
Abstractions for Transition Systems
with Applications to Stubborn Sets

Henri Hansen(B)

Department of Mathematics, Tampere University of Technology, Tampere, Finland
henri.hansen@tut.fi

Abstract. Partial order reduction covers a range of techniques based
on eliminating unnecessary transitions when generating a state space.
On the other hand, abstractions replace sets of states of a system with
abstract representatives in order to create a smaller state space. This
article explores how stubborn sets and abstraction can be combined. We
provide examples to provide intuition and expand on some recent results.
We provide a classification of abstractions and give some novel results
on what is needed to combine abstraction and partial order reduction in
a sound way.

1 Introduction

The term partial order reduction refers to methods that combat state explosion
by eliminating unnecessary transitions. This article focuses on stubborn sets [20].
The theory as presented here, mostly applies to also ample [17] and persistent [9]
sets. We use the term “stubborn set method” or “partial order reduction” to
mean any method that attempts to reduce the size of a state space by exploring
some subset of enabled transitions in each state of a state.

The term abstraction [3] refers to methods that eliminate some features of a
system, by mapping the states of a to a smaller set. The goal of abstraction is to
preserve counterexamples to specifications while bringing down the complexity
of model checking. Abstractions can be thought of as equivalence relations over
states and an abstract state space is generated by expanding the relevant transi-
tions that are enabled in the equivalence class. In this sense abstraction includes
also methods such as symmetry [5]. Abstractions have been combined with par-
tial order reduction methods both in the early literature and more recently.
Significant synergistic benefits between abstraction and reduction was gained
with a relaxed zone abstraction of timed automata [11]. In [1], partial order
reduction was combined with an abstraction that replaces bisimilar states with
a common representative. We discuss the result in this article.

We take the view in this article that transitions of systems are inherently
deterministic, i.e., each transition has a unique outcome. We use the term firing
for the execution of a single transition. Abstraction may then result in nonde-
terminism, because an abstraction may not distinguish between two states from
which a given transition is fired, while still differentiating between the states
that result when the transition is fired.
c© Springer International Publishing AG 2017
T. Gibson-Robinson et al. (Eds.): Roscoe Festschrift, LNCS 10160, pp. 104–123, 2017.
DOI: 10.1007/978-3-319-51046-0 6



Abstractions for Transition Systems with Applications to Stubborn Sets 105

The interpretation of the transitions from a semantic standpoint is done
by associating transitions with actions. Several transitions may be associated
with she same action, and this gives rise to the concept of operational (non)
determinism, which refers to whether the external behavior of the system is
deterministic. The relationship between operational determinism and abstraction
is a complicated one, and we provide some insights on the issue in this article.

This article is organized so that we first explore a general theory of tran-
sition systems in Sect. 2, which gives the ground theory and semantic models,
and also some results regarding determinism. Section 3 defines abstractions and
abstract state spaces, and we prove that general abstractions behave monoto-
nously only with linear time semantic models that are not significantly stronger
than traces and divergence traces. Then, a state-of-the art version of stubborn
sets for preservation of safety properties and some divergence properties are
given in Sect. 4. We also discuss some static relations of transitions that can be
used for the computation of stubborn sets.

Section 5 provides results about how stubborn sets can be combined with
abstraction. We provide a few theorems for certain classes of abstractions, to
show how relations for computing the stubborn sets generalize for the abstract
state spaces. We also provide some examples that show that the results do not
apply for abstractions in general.

The last section provides some concluding remarks and outlines future work.

2 Theoretical Preliminaries

We consider a system where transitions operate on a collection of n variables
with domains X1, . . . , Xn. The domains will in most cases be numerable, but this
need not be the case in general. For example, in the case of timed automata,
clocks can assume non-negative real values. We denote the set of syntactically
possible states by X = X1 × · · · × Xn.

A transition is a pair (g, e), where g : X → {true, false} is called a guard and
e : X → X is called an effect. The set of transitions of the system is denoted
with T .

The initial value of a system is denoted x̂ ∈ X. We call the tuple (X, T , x̂) a
system description, or simply a system.

The execution semantics of a system are defined over labeled transition sys-
tems (LTS s).

Definition 1 (LTS-unfolding). An LTS is a 4-tuple (S, T ,Δ, ŝ), where S is
a set of states, Δ ⊆ S × T × S is a set of semantic transitions, and ŝ ∈ S is
the initial state.

Given a system M = (X, T , x̂), the LTS-unfolding of the system M is given
as L = (S, T ,Δ, ŝ) where

– ŝ = x̂.
– Δ and S are defined as the minimal sets such that



106 H. Hansen

1. x̂ ∈ S, and
2. whenever (g, e) = t and t ∈ T , x ∈ S and g(x) = true, then e(x) ∈ S and

(x, t, e(x)) ∈ Δ.

We refer to the LTS-unfolding of the system as the concrete state space of M .

Given an LTS, we define the following notation for convenience. We write
s

t−→ s′, when (s, t, s′) ∈ Δ. s
t−→ means that ∃s′ : s

t−→ s′. s � t−→ means that
s

t−→ does not hold. For a sequence t1t2 · · · tn ∈ T ∗, s
t1···tn−−−−→ s′ means that

∃s0, . . . , sn such that s = s0 ∧ s′ = sn and, for 0 < i ≤ n, si−1
ti−→ si. When

we write s0
t1···tn−−−−→ sn, we let si for 0 < i ≤ n, denote the state such that

s0
t1···ti−−−→ si. The set en(s) = {t ∈ T |s t−→} refers to transitions enabled at s and

dis(s) = T \en(s) refers to actions disabled at s.
Because an effect of a transition is a function, a concrete state space is always

deterministic, i.e., if s
t−→ s′ and s

t−→ s′′, then s′ = s′′.
The properties of the system are determined as behaviours interpreted over

a set of symbols Σ, called actions or events. We assume that a mapping l :
T → Σ ∪ {ε} is given and fixed, and extended to Σ∗ in the usual manner by
concatenating, i.e., for l(t1 · · · tn) = l(t1)l(t2) · · · l(tn), and ε denotes the empty
string. We write s

σ=⇒ s′ when there are transitions t1, . . . , tn such that s
t1···tn−−−−→ s′

l(t1 · · · tn) = σ.
In keeping with tradition, when there is some t ∈ T such that l(t) = a and

s
t−→ s′, we also write s

a−→ s′, except when a = ε, when we write s
τ−→ s′. We

refer to such transitions as τ -transitions or invisible transitions. We write σ ≤ ρ
if σ is a prefix of ρ and σ < ρ if it is a proper prefix.

A semantic model is an equivalence or pre-order relation for systems or LTSs.
For the purpose of this article, we consider semantics over LTSs. Two systems
are considered equivalent if and only if their concrete state spaces are equivalent.

There are several semantic models which can be considered, we shall con-
sider only a few most relevant. Note that we restrict this study to linear time
properties. The sets of traces, divergence traces, failures, and stable failures of
an LTS are defined as:

Tr(L)= {σ ∈ Σ∗ | ŝ
σ=⇒}

Divtr(L) = {σ ∈ Σ∗ | ∃s : ŝ
σ=⇒ s ∧ s

τω

−−→}
Mindiv(L)= {σ ∈ Divtr(L) | ∀ρ < σ : ρ /∈ Divtr(L)}
Fail(L)= {(σ, F ) ∈ Σ∗ × 2Σ | ∃s : ŝ

σ=⇒ s ∧ ∀a ∈ F : ¬(s a=⇒)}
Sfail(L)= {(σ, F ) ∈ Σ∗ × 2Σ | ∃s : ŝ

σ=⇒ s ∧ ∀a ∈ F ∪ {τ} : ¬(s a−→)}
CSP(L)= Sfail(L) ∪ {(σ,X) | ∃ρ : ρ ≤ σ ∧ ρ ∈ Divtr(L) ∧ X ∈ 2Σ}

The CSP-set is known as the failures-divergences-model, which is named like
this as it is commonly associated with the process-algebra CSP [18]. It preserves
Sfail up to minimal divergence traces, and all divergence traces are extended with
maximal behaviour in terms of Sfail. It is also worth to mention the so called
CFFD-equivalence [24], which preserves infinite traces, Sfail, and Divtr. It also



Abstractions for Transition Systems with Applications to Stubborn Sets 107

preserves, under suitable interpretation, all linear temporal logic properties of a
system. A comprehensive survey of different semantic models and epistemological
considerations behind them can be found in [26].

Let L1 and L2 be LTSs. We write L1 �Tr L2 if and only if Tr(L1) ⊆ (L2).
For the other semantic sets L1 �X L2 is defined analogously. We also write
L1 �X,Y L2 to mean L1 �X L2 ∧ L1 �Y L2 If L1 �X L2 and L2 �X L1, we say
that L1 and L2 are X-equivalent, and write L1 ≡X L2. We also write M1 �X M2

if and only L1 �X L2, where L1 and L2 are concrete state spaces of M1 and
M2. We abuse the notation slightly by writing Tr(s) = {σ | s

σ=⇒} and s �X s′

for states analogously.
We distinguish between determinism of the transition system, and operational

determinism, i.e. determinism from the point of view of the actions it performs.
Operational determinism, also known as determinacy [12,16] is defined as fol-
lows.

Definition 2. An LTS L = (S, T ,Δ, ŝ) is operationally deterministic if and
only if for all traces σ, if ŝ

σ=⇒ s1 and ŝ
σ=⇒ s2, then

1. For each a ∈ Σ, s1
a=⇒ if and only if s2

a=⇒, and
2. s1

τω

−−→ if and only if s2
τω

−−→.

Except for the treatment of divergences, all the semantic equivalences between
trace + divergence trace equivalence and divergence sensitive branching bisimu-
lation collapse into one equivalence for operationally deterministic LTSs [6,12].

The following theorem is evident.

Theorem 1. For every LTS L, there exists an operationally deterministic LD

such that L ≡Tr,Divtr LD.

For trace equivalence the theorem is well-known, and for finite LTSs a simple
variant of the block-splitting algorithm produces exactly the equivalent LTS. For
divergence traces, it is sufficient to store a local τ -loop in diverging states.

We provide a significant strengthening of [12, Corollary 1]. The following
lemma applies in the absence of divergences.

Lemma 1. Assume there are no divergences and L1 ≡Fail L2. Then L1 is oper-
ationally deterministic if and only if L2 is.

Proof. Let ŝ1
σ=⇒ s1 in L1. Now, there must be a state s2 of L2 such that ŝ2

σ=⇒ s2,
due to trace equivalence, which is implied by Fail-equivalence. Assume that L1

is operationally deterministic and denote by F1 = {a ∈ Σ | ¬(s1
a=⇒)} and

F2 = {a ∈ Σ | ¬(s2
a=⇒)}. Firstly, assume a /∈ F1. If ¬(s2

a=⇒), F2 �= F1, which
contradicts Fail-equivalence. Secondly, assume a ∈ F1. Then σa is not a trace of
L1 because L1 is operationally deterministic, so that a ∈ F2 must also hold. This
implies F2 must be the same for every such state and hence L2 is operationally
deterministic. ��

Theorem 2. Let L1 ≡Divtr,Sfail L2. Then L1 is operationally deterministic if and
only if L2 is.



108 H. Hansen

Proof. Assume L1 is operationally deterministic. Let ŝ1
σ=⇒ s1 in L1 and ŝ2

σ=⇒
s2 in L2. If s1 is not diverging, s2 cannot be diverging either due to Divtr-
equivalence. Lemma 1 guarantees then that s1 and s2 must agree on failures.

If s1 is diverging, then σ ∈ Divtr(L1), and (σ,X) /∈ Sfail(L1) for any X. Thus
s2 must also be diverging, or there would be (σ,X) ∈ Sfail(L2) for some X,
which would contradict equivalence. ��

Theorem 2 is strong enough for the purpose of this article, but we conjecture
that a stronger theorem would hold. In process-algebra terms, with a reasonable
set of operators, if ≡P is a “reasonable” congruence and L1 ≡P L2 for any
nondeterministic L1 and L2, then P is not stronger than Tr,Divtr. We leave the
exact formulation of “reasonable” and research of the theory for future research.

τ

(a) Operationally deterministic

τ
τ

(b) Operationally nondeterministic

Fig. 1. Two CSP-equivalent processes

The failures/divergences theory associated with CSP considers divergence as
chaos, or maximally nondeterministic behaviour. Neither Theorem1 nor 2 holds
for CSP-equivalence, the counterexample to the latter is shown in Fig. 1. An oper-
ationally deterministic LTS may be CSP-equivalent with a nondeterministic one.
It should be noted, however, that the interpretation of operational determinism
we use is different from the one usually associated with CSP, as it is customary
to assume that diverging processes are not deterministic in the context of CSP.

A system is specified in terms of some semantic model P by giving a set L, or,
alternatively, an LTS that has the requires semantics. We say that the system
M satisfies the specification if P (L) ⊆ L where L is the concrete state space
of M . If M does not satisfy the specification, then there exists some behaviour
that is not in L. For example, if we specify in terms of traces, then ŝ

σ=⇒ such
that σ /∈ L. The execution ŝ

t1···tn−−−−→ s such that l(t1 · · · tn) = σ is called a
(concrete) counterexample. Similarly, a counterexample with respect to Divtr or
Sfail is execution of L that diverges or has a stable failure not specified by L.

3 Abstraction

Definition 3. Let M = (X, T , x̂) be a system and X ′ be any set. An abstraction
of the system α is a mapping α : X → X ′, and an abstract unfolding or α-
unfolding of M is the LTS Lα = (Sα, T ,Δα, ŝα), which is the minimal LTS
satisfying

1. Sα ⊆ X ′.
2. ŝα = α(x̂) ∈ Sα.



Abstractions for Transition Systems with Applications to Stubborn Sets 109

3. (x1, t, x2) ∈ Δα only if x1 ∈ Sα, and ∃x, y ∈ X : α(x) = x1 and g(x) = true,
y = e(x) and α(y) = x2.

4. If x1 ∈ Sα, ∃x, y ∈ X : α(x) = x1 and g(x) = true, y = e(x) and α(y) = x2,
and x2 �= x1 or l(t) ∈ Σ, then (x1, t, x2) ∈ Δα.

We refer to the α-unfolding as an abstract state space. Please note that as per
the definition, Lα is not required to preserve such τ -transitions of L that firing
the transition results in the same abstract state, though it is allowed to do so.

We use otherwise the same notation for abstract state spaces, but to avoid
confusion we write t−→α and a=⇒α for transitions and executions. An abstract
unfolding gives rise to a different semantic sets than the concrete unfolding. For
example, if L is a specification in terms of traces and given an abstraction α, an
abstract counterexample is an execution ŝα t1···tn−−−−→α such that l(t1 · · · tn) /∈ L.

If α is the identity mapping on X, then Lα is simply the unfolding of the
system. Each α with range X ′ induces an equivalence relation for the states of
the concrete state space, such that s, s′ ∈ S are equivalent if α(s) = α(s′). We
denote by Xα = {[s]α | s ∈ S} where [s]α = {x ∈ X : α(x) = α(s)}. We mostly
use this notation and write [s]α for the states of Lα.

If α1 and α2 are abstractions, we write α1 ≺ α2 iff for every s ∈ X we have
[s]α1 ⊆ [s]α2 . We say in such a case that α1 is a refinement of α2, and α2 is
said to be coarser than α1. The identity mapping on X is a refinement of every
abstraction, and a mapping that maps the whole of X into a single element set
is the coarsest possible abstraction.

It is possible that the abstract unfolding is nondeterministic: if there are two
states u, v such that α(u) = α(v), and (u, t, w1) and (v, t, w2) are two (concrete)
transitions, it may still be that α(w1) �= α(w2). To complicate matters further,
it may be that α1 ≺ α2 such that Lα1 is nondeterministic and Lα2 is determin-
istic. Consider Fig. 2. The fist LTS is a concrete state space, and we have two
abstractions, α1 ≺ α2. Lα1 is nondeterministic, while Lα2 is deterministic.

t1 t2

u

v

u

w

(a) L

t1, t2

u

v

u

w

(b) Lα1

t1, t2

v
w

u

(b) Lα2

Fig. 2. Determinism may be both destroyed and introduced

We give here some properties of abstractions that can be used firstly, to
overcome the limitation imposed by Theorem3, and secondly, to deduce some
important properties later when we combine abstractions with reductions.



110 H. Hansen

Definition 4. Let M = (X, T , x̂), where X = X1 × · · · ×Xn. Let A be a collec-
tion of abstractions for M We say that A

– respects divergences if and only if for every α ∈ A, [s]α
τ−→α [s]α implies that

there is some s′ ∈ [s]α such that s′ τω

−−→,
– preserves divergences if and only if for every α ∈ A if there are s0, . . . , sn−1 ∈

[s]α and s0
τ−→ s1

τ−→ · · · τ−→ sn−1
τ−→ s0, then [s]α

τ−→α [s]α,
– is monotonous with respect to the semantic model P if and only if for every

α1, α2 ∈ A, if α1 ≺ α2, then Lα1 �P Lα2 ,
– preserves the semantic model P if and only if for every α ∈ A, s ∈ S

α(s) ≡P s,
– respects the semantic model P if and only if for every α ∈ A, s1, s2 ∈ S,

s1 �P α(s1).
– is a collection of 1-simulations if and only if for every α ∈ A, s1, s2, s3 ∈ S,

and t ∈ T , if s1
t−→ s2, α(s1) = α(s3) and s3

t−→, then there exists s4 ∈ S such
that s3

t−→ s4 and α(s3) = α(s4),
– preserves (operational) determinism if and only if for every α1, α2 ∈ A such

that α1 ≺ α2, Lα2 is (operationally) deterministic if Lα1 is (operationally)
deterministic,

– respects enabling if and only if, for every α ∈ A, if [s]α = [s′]α, then en(s) =
en(s′),

– A respects stability if and only if, for every α ∈ A, if [s]α = [s′]α, then either
(1) neither s, s′ or [s]α is stable, or (2) there exist stable states s1, s

′
1 ∈ [s]α

such that s
ε=⇒ s1, s′ ε=⇒ s′

1 and en(s1) = en(s′
1) = en([s]α),

– separable if and only if, for every α ∈ A where α : X → X ′, X ′ = X ′
1×· · · X ′

n,
and there exists α1, . . . αn, αi : Xi → X ′

i for i = 1, . . . , n, such that for
x = (x1, . . . , xn) ∈ X, α(x) = (α1(x1), . . . , αn(xn)).

From these definitions, the following proposition is self-evident.

Proposition 1. An arbitrary collection of abstractions is monotonous with
respect to Tr. If it preserves divergences, it is also monotonous with respect to
Divtr.

As a corollary, every concrete counterexample to Tr or Divtr specification has a
corresponding abstract counterexample regardless of abstraction. Proposition 1
is the main reason why we adopt the trace model as our canonical model, as
other semantic models are less robust with respect to abstraction.

Theorem 3. Assume P is a semantic model that preserves Fail. There exists
a family of abstractions A such that A preserves divergences, and there are
α1, α2 ∈ A, α1 ≺ α2 and some L such that Lα1 ��P Lα1 .

Proof. Theorem 2 and the example in Fig. 2 prove this. ��

Theorem 3 together with Theorem 2 mean that except for Tr and Divtr, abstrac-
tion in general is not guaranteed to preserve counterexamples.



Abstractions for Transition Systems with Applications to Stubborn Sets 111

Proposition 2. If A is a collection of 1-simulations that preserves and respects
divergences and respects stability, then A preserves operational determinism.

Proof. Assume L is operationally deterministic. Then there exists a D-relation
as described in [12, Definition 8] on the states of L. Denote this D-relation with
∼. It is simple to show that if α is a 1-simulation that preserves and respects
divergences and stability, then α(s1) = α(s2) implies s1 ∼ s2. ��

Theorem 4. Assume A respects stability and preserves divergences. Then A is
monotonous with respect to CSP.

Proof. Let α, β ∈ A and A respects stability, and α ≺ β. Let (σ,A) ∈ Sfail(Lα).
Then there is a stable state [s]α such that [ŝ]α

σ=⇒α [s]α, and A ∩ en(s) = ∅.
Then [ŝ]β

σ=⇒ [s]β holds, and either [s]β is diverging or it is stable and en([s]β) =
en([s]α), so that (σ,A) ∈ Sfail(Lβ) ��

Example 1. Consider the mapping h(s) which returns a representative of s in the
equivalence class under a strong bisimulation relation. The quotient Lh where
Sh = {h(s) | s ∈ S} and Δh is Δ restricted to Sh. Lh is strongly bisimilar to L.
When A consists of strong bisimulations the abstractions preserve virtually all
reasonable semantic models. Such abstractions were used in [1].

Example 2. In Predicate abstraction, a set of predicates over states is defined,
and an abstract state consists of the set of states which agree on the truth
value of all predicates. Predicate abstraction is used for example in the so-called
CEGAR approach [2]. Predicate abstraction is not separable or monotonous in
general, nor does it respect enabling or stability.

The abstractions described in [2], however, do result in A that respects
enabledness, because the coarsest abstraction h has the property that for every
guard g, h(s) = h(s′) if and only if g(s) = g(s′).

Example 3. Data abstraction or value abstraction is a general term for abstrac-
tions that replace the set of values of a variable with a smaller set. Data abstrac-
tions are easily expanded into separable sets of abstractions, where each variable
is abstracted separately.

4 Stubborn Set Reductions

4.1 State-of-the Art for Finite Traces

In this section we start with definition of stubborn sets that is as such applicable
to any LTSs.

Definition 5 (Reduced LTS). Given an LTS (S, T ,Δ, ŝ), a function T :
S �→ 2T is a reduction function. We define the reduced LTS of L by T , as LT =
(ST , T ,ΔT , ŝ), where ST and ΔT are minimal subsets of S and Δ, respectively,
that satisfy the following conditions:



112 H. Hansen

– ŝ ∈ ST , and
– if s ∈ ST , s

t−→ s′ and t ∈ T (s), then s′ ∈ ST and (s, t, s′) ∈ ΔT .

By definition, a reduced LTS is a sub-LTS of the original LTS. For the remain-
der of this section we shall refer to LT an L as the reduced and full LTSs,
respectively. The properties preserved in the reduction depend on the properties
of the reduction function. The term stubborn set in this article is a collective
term for the sets produced by reduction functions. We describe the stubborn set
reduction functions by giving various conditions.

Such conditions can be given towards one of two goals. The first goal, adopted
in most of the literature on partial order reduction, is to provide a set of condi-
tions sufficient for preserving the semantics of the system in the fullest. In the
case of traces, this would mean that the reduced LTS should be trace-equivalent
to the original. That is, the reduced LTS should satisfy Tr(L) = Tr(LT ). We will
explore such conditions in what follows, but they will be of secondary impor-
tance.

The second goal, one which we shall be primarily aiming for, is the preser-
vation of the existence of a counterexample. For example, with traces, given
a specification L, the reduction should satisfy Tr(L) ∩ L �= ∅ if and only if
Tr(LT ) ∩ L �= ∅.

We introduce the conditions incrementally to make them more understand-
able. The first two (or their equivalents in the case for abstract state spaces) are
common to all versions. We also give a third condition, which is more restrictive,
but it is used in practical analysis. Every condition is given for a state s.

D1. For every t ∈ T (s) and t1, . . . , tk /∈ T (s), if s
t1···tkt−−−−→ s′, then s

tt1···tk−−−−→ s′.
N. There exists t ∈ T (s) such that for every t1, . . . , tk /∈ T (s), if s

t1···tk−−−−→ and
s

t−→ s′, then s′ t1···tk−−−−→. Such a transition is called a neutral transition.
D2. For every t ∈ T (s) and every t1, . . . , tk /∈ T (s), if s

t−→, then s′ t1···tkt−−−−→.

The classical stubborn sets are defined using D1 and D2; D1 and D2 clearly
imply N. We give our theoretical treatment for N as it theoretically has the
potential to overcome the optimality result of [22]. The conditions above are
not sufficient for preservation of properties such as traces. This stems from two
issues. The first one is that they allow the reduction to ignore permutations of
transitions in such a way that the order of symbols in the trace is not preserved.

The trace-preserving version requires the concept of visible transition. A tran-
sition t is visible if and only if l(t) �= ε, i.e., if its occurrence in an execution has
an effect on the trace.

V. If there is some visible transition t ∈ T (s) such that t ∈ en(s), then T (s)
contains all visible transitions, including the disabled ones.

But for preserving counterexamples, we do not need to be quite as strict.
Assume ŝ

σ=⇒ s and σρ /∈ L. Let u1, . . . , un ∈ T such that ρ = l(u1 · · · un). We
define the following conditions:



Abstractions for Transition Systems with Applications to Stubborn Sets 113

Va. If ui ∈ T (s) for some i and uj /∈ T (s) for 1 ≤ j < i, then for some prefix of
ρ′ ≤ l(uiu1 · · · ui−1ui+1 · · · un), σρ′ /∈ L.

Vb. If ui /∈ T (s) for each i, then there is a neutral transition t ∈ T (s) such that
for some prefix ρ′ ≤ l(tu1 · · · · · · un), σρ′ /∈ L.

Verbally, the condition Va states that if we take a transition that is a part
of a counterexample, then commuting the said transition to the front of the
execution will also result in a counterexample. Vb states that if we explore a
neutral transition and ignore transitions remaining of a counterexample, we can
still continue and find a counterexample. Note that V trivially implies Va by
forcing all visible transitions in the stubborn set and Vb is implied when the
stubborn set contains only τ -transitions.

We still need to solve the so-called ignoring problem, where neutral transi-
tions are taken indefinitely. Such a scenario is possible if the system contains,
for example, a cycle consisting of neutral transitions. To ensure progress, the
literature suggests rather crude rules such as those requiring that the stubborn
set contains all transitions if a cycle is closed. We forgo such rules for a more
nuanced approach.

We need to define the set of interesting transitions at a state s. If we set
out to preserve all traces, the set of interesting transitions will be the set of
visible transitions in every state. When we set out to preserve only the existence
of counterexamples, we can choose the set of interesting transitions in several
ways, as long as it has the property that all possible ways of completing a
counterexample will contain at least one interesting transition.

We say that a set U of transitions is interesting at state s for every relevant
execution ŝ

σ=⇒T s
t1···tn−−−−→ there is some 1 ≤ i ≤ n such that ti ∈ U . Note

that “relevant execution” may mean one of several things. If the reduction must
preserve all traces, then U = {t | l(t) ∈ Σ}, the set of visible transitions must be
interesting. If it must preserve counterexamples of some type, then the set must
guarantee that every counterexample that visits s, requires the firing of at least
one interesting transition at s.

We say that a set W ⊆ T is closed under enabling at state s, if for every
t ∈ W , s

t1···tnt−−−−→ implies that either s
t−→ or ti ∈ W for some 1 ≤ i ≤ n.

S. There exists a set W that is closed under enabling at s and contains all
interesting transitions, and for every u ∈ W ∩ en(s) there exists a sequence
s

t1···tn−−−−→ s′ of neutral transitions such that u ∈ T (s′).

The proof of the following theorem was given in [13].

Theorem 5. Let L be a trace specification. If T is a reduction function that
satisfies conditions D1, N, Va, Vb, and S. Then LT has a trace σ /∈ L if and
only if L some trace ρ /∈ L.

Proof. If LT has an illegal trace, then L trivially has an illegal trace, because
all traces of LT are traces of L. The other direction is by induction on the
unexplored part of an illegal trace. Let s be a state of LT . The situation where



114 H. Hansen

ŝ
σ=⇒T s and σ /∈ L is the trivial base case. Let σρ /∈ L be some trace of LT

and let ŝ
σ=⇒T s be such that s

ρ
=⇒. Let u1, . . . , un ∈ T be transitions such that

s
u1···un−−−−→ and l(u1 · · · un) = ρ.
Firstly, assume ui ∈ T (s) for some 1 ≤ i ≤ n, and without loss of generality,

assume i is chosen as the minimal such i. Let si be such that s
u1···ui−−−−→ si and Now,

D1 guarantees that ui must be enabled and that s
uiu1···ui−1−−−−−−−→ si. Then s

ui−→T s′

holds for some state. Va then guarantees that some prefix of s′ u1···ui−1ui+1···un−−−−−−−−−−−−→
completes the illegal trace, and we have an inductive step.

Secondly, assume that ti /∈ T (s) for every 1 ≤ i ≤ n. Then N guarantees
there is a neutral transition t ∈ T such that s

t−→T s′ and s′ u1···un−−−−→. Vb then
guarantees that some prefix of l(tu1 · · · un) will complete the illegal trace, so
that σl(t)ρ′ /∈ L, where ρ′ is some prefix of ρ. If the prefix is shorter than ρ, this
constitutes an inductive step.

If ρ = ρ′, we need to employ S. Note that because s
u1···un−−−−→ completes an

illegal trace, it is guaranteed that ui is interesting in s for some 1 ≤ i ≤ n.
Let uk be interesting. Let W be the set stipulated by S that is closed under
enabling. Because it W is closed under enabling, then some ui ∈ W such that
ui is enabled at s and i < k. Then there exists s0

t1−→T s1
t2−→T · · · tm−−→T sm

of neutral transitions such that s0 = s and ui ∈ T (sm). N guarantees that in
each of these states sl, as long as uj /∈ T (sl) for 1 ≤ j ≤ n, sl+1

u1···un−−−−→ holds,
and Vb guarantees some prefix u1 · · · un of completes the illegal trace from sl+1.
If uj ∈ T (sl) for some 1 ≤ j ≤ n and 1 ≤ l < m, the first inductive case
materializes. At the latest in sm this happens, because ui ∈ T (sm). ��

4.2 Stable Failures, Divergences, and Branching Time

The condition S, Va and Vb are sufficient for finite counterexamples, but not in
general for infinite traces; we cannot just extend Va to infinite traces. Consider
the language over Σ = {a, b} that contains all infinite traces such that either a
or b (but not both) can appear infinitely many times. Counterexamples consist
of infinite sequences where both a and b appear infinitely many times. Consider
Fig. 3(a). We label the transitions directly with elements of Σ. Va and Vb
are satisfied by exploring only a in the initial state, because if ρ is an infinite
counterexample of any kind, then aρ is also. This holds no matter how many finite
steps we have taken, both a and b are needed to complete counterexamples, i.e.,
every counterexample contains at least an a-transition, so that {a} is interesting
and it is immediately chosen as the stubborn set. It is also neutral with respect
to b. V would be sufficient with S to preserve traces, and this implies for finite
systems that infinite traces are preserved.

Consider then Fig. 3(b) and the requirement that Divtr ⊆ {ε}. Counterexam-
ples to this include any divergences after any visible transitions. In the initial
state {τ1, τ2} is a stubborn set that satisfies V in addition to all the conditions
in Theorem 5. Because aτω

1 is a counterexample, τ1 is interesting because it is
needed before any counterexample is finished. τ2 is neutral, as a−→ is the only



Abstractions for Transition Systems with Applications to Stubborn Sets 115

a b

(a) Infinite trace

a
τ1

τ2

τ1

τ2

a

(b) Divergence trace

Fig. 3. Counterexamples to infinite properties

execution consisting of transitions that are not in the stubborn set, and it is
preserved.

The best conditions for preserving all divergence traces all require conditions
such as the following. It has recently been discussed in [23].

L. For every visible transition t, every infinite execution s0
t1−→T s1

t2−→T · · · in
the reduced state space contains a state si such that t ∈ T (si).

For finite state spaces, this is called a cycle condition because all infinite execu-
tions are cyclic. We shall not explore their use in this article.

For CSP-semantics the problem in Fig. 3 does not manifest, because CSP
does not require us to preserve all divergences, only minimal ones, which then
are extended with otherwise maximal behaviour. The traditional stubborn sets
as described, for example, in [21,23], require the conditions V and a condition
called I, which unfortunately loses its meaning when we use the condition N.

IN. T (s) contains either a neutral τ -transition or all τ -transitions.

Lemma 2. If T is a reduction function that satisfies D1, N and IN in every
state of LT , and if s

τω

−−→, then s
τω

−−→T .

Proof. Let s be a state of LT and let s
t1t2···−−−−→ be a diverging execution starting

from s. If none of ti is in T (s), then IN guarantees there is a neutral τ -transition
t and s′ such that s

t−→T s′ and s′ t1t2···−−−−→. On the other hand, if ti ∈ T (s) for
some i, we choose the minimal i such that this holds. then let s

t1t2···ti−−−−−→ si. D1
guarantees that s

ti−→T s′ for some s′ such that s′ t1t2···ti−1ti+1···−−−−−−−−−−→.
This gives an infinite sequence of τ -transitions in LT whenever a state is

diverging. ��

Unfortunately D1, N and IN are not enough, even with V, to preserve stable
failures, as is witnessed by Fig. 4, but D1, D2, V and IN are. In the presence
of D2 all transitions are neutral, so IN is equivalent to I. Various solutions that
use conditions more restrictive than N have been used in practice with good
empirical results when preserving traces or CSP [8,14].

For completeness we restate the important results that are well-known about
preservation of the semantic models discussed earlier, as well as one for branching
properties. We need two further conditions.



116 H. Hansen

τ1 a

τ2

τ1

a

b

Fig. 4. Counterexample to stable failures

D0. en(s) ∩ T (s) = ∅ if and only if en(s) = ∅.
B. en(s) ⊆ T (s) or T (s) ∩ en(s) contains a single invisible transition.

Theorem 6. Assume T satisfies D1 at every state of LT . Then the following
hold:

1. If T satisfies D0 and D2 at every state of LT , then LT contains all reachable
states s of L such that en(s) = ∅.

2. If all visible transitions are interesting and T satisfies N, IN, and V at every
state of LT , then LT ≡Mindiv L.

3. If all visible transitions are interesting and T satisfies D2, S, IN, and V at
every state of LT , then LT ≡CSP L.

4. If all visible transitions are interesting and T satisfies D0, D2, V, and L at
every state of LT , then LT ≡Sfail,Divtr L.

5. If L is deterministic and T(s) satisfies D2, V, B, and S in every state of
LT , then LT is branching bisimilar to L.

Mostly the theorem was proven in [21], albeit with a slightly different set of
rules which, nevertheless, for deterministic transition systems are implied by the
given conditions. The second statement of the theorem is novel, and follows from
Lemma 2.

4.3 Considerations for Computing Stubborn Sets

Various methods for actually computing stubborn sets as defined in the ear-
lier parts of this section have been proposed. Most commonly they include a
form of dependency relation, or dependency graph, such as in [8,10,14]. Several
authors discuss strategies based on shared variables and they range from forbid-
ding changes of variables [4] to more nuanced approaches such as using write-up
sets [19], analysis of guards [15]. It was proven in [22] that the classic stubborn
sets are optimal in a model-theoretic sense with respect to symmetric depen-
dency relations such as those used in [7]. We discuss some relations that can
be defined by the rather coarse level of analysis [7], based on so-called effect
sets. Unfortunately, these sets do not make it possible to employ the theoretical
benefits afforded by the use of condition N instead of D2.



Abstractions for Transition Systems with Applications to Stubborn Sets 117

Definition 6. Let L be an LTS. We define the following relations.

– A left dependency relation � over T is any relation such that if either t � u

or for every state s, if s
ut−→ s2 then there is a state s3 such that s1

u−→ s3 and
s3

t−→ s2. We write t �� u when t � u does not hold.
– A dependency relation � over T is any relation such that if either t � u

or for every state s, if s
u−→ s1 and s

t−→ s2 then there is a state s3 such that
s1

t−→ s3 and s2
u−→ s3. We write t �� u when t � u does not hold.

The following lemma is given for the left-dependency and dependency relations

Lemma 3. Let s0, sn ∈ S, t, t1, . . . , tn ∈ T and s0
t1···tn−−−−→ sn

– If t �� ti for 1 ≤ i ≤ n, and sn
t−→ s′

n for some s′
n then there is a state s′

0 such
that s0

t−→ s′
0 and s′

0
t1···tn−−−−→ s′

n.
– If t �� ti for 1 ≤ i ≤ n, and s0

t−→ then sn
t−→.

Recall that a guard is a binary function X → {true, false}. Recall that tran-
sitions are of the form (g, e), where g is a guard.

Definition 7. Let G be a set of guards. A guard relation for state s is a relation
↪→ over T × G ∪ G × T that has the following properties.

1. If t = (g, e) ∈ T and g(s) = false, then t ↪→ gi if gi ∈ G such that gi(s) = false
and for all x ∈ X, g(x) = true implies gi(x) = true.

2. If g ∈ G and g(s) = false, then g ↪→ t if t ∈ T and there exists some states
s1 and s2 such that s1

t−→ s2, g(s1) = false and g(s2) = true.

The following lemma is useful in calculation of stubborn sets:

Lemma 4. Let U ⊆ T be a set of transitions and G be a set of guards. The set
U is closed under enabling at state s if there exists a guard relation ↪→ for s and
a subset G′ ⊆ G such that

1. For every t ∈ dis(s) ∪ U , there is some g ∈ G′ such that t ↪→ g.
2. For every g ∈ G′ and t ∈ T , if g ↪→ t then t ∈ U .

Lemma 4 was proven, for example, in [14]. Lemmas 3 and 4 are useful in the
computation of stubborn sets; We do not go into details about particular algo-
rithms, they have been discussed in [7,8,10,15,22,25] to name a few. We give
the theorem that the computation of stubborn sets is based on.

Theorem 7. Let � be a dependency relation and ↪→ be a guard relation for s.
The set T (s) satisfies D1 and D2 if there exists a set of guards G such that

1. For every t ∈ T (s) ∩ en(s) and u ∈ T , if t � u then u ∈ T (s).
2. For every t ∈ T (s) ∩ dis(s), there exists some g ∈ G such that t ↪→ g.
3. For every g ∈ G and t ∈ T , if g ↪→ t then t ∈ T (s).



118 H. Hansen

Recall that X = X1 × · · · × Xn. Let x = (x1, . . . , xn) and y = (y1, . . . , yn).
We write δ(x, y) = {i | xi �= yi} Given a transition t = (g, e) we define the effect
sets as:

– The guard set of t as Gd(t) = {i | ∃x, y ∈ X : δ(x, y) = i ∧ g(x) �= g(y)},
– the write set of t as Wr(t) = {i | ∃x ∈ X : i ∈ δ(x, e(x)}, and
– the read set of t as Rr(t) = {i | ∃x, y ∈ X : δ(x, y) = i ∧ ∃j ∈ Wr(t) : j ∈

δ(e(x), e(y))}.

The union of these sets, Vr(t) = Gd(t) ∪ Wr(t) ∪ Rr(t) is called variable set of
t. Intuitively, the guard set consists of variables whose value has an effect on the
guard, the write set is the set of variables whose value is subject to change when
the transition is fired, and the read set is the set of variables whose value has an
effect on the resulting state, i.e. if a variable in a read set changes its value, then
firing the transition will result in some change in some variable in the write set.

Given t1, t2 ∈ T , if we define the relation �G so that t1 ��G t2 implies
Wr(t1) ∩ Vr(t2) = Wr(t2) ∩ Vr(t1) = ∅, then this will result in a dependency
relation. It is also a left dependency relation.

We can define ↪→G using the guard of each transition, or, if the guard is given
as a conjunction of clauses, for example so that g = g1 ∧ · · · ∧ gk, we can use the
conjuncts in G and have gi ↪→G t if Wr(t) contains some variable appearing in
gi, for example.

5 Stubborn Sets and Abstraction

As we saw in Sect. 3, abstraction may lead to nondeterminism. We also saw in
Sect. 4 that the state-of-the art stubborn sets do not preserve all counterexamples
if transitions may be nondeterministic. In this section we discuss some problems
with combining stubborn sets and abstractions. We discuss the results of [1], and
show that the approach applies only to a narrow class of abstractions.

The proof of Theorem5 does not require the system is deterministic, but
abstraction nevertheless gives rise problem. Consider the following hypothesis:
given an abstraction α, the set U satisfies N at that state [s]α in Lα if for
every state s′ ∈ [s]α, U satisfies N in L. Figure 5(a) and (b) demonstrate a
counterexample to the hypothesis; abstractions do not in general satisfy this
property. The transition τ1 is neutral in all the states of the equivalence class
(indicated by the gray states).

Firstly we note that we could define a dependency relation �α for the tran-
sitions of Lα directly, analogously to Definition 6. Then Theorem 6 would hold
for all other parts, except part 5 which assumes transitions are deterministic,
and this is not true for Lα in general. The following lemma is trivial, but we
state it in any case.

Lemma 5. If α is separable, then the relations �G and ↪→G are dependency
and guard relations for Lα.



Abstractions for Transition Systems with Applications to Stubborn Sets 119

τ3τ2
a

a

b

τ1τ1

a

τ1
b

(a) Neutral τ1

τ2, τ3
a b

τ1

τ1

a

(b) Non-neutral τ1

Fig. 5. Troublesome cases for abstraction and stubborn sets

This lemma is important in practice, as it applies to several methods that are
used in practice. For example in [4], the analysis is carried out using this type of
dependency. Thus, all linear time stubborn set methods based on these relations
are in fact robust with respect to separable abstractions.

Definition 8. Let α be an abstraction. The relation �α over T is an abstract
dependency relation, or α-dependency, if for every s, if t, u ∈ en(s) either t �α

u or the following hold:

1. For for every s′ such that s
t−→ s′ we have s′ u−→ (and symmetrically for u),

and
2. For every state s1 such that s

tu−→ s1 there is a state s2 such that s
ut−→ s2 and

[s1]α = [s2]α (and symmetrically).

Lemma 6. Assume A respects enabledness and α ∈ A. For every t1, . . . , tn such
that ti ��α t for 1 ≤ i ≤ n, if [s]α

t1···tn−−−−→α [sn]α and [s]α
t−→ [s′]α, then there is

a state [s′
n]α such that [s′]α

t1···tn−−−−→α [s′
n]α and [sn]α

t−→α [sn]′.
Furthermore, if A is a collection of 1-simulations, then for every [s′

n]α such
that [sn]α

t−→α [s′
n]α, [s]α

tt1···tn−−−−→α [s′
n]α holds.

Proof. We prove the claims by induction. If n = 0, both claims holds triv-
ially. Assume as inductive hypothesis that the first claim holds for n − 1.
Let [s0]α

t1···tn−−−−→α [sn]α and [s0]α
t−→α [s′

0]α. By inductive hypothesis we have

[s′
0]α

t1···tn−1−−−−−→α [s′
n−1]α and [sn−1]α

t−→α [s′
n−1]α. Let sn−1 be one of the states

in [sn−1]α such that sn−1
t−→ s′

n−1.

Because α respects enabledness, sn−1
tn−→ sn for some state sn. And because

�α is an α-dependency relation, we must have sn
t−→ s′

n for some state s′
n and

s′
n−1

tn−→ s∗
n for some state s∗

n ∈ [s′
n]α.

Hence [sn−1]α
tnt−−→α [s′

n]α and [s′
n−1]α

tn−→α [sn]′α, finishing the inductive step
for the first part of the lemma.

Assume then that α is a 1-simulation and the second claim holds for n − 1.
Let [sn]α

t−→α [s′
n]α. Then, for every state sn ∈ [sn]α there exists some state



120 H. Hansen

s′
n ∈ [s′

n]α such that sn
t−→ s′

n. For at least one of them we have sn−1
tn−→ sn

t−→ s′
n,

and again, sn−1
t−→ s′

n−1 because α respects enabledness. And because of α-

dependency, we have some state s∗
n ∈ [s′

n]α such that s′
n−1

tn−→ s∗
n, finishing the

inductive step for the second part of the lemma. ��

Definition 9. Let α be an abstraction. Let G be a set of of Boolean functions
α(X) → {true, false}. The relation ↪→α over T ×G∪G×T is an abstract guard
relation for [s]α if

1. For every t ∈ disα([s]α) there exists a guard g ∈ G such that g([s]α) = false
and t ↪→α g.

2. For every state g ∈ G and t ∈ T , if there is some states s′, s′′ such that
s′ t−→ s′′, g([s′]α) = false and g([s′′]α) = true then g ↪→α t.

Theorem 8. Assume A is a collection of 1-simulations and that it respects
enabledness. Let α ∈ A. Let [s]α be an abstract state. Then the set U satisfies
D1 and D2 if there exist some abstract guard relation ↪→α, a set of guards G,
and an abstract dependency relation �α such that

1. For every t ∈ enα([s]α) and u ∈ T , if t ∈ U and t �α u then u ∈ U .
2. For every t ∈ disα([s]α) there is some g ∈ G such that t ↪→α g and for every

[s′]α.
3. For every g ∈ G and t ∈ T , if g ↪→α t, then t ∈ U .

Proof. Because Definition 9 is strictly analogous to Definition 7 and Lemma 4
applies, we skip the proof that U will be closed under enabling. Lemma 6 applied
to the first condition proves D2. Because α is a 1-simulation, Lemma 6 guaran-
tees that also D1 holds. ��

The restriction that A must respect both enabledness and determinism is a severe
one. The result of [1] merits discussion in light of the weakness of the above
theorem. The result of using α-dependency when α is a strong bisimulation is
sound, because two states cannot be strongly bisimilar unless they have the same
enabled transitions. It does not hold, however, for weaker equivalences. Consider
Fig. 6(a). The grey states are branching bisimilar, but not strongly bisimilar.
α-dependency would declare the transitions labeled a and τ2 as independent
regardless of what happens after they are fired, because they are not enabled
together. In fact, simple as it is, Fig. 6(a) leaves little hope for developing a
method that is based on dependencies significantly less restrictive than those
that consider the whole equivalence class, i.e., dependency in Definition 6 applied
to the whole abstract state space.

The counterexample to abstractions that are not 1-simulations is given in
Fig. 6(b). The abstraction equates the gray states in the figure. We can then
define an abstract dependency relation that declares a and b independent. c and
b are likewise independent. The set {a} would satisfy the conditions of Theorem8
under this abstraction. The abstraction also respects enabledness. In the state
that follows the execution of a, {c} is a set that likewise satisfies the conditions



Abstractions for Transition Systems with Applications to Stubborn Sets 121

τ1

τ1a τ2

(a) Branching bisimilar states

a b

c

b

cb

a

c

d

(b) Nondeterminism destroys correctness

Fig. 6. Counterexamples to α-dependency

of the theorem, and the execution of d is missed. The example leaves open the
possibility that forbids possibly nondeterministic transitions (such as c) from
being stubborn.

6 Discussion and Future Work

As this article is to appear in a collection to honor professor Bill Roscoe, I break
the convention and write in first person. I do so out of respect for the community
and the person, as I hope to explain in a more personal manner what has been
written here. I also wish to express my gratitude and sense of honor to have been
invited to write this article.

The main theorem in [11] states that for timed automata, relaxing zone
abstractions and applying an abstract dependency very similar to the one in
Theorem 8 will preserve the existence of counterexamples. In fact, it not only
does this, but sometimes it is able to reduce away abstract counterexamples
that are spurious. When I started writing this article, I started with a hypothesis
stronger than Theorem8, one that would replicate the same powerful results.

A series of counterexamples, given in the previous sections, emerged while I
was trying to prove a similar result, and in the end, the result was not signif-
icantly stronger than the main theorem of [1]. Instead of this article providing
groundbreaking results as I had hoped, it thus is more of a document of how
such a result does not hold for the abstract dependency relation as defined here.
I hope that a careful analysis of the counterexamples to weaker hypothesis might
prove fruitful in the pursuit of a more general theorem, one that may still be out
there. I am still haunted by the intuition that there is a hidden diamond amid
the ashes of this failed theorem.

For other parts, the results in this article are mostly re-stated facts that have
been known separately with a couple of minor improvements to existing results.
I hope my analysis may serve as a starting point for a more careful analysis of
properties of abstractions and how they combine with the myriad other methods.



122 H. Hansen

For future work, there are two important avenues. Firstly, the classification
of abstractions is in its own right an important topic, and this rather truncated
treatment merely scratches the surface. Results pertaining to preservation of
determinism and monotony with respect to semantic models is something that
we plan to pursue further.

Secondly, the combination of stubborn set methods with abstractions. There
are probably good reasons why the relaxed zone abstraction combine in a syner-
gistic manner with stubborn sets but abstractions labeled transition systems in
general do not. Understanding of the said reasons may lead to powerful methods,
or at least understanding, in the never ending battle against state explosion. The
guard relation, for example, was simply lifted verbatim to abstract state spaces.
It remains a possibility that some version of such a relation might be the key to
unlock a more powerful theory.

Acknowledgements. I wish to thank the editors for inviting me to submit an article,
Antti Valmari for pioneering the field and his eagerness to discuss the topic after all
these years, Xu Wang for discussions we have had over the years about the merits
and pitfalls of various approaches, and Dragan Bosnacki for providing some insights
on the matter. I am grateful to Bill Roscoe, for asking me one instrumental question
about partial order reduction years ago. Answering that question led me to write a few
articles, and, in a way, also this one.

References

1. Bošnački, D., Scheffer, M.: Partial order reduction and symmetry with mul-
tiple representatives. In: Havelund, K., Holzmann, G., Joshi, R. (eds.) NFM
2015. LNCS, vol. 9058, pp. 97–111. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-17524-9 8

2. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000). doi:10.1007/10722167 15

3. Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM
Trans. Programm. Lang. Syst. (TOPLAS) 16(5), 1512–1542 (1994)

4. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT press, Cambridge
(1999)

5. Emerson, E.A., Sistla, A.P.: Symmetry and model checking. In: Courcoubetis, C.
(ed.) CAV 1993. LNCS, vol. 697, pp. 463–478. Springer, Heidelberg (1993). doi:10.
1007/3-540-56922-7 38

6. Engelfriet, J.: Determinancy → (observation equivalence = trace equivalence).
Theor. Comput. Sci. 36, 21–25 (1985)

7. Geldenhuys, J., Hansen, H., Valmari, A.: Exploring the scope for partial order
reduction. In: Liu, Z., Ravn, A.P. (eds.) ATVA 2009. LNCS, vol. 5799, pp. 39–53.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-04761-9 4

8. Gibson-Robinson, T., Hansen, H., Roscoe, A.W., Wang, X.: Practical partial
order reduction for CSP. In: Havelund, K., Holzmann, G., Joshi, R. (eds.) NFM
2015. LNCS, vol. 9058, pp. 188–203. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-17524-9 14

http://dx.doi.org/10.1007/978-3-319-17524-9_8
http://dx.doi.org/10.1007/978-3-319-17524-9_8
http://dx.doi.org/10.1007/10722167_15
http://dx.doi.org/10.1007/3-540-56922-7_38
http://dx.doi.org/10.1007/3-540-56922-7_38
http://dx.doi.org/10.1007/978-3-642-04761-9_4
http://dx.doi.org/10.1007/978-3-319-17524-9_14
http://dx.doi.org/10.1007/978-3-319-17524-9_14


Abstractions for Transition Systems with Applications to Stubborn Sets 123

9. Godefroid, P. (ed.): Partial-Order Methods for the Verification of Concurrent Sys-
tems. LNCS, vol. 1032. Springer, Heidelberg (1996). doi:10.1007/3-540-60761-7

10. Hansen, H., Kwiatkowska, M., Qu, H.: Partial order reduction for model checking
Markov decision processes under unconditional fairness. In: Quantitative Evalua-
tion of Systems (QEST 2011), pp. 203–212. IEEE (2011)

11. Hansen, H., Lin, S.-W., Liu, Y., Nguyen, T.K., Sun, J.: Diamonds are a girl’s best
friend: partial order reduction for timed automata with abstractions. In: Biere, A.,
Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 391–406. Springer, Heidelberg
(2014). doi:10.1007/978-3-319-08867-9 26

12. Hansen, H., Valmari, A.: Operational determinism and fast algorithms. In: Baier,
C., Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 188–202. Springer,
Heidelberg (2006). doi:10.1007/11817949 13

13. Hansen, H., Valmari, A.: Safety property-driven stubborn sets. In: Larsen, K.G.,
Potapov, I., Srba, J. (eds.) RP 2016. LNCS, vol. 9899, pp. 90–103. Springer,
Heidelberg (2016). doi:10.1007/978-3-319-45994-3 7

14. Hansen, H., Wang, X.: Compositional analysis for weak stubborn sets. In: 2011
11th International Conference on Application of Concurrency to System Design
(ACSD), pp. 36–43. IEEE (2011)

15. Laarman, A., Pater, E., van de Pol, J., Hansen, H.: Guard-based partial-order
reduction. Int. J. Softw. Tools Technol. Transfer 18(4), 427–448 (2016)

16. Milner, R. (ed.): A Calculus of Communicating Systems. LNCS, vol. 92. Springer,
Heidelberg (1980). doi:10.1007/3-540-10235-3

17. Peled, D.: All from one, one for all: on model checking using representatives.
In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 409–423. Springer,
Heidelberg (1993). doi:10.1007/3-540-56922-7 34

18. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice-Hall, Upper
Saddle River (1997)

19. Valmari, A.: A stubborn attack on state explosion. In: Clarke, E.M., Kurshan, R.P.
(eds.) CAV 1990. LNCS, vol. 531, pp. 156–165. Springer, Heidelberg (1991). doi:10.
1007/BFb0023729

20. Valmari, A.: Stubborn sets for reduced state space generation. In: Rozenberg, G.
(ed.) ICATPN 1989. LNCS, vol. 483, pp. 491–515. Springer, Heidelberg (1991).
doi:10.1007/3-540-53863-1 36

21. Valmari, A.: Stubborn set methods for process algebras. In: Proceedings of the
DIMACS Workshop on Partial Order Methods in Verification (1997)

22. Valmari, A., Hansen, H.: Can stubborn sets be optimal? Fundamenta Informaticae
113(3–4), 377–397 (2011)

23. Valmari, A., Hansen, H.: Stubborn set intuition explained. In: International Work-
shop on Petri Nets and Software Engineering 2016, pp. 213–232 (2016)

24. Valmari, A., Tienari, M.: Compositional failure-based semantic models for basic
lotos. Formal Aspects Comput. 7(4), 440–468 (1995)

25. Valmari, A., Vogler, W.: Fair testing and stubborn sets. In: Bošnački, D., Wijs,
A. (eds.) SPIN 2016. LNCS, vol. 9641, pp. 225–243. Springer, Heidelberg (2016).
doi:10.1007/978-3-319-32582-8 16

26. Glabbeek, R.J.: The linear time — branching time spectrum II. In: Best, E. (ed.)
CONCUR 1993. LNCS, vol. 715, pp. 66–81. Springer, Heidelberg (1993). doi:10.
1007/3-540-57208-2 6

http://dx.doi.org/10.1007/3-540-60761-7
http://dx.doi.org/10.1007/978-3-319-08867-9_26
http://dx.doi.org/10.1007/11817949_13
http://dx.doi.org/10.1007/978-3-319-45994-3_7
http://dx.doi.org/10.1007/3-540-10235-3
http://dx.doi.org/10.1007/3-540-56922-7_34
http://dx.doi.org/10.1007/BFb0023729
http://dx.doi.org/10.1007/BFb0023729
http://dx.doi.org/10.1007/3-540-53863-1_36
http://dx.doi.org/10.1007/978-3-319-32582-8_16
http://dx.doi.org/10.1007/3-540-57208-2_6
http://dx.doi.org/10.1007/3-540-57208-2_6

	Abstractions for Transition Systems with Applications to Stubborn Sets
	1 Introduction
	2 Theoretical Preliminaries
	3 Abstraction
	4 Stubborn Set Reductions
	4.1 State-of-the Art for Finite Traces
	4.2 Stable Failures, Divergences, and Branching Time
	4.3 Considerations for Computing Stubborn Sets

	5 Stubborn Sets and Abstraction
	6 Discussion and Future Work
	References


