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Bill Roscoe working in University College, Oxford in 1979.
Taken by Coby Roscoe.



Preface

This volume contains papers written in honour of A.W. Roscoe, better known as Bill
Roscoe, on the occasion of his 60th birthday. Bill was born in Dundee and went on to
read Mathematics at University College, Oxford (Univ) in 1975, achieving the top first.
Bill’s main tutors at Oxford were Michael Collins and Gordon Screaton, both of whom
have had huge influences on his life and career. Remarkably, Bill has never left Univ,
and is currently a Senior Research Fellow at the college, having previously been a
College Lecturer and a Tutorial Fellow.

After completing his undergraduate degree, Bill completed a DPhil at Oxford under
the supervision of Professor Sir Tony Hoare. Bill’s thesis was on the mathematical
foundations of Communicating Sequential Processes (CSP), a topic to which he has
become synonymous and that has come to dominate his research career. His early work
on CSP in the 1980s, together with Steve Brookes and others, focused on formally
defining the mathematical foundations of CSP, and resulted in the development of the
form of CSP used today. More widely, Bill has made huge contributions to the
understanding of concurrency, as demonstrated by the fact that his first textbook on the
subject, The Theory and Practice of Concurrency, has over 2,000 citations. He is
undoubtably one of the leading figures worldwide in the area of process algebras. Bill’s
research interests are not only confined to Computer Science; he also published a
number of papers on topology, leading to an Erdés number of 2.

Bill has been the driving force behind the development of FDR, the CSP refinement
checker, since its inception in the early 1990s. This also involved the setting up of the
first company that he was involved in, Formal Systems (Europe) Limited. Bill is not
only the most ardent user of FDR but has also made considerable contributions to the
ideas behind FDR; most notably in determining how to efficiently perform refinement
checking, and to FDR’s compression functions. He has also built various tools to
translate other languages into CSP for analysis using FDR, including one for analysing
simple imperative programs, and another for analysing Statecharts.

Bill’s passion for theory is matched with an equal desire to see his research make an
impact in practice by solving industrial challenges. One of Bill’s (many) remarkable
qualities is his ability to deal with the details of analysing a horrendously combina-
torially complex system in his head, even while performing at a board. He became
known by some of his industrial partners as the “Professor of Difficult Sums”, as he is
the go-to person for fiendish challenges! Bill has enjoyed numerous fruitful collabo-
rations with industry partners and government agencies throughout his career; for
example, with Draper, Inmos, U.S. Office of Naval Research, and QinetiQ (and its
previous versions). One of his early collaborations with Inmos on the verification of the
floating-point unit on the T800 transputer, led to a Queen’s Award in 1990. These
collaborations have proven to be a stimulating influence on Bill’s research over the
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years, as is demonstrated to this day by his exciting research projects, which combine
theory and practice in order to tackle the escalating costs of software development.

Bill is known for his love of solving puzzles using CSP and FDR. One of Bill’s first
papers was on this topic, and involved solving the so-called trains problem, where
trains have to be moved to the correct sheds over a predetermined configuration of
tracks. He later wrote a practical to accompany the undergraduate course in Concur-
rency at Oxford that required students to solve this problem, which is still in use today.
He is particularly proud of the fact that FDR managed to find a shorter solution than
previously known to a variant of the puzzle. Bill’s passion for solving puzzles using
CSP and FDR extends over many well-known examples and has become so
well-established that they are now used as standard benchmarks for FDR. Indeed, he
evaluates all of his new hardware on the basis of how quickly it can master his standard
peg solitaire script!

In the mid-1990s Bill became involved in using CSP to analyse the security
properties of systems. He first worked on analysing security protocols using CSP and
FDR, along with Gavin Lowe amongst others. This work led to FDR becoming widely
used as a protocol analysis tool, and also led to many advances in FDR particularly
enhancing its scalability. He also worked on information flow, and developed one
of the few definitions of non-interference that deals adequately with refinement. Lately,
Bill has worked on human-interactive security protocols that allow secure networks to
be established using non-fakable information that can be exchanged between humans.
This technology has industrial applications such as mobile payments, medical data
exchange, and telephony.

Bill’s research record is matched by an astonishing track record of leadership and
administration within the University of Oxford. Bill took over as Head of the Computer
Laboratory at Oxford in 2003, and over a ten-year period led the department to nearly
triple in size. His ambitions for the department were perhaps best illustrated in 2011,
when he oversaw the change in name of the department, from the Computer Laboratory
to the Department of Computer Science. This change in name clearly signalled to the
world that the department was now intent on being a world-leading department of
computer science — a status that has subsequently been confirmed by many third-party
rankings. (Just before we went to press, the Times Higher Education published its first
ever ranking of worldwide computer science departments, placing Oxford third in the
world overall, and first in the UK.) In terms of scale and breadth of research interests,
the present Department of Computer Science bears very little resemblance to the
Computer Laboratory that Bill joined nearly 40 years ago; but in terms of quality, as
these rankings clearly testify, the Department remains world class.

Bill has also been involved in the administration of Univ since he was appointed a
tutorial fellow in 1983. Notably, he was appointed as a tutorial fellow in Computer
Science two years prior to the degree launching! Bill therefore taught Mathematics for
the first two years of his fellowship, which was a major contributor to the cohesion
between Computer Science and Mathematics at Univ, something that continues to this
day.
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No account of Bill would be complete without the mention of his wife Coby, whom
he met during his student days at Univ. Their story began in college over a computer
and an accounting system in need of some software. The rest is history, filled with
amazing stories of their travels around the world together.

November 2016 Thomas Gibson-Robinson
Philippa Hopcroft
Ranko Lazi¢



Bill Roscoe, on His 60th Birthday

Tony Hoare

Microsoft Research, Cambridge, UK

Happy Birthday, Bill! And many happy returns of the day! And not just of today.
I wish you also many returns of the earlier happy days that you and I have spent
together as friends and colleagues. For the benefit of our more recent mutual friends
and colleagues assembled here, may I recall with gratitude and pleasure some of your
notable earlier contributions to the development of Computer Science at Oxford?

In 1978, Bill was awarded the Junior Mathematical Prize for top marks in the Final
Examination of his Bachelor’s degree at Oxford. Nevertheless, he bravely registered as
a Doctoral student in the Programming Research group (PRG), which was then pop-
ulated by just two academics (Joe Stoy and myself) and two programmers (Malcolm
Harper and Andrew Newman). Together with a fellow student Steve Brookes, he
embarked on a search for a formal semantics for Communicating Sequential Processes
(CSP). This was a new theoretical concurrent programming language which I had
designed and published before arrival at Oxford. Indeed, the formalisation of its
semantics was a strong part of my motive for moving to Oxford.

An early assignment that I gave to Bill and Steve was to formalise the algebraic
laws which governed reasoning about programs expressed in CSP. The next week they
came back to ask a question: What were the laws that I wanted? I had no idea how to
answer that question. So I threw it straight back at them, as their next assignment, to tell
me what laws I should be wanting. To do that we started on an investigation into a
mathematical model (then known as a denotational semantics) which the laws would
have to satisfy.

On the basis of this model, Bill and Steve proved a highly elegant collection of
algebraic laws, entirely to my satisfaction. Bill also formalised and proved the cor-
rectness of an abstract implementation of the language, using Gordon Plotkin’s notion
of a Structural Operational Semantics. The proof of the consistency of a model with its
algebraic laws and its operational implementations has been the inspiration for my own
life’s work on Unifying Theories of Programming right up to the present day.

On graduation in 1982, Bill obtained an IBM Research Fellowship of the Royal
Society, and continued work of the CSP model and its applications. At the same time he
pursued his previous interest in Topology. In 1983, he accepted the offer of a University
Lectureship in Computation at the PRG. He immediately established a close collabo-
ration with David May, the Chief Designer of the Inmos Transputer and its assembly
language occam. He led a joint project to check the design of the Inmos floating point
unit for their transputer chip, whose architecture was explicitly based on CSP.

This project won, jointly for Inmos and the PRG, the Queen’s Award for Tech-
nological Achievement, 1990. The award was an enormous boost for the PRG, as a
counterbalance to its established reputation as one of the most theoretical Computer
Science Departments in the UK. Further boosts were Bill’s success between 1985 and
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1994 in winning research grants totalling around $1.5 million in research grants from
US sources, and about £0.25 million from UK sources.

I am delighted to exploit this occasion to acknowledge in public my deep personal
gratitude for all Bill’s help to me personally in fulfilling my duties and achieving my
aims for the development of Computer Science at Oxford. And on a more personal
level, he was the organiser of my own 60th birthday party, and my retirement sym-
posium in 1999, and another symposium organised jointly with Cliff Jones and Ken
Wood for my 75th birthday in Cambridge. He edited the proceedings of the two
symposia, and they were presented to me as festschrifts.

Let me conclude by turning again to the earlier days. When Bill’s external examiner
Peter Cameron received a copy of Bill’s Doctoral Thesis, he phoned me with the rueful
comment that it contained sufficient material to fill three successful theses of the more
normal kind. I was able to console him that he needed to examine only one of them,
and he could select whichever one he wished.

Now it is my rueful comment that Bill’s lifetime achievement would be enough to
fill three normal lifetimes; and in this address, I have selected only on the early years of
just one of them. They have given me a lot to thank him for. During this symposium, I
greatly look forward to hearing more up-to-date accounts of the many facets of his later
achievement.



A Tribute to Bill Roscoe, on the Occasion
of His 60th Birthday

Stephen Brookes

Department of Computer Science, Carnegie Mellon University, Pittsburgh, USA

I first met Bill Roscoe as an undergrad at University College in 1975. We were both
studying Mathematics, and began to gravitate towards Logic and Computer Science in
our second and third years. Later we became graduate students together, and we have
known each other as friends and colleagues for over 40 years.

At Univ Bill came across initially as a rather shy and enigmatic Scotsman, but we
became friends soon, despite his insistence on introducing me to the Poetic Gems of
William McGonagall, oft cited as the “worst poet in the world” and (like Bill) hailing
from Dundee. Bill has a warm sense of humor (I have lived in the USA long enough
that my spell checker no longer corrects back to UK spelling) and I’'m sure he agrees
with the general assessment of McGonagall’s (lack of) talent. Bill also turns out to have
a highly competitive (not to say vicious) approach to croquet, which we discovered on
the lawns of Logic Lane and Stavertonia. He is also an excellent chef, although he does
tend to use every pot and pan in the kitchen.

Academically, it soon became clear that Bill was a star: in 1978 he achieved the top
all-round university-wide score in Finals. We both stayed on for graduate studies at the
Programming Research Group, where we got started with Tony Hoare, who was
looking for a mathematical semantics for CSP. Looking back, I would characterize
those years at the PRG as an incredibly satisfying and formative period for both of us.
Under Tony’s gentle guidance, we began to find our own feet as researchers. This was a
time marked by failures and divergences, as we tried out ideas, learned what worked
and what did not. Our dissertations emerged from this collaborative effort, culminating
in our first journal paper (“A Theory of Communicating Sequential Processes”, known
to us as HBR, published in J. ACM, July 1984). This work also led ultimately to the
foundations of the FDR model checker, which Bill and his team developed into a
highly effective tool with many practical applications. We also travelled together to
attend our first international conference, (ICALP, Noordwijkerhout, July 1980).
Building on our Ph.D. foundations, Bill and I organized a research conference (Seminar
on Concurrency, July 1984), together with Glynn Winskel. The failures/divergences
model, CSP, and FDR form a lifelong thread connecting us, even as our own research
paths diverged into many new directions. It is always rewarding to look back on past
achievements and reflect. It is especially pleasing to recall many happy days of working
with Bill (and Tony), and to realize that those early days were when we found our own
voices and learned to explore and experiment.

As grad students we both enjoyed a couple of years as Lecturers at Univ. In the
following years, I moved abroad and Bill travelled briefly across the High to St. Edmund
Hall, then back to Univ. Bill came to Florida for my wedding (to Lynn) in 1984, and
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Lynn and I came back to Oxford a few years later, when Bill and Coby got married. We
have remained fast friends and colleagues. Bill has had an outstanding career and he
continues to shine as a researcher, author, advisor, and even administrator. His many
graduate students have gone on to establish themselves in academia and industry. He
can look back proudly on his own achievements and those of his advisees.

Bill never ceases to remind me that I am older than he is (albeit by less than a
month), and that my own hair became grey faster than his. So it is appropriate for me to
welcome Bill to the over-60’s generation, even though he’ll always be a couple of
weeks behind me. I look forward to many more years of research, and may more years
of friendship. I end with the following paraphrase in echo of McGonagall:

This is Bill’s first 60th Birthday vear,
And will be the only one, I rather fear:
Therefore, sound drums and trumpets with cheer,

Until the echoes are heard o’er land, sea, email and Twitter.



Herding Cats, Oxford Style

Michael Wooldridge

Department of Computer Science, University of Oxford, Oxford, UK

Managing academics, so the saying goes, is like trying to herd cats. Academic
departments, by and large, are not like closely managed small businesses, but more like
a collection of cottage industries, each only dimly aware that they are part of a larger
activity (the university). It often comes as a complete surprise to outsiders, who
imagine that as employees of a university will naturally owe their allegiance to their
employer, but the nature of academic life is such that many academics feel their
primary allegiance is not to their university, but to their discipline (maths, physics,
computer science, and so on). And as if this situation were not strange enough, at
Oxford, we have colleges thrown in the mix as well. Academic freedom means that we
feel entirely comfortable saying ‘“no” to those who, technically speaking, are our
bosses. For good measure, we often like to point out the foolishness of their ways in
detail, perhaps in the hope that they will not bother us again. Those benighted souls
who agree to be the head of an academic department are burdened with responsibility
by the bucketload, but precious little actual power to effect change. Little wonder that
many academic heads retreat to their offices, keep their heads down, and try to get
through their sentence creating as little fuss as possible.

I have been a member of the UK academic community for more than a quarter of a
century. I have spent a great deal of time over that period studying the dynamics of UK
computer science departments. Over that period, there has been a lot of change. Some
small departments have grown big; some weak departments have grown strong; and
some formerly strong departments have plummeted in quality. Naturally, I am curious
about what drives the successes, and what factors lead to the failures.

The recipe seems to be relatively simple, but surprisingly difficult to get right. It
certainly isn’t corporate management techniques that drives academic excellence. Key
performance indicators, extensive documentary paper trails, strategic planning away
days, and all the rest of it certainly has its place, but you can diligently do all that stuff
and more, and still remain resolutely mediocre. There is plenty of evidence of that, not
just in the UK academic sector, but in universities across the world.

So what is it, that drives success? Colleagues who have read so far will no doubt be
pleased to hear my firm rejection of the culture of managerialism, but they may be less
pleased to hear what I am about to say next. Success stories in academia, as elsewhere,
don’t happen by accident. Wherever I see success, I see evidence of leadership.

Leadership and management, of course, are not the same thing; academic leader-
ship is hard to define. But it certainly involves having a clear and realistic vision of
where you are going; a balanced understanding of your weaknesses, and those areas
that you can realistically make progress; the ability to make your case, and have
difficult conversations with those who don’t get the point; a clear understanding of
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academic excellence, and a willingness to support it; and above all, a determination to
keep hold of what universities are really all about: research and teaching.

Which brings me to Oxford, and to Bill Roscoe.

It is approaching 15 years since Bill took over as Head of Department of Computer
Science at the University of Oxford. He certainly did not take over a weak department:
there was excellence aplenty. But, I think it is fair to say, the department at that time was
relatively small, and narrowly focussed. Bill took on the challenge of transforming the
department in terms of its scale and breadth of activity. Transformative change is not an
easy thing to accomplish, even under the best of circumstances. But the nature of Oxford
as a collegiate university makes it tremendously difficult to effect transformative change
quickly. Decisions at Oxford usually require broad consensus from large and diverse
constituencies, and computer science as a relatively new subject has relatively little
presence in the colleges and ancient decision-making bodies of the university.

Bill’s achievements as Head of Department are, therefore, genuinely remarkable.
Oxford’s computer science department has grown at a phenomenal rate, and now
counts nearly 75 academics in its roster of full-time academic staff. In 2003, the
department graduated just three DPhil students; this year we will graduate nearly 50. In
the academic year 2014-2015, the department generated more research grant income
than in the entire period 2001-2008; we have grown from a pool of about 20 post-
doctoral researchers to nearly 150 currently. On every meaningful metric that I can
think of, the department has surged ahead.

As an outsider, I watched Oxford’s growth with interest, and was deeply impressed.
I wanted to join the party, and was fortunate enough, in 2012, to be able to join the fun.
This change did not happen by accident. It was not handed to us on a plate. It was not
easy. It was not simple. It did not happen overnight. It was the result of a committed,
decade-long process, under which the department had determined, focussed leadership,
driven to build and improve. It was a tiring, and I daresay at times dispiriting business. It
would have been very easy to walk away. But the results, I believe, speak for them-
selves. Bill was not the father of the Department of Computer Science, but he is, I
believe, the father of the department as it stands today — and the department is, I honestly
believe, the most exciting place in Europe to be a computer scientist right now. Those of
us in the department, and the University of Oxford itself, owe Bill a tremendous debt.
The department is clearly a labour of love for Bill; and even ignoring all Bill’s other
work as a researcher and entrepreneur, it would be a fitting legacy for a career.
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Stealthy Protocols: Metrics and Open Problems

Olga Chen, Catherine Meadows™), and Gautam Trivedi

U.S. Naval Research Laboratory, Code 5540, Washington, DC 20375, USA

{olga.chen,catherine.meadows,gautam.trivedi}@nrl.navy.mil

Abstract. This paper is a survey of both methods that could be used
to support stealthy communication over both wired and wireless net-
works and techniques for evaluating them. By stealthy communication
we mean communication using channels that guarantee that the nature
of the communication, or even the fact that communication is taking
place at all, is hidden. Although stealthy communication and informa-
tion hiding have been studied from a number of different points of view,
e.g. image steganography, network covert channels, and covert wireless
communication, not much has been done to tie these different threads
together and attempt to see how the different branches of stealthy com-
munication research can inform each other. In this paper we take the first
steps to remedying this deficiency. We identify open problems, point out
gaps, and indicate directions for further research.

1 Introduction

Over the years, there has been a substantial amount of research on hidden com-
munication in computer systems. This started with the study of covert channels
within computer systems, in particular multi-level secure systems, and has con-
tinued in such areas as image steganography, network covert channels, and covert
wireless communication. This raises the question: how feasible is stealthy com-
munication? By stealthy communication we mean communication that is sent
over channels in a way only detectable by the intended recipient. By channel
we mean any means of communicating information using any layer of a protocol
stack. This is closely related to information hiding and indeed can be consid-
ered a subset of it. However, we concentrate on using features of communication
protocols as the cover source, thus ruling out areas such as image steganography.

The first thing needed in order to build stealthy communication tools, or to
detect stealthy communication, is a good understanding of the channels available
to us. What properties are required in order for channels to support stealthy
communication? Can we detect when a channel is no longer suitable? Conversely,
if we want to detect stealthy communication, how can we take advantage of the
characteristics of the channels being used?

Obtaining an answer to these questions requires a careful study of available
stealthy channels and their properties. For this we can take advantage of the
research that has gone before. However, one thing needed is methods for com-
paring different channels that may make use of different communications media.
© Springer International Publishing AG 2017
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Unfortunately, there has not been much cross-fertilization between the different
areas of research, perhaps because of the very different natures of the different
media used. This makes it difficult to compare the features of different channels
or to determine what general principals apply. Thus in this paper we provide
the groundwork for such cross-fertilization by exploring the various techniques
available for stealthy communication, identifying the issues that affect it, and
finally, using our observations to identify areas where further research is needed.

The paper is organized as follows. We first recall the basic framework used to
reason about stealthy communication, a slightly modified version of the frame-
work developed at the first Information Hiding Workshop. We then give a brief
overview of the known techniques for stealthy communication. We next give an
overview of metrics for stealthy communication, and discuss the different types
of stealthy technologies with respect to these metrics. We then discuss various
features of cover and stego channels that can affect stealthy communication, and
use this to suggest desired features of potential future metrics. We also discuss
results concerning metrics for image steganography and other applications could
be useful if they were also found to hold for network channels. We conclude with
a list of open problems.

2 General Framework

We use the general framework developed during the first Information Hiding
Workshop [35], with some minor modifications. This involves a communication
channel and three principals:

— Alice, who is sending information over the channel,

— Bob, who is receiving information over the channel from Alice, and;

— The Warden, who is watching the channel and is attempting to determine
whether or not Alice is transmitting any information to Bob. An active warden
may try to interfere with the communication by adding noise, whereas a passive
warden can only watch the communications without altering them in any
way [46].

Alice and Bob could act as originators of the communication or could possi-
bly manipulate an already-existing overt communication channel between unsus-
pecting parties.

Alice communicates with Bob by modifying a set of variables that both Bob
and the Warden may observe. The Warden’s job is to determine whether or not
Alice is sending data to Bob. Bob’s job is to determine the information that Alice
is sending to him (the question of Bob’s determining whether Alice is sending is
another problem outside the scope of this framework).

There are also several types of sources:

— Cover source. This is the source without any encoded data from Alice.
— Stego source. This is the result of embedding Alice’s information in the cover
source.
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There are also two types of noise. Both are added to the stego source after it
leaves Alice. One is added to the channel between Alice and Bob. The other is
added to the channel between Alice and the Warden. Note that some of the noise
on the channel between Alice and Bob may have been added (at least partially)
by the Warden. In this paper we will generally assume that the Warden does
not add noise, as we are more interested at this point in the stealthy techniques
themselves than in countermeasures.

3 Overview of Methods

Network covert channels can occur at all layers of the protocol stack. At the
higher layers, covert channels can occur in any type of protocol, but at the lower
layers, in particular the physical layer, work has concentrated mostly on wireless
protocols. Here the complexity of management of the physical layer appears to
offer more opportunities for exploiting covert channels. Thus, in this section we
consider higher layer and physical layer protocols separately.

3.1 Higher Layer Network Covert Channels

Covert channels are traditionally divided into two types: storage channels, in
which Alice sends information to Bob by modifying the attributes of the data she
sends along the legitimate channel, and timing channels, in which she modifies
the timing of the events that Bob observes. Both types of channels occur in
higher layer protocols, and we consider them below.

Exploiting Storage Channels. Protocols often carry random or unpredictable
information as part of their metadata. In this case it may be possible to hide
data in these fields. If the metadata is random one can replace it with encrypted
data, which may be assumed to be indistinguishable from random. If it is not
completely random, the problem becomes somewhat harder; one must determine
the probability distribution of the metadata, and replace it with (encrypted) data
whose distribution is indistinguishable from that of the genuine metadata.

Storage covert channels can utilize unused fields or bits in the packet headers.
For example, Fisk et al. in [14] suggest using reserved bits and data fields when
RST =1 in TCP packets as potential covert channels. They also suggest that
data can be hidden in timestamp, address flag or unnecessary fields (such as
TOS or DF) of IP packets or in the code field (when sending just the type) and
unused bits of ICMP packets.

Padding TCP or IP headers to 4-byte boundaries [14] as well as padding
IPv6 headers can be used as potential covert storage channels.

Some protocols, such as IPv6, also contain header extensions. Lucena et al.
[28] show that these extension fields, such as Authentication Header (AH) or
Encapsulating Security Payload (ESP), can be used for this purpose.

Storage covert channels can also utilize existing, currently-used fields in
packet headers. Fisk et al. [14] suggest a method of using TCP initial sequence
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number field as well as the checksum field in both TCP and UDP as covert chan-
nels. IP’s Time To Live (TTL) field as well as the equivalent IPv6 Hop Limit
field [28] can serve as additional examples of storage covert channels where infor-
mation is hidden in the metadata. The DNS protocol also has several fields that
can be used to send covert data. According to Davidoff et al. [12], such fields
as NULL, TXT, SVR, or MX could serve as excellent covert data sources. Van
Horenbeck [19] also presents a covert channel approach by integrating the covert
data into the HTTP request string.

Information can also be encoded in the length of the packets that Alice sends
to Bob. However, such techniques are vulnerable to deep packet inspection, and
so proper precautions must be taken. For example, Girling [17] proposed to
modify lengths of link layer frames in order to transmit covert data, but a similar
technique has also been proposed for TCP/IP /UDP packets by Lucena et al. [28].

Exploiting Timing Channels. Timing channels involving varying the time
it takes for bits to reach the receiver have many attractive features from the
point of view of stealthy communication. The delays can be made small enough
so that they do not affect the timing signature of a protocol, timing delays are
surprisingly robust against noise arising from further delays as traffic travels
along the internet, and the fact that the modified parameter, time, has only one
dimension makes it tractable to reason about timing channels mathematically,
and thus to develop detectors and tests for stealthiness.

Hiding Information in Packet Round Trip Delays. Some of the earliest work on
timing channels involved measurement of round trip delays between an inquiry
by Bob and a response by Alice. For example, Brumley and Boneh [7], showed
that timing channel attacks on cryptosystems can be performed over a network.
That is, the delays in response caused by side channels in cryptographic algo-
rithms are relatively unaffected by network noise. Since round trip measurements
require a challenge from Bob for each transmission by Alice, they are not really
appropriate for the sending of very long messages, but they point out that tim-
ing delays can be a robust method for transmitting information, even over the
Internet.

Hiding Information in Inter-Packet Arrival Times. The most popular timing
channel from the point of view of stealthy communication is the inter-packet
arrival channel, in which information is encoded in the length of the time between
packet arrivals. Unlike round-trip times, measuring inter-packet arrival delays
does not require further communication between Alice and Bob, thus increasing
both stealthiness and throughput.

Inter-packet arrival channels have appeared in various applications. They
have been proposed for the use in watermarking techniques both for intrusion
detection [44] and breaking anonymous communication systems [43]. The idea is
to attack schemes that hide the passage of packet streams through the Internet.
The attacker first watermarks the stream by altering the times between the
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packets according to some chosen pattern. The attacker can then trace the stream
as it travels through the Internet by checking the watermark. This watermark
turns out to be surprisingly resistant to noise introduced as it travels through
the network. Research on both defeating and hardening watermarking techniques
has led to a greater understanding of inter-packet arrival channels.

Inter-packet arrival times have also been studied from the point of view of
covert transmittal of information. In [38], Gaura, Molina, and Blaze show how
passwords gleaned via keyboard monitoring can be transmitted via inter-packet
arrival times and describe a tool, Jitterbug, that implements this. No attempt
however is made to provide stealthiness against a warden who is monitoring
the channel for covert inter-packet arrival time communication. This sparked an
interest in the exploitation of inter-packet arrival times as a stealthy form of
communication, and considerable work followed both on new schemes exploiting
inter-packet arrival times, as well as methods for detecting such covert commu-
nication.

In general, inter-packet arrival time schemes have been classified into two
types: passive schemes, in which modifications to the timing are made to a
sequence of received packets, and active schemes, in which an entirely new
sequences of packets are created. For the most part, active schemes have been
preferred to passive ones. This is because a passive scheme puts a time con-
straint on Alice. If she takes too long to produce a modified sequence, she will
slow down the delivery of the packets, and thus might be detected. Thus Jitter-
bug, a passive scheme, uses a very simple encoding method in which inter-packet
arrival times are only increased. On the other hand, with an active scheme, it is
possible to create sophisticated schemes that use the inverse distribution func-
tion to map an encrypted steganographic message to a sequence of inter-packet
arrival times whose distribution can be made identical to a given i.i.d. distribu-
tion. This approach is used, for example, by Sellke et al. [37] and Ahmadzadeh
and Agnew [2]. Methods that fall somewhere between the two extremes are also
available. For example, in Cabuk’s time-replay channel [8]. a sequence of packets
is captured, and the median 9f the inter-arrival times is sampled. The sequence
is then divided into partitions that are replayed, with a 1 encoded as an interval
between partitions above the median and a 0 encoded as an interval below the
median. As in Jitterbug, a real sequence in modified, but as in methods based
on the inverse distribution function, the sequence is sent all at once, instead of
times being modified as packets are received.

3.2 Wireless Physical Layer Channels

Wireless covert communications channels have been present and utilized long
before the advent of the Internet. In particular spread spectrum communications
techniques have been studied and implemented for over one hundred years [1].
The original intent of spread spectrum techniques such as Frequency Hopping
Spread Spectrum (FHSS) and Direct Sequence Spread Spectrum (DSSS) was to
ensure resilient radio communications in the presence of interference and jam-
ming. Spread spectrum techniques rely on spreading a signal of a given bandwidth
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over a much greater bandwidth. Such techniques result in a signal being transmit-
ted with a lower Signal to Noise Ratio (SNR), than would normally be required,
thus resulting in a signal with Low Probability of Detection (LPD) character-
istics, assuming the signal has been sufficiently spread [40]. We do not address
the specifics of spread spectrum systems as we do not consider these techniques
applicable to stealthy protocols for the purpose of this paper.

Apart from traditional spread spectrum communications techniques, which
are widely utilized in military communications, there are several other techniques
that can be used to covertly carry information. These techniques can utilize
physical layer characteristics (i.e. waveform and/or modulation) or link layer
protocols to hide information. As an example of the former, consider Orthogo-
nal Frequency Division Multiplexing (OFDM). In practical implementations of
OFDM waveforms, such as WiMAX and Long-Term Evolution (LTE), unused
blocks of subcarriers may be used to covertly carry information [18]. Such tech-
niques take advantage of white-spaces in the radio frequency (RF) spectrum to
carry information that only the intended recipient can detect. As an example of
the latter, specific fields of link layer protocols, such as IEEE 802.11 Wireless
Local Area Networks (WLAN) can be used to covertly carry data. Examples of
such covert channels are described in [15,36].

Other physical layer techniques have also been explored. In [45] the authors
propose an authentication scheme that superimposes a secret modulation on
waveforms without requiring additional bandwidth which in effect results in a
covert channel. A radio frequency watermarking scheme for OFDM waveforms
is proposed in [25]. The authors introduce the concept of constellation dithering
(CD), where watermark bits are mapped to a QPSK watermarking constellation
and spread using a Gaussian distributed spreading code, and baud dithering,
where a watermark is introduced by positive and negative cyclic time shifts over
the transmitted symbols. The authors proceed to derive the performance of such
schemes in Additive White Gaussian Noise (AWGN) channels.

In general, implementing covert communications over wireless communica-
tions channels presents a different set of advantages as well as disadvantages over
wired communications networks. In wired networks, care must be taken to ensure
that channels are not disrupted by network devices that lie in between the two
end points for the covert channel. In wireless covert channels, the range between
the two end points is limited only by the transmit power of the originating end
point and by the receiver. In wired networks, however, bit error rates can be neg-
ligible. The probability of the distant end successfully receiving data transmit-
ted by the originator is therefore quite high, if no intermediate nodes disrupt the
communications channel. In wireless communications channels, however, various
types of noise and interference (i.e., low SNR) can severely degrade channel capac-
ity. Indeed, one only has to refer to the Shannon-Hartley theorem to understand
the adverse impact of low SNR on channel capacity. The covert channel capac-
ity is thus highly dependent on the dynamic nature of wireless channels, where
frequency-selective fading channels can greatly impact the SNR.
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3.3 Characteristics of Network Covert Channels

Noise. We say that a channel is noisy if Alice’s communications to Bob can
be affected by noise on the channel. This is the case, for example, for methods
based on packet inter-arrival times. These inter-arrival times may change as the
packets travel through the network, thus adding noise to Alice’s signal.

We say that a method is noise-free if we assume that there is no noise on
the channel between Alice and the Warden (other than noise added by Alice
herself). Methods that hide information in channels whose integrity is protected
by other means, e.g. error-correcting codes, can be considered noise-free. Such is
the case, for example, for methods that hide information in protocol metadata.

We say that a method is noise-dependent if the security of the encoding
against the Warden depends (at least partially) on the noise in the channel
between Alice and the Warden. In many cases (e.g. packet inter-arrival times and
many of the physical layer covert channels), Alice’s ability to hide the fact that
she is communicating to Bob may depend on her ability to make her alterations
to the channel look like noise to the Warden. If the channel was typically not
noisy, it would be harder for Alice to take advantage of this.

Discrete vs. Continuous. A method is discrete or continuous depending upon
whether the channel Alice is exploiting is discrete or continuous. Methods based
on altering protocol metadata are generally discrete, and methods based on
timing channels are generally continuous. Continuous methods have the potential
advantage that Alice can convey additional information by varying the power
of her signal, and evade detection by the Warden by keeping the power of her
signal below a certain threshold. The method described by Lee et al. in [26] is an
example of the latter. Alice and Bob are assumed to have access to specialized
hardware that allows them to generate and detect extremely low-power signals
(that is, extremely small variations in timing) that are undetectable by the
Warden.

4 Stealthiness Metrics

In this section we consider the various metrics that can be used to evaluate
stealthy protocols. Since we are not only interested at the rate at which stealthy
protocols can deliver this information, but the degree to which they can do this
without being detected, we discuss not only traditional metrics for throughput
and capacity, but metrics for detectability as well. We also discuss how these
metrics can be combined.

In this section we draw heavily on previous work in image steganography.
Although the conditions found and methods used in image steganography differ
from those in network covert channels, image steganography is the area where
the most progress in metrics has been made. Thus we pay close attention to
results in this area and review them from the point of view their applicability
to network covert channels.
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4.1 Throughput and Capacity

The definition of throughput and capacity for stealthy channels is the same as
that for regular communication channels. However, the metrics used to approx-
imate them may depend on specific features of stealthy channels.

We define the throughput after time t as B(1 — BER)/t, where B is the
number of bits Alice sends from time 0 to time ¢, and BER is the bit error
rate. Probably the first to develop a throughput metric for stealthy protocols
was Girling [17], for noiseless storage channels. Assuming that 1 bit is encoded
in each B-byte block sent, the time to send a block is T', the time used by the
software independent of block size is .S, the network protocol overhead per block
is N bytes, and the network speed is V' bits per second, then the bandwidth of
the channel is V/(64(B+ N)+ S -V).

We can also define the capacity of the channel between Alice and Bob in
the usual way, as the supremum over all possible distributions of Alice’s input
into the channel of the mutual information between Alice and Bob. Thus work
has been done on computing the capacities of different types of covert channels,
motivated originally by interest in managing covert channels in multi-level secure
systems, and more recently by concern about reducing side channels in hardware
and software. This is usually based on abstract models of the channels that
can be instantiated in a number of different ways. Research in this direction
began with Millen [29] who developed a formula for a simple model of a storage
channel where the data passed along the channel consisted of overt and covert
bits. Moskowitz and Miller computed bounds for noiseless timing channels where
the alphabet consists of times of different lengths [32], and for a noisy timing
channel whose alphabet has only two symbols [31]. Of particular interest is the
timed Z- channel whose capacity was estimated by Moskowitz et al. [30]. This
is a noisy channel whose alphabet consists of two time intervals, with noise that
can only increase the size of the interval, that is, to change a zero to a one, but
not vice versa. Such a scenario is of interest because it appears in many realistic
covert channel scenarios; indeed the NRL Pump [21] was designed to mitigate a
channel of this type.

4.2 Detectability

Detectability metrics measure the vulnerability to detection by the Warden of
a given embedding method. The detectability of an embedding method measure
the probability that the Warden guesses correctly, at a given point in the com-
munication, whether or not Alice is transmitting along the channel. That is, it
is a + 8, where « is the probability of a true positive given the best possible
detector, and ( is the probability of a true negative. There are several ways that
we can measure this.

For empirical studies, one can estimate a lower bound on detectability by run-
ning experiments with different detectors. The following two methods, discussed
in [24], are considered standard.
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1. Compute the area under the Receiver Operating Characteristic (ROC) curve
of a binary classifier for the presence or absence of payload (AUR), unnor-
malized so that AUR = 0.5 corresponds to a random detector and AUR = 1
to perfect detection. The ROC curve is obtained by plotting the true positive
rate against the false positive rate at various threshold settings.

2. Compute 1 — Pg, where Pg = %min(a + ) is minimum sum of false positive
and false negative rate errors for a binary classifier for the presence or absence
of payload.

It is also possible to use more sophisticated metrics based on experience with
multiple detectors. These metrics may not be efficient enough to use as real-time
detectors, but nevertheless may be practical for estimating the detectability of
an embedding method. Consider, for example, the Maximal Mean Discrepancy
(MMD) test in [24] to estimate the detectability of various embedding methods
of image steganography, based on the ratio of the size of the payload to the
size of the cover source. This test takes as input various features of the images
that have been useful in the past for steganalysis, thus allowing one to take
advantage of the history of the behavior of different kinds of detectors. MMD
is not efficient enough to serve as a detector itself, but still can be useful in
measuring detectability.

In Cachin’s seminal paper [10] on “An Information- Theoretic Model for
Steganography”, the probability of the Warden’s guessing correctly whether or
not Alice is transmitting is estimated using the relative entropy between the cover
and the stego source. This is used, in particular, to prove results about perfectly
secure steganographic systems. However, according to an analysis by Pevny et al.
in [34] none of the metrics derived from relative entropy appear to suitable for
evaluating experimental results from image steganography. According to [34],
this is a result of the high dimensionality d of the data and relatively small
sample size D. They note that the k-nearest-neighbors (kNN) algorithm [6,41]
is the only relative entropy estimator that generally scales well for the high
dimensions required for image steganography, but it turns out to be inaccurate
for large d and small D due to difficulty in estimating cross-entropy.

However, relative entropy does appear to be a useful source of metrics for
network timing channels, as we shall see below.

Detectability Metrics for Network Timing Channels. Although their has been a
substantial amount of work on detectability and detectors in image steganogra-
phy, much less work has been done in network covert channels. However, there
has been a number of detectors proposed for methods based on inter-packet
arrival times, which we discuss here.

The earliest work on inter-arrival times metrics were not necessarily intended
for general use, but were intended to show how it could be possible to detect
some of the earlier, and simpler, embedding methods that were first proposed,
such as Jitterbug.

The regularity test was proposed as a metric for network timing channels by
Cabuk et al. in [9]. It measures the degree to which the variance of the source
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is generally constant. Its rational is based on the fact that many embedding
schemes produce results with low variance. In [16] this was found to do a poor
job as a detector, mainly because noise on the channel increases the variance
of the cover source, thus making the variance of cover and stego source appear
similar.

The Kolmogorov-Smirnov (KS) Test, proposed as a metric for network timing
channels by Peng et al. [33], was investigated in [16], and found to have difficulty
dealing with stego source whose distribution was very similar to that of the cover
source. This is because the KS test measures the maximal distance between the
distributions of two empirical distribution functions. If the changes made by the
stego source to the distribution are small enough so that they fall within the
natural variance of the cover source, then KS will not detect a difference.

In their influential paper [16] Gianvechhio and Wang consider distinguishers
for network covert timing channels, based on statistical estimators. They wind
up recommending two measures of empirical probability distributions (actually
a series of measures) computed from covert timing channel data: the first order
entropy, and the corrected conditional entropy (CCE), which is defined as

CCE(Xm|Xm—1) = H(X | Xm-1 + perc(X,,) - H(X1)

where Xi,...,X,, is a sequence of random variables, perc(X,,) is the per-
centage of unique patterns of length m with respect to the set of patterns of
length m. One can use this to estimate the entropy rate, which is the limit
limy, 00 H(Xm| X1, ..., Xim_1), by taking the minimum of CCFE over different
m. Estimates of entropy and entropy rates, once computed, are then compared
for both cover and stego traffic.

The idea behind the use of entropy and corrected conditional entropy is that
they test for different things. Entropy is good for detecting small changes in the
distribution of a single random variable, and thus is useful for detecting stegano-
graphic techniques that alter that distribution. However, if the distribution is
kept unchanged, but the correlations between variables are altered, CCE pro-
vides the better detection mechanism. The metrics also have the advantage that
they can be computed using a relatively small number of samples, a constraint
that is likely to hold for network covert channel traffic, especially when they are
used as detectors. This combination of entropy and CCE is probably the most
commonly used metric in current research on covert timing channels.

More recently work has begun to appear on using anomaly detection meth-
ods to assist in detecting exploitation of covert channels. Liu et al. [27] describe
a metric that divides timing data into different scales using a wavelet trans-
form and then compares pairs from different flows using relative entropy. They
compare their techniques experimentally with existing detection techniques and
show favorable results. Their system is specifically designed for cloud storage
environments, but the metrics should be applicable elsewhere as well.

There has also been work on investigating the limitations of these types of
metrics. For example, a possible weakness lies in the reliance of many methods
(e.g. the Gianvechio-Wang method) on computing statistical behavior of strings
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of bounded length. This is sufficient for certain types of distributions, such as
Markov distributions, but not for others. Some work has already been done on
this problem. For example, in [11] Crespi, Cybenko, and Giani show how, given
an integer k, it is possible create a steganographic source that has the same
statistics as the cover source for k-length strings, but differs from for k+ 1-length
strings. That is, the steganographic information is encoded in the distribution
of the k-length strings. The amount of computation used to apply Crespi et al.’s
algorithm for evading detection grows according to a factor of o, where o is the
size of the alphabet, so this limits how far Alice can go in this way. A study of
the complexity of both detectors and evasion techniques would be of interest.

4.3 Putting It All Together: Steganographic Capacity
and Asymptotic Bounds

So far, there are two important aspects of metrics for stealthy communication
that remain to be addressed. One of these is how to bring together the various dif-
ferent performance requirements of stealthy communication methods: through-
put, low detectability, and robustness, under one metric. The other is how to
measure the performance over time, which can often be done by studying the
asymptotic behavior of the communication.

To our knowledge, such combined metrics for stealthy communication over
networks and the asymptotic behavior of such metrics have not been studied
until relatively recently. However, this question has been studied in the related
area of image steganography. This is the square root law which says that, if the
distribution of the stego channel differs from that of the cover channel (i.e. Alice
has made a wrong guess about the distribution of the cover channel), then, if
she attempts to transmit more than O(ﬂn)) bits of payload using an n-bit
cover source, the Warden can detect her communication with arbitrarily low
probability of error as n approaches infinity. However, if she transmits o(y/n)
bits of payload the stegosystem can be made arbitrarily secure by choosing
sufficiently large n, and if limnﬁm% = ¢ for some positive €, where P, is the
size of the payload for cover source of size n, then the security of the stegosystem
asymptotically approaches a constant positive value r. Thus we can define the
steganographic capacity of a channel to be r/n, where n is the size of the cover
source.

This has been proved in the case in which the cover source is a stationary Markov
chain (a relatively simple but still non-trivial case), by Filler, Ker, and Fridrich,
in [13]. But it has also been validated experimentally by Ker et al. in [24]. In these
experiments, for different types of cover images, steganographic techniques, and
detection techniques, behavior consistent with the square root law was consistently
observed. Moreover, it did not require enormously large cover images to produce
this behavior: the cover image size runs from 0 to 60,000-150,000 pixels or 0 to
30,000-50,000 nonzero DCT coefficients, depending upon the stenography method.

The next problem is computing the steganographic capacity. In [22] Ker
argues for the use of a metric based on estimating the asymptotic behavior of
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relative entropy as the ratio of payload to cover size tends to zero. Although rel-
ative entropy itself appears to be too unstable to supply a suitable metric in this
case, Ker provides an estimator based on the the Fisher information, which, for
well-behaved distributions, is equal to the quadratic term of the Taylor expan-
sion around zero. SFI has some drawbacks for image steganography though, in
that like most other methods for estimating conditional entropy, it is difficult to
compute for large dimensions. Thus in order to make it practical to compute, it
is necessary to compute it over groups of pixels instead of individual pixels. This
means that a certain amount of information is lost. Thus, as Ker points out,
while SFI can be useful in comparing embedding techniques, it should probably
not be used as the sole means of evaluating an embedding method.

Research in steganographic capacity opens up questions as to how this could
be applied to other types of covert channels, e.g. network timing channels or wire-
less channels. The probability distributions of the cover sources, although not
trivial to estimate, are in general easier to estimate than those of the cover chan-
nels in image steganography. However, the channels, especially wireless channels,
are likely to be noisy, which is less often the case for image steganography. That
this noise can result in a similar square root law is shown by Bash, Goeckel, and
Towsley in [4], in which the channels between Alice and Bob and between Alice
and the Warden are both subject to additive white Gaussian noise (AWGN).
Similar to the square root law for image stenography, if Alice attempts to trans-
mit more than O(y/(n)) in n uses of the channel, then either the Warden can
detect her with arbitrarily low probability of error, or Bob can not decode her
message reliably; that is, the probability that he decodes it incorrectly is bounded
below by a non-zero constant. Analogous results to the steganographic laws are
also shown for the cases in which Alice transmits at rates at and below O(1/(n)).
More recently, these results have been extended to optical channels (with experi-
mental validation) [3], arbitrary discrete memoryless channels [5,42] and general
memoryless classical quantum channels [39].

4.4 Desirable Metrics for Variables and Cover Sources

The behavior of the variables and cover sources used in stealthy communication
is of great importance to the usability and security of that method, and gen-
erally is a factor deciding which method to use. However, metrics for stealthy
communication do not generally take them into account, and indeed they may be
hard to quantify. Here we present some properties of variables and cover sources
for which in many cases metrics do not yet exist, but would be useful to have.
We also give suggestions for metrics where appropriate.

Footprint and Keyboard. We define the footprint of an embedding method
to be the set of variables observable by the Warden that are modified by Alice
in order to communicate with Bob. We note that not all of these variables need
to be observable by Bob. They may have simply been modified by Alice in the
process of altering other variables that are observable by Bob.
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Conversely, we define the keyboard to be the set of variables observable to
Bob that Bob reads in order to obtain the message from Alice. Again, these
variables may or may not be observable by the Warden.

The concepts of footprints and keyboards are intended to give an indication of
the types of risks and advantages that may result from employing a method that
results in the modification of variables that one may not have complete control
over. In general, a large footprint with highly correlated variables may serve
to alert the Warden that Alice is communicating. The larger the size the more
data the Warden can observe, and the higher the correlation the less freedom
Alice has in modifying the different variables in order to pass under the Warden’s
radar. For example, consider protocol emulation, a form of covert communication
in which, the nature, not the existence, of the communication is masked by
emulating some other, more innocuous protocol than the one actually being used.
Protocol emulation generally has a large footprint, since the variables Alice must
modify include every feature of the protocol being emulated. As pointed out in
[20], this makes this method vulnerable even to a very weak, local warden who
observes such features such as presence of certain types of messages, packet sizes,
packet timing and rate, periodic messages exchanges, and the use of TCP control
channels. Packet length modification has a smaller footprint, but notice that it
is still nontrivial, since modification of a packet’s length requires modification
of its contents too. In particular, these contents must be modified carefully to
avoid detection via deep packet inspection.

Conversely, a larger keyboard whose variables are only weakly correlated can
be an advantage to Alice, since she can spread her message over several variables,
thus increasing the capacity of the channel. For example, in the packet length
channel discussed above, Alice could encode information not only in the length
of the packets but in the bits that she adds to the packets.

Finally, encoding information via inter-packet arrival times seems to have the
smallest footprint, as well as the smallest keyboard. We note however the size
footprint of an active embedding methods may vary, depending on whether a
network flow is constructed by repeating an existing flow with some changes as
in [9] or built from scratch. Moreover, the size of the keyboard can be increased
by using smaller increments of timing intervals to encode information.

Confidence and Mutability. The confidence in the cover source is the degree
to which we trust our estimate of its probability distribution. This can be esti-
mated using statistical methods for estimating confidence intervals.

The mutability of the cover source is closely related to the confidence we may
have in it. It is the degree to which the cover source may change and will need
to be remeasured in order to ensure that covert communication is not detectable
by the warden. For example, the cover source for protocol emulation is highly
mutable, since protocols are constantly updated and reimplemented in different
ways. Likewise, the cover source for channels based on network traffic behavior
(e.g. inter packet arrival times) are be highly mutable, since network traffic
behavior can change over time. Most mutable are wireless channels, since their
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behavior can change based on not only on network traffic but external conditions
like the weather. Even in the case in which the cover source appears relatively
static, this might not be the case in reality. For example, in the case of storage
channels, a protocol field that is supposed to be random may or may not be
treated that way by the implementors, or may be repurposed in later versions.
Mutability has an effect on how often and thoroughly statistical properties of
cover traffic and noise need to be monitored in order to ensure robustness and
non-detectability.

5 Open Problems

One of the surprising things that we have discovered in this survey is a lack
of cross-fertilization between different areas. For example, image steganography
and covert communication via network timing channels appear to have much in
common, but in only a very few cases do results in one area appear to have had
influence on research in another area. That is unfortunate, because research in
image steganography appears to be much further advanced than other areas, and
lessons learned from there, when they are applied to other areas, could easily
save much work and time. In particular, the following work needs to be done:

We need better understanding of the square root law, in particular experi-
mental validation of results for noisy channels (e.g. [4]) as they apply to network
timing channels. We may develop strategies for evading it by varying channels
and encoding schemes, or concentrating on cover sources whose statistical behav-
ior is well understood. We are helped in this by the fact that there are many
possible different types of channels to take advantage of, not only different types
of network timing channels but storage channels as well.

We also need a more thorough understanding of the metrics available.
Nobody appears to have done a thorough survey and evaluation of all the met-
rics available for measuring the distance between two probability distributions
in terms of the applicability to stealthy communication. Instead, the studies we
have seen focus on evaluating metrics that have previously been proposed for the
particular stealthy communication problem area under study (although the work
of Liu et al. [27], which uses techniques from anomaly detection, is an excep-
tion). A thorough study of the various features of channels and algorithms and
how they relate to methods for estimating the distance between two probability
distributions would be useful.

In particular, we need a better understanding of where our detectors and the
metrics they are based on can fail, in order that they can be refined and improved.
As we have noted, some theoretical work does already exist on this problem. But
although methods have been discovered for evading the most commonly used
metrics, they require a considerable computational investment on the part of
the transmitter. Is this computational burden inherent, or can it be decreased?
Moreover, what are the practical implications? According to [23], there is a
considerable gap between theoretical and experimental behavior of detectors for
image steganography, and their effectiveness in actual practice. Is the same true
for covert channels in other media, and if so, how can methods be improved?



Stealthy Protocols: Metrics and Open Problems 15

In addition, better methods for estimating throughput and capacity of encod-

ing techniques are needed. Current work mostly relies on experimental results,
and it is not always clear how to generalize it. However, we may be able to com-
bine this experimental work with work on measuring the capacity of abstract
channels to better our understanding.
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Abstract. This paper presents an assume-guarantee specification the-
ory (aka interface theory from [11]) for modular synthesis and verifica-
tion of real-time processes with critical timing constraints. Four oper-
ations, i.e. conjunction, disjunction, parallel and quotient, are defined
over specifications, drawing inspirations from classic specification the-
ories like refinement calculus [4,19]. We show that a congruence (or
pre-congruence) characterised by a trace-based semantics [14] captures
exactly the notion of substitutivity (or refinement) between specifica-
tions.

Dedication: I would like to thank Prof. Bill Roscoe for leading me into the fas-
cinating world of concurrency and nurturing my appreciation for simplicity and
elegance in theories of relevance. —— Xu Wang

1 Introduction

Modular synthesis and verification of quantitative aspects (e.g. real-time, proba-
bility, reward, etc.) of computational and physical processes (e.g. cyber-physical
systems) is an important research topic [5].

In this programme of quantitative study, a specification of components con-
sists of a combination of quantitative assumptions and quantitative guarantees.
A refinement relation captures the substitutability between quantitative compo-
nents, adhering to the so-called contra-variance principle: refinement implies the
relaxation of assumptions as well as the strengthening of guarantees.

As one step of the programme, this paper targets component-based devel-
opment for real-time systems with critical timing constraints. We propose a
complete timed specification theory based on a framework of minimal extension
of timed automata [1], which is endowed with the operations of parallel com-
position for structural integration, logical conjunction/disjunction for viewpoint
fusion and independent development, and quotient for incremental synthesis. The
operations in some sense can be regarded as the concurrent and real-time incar-
nations of similar operations from refinement calculus [4,16,17,19] (i.e. sequential
composition, angelic choice, demonic choice, and pre-post specification).

The refinement relation is defined relative to the notion of incompatibil-
ity error (aka contract breach [4]). That is, mismatch of the assumptions and
© Springer International Publishing AG 2017
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guarantees between components composed in parallel gives rise to errors (aka
abort [4,19] and denoted L ). Refinement means error-free substitutivity.!

Previously, based on this framework, [9] introduced a compositional linear-
time specification theory for real-time systems, where the substitutive refinement
is the weakest pre-congruence preserving incompatibility errors and characteris-
able by a finite double trace semantics. A key novelty of [9] lies in the introduction
of an explicit timestop operation (denoted by T) that halts the progress of the
system clock, which, remarkably, corresponds to a timed incarnation of miracle
or magic in refinement calculus?.

While timestop is appropriate for a restricted class of applications, there are
common cases where the operation of stopping the system clock is not meaningful
or implementable (aka infeasible [19]). Hence, it is desirable to consider systems
without explicit or implicit timestops, which we call realisable systems.

For realisable systems, components, not substitutively-equivalent according
to [9], can become equivalent under realisability due to the environment losing
the power to observe the timing difference in error occurrences. Thus, we need
a new substitutive equivalence as a coarsening of the congruence in [9].

To best characterise the coarsening, our theory requires a shift of focus to
a more game-theoretical treatment, where the coarsening constitutes a reactive
synthesis game, called normalisation, that collapses erroneous behaviours in a
specification. Normalisation is strictly more aggressive than classical timed reac-
tive synthesis [3,7], which enables us to achieve the weakest congruence results.

Furthermore, in a similar vein to timed concurrent games [12,13], where
one of the key concerns is the removal of time-blocking strategies by applying
blame assignment, the composition of realisable systems (e.g. conjunction or
quotient) in our framework generates new unrealisable behaviours, which have to
be removed. Rather than employing blame assignment, our framework, reduces
the problem to another timed synthesis game that turns out to be precisely the
dual game of normalisation called realisation, again re-confirming the duality
between contract breach and infeasibility of refinement calculus.

Finally our theory presents a trace-semantics characterisation of the refine-
ment and operators, which supports the explicit separation of assumptions and
guarantees, and integrates well with automata learning techniques.

Our trace-semantics can be regarded as a timed extension [21] of Dill’s trace
semantics [14], who first used untimed double-trace semantics for asynchronous
circuit verification, i.e. a set of success traces and a set of failure traces, which,
in turn, are inspired by earlier trace theory of asynchronous circuits [15,23] and
CSP process algebra [22].

! Note that the existence of incompatibility errors does not mean that the composed
system is un-usable; an environment can still usefully exploit the system by only
utilising the part of the system that is free of the incompatibility errors, as has been
well explained in [11].

2 It were Carroll Morgan and Joseph M. Morris who first added miracle to refinement
calculus.
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Previously, trace semantics has been the basis of our untimed specification
theory [8], which supports all four operators and the weakest congruence pre-
serving substitutivity. We have also connected double-trace semantics with CSP
model checking [22] in [26], which can potentially be further extended to connect
our timed theory with timed CSP model checking [2].

2 Minimal TA Extension for Timed Specification

Our theory builds on timed 1/0 automata and timed 1/0 transition systems.

2.1 Timed I/O Automata (TIOA)

Clock constraints. Given a set X of real-valued clock variables, a clock constraint
over X, cc: CC(X), is a boolean combination of atomic constraints of the form
x>k and x — y < k, where z,y € X, e {<,<,=,>,>}, and k € N.

Definition 1. A TIOA is a tuple (C,I,0,L,1°, AT, Inv, colnv), where:

- C C X is a finite set of clock variables (ranged over by x,y, etc.)

- A =140 is a finite alphabet (ranged over by a, b, etc.) consisting of the input
actions I and output actions O

~ L is a finite set of locations (ranged over by I,1',n,n’, etc.) while I° € L is
the initial location

~ AT C L x CC(C) x A x 2% x L is a set of action transitions

~Inv : L — CC(C) and colnv : L — CC(C) assign invariants and co-
invariants to states, each of which is a downward-closed clock constraint.*

In the rest of the paper we use | 22" [’ as a shorthand for (I, g,a,1s,l') €

AT. g: CC(C) is the enabling guard of the transition, a € A the action, and rs
the subset of clock variables to be reset.

Our TIOAs are an extension of timed automata [1], distinguishing input from
output and invariant from co-invariant. The semantics of TIOAs is an extension
of timed transition systems (TTSes) called Timed I/O Transition Systems.

2.2 Timed I/O Transition Systems (TIOTSes)

Plain states. A plain state is a pair drawn from P = L x RY (i.e. a location and
clock-valuation pair). A clock valuation (drawn from R) is a map that assigns
to each clock variable z in C a real value from R2Y.

Definition 2. A TIOTS is a tuple P = (I, 0,5, s°,—). S = PW{L, T} is a set
of states, s° € S is the designated initial state, and —C S x (IW OWR>?) x §
is the action- and time-labelled transition relation which is time-additive.’?

3 Our timed framework originally appeared in [9]. However, the version presented here
contains important technical extension as well as presentational improvements.

* Invariants and guards on output actions are constraints on the system (aka guar-
antees) whereas co-invariants and guards on input actions are constraints on the

environment (aka assumptions).

N o . d1+d . d d
5 P is time-additive providing p — 5" iff p =5 s and s — s’ for some s € S.
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Notation. In the rest of the paper we use p, p’, p; to range over P while s, s, s;
range over S. Furthermore we define t4A = T W O WR>?, tI = I W R>Y, and
t0 = O W R>C. Symbols like o, 3, etc. are used to range over tA.

A timed trace (ranged over by ftt, tt’, tt; etc.) is a finite mixed sequence of
positive real numbers (R>Y) and visible actions such that no two numbers are
adjacent to one another.

For instance, (0.33, a,1.41, b, ¢, 3.1415) is a timed trace denoting the observa-
tion that action a occurs at 0.33 time units, then another 1.41 time units elapse
before the simultaneous occurrence of b and ¢, which is followed by 3.1415 time
units of no event occurrence. The empty trace is denoted by €. An infinite timed
trace is an infinite such sequence.

We use [(tt) to indicate the duration of ¢, which is obtained as the sum of all
the reals in ¢, and use ¢(¢t) to count the number of action occurrences along tt.
Concatenation of timed traces tt and tt’, denoted ¢t " ¢t’, is obtained by append-
ing ¢’ onto tt and coalescing adjacent reals (summing them). For instance,
(a,1.41) 7(0.33,b,3.1415) = (a, (1.41 + 0.33), b,3.1415) = (a,1.74, b, 3.1415).

Prefix/extension are defined as usual by concatenation. We write t¢ | tAg for
the projection of ¢t onto timed alphabet tAg, which is defined by removing from
tt all actions not inside tAg and summing up adjacent reals.

Non-zenoness. For a TIOTS P, we use p £ p’ to denote a finite execution
starting from p that produces trace ¢t and leads to p’. Similarly, we can define
infinite executions which produce infinite traces on P. An infinite execution is
zeno iff the action count is infinite but the duration is finite.

We say a TIOTS P is non-zeno providing no plain execution is zeno. P is
strongly non-zeno iff there exists some k € N s.t., for all plain executions p £ P,
it holds that I(#t) = 1 implies ¢(tt) < k. Here, we say a finite or infinite execution
is a plain execution iff the execution only visits plain states.

Assumption on TIOTSs. We only consider non-zeno time-additive TIOTSs in
this paper. For technical convenience (e.g. ease of defining time additivity and
trace semantics), the definition of TIOTSs requires that T and L are chaotic
states [22], i.e. a state in which the set of outgoing transitions are all self-loops,
one for each a € tA.

The strong non-zenoness is not an assumption of our theory. But with this
additional requirement we can show that the synthesis and verification theory
in this paper is fully automatable.

2.3 A Game-Based Interpretation

The derivation of TIOTSes from TIOAs is more or less standard, extending the
one from TAs to TTSes. Here we just give an intuitive explanation using games.
The formal definition can be found in [9].

TIOAs are designed as mized assume/guarantee specifications of timed com-
ponents. Their semantics is best illustrated by interpreting TIOTSes as timed
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game graphs. The game has three players: environment, system and coin. The
environment controls input actions and delays while the system controls output
actions and delays. The game has two game-ending states: T (system losing) and
1 (environment losing). States other than T and L are plain states. The coin
serves as a tie-breaker for symmetric moves proposed by the other two players.

The environment must respect the constraints on input and delay, i.e. input
guard and co-invariant, which constitutes the assumption half of the specifica-
tion. Guard-violating input and coinvariant-violating delay are mapped to L.

The system must respect the constraints on output and delay, i.e. output
guard and invariant, which constitutes the guarantee half of the specification.
Guard-violating output and invariant-violating delay are mapped to T.

Since delay is controlled by both sides, there exists a contention between
invariant and co-invariant violations. If a delay exceeds the upper bound of one®
before exceeding that of the other, the violation of the former will pre-empt the
violation of the latter. If a delay exceeds the upper bounds of both simultaneously,
the invariant violation will be pre-emptive and the delay mapped to T.7

On top of game graphs, system and environment, assisted by coin, play a
concurrent timed game based on delayed actions:

— A delayed action is either (d, a) or (0o, —), where d € RZ% and a € T U O.
— Given a current state, each player proposes a delayed action under their control
at that state,
e The delayed action with strictly smaller delay will be chosen.
e If the two delays tie (i.e. equal), it will be resolved by tossing a coin.

— Fire the chosen delayed action and transit to the destination state.

TIOAs do not have explicit T and L. But a L -location equates to having true
as invariant and false as co-invariant. Dually, we have a T-location. Together,
they are reminiscent of abort and magic in their predicate forms [4,19].

2.4 Conventions on Disabled Transitions

In presenting TTOAs and TIOTSes, one often needs to be economical in drawing
transitions. So a convention on disabled transitions is required.

1. a disabled input at a plain state is equivalent to an input transition to L.
2. a disabled output at a plain state is equivalent to an output transition to T.

6 Note that invariant and co-invariant are downward-closed. Thus, the only way to
violate them is to exceed their upper bounds.

" One further case missing above is that, for an action transition, there is possibility
that its guard is respected but the invariant/co-invariant of its destination (say 1) is
violated. In such situation, a state (I, ¢) is treated (1) as T if ¢ violates the invariant
in location [ and (2) as L if ¢ violates the co-invariant in ! while the invariant holds.
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Our TIOTSes, on the other hand, disallow disabled delay transitions. So
the delays enabled at each plain state are unbounded, leading to either con-
sistently other plain states or a mixture of plain states with T /L separated by a

finite bound. The convention induces some semantic-preserving transformations
on TIOTSs.

T/L completion. The L-completion of a TIOTS P, denoted P+, adds an
a-labelled transition from p to L for every p € P (= L x R®) and a € I
s.t. a is not enabled at p. The T-completion, denoted P T, adds an a-labelled
transition from p to T for every p € P and a € O s.t. a is not enabled at p.
Similarly, we can define T/L completion on TIOAs. We say a TIOA, P =
(C,1,0,L,n" AT, Inv, colnv), is T-completed iff, for all @ € O and | € L, we
have \/{gr | | 2225 Il € AT} = true. We say P is L-completed iff, for all

a€landl¢€ L, wehave \/{gy | | 225 11 € AT} = true.

T/L removal The inverse operations of T/L completion, called T/L removal,
are also semantic-preserving transformations. For instance, T-removal removes
all output transitions from plain states to T in a TIOTS. We leave it as an
exercise for the readers to define T /L removal for TIOAs.

2.5 Liveness and Safety

The constraints in TIOAs can be classified as either safety constraints or liveness
constraints. The former are the guards on transitions while the latter are the
invariants/co-invariants on locations.

Ezxample. Fig.1 depicts a job scheduler together with a printer controller. The
invariant at location A of the scheduler forces a bounded-liveness guarantee on
outputs in that location: as time must be allowed to progress beyond z = 100,
the start action must be fired before = exceeds 100. After start being fired, the
clock z is reset to 0 and the scheduler waits (possibly indefinitely) for the job to
finish. If the job finishes, the scheduler expects it to take place at a time point
satisfying 5 < z < 8 (i.e. a safety assumption).

The controller waits for the job to start, after which it will wait exactly 1
time unit before issuing print (forced by the invariant y < 1 on state 2 and the
guard y = 1 on the print! transition, acting together as a combined liveness and
safety guarantee). Then, the controller requires the printer to acknowledge the
job as having been printed within 10 time units (i.e. co-invariant y < 10 in state
3 acting as a bounded-liveness assumption). After receiving it, the controller
must indicate to the scheduler, within 5 time units, that the job has finished.

2.6 Specification Composition: Generic Synchronised Product

This paper introduces a series of four operators for specification composition: ||
for parallel composition, A for conjunction, V for disjunction and % for quotient.

At the core of these operators is a generic synchronised product H® opera-
tion, where ® ranges over the set {||,V, A, %}. After instantiation, [ [, produces
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Scheduler Printer controller

finish? 5<=x<=8 start? y:=0 Inv: y<=1

Co: true

Inv: x <= 100 ° y==1
Co: true finish! print!

start!  x:=0

Inv: y<=5
Co: true

Inv: true
Co: y<=10

Fig. 1. Job scheduler and printer controller.

four variants ([, I, II, and []g,), each of which needs further add-on trans-
formations in order to define the four specification composition.

In order to obtain a modular and factored structure, we adopt a two-step
approach to defining [ . In the first step we define, for each ® € {[[,V, A, %},
a state composition operator ® and an alphabet composition operator ® (i.e.
® is polymorphic). In the second step, we use [[ to lift the state/alphabet
composition to the process composition.

We say (Iy, Og) and (I, Oy) are |-composable if Oy N O1 = {}, are A- and
V-composable if (I, Og) = (I, O1), and are %-composable if (Iy, Oy) dominate
(I, 01), i.e. A1 C Ap and O; C Op. Then, assuming ®-composability on alpha-
bet pairs, we can define the alphabet composition operations (I, Og)® ([, O;) as
follows: (Io, Oo) || (117 01) S ((Io U 11)\(00 @] 01), 00 @] 01), (Io, Oo)/\(]l, 01) =
(Io, Oo), (I(), Oo) \Y (11, 01) = (IU7 Oo) and (107 O())%(Il, 01) = (IO U 01, 00\01)

The definition of sy ® s; is supplied in Table 1.8 Intuitively L is equated to
an erroneous specification while T is equated to timestop, i.e. the operation of
stopping the system clock or freezing the global time.

Thus, T represents the magic moment from which the whole system stops
running and freezes, eliminating, once and for all, all subsequent possibility of
reaching the erroneous state. This gives rise to a refinement ordering over states,
whereby T refines plain states, which in turn refine 1.

Timestop can explain the behaviour of T in parallel composition: the equation
L || T = T holds because time stops exactly at the moment of reaching the
erroneous state, so the resulting state is a timestop, rather than 1.

It is also easy to see that state conjunction (A) and disjunction (V) operations
in Table 1 follow the intuition of the join and meet operations.

The state quotient (%) operation is harder to explain. But some intuition can
be recovered from the derivation of % based on || and —, i.e. so%s1 = (o' || s1) 7,
where state mirror (—) behaves like negation (c.f. Table1).

State-to-process lifting.  Given two T/L completed TIOTS, P, =
<]i, Oi,Si,S?,H» for i € {0,1}, s.t. SoNS = {J_,T} and (Io, 00) and ([1, 01)
are ®-composable, Py [[ P1 gives rise to a new T /L completed TIOTS P =
(I,0,8, 80,—>> s.t. (I,0) = (Ip, Og)®(I1,01), S = (Pyx P1)W Py Pyw{T, L},

8 For i € {0, 1} and p; = (lz, ti), PoXp1 = ((lo, ll), toH‘Jtl) (tO and t; are ClOCk—diSjOint).
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Table 1. State composition operators.

IIT po L AT po L VIT po L %|T po L =

T|T T T T T T TIT po L T|L L 1 T|L
p1| T poxpr L p1| T poXp1 p1 p1|p1 poxp1 L p1|T poxp1 L plp
17T L L LT po L N e 1T T L LT

59 = 5§ ®s? and — is the smallest relation containing —q U —1,? and satisfying
the rules:

Poi>036 Plihs{ p0i>056 ag A p1i>15{ a¢ Ao
P0®Pli>56®5{ P0®pli>56®171 P0®P11>P0®S{
Remark. Note the subtlety in the transition rules of Py [[, P1 and Py [],, Pi.
If we have py — pf in Py and p; — T in Py, then we have py X p; — p}, in
Po I, Pi. That is, process P; is discarded after the transition and the rest of
the execution is the solo run of Py.10
We can also lift the state mirror operator — to process level by defining the
pre-mirror operator —g; P70 interchanges Ip and Op as well as T and L in P.
The definition of parallel synchronised product can be lifted to TIOAs. Given
two ®-composable T/ 1 -completed TIOAs with disjoint clocks (Co N Cy = {}),
P; = (Ci, Ii, Oy, Ly, nd, ATy, Inv;, colnv;) for i € {0, 1}, their synchronised prod-
uct gives rise to another TIOA P ="PolgP1:

- C=CyUy, (I, 0) = (]0,00)@([1,01), L=1Lyx L and nd = n8 X nlo;

— AT is the least relation that contains ATy, ATy and {lh X EUAELIA N
ny x|l L2 nle ATy Al 2225 0l € ATy}
U{ly x Iy 22270 nfos by | Iy 22270 nf € ATy, a € (Aog\A1)}
Ul x b 22200 g xond | I 2220 0l € ATy, a € (A\Ao)} )

—and (Inv(ly x h),colnv(ly x kL)) = (Inu(l),colnu(l)) ®
(Invi (L), colnvi (1h)).

We define the invariant/co-invariant composition operation ® as follows!?

(Invg, colnwg) || (Invy, colnvy) = (Invg A Invy, colnuy A colnwy)
(Invg, colnvg) A (Invy, colnvy) = (Invg A Invi, colnvg V colnwvy)
— (Invg, colnwy) V (Invy, colnvy) = (Invg V Invy, colnvg A colnwvy)
(Invg, colnvy) % (Invy, colnvy) = (Inug A colnvy, colnvy A Invy)

The pre-mirror (P7°) of a TIOA P interchanges Ip and Op as well as the
invariant and co-invariant for each location of P.

9 Containment of —g U — is not required for parallel composition, but is necessary
for conjunction and disjunction.

10 The technique was inspired by a discussion with Roscoe on angelic choice in CSP.

11 Note that the above definition exploits the fact that the addition or removal of
false-guarded transitions to AT will not change the semantics of the automata.
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3 Parallel Composition, Refinement and Determinisation

We define the parallel composition of specifications as Py || Py = Py I Pi,
since HI can be extended without modification to work on L-complete TIOTSs.

Informally, we say one specification is a refinement of another if the former
can replace the latter in all closed contexts. A closed context of a specification
P is another specification Q s.t. (1) P and Q are ||-composable and (2) Ip C
Og ANIg C Op.

Definition 3 (Substitutive Refinement [9]). Let Pj,p and Pspee be TIOTSs
with identical alphabets. We say Pspee T Pimp iff for all closed contexts Q,
Popec || Q is L-free implies Pinyp || Q is L-free. We say Pspec =~ Pimp (i-e.
substitutively equivalent) iff Pimp C Pspec and Pspec T Pimp-

A first observation of the refinement definition is that each specification has
a deterministic counterpart to which it is substitutively equivalent. The coun-
terpart can be constructed by a modified determinisation procedure.

Determinism. A TIOTS is deterministic iff there is no ambiguous transition, i.e.
s 5 ' As 5 s implies s’ = s”. A TIOA is deterministic iff, for each | € L and
a € A, I has a pair of distinct a-transitions | 2-“"% 1 and | 2222, J, implies
g1 and go are disjoint.

We define the determinisation PP of P as a modified subset construction
procedure on P+: given a subset Sy of states reachable by a given trace, we only

keep those which are minimal w.r.t. the state refinement ordering.!'?

Proposition 1 ([9]). Any TIOTS P is substitutively equivalent to the deter-
ministic TIOTS PP.

From a game theoretical perspective, our modified determinisation procedure
converts an imperfect-information game into a perfect-information game.

On the level of TIOAs, strongly non-zeno TAs are known to be determinisable
with a symbolic procedure [6], based on which we can implement our procedure
(say DET(P)) to determinise TIOA P.

In the sequel we focus on deterministic TIOA/TIOTS, i.e. interfaces.

4 A Story of Two Games

Our realisability theory will build on a pair of two-player games dual to each
other: normalisation and realisation. They are derivatives of the three-player
game in Sect. 2. In all three games, the system tries to steer the game play clear
of T while the environment tries to steer clear of L.

We give the technical definition of the games in this section, deferring the
provision of intuition and their uses in specification theories to the next section.

2 The modified determinisation procedure first appeared in the Definition 4.2 of [26],
which is for the untimed case.
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4.1 Timed Strategies

An interface P, being a game graph, encodes a set of strategies for each of the
three players. We give a formal definition of (timed) strategies below:

— A system strategy G, is a deterministic tree TIOTS!? s.t. each plain state p in
G, is ready to accept all possible inputs by the environment (i.e. a is enabled
for all a € I), but allows a single move by the system.

The system move (denoted muv(p)) can be a delayed output (d, a) for some
a € O and d € R=? or an infinite delay (oo, —).1*

Dually, we can define environment strategies (e.g. G.). A system strategy is a
1 -complete TIOTS while an environment strategy is T-complete.

— Given TIOTSs P and P’ with identical alphabets (i.e. O = O' and I =1I'), we
say P is a partial unfolding [25] of P’ if there exists a function f : Sp — Sps
such that (1) f maps T to T, L to L and plain states to plain states, and (2)
f(s%) =%, and p Sp s = f(p) —p f(5).

— We say a TIOTS P contains a strategy G, denoted G € P, if G is a partial
unfolding of (P1)T. We say there is a strategy G at state p in P, if G € P(p),
where P(p) is the TIOTS P re-initialised to state p.

The coin is treated as a special player. A strategy of the coin is a function h
from tA* to {0,1}. We denote the set of all possible coin strategies as H.

Strategy composition. A composition of a set of three strategies, denoted G, xp,
G, will produce, according to the timed concurrent game rules defined in Sect. 2,
a simple path which is a partial unfolding of both G, and G.. The simple path
can be either finite and ending in T /L or infinite.

4.2 Two Games

Normalisation game. In the normalisation game, the system forms a coalition
with the coin to play against the environment and seek 1 -reachability.

Given an interface P, we say a system strategy G at p and a coin strategy
h € H is winning at p iff L X, G ends in L for all possible environment strategies
L at p. Then we say a plain state p in P is L-winning iff the system and the
coin have a winning strategy at p.

13 We say an acyclic TIOTS is a tree if (1) there does not exist a pair of transitions in
the form of p % p” and p’ % p”, 2)p Zp" Ap 2, p” implies p = p’ and a = b
and (3) p Lop" Ap L p” implies p = p'.

4 For the former, G, generates exactly a time interval (0, d] of delays from p, after
which G, arrives at another plain state with a enabled. For the latter, an infinite
time interval (0,00) of delays are enabled at p. The delays either all lead to plain
states or (0,00) can be further partitioned into two intervals s.t. the delays in the
first interval lead to plain states while those of the second lead to T or L.
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Conversely, we say an environment strategy £ at p is a normalising strategy'®
at p iff £ from p can steer the game play clear of L, i.e. for all coin strategies
h € H and system strategies G at p, L X G produces either a finite play ending
in T or an infinite play.

Interestingly, an environment strategy is normalising iff it is normalisable, i.e.
it is free of 1. Thus, a state is a 1-winning state iff it contains no normalisable
(or normalising) environment strategy.

Synthesis of game winning states is a central problem of the game-theoretical
research. To synthesise |-winning states in interfaces, we focus on the two rep-
resentative subclasses of 1-winning states: auto- L and semi-_L states.

Auto-L and semi-L. Given a T /L complete interface, we say a plain state p is
an auto-L state iff p = 1 for some a € O. We say a plain state p is a semi-_L
state iff (1) all input transitions in p or any of its time-passing successors lead

to L, and (2) there exists d € R”? s.t. p <, 1. For a general interface P, we
say p is an auto- L (or semi-_1) state in P iff it is an auto-_L (or semi-_L) state in
(PT)-.

For auto-L and semi-l states, system (and coin) has a one-step winning
strategy to reach 1, which are a delay move and an output move resp. The
absence of semi- | /auto-_L states characterises the absence of L-winning states.

Lemma 1. An interface is free of L-winning states iff it is free of semi-L and
auto-L states.

Hence we can find and remowve all L-winning states in an interface by finding
and removing all auto- L and semi-_L states in it.

Normalisation. The normalisation of an interface P, denoted PV, is obtained
by collapsing all 1 -winning states in P to L, which can be implemented by a -
backpropagation procedure that repeatedly collapses semi- 1 and auto-_L states
in P to L, until semi-_1 and auto-_L freedom is obtained. Normalisation returns
a normalised interface, which is either the L-TIOTS (i.e. a degenerated TIOTS
with L as the initial state) or a TIOTS free of |-winning states.

On deterministic TIOAs, we can implement _|-backpropagation procedures
by fixpoint calculation via constraint backpropagation (based on weakest pre-
condition calculation), denoted as BP(P, ).

Realisation Game. In the realisation game, the environment forms a coalition
with the coin to play against the system and seek T-reachability. By duality we
obtain the definition of T-winning, auto-T and semi-T states.'©

5 We choose not to call it a winning strategy as it serves additional purpose for our
paper.

6 Given a T/L complete interface, we say a plain state p is an auto-T iff p % T for
some a € I; a plain state p is a semi-T iff (1) all output transitions in p or any
of its time-passing successors lead to the T state, and (2) there exists d € R”° s.t.

p LT
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We say a system strategy is realising iff it can steer the realisation game play
clear of T, which is equivalent to being realisable, i.e. free of T. Obviously a state
is a T-winning state iff it contains no realisable or realising system strategy.

Lemma 2. An interface is free of T-winning states iff it is free of semi-T and
auto-T states.

Similarly we can find and remove all T-winning states in an interface by a
realisation operation.

Realisation. The realisation of an interface P, denoted P%, is obtained
by collapsing all T-winning states in P to T (implementable by a dual
T-backpropagation procedure on TIOTSes or a constraint-backpropagation pro-
cedure BP(P,T)). Realisation returns a realised interface, which is either the
T-TIOTS (i.e. with T as the initial state) or a TIOTS free of T-winning states.

Interference between the two games. Note that a state in an interface can be
simultaneously |- and T-winning (e.g. simultaneously auto-T and auto-L). The
anomaly arises due to the coin being shared by both coalitions.

Since coin can only be on one side at a time, this implies that the two games
must be played one-at-a-time rather than simultaneously.

Hence, in our realisability theory it is meaningless to have states that are
both 1-and T-winning. In the sequel we will apply realisation and normalisation
operations alternatingly to ensure all generated interfaces are well-formed, i.e.
having no state simultaneously |- and T-winning.

We say a state is a neutral states iff it is neither T-winning nor |-winning.
An interface free of T-winning and | -winning states is called a neutral interface.

The fundamental principle of interfaces is to ensure that all interactions
between the system and environment stay in neutral states.

5 Realisable Specification Theory

When a component, specified by an interface P, interacts with an environment,
it plays a game with the environment. This game on a closer look, however, is not
identical to the game defined (on the game graph P) in Sect. 4. The component
strategies in the new game is still constrained by P (i.e. as it is for the system
strategies contained by P in the old game). But the environment is entirely
un-constrained, which may choose from all strategies definable by its alphabet.
Thus, the environment can be extremely powerful in such game interactions,
especially when it is further equipped with the timestop operation.

Previously [9], we have developed a specification theory for such systems,
where ~ gives rise to a weakest congruence w.r.t. HH’ [I,, [T, and [ opera-
tions of this paper. It results in a greatly simplified theory without the need for
timed game synthesis.

In this section we are going to remove the timestop and its related time-
blocking behaviours from both components and environments, and develop a
new specification theory for realisable components.
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For a proper treatment of un-constrained strategies, we need first to define
a notion of aggressiveness.

Comparing strategies. Different strategies vary in their effectiveness to steer the
interaction clear of T or L. Such effectiveness can be compared if two strategies
closely resemble each other: we say G and G’ of the same player are affine if
59 XL p and SO £ p' implies mug(p) = mug/(p'). Intuitively, this means G and
G’ propose the same move at the ‘same’ states.

Given two affine strategies G and G’, we say G is more L-aggressive than G,

denoted G < @', if (1) 58, £ implies there is a prefix tty of tt s.t. 58 =

and (2) 38 X7 implies there is a prefix tty of ¢t s.t. 58, M T, Intuitively, it
means G can reach L faster but T slower than G’. < forms a partial order over
the set of strategies possessed by a player. Dually, we can define G being more
T-aggressive than G’ as G’ < G.

‘Representative’ winning strategies. We say an environment strategy G. is a
winning strategy in the interaction with component P iff G5 X, G. does not end
in L for all coin strategies h and all system strategies G, € P.

Of all environment winning strategies against component P, the subset of
minimally T-aggressive ones can fully represent the whole set (by an upward-
closure operation on <), since the capability of a less aggressive strategy in
steering clear of | implies the same capability for more aggressive ones.

Thus, our theory can focus mainly on ‘representative’ environment winning
strategies, which, by the magic of mirror, have already been encoded in P.

Lemma 3. G, is a minimally T -aggressive environment winning strategy in the
game with component P iff P70 (i.e. pre-mirror of P) contains G..

In another word, an interface P encodes both a set of component strategies
(say SG) and a ‘representative’ set of environment winning strategies (EG),
which are resp. the component guarantees and environment assumptions of the
interface.

5.1 Unrealisability

The timestop operation T freezes the global time by halting the progress of the
system clock. In general, such capability is too powerful to be realistic. Thus, a
(component or environment) strategy containing timestop is unrealisable, and a
state possessing no realisable component strategy is an unrealisable state.

According to Sect. 4, unrealisable states are exactly T-winning states. Reali-
sation operation is equivalent to removing all unrealisable system strategies from
an interface.

Lemma 4. Given an interface P, the set of realisable component strategies of
P is exactly the set of component strategies of PE.
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5.2 Incompatibility

Given two interfaces P and Q with complementary alphabets (i.e. I and O
interchanged), their parallel composition calculates the intersection of SGp and
EGg as well as that of SGg and EGp. That is, the guarantees provided by one
interface will be matched against the assumptions required by the other.

For a general component P, both SGp and EGp may contain unrealisable
strategies. For a realisable component P, only EGp may contain unrealisable
strategies. In a specification theory, environments are also components. If all
components are realisable, the unrealisable part of EGp becomes irrelevant. For
instance, if EGp consists of only unrealisable strategies, it is equivalent to being
empty.

In the process of fulfilling assumptions with guarantees, if there is a match
(i.e. non-empty realisable intersection), assumptions will be absorbed by guar-
antees and disappear since P || Q forms a closed system. Otherwise (i.e. empty
realisable intersection), it gives rise to the so-called incompatible states, i.e. states
in which all ‘representative’ environment winning strategy are unrealisable.

A state p in P is incompatible implies p in P70 is unrealisable, which in
turn implies (by duality) p in P is un-normalisable, i.e. a state containing no
normalisable environment strategy. According to Sect. 4, un-normalisable states
are exactly L-winning states.

In assume-guarantee specification theories, auto- 1 and semi-1, as members
of incompatible states, are endowed with specialised interpretations, capturing
resp. safety mismatch errors (aka exception) and liveness mismatch errors (aka
time-out).

Exception. The arrival of an input at a location and time of a component when
it is not expected (i.e. the input is disabled at the location and time) triggers an
exception in the parallel composition. Exception is captured by auto-_L states.

Figure 2 shows the parallel composition of the job scheduler with the printer
controller. In the transition from B4 to Al, the guard combines the effects of
the constraints on the clocks z and y. As finish is an output of the controller, it
can be fired at a time when the scheduler is not expecting it, meaning that an
exception is raised due to safety errors. This is indicated by the transition to L
when the guard constraint 5 < z < 8 is not satisfied.

Scheduler || Printer_controller

Inv: x <= 100 start! x,y:=0 Inv: y<=1
Co: true

finish!
5<=x<=8
and y<=5
finish! printed? y:=0
Inv: true
Co: y<=10

"N not (5 <= x <= 8)
and y<=5 Thv: y<=5
Co: true

Fig. 2. Parallel composition of the job scheduler and printer controller.
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Timeout. The non-arrival of an expected input at a location of a component
before the expiration of its co-invariant triggers a bounded-liveness error (aka
timeout) in the parallel composition.

ish?
finish =2 finishl y>=2 finish!

Inv: true Inv: y<=4 Inv: y<=4
Co: x<=3 Co: true Co: x<=3

start!  x:=0

(P) (Q) (P11 Q)

Fig. 3. Bounded liveness error.

Figure 3 shows an example for bounded-liveness errors. In the closed system
P || Q, at location B2 the system is free to choose either output finish after
y > 2 or delay until z > 3. If it chooses the latter, P component will time out in
location B and the system will enter L. Note that the timeout here is due to the
fact that the urgency requirement at location 2 of Q (i.e. y <= 4) is weaker than
the timeout bound set at location B of P (i.e. z <= 3). (If it is otherwise, the
invariant at B2 will preempt the co-invariant at B2 and eliminate the possibility
of timeout.)

5.3 Realisable Specification and Coarsened Refinement

Now let us start to move back to specifications by defining realisable specifica-
tions, which will give us the advantage of the closure under hiding and renaming
operations.!”

We first notice that the definition of auto-T and semi-T can be extended
to specifications. Then we say a specification is realisable iff it is free of both
auto-T and semi-T. Due to the preservation of auto-T and semi-T freedom by
determinisation, we have:

Lemma 5. Given a realisable specification P, PP is a realisable interface.

Recall that P and PP are substitutively equivalent according to the finest ~,
in which the timestop operations greatly increase the distinguishing power of
the processes, enabling it to tell two interfaces apart by examining the timing
difference in error occurrences as well as the ezistence of such occurrences.'®

After the removal of timestop and restricting to realisable specifications,
however, the substitutive equivalence is coarsened to be ~,..

17 We omit the two operators in this paper due to space limitation.
18 That is, they can distinguish the L state from the l-winning states by stopping
time immediately.
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Realisable refinement. Let P and Q be realisable specifications with identical
alphabets. P realisably refines Q (i.e. @ C,. P), iff, for all realisable specification
R that is a closed context of P, Q || R is L-free implies P || R is L-free. We say
Q ~, P (realisably equivalent), iff P C,, Q and Q C,. P.

It is obvious that ~, is the weakest equivalence preserving incompatible
states (over realisable specifications). In the sequel we show that ~, is a congru-
ence w.r.t. the parallel ||, conjunction A, disjunction V and quotient % operators.

Note that, even though the sequel focuses on realisable specifications which
are closed under all four operations, we still need unrealisable specifications as
a detour to simplify operator definitions like quotient and conjunction, since
realisable specifications are not closed under [], and J]o,.

Lemma 6. Given a realisable specification P, P ~, PP ~. (PPN,

6 Conjunction, Disjunction and Quotient

In this section we will present the operational definition of conjunction, dis-
junction and quotient operators'®, building on top of the generic synchronised
product operator in Sect. 2.

Desiderata of the operators. Let us first describe the desired effects these oper-
ators aim to achieve before the formal development.

Over the set of realisable specifications, e.g. P, @ and £, and with respect to
the substitutive refinement <,: (1) PV Q gives rise to the strongest realisable
specification that are weaker than both P and Q; (2) P A Q gives rise to the
weakest realisable specification that are stronger than both P and Q; and (3)
P%Q gives rise to the weakest realisable specification £ s.t. £ || Q is stronger
than P.

Thus, conjunction and disjunction calculate the meet and join w.r.t. =<,,
whilst quotient synthesises a controller to interact with the specification and
steer its execution away from incompatible states.

Operational definitions. The definition of [], can be extended without modifi-
cation to work on L-complete TIOTSs.?® The definitions of [],, and o, do not
extend to L-complete TIOTSs.

We define PV Q = PT[[, Q" and P~ = ((PP)V)™. We define the other
two operators by a three-step recipe: (((P?)M)T [T, ((QP)N) ). We start with
normalisation, go on with applying the H® operators (after T-completion), and
finish with realisation. It is easy to verify that realisable specifications are closed
under all three operators.

We can verify that Po%Py ~, (Py || P1)”. This is a lifting, from the state
level to the process level, of a corresponding equation in Sect. 2.

19 1t is easy to verify that realisable specifications are closed under || defined in Sect. 3
since || preserves auto-T and semi-T freedom.

20 With the extension, blocked synchronisation, i.e. an action being enabled on one
process but not so on the other, becomes possible.
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7 Declarative Theory of Contracts

We now present a timed-trace semantics to all the operators defined in this
paper. For this purpose we adopt the contract framework promoted in [5,20]%,
which has the advantage of explicitly separating assumptions from guarantees.

Given a specification P = (I,0,5,s% —), three sets of traces can be
extracted from ((P+)T)P:

— TP is a set of timed traces leading to plain states
— TF is a set of timed traces leading to the erroneous state 1
— TM is a set of timed traces leading to the timestop state T.

TF and TM are extension-closed due to the chaotic nature of T and L, while
TP is prefix-closed. Since TF' & TPW TM gives rise to the full set of timed traces
(i.e. tA*), we need only two of the three sets to characterise P.

In a system-environment game play, TF is the set of behaviours that the

environment tries to steer the play away from, whereas TM is the set of behav-
iours that the system tries to steer the play away from. Thus, TF and TM
characterise resp. the assumptions AS and guarantees GR of the specification.
Definition 4 (Contract). A contract is a tuple (I, O, AS, GR), where AS and
GR are two disjoint extension-closed trace sets. The contract of P is defined as
TT(P):={,0,TF, TM).
We say the contract of a specification P is realisable iff GR in TT(P) is I-
receptive. A trace set TT is I-receptive iff, for each tt € TT, we have (1) it (e) €
TT for all e € I and (2) tt ~ (d) ¢ TT for some d € R>Y implies there exists
some 0 < dy < d and ey € O s.t. tt ™ (dp, e9) € TT.

We say the contract of a specification P is normalisable iff AS in 77T (P)
is O-receptive. A trace set TT is O-receptive iff, for each ¢ € TT, we have (1)
tt ™ (e) € TT for all e € O and (2) tt " (d) ¢ TT for some d € R>° implies
there exists some 0 < dy < d and ey € [ s.t. &t~ (do, e0) € TT.

We can lift the realisation and normalisation operations to contracts:

Definition 5 (Realisation). The realisation of a contract is (I,0,AS,
GR)® = (I,0,AS\GR®, GRT), where GR" is the least extension-closed super-
set of GR s.t. no tt € GRE is an auto-T or semi-T.

We say a trace ¢t € TT is an auto-T iff ¢t ™ (e) ¢ TT for some e € I. A
trace tt € TT is an semi-T iff there exists some d € R”Y s.t. tt ™ (d) ¢ TT and
tt " (do,e9) ¢ TT for all 0 < dy < d and ey € O. It is easy to verify GRF is
L-receptive and 77 (P)" = TT(PR).

Dually, we can define a trace tt € TT being an auto-1 or semi-1.
Definition 6 (Normalisation). Given a contract (I, O, AS, GR), we define
(I,0,AS,GR)N = (I,0,ASYN, GR\ASY), where ASY is the least extension-
closed superset of AS s.t. no tt € ASN is an auto-L or semi-L.

It is easy to verify that ASN is O-receptive and TT (P)" =TT (PY).

2! Bertrand Meyer [18] and Ralph Back [4] first coined the terminology of contract in
the context of programming languages.
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The theory of realisable contracts. A realisable specification gives rise to a realis-
able contract. Over realisable specifications, our contract theory, with the assis-
tance of normalisation operation, provides an alternative characterisation of ~,.,
which says that a realisable specification P is a refinement of another one Q iff
P has less assumptions and more guarantees than Q.

Definition 7 (Neutral contract). A contract (I, 0,AS, GR) is neutral iff
AS is O-receptive and GR is I-receptive.

The neutral contract of the above P is defined as CT (P) := TT(P)".

Theorem 1. Given realisable specifications Py and Py with CT (Py) = (I, O,
ASy, GRy) and CT (Py) = (I, 0,AS1, GRy), Po T, Py iff AS) C ASy and GRy C
GR;.

Based on neutral contracts, we present the trace semantics of the parallel,
disjunction, conjunction and quotient operations. The core part of the operations
is based on a set of patterns originally presented in [20]. The specialisation
required for the timed theory lies in the application of closure conditions like
normalisation, realisation and alphabet enlargement.

Alphabet enlargement. Given a set A of actions disjoint from I U O, we define
(I,0,AS8,GR)? :=(IUA, 0,AS?, GR?), where TT4 := {tt : (tAU A)* | tt |
tAe TT} - (tAU A)*.

In the rest of the section we consider two realisable specifications P; for
1€ {07 1} with CT('Pz) = (IZ, 0;,AS;, GRZ) and 1 =1 — 3.

Proposition 2 (Parallel Composition). If realisable specifications Py and
Py are ||-composable, then CT(Py || P1) = (I, 0, (AS{ U ASP)\(GRG™© U
GRA), GRS U GRAN , where I = (Iy U L)\O, O = O U Oy, Ag = A1\ Ay
and Al = AO\AI-

Intuitively, the above says that the composed guarantees are the union of compo-
nent guarantees, whilst the composed assumptions are the union of component
assumptions with those fulfilled by the composed guarantees deducted.

Proposition 3 (Disjunction). If realisable specifications Py and Py are
\V-composable, then CT (PoVP1) = (1,0, ASy U AS1, GRy N GRy)N, where
I=Iy=1 and O = Oy = Oy.

Disjunction places union over assumptions but intersection over guarantees.

Proposition 4 (Conjunction). If realisable specifications Py and Py are A-
composable, then CT (Po AP1) = (I, 0, ASy N ASy, GRy U GRy)%, where I =
[0111 and0:00:01.

Conjunction places union over guarantees but intersection over assumptions.
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Proposition 5 (Quotient). If realisable specifications Py and Py are
%-composable, then CT(Po%P1) = (I,0,ASy U GRA' (GRy\GRA') U
(ASlAl \ASO))R, where I = I() U 01, 0= 00\01 and Al = Ao\Al.

The composed assumptions of quotient is the union of Py-assumptions and
P1-guarantees, whilst the composed guarantees is the union of (1) Py-guarantees
outside of P;-guarantees and (2) P;-assumptions outside of Py-assumptions.

Mirror. The operation simply interchanges assumptions and guarantees.
Proposition 6. C7(P~) = (0,1, GR, AS).
Based on the above theorem we can prove the congruence result.

Theorem 2. ~,. is a congruence w.r.t. ||, V, A and %, subject to composability.

8 Comparison with Related Work

Our framework builds on the timed specification theories of [12,13] and [10],
albeit with significant differences.

Formalism. All three theories are based on variants of Timed I/O Automata.
Our variant, like that of [12,13], uses two invariants (aka input/output invariants
in [12,13]) in order to recover the duality between assumptions and guarantees;
whereas the TIOAs in [10] possess no such duality. Our TIOA semantics, on
the other hand, differs from those of [12,13] in the formulation of timed games
and adoption of T/L, which enable us to reduce the two transition relations
in [12,13] to the one relation of Sect. 2.

Timed Game. Both [12,13] and [10] use two-player games, whereas our theory
uses a three-player game (with a coin), which is crucial for uncovering the inter-
ference between the dual pair of two-player games, normalisation and realisation.

Even with the reduction to two-player games, our treatment of timed games
is still different. In comparison with [12,13], our games require that in each move
a finite delay is followed by an action. Therefore, a play cannot have consecutive
delay moves and the possibility of zeno plays (i.e. an infinite play generating a
finite trace) is ruled out. Furthermore, finite plays ending in timestop or timelock
(i.e. semi-T) can also be removed since we have the realisation game.

In comparison with [10], which is based on the timed game framework of [3,7],
our games are strictly more aggressive in classifying winning states. For instance,
[3,7] do not classify auto-T /L as winning states.

Linking with refinement calculus. The introduction of T and L, inspired by
abort and magic of refinement calculus, significantly simplifies our theory (esp.
the operator and refinement-relation definitions and the duality of games), in
addition to pointing towards future theory unification.

In contrast, without T and L the pursuit of duality in [12,13] does not end
with a simplified theory??; especially it misses the second game in duality.

22 [12,13] focuses on the definition of one operator, parallel composition, which is of
considerable complexity.
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On the other hand, [10] makes no attempt to link with refinement calculus.

Linear-time and Non-determinism. [10] and [11-13] uses timed alternating sim-
ulation as refinement, which (1) does not admit the weakest precongruence and
(2) restricts [10,12,13] to consider only deterministic timed systems.

In contrast, we use linear-time semantics that gives rise to both the weakest
precongruence and a T/L-sensitive determinisation procedure, enabling us to
handle non-deterministic timed systems.

Untimed theories. Finally, we remark that our linear-time specification theory
owes much to the pioneering work on trace theories for asynchronous circuit
verification, especially Dill’s trace theory [14]. It is from this community that we
take inspiration for the notion of game synthesis, double-trace semantics, auto-_L
(aka auto-failure) and the derivation of quotient from mirror.?3

In comparison with untimed theories, where only one game with auto-L
is required,?* the timed theory requires timestop, two games in duality, three
players and the new notion of semi-T /L. Furthermore, with the use of invariants
and co-invariants in timed specifications, timed theory can give a systematic
treatment to liveness based on finite traces.

9 Conclusion and Future Work

We have devised a fully compositional specification theory for realisable real-time
components. The linear-time theory enjoys strong algebraic properties, supports
a full set of composition operators, and admits the weakest substitutive pre-
congruence preserving safety and bounded-liveness error freedom.

Acknowledgments. We benefit from discussions with Prof. David Dill and Prof. Jeff
Sanders on timed extension of trace theory and refinement calculus.
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Abstract. In this paper, we outline our vision for building verifica-
tion tools for Cyber-Physical Systems based on Hoare and He’s Uni-
fying Theories of Programming (UTP) and interactive proof technol-
ogy in Isabelle/HOL. We describe our mechanisation and explain some
of the design decisions that we have taken to get a convenient and
smooth implementation. In particular, we describe our use of lenses
to encode state. We illustrate our work with an example UTP theory
and describe the implementation of three foundational theories: designs,
reactive processes, and the hybrid relational calculus. We conclude by
reflecting on how tools are linked by unifying theories.

1 Introduction

Cyber-Physical Systems (CPS) are networks of computational devices that inter-
act with the world through an array of sensors and actuators, and combine dis-
crete computation with continuous physical models of their environment. For
example, automated, driverless vehicles that are required to sense their environ-
ment, construct a real-time model of the present situation, make decisions about
developing scenarios, and respond within a sufficiently short amount of time to
ensure the safety of its passengers and other road users. Engineering such systems
whilst demonstrating their trustworthiness is a major challenge. CPS engineer-
ing involves a wide range of modelling and programming paradigms [10], includ-
ing concurrency, real-time, mobility, continuous variables, differential equations,
object orientation, and diagrammatic languages. These aspects are represented
by a variety of domain-specific and general-purpose languages, such as Simulink,
Modelica, SysML, Java, and C, and thus engineering trustworthy CPS requires
that we semantically integrate models in a consistent way, and then form argu-
ments that the system as a whole exhibits certain properties.

Semantic integration has been made possible using the industry-developed
standard FMI [5] (Functional Mockup Interface), which describes a CPS using a
network of FMUs (Functional Mockup Units) that represent components or con-
stituent systems. An FMU exposes a number of observable continuous variables
that characterise the state of the individual model at a particular instant. Vari-
ables can either be of type input, output, or state, depending on whether they are
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under the control of the FMU or the environment. FMUs can be stepped forward
in time, which will cause these variables to evolve. A requested time step may be
rejected and require curtailing if an event, such as a zero-crossing, occurs in the
meantime, since the other FMUs may need to be notified. A master algorithm
manages stepping the individual FMUs forward, and distributing information in
between time steps. Aside from this minimal operational interface, each FMU is
treated as a black box. An FMU can correspond to an abstract model of behav-
iour, an implementation of a particular component, or even a physical piece of
hardware, which allows for Hardware in the Loop (HiL) simulation and testing.
FMI thus allows one to describe heterogeneous multi-models that are described
in different notations, and with different underlying semantic models, but are
nevertheless integrated through a common operational interface.

Though FMI provides the necessary operational interface between different
models and programs, it alone does not provide enough semantic information
to verify them. In order to achieve that, we need a way of tackling the inherent
semantic heterogeneity of the multi-model, for which we use Hoare and He’s Uni-
fying Theories of Programming [8,24,39] (UTP), which is a long-term research
agenda to describe different computing paradigms and the formal links between
them. It allows us to consider the various semantic aspects of a heterogeneous
multi-model as individual theories that characterise a particular abstract pro-
gramming or modelling paradigm. Hoare and He [24] show how the alphabe-
tised relational calculus can be applied to construct a hierarchy of such theories,
including simple imperative programs (relations), designs that correspond to pre-
and postcondition specifications, and various theories of concurrent and paral-
lel programs, including the process algebras ACP, CCS, and CSP [23]. Since
the advent of UTP, a host of additional UTP theories have been developed
that variously tackle paradigms like real-time programming [34], object-oriented
programming [32], security and confidentiality [3], mobile processes [33], prob-
abilistic modelling [6], and hybrid systems [15]. Moreover, the FMI API itself
has been given a UTP-based semantics [9] that can be used as an interface to
the semantic model of individual FMUs, and also allows a network of FMUs to
be verified at this level using the FDR3 refinement checker [18]. The UTP app-
roach allows computational theories to be formalised and explored as indepen-
dent theories, and then later integrated to provide heterogeneous denotational
semantic models. This can either be done directly through theory combination,
or where theories are not directly compatible, such as in the case of discrete and
continuous time, through the use of Galois connections that characterise best
approximations.

In order to make UTP theories practically applicable to program verification,
tool support is needed, and so we are also developing a theorem prover for UTP
based on Isabelle/HOL [28], which we call Isabelle/UTP [16,17|. Isabelle is a
powerful proof assistant that can be used both for the mechanisation of mathe-
matics, and for the application of such mechanisations to program verification,
which is famously illustrated by the seL4 microkernel verification project [26].
Another excellent example is the use of Kleene algebras to build program
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verification tools [1], from which Hoare logics, weakest-precondition calculi, rely-
guarantee calculi, and separation logics have been created. Specifically of interest
for CPS, there has also been a lot of recent work on formalising calculus, analy-
sis, and ordinary differential equations (ODEs) in Isabelle [25], which can then
be applied to verification of hybrid systems. Similarly, we are also building a
mechanised library of UTP theories!, including associated laws of programming
and verification calculi.

Crucial to all of these developments is the ability to integrate external tools
into Isabelle that can provide decision procedures for specific classes of problems.
Isabelle is well suited to such integrations due to its architecture that is based
on the ML and Scala programming languages, both of which can be used to
implement plugins. Isabelle is sometimes referred to as the Fclipse of theorem
provers [37]. The sledgehammer tool [4], for example, integrates a host of first-
order automated theorem provers and SMT solvers, which often shoulder the
burden of proof effort. Sledgehammer is used, for example, by [1], both at the
theory engineering level, for constructing an algebraic hierarchy of Kleene alge-
bras, and also at the verification level, where it is used to discharge first-order
proof obligations. For verification of hybrid systems, it will also be necessary
to integrate Isabelle with Computer Algebra Systems (CAS) like Mathemat-
ica, MATLAB, or SageMath, to provide solutions to differential equations, an
approach that has been previously well used by the KeYmaera tool [30,31].

Our vision is the use of Isabelle and UTP to provide the basis for CPS
verification through formalisation of the fundamental building-block theories of
a CPS multi-model, and the integration of tools that implement these theories
for coordinated verification. This is, of course, an ambitious task and will require
collaboration with a host of domain experts. Nevertheless, the vision of UTP is
to provide a domain in which such cooperations can be achieved.

This paper gives an overview of the state of our work towards verification
of CPS in UTP. In Sect.2, we describe our approach to mechanising UTP in
Isabelle/HOL, including its lens-based state model, meta-logical operators, and
the alphabetised relational calculus. In Sect. 3, we show how an example theory
can be mechanised and properties proved in Isabelle/UTP. In Sect. 4, we give an
overview of the UTP theories of CPS that we have mechanised so far. In Sect. 5,
we conclude.

2 Algebraic Foundations of Isabelle/UTP

In this section we summarise the foundations of Isabelle/UTP, our semantic
embedding of the UTP in Isabelle/HOL, including its lens-based state model,
meta-logical functions, and laws. Isabelle/UTP includes a model of alphabe-
tised predicates and relations, proof tactics, and a library of proven alge-
braic laws. Following [11,12], our predicate model is a parametric Isabelle type
aupred = o = bool where « is the domain of possible observations, that is, the
alphabet.

! This library can be viewed at github.com //isabelle-utp /utp-main.
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The predicates-as-sets model is standard for most semantic embeddings of
UTP, both deep [16,29,40] and shallow [11,12], and means that the predicate
calculus operators can be obtained by simple lifting of the HOL equivalents.
This means that we can automatically inherit the fact that, like HOL predi-
cates, UTP predicates also form a complete lattice. Moreover, this facilitates
automated proof for UTP predicates, which we make available through the pred-
icate calculus tactic pred-tac, which can be used to discharge a large number of
conjectures in our UTP theories.

A major difference between Isabelle/UTP and the deep embeddings is that
we use Isabelle types to model alphabets, rather than representing them as finite
sets. Use of types to model alphabets has the advantage that the type checker
can be harnessed to ensure that variables mentioned in predicates are indeed
present in the alphabet. What the predicate model lacks a priori though, is a
way of manipulating the variables present in «; for this we use lenses.

2.1 Lenses in Brief

UTP is based on the paradigm of predicative programming, where programs
are predicates [22]. This view results in a great simplification, with much of the
machinery of traditional denotational semantics swept away, including the brack-
ets mapping fragments of syntax to their denotation, as well as the environment
used to evaluate variables in context. As an example of the latter, x := 1 is
just another way of writing the predicate 2’ = = + 1. This simplified view of an
environment-free semantics is difficult to maintain when thinking about more
sophisticated programming techniques, such as aliasing between variables. See,
for example a UTP semantics for separation logic [38], where environments are
reintroduced to record variables stored on the heap and the stack. This raises the
general methodological question of what is the most convenient way of modelling
the state space for a UTP theory? The answer to this is especially important for
our mechanisation in Isabelle, if we are to provide a generally reusable technique.

Rather than characterising variables as syntactic entities [16], we instead
algebraically characterise the behaviour of variables using lenses [14,17]. Lenses
allow us to represent variables as abstract projections on a state space with
convenient ways to query and update in a uniform, compositional way. Variables
are thus represented by regions of the state space that can be variously related,
namelessly and spatially; these regions can be nested in arbitrary ways. Lenses
are equipped with operators for transforming and decomposing the state space,
enabling a purely algebraic account of state manipulations, including consistent
viewing, updating, and composition. Importantly, the theory of lenses allows us
to formalise meta-logical operations in the predicate calculus, such as freshness
of variables and substitution of expressions for variable names.

A lens X from a view type V to a bigger source type S is a function
X : V= § that allows us to focus on V independently of S. The signature of
a lens consists of two functions:

get: S — V
put: S —V —=S8
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Consider as an example, a record lens. For the record
( forename : String, surname : String, age : Int )
there are seven lenses (the record has three components, so there are 2% — 1 ways

of decomposing it). Other examples include product, function, list, and finite
map lenses. A number of algebraic laws might be satisfied by a particular lens:

get (putsv) = v (PutGet)
put (putsv’)v = putswv (PutPut)
puts(gets) = s (GetPut)

Lenses that satisfy combinations of these laws are classified in different ways
[14,17]:

Well-behaved lenses PutGet + GetPut
Very well-behaved lenses addition of PutPut
Mainly well-behaved lenses PutGet + PutPut

The majority of laws in Isabelle/UTP require variables to be modelled as mainly
well-behaved lenses of type 7 = «, where 7 is the variable type, though some
laws depend on them being very well-behaved. From these axiomatic bases we
define operations for querying and composing lenses. These include independence
(X 1Y), sublens (X C, Y), equivalence (X ~, Y'), composition (X ; V), and
summation (X 4, V). All of these operations can be given denotations in terms
of the get and put [17]; here we focus on the intuition and algebraic laws.

Independence, X <1 Y, describes when lenses X : V3 = S and
Y : Vo = § identify disjoint regions of the common source S. Essentially,
this is defined requiring that their put functions commute. In our example,
the forename and surname lenses can be updated independently and thus
forename >x surname. Lens independence is thus useful to describe when two
variables are different. The sublens partial order, X C, Y, conversely, describes
the situation when X is spatially within Y, and thus an update to Y must affect
X. From this partial order we can also define an equivalence relation on lenses
in the usual way:

X~ Y =XC YAYC X

Lens composition X;, Y : Vi = S, for X : Vi = Voand YV : Vb = S,
allows one to focus on regions within larger regions, and thus allows for state
space nesting. For example, if a record has a field that is itself a record,
then lens composition allows one to focus on the inner fields by compos-
ing the lenses for the outer with those of the inner record. Lens composition
is closed under all the algebraic lens classes. We also define the unit lens,
0, : unit = S, which has an empty view, and the identity lens, 1, : § = 5,
whose view is the whole source. Both of these lenses are also very well-behaved.
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Lens sum, X+, Y : Vi x Vo = §, parallel composes two independent lenses
X: Vi = Sand Y : Vo = §. This combined lens characterises the regions
of both X and Y. For example, the lens forename-+, age allows us to query and
updates both fields simultaneously, whilst leaving surname alone. Finally, the
associated lenses fst, : V1 = V7 x V5 and snd, : Vo = V; x V5 allow us to
view the left and right elements of a product source-type.

Our lenses operations satisfy the following algebraic laws, all of which has
been mechanised [17], assuming X, Y, and Z are well-behaved lenses:

Theorem 1. Lens algebraic laws

Xsl(Yi02)=(X;5.0Y);02 (L1)
X;olo=1,;,. X=X (L2)
XIxYeVxX (L3)

X+ (Y + D) mX+. V) 2 X=Y,XNZ Y2 (L4)
X+, Y~ Y+ X XY (L5)
X+, 0.~ X (L6)

XC, X+, Y XaV (L7)
fst, > snd, (L8)
fist,; (X +, V) = X XY (L9)
X>x(Y+,.2) XY, XxZ (L10)

The majority of these laws are self explanatory, however we comment on a few.
Sum laws like L4 use lens equality rather than homogeneous HOL equality since
the left- and right-hand sides have different types. Law L9 shows how the fst_
lens extracts the left-hand side of a product. Interestingly, these laws contain
the separation algebra axioms [7], where separateness is characterised by i,
and thus shows how our lens approach also generalises memory heap modelling.
Thus we have an abstract model of state and an algebraic account of variables.

2.2 Expressions

Expressions have a similar type to predicates: (7, «)uexpr = a = 7, where 7 is
the return type and « is the alphabet. We thus harness the HOL type system
for ensuring well-formedness of expressions. HOL contains a large library of
expression operators, such as arithmetic, and we lift these to UTP expressions.
We also introduce the following core expressions constructs:

— e =, f: equality of UTP expressions.
— &uz: obtains the value of lens x : @« = 7 in the state space.
— «v»: embeds a HOL expression of type 7 into a UTP expression.

In general for expressions, we try to follow the standard mathematical syntax
from the UTP book [24] and associated tutorials [8,39]. For example, for the
predicate operators we introduce overloaded constants so that the type system
must determine whether operators like A and — are the HOL or UTP versions.
Where this is not possible, for example equality, we add a u subscript.
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2.3 Meta-logical Functions

Isabelle/UTP is based on a semantic model for alphabetised predicates, rather
than syntax. Since we do not formalise a fixed abstract syntax tree for UTP
predicates, there are no notions such as free variables or substitution that ordi-
narily would be recursive functions on the tree. Instead, we introduce weaker
semantic notions that are sufficient to characterise the laws of programming:

— Unrestriction, x § P, for lens z and predicate P, that semantically charac-
terises variables that are fresh.

— Semantic substitution, ot P, for substitution function o.

— Alphabet extrusion, P ®, a, for lens a.

— Alphabet restriction, P [, a, for lens a.

Intuitively, =z § P holds, provided that P’s valuation does not depend on z. For
example, it follows that z f true, = § «v», and =z (32 e = >, y), but not
that z §(x =, 1 A y =, 2). What differentiates it from syntactic freshness is
that z §(z =, 0 V z #, 0), because the semantic valuation of this predicate
is always true. Unrestriction can alternatively be characterised as predicates
which satisfy the fixed point P = (z e P) for very well-behaved lens z. Substi-
tution application ot P applies a substitution o to P. A substitution function
o : ausubst (= a = «) is a mapping from variables in the predicate’s alpha-
bet « to expressions to be inserted. Substitution update o(x — €) assigns the
expression e to variable z in o, and

[Il s €1, ,Tn s en] = |d(xl s €1, , Tn s en)

creates a substitution for n variables. A substitution Pfey, -, en/x1,- -+, z,] of
n expressions to corresponding variables is then expressed as

[1131 s €1, ,Tn s en]TP
We now present some of the proven laws of substitutions.

Theorem 2 (Substitution query laws).

(o(z —s€))sz=ce (SQ1)
(o(y—se))sz=(0)sz ifr >y (5Q2)
o(z s e,ys f) =0y s f) ifrCry (SQ3)
oz s e y—=s f)=o(y—s f,z—5¢€) ifr ey (SQ4)

SQ1 and SQ2 show how substitution lookup is evaluated. SQ3 shows that an
assignment to a larger lens overrides a previous assignment to a small lens and
SQ4 shows that independent lens assignments can commute.
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Theorem 3 (Substitution application laws).

o1&z =o(x) (SA1)
olz—se)fP=0ctP ift § P (SA2)
of(= P)==(ctP) (SA3)
of(PAQ)=(ofP)A (01 Q) (SA4)
By e P)e/z] = 3y o Ple/z]) ifzay,yfe (SA5)

These laws effectively subsume the usual syntactic substitution laws, for an arbi-
trary number of variables, many of which simply show how substitution distrib-
utes through predicate operators.

Alphabet extrusion P @, a, for P : cvupred, extends the alphabet type using
lens a : @« = [3: it projects the predicate’s alphabet « to “larger” alphabet type
(B. Lens a can be seen as a coercion that shows how the original state space «
can be embedded into (3. Effectively alphabet extrusion retains the predicate’s
characteristic valuation set over «, whilst filling in the rest of the variables in
source alphabet § with arbitrary values.

Alphabet extrusion can be used to map a predicate o upred to a relation
(ax @) upred by application of the lens fst, orsnd, , depending on whether a precon-
dition or postcondition is desired. We give these two lifting operations the syntax
[p]l- = p @y fst, and [p]. = p @, snd,, respectively, where p is a predicate in only
undashed variables. We similarly create the substitution extension operator [o]
that maps all variables and expressions to relational equivalents in undashed vari-
ables. Alphabet restriction is simply the inverse of extrusion: P [, a, for P : 3 upred
and a : « = f3, yields a predicate of alphabet «. Unlike extrusion this operation
can be destructive if the predicate refers to variables in 5 but not in a. We demon-
strate the following laws for extrusion and restriction:

Theorem 4 (Alphabet laws).

true®, a = true (AE1)
«U» @p a = «U» (AE2)
(PAQ)Dpa=(Pdpa)A(QDpa) (AE3)
&r®pa=&(z; . a) (AE4)
rxa=zf{(Pdya) (AE5)
(P@pa)lpa=P (AES6)

As indicated by laws AE1 and AE2, alphabet extrusion changes only the type
of predicates with no variables; the body is left unchanged. Extrusion distrib-
utes through all the predicate operators, as expected, as indicated by law AE3.
Applied to a variable, extrusion precomposes the variable lens with the given
alphabet lens, as law AE4 demonstrates. Law AE5 shows that extrusion yields
a predicate unrestricted by any variable x in the state-space extension. Finally,
AEG6 shows that alphabet restriction inverts alphabet extrusion.
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2.4 Relations and Laws of Programming

A relation is a predicate with a product state space: a relation = (a x «) upred.
Variables of a can therefore be lifted to input or output variables by composing
the corresponding lens with fst, or snd, respectively.

Definition 1 (Relational variables).

$z = z;  fst, $2’ = 2; . snd,
b )

It is important to note that “$z” is distinguished from “&x”: the former has a
product alphabet whilst the latter has a scalar one. Thus &z is useful when
writing predicates which should not contain dashed variables: $z =, &y will
usually result in a type error. Alphabet coercion can be used to convert between
relations and predicates, and in particular it follows that [&z]. = $z.

We define the relational calculus operators like P ; Q2 and I by lifting of
the constructs for HOL relations. Again, this gives us access to various built-in
laws for binary relations, and allows us to produce a tactic for relational calcu-
lus, rel-tac. Conditional (if-then-else) is introduced using predicate operators as
Pb>Q = (b A P)V (- b A Q). Assignment is defined as a general con-
struct over a state substitution: (), : « relation updates the state by applying the
substitution o : a usubst to the previous state. The alphabet of the substitution
is a rather than a x « as this ensures that the assigned expressions cannot refer
to post variables, as usual. The unary substitution z := e can then be defined as
{[x —s e])q, and similarly for simultaneous assignment of n variables. This has
the advantage that the duality between substitution and assignment is clear in the
corresponding algebraic laws. We have proven a large library of laws for relations,
a selection of which is shown below, accompanied by the Isabelle names.

Theorem 5. Relational laws of programming

P; (Q; R)=(P; Q); R (seqr-assoc)

I, P="P (seqr-left-unit)

false; P = false (seqr-left-zero)
(PUb>(Q<UbD>R))=(P<IbI>R) (cond-shadow)
[ple NI=TA [pl. (pre-skip-post)

(p; true) =p < snd, § p (precond-equiv)

P; Q= (3vePl«w»/$2']; Q[«v»/$z])  (seqr-middle)

(0)a; P=[olsTP (assigns-r-comp)

(0)as (Pla=(po0)a (assigns-comp)

We comment on a few of these. Law pre-skip-post shows that a precondition
conjoined with relational identity can become a postcondition, since all variables

2 This is written as P ;; @ in Isabelle since ; is a delimiter for assumptions.
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are identified. Law seqr-middle allows us to extract the intermediate value of
a single variable in a sequential composition. Constant v is not a UTP state
variable, but rather a logical HOL variable indicated by use of quoting. Law
assigns-r-comp is a generalised version of the law z := v ; P = P[v/z]—it
states that an assignment of o followed by P equates to a substitution on P. We
have to extend the alphabet of o to match the relational alphabet of P using
[0]s. Finally, law assigns-comp states that the sequential composition of two
assignments corresponds to the functional composition of the two substitutions.
From this law we can prove the assignment commutativity law:

Theorem 6. Assignment commutativity

(z=e;y:=f=(:=f;z:=¢) ifr=xyxtf,yfe (assign-commute)
Proof. By combination of laws assigns-comp and SQ4. O

Altogether we have proven over 200 hundred laws of predicate and relational
calculus, many of which can be imported either from HOL or by Armstrong’s
algebraic hierarchy [1]. This then gives us the foundation on which to build UTP
theories for Cyber-Physical Systems.

3 Example UTP Theory

In order to exemplify the use of Isabelle/UTP, we mechanise a simple theory
representing Boyle’s law. Boyle’s law states that, for an ideal gas at fixed tem-
perature, pressure p is inversely proportional to volume V, or more formally that
for k = p - Vis invariant, for constant k. We here encode this as a simple UTP
theory. We first create a record to represent the alphabet of the theory consisting
of the three variables k, p and V.

record alpha-boyle =
boyle-k :: real
boyle-p :: real
boyle-V :: real

For now we have to explicitly cast the fields to lenses using the VAR syntactic
transformation function [11] — in the future this will be automated. We also have
to add the definitional equations for these variables to the simplification set for
predicates to enable automated proof through our tactics.

definition k :: real = alpha-boyle where k = VAR boyle-k
definition p :: real = alpha-boyle where p = VAR boyle-p
definition V :: real = alpha-boyle where V = VAR boyle-V

declare k-def [upred-defs] and p-def [upred-defs] and V-def [upred-defs]
We also prove that our new lenses are well-behaved and independent of each
other. A selection of these properties is shown below.

lemma vwb-lens-k [simp]: vwb-lens k by (unfold-locales, simp-all add: k-def)
lemma boyle-indeps [simpl: k<ip pixk kxV Vixk pxV Vixp
by (simp-all add: k-def p-def V-def lens-indep-def)
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3.1 Static Invariant

We first create a simple UTP theory representing Boyle’s laws on a single state, as
a static invariant healthiness condition. We state Boyle’s law using the function
B, which recalculates the value of the constant k based on p and V.

definition B(p) = (3 k - ©) A (&k = &p-&V))

We can then prove that B is both idempotent and monotone simply by applica-
tion of the predicate tactic. Idempotence means that healthy predicates cannot
be made more healthy. Together with idempotence, monotonicity ensures that
the image of the healthiness function forms a complete lattice, which is useful
to allow the representation of recursive constructions with the theory.

lemma B-idempotent: B(B(P)) = B(P) by pred-tac
lemma B-monotone: X C Y = B(X) C B(Y) by pred-tac

We also create some example observations; the first (1) satisfies Boyle’s law
and the second doesn’t (p2).

definition 1 = ((&p =u 10) A (&V =4 5) A (&K =4 50))
definition o2 = ((&p =u 10) A (&V =4 5) A (&k =, 100))

We first prove an obvious property: that these two predicates are different obser-
vations. We must show that there exists a valuation of one which is not of the
other. This is achieved through application of pred-tac, followed by sledgeham-
mer [4] which yields a metis proof.

lemma @1-diff-p2: 1 # 2
by (pred-tac, metis select-convs num.distinct(5) numeral-eq-iff semiring-norm(87))

We prove that ¢, satisfies Boyle’s law by application of the predicate calculus
tactic, pred-tac.

lemma B-¢1: @1 is B by (pred-tac)

We prove that @o does not satisfy Boyle’s law by showing that applying B to it
results in 1. We prove this using Isabelle’s natural proof language, Isar, details
of which can be found in the reference manual [36]. The proof below is annotated
with comments.

lemma B-¢2: B(p2) = ¢1
proof —
— We first expand out the definition of (2
have B(p2) = B(&p =u 10 A&V =4 5 N &k =, 100)
by (simp add: p2-def)
— Then the definition of B
also have ... = (3 k - &p =u 10 N &V =4 5 A &k =, 100) N &k =, &p-& V)
by (simp add: B-def)
— The existentially quantifier k¥ can be removed

also have ... = (&p =4 10 AN &V =4 5 N &k =4 &p-&V)
by pred-tac

— We show that (10::'a) - (5::'a) = (50::"a)

also have ... = (&p =4 10 AN &V =, 5 A &k =4 50)

by pred-tac
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— This is then definitionally equal to ¢1
also have ... = ¢
by (simp add: ¢1-def)
— Finally we show the overall thesis
finally show ?thesis .
qed

3.2 Dynamic Invariants

Next we build a relational theory that allows the pressure and volume to be
changed, whilst still respecting Boyle’s law. We create two dynamic invariants
for this purpose.

definition D1 (P) = ((3k =u $p-8V = $k" =, $p~-$V ") A P)

definition D2(P) = ($k~ =, $k A P)

D1 states that if Boyle’s law satisfied in the previous state, then it should be
satisfied in the next state. We define this by conjunction of the formal speci-
fication of this property with the predicate. The annotations $p and $p " refer
to relational variables p and p’. D2 states that the constant k indeed remains
constant throughout the evolution of the system, which is also specified as a
conjunctive healthiness condition. As before we demonstrate that D1 and D2
are both idempotent and monotone.

lemma D1-idempotent: D1(D1(P)) = D1(P) by rel-tac
lemma D2-idempotent: D2(D2(P)) = D2(P) by rel-tac

lemma Di1-monotone: X C Y = DI1(X) C D1(Y) by rel-tac
lemma D2-monotone: X C Y = D2(X) C D2(Y) by rel-tac

Since these properties are relational, we discharge them using our relational cal-
culus tactic rel-tac. Next we specify three operations that make up the signature
of the theory.
definition InitSys ip i1V

= ((«ip» >0 0 A «iVy» >4 0)7 55 p,V,k = «ipy,«iVy,(<ip»-«iV»))

definition ChPres dp
= ((&p + «dp» >, 0)7 35 p:=&p + «dp» ;; V := (&k/&p))

definition ChVol dV
= ((&V + «dV» >, 0)" 33 V=&V + «dV» ;; p = (&k/&V))

InitSys initialises the system with a given initial pressure (ip) and volume (iV).
It assumes that both are greater than 0 using the assumption construct ¢’ which
equates to ITif ¢ is true and false (i.e. errant) otherwise. It then creates a state
assignment for p and V', uses the B healthiness condition to make it healthy
(by calculating k), and finally turns the predicate into a postcondition using the
[P function.

ChPres raises or lowers the pressure based on an input dp. It assumes that
the resulting pressure change would not result in a zero or negative pressure,
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i.e. p+ dp > 0. It assigns the updated value to p and recalculates V using the
original value of k. ChVol is similar but updates the volume.

lemma D1-InitSystem: D1 (InitSys ip iV) = InitSys ip iV by rel-tac
InitSys is D1, since it establishes the invariant for the system. However, it is
not D2 since it sets the global value of ¥ and thus can change its value. We can
however show that both ChPres and ChVol are healthy relations.

lemma D1: DI (ChPres dp) = ChPres dp and D1 (ChVol dV) = ChVol dV
by (rel-tac, rel-tac)

lemma D2: D2 (ChPres dp) = ChPres dp and D2 (ChVol dV) = ChVol dV
by (rel-tac, rel-tac)

Finally we show a calculation for a simple animation of Boyle’s law, where the
initial pressure and volume are set to 10 and 4, respectively, and then the pressure
is lowered by 2.

lemma ChPres-example:
(InitSys 10 4 ;; ChPres (—2)) = p,V,k := 8,5,40
proof —

— InitSys yields an assignment to the three variables

have nitSys 10 4 = p,V.,k := 10,4,40
by (rel-tac)

— This assignment becomes a substitution

hence (InitSys 10 4 ;; ChPres (—2))

= (ChPres (—2))[10,4,40/%p,$V ,$k]

by (simp add: assigns-r-comp alpha)

— Unfold definition of ChPres

also have ... = ((&p — 2 >, 0)"[10,4,40/$p,$V ,$k]

opi=&p — 255 V= &k / &p)

by (simp add: ChPres-def lit-num-simps usubst unrest)

— Unfold definition of assumption

also have ... = ((p,V,k := 10,4,40 < (8 :y real) >, 0 > false)

opi=&p = 25 V= &k [ &p)

by (simp add: rassume-def usubst alpha unrest)

— (0:'a) < (8::'a) is true; simplify conditional

also have ... = (p,V.,k := 10,4,40 ;; p:=&p — 2 ;; V =&k / &p)
by rel-tac

— Application of both assignments

also have ... = p,V )k := 8,5,40
by rel-tac
finally show %thesis .
qed

4 Theories of Cyber-Physical Systems

In this section we describe some the key UTP theories we have mechanised which
form the basis for our future semantic model of Cyber-Physical Systems.
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4.1 Designs

The simplest theory in UTP is that of a nondeterministic imperative program-
ming language expressed in the relational calculus of alphabetised predicates
arranged in a complete lattice. The ordering is refinement, which is defined
as universal inverse implication: (P C @) = [@ = P] (here the brackets are
universal closure over the alphabet). The worst program, the bottom of the lat-
tice, is abort, with semantics true; the best program, the top of the lattice, is
miracle, with semantics false. This theory of nondeterministic programming is
that of partial correctness, with recursion given a strongest fixed-point seman-
tics. The choice of semantics for recursion is a very practical one to make the
theory work. If the weakest fixed-point were chosen, then some desirable laws
would fail to hold. For example, we’d certainly like the following law to hold:
abort ; P = abort. Choosing a weakest fixed-point semantics gives us the equa-
tion (true ;  := 0) = z := 0, for a state with a single variable x: it is possible
to recover from abort (for example, a non-termination recursion) and behave as
though it had never happened. On the other hand, the choice of the strongest
fixed-point would validate the law, thus: (false ; z := 0) = false. It turns out
that the strongest fixed-point is also easier to reason with. Compare the laws
defining the extreme properties of the two operators:

(F(P)C P)= (WF C P) (S T F(S)) = (S CvF)

The left-hand law states that if P is a pre-fixed-point of F', then it can’t be any
weaker than the weakest fixed-point. This would be useful in reasoning about a
recursive specification p F' of a program P. The right-hand law states that if S
is a post-fixed-point of F', then it can’t be any stronger than the strongest fixed-
point. This would be useful in reasoning about a recursive implementation v F' of
a specification S. The left-hand law seems more practically useful than the right-
hand one. The cost of this practical benefit is an inescapable law: S T abort,
for every specification S, since abort, with a strongest fixed-point semantics, is
the top of the lattice. So the result is a theory of partial correctness: if we have
S C P, and the P terminates (that is, it is not abort), then P is correct. For this
price, a simple rule is obtained in Hoare logic for reasoning about the (partial)
correctness of loops:

{bAc}P{c}
{bAc} while bdo P {-bAc}

So it was that the proof rules for fixed-points determined the early emphasis of
partial correctness in program verification.

UTP’s theory of designs extends the treatment of the nondeterministic imper-
ative programming language from partial to total correctness. This is done by
restricting attention to a subclass of predicate for which the left and right-zero
laws actually hold: (true ; P) = true = (P ; true). These predicates are called
designs.
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The insight is to capture the theory of assertional reasoning and assumption-
commitment pairs as single relations by adding two observations: that a pro-
gram has started ok and that a program has terminated ok’. A design is then a
precondition-postcondition pair

(PFQ) = (kNP = 0ok ANQ) for Pand @ not containing ok or ok’

This is read as “if the program has started (ok) and the precondition P holds,
then it must terminate (0k’) in a state where the postcondition @ holds.” This
is clearly a statement of total correctness. Notice that, although the syntax of
a design is a pair of alphabetised predicates, its meaning is encoded as a single
predicate.

Designs form a complete lattice with false - @ (abort) at the bottom and
true - false (miracle) at the top. These two definitions can be simplified as true
and — ok, respectively. Thus, abort permits any and every behaviour, whilst a
miracle, quite properly, cannot be started, and so has no behaviours at all.

A theory in UTP has three components. The first is the signature; here this
is the syntax of the programming language and the syntax of a design pair. The
second component is the alphabet; here this is the two boolean observations ok
and ok’ NS ny program variables. The third component is a set of healthiness
conditions characterising membership of the theory. In the case of designs, there
are two healthiness conditions, one concerning each observational variable. The
first states that no observation may be made of a program before it has started.
This is necessary for proper initialisation and to make sequential composition
work properly.

H1(P) = ok = P

The healthiness condition is presented as a monotone idempotent function; its
fixed points are its healthy predicates.

The second healthiness condition concerns termination and seeks to eliminate
the specification that would require a program not to terminate: = ok’. Refine-
ment allows us to write a correct program that improves on what a specification
requires. In our programming methodology, anything is better than nontermi-
nation, so you should not be allowed to require nontermination. The following
healthiness condition formalises this:

H2(P)=P & [P/ = P!]

where P/ = P[false/ok’] and P* = P[true/ok’]. Hoare and He show how to
present this condition in terms of the fixed points of the monotone idempotent
function H2 [H&H]. They also shows how to characterise the space of designs in
three equivalent ways: syntactically, as the fixed points of these two healthiness
conditions, and as the solutions of algebraic equations (left unit and left zero).
Finally, they prove that the lattice of designs is closed under the nondeterministic
programming language’s combinators with assignment as the basis.

The theory of designs has been mechanised in Isabelle/UTP and we show
an excerpt from this theory. We introduce the alphabet by parametric type
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'a alphabet-d [11,12] which extends the alphabet '« with the variable lens ok.
Moreover, we add the useful type synonym

type-synonym '« hrelation-d = (‘a alphabet-d, ‘o alphabet-d) relation

which describes a homogeneous relation with a design alphabet. We then use
these to create the signature and healthiness conditions of designs in a similar
way to the theory demonstrated in Sect. 3. Then many standard laws of designs
can be proved automatically, as the following demonstrates.

theorem design-false-pre: (false = P) = true by rel-tac

Of course not all properties can be proved this way, and in any case there is
great value in presenting the intuition behind a theorem through proof. We
demonstrate this firstly that the syntactic form of designs is equivalent to the
healthiness conditions.
theorem HI-H2-eq-design: H1 (H2 P) = (— Pf) + pt
proof —

have H1 (H2 P) = ($0k = H2(P))

by (simp add: HI-def)

also have ... = ($ok = (P v (P A $0k")))
by (metis H2-split)

also have ... = ($0k A (= P') = $ok” A $ok A P')
by rel-tac

also have ... = (- P/) F P!
by rel-tac

finally show ?thesis .

qed

This proof makes use of the auxiliary theorem H2-split to expand out H2 which
states that H2(P) = P/ v (P* A ok'). We also show that the design identity I p
is a right unit of any design. We define this element of the signature as follows:

definition skip-d :: ‘a hrelation-d (IIp) where IIp = (true b, II)

The turnstile P -, @Q is a specialisation of P = () which requires that neither P
nor @ have ok, ok’ in their alphabets. It use alphabet extrusion and the Isabelle
type system to ensure this: ok -, P entails a type error. Proof of the right unit
law requires that we can calculate the sequential composition of two designs,
which the following theorem demonstrates.

theorem rdesign-composition-cond:

assumes outa ff p1

shows ((p1 F+ Q1) 55 (P2 Fr Q2)) = ((p1 A = (Q1 55 (= P2))) Fr (Q1 55 Q2))

— proof omitted

This is itself a specialisation of the more complex design composition law [8]

which adds the requirement that the assumption of the first design be a con-
dition. Thus the theorem assumes pl does not refer to variables in the out-
put alphabet, outa, which is just shorthand for fst,. The law demonstrates the
advantages of the alphabets-as-types approach: we do not require provisos that
p1, Q1, P2, and Q2 do not refer to ok and ok’ which greatly simplifies the theorem
and its application. We can now prove the unit law, which we do in Isar.
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theorem rdesign-left-unit:
fixes P Q :: 'a hrelation-d
shows (IIp ;; PF,. Q) = (P F,r Q)
proof —
— We first expand out the definition of the design identity
have (IIp ;; Pt Q) = (true b+ I ;; PF, Q)
by (simp add: skip-d-def)
— Next, we apply the design composition law above in a subproof
also have ... = (true A = (I 5; = P)) k. (I ;; Q)
proof —
— The assumption of identity is true so it is easy to discharge the proviso
have outa § true
by unrest-tac
— From this we can apply the composition law
thus %thesis
using rdesign-composition-cond by blast

qed
— Simplification then allows us to remove extraneous terms
also have ... = (= (= P)) . @

by simp

— Finally, we can show the thesis
finally show ?thesis by simp
qed

4.2 Reactive Processes

A more sophisticated UTP theory is that of reactive processes. In the reactive
paradigm, a process is a pattern of behaviour expressed in terms of observable
events. In general, the behaviour is as follows. The process minds its own business
internally until it’s ready to interact with its environment; it then pauses and
waits until its environment is cooperative, whereupon it reacts and then returns
to its own business; this behaviour is repeated. A reactive process characteris-
tically has two sorts or after-states: intermediate states, where the process is
waiting for interaction with its environment; and final states, where the process
has reached its ultimate computation, completed its behaviour, and terminated.

We investigate this paradigm in terms of its three components as a UTP
theory.

First, we consider the signature of the theory. We consider a simple exten-
sion of the nondeterministic programming language in the previous section, aug-
mented by an operator that synchronises on an event with the environment. If
P is a reactive process, then a — P is another process that first engages in the
synchronisation of the event a and then behaves like the process P.

Next, we consider the alphabet of observational variables.

We can observe the sequence of events synchronised by an individual reactive
process. We call this sequence a trace, and denote its before-value by tr and its
intermediate or final value by #r'. It is a sequence over the set of events.
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We can also observe whether a reactive process is in one of its waiting states.
This is an observation that we denote by the boolean variables wait, in the before
state, and wait’ in the intermediate or final state.

The stability of a reactive process is described in the same way as the termi-
nation of a nondeterministic program. That is, ok’ describes whether the reactive
process has reached a stable state, whether it be intermediate or final. Thus, the
combination of ok’ and wait’ is of interest. If ok’ A wait’, then the process
has reached a stable intermediate state. If ok’ A = wait’, then the process has
reached a stable final state. Regardless of the value of wait’, if = ok’, then the
process is in a divergent state.

The final observation that may be made of a reactive process concerns its
liveness. The process a — SKIP is waiting to perform the event a and then
terminate (SKIP). While it is waiting, it cannot refuse to perform a. The obser-
vational variable ref’ records this fact. We can think of the value of ref’ as
an experiment offered by the environment: will the process deadlock if we offer
these events? Suppose that the universe of events is {a, b, ¢}. Our process will
deadlock if we offer it the empty experiment @ (all processes have this property).
It will also deadlock if we offer it either or both b or ¢. The maximal refusal is
the pair {b, c}; note that the process will refuse any subset: ref’ is downward
closed. Now consider the nondeterministic process a — SKIP M b — SKIP.
The nondeterministic choice can be resolved in two ways: if the first branch is
taken, then it may refuse b; if the second branch is taken, then it may refuse
a. Note that although ref’ is downward closed, there is no maximal refusal set.
Recording a refusal set is one way of capturing this kind of nondeterministic
choice. Our process is then partially specified by the predicate

if wait’ then

(tr' =tr) A (ref’ C {b,c} V ref’ C{a,c}) N ok’
else

((tr' =tr ™ (a)) V (tr' = tr (b)) A ok’

Reactive processes have three healthiness conditions. The first requires that
the trace grows monotonically, so that history is never edited.

R1(P) = PAtr <t

(Here, < denotes the sequence prefix relation.)
The second healthiness condition requires that a process P is insensitive to
the trace of events that occur before P is initiated:

R2(P) = P[(),tr' —tr/tr,tr'| <tr < tr' > P

(Here we use the sequence subtraction operator.)
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Finally, sequential composition must be made to work as it does in a pro-
gramming language, and not merely as relational composition. In the sequence
P ; Q, if P is waiting, then @ must not be initiated. Define

T,.a = RI1 o HI((ok', wait’,tr' ref’ z") = (ok,wait, tr,ref,x))
where z is a list of the process’s state variables. Our healthiness condition is
R3(P) = (I ,eq <wait > P)

For the full semantics, other healthiness conditions are needed, but almost all
the process algebraic laws for CSP can be proved correct based on the semantics
presented so far, providing we add two more healthiness conditions concerning
ok and ok’. Fortunately, we have already presented them: they are H1 and H2,
simply adjusted for the larger alphabet of reactive processes.

The CSP processes are the fixed points of the montone idempotent function

CSP = R1oR20R30H1o0H2

Equivalently, by theorem HI1-H2-eq-design every CSP relation can be stated as
a reactive design of the form R(P F @), where R = R1 o R2 o R3, and P
and @ are assumptions and commitments over the trace and program variables.
For example, the worst CSP process is Chaos = R(false + true), which fails
to satisfy its assumption and thus establishes nothing other than that the trace
must increase monotonically (by RI1). Every CSP process can be expressed as
such a reactive design [8].

We have likewise mechanised the theory of reactive designs, and here show
a few of the properties proved, though without proofs for reasons of space. The
first property shows that Chaos is indeed the bottom of the lattice — every
CSP process refines it. The second shows that Chaos is a left zero for sequential
composition: since wait’ is always false the second process can never be executed.

theorem Chaos-least: assumes P is CSP shows Chaos C P
— proof omitted

theorem Chaos-left-zero: assumes P is CSP shows (Chaos ;; P) = Chaos
— proof omitted

More laws we have proved can be found in our online UTP repository>.

4.3 Hybrid Relational Calculus

Differential Algebraic Equations (DAEs) are often used to model the continu-
ously evolving dynamic behaviour of a system. The theory of hybrid relations in
UTP unifies discrete and continuous variables used in such models. We introduce

3 github.com/isabelle-utp/utp-main/blob/master /utp/utp_reactive.thy.
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a theory of continuous-time processes that embeds in the theory of alphabetised
predicates trajectories of states evolving over time intervals representing piece-
wise continuous behaviour.

We start with the UTP theory of alphabetised relations, which therefore
will not capture continuous process termination or stability. This allows us to
treat the behaviour of hybrid processes as an individual phenomenon, before
augmenting the theory with additional structure to capture such properties by
embedding it in the theory of timed reactive designs [19,35].

Alphabet. Our theory has two variables ti, ti’ : R>q that observe the start and
end time of the current computation interval and its duration ¢ = ¢i’ —ti, as in the
Duration Calculus [41]. Following [20], we classify the alphabet of a hybrid rela-
tion in three disjoint parts: input variables, ina(P); output variables, outa(P);
and continuous variables, cona(P) (such as z, y, z). Continuous variables of type
R describe a value at a particular instant of time; trajectory variables of type
R>o — R describe the evolution of a value over all time (values outside [ti, ti")
are irrelevant).

A junction between the discrete and continuous world is established by
making a discrete copies x,z’ : R of the values of each continuous variable
z : R>op — R at the beginning and end of the interval under observation. Discrete
variables that are not surrogates for continuous variables are in the sub-alphabet

disa(P) ={z € ina(P) | z ¢ cona(P) } U{ 2" € oute(P) | z ¢ cona(P)}

Following [13], we define a continuous variable lifting operator from a predicate
in instant variables to one in trajectory variables:

Par = {z—z(r) |z € cona(P)\{t} } t P

In P @7, we map every flat continuous variable (other than the distinguished time

variable ¢ € [ti..ti")) to a corresponding variable lifted over the time domain. So the

new predicate holds for values of continuous variables at the instant 7, a variable

that is free in P. So each flat continuous variable z : T is transformed to a time-

dependent function z : R — T type. In this way, we lift time predicates to intervals.
Our hybrid theory has two healthiness conditions:

HCT1(P) = PAti <t

HCT2(P) =
P A
F71 i Roseq ®
L ran(I) C {ti...ti'}
<t = NoceonaP) | A {1, 4i'} C ran(])

AN(Vn<#I—1ewconton[l,, I,+1))
where Roseq = {2 :seqR |V <#z—1ex, < 2pyq}

f cont-on[m,n) = Vte&[m,n)e lim f(zx) = f(t)

T—1
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HCT1 requires that time advances monotonically. HCT2 requires that every
continuous variable v is piecewise continuous: for non-empty intervals there is a
finite number of discontinuous points (the range of I) between ti and ti’. The
set of totally ordered sequences Roseq captures the set of discontinuities; the
continuity of f is defined in the usual way by requiring that at each point in
[ti, ti’), the limit correctly predicts the function.

Both healthiness conditions are idempotent, monotone, and commutative, as
is their composition HCT = HCT2 o HCT1. The image of HCT a complete
lattice.

The signature of our theory is as follows:

P,Q:=I | P;Q | PIb>Q | xz:=¢| P*| P¥|
[PT | (Fulb) | P[b]@Q

This syntax extends the signature of the alphabetised relational calculus with
operators to specify intervals [ P, differential algebraic equations ( F,, | b), and
behavioural preemption P [b] Q. P* and P describe finite and infinite iteration,
respectively. The following operators of relational calculus P ; @, P <1b> @,
P", I, 2 := v, true, and false are HCT closed.

Finally, we define the interval operator from the Duration Calculus [41] and
our own variant.

[Pl = HCT2({>0A (VL€ [ti,ti') e PQYL))

TPT = [P]A /\Qecona(p)(” =w(ti) ANv' = thiii’(ﬂ(t))) A I gisa(P)
[P] is taken from the Duration Calculus: it is a continuous specification state-
ment that P holds at every instant over all non-empty right-open intervals from
ti to ti'; we make it healthy with HCT2 for piecewise continuity. [P] links
discrete and continuous variables with the given property.

By making z’ the limit of z, rather than its value at the end of the interval, we
do not constrain the trajectory valuation at ¢i’; so it can be defined by a suitable
discontinuous discrete assignment at this final instant. Following [21], we use
the interval operator to give the basis of systems of differential equations. As a
result, we can refine a DAE, under given initial conditions, to a suitable solution
expressed using the interval operator. Intervals satisfy a number of standard
laws.

[truel =€ >0 [false] = false [PAQ]=[P]AN[Q]

[Pv@QIE[PIVIQT  [PTETPT;[P]
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The evolution of a DAE system in semi-explicit form is modelled by an operator,
adapted from HCSP [27,41].

<Q1:f1~Qn:fn|0:bl "';():bm>
= W(Viel n,Vji€el.me
0,(t) = fi(t, 01 (2), -+ 5 v, (1), “’1(/) e w (1))
/\O*b(f Ul() ”?Qn(l)ﬁwl(z) m( ))ﬂ

A DAE (F, |B,,) consists of a set of n functions f; : R x R™ x R™ — R,
which define the derivative of variable v, in terms of the independent time vari-
able ¢ and n + m dependent variables. It also contains algebraic constraints
bj : Rx R" x R™ — R that must be invariant for any solution and do not
refer to derivatives. For m = 0 the DAE corresponds to an ODE, which we
write as ( F, ). The DAE operator is defined using the interval operator to be
all non-empty intervals over which a solution satisfying both the ODEs and
algebraic constraint exists. Non-emptiness is important as it means that a DAE
must make progress: it cannot simply take zero time since £ > 0, and so a DAE
cannot directly cause “chattering Zeno” effects when placed in the context of a
loop, though normal Zeno effects remain a possibility.

To obtain a well defined problem description, we require the following condi-
tions to hold [2]: (i) The system of equations is consistent and neither underdeter-
mined nor overdetermined. (ii) the discrete input variables v; provide consistent
initial conditions. (iii) the equations are specific enough to define a unique solu-
tion during the interval /. The system is then allowed to evolve from this point in
the interval between ¢i and ti’ according to the DAEs. At the end of the interval,
the corresponding output discrete variables are assigned. During the evolution
all discrete variables and unconstrained continuous variables are held constant.

Finally, we define the preemption operator, adapted from HCSP.

P(b]Q = (Q<b@tit>(P A [-b])) V ([~b] A b@t A P); Q)

P is a continuous process that evolves until the predicate B is satisfied, at which
point @ is activated. The semantics is defined as a disjunction of two predicates.
The first predicate states that, if B holds in the initial state of ti, then @ is
activated immediately. Otherwise, P is activated and can evolve while B remains
false (potentially indefinitely). The second predicate states that =B holds on the
interval [t7, ¢i') until instant ¢, when B switches to a true valuation; during that
interval P is executing. Following this, P is terminated and @ is activated.

Although space does not permit us to go into details, we have mechanised
this theory in Isabelle/UTP*.

5 Conclusions

In this paper we describe our work towards building a mechanised library of
computational theories in the context of the UTP, including those for concurrent

4 See github.com /isabelle-utp/utp-main/blob/master /utp/utp_hybrid.thy.
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and hybrid systems. Our aim in the future is to use these theories to enable
integration of heterogeneous multi-model semantics, as described by FMI, for the
purpose of multi-pronged verification. We are currently working on integrating
hybrid relations and reactive in order to mechanise hybrid reactive designs. A
hybrid reactive design has the form R(P A [R] F Q A [[G]), where P and Q
are the precondition and postcondition on the discrete state, and R and G are
assumptions and commitments on the continuous variables. Such a construction
will enable us to apply contractual-style program construction and reasoning
to concurrent Cyber-Physical Systems. Moreover work is underway to explore
other theories relevant for CPS, in particular real-time modelling and probability.
Once these theories are mechanised we will also explore the links between them,
in particular useful Galois connections between discrete and continuous time
domains, which are practically applicable for verification.

Though our Isabelle/UTP theory library is a step forward, further work in
needed particularly in the direction of tool integration. As Hoare and He pointed
out in Chapter 0 of the UTP book [24]:

At present, the main available mechanised mathematical tools are pro-
grammed for use in isolation [...] it will be necessary to build within each
tool a structured library of programming design aids which take the advan-
tage of the particular strengths of that tool. To ensure the tools may safely
be used in combination, it is essential that these theories be unified.

We believe that the Isabelle framework is a significant step towards acquisition
of this goal. Nevertheless, there is certainly more to be done, particularly in the
area of mechanisation of continuous mathematics and application of associated
computational algebra tools.
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Abstract. FDR is the most well-known verification tool for CSP. Since
its early beginnings in 1980s, it has developed into one of the world’s
fastest model checking tools. Over the years, FDR has made a significant
impact across academic subject areas, most notably in cyber-security,
as well as across industrial domains, such as high-tech manufacturing,
telecommunications, aerospace, and defence. In honour of Bill Roscoe’s
60" birthday, this paper provides a brief history of FDR, together with a
collection of notable examples of FDR’s practical impact in these areas.

1 Introduction

FDR (or Failures-Divergences Refinement, to give it its full title) [12,13] is the
most well-known verification tool for CSP [15,29,31]. At its core, FDR is capable
of checking for refinement between CSP processes, which allows it to be used
to verify whether systems meet various specifications. Bill Roscoe has been the
driving force behind the continued advancement of FDR over the last three
decades to its impressive standing today as one of the world’s fastest model
checking tools, FDR3. Over the years, FDR has enabled the exploitation of
formal verification across subject areas and industrial sectors, including cyber
security, aerospace, defence, high tech manufacturing and telecommunications.
FDR is an example of how building tooling to support academic theories, such
as CSP, is one of the essential ingredients for enabling them to be successfully
applied in practice. In turn, this has led to stimulating collaborations between
Roscoe’s research group and numerous industrial partners that have inspired
new avenues of research in the theory of CSP as well as FDR itself.

In honour of Bill Roscoe’s 60" birthday, this paper brings together a selec-
tion of authors who have collaborated with Roscoe and who have extensively
used FDR in practice. This is but a glimpse into the areas where FDR has been
applied and by no means intended to be complete. Following a brief overview of
the CSP notation, this paper gives a brief history of FDR and highlights some
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of the key advancements made over the years. This is followed by four sections,
each summarising different application areas, where FDR has made a significant
impact over a sustained period of time, in the following areas: analysis of secu-
rity protocols, verification of safety critical systems in aerospace and defence,
verification of embedded software systems in high-tech manufacturing, telecom-
munications and medical systems, and test case generation for aerospace and
telecommunications.

2 Background

CSP is a process algebra in which programs or processes that communicate events
from a set X with an environment may be described. We sometimes structure
events by sending them along a channel. For example, ¢.3 denotes the value 3
being sent along the channel c. Further, given a channel ¢ the set {|¢} C ¥
contains those events of the form c.z.

The simplest CSP process is the process STOP that can perform no events.
The process a — P offers the environment the event ¢ € X and then behaves
like P. The process P O @ offers the environment the choice of the events
offered by P and by @ and is not resolved by the internal action 7. P M @
non-deterministically chooses which of P or @) to behave like. P > @ initially
behaves like P, but can timeout (via 7) and then behaves as Q.

P 4|z Q allows P and @ to perform only events from A and B respectively
and forces P and @ to synchronise on events in AN B. P || @ allows P and @ to

A

run in parallel, forcing synchronisation on events in A and arbitrary interleaving
of events not in A. The interleaving of two processes, denoted P ||| @, runs P
and @ in parallel but enforces no synchronisation. P\ A behaves as P but hides
any events from A by transforming them into the internal event 7. This event
does not synchronise with the environment and thus can always occur. P[R]
behaves as P but renames the events according to the relation R. Hence, if P
can perform a, then P[R] can perform each b such that (a,b) € R, where the
choice (if more than one such b) is left to the environment (like O).

Skip is the process that immediately terminates. The sequential composition
of P and @, denoted P; @, runs P until it terminates at which point @ is run.
Termination is indicated using a v" : Skip is defined as v — STOP and, if the
left argument of P; @ performs a v', then P; @ performs a 7 to the process @
(i.e. P is discarded and @ is started).

Recursive processes can be defined either equationally or using the notation
u X - P. In the latter, every occurrence of X within P represents a recursive call.

The simplest approach to giving meaning to a CSP expression is by defining
an operational semantics. The operational semantics of a CSP process naturally
creates a labelled transition system (LTS) where the edges are labelled by events
from X' U {7} and the nodes are process states. Formally, an LTS is a 3-tuple
consisting of a set of nodes, an initial node, and a relation —— on the nodes: i.e.
it is a directed graph where each edge is labelled by an event. The usual way of
defining the operational semantics of CSP processes is by presenting Structured
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Operational Semantics (SOS) style rules in order to define —%-. For instance,
the operational semantics of the external choice operator are defined by:
P-X P PP
POQ-%P POQ--POQ

with symmetric rules for Q.

CSP also has a number of denotational models, such as the traces, stable
failures and failures-divergences models. In these models, each process is repre-
sented by a set of behaviours: the traces model represents a process by the set
of sequences of events it can perform; the failures model represents a process by
the set of events it can refuse after each trace; the failures-divergences model
augments the failures model with information about when a process can perform
an unbounded number of 7 events. Two processes are equal in a denotational
model iff they have the same set of behaviours. If every behaviour of Impl is a
behaviour of Spec in the denotational model X, then Spec is refined by Impl,
denoted Spec Cx Impl.

CSP can also model processes with priority: prioritise(P,(X1,..., Xn))
behaves like P, except that in any state, transitions labelled with events in
X; are only permitted if no event in Xj for j < ¢ is possible.

L XaXs) SYSTEM

$6.c3p.

431976 Assertions Run All

@ SYSTEM {deadiock free (F])
Check

@ SYSTEMs :{deadiock fre
Check

@ BSYSTEM deadiock fre
Check

@ ASSYSTEM :{deadiock
Check

@ ASSYSTEMSs :{deadiock
Check

Assertions Run All
@ SYSTEM :[deadlock free (F])
Debug
@ SYSTEMs :(deadlock free [F])
Debug
ck free (F])
ock free [F])
Check
Hlock free [F])

e 00 X3 :[divergence free]
Divergence Counterexample

e pr—

Hide Inactive Components Contract All Expand All

Fig. 1. Screenshots of FDR3 showing the main window, the debug prompt, and the
built-in process explorer.
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3 A Brief History of FDR

FDR is a refinement checker for CSP. As input, FDR takes in a file written in a
textual form of CSP describing a number of processes, and can then verify if one
process refines another, according to the CSP denotational models (cf. Sect. 2).
When a refinement check fails, FDR provides a scounterexample that shows a
behaviour of the system that violates the required refinement property. FDR is
also capable of checking other properties such as deadlock freedom, determinism,
and divergence freedom by automatic reduction to a refinement check. Figure 1
shows a screenshot of FDR3’s debug window, showing a counterexample to a
divergence assertion.

All versions of FDR have operated in a similar way, first developed by Jackson
and Roscoe. In order to check if P Cx @ in the denotational model X, P and
@ are converted into LTSs using CSP’s operational semantics (the tools differ
greatly in how this is represented). The refinement check is then performed by
considering the product of these LTSs, and performing either a depth or breadth-
first search over the product. In each state of the product, various properties are
checked according to the denotational model that the refinement check is being
performed in. All versions of FDR have also been explicit, in the sense that
data values are explicitly represented rather than being represented by symbolic
values; the latter is still very much a research topic.

The idea of automatic refinement checking was first considered when Geoff
Barrett was working on the link architecture of the H1 Transputer [35]. Barrett
realised that the best way of proving it correct was to prove that the engine
together with the multiplexer was the same as a number of interleaved com-
munication channels, and realised that such a question could be posed in CSP.
At the time, there was no model checker for CSP and thus no way to automati-
cally verify such a system. Barrett considered the possibility of building a tool to
automatically verify the system in collaboration with Roscoe. Barrett originally
thought that it was necessary to normalise both sides of the refinement check.
Roscoe’s major breakthrough was observing that you only need to normalise the
specification in order to enable automatic refinement checking. Given the com-
plexity of normalisation, this realisation made CSP model checking practical.

Using the above, a proof-of-concept called OxCheck was developed by David
Jackson. OxCheck operated on a network of state machines where the communi-
cation network was described by vectors and masks and was capable of verifying
trace refinement properties.

FDR1. FDR1 [27] was developed by Formal Systems (Europe) Ltd, which was
setup in Oxford by a collection of people who were involved with CSP. Formal
Systems continued to develop FDR until 2007 when development returned to
the University of Oxford. FDR1 differed from OxCheck in several ways. Most
notably, it supported more of CSP as processes could now incorporate hiding
and renaming (at the top-level), and support was also added for the failures
and failures-divergences models. FDRI1 also eventually had a graphical debugger
that allowed the user to inspect their processes when a refinement error was
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Fig. 2. A screenshot of FDR2 showing the main window and the debug viewer.

detected. This support for visualising counterexamples quickly became one of
the most notable features of FDR, in contrast to most other verification tools
that often lack any sort of visualisation component.

FDR2. Development on FDR2! [12] (shown in Fig.2) commenced in 1994 as a
joint effort between the University of Oxford and Formal Systems. At the time,
Bryan Scattergood was a DPhil student of Roscoe’s at Oxford, where he worked
on a new input language for FDR called machine-readable CSP, or CSP ;. CSP
combines the CSP process algebra (in an essentially general way) with a lazy
functional programming language that permits general purpose models to be
constructed easily. The generality of CSP); is one of the principle strengths of
FDR2, and is one of the key features that has enabled FDR to tackle the variety
of problems covered later in this paper. CSPj; has had a lasting impact, as it is
still in use today in the most recent versions of FDR.

FDR2 was notable for its support for supercombinators. These provide a gen-
eral way of combining a number of LTSs using rules that indicate how transitions
from different LTSs should interact. For example, a rule may specify that the
supercombinator performs the event a in the case that process 1 performs the

! There were actually several major versions of FDR2 released: FDR 2.83 represented
the final version that Formal Systems produced, whilst FDR 2.94 was a significant
new release of FDR2 that incorporated, amongst numerous other enhancements,
support for several new denotational models.
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event b and process 2 performs the event c¢. The main advantage of supercombi-
nators is that it makes it easy to support networks that are built from a complex
combination of CSP operators without incurring any performance impact. For
example, using supercombinators, renaming and hiding are essentially free.

FDR2 pioneered the usage of compression [33] which has proven an
immensely valuable technique for analysing large complex CSP systems. Com-
pression functions take in an LTS and return a second LTS that is semantically
equivalent (in the relevant denotational model) but, hopefully, contains fewer
nodes. For example, the normalisation algorithm outlined above is a compres-
sion function (and frequently performs well), as is strong bisimulation. The work
on compression was instrumental in enabling industrial exploitation of FDR, as
Sect. 6 shows.

FDR2 also incorporated a surprisingly useful function in the form of chase
which is a form of partial-order reduction. chase(P) behaves like P, except that
7 events are forced to occur in an arbitrary order until a stable state is reached.
This has the effect of only considering one possible ordering of the 7 actions.
This remarkably simple function was first developed in order to support analysis
of security protocols, as Sect. 4 explores.

FDR3. FDR3 [13] is a complete rewrite of FDR, but rather than being built by
the same team as previous versions, FDR3 started life in 2010 as a side-project of
Gibson-Robinson during his doctorate. During Gibson-Robinson’s undergradu-
ate, he built a CSP generator that enabled FDR2 to model check models written
in other process algebras, based on work of Roscoe [30]. The CSP generator for
this was rather complex, and after becoming frustrated by the number of errors
FDR2 gave along the lines of <> is not a set (with no attached line number),
he wrote a type checker for CSP. This type checker formed the basis of FDR3,
which was then developed over the next few years, culminating in its final release
in December 2013.

Compared to FDR2, FDR3’s major feature is its speed: it is typically three
times faster on a single core but is also capable of using multiple cores. Further,
when running on multiple cores and checking models in the traces and failures
models, it scales linearly [13] (i.e. twice as many cores cause FDR to take half
the time). FDR3 also incorporates a cluster version that is also capable of scaling
linearly as more nodes are added to the cluster [13]. Few other model checkers
are capable of scaling in such ways. One particularly notable experiment involved
the use of FDR3 on a cluster of 64 16-core servers running on Amazon’s EC2
service, which managed to model check a problem with over 1 trillion states.

The other notable difference to users of FDR is the redesigned user inter-
face of FDR3, as shown in Fig.1. This is particularly noticeable in terms of
the graphical debugger which now shows, at a glance, exactly how the differ-
ent processes interact to produce an event. This sounds straightforward, but it
turns out to be particularly difficult to compute the alignment when divergence
counterexamples are found in processes that include compressions.
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4 Analysis of Security Protocols

A security protocol is an exchange of messages between two or more agents,
over a possibly insecure network, with a security-related goal, such as establish-
ing a cryptographic key, or authenticating one agent to another. In the past,
security protocols were very difficult to get right: many were suggested, only to
subsequently be found to be insecure.

The analysis of security protocols is an area where the use of FDR has been
very successful and influential. The technique has proved successful at identifying
attacks upon protocols, and, in other cases, proving protocols secure. It has
influenced many later techniques.

Early models. Roscoe first suggested the use of FDR to analyse security proto-
cols [28]. The technique was subsequently developed by Lowe. This work is best
known for its demonstration [17] of how it could be used to find the (now well
known) attack upon the Needham-Schroeder Public Key Protocol [20]. The basic
technique is outlined below, using this protocol as an example. The protocol can
be described as follows. The encryption of message m by key k is denoted as
{l m [}, and concatenation of messages is denoted using “.”.

l.a—b:{ na.alfpxy)
2. b—a:{ nanb |} px(a)

3.a—b: {| nb I}’PK(b)

Here a is an initiator who seeks to establish a session with responder b. a selects
a nonce (i.e. a large random number) na, and sends it along with her identity
to b (message 1), encrypted using b’s public key PK(b). When b receives this
message, he decrypts the message to obtain the nonce na. He then returns the
nonce na, along with a new nonce nb, to a, encrypted with a’s key (message 2).
When a receives this message it would seem that she should be assured that she
is talking to b, since only b should be able to decrypt message 1 to obtain na.
a then returns the nonce nb to b, encrypted with b’s key. It would seem that b
should be assured that he is talking to a, since only @ should be able to decrypt
message 2 to obtain nb.

The CSP models represent encryption symbolically. For example, the encryp-
tion {| m [}y is written as Encrypt.k.m. Honest agents running the protocol are
modelled as CSP processes. For example, the initiator e using nonce na could
be modelled by the following process.

Initiator (a,na) =
InitRunning.a?b — send.Msgl.a.b.Encrypt. PK(b).na.a —
receive . Msg2.b.a.Encrypt.PK(a).na?nb —
send.Msg3.a.b.Encrypt. PK(b).nb — InitDone.a.b — STOP
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This represents sending and receiving of messages in an obvious way. An initial
message indicates that « intends to run the protocol with b (who might be the
intruder, or might be an honest agent); and a final message indicates that she
thinks she has completed the protocol with b.

Next, a model of the most nondeterministic intruder is built. The intruder
can (1) overhear and/or intercept any messages being passed in the system;
(2) create new messages from messages he knows, for example by encrypting
or decrypting with keys he knows; (3) send messages he has seen or created to
other agents, possibly using a faked identity.

In order to capture (2), above, a relation F can be defined, such that if S is
a set of messages, and m is a message, S - m if m can be produced in a single
step from S. The rules below capture encryption, decryption, concatenation and
splitting of messages.

{m.k}E{mbe,  {{mbrk '} Em,
{ml, mg} = my.ma, {ml.mg} H mq, {ml.mg} = mo.

An intruder who knows the set of messages S can be defined as follows. The
intruder can: hear a message m on the network and add it to his knowledge;
say some message m that he knows, i.e. send it on the network; or deduce some
message m from some subset S’ of the messages he knows, and add m to his
knowledge.

Intruder (S) =
hear ?m — Intruder(S U {m})
O say 7m:S — Intruder(S)
0O (OS CS, meMsg, SFmededuce.S .m — Intruder(S U {m}))

This process can be instantiated with some initial knowledge set, for example
containing all public keys and the intruder’s own private key.

In practice, the above definition is impractical, because the FDR compiler
would build the entire Intruder process at compile time, which would be too time
consuming in most cases: if there are n facts that the intruder might learn, the
process has 2™ states. A better approach is outlined below.

The intruder can be combined with the honest agents, using a combination
of parallel composition and renaming, for example to create a small system, with
a single initiator A and a single responder B, each running the protocol once.
Each send event of an honest agent can be synchronised with a corresponding
hear event of the intruder and maybe a receive event of the other honest agent,
representing a message being intercepted or correctly transmitted, respectively.
In addition, each receive event can be synchronised with a corresponding say event
of the intruder, representing the intruder faking a message, or sending a message
with his own identity.

FDR is then used to test whether the system satisfies various security
properties. For example, consider the question of whether the initiator A is
authenticated to the responder B. This is equivalent to saying that when-
ever B has apparently completed the protocol with A —modelled by the event
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RespDone.B.A— A has indeed been running the protocol with B —modelled by
the event InitRunning.A.B. Hence this property can be tested as follows:

Authlnit = InitRunning.A.B — RespDone.B.A — STOP
assert Authlnit T System \ (X — {InitRunning.A.B, RespDone.B.A})

This refinement fails. The FDR debugger can then be used to reveal the
sequence of events that led to the failure; this is the well known attack on the
protocol, described below.

al A—1T : {‘ Na.A |}PK(I)
ﬁl IA — B {‘ Na.A |}PK(B)
ﬁQ BHIA : {‘ Na.NB |}PK(A)
a2 I—A {‘ Na.NB |}pK(A)
a3 A—1T {‘ NB |}PK(I)
5.3. ]A—>B {‘ NB |}PK(B)

In run «, the initiator A runs the protocol with the intruder 7. In run 3, I runs
the protocol with responder B, pretending to be A. The intruder uses the former
run as an oracle in order to fool B in the latter run.

It is possible to capture confidentiality properties in a similar way. For exam-
ple, consider the property: if the responder B completes a run with A, then its
nonce Nb is secret. An event leak.Nb is introduced to indicate that the intruder
knows Nb (by renaming says.Nb). The following refinement check then captures
this property.

SecretNb = leak.Nb — SecretNb O RespDone.B.A7?Na!Nb — SecretNb’
SecretNb’ = RespDone.B.A?Na!Nb — SecretNb’
assert SecretNb Crp

System \ (X — {RespDone.B.A.Na.Nb, leak.Nb | Na < Nonce})

The lazy intruder. As noted above, the previous model of the intruder is imprac-
tical. Roscoe and Goldsmith [34] developed a better approach, described below.

A set Msg is defined comprising all messages or sub-messages that the intruder
could feasibly learn. Then, for each message m, a two-state process is defined,
corresponding to whether the intruder knows m:

Ignorant(m) =
(0 S C Msg, S+ m e deduce.S.m — Knows(m))
O hear.m — Knows(m)

Knows(m) =
(OSCMsg, meS, m € Msg, SFm' ededuce.S.m" — Knows(m))
O hear.m — Knows(m)
O say.m — Knows(m)

If he is ignorant of m, he may deduce it from some set S such that S - m, or
hear it sent by an honest agent. If he knows it, he may use it to deduce other
messages, or he may hear it again, or he may send it to another agent.
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Combining the above processes together in parallel, synchronising appropri-
ately, gives a model of the intruder equivalent to the previous one. A particular
deduction deduce.S.m can happen only if the intruder knows all the messages
in S, and does not know m. If there are n facts, this model can be compiled in
time O(n) (compared with O(2™) for the previous model).

However, this definition is still inefficient. Suppose, as a result of hearing
a new message, the intruder can make %k independent deductions. Then these
deductions could be made in k! different orders, and FDR could explore each
of these. Therefore, the number of orders explored needs to be reduced. There
are three important observations: all permutations of the same set of deductions
reach the same state; no deduction disables a deduction of a different message;
and no deduction disables the intruder’s ability to send a message. Therefore,
arranging for the deduction events to occur in an arbitrary order until no more
are available, gives the intruder the maximum ability to send messages.

This reduction is a form of partial-order reduction. In order to support it,
FDR was extended with the function chase, as described in Sect. 3: this forces
7 events to happen in an arbitrary order until no more are available. Since it
was introduced, chase has been used as a partial-order reduction in a number of
other analyses.

Further developments. Creating CSP models of security protocols is time-
consuming and error prone. In order to make CSP-based analyses more practical,
Lowe developed a compiler, Casper [18], that creates the CSP model from a much
simpler and more concise description. This makes the technique applicable by
those with no knowledge of CSP; it has been widely used in industry and as a
teaching tool.

Many encryption schemes satisfy some interesting algebraic properties. For
example, if encryption is implemented as bitwise exclusive-or, then it is asso-
ciative and commutative. Such algebraic properties can be captured by defining
the corresponding equivalence as a set of pairs. For example, writing Xor for the
bitwise exclusive-or operator, the commutativity property would be captured by
including (Xor.my.mg, Xor.my.my) in this set, for each my, mo, and also lifting this
equivalence to all relevant contexts. For each equivalence class, a representative
member can be picked; write rep(m) for the representative member of the equiv-
alence class containing m. Then each message m sent or received by an honest
agent is renamed to rep(m) before synchronizing the agents. This means that if
m and m’ are equivalent, one agent sends a message using m, and another agent
receives a message using m’, these two events will synchronize, via an event using
rep(m) = rep(m'). In order to support this, FDR was extended with a function
mtransclose that calculates an equivalence relation from a set of generators, and
then chooses a representative member for each equivalence class.

A shortcoming of the techniques described so far is that if no attack is found
upon a particular (typically small) system running the protocol, it does not
mean that there is no attack upon some larger system. Roscoe and Hopcroft [32]
developed a technique to simulate a system with an unbounded number of runs,
although with a bound (typically one) of the number of concurrent runs that
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a particular agent could be involved in. The idea is to “recycle” values, such
as nonces, to allow them to be reused in subsequent runs, while giving the
impression that new values are used. Techniques from data independence were
used to justify the correctness of this technique. In addition, the functionality of
certain server processes was incorporated within the intruder. These ideas were
extended in [4] by embedding arbitrary processes within the intruder, simulating
an unbounded number of concurrent runs.

Many modern security protocols are layered on top of a general-purpose
secure transport protocol, such as TLS, which provides authentication and con-
fidentiality. A special-purpose application protocol builds on top of this, using
the transport protocol to securely transfer individual messages. Dilloway and
Lowe [11] studied different security properties that might be provided by such
secure transport protocols. They also studied how to analyse the application
within such a setting, abstracting away from the implementation of the secure
transport protocol, and modelling just the services it provides.

Creese et al. [9] investigated empirical channels: typically human-mediated
channels, used to transfer small amounts of data, alongside a less secure net-
work channel. They again investigate different security properties that might be
provided by such channels, and how to model them.

5 Assuring Critical Systems

During the mid-eighties the Royal Signals and Radar Establishment, RSRE,
engaged with the University of Oxford about the use of CSP. For example the
traces model of CSP was used as an example of a concrete category of information
flow properties [22,23] now termed examples of hyperproperties [8]. The lack of
tool support for CSP resulted in little application of CSP to Ministry of Defence
(MOD) projects. It was not until the mid-nineties the Systems Assurance Group
at the Defence Evaluation and Research Agency, DERA, (which RSRE became
part of) first started to carry out research using FDR2 on security protocols in
collaboration with the University of Oxford.

The success of applying FDR to security protocols led the Systems Assurance
Group to speculate whether CSP and FDR could be used to provide objective
information to support a safety case for launching a Tomahawk Land Attack Mis-
sile from a Royal Navy submarine. In collaboration with Formal Systems Ltd, a
CSP constraint-based approach to assessing third party systems was developed.
The approach required only partial information about a system, which was then
checked against safety properties by the FDR model checker. The major con-
cern of the assessment of the procured weapon system was the integration of a
Unix based subsystem, known as ATWCS (Advanced Tomahawk Weapon Con-
trol System), into the Royal Navy’s legacy submarine command and control
system. The integrated system consisted of eight physically distinct, but com-
municating, subsystems. There was already sufficient information relating to the
correctness and reliability of individual components obtained by detailed safety
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analysis, such as fault-tree analysis. However no formal analysis of the inter-
actions between subsystems had been performed to determine whether unsafe
emergent behaviour could appear.

A system-level hazard analysis had already been performed that identified a
number of hazards which were then grouped into a few hazard categories. Specific
questions of interest were derived from the hazard categories and were carefully
formulated so that they could be conveniently expressed as CSP refinement
assertions. From the viewpoint of formal analysis and model checking, the most
significant feature of this modelling task was the size and complexity of the
system; it was originally believed that the system would not be tractable for
model checking. The initial strategy was to model as much of the system as
possible and then, when the state space exceeded feasible limits, proceed by
making abstractions. However, Roscoe suggested using the partial order method
called chase, which was previously developed for modelling security protocols
(see Sects. 3 and 4); this made the model check feasible.

The technical approach placed all the claims about a subsystem’s behav-
iour in parallel, synchronising over common inputs and outputs. The infor-
mation about a subsystem’s behaviour was derived from documentation and
checked with the customer and supplier. Where documentation was incomplete
or ambiguous, the claim was weakened to ensure that the actual system behav-
iour was contained within the modelled behaviour. Although this is safe, it led to
significantly more behaviours, or states, to be assessed. Separate validation took
place to assess the accuracy of the modelled claims about a subsystem’s behav-
iour. The questions formulated from the system hazard analysis and expressed
in CSP were used as specifications against which the modelled behaviour of
the system, expressed as a conjunction of claims about subsystem behaviour,
was checked. The refinement check showed that if the subsystems behaved as
expected then the system would not manifest system level hazards.

Component failures. The assumption that each subsystem functions correctly
is clearly improbable; however, due to the pessimistic approach to modelling
the claims about a subsystem, the model can still be accurate even though the
subsystem does not function perfectly. Unfortunately this is still not good enough
and the failure modes of the modelled system have to be considered. In the same
way that erroneous behaviour of computer systems can be explored by means of
software fault injection, the failure modes of the modelled system can be assessed
by injecting faults into the subsystems in the CSP model.

The ability to inject errors into the CSP model allowed the Systems Assur-
ance Group to deal with random or systematic failures in a subsystem to deter-
mine their impact on the system, with respect to the safety properties identified
from the system hazard analysis. The results of the analysis demonstrated sce-
narios under which a systematic or random error in certain subsystems could
give rise to a system level hazard. These scenarios were presented to the customer
and system integrators in order to determine whether the identified anomaly was
an artefact of the pessimistic nature of the model, or was a genuine problem.
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In fact the problem arose because timing properties were not part of the model
and could not be readily inferred from the system description.

Essentially the model revealed the possibility of a dangerous signal propa-
gating through the system before any interlock could stop it. An independent
model, which gave priorities to signals invoking interlocks over signals which
invoke action by the system, demonstrated that the identified anomalies were due
to race conditions. The CSP/FDR analysis technique was pessimistic, but coun-
terexamples to critical properties allowed directed testing and analysis. Therefore
the generated dangerous scenarios can be used to direct a testing programme to
check that the race conditions are such that the system is safe.

The safety assessment showed that no single subsystem failure could give
rise to a system hazard, with the caveat that there was no underlying common
mode failure that would manifest itself as two apparently independent failures.
Checking the validity of the models was a separate assessment concern, but the
modelling provided a means of focusing the assessment of the system information
and the independent models were used to cross check each other. More technical
detail about this work can be found in [24,40].

Evolution of CSP/FDR system assessment. Although the assessment of third
party systems was developed specifically for the integrated Royal Navy and
ATWICS subsystems, it was quite general and applied to other MOD procure-
ment projects over a number of years. Over those years, a number of mod-
elling patterns were identified that became a Dependability Library which could
be used for modelling various system architectures. To conveniently access and
scale assessments, tool support and a graphical language was developed called
ModelWorks. ModelWorks evolved further in response to a number of challenges
from distributed Service Oriented Architectures, automotive architectures and
distributed collaborative software agents.

In a blind trial run by Jaguar Land Rover, ModelWorks, using FDR2, was
successful in finding a known design flaw in a car immobiliser that comprised 13
separate software systems communicating across a CAN bus. In another experi-
ment, ModelWorks demonstrated an indicative saving of up to 80% of the cost of
developing another automotive software system. The main barrier for adoption
was learning how to model systems in the ModelWorks language. The Model-
Works concept was re-developed from 2013-2016 by D-RisQ Ltd as an interme-
diate representation for other modelling languages, such as Simulink/Stateflow
and SysML, thus obviating the need to learn a new language. ModelWorks repre-
sentations are state machines, which communicate over various media, which are
automatically compiled into efficient machine readable CSP models for FDR3.
The size of typical subsystems within Simulink/Stateflow is now within reach of
FDR3 thanks to the use of a cluster of servers, and the use of SMT solvers to
limit the size of data types required. At the subsystem level the compositional
properties of CSP can be used at a meaningful level for a human, as opposed to
delving into a subsystem to tease out some compositional property. The technol-
ogy has been taken forward through the Advance Manufacturing Supply Chain
Initiative, AMSCI, in order to determine how maximum commercial benefit can
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be gained by an Original Equipment Manufacturer (such as Jaguar Land Rover)
and its supply chain [39].

Outside of the automotive sector, ModelWorks has been applied to the
development of a safety critical decision engine for an autonomous mode of an
unmanned surface vehicle for over the horizon operation. A Simulink/Stateflow
model of the decision engine has been verified against three criteria: that the
system does what is required; that the system never does what is not required;
and when something goes wrong (e.g. component failure), that the behaviour
of the system under failure conditions is acceptable. The Simulink/Stateflow
model has subsequently been used to automatically generate C code for integra-
tion with the rest of the surface vehicle’s software for the validation of its system
requirements and the development of further system requirements [1].

The application of CSP/FDR to the assessment of critical systems has
spurred on research into scaling the application of FDR and the research results
that continue to be manifested through FDR have spurred on the theory and
practice of assessing critical systems; Roscoe has been at the centre of this
interchange. More exciting theoretical and practical developments are expected
over the coming few years with the challenges presented by the pervasive use of
embedded devices in emerging critical applications.

6 Scalable Verification of Embedded Software

This section gives a summary of how CSP and FDR can play a pivotal role
in successfully applying formal verification in the development of large com-
plex software embedded in cyber-mechanical systems, found in domains such as
high-tech manufacturing, medical systems, telecommunications, aerospace, and
automotive. Such systems are characterised by being long running, event driven,
reactive and concurrent, and are also often distributed over multiple processing
nodes. Systems with these characteristics lend themselves to being modelled and
verified in CSP extremely well. This section gives an example of how FDR was
successfully integrated into a software development framework called Analyti-
cal Software Design (ASD), developed by Broadfoot and Hopcroft in the early
2000s [16,19], and subsequently used in industry.

This work was inspired from Broadfoot’s original work in his MSc thesis [3]
at the University of Oxford, where he realised that, in order to leverage formal
approaches effectively in industry, the following two major hurdles had to be
overcome. Firstly, the approach must be accessible to software engineers without
specialised knowledge, otherwise the adoption barrier is too great. In addition
to user notations, automation is a key part of enabling this. Secondly, it must be
scalable to systems ranging from thousands to millions of lines of code. Broad-
foot and Hopcroft sought to address these challenges by combining an extended
version of the sequence-based specification (SBS) method developed by Poore
and Prowell [25], with automated verification using CSP and FDR and auto-
mated code generation. The SBS notation provided an accessible input notation
for specifying system designs whilst the automatic generation of CSP models and
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runtime code ensured consistency of behaviour between representations. Further,
this made formal verification accessible to non-specialist users.

Component-based approach. ASD relies on a component-based approach to spec-
ify, design and implement software systems comprising of components interacting
with one another via synchronous and asynchronous communication. A compo-
nent is a unit of system and subsystem composition with contractually specified
interfaces with its environment and explicit context dependencies. A component
can be deployed independently, provides services to its environment and makes
use of services provided by its environment. The conceptual boundary between a
component and its environment is known as the component boundary. The envi-
ronment comprises all other components, subsystems and systems with which a
component interacts at runtime.

Every component can be specified by two types of models. A design model
specifies the configuration of its provided and required interfaces and the struc-
tural relationships between a component and its environment. This is specified
in the form of a deterministic Mealy machine using a tabular notation derived
from the sequence-based specification. At runtime, this is executed according to
the system’s runtime semantics; these semantics are formally defined in terms
of CSP. An interface model specifies an abstraction of the component’s exter-
nally visible behaviour at the interface, and is modelled as a deterministic or
nondeterministic Mealy machine.

Interface model for
Component A

Visible communications with A’s clients =

= FD Boundary for Component A
V Component A is a client of
Components B and C, and a

Design model for server to A's clients that use it

Component A

Synchronous function calls, Synchronous function calls
and returns provided by B Q and returns provided by C
ucuc

Interface model for
Component B

Interface model for

Asynchronous
. Component C

notifications

= c

= FD FD
Design model for Design model for
Component B Component C

Fig. 3. A component-based architecture with compositional verification.
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Figure 3 gives an overview of a component-based architecture, which is based
on the client-server model. Clients can initiate synchronous function calls down-
wards to their servers; servers can respond with void or valued return events
that correspond to the synchronous function calls, and post asynchronous noti-
fications in the queues of its clients.

Compositional verification using CSP and FDR. Corresponding CSP models are
generated automatically from design and interface models, and the component
designs can be automatically verified using FDR. The CSP model not only cap-
tures the behaviour in the models as specified by the user, but also captures the
properties of the run-time environment in which the generated code will be exe-
cuted. For a given component X, this includes the externally visible behaviour
of all of the components that X interacts with (representing its environment)
and the runtime execution semantics (e.g. a multi-threaded execution semantics
with the necessary queuing semantics for modelling the asynchronous notifica-
tions). The CSP models are then verified for errors such as deadlocks, livelocks,
interface non-compliance, illegal behaviour, illegal nondeterminism, data range
violations, and refinement of the design and its interfaces by a specification.

In practice, formally model checking the correctness of a complete system in
the target domains is infeasible due to their size and complexity. To scale, it is
essential to make use of abstraction and break the problem down into feasible
verification steps. This is achieved by using CSP abstraction techniques and
the compositional property of CSP refinement. Using the example in Fig. 3, the
system to be developed comprises components A, B and C' communicating with
one another via synchronous calls and asynchronously via a queue, and under
the assumptions of the specified runtime semantics. The design models are likely
to comprise millions of states each; furthermore, in reality there would be more
components that form part of A’s environment, thereby causing the complete
system to be infeasible to model check.

Instead, the verification of this system is broken into the following steps:
Firstly, System A is defined as the parallel composition of the design model
of component A, the abstract interface models of B and C, A’s queue, and
processes enforcing the runtime assumptions (for example, multi-threaded exe-
cution semantics), with appropriate synchronisations between them. System A
is then verified against numerous specifications S, ..., Sy, including the abstract
interface of A, as traces and failures-divergences refinement checks using FDR.
Since the interface models are typically significantly smaller state machines com-
pared with their respective design models, due to internal implementation details
being omitted and only exposing the visible client interactions, this becomes fea-
sible to model check in FDR. Secondly, the design models of components B and
C' are verified against their abstract interface models as individual refinement
checks in FDR. The compositional properties of CSP refinement can then be
used to automatically deduce that the complete system comprising design mod-
els of A, B and C will satisfy specifications 51, ..., Sy and interface model of A.
By applying this compositional approach on industrial scale software systems,
FDR proved to scale extremely well.
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Industrial impact. The use of FDR within the ASD framework proved to have sig-
nificant impact within industry. Examples include: Philips Health Care reported
cost savings of 60 % with defects reduced by 90 % (in X-ray machines) [14]; and
Ericsson produced essentially error free software, with a sevenfold increase in
productivity and up to 50 % cost saving over conventional software development
techniques [10]. In the period of July 2009 to July 2013, the commercial product
implementing the ASD framework was used to create more than 250 million lines
of executable code in C, C++, C#, and Java, with individual generated systems
frequently being over 500,000 lines of code [26]. All of the models from which
this code was generated had been verified using FDR.

Future developments. A component-based architecture does not imply that it is
compositional for the purposes of verification using CSP refinement. Therefore,
ASD imposes a strict tree architecture, as well as enforcing runtime semantics
and communication patterns that are compositional. In practice, systems can
rarely be partitioned in such a way completely and this has proven to be a
major challenge, requiring a high level of skill and experience from the software
engineers. Another interesting challenge arises when existing abstraction tech-
niques in CSP are not able to capture certain runtime assumptions, due to the
way in which CSP treats internal 7 events. An example of this occurred in mod-
elling asynchronous communication, where the runtime environment assumed
that the rate of processing notifications in a component’s queue far exceeded
their rate of arrival. Roscoe and Hopcroft [36] made significant steps towards
tackling this problem by developing a new type of abstraction, which involved
introducing a new prioritise operator to CSP and FDR, and demonstrated how
this could be applied in practice.

Enabling formal verification to be widely adopted into industrial software
development environments, for the purposes of driving down cost and increas-
ing reliability, is an active area of research within Roscoe’s research group. For
example, they are working on developing a new scalable model-based verification
framework as part of two large research projects, in collaboration with industry
partners in high-tech manufacturing, aerospace and defence. These projects seek
to make it simpler to apply such frameworks in practice, as well as broaden the
scope of system architectures and properties that can be automatically verified
in a compositional manner.

7 Industrial Test Case Generation

In this section, a process algebraic strategy for test case generation from natural-
language requirements or use cases is presented. The underlying formalism is
CSP and the mechanisation of the strategy is based on (traces) refinement asser-
tions that are verified using FDR. Variations of the strategy with two industrial
applications are discussed: testing mobile device applications in the context of a
partnership with Motorola, a Lenovo company; and verifying data-flow reactive
systems, in the aerospace domain, via a cooperation with Embraer.
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Fig. 4. Overview of the test generation strategy.

Testing mobile devices The strategy for testing mobile devices is summarised in
Fig. 4. It is implemented in the TaRGeT tool [21]. The input is a use case template
written in a (controlled) natural language (CNL), with a well-defined syntax. If the
use case description is syntactically correct, a CSP model, say S, is automatically
derived from the use cases. The test case generation can be guided by a selection
mechanism known as a test purpose (say, T'P), which specifies traces of interest but
additionally includes marking events not in the alphabet of S. This is also described
in natural language and translated into a CSP process. The model subject to test
case generation is the parallel composition STP = S || TP.
«

The test purpose TP synchronises on all events of g’ until there are no further
events to synchronise, when it communicates a marking event. Then both S and
TP deadlock. This happens for all possible parallel executions of TP and S. For
example, for selecting a trace (a, b) of S, TP needs to include a trace (a, b, m),
for a marking event m playing the role of an annotation. Then (a, b, m) is a
trace of STP. Such traces can be automatically generated as counterexamples
of the refinement assertion S T STP, since all traces that end with a mark
(and are traces of STP) are not traces of S.

In Fig. 4, these counterexamples are the abstract test cases. They can then be
translated back to construct CNL test cases used for manual execution. Alterna-
tively, these test cases can be fed into another tool, as AutoMano [2], now called
Zygon, and automatically translated into test scripts of automation frameworks
like UI Automator?. These are then executed to test the mobile devices. If a
model of the mobile device application is available, it is possible to perform con-
formance verification directly, by checking whether the implementation model,
say I, is a refinement of S, as also illustrated in Fig. 4.

The conformance notion adopted in this approach is the relation cspio,
intended to capture the ioco [38] relation in the CSP setting. However, ioco

2 UI Automator — https://developer.android.com/topic/libraries/testing-support-
library /index.html{\# } UIAutomator.
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is defined in a model called suspension traces [38], which distinguishes between
input and output events, and includes a special output event to represent qui-
escence (9). It is possible to capture the ioco relation via an encoding in the
standard traces model. This entails splitting the alphabet of specification and
implementation models into disjoint input and output sets of events. The for-
mulation refers only to the set of output events, which is denoted O. The set
Os = O U{d} additionally includes the event § that represents quiescence.

Definition 1 (CSP input-output conformance).
Icspio S = Vo : traces(S) @ out(I,0) C out(S, o)
where out(R,0) ={a: 05| o™ (a) € traces(R) }

Informally, this means that after performing a specification trace, the outputs
offered by the implementation must be a subset of those offered by the specifica-
tion, for the same trace. In the context of mobile device applications this relation
is adequate because it allows for partial specifications. The development tends
to proceed on a feature basis, so it is possible, for instance, to test the properties
of a specific feature against an implementation involving several other features.
The following theorem [7,21] states that cspio conformance can be verified using
FDR (as an alternative to testing, when a model of the implementation is avail-
able) in terms of traces refinement. A detailed discussion on how this can be
performed in a compositional way is presented in [37].

Theorem 1 (Verification of cspio).

TespioS < Ss Cp (Ss A ANY (05, STOP)) || Is
Xs

where ANY (X,R)=Ua: X e a— R

In the above theorem the notation X5 stands for X U {d}, and Pj stands for a
process that behaves as P but outputs ¢ in all quiescent states of P [7]; this is
necessary to capture ioco. The annotation of quiescence can be concisely and
elegantly captured using the CSP notion of priority. In this case, it is necessary
only to give priority to output events over §.

Definition 2 (Quiescence annotation).
Ps = prioritise(P ||| RUN ({6}), (O, {d}))

Most formal approaches to test case generation are based on operational mod-
els like labelled transition systems. A distinguishing feature of using a process
algebra like CSP is that one can benefit from the rich set of operators, semantic
models and tools, as well as, and most importantly, abstraction. Test genera-
tion and conformance verification, as presented here, abstract from any specific
algorithm, and are characterised in terms of refinement assertions in the traces
model. This strongly supports conservative extensibility when considering other
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aspects like data and time, in addition to control behaviour. For example, as
shown in [21], state can also be incorporated as an orthogonal aspect. A CSP
process, say M, is designed to model a memory to record the state of vari-
ables. The specification, previously represented by the process S, then becomes
SM = (S || M) \ au. Despite this model increment, the test generation and

(6373
conformance verification strategies are entirely preserved, using SM in place

of M in the formulations. Additionally, one can now perform state based test
selection. Time is addressed in the next section.

As practical achievements, the TaRGeT tool has been used in some Motorola
teams that reported gains between 40% and 50% in productivity related to
test case generation. Concerning the time to generate the test cases, a tool like
TaRGeT is incomparably faster than designing test cases manually. Nevertheless,
there are other activities in the process, beyond test design. Particularly, the
inspection phase used to take a significant amount of time, and this happens
regardless of whether the tests are manually designed or automatically generated.

Data-flow reactive systems. As a variation and extension of the strategy pre-
sented in the previous section, the NAT2TEST framework has been devised [5].
The input is also authored in natural language but, instead of use cases, higher
level requirements are used as the basis to test generation. The output are test
vectors in the form of a matrix, where each line assigns values for input and
output variables, for a particular time value. The approach allows several target
formalisms from which test vectors are generated. One of these options is CSP.

A conformance relation, csptio, has been proposed to consider timed behav-
iour (discrete or continuous), in addition to control and data. Again, due to the
abstraction provided by a process algebraic characterisation in CSP, csptio is a
conservative extension of cspio. To give an intuition, avoiding all the technical
details involved [6], the relation is defined as:

Definition 3 (CSP timed input-output conformance).

I csptio S =Vo : traces(S) o out(I,0) C out(S, o)
A elapse(I,0) C elapse(S, o)

Note that the first conjunct coincides with the definition of cspio. The second
conjunct, significantly simplified here, captures the timed behaviour in a sym-
bolic way. Conformance means that the possible values of the elapsed time in
the implementation, after a specification trace, should be a subset of that of the
specification, after the same trace. Concerning mechanised conformance verifica-
tion, the first part can be checked using FDR, as already explained. The second
conjunct is transformed into a constraint satisfaction problem and is verified
using an SMT solver like Z33.

This framework is not yet deployed, but experiments with some applications
provided by Embraer have shown that the strategy was able to generate the

3 Z3—http://z3.codeplex.com/.
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same vectors that were manually designed by domain specialists, except when
there was tacit information involved. Additional and more elaborate controlled
experiments are necessary to establish the precise productive gains.

Despite the several advantages of a CSP characterisation of test generation
and conformance verification, there are two main potential disadvantages in this
approach. One is efficiency: test generation using specialised algorithms tend to
be more efficient than using a refinement checker. The second drawback is that
working at the CSP level does not allow one to have access to operational model
elements like states and transitions used as coverage criteria in practical testing
approaches. Interestingly, however, using facilities provided by the FDR Explorer
API, it is possible to obtain the LTS of a CSP model, and then devise algorithms
that implement coverage criteria, as a separate concern to test generation.

8 Conclusion

The examples in this paper only scratch the surface of what has been achieved with
FDR over its 25-year history. For example, FDR has also been used to analyse:
unmanned aerial vehicles; fault-tolerant processors; concurrent algorithms; and
numerous puzzles (thanks to Roscoe’s passion for using FDR to solve such things).
Without Roscoe’s contributions and continued enthusiasm for FDR, it would not
be where it is today.

FDR also promises to have a bright future as researchers at Oxford are work-
ing on a number of interesting extensions. For example, the use of SAT solvers for
finding deadlocks, enabling FDR to analyse larger networks for deadlocks, and
support for symmetry reduction, which will help FDR analyse heap structures
in concurrent programs. There are also plans to create a new input language for
FDR to complement CSPj; which, whilst it has shown remarkable longevity, is
less ideal for certain applications of FDR.

Acknowledgements. We are hugely grateful to Michael Goldsmith for his expert
memory recalling the early days of FDR.
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1 Introduction

Non-interference is one of the foundational notions of security stretching back
to Goguen and Meseguer [3]. Roughly, a set of activities C' is non-interfering
with a set D if any possible behavior at D is compatible with anything that
could have occurred at C. One also speaks of “no information flow” from C'
to D in this case. Many hands further developed the idea and its variants
(e.g. [12,15]), which also flourished within the process calculus context [1,2,6,13].
A.W. Roscoe contributed a characteristically distinctive idea to this discussion,
in collaboration with J. Woodcock and L. Wulf. The idea was that a system
is secure for flow from C to D when, after hiding behaviors at the source C,
the destination D experiences the system as deterministic [8,11]. In the CSP
tradition, a process is deterministic if, after engaging in a sequence ¢ of events,
it can refuse an event a, then it always refuses the event a after engaging in ¢ [9)].
One advantage of this approach via determinism is that it disposed of the
so-called “refinement paradox” of non-interference (for which C. Morgan [7] cites
J. Jacob [6], who does not use the term). Namely, a system might display non-
interference, but refine to a system that caused impermissible information flows.
Refinement does not preserve ignorance, in Morgan’s words. However, if the
system is already deterministic to the destination, no refinement can provide
the destination with information about the behavior of the source.
Unfortunately, non-interference is too strong a property to be desirable except
rarely. One rarely would design a system that has the activities C, D when C
should not interfere with D in any way at all. One would instead like to design
systems in which there are at least clear limitations on how that interference
may occur. For instance, perhaps there is a responsible intermediary M such
that C' may influence M and M may then decide what information to make
visible to the destination D. Thus, writing “may influence directly” as ~», we
have C' ~ M ~» D, although C' + D. In this case, the “may-influence” relation
is not transitive. One may view this intransitive non-interference as a kind of
declassification, one in which the permissible intermediaries are trusted to decide
what information may reach the destination. From this point of view, it is a kind
of “who” declassification, in which the policy identifies which domains M are
permitted to choose what information to allow to pass from C to D [14].
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A second advantage of Roscoe’s determinism idea turned out to be its sur-
prising and attractive applicability to intransitive non-interference, developed
with M. Goldsmith [10]. Non-interference given an intransitive “may-influence”
relation meant that, hiding the behavior of the sensitive source C, and fizing the
behavior of the permissible intermediary M, the destination D again experiences
the system as deterministic.

However, suppose we have explicit specifications of what we would like to
permit D to learn about C? For instance, the buyer should be able to learn
what the president had for breakfast, so as to replenish the larder, but not who
she vetted for the court opening. This is called “what” declassification, since the
content determines what D may learn and what not. The determinism point of
view does not seem to provide an explanation of “what” declassification, which
would be attractive.

We think it also attractive to recast the notions in a context that makes the
graph structure of distributed systems explicit, and allows us to use the graph
structure as a guide to information flow properties [4]. In this paper, we aim
to explain, largely by example, three aspects of information flow in distributed
systems that are governed by “what” declassification policies:

1. How to define policies bounding “what” declassification, i.e. upper bounds on
information flow, and also functionality goals expressed as lower bounds on
information flow;

2. How to represent distributed systems as directed graphs in which the nodes
are processing elements and the arcs are message channels, in which these
policies are meaningful;

3. How to ensure that these conclusions are preserved when a system is refined
using a surprisingly simple but still useful principle.

Functionality goals as lower bounds on information flow are new in this paper,
as is the simple refinement principle.

2 An Example System

We will consider a system EpiDB with very simple, but nevertheless useful,
behavior. We do not focus on the realism of EpiDB, as we will use it simply
to stimulate intuition for the information flow considerations at hand. EpiDB
is suggested by a related unpublished demonstration system written by two
colleagues.

2.1 The EpiDB idea

EpiDB serves as a database for epidemiological information. Imagine that health-
care providers deposit two kinds of records into the system. First, we have a table
of disease records, that say of a particular person that they had a particular
disease during a period of time. Second, we have a table of personal encounter
records, that say of an unordered pair of people that they had an encounter on a
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particular date, or that they encounter each other habitually, possibly because
they belong to the same family or school class.

EpiDB will be used by public health analysts who seek to understand the
propagation of diseases through this population. Thus, an analyst A asks a query
about a person p1, a disease d, and a time ty. If that query is permitted from A,
and p; had the disease d at a time ¢; near tg, then the system will return a set
of tuples (pa, €2, t2) such that py encountered p; at time ey, and had disease d at
time t9, where es and t, are near tg. For simplicity, we will choose a parameter
€, and take “e-near” to mean that [t —t| < e. Thus, the query takes a sort of
join on the two tables, containing the disease and personal encounter records,
restricted to times near tg.

If the query is permitted from A but p; did not have the disease d near
to, it returns a distinctive value unsick denying the diagnosis. If the query is
impermissible from A, it returns a distinctive value imperm denying permission.
Perhaps some analysts are responsible only for certain diseases, and if they start
querying for sexually transmitted diseases instead of influenza (e.g.), they are
letting their curiosity get the better of them. Alternatively, some analysts may
be authorized to ask about some patients but not others, or some time periods.
In this example system, we will assume that permission is independent of the
contents of the database, and does not change as it operates.

If the database’s state consists of the tables of disease records with con-
tents 7% and personal encounter records with contents 7, then we will write
ans(A, q, T, T¢) for the result when query ¢ = (p1,d, o) is received on ¢, where:

unsick if not sick e-near tq
imperm if not permitted
ans(c, q, jjd7 TC) = {(pg, €9, tg) : 3ty (pl, d, tl) S Td, (pg, d, tg) S Td,
({plaPZ}a 62) € Tea
and t1, s, eo are e-near tg}

To simplify the statement of information flow upper and lower bounds, we
will assume one type of coordination between the analysts and the data provider.
Namely, we will assume that the data provider remains up-to-date, while the
analysts are not concerned with very recent events. Thus, we will assume that if
an analyst ever makes a query g about a time ¢, and a provider ever deposits a
record r concerning a related time ¢’ < ¢ 4 2¢, then in fact the system received
r before ¢q. As a consequence, no query ever has a result that would have been
altered by records received subsequently. In particular, the analyst can never
detect the order of arrival of records by a sequence of queries.

2.2 Simplest EpiDB system

Thus, the simplest version of our system EpiDB takes the form shown in Fig. 1,
in which a provider PR delivers data into the database FE itself, which can be
queried by an analyst A;. We assume that E starts empty, so that its contents
at any time is just what PR has delivered over channel 3.
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Analyst DB Provider
1

Ds=0=ND

2

Fig. 1. Schematic system EpiDB

We regard the whole graph as the system, rather than simply the node F,
partly because in subsequent steps there are additional nodes, but also because
the security and functionality goals of the system are about A; and PR. In
particular, A; is authorized to learn certain aspects of the behavior of PR. A
can learn which records PR has submitted that are relevant to a permissible
query. If PR submits records that are not related to any permissible query of
Ay, then EpiDB is obliged to ensure that they can have no effect on what Ay
observes on channels 1, 2.

We do not need to specify the behavior of A; and PR, since the goals should
hold regardless of their actions. Thus, we regard them as always willing to send
or receive any message on their outgoing or incoming channels.

By contrast, E has a specification. We can describe it as a state machine
where the state includes two sets of tuples, representing the tables 7%, 7. An
additional state component records the not-yet-processed query (p1,d, to) or else
L if every query has already received a response. A new record rg,r. may be
deposited at any moment, even between receiving a query and answering it,
so this state component remembers any as-yet unanswered query. We do, how-
ever, maintain the upper bound ¢ of the times mentioned in all queries we have
received; we refuse to receive a new record whose time does not exceed t+ 2¢. We
record this maximum query time in the state component m, and we require that
when a record r is received, its time is greater than m + 2e. We write time(q) or
time(r) for the last component of g, r, which is its time component.

We give the labeled transition relation in Fig.2. Notice that E does not
accept a new query until it has answered the previous one, and restored L to
the first state component. Also, channel 2 carries a set of records (p2, ea,t2), or
else a symbol unsick, imperm.

2.3 The Intended Information Flow

EpiDB is intended to limit information flow from the provider PR to the analyst

Aj. In particular, the access control system is intended to limit flow to infor-

mation for which A; is authorized. The remainder of the system is intended to

maximize flow subject to authorization, and relevance to the queries A; asks.
For definiteness, we will assume that each analyst A has been assigned:

persons(A): A set of persons of interest for A;
diseases(A): A set of diseases A is authorized to consider;
start(A): an earliest time about which to query; and
finish(A): a most recent time about which to query.
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Pre-State Label (channel, message) Post-State
(L, 7% 7 m) (1, q) (q, T, T, m)
(g, Td Te m) (2, a) (L, 7% T°, m)
(xz, T¢, T°, m) (3, ra) (x, T U {rq}, T®, m)
(z, Td Te m) (3, 7e) (z, T, T° U {r.}, m)

where a = ans(A1, ¢, T¢,T°), m' = max(m, time(q))
q is a non-_L query, = is any value,
and 74, 7. are respectively a disease record and an encounter record,
with time(rq), time(re) > m + 2

Fig. 2. Labeled transition relation for F

Since A will be able to learn about disease records within € of the time ¢y in a
query, we will write Int(A) = [start(A4) — ¢, finish(A) + €] to define the the interval
of disease records A is authorized to learn about.

The analyst A who queries p, d,t will learn whether p had disease d at time
t' near t, as long as p € persons(A), d € diseases(A), and t’ € Int(A). Or more
precisely, A learns whether PR has registered this fact in the relevant portion of
its run. The set of permissible queries creates a region Ry of the space of disease
records that A can learn about directly.

The relevant portion of PR’s run also contains a set of encounter records
of the form ({p,p’},e), and these records create an adjacency relation between
records rq € Ry and other disease records involving p’, d, and a nearby time ¢'.
We will refer to the set of disease records adjacent to Ry as R;.

Essentially, the authorization mechanism entails that A should learn nothing
about what disease records and encounter records PR has submitted, except
as they help to determine Ry and R;. In particular, PR messages that provide
encounter records not connected to Ry should be invisible to A. Moreover, given
a set of encounter records, PR messages that provide disease records not in Ry
or Ry are also invisible.

In particular, A’s observations as a consequence of a single query must
remain unchanged, regardless of variation in PR’s messages containing encounter
records unconnected to Ry and regardless of variation in disease records not in
Ro U R;. A query imposes no ordering requirement on PR’s messages.

By submitting a sequence of queries, A can learn conjunctions of the con-
clusions returned by the individual queries. But by the timing constraints,
A cannot exclude any particular order in which the records may have arrived. In
particular, a record can have been absent from an earlier response if it is found
in a later response.

Thus, the purpose of the EpiDB system is essentially a what-declassification,
where the regions Ry, R; for each permissible query ¢ determine what aspects of
the sensitive PR runs should be “declassified” and made available to the analyst
A asking q.
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Later (Sect.5) we will refine the schematic version of EpiDB from Figs. 1 and
2 into a more complex system with separate components that guide an efficient
and reliable implementation.

3 Information Flow in the Frame Model

In this section, we will summarize the key notions of [4]. Systems (or frames),
represented as directed graphs, have ezrecutions; the local portions of an execu-
tion are called local runs; and an observer who sees one local run is trying to
infer information at a source, by determining what local runs at that source are
compatible with the observations. An information flow specification, which we
call a blur, is a specific kind of closure condition on the set of compatible local
runs at the information source.

3.1 Frames and Executions

We formalize systems such as EpiDB by structures we call frames. A frame F
consists of a directed graph, the nodes (or locations) of which are processing
elements each defined by a labeled transition system, and the arcs of which
carry messages. An ezecution of a frame F is a partially ordered set of events,
where each event e has a channel chan(e) and a message msg(e). The events
associated with a single node n must be linearly ordered, and moreover must form
a possible trace of lts(n). However, events on two channels that are not attached
to a common node may be unordered, unless some causal sequence of events
connects them. We will use the words “node” and “location” synonymously.

Definition 1. Let LO,CH,DA,ST,EV be domains that we will call locations,
channels, data, states, and events, resp.

1. A labeled transition relation is a ternary relation ~C ST x EV x ST. A
labeled transition system is a pair (~, sg) of a labeled transition relation and
an “initial state” sqg € ST. LTS is the set of labeled transition systems.

2. When £ € LO, we define chans({) = {c € CH: sndr(c) = ¢ or rcpt(c) = £}.

3. A frame is a structure F containing the domains and functions shown in
Table 1 satisfying the following properties:

(a) For all e1,eq € EV, if chan(ey) = chan(ez) and msg(e1) = msg(ez), then
for allt € LO and s, € ST, s 5, 5 iff s ~34 5.

(b) For all s,s' € ST, e € EV, and { € LO, s ~»; s implies chan(e) €
chans(?).

where we let (~g,initial(£)) = Its(£).

The histories of an LTS (~, sg) are all finite or infinite alternating sequences
h = (s0,€0,51,-.,5,€i,8i4+1,...) starting with sg, such that (s;,e;,s;41) €
~+ whenever e; is well defined. In particular, s;;; is well defined whenever e;
is, so that h does not end with an event e;. A trace of (~,so) is a finite or
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Table 1. Signature of frames

LO,CH,DA,ST,EV
sndr: CH — LO rcpt: CH — LO
chan: &V — CH msg: £V — DA
Its: LO — LTS

infinite sequence of events tr = (eg,e; ...) such that there is a history h where
tr enumerates the events in h.

An execution is a partially ordered set of events that—when projected onto
chans(¢)—always yields a trace for £.

Definition 2. A = (E, <) is an execution for a frame F, written A € Exc(F),
iff E CEV and < is a well-founded partial ordering on E, and, for all £ € LO,
letting tr o () be the set {e € E: chan(e) € chans(¢)},

1. tr4(£) is linearly ordered by <; and
2. tr 4(0) ordered by < is a trace of Its(¥).

When LO is finite, the “well-founded” condition is redundant. If A = (E, <)
is an execution, and =<’ is a partial order that is stronger than <, i.e. XC=x/,
then A" = (E,=’) is also an execution. The weakest partial order is generated
from the sequential traces of the individual locations, and extended to events at
other locations when they share an event on some channel that connects them.
However, any strengthening of this order determines another execution based on
the same set F of events.

Our notion of execution ignores what states the locations ¢ reach after engag-
ing in the events tr 4 (¢), and thus ignores the effects of nondeterminism. A similar
theory can be developed including the resulting states, which would let us talk
about refusals as well as traces, but we will postpone that opportunity for now.

We have here a synchronous notion of communication; a message m passes
over channel ¢ only if both endpoints can take a transition with label ¢, m. Thus,
the sender learns that the recipient is willing to accept m over ¢ now. Information
flows over channels in both directions.

3.2 Local Runs and Compatibility

We can now define what an observer with access to a particular set of channels
sees, or what a source of information does. We will assume that the observer
or the source has access to a set of channels C C CH. Often C is of the form
C = chans(¢) for some £ € LO or C = J,, chans(£) for some L € LO, but this
is not always the case.

A local run at C' is just the result of restricting the events in some execution
to the channels C.

Definition 3. Let B = (FE, R) be a partially ordered set of events, and C C CH.
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1. The restriction B| C is (By, Ro), where

By = {e € E: chan(e) € C}, and

RO =RnN (B() X Bo)
2. B is a C-run of F iff for some A € Exc(F), B=A] C.
3. C-runs(F) ={B: B is a C-run of F}.

We write C-runs when F is understood, and, when C' is understood, we speak of
local runs.

By extends By, when By = (E1,=1) and By = (E2,=2) are p.o. sets, iff
El - EQ,' <1 == O(El X El),' and {62 361 € El .e =9 61} - El.

Fix some frame F. What an observer at D knows is that some B € D-runs(F)
occurred, since she observed some B. She wants to consider what local runs are
still possible at some source D C C’H. These are the members of D-runs(F) that
are restrictions of executions that also restrict to B.

Definition 4. Let C, D C CH and D € D-runs.

1. A local run B € C-runs is compatible with D iff, for some A € Exc, A]C =B
and Al D =1D.
2. Joap(D) = {B € C-runs: B is compatible with D}.

We use the letter J to indicate that these B can occur jointly with D. The
subscripts indicate that information would flow from C to D if Joqp(D) fails to
have suitable closure properties. The subscript D adjacent to the argument D
is meant to remind that D € D-runs, as a kind of type-annotation; the left-most
subscript C' is a reminder of the type of the local runs in the result.

3.3 Blurs to Limit Information Flow

Generally speaking, when Jogp (D) is “large” for all D € D-runs, then there is
little low from C' to D. The observations at D leave open many possibilities
for what could have happened at C. We can make precise what the observer
at D cannot learn by considering closure operators on sets of local C-runs. We
think of the observer’s vision as blurred insofar as she cannot distinguish a local
C-run from other members of a closed set. Thus, the relation of coarsening on
closure operators represents the observer’s loss of resolution as information flow
decreases.

Generally speaking, a closure operator obeys three properties. Each set in
included in its closure; closure is idempotent; and closure is monotonic with
respect to the inclusion relation. We found that information flow respects the
graph structure of frames when we strengthen the montonicity property some-
what [4]. We call operators that satisfy these strengthened conditions blur oper-
ators.

Definition 5. A function ¢ on sets is a blur operator iff it satisfies:

Inclusion: For all sets S, S C ¢(S);
Idempotence: ¢ is idempotent, i.e. for all sets S, ¢(P(S)) = ¢(S); and
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Union: ¢ commutes with unions: If {S,}acr s a family indexed by I, then

¢(U Sa) = U ¢(Sa)

acl acl
S is ¢-blurred iff ¢ is a blur operator and S = ¢(5).

Observe that (J,o; ¢(Sa) € ¢(Uqes Sa) is equivalent to monotonicity, so that the
union property is effectively monotonicity plus a converse. The union property
ensures that ¢ is determined by its action on singletons. Since S = (J,cg{a},
6(8) = Uy cs o({a}).

Blur operators form a lattice under pointwise inclusion, which provides a way
to compare the flow of information in different situations. Thus, ¢ allows at least
as much information flow as ¢ if ¢(S) C ¢(S) for every S.

The EpiDB Blur. In the case of EpiDB, we are interested in a blur ¢ on the
local runs at channel 3, i.e. C = {3}. Since, by the union property, we only need
to define ¢({B}) for singletons of a B € C-runs, we must say which local runs
B’ should be indistinguishable from B for the observer on channels 1,2, i.e. A;j.
However, Sect. 2.3 already makes clear which B’ this should be. Analyst A; has
permissions defined in terms of persons(A;), diseases(A;), and Int(A4y).

Define Ry (B) to be the set of disease records (p, d, t) delivered in B such that
p € persons(A;), d € diseases(A;), and ¢ € Int(A;1). Define Ry (B) to be the set of
disease records (p1,d, t1) in B such that there is an encounter record ({p,p1},e)
in B with ¢, e, t; successively e-near. Then

o({B}) = {B': Ry(B) = Ro(B') and Ry(B) = Ry(B')}
We can also express this more operationally: ¢(.5) is closed under

1. permutations;
2. adding;:
(a) records submitted elsewhere in B;
(b) encounter records not connecting Ro(5) to any disease record in B;
(c) disease records rq = (p,d,t) such that
i. p & persons(Ay), d & diseases(A1), or t & Int(A;), and
ii. rq is not connected to Ro(BB) by an encounter record,;
3. omitting records of the same kinds.

Limited Flow. The blur notion suggests a restricted information flow notion,
and moreover the latter respects the graph structure. Specifically, limiting what
information flows to a cut set in the graph guarantees the same limit applies to
observers beyond that cut set.

Definition 6. Let obs,src C CH and ¢: P(src-runs) — P(src-runs).
F ¢-limits src-to-obs flow iff ¢ is a blur operator, and, for every B € obs-runs
Jsrcaobs(B) is ¢-blurred.
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This notion respects the graph structure of the frame F. First, since effectively
information can flow in either direction over a channel, we consider the undi-
rected graph ungr(F) = (V, E)) where the vertices V' are the locations, V = LO,
and where an undirected edge (¢1,£2) exists iff, for some ¢ € CH, sndr(c) = ¢;
and rept(c) = £2 or vice versa. Now, for Cy, Cy,Cy C CH, let us say that Cy is
a cut between Cy and Oy iff, for every path p through ungr(F) that starts at a
co € Cp and ends at a ¢y € Oy, p traverses some ¢y € C7. Now:

Theorem 1 (Cut-Blur Principle, [4]). Let src,cut,obs C CH, where cut is
a cut between src and obs in F.
If F ¢-limits src-to-cut flow, then F ¢-limits src-to-obs flow.

There is also a two-frame version of the same idea. Here, > agrees with F; on the
portion of the graph that lies from src to cut, and on the LTS of those locations. As
long as F5 does not exercise possibilities at cut that F; does not, then ¢-limited
flow is preserved. We write CH;, LO;, C-runs;, etc. for the channels, locations,
local runs etc. of F;.

Theorem 2 ([4]). Let src,cut C CHy in Fi.

Let F5 be a frame, with src,cut C CHsy, and such that, if p is any path in
ungr(F1) starting at some ¢y € src and traversing no arc in cut, and p reaches
c € CHy, then:

1. ¢ € CHa, sndri(c) € LO2, and rcpty(c) € LOo;
2. sndry(c) = sndri(c), and rcpty(c) = repty(c);
3. ltsy(sndry(c)) = ltsa(sndra(c)) and ltsy(rept,(c)) = ltsa(repty(c)).

Let obs C CHo be such that cut is a cut between src and obs in Fs. If cut-runsg C
cut-runsy, and Fy ¢-limits src-to-cut flow, then Fo ¢-limits src-to-obs flow.

In fact, the cut-blur principle is a corollary of this; when we equate Fy = F1,
the assumptions necessarily hold.

This principle is useful for “localizing” the enforcement of ¢-limiting to the
portion of the system lying between src and cut. It says that we can freely vary
the structure of the remainder of the system, just so long as we do not force cut
to engage in new local behaviors. For instance, if we consider cut = {1,2} and
src = {3} in either Fig.1 or 4, it says that we can freely expand the node A;
into multiple nodes and arcs, as long as cut remains a cut. The assumption that
cut-runsy C cut-runs; is immediate here, since we assume that A; may attempt
any sequence of communications anyway.

4 Questions and Answers

We would now like a corresponding way to specify functionality goals, i.e. lower
bounds on information flow between a source and an observer. For instance, if
A is permitted to submit a query ¢ = (p,d,t) over channel 1, then A; really
should be able to learn from the system what the answer is, as of the time of this
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interaction. Thus, the system is guaranteeing that a local run over channels 1, 2
can always extend to one in which A; submits query ¢ and receives a symbol or
set S of records over channel 2. And this answer tells A; whether PR has sub-
mitted a nearby disease record, and, in the stream of records PR has submitted
on channel 3, what other disease records are adjacent via encounter records.
Thus, the response is compatible with a set of local PR runs, and serves to
notify A; that no other type of run remains possible. We will call a classification
like this a question about a set of channels such as the PR’s channel set {3}.

Definition 7. A family of sets Q is a question about a set of channels C C CH
in F iff Q= C-runs(F).

In our example, we can regard each permitted query ¢ = (p, d,t) as determining
a question Q about PR’s channel 3. Namely, two B, B’ € {3}-runs belong to the
same X € Q iff either:

— in both B and B’, p is not sick with d at t, or else
— in both p is sick, with the same sick acquaintances and the same timings.

We can regard an impermissible query as determining a question also, but it is
the trivial, singleton family {{3}-runs}. Thus, each query ¢ determines a question
Q, about channel 3.

An observer at D may want to determine which member of this family Q
obtains. That is, the observer would like to extend the current local run so that
the system’s behavior will determine an A € Q that must have been found at
C. This may require D to engage in certain events that “ask about” Q, after
which the system’s behavior will lead to the information. Naturally, the events
that pose the question must be within the power of the observer at D.

Definition 8. F answers Q for D C CH iff (i) Q is a question about C' in F,
and (ii), for every D € D-runs, there is an extension D' of D and a family R of
finite extensions of D' such that:

1. For all A € Exc, if A| C = D, then there exists an extension A’ of A such
that A'| C =D';

2. for every £ € R, there exists a X € Q such that Joqp(E) C X; and

3. for every extension £ of D', there exists a £y € R such that either £ extends
&y or &y extends E.

The first of these clauses ensures that the observer can always request the system
to answer Q. The second ensures that an observation in R selects some answer
to the question, although there may be more than one right answer. The second
says that the observations that determine an answer bar the tree of all extensions
of D', so that any sufficiently long extension will have selected an answer.

Evidently, EpiDB answers the question Q, for each g. The extension D’ to
a local Aj-run D consists in waiting for an answer on channel 2 to a previous,
unanswered question (if any), and then submitting ¢ on channel 1. The family
R is then the set of local runs in which D’ is extended by a symbol or set of
records.
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Of course, if a frame ¢-blurs flow from C, then an answerable question about
C' can never be more informative than a ¢-blurred question:

Lemma 1. Let Q be a question about C' in F. Suppose that F answers Q for
D C CH, and that F ¢-limits C-to-D flow.

Then there is a Q' such that Q is a coarsening of @', F answers Q' for D,
and for every X € Q', X is ¢-blurred.

Indeed, Q' can be chosen so that a pair of D-runs that can receive the same
answer in Q can receive the same answer in Q.

Proof. For each choice of D’ and R, collect the sets Joqp(R) for R € R; let
Q' be the resulting collection. Since F ¢-limits C-to-D flow, each Joqp(R) is
¢-blurred.
To preserve “can receive the same answer,” coarsen that Q' by taking unions:
In particular say that R, R’ € R are Q-similar, which we will write R ~g R/,
if there is an X € Q such that Joqp(R) C X and Jogp(R') € X. Define

9 ={ |J Jean(R): ReR}.
R'~gR

The union property of blurs ensures that the resulting sets are ¢-blurred.
Now let Q" collect Q% from each choice of D' and R. O

In our EpiDB example, the questions Q, are already ¢-blurred.

5 Refining EpiDB

Although the simple presentation of EpiDB in Figs. 1 and 2 makes it clear why it
will meet its information flow goals—both upper bounds and lower bounds—they
are very far from a reasonable implementation. A reasonable implementation
should have a number of different properties:

— It should be implemented via a number of virtual machines, so that its com-
ponents can be responsive under high loads;

— It should separate an index from the actual archive that stores the data, to
allow fast retrieval despite large quantities of data,;

— It should separate critical services such as authorization from more vulnerable
components that must service potentially malicious connections from analysts
and providers.

All of these considerations militate for breaking the component E in Fig. 1 into
a collection of cooperating components that interact via message channels. This
decomposition fits the frame model very naturally, since the connections among
these components are easy to define statically.

Step 1: Separating Authorization. A natural thing to do first is to identify
a distinct component that uses the credentials of A; and the query ¢ to make an
authorization decision. For instance, these credentials could be certificates used
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in a bilateral TLS handshake. The authorization service can emit a cryptographic
token that will be consulted by components in later expansions. Figure 3 shows
the resulting frame graph. Now the state of AR reflects whether authorization
has been requested by the current query, and if so, the value of the resulting
token. The behavior of the system on its channels 1,2, 3 is actually unchanged:
In particular, given a local run D on channels 1,2, the set of compatible local
runs on channel 3, Jy3yq(1,2} (D) is the same for the two systems.

Fig. 3. EpiDB with authorization service separated

Since the information flow of the system is defined solely in terms of J.o.(+),
any desired upper and lower bounds on flow are necessarily preserved.

A Refined EpiDB Architecture. After several stages of refinement, we obtain
a system of the form shown in Fig. 4. It breaks down the database into compo-
nents with specialized responsibilities:

QC is a query controller. It accepts queries from Aj, passes requests to the index
controller 1C', which extracts records from the archive controller AC that are
accumulated at QC. It returns the resulting sets to Aj.

IC' is an index controller. It maintains an association between keys p; naming
people and a list of disease record numbers for those people. It has a similar
association from people to encounter records. When given a person and a
table name, it passes a list of record numbers to AC' for retrieval.

AC is an archive controller. It maintains a store of records for each table, orga-
nized by record number.

IG is an ingress controller. It maintains the maximum record number used so
far. It receives new records from the provider PR, assigns the next record
number, and sends the record and number to AC. It notifies IC' of the new
association of this record number with the relevant p;s.

AU is the authorization service. QC contacts AU for each new query, obtaining
a signed authorization token that accompanies QC’s messages to IC. These
tokens also appear in the system audit logs, if an audit subsystem is added.

The self-loop channels 8,9 allow QC and AC to signal certain internal events.
The only other channel needing explanation is 6. At the beginning of processing
any query, QC uses channel 6 to request the current maximum record number
from AC, which maintains this. QC then limits all records retrieved to ones
below this maximum. Hence, even when new records are being deposited by PR
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Fig. 4. Refined architecture for EpiDB

and IG concurrently, the query elicits consistent information reflecting the state
of the database at the time of that maximum record number. Channel 12 is used
only to propagate the maximum query time (shown as m in Fig. 2) to the ingress
controller.

Again, the functional correctness criterion for this system is just that the
same local runs should be possible on its two external interfaces, and with the
same compatibility relations Jyzyq(1,2) (D).} The practical requirement for the
system designer to meet is that the index and archive controllers 1C, AC' should
cooperate to maintain the database accurately, which is well understood.

The Interface-Preserving Refinement Principle. This refinement strategy
is simple and easily formalized. When F;, F» are frames, we write Ji () for
the compatibility function in F;.

Theorem 3. Suppose that F1 and Fo are two frames, and C, D C CH, NCHs.
If D-runs; = D-runsy, and for all D € D-runs;, JL (D) = JE (D), then:

1. Fy ¢-limits C-to-D flow iff F1 ¢-limits C-to-D flow;
2. F1 answers Q for D iff Fo answers Q for D.

This follows directly from the forms of the definitions.

However, it is useful. For instance, it immediately follows that the properties
of the system are preserved in case the system serves more than one analyst. In
Fig. 5, we present an augmented system containing multiple analysts. However,
since the behaviors on the interfaces 1,2 and 3 are unaffected, Theorem 3 imme-
diately entails that the augmented system continues to meet its goals for A;. By
symmetry, it meets the same goals for the other A;.

As another example, the system we have described has no audit mechanism
built in. However, having designed the system and established its information
flow properties, we can add nodes and channels to perform audit without chang-
ing the local runs and compatibility functions for the interfaces 1,2 and 3. This
provides a clear argument for orthogonality of design that has sometimes eluded
secure systems methodology.

! By an interface, we just mean a set of channels, often but not necessarily near each
other in the graph.
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Fig. 5. EpiDB augmented with multiple analysts. Channels 8, 9 omitted as clutter

6 Conclusion

We have discussed the frame model, and illustrated how to use it to establish
what-declassification policies, or information flow upper bounds. The same ideas
lead to a natural approach for showing lower bounds, i.e. that a system really
answers questions which may be posed on one of these interfaces.

However, the frame model gives an abstraction of a possible system: How
can one determine that an actual system displays the structure and behavior of
a given frame as designed? In particular, two central items are needed. First,
the active components of the actual system should correlate with the nodes of
the frame. The behaviors of each component should conform to the LTS of the
correlated node. Second, the message-passing activity of the system should occur
along channels identified in the frame. There should be no other interactions,
whether between components of the system or between components and the
external world.

Similarly, to build a real system using a frame as specification, one needs, first,
a way to build local programs that conform to an LTS specification, and various
familiar ideas such as reactive programming and event-handling libraries appear
helpful. In any case, the programming here is purely sequential and independent
of any shared state interactions.

How then to establish, second, that the components interact with each other,
and only with each other, as specified in the graph? This requires cryptographic
support, both for secrecy to ensure that messages between components canot
leak to the external world, and for authenticity to ensure that a component
cannot receive a message off a channel unless its peer transmitted onto the
channel. A protocol is needed also to ensure that message passing approximates
the synchronous semantics the model uses.

Indeed, there is an additional role for cryptography, which is to provide attes-
tation, i.e. digitally signed evidence that a node is genuine and under the con-
trol of the expected code. The Trusted Platform Modules were intended as an
anchor for this sort of evidence, and user-level trusted execution environments
(TEEs) such as Intel’s Software Guard Extensions provide a simpler framework
for achieving attestations [5]. TEEs provide symmetric cryptographic support to
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protect a thread and local memory, encrypting pages as they leave the proces-
sor’s cache. Moreover, the processor provides digital signatures that attest to
the code in control of the TEE. These attestations allow components to validate
one another, to ensure that they are affiliated in the pattern stipulated in their
model. The attestations also allow an external party to decide to believe this
also, before making a decision as to whether to deliver data into the system, or
accept it from the system. Thus, in addition to hardware support, we need to
be able to use cryptographic protocols in the right way; another area in which
A.W. Roscoe has also made his contributions.

Acknowledgments. I am grateful to Paul D. Rowe and John D. Ramsdell, with
whom I discussed many of these ideas. In particular, John Ramsdell worked out the
successive frame versions summarized in the figures.
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Abstract. Partial order reduction covers a range of techniques based
on eliminating unnecessary transitions when generating a state space.
On the other hand, abstractions replace sets of states of a system with
abstract representatives in order to create a smaller state space. This
article explores how stubborn sets and abstraction can be combined. We
provide examples to provide intuition and expand on some recent results.
We provide a classification of abstractions and give some novel results
on what is needed to combine abstraction and partial order reduction in
a sound way.

1 Introduction

The term partial order reduction refers to methods that combat state explosion
by eliminating unnecessary transitions. This article focuses on stubborn sets [20].
The theory as presented here, mostly applies to also ample [17] and persistent [9]
sets. We use the term “stubborn set method” or “partial order reduction” to
mean any method that attempts to reduce the size of a state space by exploring
some subset of enabled transitions in each state of a state.

The term abstraction [3] refers to methods that eliminate some features of a
system, by mapping the states of a to a smaller set. The goal of abstraction is to
preserve counterexamples to specifications while bringing down the complexity
of model checking. Abstractions can be thought of as equivalence relations over
states and an abstract state space is generated by expanding the relevant transi-
tions that are enabled in the equivalence class. In this sense abstraction includes
also methods such as symmetry [5]. Abstractions have been combined with par-
tial order reduction methods both in the early literature and more recently.
Significant synergistic benefits between abstraction and reduction was gained
with a relaxed zone abstraction of timed automata [11]. In [1], partial order
reduction was combined with an abstraction that replaces bisimilar states with
a common representative. We discuss the result in this article.

We take the view in this article that transitions of systems are inherently
deterministic, i.e., each transition has a unique outcome. We use the term firing
for the execution of a single transition. Abstraction may then result in nonde-
terminism, because an abstraction may not distinguish between two states from
which a given transition is fired, while still differentiating between the states
that result when the transition is fired.
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The interpretation of the transitions from a semantic standpoint is done
by associating transitions with actions. Several transitions may be associated
with she same action, and this gives rise to the concept of operational (non)
determinism, which refers to whether the external behavior of the system is
deterministic. The relationship between operational determinism and abstraction
is a complicated one, and we provide some insights on the issue in this article.

This article is organized so that we first explore a general theory of tran-
sition systems in Sect. 2, which gives the ground theory and semantic models,
and also some results regarding determinism. Section 3 defines abstractions and
abstract state spaces, and we prove that general abstractions behave monoto-
nously only with linear time semantic models that are not significantly stronger
than traces and divergence traces. Then, a state-of-the art version of stubborn
sets for preservation of safety properties and some divergence properties are
given in Sect.4. We also discuss some static relations of transitions that can be
used for the computation of stubborn sets.

Section 5 provides results about how stubborn sets can be combined with
abstraction. We provide a few theorems for certain classes of abstractions, to
show how relations for computing the stubborn sets generalize for the abstract
state spaces. We also provide some examples that show that the results do not
apply for abstractions in general.

The last section provides some concluding remarks and outlines future work.

2 Theoretical Preliminaries

We consider a system where transitions operate on a collection of n variables
with domains X1, ..., X,. The domains will in most cases be numerable, but this
need not be the case in general. For example, in the case of timed automata,
clocks can assume non-negative real values. We denote the set of syntactically
possible states by X = X7 x -+ x X,,.

A transition is a pair (g, e), where g : X — {true, false} is called a guard and
e: X — X is called an effect. The set of transitions of the system is denoted
with 7.

The initial value of a system is denoted & € X. We call the tuple (X,7,%) a
system description, or simply a system.

The execution semantics of a system are defined over labeled transition sys-
tems (LTSs).

Definition 1 (LTS-unfolding). An LTS is a 4-tuple (S,7T,A,5), where S is
a set of states, A C S x 7T xS is a set of semantic transitions, and § € S is
the initial state.

Given a system M = (X,7T,%), the LTS-unfolding of the system M is given
as L= (5,7, A,3s) where

=Z.

§
- A and S are defined as the minimal sets such that
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1. €8, and
2. whenever (g,e) =t andt € T, x € S and g(x) = true, then e(x) € S and
(z,t,e(x)) € A.

We refer to the LTS-unfolding of the system as the concrete state space of M.

Given an LTS, we define the following notation for convenience. We write
s 5 s, when (s,t,s8') € A. s L, means that 3s' : s & s s 7tL> means that
s < does not hold. For a sequence titg---t, € T* s Lt o means that
3sg,...,8, such that s = so As’ = s, and, for 0 < i < n, s;_1 iR s;. When
we write sg SN Sn, We let s; for 0 < i < n, denote the state such that
so 28 5, The set en(s) = {t € T|s 5} refers to transitions enabled at s and
dis(s) = T\ en(s) refers to actions disabled at s.

Because an effect of a transition is a function, a concrete state space is always
deterministic, i.e., if s — s' and s = s”, then s’ = s”.

The properties of the system are determined as behaviours interpreted over
a set of symbols X, called actions or events. We assume that a mapping [ :
T — X U {e} is given and fixed, and extended to X* in the usual manner by
concatenating, i.e., for I(t; - --t,) = l(t1)l(t2) - - - I(t,), and € denotes the empty
string. We write s = s’ when there are transitions t1, . .., t, such that s RZSNY
Ity ty) = 0.

In keeping with tradition, when there is some ¢t € T such that [(¢) = a and
s 5 s', we also write s — ', except when a = ¢, when we write s — s’. We
refer to such transitions as 7-transitions or invisible transitions. We write o < p
if o is a prefix of p and o < p if it is a proper prefix.

A semantic model is an equivalence or pre-order relation for systems or LTSs.
For the purpose of this article, we consider semantics over LTSs. Two systems
are considered equivalent if and only if their concrete state spaces are equivalent.

There are several semantic models which can be considered, we shall con-
sider only a few most relevant. Note that we restrict this study to linear time
properties. The sets of traces, divergence traces, failures, and stable failures of
an LTS are defined as:

Tr(L)={ce X |}

Divtr(L) ={c € £* |Is:5 > s5As i>}

Mindiv(L) ={o € Divtr(L) | Vp < o : p ¢ Divtr(L)}
Fail(L)={(0,F) € * x2¥ | 3s: 8 2 s AVa € F: (s =)}
Sfail(L)={(0,F) € * x2¥ |35: 82 sAVac FU{r}: (s 1)}
CSP(L) = Sfail(L) U{(0,X) | 3p: p < o A p € Divtr(L) A X € 2%}

The CSP-set is known as the failures-divergences-model, which is named like
this as it is commonly associated with the process-algebra CSP [18]. It preserves
Sfail up to minimal divergence traces, and all divergence traces are extended with
maximal behaviour in terms of Sfail. It is also worth to mention the so called
CFFD-equivalence [24], which preserves infinite traces, Sfail, and Divtr. It also



Abstractions for Transition Systems with Applications to Stubborn Sets 107

preserves, under suitable interpretation, all linear temporal logic properties of a
system. A comprehensive survey of different semantic models and epistemological
considerations behind them can be found in [26].

Let Ly and Lo be LTSs. We write L1 Cv, Lo if and only if Tr(L1) C (La).
For the other semantic sets L1y CTx Lo is defined analogously. We also write
Ll EX,Y L2 to mean L1 EX L2 /\Ll Cy L2 If Ll EX L2 and L2 EX Ll, we say
that Ly and Ly are X-equivalent, and write L1 =x Lo. We also write M; Cx Mo
if and only Ly Ex Lo, where L; and Ly are concrete state spaces of M; and
Ms;. We abuse the notation slightly by writing Tr(s) = {0 | s =} and s Cx s
for states analogously.

We distinguish between determinism of the transition system, and operational
determinism, i.e. determinism from the point of view of the actions it performs.
Operational determinism, also known as determinacy [12,16] is defined as fol-
lows.

Definition 2. An LTS L = (S,7,A4,§) is operationally deterministic if and
only if for all traces o, if § = s, and § = sq, then

1. For each a€eX, s = zf and only if so =, and

2. s1 —— if and only if s5 —.

Except for the treatment of divergences, all the semantic equivalences between

trace + divergence trace equivalence and divergence sensitive branching bisimu-

lation collapse into one equivalence for operationally deterministic LTSs [6,12].
The following theorem is evident.

Theorem 1. For every LTS L, there exists an operationally deterministic Lp
such that L =1 piwr Lp-

For trace equivalence the theorem is well-known, and for finite LTSs a simple
variant of the block-splitting algorithm produces exactly the equivalent LTS. For
divergence traces, it is sufficient to store a local 7-loop in diverging states.

We provide a significant strengthening of [12, Corollary 1]. The following
lemma applies in the absence of divergences.

Lemma 1. Assume there are no divergences and Ly =pay Lo. Then Ly is oper-
ationally deterministic if and only if Lo is.

Proof. Let §; = s1 in Ly. Now, there must be a state sy of Lo such that §5 = so,
due to trace equivalence, which is implied by Fail-equivalence. Assume that L
is operationally deterministic and denote by Fi = {a € X | =(s; =)} and
Fy ={a € ¥ | =(sy =)}. F