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Abstract. We revisit the construction of discrete random variables over
domains from [15] and show how Hoare’s “normal termination” sym-
bol � can be used to achieve a more expressive model. The result is a
natural model of flips of a coin that supports discrete and continuous
(sub)probability measures. This defines a new random variables monad
on BCD, the category of bounded complete domains, that can be used to
augment semantic models of demonic nondeterminism with probabilis-
tic choice. It is the second such monad, the first being Barker’s monad
for randomized choice [3]. Our construction differs from Barker’s monad,
because the latter requires the source of randomness to be shared across
multiple users. The monad presented here allows each user to access a
source of randomness that is independent of the sources of randomness
available to other users. This requirement is useful, e.g., in models of
crypto-protocols.

Keywords: Domain random variable · Sequential domain monoids ·
Continuous random variables

1 Introduction and Related Work

About ten years ago, the author presented a model for finite random variables
over domains [15]. That model was based on work of Varacca [21,22], whose
indexed valuations monads for probabilistic choice enjoy distributive laws over
the standard power domains at the price of weakening one of the laws for prob-
abilistic choice [11]. The model in [15] is arcane, but it nevertheless inspired an
attempt to extend the ideas to a model that would support continuous probabil-
ity measures over domains [9], an approach that was unfortunately flawed [16,17].
Here we present an improved construction for the model described in [15] that
has the advantage of supporting all sub-probability measures – including both
discrete and continuous – over sequences of flips of a random coin, yielding a
new model for computational processes that involve probabilistic choice.

The last assertion can be understood by considering a natural model for
sequences of coin tosses, the full binary tree, CT = {0, 1}∗ ∪ {0, 1}ω. The root
represents the starting point, and the nth level Cn of n-bit words represents
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the possible outcomes of n flips of the coin. A probability distribution over this
family is then a probability measure on CT. Endowed with the prefix order,
CT is a domain whose set of maximal elements is a Cantor set, C, and so this
model is called the Cantor tree. If we endow Cn with a probability distribution μn

representing the chances for a specific sequence of outcomes of n flips of the coin,
and if πm,n : Cn −→ Cm satisfies πm,n μn = μm for m ≤ n, then the sequence
μn −→w μ has a limit μ in the weak topology which is concentrated on C.
Likewise, any such measure μ gives rise to an associated sequence of measures,
πn μ, where πn : C −→ Cn is the natural projection. Everything appears to be
fine, until one tries to construct a monad based on these ideas, and then the
construction falters when one tries to define a Kleisli lift (for details, see [16,17]).

In more detail, the flaw in the definition of the Kleisli lift in [9] was its use of
concatenation of strings, which is not monotone in its first argument. Our remedy
is to replace the Cantor tree CT with a domain monoid where composition is
Scott continuous. Our construction yields a new monad on domains using a
domain monoid M{0, 1} = {x�, x⊥ | x ∈ {0, 1}∗}∪{0, 1}ω. This domain monoid
utilizes an idea first devised by Hoare that appears prominently in models of
CSP [5]: a �-symbol that denotes normal termination. Algebraically, � is an
identity for multiplication, and making strings ending in � maximal makes the
multiplication in the monoid Scott continuous. Adding infinite strings requires
a least element ⊥ with strings ending in ⊥ denoting terms that might diverge.

Probability is introduced by applying the sub-probability monad, V; then
monoid structure on M{0, 1} then induces an affine domain monoid structure
on VM{0, 1} where multiplication is convolution, induced by the monoid mul-
tiplication on M{0, 1} with δ� the identity. Moreover, since M{0, 1} is a tree,
it follows that VM {0, 1} is a bounded complete domain (cf. Corollary 1). The
remainder of the construction follows along lines similar to those in [9]. How-
ever, restricting to random variables defined only on antichains as in [3,9] is not
necessary for our construction, and this simplifies things somewhat.

1.1 The Plan of the Paper

The next section begins with a review of some background material from domain
theory and other areas we need, including a result about the probability monad
on the category of compact Hausdorff spaces and continuous maps and on
the subcategory of compact monoids and continuous monoid homomorphisms.
We also introduce our new “sequential domain monoid” construction, which is
inspired by sequential composition from the process calculus world, and which
forms a monad M on various categories of domains. Then we show that following
M with the subprobability monad V yields a monad that supports convolution of
subprobability measures as a Scott-continuous operation. While the facts that M
and VM are monads are not necessary to show the main results of the paper, we
include them to show that our constructions are canonical. In any case, Sect. 3
contains the main results of the paper, where we give the construction of our new
monad, CRV , of random variables, and the paper concludes with a summary
and comments about future work.
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2 Background

2.1 Domains

Most of the results we need about domain theory can be found in [1] or [8]; we
give specific references for those that appear elsewhere.

To start, a poset is a partially ordered set. A subset S ⊆ P is directed if each
finite subset of S has an upper bound in S, and P is directed complete if each
of P ’s directed subsets has a least upper bound. A directed complete partial
order is called a dcpo. The relevant maps between dcpos are the monotone maps
that also preserve suprema of directed sets; these maps are usually called Scott
continuous. The resulting category is denoted DCPO.

These notions can be presented in a purely topological fashion: a subset
U ⊆ P of a poset is Scott open if (i) U = ↑U ≡ {x ∈ P | (∃u ∈ U) u ≤ x} is an
upper set, and (ii) if supS ∈ U implies S∩U �= ∅ for each directed subset S ⊆ P .
It is routine to show that the family of Scott-open sets forms a topology on any
poset; this topology satisfies ↓x ≡ {y ∈ P | y ≤ x} = {x} is the closure of a
point, so the Scott topology is always T0, but it is T1 iff P is a flat poset. In any
case, a mapping between dcpos is Scott continuous in the order-theoretic sense
iff it is a monotone map that is continuous with respect to the Scott topologies
on its domain and range. The category DCPO is Cartesian closed.

If P is a poset, and x, y ∈ P , then x approximates y iff for every directed set
S ⊆ P , if supS exists and if y ≤ supS, then there is some s ∈ S with x ≤ s.
In this case, we write x � y and we let ↓↓y = {x ∈ P | x � y}. A basis for a
poset P is a family B ⊆ P satisfying ↓↓y ∩ B is directed and y = sup(↓↓y ∩ B) for
each y ∈ P . A continuous poset is a poset that has a basis, and a dcpo P is a
domain if P is a continuous dcpo. An element k ∈ P is compact if x � x, and P
is algebraic if KP ≡ {k ∈ P | k � k} forms a basis. Domains are sober spaces
in the Scott topology (cf. [14]).

We let DOM denote that category of domains and Scott continuous maps;
this is a full subcategory of DCPO, but it is not Cartesian closed. Nevertheless,
DOM has several Cartesian closed full subcategories. For example, there are the
full subcategories SDOM of Scott domains, and BCD, its continuous analog: a
Scott domain is an algebraic domain P for which KP is countable, and every
non-empty subset of P has a greatest lower bound, or equivalently, every subset
of P with an upper bound has a least upper bound. A domain is bounded complete
if every non-empty subset has a greatest lower bound; BCD denotes the category
of bounded complete domains and Scott-continuous maps.

Domains also have a Hausdorff refinement of the Scott topology which will
play a role in our work. The weak lower topology on a poset P has the sets of
the form O = P\↑F as a basis, where F ⊂ P is a finite subset. The Lawson
topology on a domain P is the common refinement of the Scott- and weak lower
topologies on P . This topology has the family

{U\↑F | U Scott open & F ⊆ P finite}
as a basis. The Lawson topology on a domain is always Hausdorff. A domain is
coherent if its Lawson topology is compact. We denote the closure of a subset
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X ⊆ P of a domain in the Lawson topology by X
Λ
, and Coh denotes the cate-

gory of coherent domains and Scott-continuous maps. While the subcategory of
Coh of coherent domains is Cartesian, and the subcategory of coherent domains
having least elements is closed under arbitrary products, the category Coh is not
Cartesian closed.

Example 1. This example is used extensively in [3,9]. Let C denote the middle
third Cantor set from the unit interval. This is a Stone space, and so it can be
realized as a projective limit of finite spaces C � lim←−α∈A

Cα. Since C is second
countable, we can define a countable family of finite spaces Cn for which C �
lim←−n

Cn. Indeed, we can take C = {0, 1}ω and Cn = {0, 1}n for each n.
From a domain-theoretic perspective, CT =

⋃
n Cn ∪ C = {0, 1}∗ ∪ {0, 1}ω,

the finite and infinite words over {0, 1} in the prefix order. The finite words
form the set of compact elements, KCT, and so CT is an algebraic domain. It is
called the Cantor Tree, and it can be viewed as the state space of the outcomes
of flipping a coin: the root is the starting point, and with 0 denoting Tails and 1
Heads, the outcomes as we work our way up the tree give all possible results of
flipping a coin some number of times. For example, the family CTn =

⋃
m≤n Cm

gives the finite tree of possible outcomes of n flips of the coin.
As we commented in the introduction, CT is alluring as a model for the out-

comes of tossing a coin, but it does not work well as a computational model.
In particular, viewing CTn as the possible outcomes of n tosses of a coin, the
“obvious” mechanism to compose one sequence of tosses with another is concate-
nation, the operation used in [9]. But concatenation is not monotone in its first
argument, and this undermines the approach. We define an alternative model
of coin flips below as the family M{0, 1}. This is the heart of our model for
probabilistic choice.

There is one technical result we will need, which comes from [8]:

Lemma 1. If f : B −→ E is a monotone map from a basis for a domain D into
a dcpo E, then f̂ : D −→ E defined by f̂(x) = sup f(↓↓x ∩ B) defines the largest
Scott-continuous map below f . Moreover, if for each x ∈ D there is a directed
set Bx ⊆ ↓↓x ∩ B with x = supBx and sup f̂(Bx) = f(x), then f̂ extends f .

Proof. This is Lemma IV-9.23 of [8].

2.2 M{0, 1} as a Domain Monoid

In this section we define a domain monoid M{0, 1} based on the finite and infinite
words over {0, 1}.

Proposition 1. We define M{0, 1} ≡ ({x�, x⊥ | x ∈ {0, 1}}∗ ∪ {0, 1}ω,≤),
where ≤ is defined by:

– If x ∈ {0, 1}∗�, y ∈ M{0, 1}, then x ≤ y iff x = y;
– If x ∈ {0, 1}∗⊥ , y ∈ M{0, 1}, then x ≤ y iff (∃m ≤ n < ω)x ∈ {0, 1}m⊥ , y ∈

{0, 1}n⊥ ∪ {0, 1}n� ∪ {0, 1}ω and xi ≤ yi for all i ≤ m; and
– If x ∈ {0, 1}ω, y ∈ M{0, 1}, then x ≤ y iff x = y.
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Then MD is a bounded complete algebraic domain whose set of compact elements
is KM{0, 1} = {x�, x⊥ | x ∈ {0, 1}∗}.
Proof. It is routine to show that the partial order defined above endows M{0, 1}
with a tree structure whose root is ⊥ and whose leaves (=maximal elements) are
{x� | x ∈ {0, 1}∗} ∪ {0, 1}ω. It’s then obvious that the elements x� and x⊥ are
compact for x finite, and that each infinite word x satisfies x = supn x1 · · · xn⊥ .

Theorem 1. Endowed with the Lawson topology, (M{0, 1},≤, ·) is a compact
ordered monoid under the multiplication given by:

x · y =

{
x′y, if x = x′� ∈ {0, 1}∗�,

x, if x ∈ {0, 1}∗⊥ ∪ {0, 1}ω.

Proof. Proposition 1 implies M{0, 1} is a bounded complete algebraic domain,
which implies it is coherent. If x1 < x2 ∈ M{0, 1}, then x1 ∈ {0, 1}∗⊥ , so
x1 · y1 = x1 < x2 ≤ x2 · y2 for any y1 ≤ y2. On the other hand, if x1 is maximal,
then x1 = x2. If x1 ∈ {0, 1}∗�, then x1 · y1 = x′y1 ≤ x′y2 = x1 · y2, if y1 ≤ y2.
And if x1 ∈ {0, 1}ω, then x1 · y1 = x1 = x1 · y2. It follows that the multiplication
is monotone. By definition, � is an identity for the multiplication. So it only
remains to prove multiplication is jointly Lawson continuous.

It’s straightforward to show multiplication is Scott continuous in each vari-
able separately, which implies it is jointly Scott continuous. For Lawson conti-
nuity, it’s sufficient to show that, given z ∈ KM{0, 1}, A = {(x, y) | x · y ∈ ↑z}
is Scott compact. But z ∈ KM{0, 1} implies z = z′� or z = z′⊥ , for a finite
z′ ∈ {0, 1}∗. From this if follows that there are only finitely many ways to write
z′ is a concatenation of a prefix p ∈ {0, 1}∗ and a suffix s ∈ {0, 1}∗, and then

z =

{
p� · s⊥ if z ∈ {0, 1}∗⊥ ,

z = p� · s� if z ∈ {0, 1}�.

Then z ≤ x · y implies there is some factorization z = p� · s⊥ or z = p� · s⊥
with p� = x and either s� ≤ y or s⊥ ≤ y. Then A is a finite union of sets of
the form ↑(p�, s′�) or ↑(p�, s⊥ ).

2.3 The Subprobability Monad

Probability on Comp and Dom. It is well known that the family of probability
measures on a compact Hausdorff space is the object level of a functor which
defines a monad on Comp, the category of compact Hausdorff spaces and con-
tinuous maps (Theorem 2.13 of [7]). As outlined in [10], this monad gives rise to
two related monads:

1. On Comp, it associates to a compact Hausdorff space X the free barycentric
algebra over X, the name deriving from the counit ε : Prob(S) −→ S which
assigns to each measure μ on a probabilistic algebra S its barycenter ε(μ)
(cf. Theorem 5.3 of [13], which references [20]).
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2. A compact affine monoid is a compact monoid S for which there also is
a continuous mapping · : [0, 1] × S × S −→ S satisfying the property that
translations by elements of S are affine maps (cf. Sect. 1.1ff. of [10]). On the
category CompMon of compact monoids and continuous monoid homomor-
phisms, Prob gives rise to a monad that assigns to a compact monoid S the
free compact affine monoid over S (cf. Corollary 7.4 of [10]).

Remarkably, these results have analogs in domain theory. Before we describe
them, we first review some basic facts about (sub)probability measures on
domains. Most of these results can be found [11].

Definition 1. A valuation on a dcpo D is a mapping μ : Σ(D) −→ [0, 1], where
Σ(D) denotes the Scott-open subsets of D, satisfying:

Strictness: μ(∅) = 0.
Monotonicity: U ⊆ V Scott-open imliess μ(U) ≤ μ(V ).
Modularity: μ(U ∪ V ) + μ(U ∩ V ) = μ(U) + μ(V ), ∀U, V ∈ Σ(D),
Continuity: If {Ui}i∈I ⊆ Σ(D) is ⊆-directed, then supi μ(Ui) =
μ(

⋃
i Ui).

If μ(D) = 1, then μ is normalized. We let V(D) denote the family of valuations
on D under the pointwise order: μ � ν iff μ(U) ≤ ν(U) for all U ∈ Σ(D);
V1(D) denotes the family of normalized valuations.

It was first shown by Sahib-Djarhomi [19] that V(D) is a dcpo if D is one. The
main result describing the domain structure of V(D) is the following:

Theorem 2 (Splitting Lemma [11]). Let D be a domain with basis B. Then
V(D) is a domain with a basis consisting of the simple measures with supports
in B. Moreover, for simple measures μ =

∑
x∈F rrδx and ν =

∑
y∈G syδy, the

following are equivalent:

– μ ≤ ν (respectively, μ � ν).
– There are non-negative transport numbers 〈tx,y〉(x,y)∈F×G satisfying:

1. rx =
∑

y∈G tx,y ∀x ∈ F ,
2.

∑
x∈F tx,y ≤ sy ∀y ∈ G,

3. tx,y > 0 implies x ≤ y (respectively, x � y) ∀(x, y) ∈ F × G.
Moreover, if μ and ν are probability measures, then we can refine (ii) above to
(ii’)

∑
x∈F tx,y = sy ∀y ∈ G.

It is well-known that each Borel subprobability measure on a domain D gives
rise to a unique valuation in the obvious way. Conversely, it was shown by
Alvarez-Manilla, Edalat and Sahib-Djarhomi [2] that the converse holds, so we
can identify the family of Borel subprobability measures on D with the family of
valuations, including the order structure. Throughout this paper, we will refer
to (sub)probability measures, rather than valuations, but the order structure
is the one defined from valuations; for coherent domains, using the traditional
functional-analytic approach to defining measures, the order can be realized as:
For μ, ν ∈ V(D), μ ≤ ν iff

∫
D

fdμ ≤ ∫
D

fdν for all f : D −→ R+ monotone and
Lawson continuous.
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Now for the analogs of (i) and (ii) at the start of this subsection:

Proposition 2. Let D be a domain. Then

1. V defines a monad on DCPO.
2. V defines an endofunctor on Coh, the category of coherent domains and Scott-

continuous maps.
3. If D is a domain with a Scott-continuous multiplication · : D × D −→ D

under which D is a topological semigroup, then there is a Scott-continuous
convolution operation ∗ : V(D) × V(D) −→ V(D) defined by (μ ∗ ν)(U) =
(μ × ν){(x, y) ∈ D × D | x · y ∈ U}. Under this operation, V(D) is an affine
topological semigroup.

Proof. The result in (i) is contained in [11], and (ii) is from [12]. For (iii), it
is well-known that the family of simple subprobability measures {∑x∈F rxδx |∑

x∈F rx ≤ 1 & F ⊆ S finite} is a semigroup under convolution if S is a semi-
group. Since the operation ∗ is nothing more than V(·), it is Scott-continuous
on V(D × D) if D is a domain semigroup. And since the simple measures con-
tain a basis for V(D × D), it follows that convolution is associative on all of
V(D × D). Thus (V(D), ∗) is a domain semigroup. The fact that V defines a
monad on Dom means the only thing left to show is that each component of
the unit η : 1Coh

·−→ | | ◦ V is a semigroup homomorphism. Since ηD(d) = δd,
this amounts to showing that δx ∗ δy = δx·y for each x, y ∈ D, for D a domain
semigroup. But given x, y ∈ D, and U ∈ Σ(D), we have

(δx ∗ δy)(U) = δx × δy({(r, s) ∈ D × D | r · s ∈ U})

=

{
1 iff x · y ∈ U

0 otherwise
= δx·y(U).

The final claim that V(D) is an affine semigroup is clear.

Remark 1. There is a wealth of material on the semigroup of probability mea-
sures on a compact or locally compact (semi)group, but the assumption is invari-
ably that the (semi)group is Hausdorff. The results above show that basic facts
still hold if one generalizes to subprobability measures over domain semigroups
endowed with the Scott topology. It turns out that, if the domain D is coher-
ent and the multiplication · : D × D −→ D is Lawson continuous, then one can
retrieve the “classic” result, extended to subprobability measures.

V(D) is in BCD if D is a Tree Domain. Our next goal is to show that
VM{0, 1} is in BCD. Then, using a function space construction, if E is in BCD, we
can define a monad of random variables over BCD. We begin with the following
result; it is stated in [12], although no proof is provided; we include one here for
completeness sake:

Lemma 2. If T is a finite tree, then V(T ) is closed under finite infima. Hence
V(T ) ∈ BCD.
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Proof. We prove that if μ, ν ∈ V(T ), then μ∧ν ∈ V(T ). We proceed by induction
on |T |: the case that |T | = 1 is obvious, since V({∗}) � [0, 1]. So suppose the
result holds for |T | ≤ n, and let T be a tree with n + 1 elements. If T ′ =

T\{⊥T }, then T ′ is a forest of k trees, T ′ =
·⋃

i≤kT ′
i . The inductive hypothesis

implies V(T ′
i ) is closed under finite infima for each i. So, if μ, ν ∈ V(T ), then

μ|T ′
i

∧ μ|T ′
i

∈ V(T ′
i ) for each i ≤ k, and since the T ′

i s are pairwise disjoint, it
follows that μ|T ′ ∧ ν|T ′ ∈ V(T ′). So, for any open sets U, V ⊆ T ′, we have

μ ∧ ν (U ∪ V ) + μ ∧ ν (U ∩ V ) = μ ∧ ν (U) + μ ∧ ν (V ).

The only remaining case to show μ∧ν ∈ V(T ) is when U = T or ν = T ; without
loss of generality, we assume U = T . In that case,

μ ∧ ν (U ∪ V ) + μ ∧ ν (U ∩ V ) = μ ∧ ν (T ) + μ ∧ ν (V ) = μ ∧ ν (U) + μ ∧ ν (V ).

Corollary 1. If T � bilimnTn is a the bilimit of finite trees, then V(T ) is in
BCD. In particular, VM{0, 1} ∈ BCD.

Proof. If T � bilimnTn with each Tn a finite tree, then the continuity of the func-
tor V implies V(T ) � limn V(Tn), and since BCD is closed under limits, the result
follows. The final claim follows from our remark in the proof of Proposition 1.

2.4 Domains of Partial Maps

In the last subsection we alluded to a “function space construction” that we’d
need in our random variables model. We address that issue in this subsec-
tion, where we give some results about partial maps defined on the non-empty
Scott-closed subsets of a domain. The results are needed for our analysis of
sub-probabilities on domains.

To begin, recall that the support of a finite positive Borel measure μ on a
topological space X is the smallest closed set C ⊆ X satisfying μ(C) = μ(X). For
measures on a domain D, we let suppΣ μ denote the support of μ with respect
to the Scott topology, and suppΛ μ denote the support of μ with respect to the
Lawson topology. The appropriate domain for the random variables we plan to
study is suppΣ μ, the smallest Scott-closed subset X satisfying μ(D\X) = 0,
where μ is the measure assigned to the domain of the random variable.

Recall that the lower power domain over a domain D is the family Γ (D)
of non-empty Scott-closed subsets of D ordered by inclusion; in fact, PL(D) =
(Γ (D),⊆) is the free sup-semilattice domain over D. PL(D) defines a monad on
every Cartesian closed category of domains; in fact, PL(D) is bounded complete
for any domain D. This leads us to an important construction that we need, one
which we believe should be useful in applications of domains; although we have
made only a cursory effort at best to locate the result, we find it surprising that
we have been unable to find it in the literature.

Proposition 3. Let D and E both be BCD. Let

[D ⇀ E]
def
= {f : C −→ E | C ∈ PL(D)}
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denote the family of Scott-continuous partial maps defined on non-empty Scott-
closed subsets of D. We order [D ⇀ E] by

f ≤L g iff dom f ⊆ dom g and f ≤ g|dom f .

Then [D ⇀ E] is a bounded complete domain.

Proof (Outine). The proof can be broken down into three claims:

1. [D ⇀ E] is a dcpo: Given F ⊆ [D ⇀ E] directed, one first shows
supF ∈ [C −→ E], where C =

⊔
f∈F dom f , the Scott-closure of the

union of the Scott-closed sets {dom f | f ∈ F}. This is done by noting
that X =

⋃
f∈F dom f is a directed union of Scott-closed subsets of the

domain D, so it is a lower set that has a basis, which implies X is a con-
tinuous poset. Then F : X −→ E by F (x) = sup{f(x) | x ∈ dom f ∈ F}
is well-defined because F is directed, so the same is true of those f ∈ F
for which x ∈ dom f . In fact, F is Scott-continuous, because, given Y ⊆ X
directed for which x = supY ∈ X exists, then x ∈ dom f for some f ∈ F .
Since f : dom f −→ E is Scott-continuous, we have f |↓x : ↓x −→ E is Scott-
continuous. Thus F |↓x = sup{f |↓x | f ∈ F & x ∈ dom f} is the supremum
of a directed family of Scott-continuous functions on ↓x, so it also is Scott-
continuous on ↓x. Thus F (supY ) = supF (Y ) since Y ⊆ ↓ supY = ↓x. Then
this continuous map extends continuously to the round ideal completion of
X, and one argues this extension satisies F = supF , so [D ⇀ E] is a dcpo.

2. Next show [D ⇀ E] is a domain: The set [D ⇀ E] =
⋃

C∈Γ (D)[C −→ E] is
the directed union of domains [C −→ E] for C ∈ Γ (D), and each of these
domains has a basis, BC ⊆ [C −→ E]. We let B =

⋃
C∈Γ (D) BC be the

(directed) union of these function families. It follows that B is a basis for
[D ⇀ E].

3. Finally, validate the category claims. If D,E are both in BCD, then given
f, g ∈ [D ⇀ E], we can define f ∧ g by dom f ∧ g = dom f ∩ dom g, and for
x ∈ dom f ∧ g, we let (f ∧ g)(x) = f(x) ∧ g(x). That f ∧ g is the inf of f and
g follows from the fact that h ≤ f, g implies dom h ⊆ dom f ∩ dom g, and
then the result is clear.

2.5 Domain Random Variables

With the results of the previous subsection in hand, we’re now ready to begin
our construction of domain random variables. We start with a lemma that will
underpin our main result.

Lemma 3. Let D be a domain and let μ, ν ∈ V(D). Then μ � ν implies
suppΣ μ ⊆ suppΣ ν. Moreover, if {μi}i∈I ⊆ V(D) is directed with supi μi = μ,
then supi suppΣ μi = suppΣ μ.
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Proof. For the first claim, μ � ν iff μ(U) ≤ ν(U) for each Scott-open set U . So,
μ(U) = 0 if ν(U) = 0, and it follows that suppΣ μ ⊆ suppΣ ν. For the second
claim, since (Γ (D),⊆) (the family of Scott-closed subsets of D) is a domain, the
first result implies supi suppΣ μi ⊆ suppΣ μ. Conversely, A = D\ supi suppΣ μi

is Scott-open, and μ(A) > 0 would violate supi μi = μ. So μ(A) = 0, which
implies suppΣ μ ⊆ D\A = supi suppΣ μi.

We now define domain random variables based on a given domain D.

Definition 2. Let D be a domain. A domain random variable on D is a mapping
X : suppΣ μ −→ E where μ is a subprobability measure on D and X : suppΣ −→
E is a Scott-continuous map. Given domains D and E, we define

RV(D,E)
def
= {(μ,X) ∈ V(D) × [suppΣ μ −→ E]} where

(μ,X) ≤ (ν, Y ) iff μ � ν & X ≤ Y |suppΣ μ

Proposition 4. If D and E are domains, then

– RV (D,E) is a dcpo.
– If D and E are in a CCC of domains, then RV (D,E) is a domain.
– If V(D),D and E are all in a CCC C of domains, then so is RV (D,E).

Proof. The fact that the relation ≤ on RV (D,E) is well defined follows from part
(i) of Lemma 3. The proof of the first statement is straightforward, using part
(ii) of Lemma 3. For the second part, first note that Proposition 3 implies V(D)×
[D ⇀ E] is a domain since V(D) is one. The first part implies RV (D,E) ⊆
V(D) × [D ⇀ E] is closed under directed suprema. Moreover, for (μ,X) ∈
RV (D,E),

↓↓(μ,X) ⊇ {(μ′,X ′) | μ′ � μ & X ′ � X|suppΣ μ′ in [suppΣ μ′ −→ E]},

and that the right-hand set is directed with supremum (μ,X). This implies
RV (D,E) is a domain. The third statement is then clear.

Theorem 3. Fix a domain D. Then RV(D,−) is the object level of a continuous
endofunctor on DCPO that leaves each CCC of domains that contains V(D)
invariant.

Proof. Given a Scott-continuous map f : E −→ F between domains E and F ,
define RV(D, f) : RV(D,E) −→ RV(D,F ) by RV(D, f)(μ,X) = (μ, f ◦ X). The
third part of Proposition 4 then implies that RV (D,−) is an endofunctor on
any CCC of domains that contains D and V(D). This endofunctor is continuous
because its components are.

3 A Monad of Continuous Random Variables

The development so far has been about domain theory with only a passing ref-
erence to a particular model of computation. We now focus more narrowly to
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obtain a monad of continuous random variables designed to model the prototyp-
ical source of randomness, the tosses of a fair (and also an unfair) coin. Such a
model underlies the work in [3,9], for example, where the focus is on measures μ
on the Cantor tree for which suppΛ μ is an antichain. We begin with a discussion
around such a model.

3.1 Modeling Coin Flips

We have chosen the sequential domain M{0, 1} because it provides a model for
a series of coin flips that might occur during a computation. Our intuitive view
is that a random choice of some element of from a semantic domain D would
consist of a coin flip followed by a choice of the element from D based on the
outcome. So, it is essentially a two-step process: the random process flips the
coin resulting in a 0 (tails) or a 1 (heads), and then successfully terminates,
adding a � to the outcome, and then a random variable X is applied to this
result to select the element of D. Note that a sequence of coin flips followed by
a choice is a process that iterates the coin flips a prescribed number of times,
represented by x1� · x2� · · · xn� = x1 · · · xn�, followed by the application of
the random variable X.

3.2 The Inevitability of Nondeterminism

Our choice of M{0, 1} to model coin flips naturally leads to the question of how
to combine sequences of coin flips by two processes combined under sequential
composition. The multiplication operation is used here, but it raises an additional
issue.

Example 2. Suppose we have processes, P and Q, both of which employ proba-
bilistic choice, and that we want to form the sequential composition P ;Q. Let’s
assume P can flip a fair coin 0, 1 or 2 times, and on each toss, if there is a 0, then
an action a is executed, while if there is a 1, then action b is executed, and con-
trol then is passed to Q. Likewise, suppose Q can toss a fair coin 0, 1 or 2 times
and if the result is a 0, it executes an action c, while if a 1 appears, an action d
is executed, and again, Q terminates normally after each execution. In our app-
roach based on M {0, 1}, if we represent P as (μ,X), and Q as (ν, Y ). then the
composition P ;Q = (μ ∗ ν,X � Y ), where ∗ represents a convolution operator on
measures, and � an appropriate operation on the random variable components.

Consider now the value of X � Y on the outcome of two 0s. This outcome
could arise in any of three ways:

– P could terminate without making any coin tosses, and Q could toss its coin
twice, then normally terminate. This would produce the value X � Y (00) =
cc�;

– P could toss its coin once, pass control, and Q could toss its coin once, and
terminate. This would produce X � Y (00) = ac�;

– P could toss its coin twice, pass control to Q, which terminates normally
without tossing its coin. This would produce X � Y (00) = aa�.
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Since we have no way of knowing which of the three possibilities occurred, we
must allow X�Y to account for all three possibilities. This means X�Y (00) must
contain all three outcomes. The traditional way of representing such multiple
outcomes is through a model of nondeterministic choice, i.e., a power domain.

Notation 1. Throughout the remainder of the paper, we assume the seman-
tic domains D where random variables take their values are bounded complete
domains, and the inf-operation models probabilistic choice. Thus, such domains
support a Scott-continuous nondeterministic choice operator– the inf-operation
– which we denote by ⊕D.

3.3 Constructing a Monad

We now focus more narrowly by restricting random variables to be defined on
a particular probability space, namely, M{0, 1}. This amounts to restricting the
functor to RV (M{0, 1},−). However, this restriction is not enough to define a
monad – we must restrict the measures on M{0, 1} that are allowed. We do this
by restricting the simple measures that are allowed, and then taking the smallest
subdomain of VM{0, 1} containing them.

Definition 3. We say a simple measure
∑

x∈Fμ
rxδx on M{0, 1} is normal if

Fμ ⊆ {0, 1}∗�. We denote the set of normal simple measures by VNM{0, 1}.
Since each normal measure is concentrated on a subset of {0, 1}∗� ⊆

MaxM{0, 1}, the suprema of a directed set of normal simple measures is another
such. However, the following will be useful:

Proposition 5. Let μn ∈ VNM{0, 1} be a sequence of normal measures. Then
the following are equivalent:

1. μn −→ μ in the weak topology on VM{0, 1}.
2. μn −→ μ in the Lawson topology on VM{0, 1}.
3. The sequence {infm≥n μm | n ≥ 1} satisfies μ = supn(infm≥n μm).

Proof. From Corollary 1 we know VM{0, 1} ∈ BCD, and hence it is a coherent
domain. The equivalence of (i) and (ii) is then Corollary 15 of [4], while the
equivalence of (ii) and (iii) is Proposition VII-3.10 of [8].

Theorem 4. If μ ∈ VM{0, 1} is concentrated on {0, 1}ω, then there are normal
simple measures μn ∈ VNM{0, 1} with μn −→ μ in the weak topology.

Proof. Define φn : {0, 1}ω −→ {0, 1}n� by φn(x1 · · · ) = x1 · · · xn�. This is Law-
son continuous between compact Hausdorff spaces (in the relative topologies),
and then Proposition 2 of [6] implies Prob {0, 1}ω � limn(Prob {0, 1}n�, φn). But
the same argument verbatim shows V({0, 1}ω) � limn(V({0, 1}n�), φn). Since
VM{0, 1} is a coherent domain and all the measures μ, φn μ are concentrated on
Max VM{0, 1}, the relative Lawson topology agrees with the weak topology on
these measures.
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Definition 4. If D is a dcpo, we define the family of random variables on D
to be

CRV (D)
def
= RV (M {0, 1},D) = {(μ,X) ∈ VM {0, 1} × [suppΣ μ −→ D]}.

Theorem 5. If D is a dcpo, then so is CRV (D). Moreover, if D is in BCD,
then so is CRV (D). Finally, CRV extends to a continuous endofunctor on BCD.

Proof. Proposition 4 implies CRV (D) is a dcpo if D is one. Together with Corol-
lary 1, it also implies CRV (D) is in BCD if D is, since VM {0, 1} ∈ BCD.

As for the final claim, If f : D −→ E, then define CRV f : CRV (D) −→
CRV (E) by CRV f(μ,X) = (μ, f ◦X). It’s clear that this makes CRV a functor,
and the comments above show it’s an endofunctor on BCD. It’s also continuous
because its components are.

In the general theory we often couch the discussion in terms of sub-probability
measures, with the implicit assumption that any mass unallocated is associated
with nontermination. Since we have an explicit nontermination symbol in the
current situation, this is a convenient place to describe the relationship between
sub-probability measures and probability measures on the same domain.

Notation 2. If D is a domain, we let

PRV (D) = {(μ,X) ∈ ProbM {0, 1} × [suppΣ μ −→ D]},

We call PRV (D) the family of probabilistic random variables over D.

Proposition 6. If D is a domain in BCD, then the mapping

(μ,X) �→ (μ ⊕ (1 − ||μ||)δ⊥,X) : CRV (D) −→ PRV (D)

is a closure operator on CRV (D), and its image, PRV (D), also is a domain
in BCD. Moreover, a basis for PRV (D) is the family {(μ,X) ∈ PRV (D) |
μ is simple}.
Proof. It’s straightforward to show that the mapping μ �→ μ + (1 − ||μ||)δ⊥ is
a closure operator on VM{0, 1}, and clearly its image is ProbM{0, 1}, which
is a dcpo. It follows from Corollary I-2.5 of [8] that ProbM{0, 1} is a domain,
and that μ � ν ∈ V D implies μ + (1 − ||μ||)δ⊥ � ν + (1‖|ν||)δ⊥. This last
point implies ProbM{0, 1} has a basis of simple measures. It now follows that
(μ,X) �→ (μ + (1 − ||μ||)δ⊥,X) is a closure operator on CRV (D); note that
X(⊥) is well-defined since D is bounded complete. Thus, the image of CRV (D)
is PRV (D), and the same result from [8] applies to finish the proof.

The Structure of VM{0,1}. Since M{0, 1} = {x�, x⊥ | x ∈ {0, 1}∗}∪{0, 1}ω,
we can exploit the structure of M{0, 1}, and the structure this induces on
VM{0, 1}, as follows:
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Definition 5. For each n ≥ 1, we let Mn = ∪k≤n{x�, x⊥ | x ∈ {0, 1}k}. We

also define πn : M{0, 1} −→ Mn by πn(x) =

{
x if x ∈ Mn,

x1 · · · xn⊥ if x �∈ Mn.

If m ≤ n, let πm,n : Mn −→ Mm by πm,n(x) =

{
x if x ∈ Mm,

x1 · · · xm⊥ if x ∈ Mn\Mm.

Note that πm = πm,n ◦ πn for m ≤ n.

Proposition 7. M{0, 1} � bilim (Mn, πm,n, ιm,n), where ιm,n : Mm ↪→ Mn is
the inclusion. Moreover, VM{0, 1} = proj limn(VMn,Vπm,n).

Proof. It’s straightforward to verify that ιm,n : Mm −→ Mn : πm,n forms an
embedding–projection pair for m ≤ n, and then it follows that M{0, 1} =
bilim (Mn, πm,n, ιm,n). This implies M{0, 1} � proj limn(Mn, πm,n) in the Scott
topologies, and the same argument as in the proof of Theorem 1 shows this
also holds for the Lawson topology. Then the same argument we used in
the proof of Theorem 4 implies ProbM{0, 1} � limn(ProbMn,Probπm,n) and
VM{0, 1} � proj limn(VMn,Vπm,n).

Corollary 2. If D is a domain, we define:

• CRVn(D) = {(Vπn μ,X|suppΣ Vπn μ) | (μ,X) ∈ CRV (D)}, and
• Πn : CRV (D) −→ CRVn(D) by Πn(μ,X) = (Vπn μ,X|suppΣ Vπn μ).

Then CRVn(D) ⊆ CRV (D) and 1CRV (D) = supn Πn.

Proof. This follows from Propositions 3 and 7.

For CRV to define a monad, we have to show how to lift a mapping h : D −→
CRV (E) to a mapping h† : CRV (D) −→ CRV (E) satisfying the laws listed in
Lemma 4 below. Corollary 2 reduces the problem to showing the following:

Given h : D −→ CRV (E), let hn = Πn ◦ h : D −→ CRVn(D). Then there is
a mapping h†

n : CRVn(D) −→ CRVn(E), satisfying the monad laws listed in
Lemma 4 below for each n.

Since CRVn(E) has two components, we let h†
n = (hn,1, hn,2). Using this nota-

tion, we note the following:

If (
∑

x∈F rxδx,X) ∈ CRVn(D), then for each x ∈ F

hn,1(X(x)) =
∑

y∈Gx

syδy ∈ VMn,
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where Gx denotes the set on which the simple measure hn,1X(x) is concentrated
for each x ∈ F . Moreover,

hn,1(
∑

x∈F

rxδx,X) =
∑

x∈F

rx(δx ∗
∑

y∈Gx

syδy)

=
∑

x∈F

∑

y∈Gx

rxsyδx·y.

This implies suppΣ hn,1(
∑

x∈F rxδx) =
⋃

x∈F ↓x · Gx =
⋃

x∈F & y∈Gx
↓(x · y).

Definition 6. We define h†
n = (hn,1, hn,2) : CRVn(D) −→ CRVn(E), where

• hn,1(
∑

x∈F rxδx,X) =
∑

x∈F rx(δx ∗ hn,1(X(x)))
=

∑
x∈F rx(δx ∗ ∑

y∈Gx
syδy), and

• hn,2(
∑

x∈F rxδx,X) : supp∑
x∈F rx(δx∗∑y∈Gx

syδy) −→ E by
hn,2(

∑
x∈F rxδx,X)(z)

= ∧{hn,2(X(x′))(y′) | z ≤ x′ · y′, x′ ≤ x ∈ F, y′ ≤ y ∈ Gx}
Lemma 4. Given h : D −→ CRV (E), the mapping h†

n : CRVn(D) −→
CRVn(E) satisfies the monad laws:
(1) If ηD : D −→ CRV (D) is ηD(d) = (δ�, χd), then

η†
D : CRVn(D) −→ CRVn(D) is the identity;

(2) h†
n ◦ ηD = hn; and

(3) If k : CRV (E) −→ CRV (P ) and kn = Πn ◦ k, then (k†
n ◦ hn)† = k†

n ◦ h†
n.

Proof. (1) Note that ηD(D) ⊆ CRVn(D) for each n ≥ 1, so Πn ◦ ηD =
ηD. Then (η†

D)1(
∑

x∈F rxδx,X) =
∑

x∈F rx(δx ∗ δ�) =
∑

x∈F rxδx, and
(η†

D)2(
∑

x∈F rxδx,X)(z) = ∧{(ηD)2(X(x′))(y′) | z ≤ x′ · y′, x′ ≤ x ∈ F, y′ ≤ �}

=

{
χX(z)(�) if z ∈ {0, 1}∗�
χX(z)(⊥) if z ∈ {0, 1}∗⊥ = X(z).

(2) If hn,1(d) =
∑

x∈F rxδx, then
hn,1(δ�, χd) =

∑
x∈F rx(δx ∗ δ�) =

∑
x∈F rxδx. Likewise,

hn,2(δ�, χd)(z)
= ∧{hn,2(χd(x′))(y′) | z ≤ x′ · y′, x′ ≤ �, y′ ≤ y ∈ G�}
= hn,2(d)(y′) =

{
hn,2(d)(z) if ⊥< z

hn,2(d)(⊥) if z =⊥ = hn,2(ηD(d)).

(3) k†
n ◦ h†

n(
∑

x∈F rxδx,X)
= k†

n(hn,1(
∑

x∈F rxδx,X), hn,2(
∑

x∈F rxδx,X))
= (kn,1(hn,1(

∑
x∈F rxδx,X), hn,2(

∑
x∈F rxδx,X)),

kn,2(hn,1(
∑

x∈F rxδx,X), hn,2(
∑

x∈F rxδx,X))).
Now, kn,1(hn,1(

∑
x∈F rxδx,X), hn,2(

∑
x∈F rxδx,X))

= kn,1(
∑

x∈F rx(δx ∗ (
∑

y∈Gx
syδy)), hn,2(

∑
x∈F rxδx,X))

= kn,1(
∑

x∈F

∑
y∈Gx

rxsyδx·y, hn,2(
∑

x∈F rxδx,X))
=

∑
x∈F & y∈Gx

rxsy(δx·y ∗ kn,1(hn,2(
∑

x∈F rxδx,X)(x · y))).
On the other hand,
(k†

n ◦ hn)†(
∑

x∈F rxδx,X)
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= ((k†
n ◦ hn)1(

∑
x∈F rxδx,X), (k†

n ◦ hn)2(
∑

x∈F rxδx,X))
= (

∑
x∈F rx(δx ∗ k†

n ◦ hn,1(X(x)),
(k†

n ◦ hn)2(
∑

x∈F rxδx,X))
= (

∑
x∈F rx(δx ∗ (k†

n)1(
∑

y∈Gx
syδy, hn,2(

∑
x∈F rxδx,X)),

(k†
n ◦ hn)2(

∑
x∈F rxδx,X))

= (
∑

x∈F rx(δx ∗ (
∑

y∈Gx
sy(δy ∗ kn,1(hn,2(

∑
x∈F rxδx,X)(x · y)))),

(k†
n ◦ hn)2(

∑
x∈F rxδx,X)))

We conclude that
(k†

n ◦ h†
n)1(

∑
x∈F rxδx,X)

= kn,1(hn,1(
∑

x∈F rxδx,X), hn,2(
∑

x∈F rxδx,X))
=

∑
x∈F & y∈Gx

rxsy(δx·y ∗ kn,1(hn,2(
∑

x∈F rxδx,X)(x · y))))
=

∑
x∈F rx(δx ∗ (

∑
y∈Gx

sy(δy ∗ kn,1(hn,2(
∑

x∈F rxδx,X)(x · y))))
= (k†

n ◦ hn)1(
∑

x∈F rxδx,X),
which shows the first components of k†

n ◦ h†
n and (k†

n ◦ hn)† agree. A similar
(laborious) argument proves the second components agree as well.

Theorem 6. The functor CRV defines a monad on BCD.

Proof. This follows from Lemma 4 and Corollary 2.

Remark 2. As noted earlier, if M is a compact monoid, convolution satisfies
(μ∗ν)(A) = (μ×ν){(x, y) ∈ M ×M | xy ∈ A}, so it is a mapping ∗ : Prob(M)×
Prob(M) −→ Prob(M). Our use of ∗ in Theorem 6 is of a different character,
since we are integrating along a measure μ to obtain a measure f̂(μ,X) =∫

x
d f ◦ X(x) ∗ μ(x), where f : CRV (D) −→ VM {0, 1}.

3.4 CRV and Continuous Probability Measures

An accepted model for probabilistic choice is a probabilistic Turing machine,
a Turing machine equipped with an second infinite tape containing a random
sequence of bits. As a computation unfolds, the machine can consult the random
tape from time to time and use the next random bit as a mechanism for making
a choice. The source of randomness is not usually defined, and in a sense, it’s
immaterial. But it’s common to assume that the same source is used throughout
the computation – i.e., there’s a single probability measure that’s governing the
sequence of random bits written on the tape.

In the models described in [9] and in [3], the idea of the random tape is
captured by the Cantor tree CT =

⋃
n Cn ∪ C, where the “single source of ran-

domness” arises naturally as a measure μ on the Cantor set (at the top). That
measure μ can be realized as μ = supn φn μ, where φn : C −→ Cn is the natural
projection. As a concrete example, one can take μ to be Haar measure on C
regarded as an infinite product of two-point groups, and then μn is the normal-
ized uniform measure on Cn � 2n. Then the possible sequence of outcomes of
coin tosses on a particular computation are represented by a single path through
the tree CT, and the results at the nth-level are governed by the distribution
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φn μ. The outcome at that level is used to define choices in the semantic domain
D via a random variable X : Cn −→ D for each n.

The same ideas permeate our model CRV , but our structure is different. The
mappings φn : CT −→ Cn are replaced in our model by the mappings

πn : M{0, 1} −→ Mn given by πn(x) =

{
x if x ∈ Mn

x1 · · · xn⊥ if |x �∈ Mn

described in Definition 5. Then Mn is a retract of M{0, 1} under πn.
To realize any measure μ concentrated on C ⊆ M{0, 1}, and the measures

μn, we define new projections ρn : C −→ Cn� from the Cantor set of maximal
elements ofM{0, 1} to the n-bit words ending with � in the obvious fashion. These
mappings are continuous, but their images μn = ρn μ are incomparable (since
the set Cn� ⊆ MaxM{0, 1} for each n). Nevertheless, Proposition 5 implies the
sequence ρn μ −→ μ in M{0, 1} in the Lawson topology. From a computational
perspective, we can consider the related measures πm μ = νm, then νm ≤ μn for
each m and each n ≥ m. But μ = supm νm since 1M{0,1} = supm πm, and then
νm ≤ μn for n ≥ m implies μn −→ μ in the Scott topology, since νm � μ for
each m.

4 Summary and Future Work

We have constructed a new monad for probabilistic choice using domain theory.
The model consists of pairs (μ,X), where μ ∈ VM {0, 1} and X : suppΣ μ −→ D
is a Scott-continuous random variables that defines the choices in the semantic
domain D. The fact that CRV forms a monad relies crucially on the convolution
operation on VM{0, 1} that arises from the monoid operation on M{0, 1}, and
the new order on M{0, 1}, rather than the prefix order on the set of finite and
infinite words over {0, 1}.

Our construction is focused on bounded complete domains, in order to utilize
the inf-operation to define the Kleisli lift – in particular, in the random variable
component of a pair (μ,X). One fault that was identified in the monad V is its
lack of a distributive law over and of the power domains, which model nonde-
terministic choice. But here we see that we must assume the domain of values
for our random variables already must support nondeterminism, since it arises
naturally when one composes random variables (cf. Subsect. 3.2).

With all the theory, one might rightfully ask for some examples. An obvious
target would be the models of CSP, starting with the seminal paper [5]. Morgan,
McIver and their colleagues [18] have developed an extensive theory of CSP with
probabilistic choice modeled by applying the sub-probability monad V to CSP
models. It would be interesting to compare the model developed here, as applied,
e.g., to the model in [18].

Acknowledgement. The author wishes to thank Tyler Barker for some very helpful
discussions on the topic of monads of random variables.
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