modelling Language 135

merge mechanism M merges the status of the parallel components with a great-
est lower bound operator. For example, if st′ of P is term and st′ of Q is stable,
then the st′ of P ‖ Q is stable. It also merges the pos′ for the output signals to
be the greater one, i.e. if pos′ of P is m and pos′ of Q is n, then the pos′ of P ||Q
is max(m,n).

With the definition of the merge mechanism M , we can obtain that the domain
of healthy hybrid relations is closed w.r.t. parallel composition.

Theorem 6.
If P and Q is healthy hybrid relations, i.e., P = H(P) and Q = H(Q), then so
does P‖MQ, i.e., P‖MQ = H(P‖MQ).

The parallel composition is symmetric and associative, and distributes over con-
ditional and nondeterministic choices. Furthermore, it has skip and chaos as its
unit and zero respectively. Moreover, the parallel composition has a true concur-
rent semantics: parallel components proceed independently and simultaneously.

Theorem 7.

(1) (x := e;P) ‖ Q = (x := e); (P ‖ Q)
(2) (delay(δ);P) ‖ (delay(δ);Q) = delay(δ); (P ‖ Q)
(3) delay(ε) ‖ delay(δ) = delay(max(ε, δ))

Guard Condition.
This subsection focusses on the guard conditions that will appear in the new
hybrid structures when and until which will be defined in the next section.
In our hybrid language, the guard condition supports the following form:
(1) value test: monitoring the value changing of a continuous variable. (2) signal:
monitoring the emission of a signal. (3) their combinations via operator · and +.
Like the hybrid automata, our language supports a transition when the value
of a continuous variable exceeds a given bound. In addition, our language can
support the reactions to receiving certain signals from the environment.

Example 4 (Gear shifting). Consider a car-driving control system. For a manual
transmission car, its accelerating process can be divided into 4 shifting modes
depending on the running gears. Assume that the proper speed interval for shift-
ing from gear 1 to gear 2 is 20 kph to 30 kph. The car will change gear from 1
to 2 when (1) the current speed lies in the interval, and (2) the driver pushes
the gear lever from 1 to 2. Let signal gear up means the driver pushes the gear
lever, the specification of the shifting can be written as follows.

when ((20 < v ≤ 30) · gear up & Gear2)

where v is a continuous variable representing the speed of the car; Gear2 repre-
sents the specification for the running mode of the car with gear 2. The guard
condition involves both value testing and signal reception. �

136 H. Jifeng and L. Qin

To specify the reactive behaviours, we need to define the trigger condition of
the guards. We introduce the following function fired to specify the status of a
guard g over time interval:

g.fired : Interval → Time → Bool

where for any τ ∈ [t, t′], g.fired([t, t′])(τ) = true indicates g is fired at the
time instant τ . In other terms, given a time instant τ within the time interval
[t, t′], the function tells us whether the guard g is fired at τ .
This function is defined by induction as follows:

1. I is ignited immediately after it starts its execution.
I.fired([t, t′])(τ) =df (τ = t)

2. s is fired whenever an input signal s is received.
s.fired([t, t′])(τ) =df ∃n ∈ N • (τ, n) ∈ s.clock′

3. test is fired whenever the value of expression test is true at that time instant.
test.fired([t, t′])(τ) =df test(τ)

4. the composite guard g1 · g2 is fired only when both g1 and g2 are fired simul-
taneously.

(g1 · g2).fired =df g1.fired ∧ g2.fired
5. the composite guard g1 + g2 is fired when either g1 or g2 is fired.

(g1 + g2).fired =df g1.fired ∨ g2.fired

Two guards are identical if they have the same firing function:
(g = h) =df (g.fired = h.fired)

From the above definitions and the properties of predicate combinators we con-
clude that both guard combinators · and + are idempotent, symmetric and
associative, and furthermore · distributes over +.

Theorem 8.

(1) (Guard, +, ·, true, false) forms a Boolean algebra.
(2) g + true = true.
(3) g · false = false.

We say g is weaker than h (denoted by g ≤ h), if the ignition of h can awake g
immediately:

g ≤ h =df h = (h · g)
From Theorem 8(1) it follows that ≤ is a partial order. Then we have

g ≤ h iff g = (g + h).
In order to specify the blocking behaviour of the when construct, we need to
define a trigger condition for the guard condition so that it is fired at the endpoint
of a time interval and before that it remains unfired. To identify such cases we
introduce the boolean function g.triggered : Interval → Bool.

g.triggered([t, t′]) =df

(
g.fired([t, t′])(t′) ∧
∀τ ∈ [t, t′) • ¬g.fired([t, t′])(τ)

)

A Hybrid Relational Modelling Language 137

To specify those cases when the guard g remains inactive we introduce the
boolean function g.inactive : Interval → Bool.

g.inactive([t, t′]) =df ∀τ ∈ [t, t′] • ¬g.fired([t, t′])(τ)

Note that g.triggered �= ¬g.inactive. For example, let g be (c = 3) where
c is a timer. For the interval [0, 4], we have both g.triggered = false and
g.inactive = false since g.fired([0, 4])(3) = true.
The corresponding boolean functions for the composition of guards have the
following properties.

Theorem 9.

(1) (g1+g2).triggered =

(
g1.triggered ∧ (g2.triggered ∨ g2.inactive) ∨
g2.triggered ∧ (g1.triggered ∨ g1.inactive)

)

(2) (g1 + g2).inactive = g1.inactive ∧ g2.inactive

When Statement.
With the boolean functions triggered and inactive defined above, we can define
the semantics of the when construct.
The program when(g1&P1[]....[]gn&Pn) waits for one of its guards to be fired,
then selects a program Pi with the ignited guard to be executed. It is much
like the conventional guarded choice construct except that its guards refer to
continuous variables and signals whose status change through time.
In detail, the behaviour of when(g1&P1[]....[]gn&Pn) can be interpreted as fol-
lows.

(1) It will keep waiting (st′ = stable) when every guard is inactive in its execu-
tion interval [t, t′].

(2) It will execute Pi when gi is triggered during its execution interval [t, t′].
If more than one guard is triggered, the triggered branches are selected
nondeterministically.

Definition 9.

when(g1&P1[]....[]gn&Pn) =df

H(st′ = stable ∧ IIB ∧ time−passing ∧ (g1 + ... + gn).inactive)) ∨
∨

1≤i≤n

H

(
st′ = term ∧ IIPV ar∪B ∧ time−passing ∧ update(pos, gi) ∧
gi.triggered ∧ (g1 + .. + gn).triggered

)
; Pi

where

B =df {s.clock | s ∈ OutSignal}
update(pos, g) =df (pos′ = pos) � g ∩ Signal = ∅ � (pos′ > max(pos, index(g))

index(g) =df max({0} ∪ {π2(last(s.clock′)) | s ∈ g})

138 H. Jifeng and L. Qin

The update(pos, g) makes sure that the variable pos′ records the maximum
index of the signals emitted at the same time so far.
From Theorem 4 we conclude that when(g1&P1[]...[]gn&Pn) lies in the complete
lattice L introduced in Theorem5 whenever all guarded programs Pi are elements
of L. In other words, the healthy hybrid relation domain is closed w.r.t. the when
construct.

Some interesting algebraic laws of the when statement are listed below:

Theorem 10.

(1) The guards of the same guarded branch can be composed by + operator.
when(g1&P [] g2&P [] G) = when((g1 + g2)&P [] G)

(2) The effect of true guard is equivalent to the guard I.
when(true&P [] G) = when(I&P [] G)

(3) The successive program of the when construct can be distributed to every
branch of the when construct.
when(g1&P1 []...[] gn&Pn);Q = when(g1&(P1;Q) []...[] gn&(Pn;Q))

(4) The previous assignment can be distributed to every branch of the when
construct.

(x := e);when(g1&P1 []...[] gn&Pn)

= when(g1[e/x]&(x := e;P1) []...[] gn[e/x]&(x := e;Pn))
(5) The branches with the same guard can be combined with nondeterministic

choice.
when(g&P [] g&Q [] G) = when(g&(P � Q) [] G)

(6) A branch with conditional choice can be divided into two branches.

when(g&(P � b � Q) [] G) = when((b · g)&P [] (¬b · g)&Q [] G)

Until Statement.
The statement R until g specifies a hybrid program where the change of the con-
tinuous variables is governed by the hybrid relation R until the guard condition
g is triggered. It is suitable to specify the behaviour of the control plant which
evolves accordingly until receiving control signals from the controlling device.

Definition 10.
Let R(v, v̇) be a hybrid relation specifying the dynamics of the continuous vari-
able v. Let g be a guard. Assume that all the signals of g are included in the
alphabet of R, then

α(R until g) =df αR

and the behaviour of R until g is described by

R until g =df H

⎛
⎜⎜⎜⎜⎝

(
st′ = stable ∧ IIB ∧ R ∧
time−passing ∧ g.inactive

)
∨

(
st′ = term ∧ IIPV ar∪B ∧ update(pos, g) ∧ R ∧
time−passing ∧ g.triggered

)

⎞
⎟⎟⎟⎟⎠

A Hybrid Relational Modelling Language 139

where B =df {s.clock | s ∈ OutSignal}.
The R until g statement will keep stable when the guard g is inactive during the
execution interval where the continuous variables evolve as the hybrid relation
R specifies. It will terminate when the guard g is triggered.

Theorem 11.
The until constructor is monotonic with respect to its hybrid relation component.

If R1 � R2 then (R1 until g) � (R2 until g).

Example 5 (Bouncing ball). Consider the bouncing ball system. Let q be a
continuous variable indicating the distance between the ball and the floor. The
dynamics of the ball in its falling phase can be specified as follows.

Fall =df ((q ≥ 0 ∧ q̈ = −g) init q̇ = 0) until q = 0

where g is the acceleration imposed by gravity.
When the ball hits the ground at time τ , its velocity q̇ will change to −rq̇(τ)
instantaneously where r is a restitution coefficient ranging over (0, 1]. In order
to set the initial value of q̇ for the bouncing-back phase, we use the sampling
assignment x ← q̇ to copy the value of q̇(τ) to a discrete variable x after Fall.

The dynamics of the ball in its bouncing-back phase can be specified as follows.

Bounce =df ((q ≥ 0 ∧ q̈ = −g) init q̇ = −rx) until q̇ = 0

In summary, the bouncing ball system with the initial height h0 > 0 from the
ground can be specified as

BBall =df (q ← h0); (Fall; (x ← q̇);Bounce)∗.

Note that when r < 1, the initial position of the ball in the falling phase is
decreased for each iteration. It results to Zeno behaviour when the execution
time is large enough and the time cost for each iteration becomes significantly
close to 0. In this case, the process can perform infinite transitions within a very
small time interval, which is considered as chaos in our model. To avoid the
Zeno behaviour, we let the system stop bouncing when the speed of the ball is
smaller than a small enough value δ.

Non Zeno BBall =df (q ← h0); (Fall; (x ← q̇); (Bounce � x ≥ δ � idle))∗ �

Signal Hiding.
Let P be a program, and s an output signal of P . The signal hiding operator
signals • P makes the signal s a bounded signal name of P which cannot be
observed by P ’s environment. Through signal hiding operator, the scope of a
signal can be set by the designers so that only the parallel components can react
to a signal. It is helpful when modeling a distributed hybrid system where each
component has limited communication capacity.

Definition 11 (Signal Hiding).
The signal hiding statement signal s • P behaves like P except that s becomes
invisible to its environment.

140 H. Jifeng and L. Qin

signal s • P =df ∃s.clock′ • P [ε/s.clock]

with α(signal s • P) =df α(P) \ {s.clock, s.clock′}
where ε denotes the empty sequence.

Timer Declarations.
Let P be a hybrid program, and c a timer of P . The timer declaration operator
timer c • P declares P as the region of permitted use of timer c. A timer c is a
special continuous variable with its derivation ċ = 1.

Definition 12 (Timer declaration).
The timer declaration statement set c to be a local timer of P starting from 0.

timer c • P =df ∃c • P [0/c[t]]

with α(timer c • P) =df α(P) \ {c}

The timer declaration operator facilitates the modeling of time-out mechanism
which is one of the common reaction mechanisms in hybrid systems.

Example 6. Consider a control requirement that a program will execute P when
a signal s is received within 3 s, otherwise, it will execute Q. This requirement
can be specified with the time-out mechanism as follows.

timer c • when((c < 3) · s & P [] (c ≥ 3) & Q) �

Theorem 12.
The delay command can be rewritten as the following time-out form.

delay(δ) = timer c • idle until (c ≥ δ)

Recursion.
Based on the conclusion in Sect. 3.2 and the combinators defined in above subsec-
tions, the healthy hybrid programs form a complete lattice L and is closed w.r.t.
all above combinators. In this sense, we can obtain the semantics of recursive
programs in this domain.

Definition 13 (Recursion).
A recursive program is defined as the weakest fixed point, denoted as μX.F (X),
of the equation X = F (X) in the complete lattice L.

The notation νX.F (X) is used to stand for the strongest fixed point of the above
equation. The fixed points μF and νF are subject to the following laws:

Theorem 13.

(1) Y � μX.F (X) whenever Y � F (Y)
(2) νX.F (X) � Y whenever F (Y) � Y
(3) If F (X) � G(X) for all X, then μX.F (X) � μX.G(X) and νX.F (X) �

νX.G(X).

A Hybrid Relational Modelling Language 141

For simplicity we will use the notation P ∗ to stand for the recursive program
μX.(P ;X).
Theorem 14.
If P � Q then P ∗ � Q∗

Following the concept of approximation chain explored in [HH98], we are going
to show that under some conditions the strongest and weakest fixed points of
the equation X = P ;X are in fact the same.
Theorem 15.
If there exists l > 0 such that P [term, term/st, st′] � (t′ − t) ≥ l, then
(1) μX.(P ;X) = νX.(P ;X)
(2) P ∗ � S whenever (P ;S) � S

This theorem provides us a verification approach for the iterative program in
which each iteration takes some time to finish. In other terms, it does not consider
the programs with Zeno behaviours. According to this theorem, to prove that
the non-Zeno iterative program satisfy a given specification, it is sufficient for
us to prove its single iteration does not violate the specification.
For the systems that contains Zeno behaviour, we need to change the specifi-
cation to make an approximation for avoiding the Zeno behaviour by setting a
lower bound to the interval for each iteration. It can be reviewed in Example 5.

4 Conclusion

This paper proposes a hybrid modelling language, where the discrete transitions
are modelled by assignment and output as zero time actions, while the contin-
uous transitions of physical world are described by differential equations and
synchronous constructs. We adopt a signal-based interaction mechanism to syn-
chronise the activities of control programs with physical devices. A rich set of
guard compositions allows us to construct sophisticated firing conditions of the
transition of physical devices.
Compared with hybrid automata and HCSP, our language enriches the inter-
action mechanisms between processes via supporting asynchronous reactions to
more complicated guards allowing combinations of testing and signals inspired
by Esterel language. Besides, our language is equipped with true concurrency
semantics of parallel composition and the communications between components
are not restricted to fixed channels. In our language, the physical state of the
system can be observed by all control programs and the signals can be exchanged
between them with engineered protocols. It can specify the coordination control
patterns in many modern control scenarios in which a set of physical objects are
controlled by a network of control components.
In the future we plan to work on a proof system for hybrid program based on
the algebraic laws obtained from the UTP semantics of the hybrid language.
Besides the conventional sequential combinators, the proof system will focus on
verification of parallel programs. We also intend to carry out non-trivial case
studies with multiple physical objects and network of control components using
the hybrid language and the proof system.

142 H. Jifeng and L. Qin

References

[dSS00] van der Schaft, A.J., Schumacher, J.M.: An Introduction to Hybrid Dynam-
ical Systems. Springer, Verlag (2000)

[Bra95] Branicky, M.S.: Studies in hybrid systems: modeling, analysis, and control.
Ph.D. Thesis, EECS Department, Massachusetts Institute of Technology
(1995)

[ACH93] Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.-H.: Hybrid automata: an
algorithmic approach to the specification and verification of hybrid systems.
In: Grossman, R.L., Nerode, A., Ravn, A.P., Rischel, H. (eds.) HS 1991-
1992. LNCS, vol. 736, pp. 209–229. Springer, Heidelberg (1993). doi:10.1007/
3-540-57318-6 30

[Ben98] Benveniste, A.: Compositional and uniform modelling of hybrid systems.
IEEE Trans. Autom. Control 43(4), 579–584 (1998)

[BCP10] Benveniste, A., Cailland, B., Pouzet, M.: The fundamentals of hybrid system
modelers. In: CDC, pp. 4180–4185. IEEE (2010)

[BG92] Berry, G., Gonthier, G.: The esterel synchronous programming language:
design, semantics and implementation. Sci. Comput. Program. 19(2), 87–
152 (1992)

[Ber96] Berry, G.: Constructive semantics of Esterel: from theory to practice
(abstract). In: Wirsing, M., Nivat, M. (eds.) AMAST 1996. LNCS, vol. 1101,
pp. 225–225. Springer, Heidelberg (1996). doi:10.1007/BFb0014318

[CPP06] Carloni, L.P., Passerone, R., Pinto, A.: Languages and tools for hybrid sys-
tems design. Found. Trends Electron. Des. Autom. 1(1/2), 1–193 (2006)

[Des96] Deshpande, A., Göllü, A., Varaiya, P.: SHIFT: a formalism and a program-
ming language for dynamic networks of hybrid automata. In: Antsaklis, P.,
Kohn, W., Nerode, A., Sastry, S. (eds.) HS 1996. LNCS, vol. 1273, pp. 113–
133. Springer, Heidelberg (1997). doi:10.1007/BFb0031558

[Dij76] Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall, Englewood
Cliffs (1976)

[He94] Jifeng, H.: From CSP to hybrid systems. In: Roscoe, A.W. (ed.) a classical
mind: essays in honour of C.A.R. Hoare, pp. 171–189 (1994)

[He03] Jifeng, H.: A clock-based framework for constructions of hybrid systems. In:
The Proceedings of ICTAC 2013 (2013)

[Hen96] Henzinger, T.A.: The theory of hybrid automata. In: LICS, pp. 278–292.
IEEE Computer Society (1996)

[Hoa85] Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall, Upper
Saddle River (1985)

[HH98] Hoare, C.A.R., Jifeng, H.: Unifying Theories of Programming. Prentice Hall,
Englewood Cliffs (1998)

[Koh88] Kohn, W.: A declarative theory for rational controllers. In: Proceedings of
27th CDC, pp. 130–136 (1988)

[Kra06] Kratz, F., Sokolsky, O., Pappas, G.J., Lee, I.: R-Charon, a modeling lan-
guage for reconfigurable hybrid systems. In: Hespanha, J.P., Tiwari, A. (eds.)
HSCC 2006. LNCS, vol. 3927, pp. 392–406. Springer, Heidelberg (2006).
doi:10.1007/11730637 30

[MMP91] Maler, O., Manna, Z., Pnueli, A.: Prom timed to hybrid systems. In: Bakker,
J.W., Huizing, C., Roever, W.P., Rozenberg, G. (eds.) REX 1991. LNCS,
vol. 600, pp. 447–484. Springer, Heidelberg (1992). doi:10.1007/BFb0032003

http://dx.doi.org/10.1007/3-540-57318-6_30
http://dx.doi.org/10.1007/3-540-57318-6_30
http://dx.doi.org/10.1007/BFb0014318
http://dx.doi.org/10.1007/BFb0031558
http://dx.doi.org/10.1007/11730637_30
http://dx.doi.org/10.1007/BFb0032003

A Hybrid Relational Modelling Language 143

[Mil99] Milner, R.: Communicating and Mobile Systems: the π-calculus. Cambridge
University Press, New York (1999)

[Pla08] Platzer, A.: Differential dynamic logic: automated theorem proving for
hybrid systems. Ph.D. thesis, Department of Computing Science, Univer-
sity of Oldenburg (2008)

[Pla10] Platzer, A.: Logical analysis of hybrid systems. In: Kutrib, M., Moreira, N.,
Reis, R. (eds.) DCFS 2012. LNCS, vol. 7386, pp. 43–49. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-31623-4 3

[RRS03] Ronkko, M., Ravn, A.P., Sere, K.: Hybrid action systems. Theoret. Comput.
Sci. 290(1), 937–973 (2003)

[RS03] Rounds, W.C., Song, H.: The Ö-calculus: a language for distributed control
of reconfigurable embedded systems. In: Maler, O., Pnueli, A. (eds.) HSCC
2003. LNCS, vol. 2623, pp. 435–449. Springer, Heidelberg (2003). doi:10.
1007/3-540-36580-X 32

[Sim] Simulink. www.mathworks.com/products/simulink/
[Tar41] Tarski, A.: On the calculus od relations. J. Symbolic Logic 6(3), 73–89 (1941)
[Tar55] Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pac.

J. Math. 5, 285–309 (1955)
[Tav87] Tavermini, L.: Differential automata and their discrete simulations. Non-

Linear Anal. 11(6), 665–683 (1987)
[ZH04] Chen, Z.C., Hansen, M.R.: Duration Calculus: A Formal Approach to Real-

time Systems. Springer, Heidelberg (2004)
[ZWR96] Chaochen, Z., Ji, W., Ravn, A.P.: A formal description of hybrid systems.

In: Alur, R., Henzinger, T.A., Sontag, E.D. (eds.) HS 1995. LNCS, vol. 1066,
pp. 511–530. Springer, Heidelberg (1996). doi:10.1007/BFb0020972

http://dx.doi.org/10.1007/978-3-642-31623-4_3
http://dx.doi.org/10.1007/3-540-36580-X_32
http://dx.doi.org/10.1007/3-540-36580-X_32
www.mathworks.com/products/simulink/
http://dx.doi.org/10.1007/BFb0020972

	A Hybrid Relational Modelling Language
	1 Introduction
	2 A Hybrid Modelling Language
	3 Semantical Model
	3.1 Alphabet
	3.2 Healthiness Conditions
	3.3 Atomic Commands
	3.4 Dynamics of Continuous Variables
	3.5 Combinators

	4 Conclusion
	References

