
Concurrency, Security, 
and Puzzles

Fe
st

sc
hr

ift
LN

CS
 1

01
60

Essays Dedicated to Andrew William Roscoe
on the Occasion of His 60th Birthday

 123

Thomas Gibson-Robinson
Philippa Hopcroft
Ranko Lazic (Eds.)

Concurrency

Security

Puzzles



Lecture Notes in Computer Science 10160

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany



More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408


Thomas Gibson-Robinson • Philippa Hopcroft
Ranko Lazić (Eds.)

Concurrency, Security,
and Puzzles
Essays Dedicated to Andrew William Roscoe
on the Occasion of His 60th Birthday

123



Editors
Thomas Gibson-Robinson
University of Oxford
Oxford
UK

Philippa Hopcroft
University of Oxford
Oxford
UK

Ranko Lazić
University of Warwick
Coventry
UK

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-51045-3 ISBN 978-3-319-51046-0 (eBook)
DOI 10.1007/978-3-319-51046-0

Library of Congress Control Number: 2016960194

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Cover illustration: Self-portrait of the honoree.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland



Bill Roscoe working in University College, Oxford in 1979.
Taken by Coby Roscoe.



Preface

This volume contains papers written in honour of A.W. Roscoe, better known as Bill
Roscoe, on the occasion of his 60th birthday. Bill was born in Dundee and went on to
read Mathematics at University College, Oxford (Univ) in 1975, achieving the top first.
Bill’s main tutors at Oxford were Michael Collins and Gordon Screaton, both of whom
have had huge influences on his life and career. Remarkably, Bill has never left Univ,
and is currently a Senior Research Fellow at the college, having previously been a
College Lecturer and a Tutorial Fellow.

After completing his undergraduate degree, Bill completed a DPhil at Oxford under
the supervision of Professor Sir Tony Hoare. Bill’s thesis was on the mathematical
foundations of Communicating Sequential Processes (CSP), a topic to which he has
become synonymous and that has come to dominate his research career. His early work
on CSP in the 1980s, together with Steve Brookes and others, focused on formally
defining the mathematical foundations of CSP, and resulted in the development of the
form of CSP used today. More widely, Bill has made huge contributions to the
understanding of concurrency, as demonstrated by the fact that his first textbook on the
subject, The Theory and Practice of Concurrency, has over 2,000 citations. He is
undoubtably one of the leading figures worldwide in the area of process algebras. Bill’s
research interests are not only confined to Computer Science; he also published a
number of papers on topology, leading to an Erdös number of 2.

Bill has been the driving force behind the development of FDR, the CSP refinement
checker, since its inception in the early 1990s. This also involved the setting up of the
first company that he was involved in, Formal Systems (Europe) Limited. Bill is not
only the most ardent user of FDR but has also made considerable contributions to the
ideas behind FDR; most notably in determining how to efficiently perform refinement
checking, and to FDR’s compression functions. He has also built various tools to
translate other languages into CSP for analysis using FDR, including one for analysing
simple imperative programs, and another for analysing Statecharts.

Bill’s passion for theory is matched with an equal desire to see his research make an
impact in practice by solving industrial challenges. One of Bill’s (many) remarkable
qualities is his ability to deal with the details of analysing a horrendously combina-
torially complex system in his head, even while performing at a board. He became
known by some of his industrial partners as the “Professor of Difficult Sums”, as he is
the go-to person for fiendish challenges! Bill has enjoyed numerous fruitful collabo-
rations with industry partners and government agencies throughout his career; for
example, with Draper, Inmos, U.S. Office of Naval Research, and QinetiQ (and its
previous versions). One of his early collaborations with Inmos on the verification of the
floating-point unit on the T800 transputer, led to a Queen’s Award in 1990. These
collaborations have proven to be a stimulating influence on Bill’s research over the



years, as is demonstrated to this day by his exciting research projects, which combine
theory and practice in order to tackle the escalating costs of software development.

Bill is known for his love of solving puzzles using CSP and FDR. One of Bill’s first
papers was on this topic, and involved solving the so-called trains problem, where
trains have to be moved to the correct sheds over a predetermined configuration of
tracks. He later wrote a practical to accompany the undergraduate course in Concur-
rency at Oxford that required students to solve this problem, which is still in use today.
He is particularly proud of the fact that FDR managed to find a shorter solution than
previously known to a variant of the puzzle. Bill’s passion for solving puzzles using
CSP and FDR extends over many well-known examples and has become so
well-established that they are now used as standard benchmarks for FDR. Indeed, he
evaluates all of his new hardware on the basis of how quickly it can master his standard
peg solitaire script!

In the mid-1990s Bill became involved in using CSP to analyse the security
properties of systems. He first worked on analysing security protocols using CSP and
FDR, along with Gavin Lowe amongst others. This work led to FDR becoming widely
used as a protocol analysis tool, and also led to many advances in FDR particularly
enhancing its scalability. He also worked on information flow, and developed one
of the few definitions of non-interference that deals adequately with refinement. Lately,
Bill has worked on human-interactive security protocols that allow secure networks to
be established using non-fakable information that can be exchanged between humans.
This technology has industrial applications such as mobile payments, medical data
exchange, and telephony.

Bill’s research record is matched by an astonishing track record of leadership and
administration within the University of Oxford. Bill took over as Head of the Computer
Laboratory at Oxford in 2003, and over a ten-year period led the department to nearly
triple in size. His ambitions for the department were perhaps best illustrated in 2011,
when he oversaw the change in name of the department, from the Computer Laboratory
to the Department of Computer Science. This change in name clearly signalled to the
world that the department was now intent on being a world-leading department of
computer science — a status that has subsequently been confirmed by many third-party
rankings. (Just before we went to press, the Times Higher Education published its first
ever ranking of worldwide computer science departments, placing Oxford third in the
world overall, and first in the UK.) In terms of scale and breadth of research interests,
the present Department of Computer Science bears very little resemblance to the
Computer Laboratory that Bill joined nearly 40 years ago; but in terms of quality, as
these rankings clearly testify, the Department remains world class.

Bill has also been involved in the administration of Univ since he was appointed a
tutorial fellow in 1983. Notably, he was appointed as a tutorial fellow in Computer
Science two years prior to the degree launching! Bill therefore taught Mathematics for
the first two years of his fellowship, which was a major contributor to the cohesion
between Computer Science and Mathematics at Univ, something that continues to this
day.

VIII Preface



No account of Bill would be complete without the mention of his wife Coby, whom
he met during his student days at Univ. Their story began in college over a computer
and an accounting system in need of some software. The rest is history, filled with
amazing stories of their travels around the world together.

November 2016 Thomas Gibson-Robinson
Philippa Hopcroft

Ranko Lazić

Preface IX



Bill Roscoe, on His 60th Birthday

Tony Hoare

Microsoft Research, Cambridge, UK

Happy Birthday, Bill! And many happy returns of the day! And not just of today.
I wish you also many returns of the earlier happy days that you and I have spent
together as friends and colleagues. For the benefit of our more recent mutual friends
and colleagues assembled here, may I recall with gratitude and pleasure some of your
notable earlier contributions to the development of Computer Science at Oxford?

In 1978, Bill was awarded the Junior Mathematical Prize for top marks in the Final
Examination of his Bachelor’s degree at Oxford. Nevertheless, he bravely registered as
a Doctoral student in the Programming Research group (PRG), which was then pop-
ulated by just two academics (Joe Stoy and myself) and two programmers (Malcolm
Harper and Andrew Newman). Together with a fellow student Steve Brookes, he
embarked on a search for a formal semantics for Communicating Sequential Processes
(CSP). This was a new theoretical concurrent programming language which I had
designed and published before arrival at Oxford. Indeed, the formalisation of its
semantics was a strong part of my motive for moving to Oxford.

An early assignment that I gave to Bill and Steve was to formalise the algebraic
laws which governed reasoning about programs expressed in CSP. The next week they
came back to ask a question: What were the laws that I wanted? I had no idea how to
answer that question. So I threw it straight back at them, as their next assignment, to tell
me what laws I should be wanting. To do that we started on an investigation into a
mathematical model (then known as a denotational semantics) which the laws would
have to satisfy.

On the basis of this model, Bill and Steve proved a highly elegant collection of
algebraic laws, entirely to my satisfaction. Bill also formalised and proved the cor-
rectness of an abstract implementation of the language, using Gordon Plotkin’s notion
of a Structural Operational Semantics. The proof of the consistency of a model with its
algebraic laws and its operational implementations has been the inspiration for my own
life’s work on Unifying Theories of Programming right up to the present day.

On graduation in 1982, Bill obtained an IBM Research Fellowship of the Royal
Society, and continued work of the CSP model and its applications. At the same time he
pursued his previous interest in Topology. In 1983, he accepted the offer of a University
Lectureship in Computation at the PRG. He immediately established a close collabo-
ration with David May, the Chief Designer of the Inmos Transputer and its assembly
language occam. He led a joint project to check the design of the Inmos floating point
unit for their transputer chip, whose architecture was explicitly based on CSP.

This project won, jointly for Inmos and the PRG, the Queen’s Award for Tech-
nological Achievement, 1990. The award was an enormous boost for the PRG, as a
counterbalance to its established reputation as one of the most theoretical Computer
Science Departments in the UK. Further boosts were Bill’s success between 1985 and



1994 in winning research grants totalling around $1.5 million in research grants from
US sources, and about £0.25 million from UK sources.

I am delighted to exploit this occasion to acknowledge in public my deep personal
gratitude for all Bill’s help to me personally in fulfilling my duties and achieving my
aims for the development of Computer Science at Oxford. And on a more personal
level, he was the organiser of my own 60th birthday party, and my retirement sym-
posium in 1999, and another symposium organised jointly with Cliff Jones and Ken
Wood for my 75th birthday in Cambridge. He edited the proceedings of the two
symposia, and they were presented to me as festschrifts.

Let me conclude by turning again to the earlier days. When Bill’s external examiner
Peter Cameron received a copy of Bill’s Doctoral Thesis, he phoned me with the rueful
comment that it contained sufficient material to fill three successful theses of the more
normal kind. I was able to console him that he needed to examine only one of them,
and he could select whichever one he wished.

Now it is my rueful comment that Bill’s lifetime achievement would be enough to
fill three normal lifetimes; and in this address, I have selected only on the early years of
just one of them. They have given me a lot to thank him for. During this symposium, I
greatly look forward to hearing more up-to-date accounts of the many facets of his later
achievement.

XII T. Hoare



A Tribute to Bill Roscoe, on the Occasion
of His 60th Birthday

Stephen Brookes

Department of Computer Science, Carnegie Mellon University, Pittsburgh, USA

I first met Bill Roscoe as an undergrad at University College in 1975. We were both
studying Mathematics, and began to gravitate towards Logic and Computer Science in
our second and third years. Later we became graduate students together, and we have
known each other as friends and colleagues for over 40 years.

At Univ Bill came across initially as a rather shy and enigmatic Scotsman, but we
became friends soon, despite his insistence on introducing me to the Poetic Gems of
William McGonagall, oft cited as the “worst poet in the world” and (like Bill) hailing
from Dundee. Bill has a warm sense of humor (I have lived in the USA long enough
that my spell checker no longer corrects back to UK spelling) and I’m sure he agrees
with the general assessment of McGonagall’s (lack of) talent. Bill also turns out to have
a highly competitive (not to say vicious) approach to croquet, which we discovered on
the lawns of Logic Lane and Stavertonia. He is also an excellent chef, although he does
tend to use every pot and pan in the kitchen.

Academically, it soon became clear that Bill was a star: in 1978 he achieved the top
all-round university-wide score in Finals. We both stayed on for graduate studies at the
Programming Research Group, where we got started with Tony Hoare, who was
looking for a mathematical semantics for CSP. Looking back, I would characterize
those years at the PRG as an incredibly satisfying and formative period for both of us.
Under Tony’s gentle guidance, we began to find our own feet as researchers. This was a
time marked by failures and divergences, as we tried out ideas, learned what worked
and what did not. Our dissertations emerged from this collaborative effort, culminating
in our first journal paper (“A Theory of Communicating Sequential Processes”, known
to us as HBR, published in J. ACM, July 1984). This work also led ultimately to the
foundations of the FDR model checker, which Bill and his team developed into a
highly effective tool with many practical applications. We also travelled together to
attend our first international conference, (ICALP, Noordwijkerhout, July 1980).
Building on our Ph.D. foundations, Bill and I organized a research conference (Seminar
on Concurrency, July 1984), together with Glynn Winskel. The failures/divergences
model, CSP, and FDR form a lifelong thread connecting us, even as our own research
paths diverged into many new directions. It is always rewarding to look back on past
achievements and reflect. It is especially pleasing to recall many happy days of working
with Bill (and Tony), and to realize that those early days were when we found our own
voices and learned to explore and experiment.

As grad students we both enjoyed a couple of years as Lecturers at Univ. In the
following years, I moved abroad and Bill travelled briefly across the High to St. Edmund
Hall, then back to Univ. Bill came to Florida for my wedding (to Lynn) in 1984, and



Lynn and I came back to Oxford a few years later, when Bill and Coby got married. We
have remained fast friends and colleagues. Bill has had an outstanding career and he
continues to shine as a researcher, author, advisor, and even administrator. His many
graduate students have gone on to establish themselves in academia and industry. He
can look back proudly on his own achievements and those of his advisees.

Bill never ceases to remind me that I am older than he is (albeit by less than a
month), and that my own hair became grey faster than his. So it is appropriate for me to
welcome Bill to the over-60’s generation, even though he’ll always be a couple of
weeks behind me. I look forward to many more years of research, and may more years
of friendship. I end with the following paraphrase in echo of McGonagall:

This is Bill’s first 60th Birthday year,

And will be the only one, I rather fear:

Therefore, sound drums and trumpets with cheer,

Until the echoes are heard o’er land, sea, email and Twitter.

XIV S. Brookes



Herding Cats, Oxford Style

Michael Wooldridge

Department of Computer Science, University of Oxford, Oxford, UK

Managing academics, so the saying goes, is like trying to herd cats. Academic
departments, by and large, are not like closely managed small businesses, but more like
a collection of cottage industries, each only dimly aware that they are part of a larger
activity (the university). It often comes as a complete surprise to outsiders, who
imagine that as employees of a university will naturally owe their allegiance to their
employer, but the nature of academic life is such that many academics feel their
primary allegiance is not to their university, but to their discipline (maths, physics,
computer science, and so on). And as if this situation were not strange enough, at
Oxford, we have colleges thrown in the mix as well. Academic freedom means that we
feel entirely comfortable saying “no” to those who, technically speaking, are our
bosses. For good measure, we often like to point out the foolishness of their ways in
detail, perhaps in the hope that they will not bother us again. Those benighted souls
who agree to be the head of an academic department are burdened with responsibility
by the bucketload, but precious little actual power to effect change. Little wonder that
many academic heads retreat to their offices, keep their heads down, and try to get
through their sentence creating as little fuss as possible.

I have been a member of the UK academic community for more than a quarter of a
century. I have spent a great deal of time over that period studying the dynamics of UK
computer science departments. Over that period, there has been a lot of change. Some
small departments have grown big; some weak departments have grown strong; and
some formerly strong departments have plummeted in quality. Naturally, I am curious
about what drives the successes, and what factors lead to the failures.

The recipe seems to be relatively simple, but surprisingly difficult to get right. It
certainly isn’t corporate management techniques that drives academic excellence. Key
performance indicators, extensive documentary paper trails, strategic planning away
days, and all the rest of it certainly has its place, but you can diligently do all that stuff
and more, and still remain resolutely mediocre. There is plenty of evidence of that, not
just in the UK academic sector, but in universities across the world.

So what is it, that drives success? Colleagues who have read so far will no doubt be
pleased to hear my firm rejection of the culture of managerialism, but they may be less
pleased to hear what I am about to say next. Success stories in academia, as elsewhere,
don’t happen by accident. Wherever I see success, I see evidence of leadership.

Leadership and management, of course, are not the same thing; academic leader-
ship is hard to define. But it certainly involves having a clear and realistic vision of
where you are going; a balanced understanding of your weaknesses, and those areas
that you can realistically make progress; the ability to make your case, and have
difficult conversations with those who don’t get the point; a clear understanding of



academic excellence, and a willingness to support it; and above all, a determination to
keep hold of what universities are really all about: research and teaching.

Which brings me to Oxford, and to Bill Roscoe.
It is approaching 15 years since Bill took over as Head of Department of Computer

Science at the University of Oxford. He certainly did not take over a weak department:
there was excellence aplenty. But, I think it is fair to say, the department at that time was
relatively small, and narrowly focussed. Bill took on the challenge of transforming the
department in terms of its scale and breadth of activity. Transformative change is not an
easy thing to accomplish, even under the best of circumstances. But the nature of Oxford
as a collegiate university makes it tremendously difficult to effect transformative change
quickly. Decisions at Oxford usually require broad consensus from large and diverse
constituencies, and computer science as a relatively new subject has relatively little
presence in the colleges and ancient decision-making bodies of the university.

Bill’s achievements as Head of Department are, therefore, genuinely remarkable.
Oxford’s computer science department has grown at a phenomenal rate, and now
counts nearly 75 academics in its roster of full-time academic staff. In 2003, the
department graduated just three DPhil students; this year we will graduate nearly 50. In
the academic year 2014–2015, the department generated more research grant income
than in the entire period 2001–2008; we have grown from a pool of about 20 post-
doctoral researchers to nearly 150 currently. On every meaningful metric that I can
think of, the department has surged ahead.

As an outsider, I watched Oxford’s growth with interest, and was deeply impressed.
I wanted to join the party, and was fortunate enough, in 2012, to be able to join the fun.
This change did not happen by accident. It was not handed to us on a plate. It was not
easy. It was not simple. It did not happen overnight. It was the result of a committed,
decade-long process, under which the department had determined, focussed leadership,
driven to build and improve. It was a tiring, and I daresay at times dispiriting business. It
would have been very easy to walk away. But the results, I believe, speak for them-
selves. Bill was not the father of the Department of Computer Science, but he is, I
believe, the father of the department as it stands today – and the department is, I honestly
believe, the most exciting place in Europe to be a computer scientist right now. Those of
us in the department, and the University of Oxford itself, owe Bill a tremendous debt.
The department is clearly a labour of love for Bill; and even ignoring all Bill’s other
work as a researcher and entrepreneur, it would be a fitting legacy for a career.

XVI M. Wooldridge



Contents

Stealthy Protocols: Metrics and Open Problems . . . . . . . . . . . . . . . . . . . . . 1
Olga Chen, Catherine Meadows, and Gautam Trivedi

A Specification Theory of Real-Time Processes . . . . . . . . . . . . . . . . . . . . . 18
Chris Chilton, Marta Kwiatkowska, Faron Moller, and Xu Wang

Towards Verification of Cyber-Physical Systems with UTP
and Isabelle/HOL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Simon Foster and Jim Woodcock

FDR: From Theory to Industrial Application . . . . . . . . . . . . . . . . . . . . . . . 65
Thomas Gibson-Robinson, Guy Broadfoot, Gustavo Carvalho,
Philippa Hopcroft, Gavin Lowe, Sidney Nogueira, Colin O’Halloran,
and Augusto Sampaio

Information Flow, Distributed Systems, and Refinement, by Example . . . . . . 88
Joshua D. Guttman

Abstractions for Transition Systems with Applications to Stubborn Sets. . . . . 104
Henri Hansen

A Hybrid Relational Modelling Language . . . . . . . . . . . . . . . . . . . . . . . . . 124
He Jifeng and Li Qin

What Makes Petri Nets Harder to Verify: Stack or Data? . . . . . . . . . . . . . . . 144
Ranko Lazić and Patrick Totzke

Analysing Lock-Free Linearizable Datatypes Using CSP . . . . . . . . . . . . . . . 162
Gavin Lowe

Discrete Random Variables Over Domains, Revisited . . . . . . . . . . . . . . . . . 185
Michael Mislove

A Demonic Lattice of Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Carroll Morgan

A Brief History of Security Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
Peter Y.A. Ryan

More Stubborn Set Methods for Process Algebras . . . . . . . . . . . . . . . . . . . . 246
Antti Valmari

http://dx.doi.org/10.1007/978-3-319-51046-0_1
http://dx.doi.org/10.1007/978-3-319-51046-0_2
http://dx.doi.org/10.1007/978-3-319-51046-0_3
http://dx.doi.org/10.1007/978-3-319-51046-0_3
http://dx.doi.org/10.1007/978-3-319-51046-0_4
http://dx.doi.org/10.1007/978-3-319-51046-0_5
http://dx.doi.org/10.1007/978-3-319-51046-0_6
http://dx.doi.org/10.1007/978-3-319-51046-0_7
http://dx.doi.org/10.1007/978-3-319-51046-0_8
http://dx.doi.org/10.1007/978-3-319-51046-0_9
http://dx.doi.org/10.1007/978-3-319-51046-0_10
http://dx.doi.org/10.1007/978-3-319-51046-0_11
http://dx.doi.org/10.1007/978-3-319-51046-0_12
http://dx.doi.org/10.1007/978-3-319-51046-0_13


A Branching Time Model of CSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
Rob van Glabbeek

Virtualization Based Development. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
Jay Yantchev and Atanas Parashkevov

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319

XVIII Contents

http://dx.doi.org/10.1007/978-3-319-51046-0_14
http://dx.doi.org/10.1007/978-3-319-51046-0_15


Stealthy Protocols: Metrics and Open Problems

Olga Chen, Catherine Meadows(B), and Gautam Trivedi

U.S. Naval Research Laboratory, Code 5540, Washington, DC 20375, USA
{olga.chen,catherine.meadows,gautam.trivedi}@nrl.navy.mil

Abstract. This paper is a survey of both methods that could be used
to support stealthy communication over both wired and wireless net-
works and techniques for evaluating them. By stealthy communication
we mean communication using channels that guarantee that the nature
of the communication, or even the fact that communication is taking
place at all, is hidden. Although stealthy communication and informa-
tion hiding have been studied from a number of different points of view,
e.g. image steganography, network covert channels, and covert wireless
communication, not much has been done to tie these different threads
together and attempt to see how the different branches of stealthy com-
munication research can inform each other. In this paper we take the first
steps to remedying this deficiency. We identify open problems, point out
gaps, and indicate directions for further research.

1 Introduction

Over the years, there has been a substantial amount of research on hidden com-
munication in computer systems. This started with the study of covert channels
within computer systems, in particular multi-level secure systems, and has con-
tinued in such areas as image steganography, network covert channels, and covert
wireless communication. This raises the question: how feasible is stealthy com-
munication? By stealthy communication we mean communication that is sent
over channels in a way only detectable by the intended recipient. By channel
we mean any means of communicating information using any layer of a protocol
stack. This is closely related to information hiding and indeed can be consid-
ered a subset of it. However, we concentrate on using features of communication
protocols as the cover source, thus ruling out areas such as image steganography.

The first thing needed in order to build stealthy communication tools, or to
detect stealthy communication, is a good understanding of the channels available
to us. What properties are required in order for channels to support stealthy
communication? Can we detect when a channel is no longer suitable? Conversely,
if we want to detect stealthy communication, how can we take advantage of the
characteristics of the channels being used?

Obtaining an answer to these questions requires a careful study of available
stealthy channels and their properties. For this we can take advantage of the
research that has gone before. However, one thing needed is methods for com-
paring different channels that may make use of different communications media.
c© Springer International Publishing AG 2017
T. Gibson-Robinson et al. (Eds.): Roscoe Festschrift, LNCS 10160, pp. 1–17, 2017.
DOI: 10.1007/978-3-319-51046-0 1



2 O. Chen et al.

Unfortunately, there has not been much cross-fertilization between the different
areas of research, perhaps because of the very different natures of the different
media used. This makes it difficult to compare the features of different channels
or to determine what general principals apply. Thus in this paper we provide
the groundwork for such cross-fertilization by exploring the various techniques
available for stealthy communication, identifying the issues that affect it, and
finally, using our observations to identify areas where further research is needed.

The paper is organized as follows. We first recall the basic framework used to
reason about stealthy communication, a slightly modified version of the frame-
work developed at the first Information Hiding Workshop. We then give a brief
overview of the known techniques for stealthy communication. We next give an
overview of metrics for stealthy communication, and discuss the different types
of stealthy technologies with respect to these metrics. We then discuss various
features of cover and stego channels that can affect stealthy communication, and
use this to suggest desired features of potential future metrics. We also discuss
results concerning metrics for image steganography and other applications could
be useful if they were also found to hold for network channels. We conclude with
a list of open problems.

2 General Framework

We use the general framework developed during the first Information Hiding
Workshop [35], with some minor modifications. This involves a communication
channel and three principals:

– Alice, who is sending information over the channel;
– Bob, who is receiving information over the channel from Alice, and;
– The Warden, who is watching the channel and is attempting to determine

whether or not Alice is transmitting any information to Bob. An active warden
may try to interfere with the communication by adding noise, whereas a passive
warden can only watch the communications without altering them in any
way [46].

Alice and Bob could act as originators of the communication or could possi-
bly manipulate an already-existing overt communication channel between unsus-
pecting parties.

Alice communicates with Bob by modifying a set of variables that both Bob
and the Warden may observe. The Warden’s job is to determine whether or not
Alice is sending data to Bob. Bob’s job is to determine the information that Alice
is sending to him (the question of Bob’s determining whether Alice is sending is
another problem outside the scope of this framework).

There are also several types of sources:

– Cover source. This is the source without any encoded data from Alice.
– Stego source. This is the result of embedding Alice’s information in the cover

source.



Stealthy Protocols: Metrics and Open Problems 3

There are also two types of noise. Both are added to the stego source after it
leaves Alice. One is added to the channel between Alice and Bob. The other is
added to the channel between Alice and the Warden. Note that some of the noise
on the channel between Alice and Bob may have been added (at least partially)
by the Warden. In this paper we will generally assume that the Warden does
not add noise, as we are more interested at this point in the stealthy techniques
themselves than in countermeasures.

3 Overview of Methods

Network covert channels can occur at all layers of the protocol stack. At the
higher layers, covert channels can occur in any type of protocol, but at the lower
layers, in particular the physical layer, work has concentrated mostly on wireless
protocols. Here the complexity of management of the physical layer appears to
offer more opportunities for exploiting covert channels. Thus, in this section we
consider higher layer and physical layer protocols separately.

3.1 Higher Layer Network Covert Channels

Covert channels are traditionally divided into two types: storage channels, in
which Alice sends information to Bob by modifying the attributes of the data she
sends along the legitimate channel, and timing channels, in which she modifies
the timing of the events that Bob observes. Both types of channels occur in
higher layer protocols, and we consider them below.

Exploiting Storage Channels. Protocols often carry random or unpredictable
information as part of their metadata. In this case it may be possible to hide
data in these fields. If the metadata is random one can replace it with encrypted
data, which may be assumed to be indistinguishable from random. If it is not
completely random, the problem becomes somewhat harder; one must determine
the probability distribution of the metadata, and replace it with (encrypted) data
whose distribution is indistinguishable from that of the genuine metadata.

Storage covert channels can utilize unused fields or bits in the packet headers.
For example, Fisk et al. in [14] suggest using reserved bits and data fields when
RST = 1 in TCP packets as potential covert channels. They also suggest that
data can be hidden in timestamp, address flag or unnecessary fields (such as
TOS or DF) of IP packets or in the code field (when sending just the type) and
unused bits of ICMP packets.

Padding TCP or IP headers to 4-byte boundaries [14] as well as padding
IPv6 headers can be used as potential covert storage channels.

Some protocols, such as IPv6, also contain header extensions. Lucena et al.
[28] show that these extension fields, such as Authentication Header (AH) or
Encapsulating Security Payload (ESP), can be used for this purpose.

Storage covert channels can also utilize existing, currently-used fields in
packet headers. Fisk et al. [14] suggest a method of using TCP initial sequence



4 O. Chen et al.

number field as well as the checksum field in both TCP and UDP as covert chan-
nels. IP’s Time To Live (TTL) field as well as the equivalent IPv6 Hop Limit
field [28] can serve as additional examples of storage covert channels where infor-
mation is hidden in the metadata. The DNS protocol also has several fields that
can be used to send covert data. According to Davidoff et al. [12], such fields
as NULL, TXT, SVR, or MX could serve as excellent covert data sources. Van
Horenbeck [19] also presents a covert channel approach by integrating the covert
data into the HTTP request string.

Information can also be encoded in the length of the packets that Alice sends
to Bob. However, such techniques are vulnerable to deep packet inspection, and
so proper precautions must be taken. For example, Girling [17] proposed to
modify lengths of link layer frames in order to transmit covert data, but a similar
technique has also been proposed for TCP/IP/UDP packets by Lucena et al. [28].

Exploiting Timing Channels. Timing channels involving varying the time
it takes for bits to reach the receiver have many attractive features from the
point of view of stealthy communication. The delays can be made small enough
so that they do not affect the timing signature of a protocol, timing delays are
surprisingly robust against noise arising from further delays as traffic travels
along the internet, and the fact that the modified parameter, time, has only one
dimension makes it tractable to reason about timing channels mathematically,
and thus to develop detectors and tests for stealthiness.

Hiding Information in Packet Round Trip Delays. Some of the earliest work on
timing channels involved measurement of round trip delays between an inquiry
by Bob and a response by Alice. For example, Brumley and Boneh [7], showed
that timing channel attacks on cryptosystems can be performed over a network.
That is, the delays in response caused by side channels in cryptographic algo-
rithms are relatively unaffected by network noise. Since round trip measurements
require a challenge from Bob for each transmission by Alice, they are not really
appropriate for the sending of very long messages, but they point out that tim-
ing delays can be a robust method for transmitting information, even over the
Internet.

Hiding Information in Inter-Packet Arrival Times. The most popular timing
channel from the point of view of stealthy communication is the inter-packet
arrival channel, in which information is encoded in the length of the time between
packet arrivals. Unlike round-trip times, measuring inter-packet arrival delays
does not require further communication between Alice and Bob, thus increasing
both stealthiness and throughput.

Inter-packet arrival channels have appeared in various applications. They
have been proposed for the use in watermarking techniques both for intrusion
detection [44] and breaking anonymous communication systems [43]. The idea is
to attack schemes that hide the passage of packet streams through the Internet.
The attacker first watermarks the stream by altering the times between the



Stealthy Protocols: Metrics and Open Problems 5

packets according to some chosen pattern. The attacker can then trace the stream
as it travels through the Internet by checking the watermark. This watermark
turns out to be surprisingly resistant to noise introduced as it travels through
the network. Research on both defeating and hardening watermarking techniques
has led to a greater understanding of inter-packet arrival channels.

Inter-packet arrival times have also been studied from the point of view of
covert transmittal of information. In [38], Gaura, Molina, and Blaze show how
passwords gleaned via keyboard monitoring can be transmitted via inter-packet
arrival times and describe a tool, Jitterbug, that implements this. No attempt
however is made to provide stealthiness against a warden who is monitoring
the channel for covert inter-packet arrival time communication. This sparked an
interest in the exploitation of inter-packet arrival times as a stealthy form of
communication, and considerable work followed both on new schemes exploiting
inter-packet arrival times, as well as methods for detecting such covert commu-
nication.

In general, inter-packet arrival time schemes have been classified into two
types: passive schemes, in which modifications to the timing are made to a
sequence of received packets, and active schemes, in which an entirely new
sequences of packets are created. For the most part, active schemes have been
preferred to passive ones. This is because a passive scheme puts a time con-
straint on Alice. If she takes too long to produce a modified sequence, she will
slow down the delivery of the packets, and thus might be detected. Thus Jitter-
bug, a passive scheme, uses a very simple encoding method in which inter-packet
arrival times are only increased. On the other hand, with an active scheme, it is
possible to create sophisticated schemes that use the inverse distribution func-
tion to map an encrypted steganographic message to a sequence of inter-packet
arrival times whose distribution can be made identical to a given i.i.d. distribu-
tion. This approach is used, for example, by Sellke et al. [37] and Ahmadzadeh
and Agnew [2]. Methods that fall somewhere between the two extremes are also
available. For example, in Cabuk’s time-replay channel [8]. a sequence of packets
is captured, and the median 9f the inter-arrival times is sampled. The sequence
is then divided into partitions that are replayed, with a 1 encoded as an interval
between partitions above the median and a 0 encoded as an interval below the
median. As in Jitterbug, a real sequence in modified, but as in methods based
on the inverse distribution function, the sequence is sent all at once, instead of
times being modified as packets are received.

3.2 Wireless Physical Layer Channels

Wireless covert communications channels have been present and utilized long
before the advent of the Internet. In particular spread spectrum communications
techniques have been studied and implemented for over one hundred years [1].
The original intent of spread spectrum techniques such as Frequency Hopping
Spread Spectrum (FHSS) and Direct Sequence Spread Spectrum (DSSS) was to
ensure resilient radio communications in the presence of interference and jam-
ming. Spread spectrum techniques rely on spreading a signal of a given bandwidth



6 O. Chen et al.

over a much greater bandwidth. Such techniques result in a signal being transmit-
ted with a lower Signal to Noise Ratio (SNR), than would normally be required,
thus resulting in a signal with Low Probability of Detection (LPD) character-
istics, assuming the signal has been sufficiently spread [40]. We do not address
the specifics of spread spectrum systems as we do not consider these techniques
applicable to stealthy protocols for the purpose of this paper.

Apart from traditional spread spectrum communications techniques, which
are widely utilized in military communications, there are several other techniques
that can be used to covertly carry information. These techniques can utilize
physical layer characteristics (i.e. waveform and/or modulation) or link layer
protocols to hide information. As an example of the former, consider Orthogo-
nal Frequency Division Multiplexing (OFDM). In practical implementations of
OFDM waveforms, such as WiMAX and Long-Term Evolution (LTE), unused
blocks of subcarriers may be used to covertly carry information [18]. Such tech-
niques take advantage of white-spaces in the radio frequency (RF) spectrum to
carry information that only the intended recipient can detect. As an example of
the latter, specific fields of link layer protocols, such as IEEE 802.11 Wireless
Local Area Networks (WLAN) can be used to covertly carry data. Examples of
such covert channels are described in [15,36].

Other physical layer techniques have also been explored. In [45] the authors
propose an authentication scheme that superimposes a secret modulation on
waveforms without requiring additional bandwidth which in effect results in a
covert channel. A radio frequency watermarking scheme for OFDM waveforms
is proposed in [25]. The authors introduce the concept of constellation dithering
(CD), where watermark bits are mapped to a QPSK watermarking constellation
and spread using a Gaussian distributed spreading code, and baud dithering,
where a watermark is introduced by positive and negative cyclic time shifts over
the transmitted symbols. The authors proceed to derive the performance of such
schemes in Additive White Gaussian Noise (AWGN) channels.

In general, implementing covert communications over wireless communica-
tions channels presents a different set of advantages as well as disadvantages over
wired communications networks. In wired networks, care must be taken to ensure
that channels are not disrupted by network devices that lie in between the two
end points for the covert channel. In wireless covert channels, the range between
the two end points is limited only by the transmit power of the originating end
point and by the receiver. In wired networks, however, bit error rates can be neg-
ligible. The probability of the distant end successfully receiving data transmit-
ted by the originator is therefore quite high, if no intermediate nodes disrupt the
communications channel. In wireless communications channels, however, various
types of noise and interference (i.e., low SNR) can severely degrade channel capac-
ity. Indeed, one only has to refer to the Shannon-Hartley theorem to understand
the adverse impact of low SNR on channel capacity. The covert channel capac-
ity is thus highly dependent on the dynamic nature of wireless channels, where
frequency-selective fading channels can greatly impact the SNR.



Stealthy Protocols: Metrics and Open Problems 7

3.3 Characteristics of Network Covert Channels

Noise. We say that a channel is noisy if Alice’s communications to Bob can
be affected by noise on the channel. This is the case, for example, for methods
based on packet inter-arrival times. These inter-arrival times may change as the
packets travel through the network, thus adding noise to Alice’s signal.

We say that a method is noise-free if we assume that there is no noise on
the channel between Alice and the Warden (other than noise added by Alice
herself). Methods that hide information in channels whose integrity is protected
by other means, e.g. error-correcting codes, can be considered noise-free. Such is
the case, for example, for methods that hide information in protocol metadata.

We say that a method is noise-dependent if the security of the encoding
against the Warden depends (at least partially) on the noise in the channel
between Alice and the Warden. In many cases (e.g. packet inter-arrival times and
many of the physical layer covert channels), Alice’s ability to hide the fact that
she is communicating to Bob may depend on her ability to make her alterations
to the channel look like noise to the Warden. If the channel was typically not
noisy, it would be harder for Alice to take advantage of this.

Discrete vs. Continuous. A method is discrete or continuous depending upon
whether the channel Alice is exploiting is discrete or continuous. Methods based
on altering protocol metadata are generally discrete, and methods based on
timing channels are generally continuous. Continuous methods have the potential
advantage that Alice can convey additional information by varying the power
of her signal, and evade detection by the Warden by keeping the power of her
signal below a certain threshold. The method described by Lee et al. in [26] is an
example of the latter. Alice and Bob are assumed to have access to specialized
hardware that allows them to generate and detect extremely low-power signals
(that is, extremely small variations in timing) that are undetectable by the
Warden.

4 Stealthiness Metrics

In this section we consider the various metrics that can be used to evaluate
stealthy protocols. Since we are not only interested at the rate at which stealthy
protocols can deliver this information, but the degree to which they can do this
without being detected, we discuss not only traditional metrics for throughput
and capacity, but metrics for detectability as well. We also discuss how these
metrics can be combined.

In this section we draw heavily on previous work in image steganography.
Although the conditions found and methods used in image steganography differ
from those in network covert channels, image steganography is the area where
the most progress in metrics has been made. Thus we pay close attention to
results in this area and review them from the point of view their applicability
to network covert channels.



8 O. Chen et al.

4.1 Throughput and Capacity

The definition of throughput and capacity for stealthy channels is the same as
that for regular communication channels. However, the metrics used to approx-
imate them may depend on specific features of stealthy channels.

We define the throughput after time t as B(1 − BER)/t, where B is the
number of bits Alice sends from time 0 to time t, and BER is the bit error
rate. Probably the first to develop a throughput metric for stealthy protocols
was Girling [17], for noiseless storage channels. Assuming that 1 bit is encoded
in each B-byte block sent, the time to send a block is T , the time used by the
software independent of block size is S, the network protocol overhead per block
is N bytes, and the network speed is V bits per second, then the bandwidth of
the channel is V/(64(B + N) + S · V ).

We can also define the capacity of the channel between Alice and Bob in
the usual way, as the supremum over all possible distributions of Alice’s input
into the channel of the mutual information between Alice and Bob. Thus work
has been done on computing the capacities of different types of covert channels,
motivated originally by interest in managing covert channels in multi-level secure
systems, and more recently by concern about reducing side channels in hardware
and software. This is usually based on abstract models of the channels that
can be instantiated in a number of different ways. Research in this direction
began with Millen [29] who developed a formula for a simple model of a storage
channel where the data passed along the channel consisted of overt and covert
bits. Moskowitz and Miller computed bounds for noiseless timing channels where
the alphabet consists of times of different lengths [32], and for a noisy timing
channel whose alphabet has only two symbols [31]. Of particular interest is the
timed Z- channel whose capacity was estimated by Moskowitz et al. [30]. This
is a noisy channel whose alphabet consists of two time intervals, with noise that
can only increase the size of the interval, that is, to change a zero to a one, but
not vice versa. Such a scenario is of interest because it appears in many realistic
covert channel scenarios; indeed the NRL Pump [21] was designed to mitigate a
channel of this type.

4.2 Detectability

Detectability metrics measure the vulnerability to detection by the Warden of
a given embedding method. The detectability of an embedding method measure
the probability that the Warden guesses correctly, at a given point in the com-
munication, whether or not Alice is transmitting along the channel. That is, it
is α + β, where α is the probability of a true positive given the best possible
detector, and β is the probability of a true negative. There are several ways that
we can measure this.

For empirical studies, one can estimate a lower bound on detectability by run-
ning experiments with different detectors. The following two methods, discussed
in [24], are considered standard.



Stealthy Protocols: Metrics and Open Problems 9

1. Compute the area under the Receiver Operating Characteristic (ROC) curve
of a binary classifier for the presence or absence of payload (AUR), unnor-
malized so that AUR = 0.5 corresponds to a random detector and AUR = 1
to perfect detection. The ROC curve is obtained by plotting the true positive
rate against the false positive rate at various threshold settings.

2. Compute 1−PE , where PE = 1
2min(α + β) is minimum sum of false positive

and false negative rate errors for a binary classifier for the presence or absence
of payload.

It is also possible to use more sophisticated metrics based on experience with
multiple detectors. These metrics may not be efficient enough to use as real-time
detectors, but nevertheless may be practical for estimating the detectability of
an embedding method. Consider, for example, the Maximal Mean Discrepancy
(MMD) test in [24] to estimate the detectability of various embedding methods
of image steganography, based on the ratio of the size of the payload to the
size of the cover source. This test takes as input various features of the images
that have been useful in the past for steganalysis, thus allowing one to take
advantage of the history of the behavior of different kinds of detectors. MMD
is not efficient enough to serve as a detector itself, but still can be useful in
measuring detectability.

In Cachin’s seminal paper [10] on “An Information- Theoretic Model for
Steganography”, the probability of the Warden’s guessing correctly whether or
not Alice is transmitting is estimated using the relative entropy between the cover
and the stego source. This is used, in particular, to prove results about perfectly
secure steganographic systems. However, according to an analysis by Pevný et al.
in [34] none of the metrics derived from relative entropy appear to suitable for
evaluating experimental results from image steganography. According to [34],
this is a result of the high dimensionality d of the data and relatively small
sample size D. They note that the k-nearest-neighbors (kNN) algorithm [6,41]
is the only relative entropy estimator that generally scales well for the high
dimensions required for image steganography, but it turns out to be inaccurate
for large d and small D due to difficulty in estimating cross-entropy.

However, relative entropy does appear to be a useful source of metrics for
network timing channels, as we shall see below.

Detectability Metrics for Network Timing Channels. Although their has been a
substantial amount of work on detectability and detectors in image steganogra-
phy, much less work has been done in network covert channels. However, there
has been a number of detectors proposed for methods based on inter-packet
arrival times, which we discuss here.

The earliest work on inter-arrival times metrics were not necessarily intended
for general use, but were intended to show how it could be possible to detect
some of the earlier, and simpler, embedding methods that were first proposed,
such as Jitterbug.

The regularity test was proposed as a metric for network timing channels by
Cabuk et al. in [9]. It measures the degree to which the variance of the source



10 O. Chen et al.

is generally constant. Its rational is based on the fact that many embedding
schemes produce results with low variance. In [16] this was found to do a poor
job as a detector, mainly because noise on the channel increases the variance
of the cover source, thus making the variance of cover and stego source appear
similar.

The Kolmogorov-Smirnov (KS) Test, proposed as a metric for network timing
channels by Peng et al. [33], was investigated in [16], and found to have difficulty
dealing with stego source whose distribution was very similar to that of the cover
source. This is because the KS test measures the maximal distance between the
distributions of two empirical distribution functions. If the changes made by the
stego source to the distribution are small enough so that they fall within the
natural variance of the cover source, then KS will not detect a difference.

In their influential paper [16] Gianvechhio and Wang consider distinguishers
for network covert timing channels, based on statistical estimators. They wind
up recommending two measures of empirical probability distributions (actually
a series of measures) computed from covert timing channel data: the first order
entropy, and the corrected conditional entropy (CCE), which is defined as

CCE(Xm|Xm−1) = H(Xm|Xm−1 + perc(Xm) · H(X1)

where X1, . . . , Xm is a sequence of random variables, perc(Xm) is the per-
centage of unique patterns of length m with respect to the set of patterns of
length m. One can use this to estimate the entropy rate, which is the limit
limm→∞ H(Xm|X1, . . . , Xm−1), by taking the minimum of CCE over different
m. Estimates of entropy and entropy rates, once computed, are then compared
for both cover and stego traffic.

The idea behind the use of entropy and corrected conditional entropy is that
they test for different things. Entropy is good for detecting small changes in the
distribution of a single random variable, and thus is useful for detecting stegano-
graphic techniques that alter that distribution. However, if the distribution is
kept unchanged, but the correlations between variables are altered, CCE pro-
vides the better detection mechanism. The metrics also have the advantage that
they can be computed using a relatively small number of samples, a constraint
that is likely to hold for network covert channel traffic, especially when they are
used as detectors. This combination of entropy and CCE is probably the most
commonly used metric in current research on covert timing channels.

More recently work has begun to appear on using anomaly detection meth-
ods to assist in detecting exploitation of covert channels. Liu et al. [27] describe
a metric that divides timing data into different scales using a wavelet trans-
form and then compares pairs from different flows using relative entropy. They
compare their techniques experimentally with existing detection techniques and
show favorable results. Their system is specifically designed for cloud storage
environments, but the metrics should be applicable elsewhere as well.

There has also been work on investigating the limitations of these types of
metrics. For example, a possible weakness lies in the reliance of many methods
(e.g. the Gianvechio-Wang method) on computing statistical behavior of strings



Stealthy Protocols: Metrics and Open Problems 11

of bounded length. This is sufficient for certain types of distributions, such as
Markov distributions, but not for others. Some work has already been done on
this problem. For example, in [11] Crespi, Cybenko, and Giani show how, given
an integer k, it is possible create a steganographic source that has the same
statistics as the cover source for k-length strings, but differs from for k+1-length
strings. That is, the steganographic information is encoded in the distribution
of the k-length strings. The amount of computation used to apply Crespi et al.’s
algorithm for evading detection grows according to a factor of σk, where σ is the
size of the alphabet, so this limits how far Alice can go in this way. A study of
the complexity of both detectors and evasion techniques would be of interest.

4.3 Putting It All Together: Steganographic Capacity
and Asymptotic Bounds

So far, there are two important aspects of metrics for stealthy communication
that remain to be addressed. One of these is how to bring together the various dif-
ferent performance requirements of stealthy communication methods: through-
put, low detectability, and robustness, under one metric. The other is how to
measure the performance over time, which can often be done by studying the
asymptotic behavior of the communication.

To our knowledge, such combined metrics for stealthy communication over
networks and the asymptotic behavior of such metrics have not been studied
until relatively recently. However, this question has been studied in the related
area of image steganography. This is the square root law which says that, if the
distribution of the stego channel differs from that of the cover channel (i.e. Alice
has made a wrong guess about the distribution of the cover channel), then, if
she attempts to transmit more than O(

√
(n)) bits of payload using an n-bit

cover source, the Warden can detect her communication with arbitrarily low
probability of error as n approaches infinity. However, if she transmits o(

√
n)

bits of payload the stegosystem can be made arbitrarily secure by choosing
sufficiently large n, and if limn→∞ Pn√

n
= ε for some positive ε, where Pn is the

size of the payload for cover source of size n, then the security of the stegosystem
asymptotically approaches a constant positive value r. Thus we can define the
steganographic capacity of a channel to be r

√
n, where n is the size of the cover

source.
This hasbeenproved in the case inwhich the cover source is a stationaryMarkov

chain (a relatively simple but still non-trivial case), by Filler, Ker, and Fridrich,
in [13]. But it has also been validated experimentally by Ker et al. in [24]. In these
experiments, for different types of cover images, steganographic techniques, and
detection techniques, behavior consistentwith the square root lawwas consistently
observed. Moreover, it did not require enormously large cover images to produce
this behavior: the cover image size runs from 0 to 60,000–150,000 pixels or 0 to
30,000–50,000nonzeroDCTcoefficients, dependingupon the stenographymethod.

The next problem is computing the steganographic capacity. In [22] Ker
argues for the use of a metric based on estimating the asymptotic behavior of



12 O. Chen et al.

relative entropy as the ratio of payload to cover size tends to zero. Although rel-
ative entropy itself appears to be too unstable to supply a suitable metric in this
case, Ker provides an estimator based on the the Fisher information, which, for
well-behaved distributions, is equal to the quadratic term of the Taylor expan-
sion around zero. SFI has some drawbacks for image steganography though, in
that like most other methods for estimating conditional entropy, it is difficult to
compute for large dimensions. Thus in order to make it practical to compute, it
is necessary to compute it over groups of pixels instead of individual pixels. This
means that a certain amount of information is lost. Thus, as Ker points out,
while SFI can be useful in comparing embedding techniques, it should probably
not be used as the sole means of evaluating an embedding method.

Research in steganographic capacity opens up questions as to how this could
be applied to other types of covert channels, e.g. network timing channels or wire-
less channels. The probability distributions of the cover sources, although not
trivial to estimate, are in general easier to estimate than those of the cover chan-
nels in image steganography. However, the channels, especially wireless channels,
are likely to be noisy, which is less often the case for image steganography. That
this noise can result in a similar square root law is shown by Bash, Goeckel, and
Towsley in [4], in which the channels between Alice and Bob and between Alice
and the Warden are both subject to additive white Gaussian noise (AWGN).
Similar to the square root law for image stenography, if Alice attempts to trans-
mit more than O(

√
(n)) in n uses of the channel, then either the Warden can

detect her with arbitrarily low probability of error, or Bob can not decode her
message reliably; that is, the probability that he decodes it incorrectly is bounded
below by a non-zero constant. Analogous results to the steganographic laws are
also shown for the cases in which Alice transmits at rates at and below O(

√
(n)).

More recently, these results have been extended to optical channels (with experi-
mental validation) [3], arbitrary discrete memoryless channels [5,42] and general
memoryless classical quantum channels [39].

4.4 Desirable Metrics for Variables and Cover Sources

The behavior of the variables and cover sources used in stealthy communication
is of great importance to the usability and security of that method, and gen-
erally is a factor deciding which method to use. However, metrics for stealthy
communication do not generally take them into account, and indeed they may be
hard to quantify. Here we present some properties of variables and cover sources
for which in many cases metrics do not yet exist, but would be useful to have.
We also give suggestions for metrics where appropriate.

Footprint and Keyboard. We define the footprint of an embedding method
to be the set of variables observable by the Warden that are modified by Alice
in order to communicate with Bob. We note that not all of these variables need
to be observable by Bob. They may have simply been modified by Alice in the
process of altering other variables that are observable by Bob.



Stealthy Protocols: Metrics and Open Problems 13

Conversely, we define the keyboard to be the set of variables observable to
Bob that Bob reads in order to obtain the message from Alice. Again, these
variables may or may not be observable by the Warden.

The concepts of footprints and keyboards are intended to give an indication of
the types of risks and advantages that may result from employing a method that
results in the modification of variables that one may not have complete control
over. In general, a large footprint with highly correlated variables may serve
to alert the Warden that Alice is communicating. The larger the size the more
data the Warden can observe, and the higher the correlation the less freedom
Alice has in modifying the different variables in order to pass under the Warden’s
radar. For example, consider protocol emulation, a form of covert communication
in which, the nature, not the existence, of the communication is masked by
emulating some other, more innocuous protocol than the one actually being used.
Protocol emulation generally has a large footprint, since the variables Alice must
modify include every feature of the protocol being emulated. As pointed out in
[20], this makes this method vulnerable even to a very weak, local warden who
observes such features such as presence of certain types of messages, packet sizes,
packet timing and rate, periodic messages exchanges, and the use of TCP control
channels. Packet length modification has a smaller footprint, but notice that it
is still nontrivial, since modification of a packet’s length requires modification
of its contents too. In particular, these contents must be modified carefully to
avoid detection via deep packet inspection.

Conversely, a larger keyboard whose variables are only weakly correlated can
be an advantage to Alice, since she can spread her message over several variables,
thus increasing the capacity of the channel. For example, in the packet length
channel discussed above, Alice could encode information not only in the length
of the packets but in the bits that she adds to the packets.

Finally, encoding information via inter-packet arrival times seems to have the
smallest footprint, as well as the smallest keyboard. We note however the size
footprint of an active embedding methods may vary, depending on whether a
network flow is constructed by repeating an existing flow with some changes as
in [9] or built from scratch. Moreover, the size of the keyboard can be increased
by using smaller increments of timing intervals to encode information.

Confidence and Mutability. The confidence in the cover source is the degree
to which we trust our estimate of its probability distribution. This can be esti-
mated using statistical methods for estimating confidence intervals.

The mutability of the cover source is closely related to the confidence we may
have in it. It is the degree to which the cover source may change and will need
to be remeasured in order to ensure that covert communication is not detectable
by the warden. For example, the cover source for protocol emulation is highly
mutable, since protocols are constantly updated and reimplemented in different
ways. Likewise, the cover source for channels based on network traffic behavior
(e.g. inter packet arrival times) are be highly mutable, since network traffic
behavior can change over time. Most mutable are wireless channels, since their



14 O. Chen et al.

behavior can change based on not only on network traffic but external conditions
like the weather. Even in the case in which the cover source appears relatively
static, this might not be the case in reality. For example, in the case of storage
channels, a protocol field that is supposed to be random may or may not be
treated that way by the implementors, or may be repurposed in later versions.
Mutability has an effect on how often and thoroughly statistical properties of
cover traffic and noise need to be monitored in order to ensure robustness and
non-detectability.

5 Open Problems

One of the surprising things that we have discovered in this survey is a lack
of cross-fertilization between different areas. For example, image steganography
and covert communication via network timing channels appear to have much in
common, but in only a very few cases do results in one area appear to have had
influence on research in another area. That is unfortunate, because research in
image steganography appears to be much further advanced than other areas, and
lessons learned from there, when they are applied to other areas, could easily
save much work and time. In particular, the following work needs to be done:

We need better understanding of the square root law, in particular experi-
mental validation of results for noisy channels (e.g. [4]) as they apply to network
timing channels. We may develop strategies for evading it by varying channels
and encoding schemes, or concentrating on cover sources whose statistical behav-
ior is well understood. We are helped in this by the fact that there are many
possible different types of channels to take advantage of, not only different types
of network timing channels but storage channels as well.

We also need a more thorough understanding of the metrics available.
Nobody appears to have done a thorough survey and evaluation of all the met-
rics available for measuring the distance between two probability distributions
in terms of the applicability to stealthy communication. Instead, the studies we
have seen focus on evaluating metrics that have previously been proposed for the
particular stealthy communication problem area under study (although the work
of Liu et al. [27], which uses techniques from anomaly detection, is an excep-
tion). A thorough study of the various features of channels and algorithms and
how they relate to methods for estimating the distance between two probability
distributions would be useful.

In particular, we need a better understanding of where our detectors and the
metrics they are based on can fail, in order that they can be refined and improved.
As we have noted, some theoretical work does already exist on this problem. But
although methods have been discovered for evading the most commonly used
metrics, they require a considerable computational investment on the part of
the transmitter. Is this computational burden inherent, or can it be decreased?
Moreover, what are the practical implications? According to [23], there is a
considerable gap between theoretical and experimental behavior of detectors for
image steganography, and their effectiveness in actual practice. Is the same true
for covert channels in other media, and if so, how can methods be improved?



Stealthy Protocols: Metrics and Open Problems 15

In addition, better methods for estimating throughput and capacity of encod-
ing techniques are needed. Current work mostly relies on experimental results,
and it is not always clear how to generalize it. However, we may be able to com-
bine this experimental work with work on measuring the capacity of abstract
channels to better our understanding.

References

1. Dixon, R.C.: Spread Spectrum Systems with Commercial Applications, 3rd edn.
Wiley, Hoboken (1994)

2. Ahmadzadeh, S.A., Agnew, G.B.: Turbo covert channel: an iterative framework for
covert communication over data networks. In: Proceedings of the IEEE INFOCOM
2013, Turin, Italy, 14–19 April 2013, pp. 2031–2039 (2013)

3. Bash, B.A.: Fundamental Limits of Covert Communication. Ph.D. thesis, Univer-
sity of Massachusetts Amherst, Februrary 2015

4. Boulat, A.B., Goeckel, D., Towsley, D.: Limits of reliable communication with low
probability of detection on awgn channels. IEEE J. Sel. Areas Commun. 31(9),
1921–1930 (2013). Selected Areas in Communications

5. Matthieu, R.: Bloch: covert communication over noisy channels: a resolvability
perspective. IEEE Trans. Inf. Theory 62(5), 2334–2354 (2016)

6. Boltz, S., Debreuve, E., Barlaud, M.: High-dimensional statistical distance for
region-of-interest tracking: application to combining a soft geometric constraint
with radiometry. In: IEEE Conference on Computer Vision and Pattern Recogni-
tion, CVPR 2007, pp. 1–8. IEEE (2007)

7. Brumley, D., Boneh, D.: Remote timing attacks are practical. Comput. Netw.
48(5), 701–716 (2005)

8. Cabuk, S.: Network Covert Channels: Design, Analysis, Detection, and Elimina-
tion. Ph.D. thesis, Purdue University, December 2006

9. Cabuk, S., Brodley, C.E., Shields, C.: IP covert timing channels: design and detec-
tion. In: Proceedings of the 11th ACM Conference on Computer and Communica-
tions Security, pp. 178–187. ACM (2004)

10. Cachin, C.: An information-theoretic model for steganography. Inf. Comput.
192(1), 41–56 (2004)

11. Crespi, V., Cybenko, G., Giani, A.: Engineering statistical behaviors for attacking
and defending covert channels. IEEE J. Sel. Top. Sig. Proces. 7(1), 124–136 (2013)

12. Davidoff, S., Ham, J.: Network Forensics: Tracking Hackers through Cyber Space.
Prentice-Hall, Upper Saddle River (2012)

13. Filler, T., Ker, A.D., Fridrich, J.: The square root law of steganographic capacity
for Markov covers. In: Proceedings of SPIE, Media Forensics and Security, SPIE
2009, vol. 7254 (2009)

14. Fisk, G., Fisk, M., Papadopoulos, C., Neil, J.: Eliminating steganography in inter-
net traffic with active wardens. In: Petitcolas, F.A.P. (ed.) IH 2002. LNCS, vol.
2578, pp. 18–35. Springer, Heidelberg (2003). doi:10.1007/3-540-36415-3 2

15. Frikha, L., Trabelsi, Z., El-Hajj, W.: Implementation of a covert channel in the
802.11 header (2008)

16. Gianvecchio, S., Wang, H.: Detecting covert timing channels: an entropy-based
approach. In: Proceedings of the 14th ACM Conference on Computer and Com-
munications Security, pp. 307–316. ACM (2007)

http://dx.doi.org/10.1007/3-540-36415-3_2


16 O. Chen et al.

17. Girling, C.G.: Covert channels in LAN’s. IEEE Trans. Soft. Eng. 13(2), 292–296
(1987)

18. Hijaz, Z., Frost, V.: Exploiting OFDM systems for covert communication. In: IEEE
Military Communications Conference (2010)

19. Van Horenbeck, M.: Deception on the network: thinking differently about covert
channels. In: Proceedings of the 7th Australian Information Warfare and Security
Conference. Edith Cowan University (2006)

20. Houmansadr, A., Brubaker, C., Shmatikov, V.: The parrot is dead: Observing
unobservable network communications. In: 2013 IEEE Symposium on Security and
Privacy (SP), pp. 65–79. IEEE (2013)

21. Kang, M.H., Moskowitz, I.S.: A pump for rapid, reliable, secure communication.
In: Proceedings of the 1st ACM Conference on Computer and Communications
Security, pp. 119–129. ACM (1993)

22. Ker, A.D.: Estimating steganographic fisher information in real images. In: Katzen-
beisser, S., Sadeghi, A.-R. (eds.) IH 2009. LNCS, vol. 5806, pp. 73–88. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-04431-1 6

23. Ker, A.D., Bas, P., Böhme, R., Cogranne, R., Craver, S., Filler, T., Fridrich, J.,
Pevnỳ, T.: Moving steganography and steganalysis from the laboratory into the
real world. In: Proceedings of the First ACM Workshop on Information Hiding and
Multimedia Security, pp. 45–58. ACM (2013)

24. Ker, A.D., Pevnỳ, T., Kodovskỳ, J., Fridrich, J.: The square root law of stegano-
graphic capacity. In: Proceedings of the 10th ACM Workshop on Multimedia and
Security, pp. 107–116. ACM (2008)

25. Kleider, J.E., Gifford, S., Churpun, S., Fette, B.: Radio frequency watermarking
for OFDM wireless networks, vol. 5, pp. 397–400 (2004)

26. Lee, K.S., Wang, H., Weatherspoon, H.: Phy covert channels: can you see the idles?
In: 11th USENIX Symposium on Networked Systems Design and Implementation,
NSDI14. USENIX (2014)

27. Liu, A., Chen, J.X., Wechsler, H.: Real-time timing channel detection in an
software-defined networking virtual environment. Intell. Inf. Manage. 7(06), 283
(2015)

28. Lucena, N.B., Lewandowski, G., Chapin, S.J.: Covert channels in IPv6. In: Danezis,
G., Martin, D. (eds.) PET 2005. LNCS, vol. 3856, pp. 147–166. Springer, Heidel-
berg (2006). doi:10.1007/11767831 10

29. Millen, J.K.: Covert channel capacity. In: 1987 IEEE Symposium on Security and
Privacy. IEEE Computer Society (1987)

30. Moskowitz, I.S., Greenwald, S.J., Kang, M.H.: An analysis of the timed Z-channel.
In: Proceedings of the 1996 IEEE Symposium on Security and Privacy, pp. 2–11.
IEEE (1996)

31. Moskowitz, I.S., Miller, A.R.: The channel capacity of a certain noisy timing chan-
nel. IEEE Trans. Inf. Theory 38(4), 1339–1344 (1992)

32. Moskowitz, I.S., Miller, A.R.: Simple timing channels. In: Proceedings of the IEEE
Computer Society Symposium on Research in Security and Privacy, pp. 56–64.
IEEE (1994)

33. Peng, P., Ning, P., Reeves, D.S.: On the secrecy of timing-based active watermark-
ing trace-back techniques. In: 2006 IEEE Symposium on Security and Privacy, p.
15. IEEE (2006)

34. Pevný, T., Fridrich, J.: Benchmarking for steganography. In: Solanki, K., Sullivan,
K., Madhow, U. (eds.) IH 2008. LNCS, vol. 5284, pp. 251–267. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-88961-8 18

http://dx.doi.org/10.1007/978-3-642-04431-1_6
http://dx.doi.org/10.1007/11767831_10
http://dx.doi.org/10.1007/978-3-540-88961-8_18


Stealthy Protocols: Metrics and Open Problems 17

35. Pfitzmann, B.: Information hiding terminology. In: Anderson, R. (ed.) IH
1996. LNCS, vol. 1174, pp. 347–350. Springer, Heidelberg (1996). doi:10.1007/
3-540-61996-8 52

36. Rezaei, F., Hempel, M., Peng, D., Qian, Y., Sharif, H.: Analysis and evaluation
of covert channels over LTE advanced. In: IEEE Wireless Communications and
Networking Conference (WCNC) (2013)

37. Sellke, S.H., Wang, C.-C., Bagchi, S., Shroff, N.B.: TCP/IP timing channels: theory
to implementation. In: 28th IEEE International Conference on Computer Commu-
nications, Joint Conference of the IEEE Computer and Communications Societies,
INFOCOM 2009, Rio de Janeiro, Brazil, 19–25 April 2009, pp. 2204–2212 (2009)

38. Shah, G., Molina, A., Blaze, M., et al.: Keyboards and covert channels. In: USENIX
Security (2006)

39. Sheikholeslami, A., Bash, B.A., Towsley, D., Goeckel, D., Guha, S.: Covert commu-
nication over classical-quantum channels. In: IEEE International Symposium on
Information Theory, ISIT 2016, Barcelona, Spain, 10–15 July 2016, pp. 2064–2068
(2016)

40. Simon, M., Omura, J., Scholtz, R., Levitt, B.: Spread Spectrum Communications
Handbook. McGraw-Hill Inc., New York (1994). Revised edition

41. Singh, H., Misra, N., Hnizdo, V., Fedorowicz, A., Demchuk, E.: Nearest neighbor
estimates of entropy. Am. J. Math. Manag. Sci. 23(3–4), 301–321 (2003)

42. Wang, L., Wornell, G.W., Zheng, L.: Limits of low-probability-of-detection com-
munication over a discrete memoryless channel. In: IEEE International Symposium
on Information Theory, ISIT 2015, Hong Kong, China, 14–19 June 2015, pp. 2525–
2529 (2015)

43. Wang, X., Chen, S., Jajodia, S.: Network flow watermarking attack on low-latency
anonymous communication systems. In: IEEE Symposium on Security and Privacy,
SP 2007, pp. 116–130. IEEE (2007)

44. Wang, X., Reeves, D.S., Felix Wu, S., Yuill, J.: Sleepy watermark tracing: an
active network-based intrusion response framework. In: Proceedings of the 16th
International Conference on Information Security: Trusted Information: the New
Decade Challenge, Sec 2001, pp. 369–384. Kluwer (2001)

45. Yu, P.L., Baras, J.S., Sadler, B.M.: Physical-layer authentication. IEEE Trans. Inf.
Forensics Secur. 3(1), 38–51 (2008)

46. Zander, S., Armitage, G., Branch, P.: A survey of covert channels and countermea-
sures in computer network protocols. IEEE Commun. Surv. Tutorials 9(3), 44–57
(2007)

http://dx.doi.org/10.1007/3-540-61996-8_52
http://dx.doi.org/10.1007/3-540-61996-8_52


A Specification Theory of Real-Time Processes

Chris Chilton1, Marta Kwiatkowska1, Faron Moller2, and Xu Wang2(B)

1 Department of Computer Science, University of Oxford, Oxford, UK
2 Department of Computer Science, Swansea University, Swansea, UK

xu.wang.comp@gmail.com

Abstract. This paper presents an assume-guarantee specification the-
ory (aka interface theory from [11]) for modular synthesis and verifica-
tion of real-time processes with critical timing constraints. Four oper-
ations, i.e. conjunction, disjunction, parallel and quotient, are defined
over specifications, drawing inspirations from classic specification the-
ories like refinement calculus [4,19]. We show that a congruence (or
pre-congruence) characterised by a trace-based semantics [14] captures
exactly the notion of substitutivity (or refinement) between specifica-
tions.

Dedication: I would like to thank Prof. Bill Roscoe for leading me into the fas-
cinating world of concurrency and nurturing my appreciation for simplicity and
elegance in theories of relevance. —— Xu Wang

1 Introduction

Modular synthesis and verification of quantitative aspects (e.g. real-time, proba-
bility, reward, etc.) of computational and physical processes (e.g. cyber-physical
systems) is an important research topic [5].

In this programme of quantitative study, a specification of components con-
sists of a combination of quantitative assumptions and quantitative guarantees.
A refinement relation captures the substitutability between quantitative compo-
nents, adhering to the so-called contra-variance principle: refinement implies the
relaxation of assumptions as well as the strengthening of guarantees.

As one step of the programme, this paper targets component-based devel-
opment for real-time systems with critical timing constraints. We propose a
complete timed specification theory based on a framework of minimal extension
of timed automata [1], which is endowed with the operations of parallel com-
position for structural integration, logical conjunction/disjunction for viewpoint
fusion and independent development, and quotient for incremental synthesis. The
operations in some sense can be regarded as the concurrent and real-time incar-
nations of similar operations from refinement calculus [4,16,17,19] (i.e. sequential
composition, angelic choice, demonic choice, and pre-post specification).

The refinement relation is defined relative to the notion of incompatibil-
ity error (aka contract breach [4]). That is, mismatch of the assumptions and

c© Springer International Publishing AG 2017
T. Gibson-Robinson et al. (Eds.): Roscoe Festschrift, LNCS 10160, pp. 18–38, 2017.
DOI: 10.1007/978-3-319-51046-0 2



A Specification Theory of Real-Time Processes 19

guarantees between components composed in parallel gives rise to errors (aka
abort [4,19] and denoted ⊥). Refinement means error-free substitutivity.1

Previously, based on this framework, [9] introduced a compositional linear-
time specification theory for real-time systems, where the substitutive refinement
is the weakest pre-congruence preserving incompatibility errors and characteris-
able by a finite double trace semantics. A key novelty of [9] lies in the introduction
of an explicit timestop operation (denoted by �) that halts the progress of the
system clock, which, remarkably, corresponds to a timed incarnation of miracle
or magic in refinement calculus2.

While timestop is appropriate for a restricted class of applications, there are
common cases where the operation of stopping the system clock is not meaningful
or implementable (aka infeasible [19]). Hence, it is desirable to consider systems
without explicit or implicit timestops, which we call realisable systems.

For realisable systems, components, not substitutively-equivalent according
to [9], can become equivalent under realisability due to the environment losing
the power to observe the timing difference in error occurrences. Thus, we need
a new substitutive equivalence as a coarsening of the congruence in [9].

To best characterise the coarsening, our theory requires a shift of focus to
a more game-theoretical treatment, where the coarsening constitutes a reactive
synthesis game, called normalisation, that collapses erroneous behaviours in a
specification. Normalisation is strictly more aggressive than classical timed reac-
tive synthesis [3,7], which enables us to achieve the weakest congruence results.

Furthermore, in a similar vein to timed concurrent games [12,13], where
one of the key concerns is the removal of time-blocking strategies by applying
blame assignment, the composition of realisable systems (e.g. conjunction or
quotient) in our framework generates new unrealisable behaviours, which have to
be removed. Rather than employing blame assignment, our framework, reduces
the problem to another timed synthesis game that turns out to be precisely the
dual game of normalisation called realisation, again re-confirming the duality
between contract breach and infeasibility of refinement calculus.

Finally our theory presents a trace-semantics characterisation of the refine-
ment and operators, which supports the explicit separation of assumptions and
guarantees, and integrates well with automata learning techniques.

Our trace-semantics can be regarded as a timed extension [21] of Dill’s trace
semantics [14], who first used untimed double-trace semantics for asynchronous
circuit verification, i.e. a set of success traces and a set of failure traces, which,
in turn, are inspired by earlier trace theory of asynchronous circuits [15,23] and
CSP process algebra [22].

1 Note that the existence of incompatibility errors does not mean that the composed
system is un-usable; an environment can still usefully exploit the system by only
utilising the part of the system that is free of the incompatibility errors, as has been
well explained in [11].

2 It were Carroll Morgan and Joseph M. Morris who first added miracle to refinement
calculus.



20 C. Chilton et al.

Previously, trace semantics has been the basis of our untimed specification
theory [8], which supports all four operators and the weakest congruence pre-
serving substitutivity. We have also connected double-trace semantics with CSP
model checking [22] in [26], which can potentially be further extended to connect
our timed theory with timed CSP model checking [2].

2 Minimal TA Extension for Timed Specification

Our theory builds on timed I/O automata and timed I/O transition systems.3

2.1 Timed I/O Automata (TIOA)

Clock constraints. Given a set X of real-valued clock variables, a clock constraint
over X , cc: CC(X), is a boolean combination of atomic constraints of the form
x �� k and x − y �� k , where x , y ∈ X , ��∈ {≤, <,=, >,≥}, and k ∈ N.

Definition 1. A TIOA is a tuple (C , I ,O ,L, l0,AT , Inv , coInv), where:

– C ⊆ X is a finite set of clock variables (ranged over by x , y, etc.)
– A = I �O is a finite alphabet (ranged over by a, b, etc.) consisting of the input

actions I and output actions O
– L is a finite set of locations (ranged over by l , l ′,n,n ′, etc.) while l0 ∈ L is

the initial location
– AT ⊆ L × CC (C ) × A × 2C × L is a set of action transitions
– Inv : L → CC (C ) and coInv : L → CC (C ) assign invariants and co-

invariants to states, each of which is a downward-closed clock constraint.4

In the rest of the paper we use l
g,a,rs−−−−→ l ′ as a shorthand for (l , g , a, rs, l ′) ∈

AT . g : CC(C) is the enabling guard of the transition, a ∈ A the action, and rs
the subset of clock variables to be reset.

Our TIOAs are an extension of timed automata [1], distinguishing input from
output and invariant from co-invariant. The semantics of TIOAs is an extension
of timed transition systems (TTSes) called Timed I/O Transition Systems.

2.2 Timed I/O Transition Systems (TIOTSes)

Plain states. A plain state is a pair drawn from P = L×R
C (i.e. a location and

clock-valuation pair). A clock valuation (drawn from R
C ) is a map that assigns

to each clock variable x in C a real value from R
≥0.

Definition 2. A TIOTS is a tuple P = 〈I ,O ,S , s0,→〉. S = P �{⊥,�} is a set
of states, s0 ∈ S is the designated initial state, and →⊆ S × (I � O �R

>0) × S
is the action- and time-labelled transition relation which is time-additive.5
3 Our timed framework originally appeared in [9]. However, the version presented here

contains important technical extension as well as presentational improvements.
4 Invariants and guards on output actions are constraints on the system (aka guar-

antees) whereas co-invariants and guards on input actions are constraints on the
environment (aka assumptions).

5 P is time-additive providing p
d1+d2−−−−→ s ′ iff p

d1−→ s and s
d2−→ s ′ for some s ∈ S .



A Specification Theory of Real-Time Processes 21

Notation. In the rest of the paper we use p, p′, pi to range over P while s, s ′, si
range over S . Furthermore we define tA = I � O � R

>0, tI = I � R
>0, and

tO = O � R
>0. Symbols like α, β, etc. are used to range over tA.

A timed trace (ranged over by tt , tt ′, tti etc.) is a finite mixed sequence of
positive real numbers (R>0) and visible actions such that no two numbers are
adjacent to one another.

For instance, 〈0.33, a, 1.41, b, c, 3.1415〉 is a timed trace denoting the observa-
tion that action a occurs at 0.33 time units, then another 1.41 time units elapse
before the simultaneous occurrence of b and c, which is followed by 3.1415 time
units of no event occurrence. The empty trace is denoted by ε. An infinite timed
trace is an infinite such sequence.

We use l(tt) to indicate the duration of tt , which is obtained as the sum of all
the reals in tt , and use c(tt) to count the number of action occurrences along tt .
Concatenation of timed traces tt and tt ′, denoted tt � tt ′, is obtained by append-
ing tt ′ onto tt and coalescing adjacent reals (summing them). For instance,
〈a, 1.41〉 �〈0.33, b, 3.1415〉 = 〈a, (1.41 + 0.33), b, 3.1415〉 = 〈a, 1.74, b, 3.1415〉.

Prefix/extension are defined as usual by concatenation. We write tt � tA0 for
the projection of tt onto timed alphabet tA0, which is defined by removing from
tt all actions not inside tA0 and summing up adjacent reals.

Non-zenoness. For a TIOTS P, we use p tt=⇒ p′ to denote a finite execution
starting from p that produces trace tt and leads to p′. Similarly, we can define
infinite executions which produce infinite traces on P. An infinite execution is
zeno iff the action count is infinite but the duration is finite.

We say a TIOTS P is non-zeno providing no plain execution is zeno. P is
strongly non-zeno iff there exists some k ∈ N s.t., for all plain executions p tt=⇒ p′,
it holds that l(tt) = 1 implies c(tt) ≤ k . Here, we say a finite or infinite execution
is a plain execution iff the execution only visits plain states.

Assumption on TIOTSs. We only consider non-zeno time-additive TIOTSs in
this paper. For technical convenience (e.g. ease of defining time additivity and
trace semantics), the definition of TIOTSs requires that � and ⊥ are chaotic
states [22], i.e. a state in which the set of outgoing transitions are all self-loops,
one for each α ∈ tA.

The strong non-zenoness is not an assumption of our theory. But with this
additional requirement we can show that the synthesis and verification theory
in this paper is fully automatable.

2.3 A Game-Based Interpretation

The derivation of TIOTSes from TIOAs is more or less standard, extending the
one from TAs to TTSes. Here we just give an intuitive explanation using games.
The formal definition can be found in [9].

TIOAs are designed as mixed assume/guarantee specifications of timed com-
ponents. Their semantics is best illustrated by interpreting TIOTSes as timed



22 C. Chilton et al.

game graphs. The game has three players: environment, system and coin. The
environment controls input actions and delays while the system controls output
actions and delays. The game has two game-ending states : � (system losing) and
⊥ (environment losing). States other than � and ⊥ are plain states. The coin
serves as a tie-breaker for symmetric moves proposed by the other two players.

The environment must respect the constraints on input and delay, i.e. input
guard and co-invariant, which constitutes the assumption half of the specifica-
tion. Guard-violating input and coinvariant-violating delay are mapped to ⊥.

The system must respect the constraints on output and delay, i.e. output
guard and invariant, which constitutes the guarantee half of the specification.
Guard-violating output and invariant-violating delay are mapped to �.

Since delay is controlled by both sides, there exists a contention between
invariant and co-invariant violations. If a delay exceeds the upper bound of one6

before exceeding that of the other, the violation of the former will pre-empt the
violation of the latter. If a delay exceeds the upper bounds of both simultaneously,
the invariant violation will be pre-emptive and the delay mapped to �.7

On top of game graphs, system and environment, assisted by coin, play a
concurrent timed game based on delayed actions:

– A delayed action is either (d , a) or (∞,−), where d ∈ R
≥0 and a ∈ I ∪ O .

– Given a current state, each player proposes a delayed action under their control
at that state,

• The delayed action with strictly smaller delay will be chosen.
• If the two delays tie (i.e. equal), it will be resolved by tossing a coin.

– Fire the chosen delayed action and transit to the destination state.

TIOAs do not have explicit � and ⊥. But a ⊥-location equates to having true
as invariant and false as co-invariant. Dually, we have a �-location. Together,
they are reminiscent of abort and magic in their predicate forms [4,19].

2.4 Conventions on Disabled Transitions

In presenting TIOAs and TIOTSes, one often needs to be economical in drawing
transitions. So a convention on disabled transitions is required.

1. a disabled input at a plain state is equivalent to an input transition to ⊥.
2. a disabled output at a plain state is equivalent to an output transition to �.

6 Note that invariant and co-invariant are downward-closed. Thus, the only way to
violate them is to exceed their upper bounds.

7 One further case missing above is that, for an action transition, there is possibility
that its guard is respected but the invariant/co-invariant of its destination (say l) is
violated. In such situation, a state (l , t) is treated (1) as � if t violates the invariant
in location l and (2) as ⊥ if t violates the co-invariant in l while the invariant holds.



A Specification Theory of Real-Time Processes 23

Our TIOTSes, on the other hand, disallow disabled delay transitions. So
the delays enabled at each plain state are unbounded, leading to either con-
sistently other plain states or a mixture of plain states with �/⊥ separated by a
finite bound. The convention induces some semantic-preserving transformations
on TIOTSs.

�/⊥ completion. The ⊥-completion of a TIOTS P, denoted P⊥, adds an
a-labelled transition from p to ⊥ for every p ∈ P (= L × R

C ) and a ∈ I
s.t. a is not enabled at p. The �-completion, denoted P�, adds an a-labelled
transition from p to � for every p ∈ P and a ∈ O s.t. a is not enabled at p.

Similarly, we can define �/⊥ completion on TIOAs. We say a TIOA, P =
(C , I ,O ,L,n0,AT , Inv , coInv), is �-completed iff, for all a ∈ O and l ∈ L, we
have

∨{gk | l
gk ,a,rsk−−−−−→ l ′k ∈ AT} = true. We say P is ⊥-completed iff, for all

a ∈ I and l ∈ L, we have
∨{gk | l

gk ,a,rsk−−−−−→ l ′k ∈ AT} = true.
�/⊥ removal The inverse operations of �/⊥ completion, called �/⊥ removal,
are also semantic-preserving transformations. For instance, �-removal removes
all output transitions from plain states to � in a TIOTS. We leave it as an
exercise for the readers to define �/⊥ removal for TIOAs.

2.5 Liveness and Safety

The constraints in TIOAs can be classified as either safety constraints or liveness
constraints. The former are the guards on transitions while the latter are the
invariants/co-invariants on locations.

Example. Fig. 1 depicts a job scheduler together with a printer controller. The
invariant at location A of the scheduler forces a bounded-liveness guarantee on
outputs in that location: as time must be allowed to progress beyond x = 100,
the start action must be fired before x exceeds 100. After start being fired, the
clock x is reset to 0 and the scheduler waits (possibly indefinitely) for the job to
finish. If the job finishes, the scheduler expects it to take place at a time point
satisfying 5 ≤ x ≤ 8 (i.e. a safety assumption).

The controller waits for the job to start , after which it will wait exactly 1
time unit before issuing print (forced by the invariant y ≤ 1 on state 2 and the
guard y = 1 on the print ! transition, acting together as a combined liveness and
safety guarantee). Then, the controller requires the printer to acknowledge the
job as having been printed within 10 time units (i.e. co-invariant y ≤ 10 in state
3 acting as a bounded-liveness assumption). After receiving it, the controller
must indicate to the scheduler, within 5 time units, that the job has finished.

2.6 Specification Composition: Generic Synchronised Product

This paper introduces a series of four operators for specification composition: ‖
for parallel composition, ∧ for conjunction, ∨ for disjunction and % for quotient.

At the core of these operators is a generic synchronised product
∏

⊗ opera-
tion, where ⊗ ranges over the set {‖,∨,∧,%}. After instantiation,

∏
⊗ produces



24 C. Chilton et al.

Fig. 1. Job scheduler and printer controller.

four variants (
∏

‖,
∏

∧,
∏

∨ and
∏

%), each of which needs further add-on trans-
formations in order to define the four specification composition.

In order to obtain a modular and factored structure, we adopt a two-step
approach to defining

∏
⊗. In the first step we define, for each ⊗ ∈ {‖,∨,∧,%},

a state composition operator ⊗ and an alphabet composition operator ⊗ (i.e.
⊗ is polymorphic). In the second step, we use

∏
⊗ to lift the state/alphabet

composition to the process composition.
We say (I0,O0) and (I1,O1) are ‖-composable if O0 ∩ O1 = {}, are ∧- and

∨-composable if (I0,O0) = (I1,O1), and are %-composable if (I0,O0) dominate
(I1,O1), i.e. A1 ⊆ A0 and O1 ⊆ O0. Then, assuming ⊗-composability on alpha-
bet pairs, we can define the alphabet composition operations (I0,O0)⊗(I1,O1) as
follows: (I0,O0) ‖ (I1,O1) = ((I0 ∪ I1)\(O0 ∪ O1),O0 ∪ O1), (I0,O0)∧ (I1,O1) =
(I0,O0), (I0,O0) ∨ (I1,O1) = (I0,O0) and (I0,O0)%(I1,O1) = (I0 ∪ O1,O0\O1).

The definition of s0 ⊗ s1 is supplied in Table 1.8 Intuitively ⊥ is equated to
an erroneous specification while � is equated to timestop, i.e. the operation of
stopping the system clock or freezing the global time.

Thus, � represents the magic moment from which the whole system stops
running and freezes, eliminating, once and for all, all subsequent possibility of
reaching the erroneous state. This gives rise to a refinement ordering over states,
whereby � refines plain states, which in turn refine ⊥.

Timestop can explain the behaviour of � in parallel composition: the equation
⊥ ‖ � = � holds because time stops exactly at the moment of reaching the
erroneous state, so the resulting state is a timestop, rather than ⊥.

It is also easy to see that state conjunction (∧) and disjunction (∨) operations
in Table 1 follow the intuition of the join and meet operations.

The state quotient (%) operation is harder to explain. But some intuition can
be recovered from the derivation of % based on ‖ and ¬, i.e. s0%s1 = (s¬

0 ‖ s1)¬,
where state mirror (¬) behaves like negation (c.f. Table 1).

State-to-process lifting. Given two �/⊥ completed TIOTS, Pi =
〈Ii ,Oi ,Si , s0i ,→i〉 for i ∈ {0, 1}, s.t. S0 ∩ S1 = {⊥,�} and (I0,O0) and (I1,O1)
are ⊗-composable, P0

∏
⊗ P1 gives rise to a new �/⊥ completed TIOTS P =

〈I ,O ,S , s0,→〉 s.t. (I ,O) = (I0,O0)⊗(I1,O1), S = (P0×P1)�P0�P1�{�,⊥},

8 For i ∈ {0, 1} and pi = (li , ti), p0×p1 = ((l0, l1), t0�t1) (t0 and t1 are clock-disjoint).



A Specification Theory of Real-Time Processes 25

Table 1. State composition operators.

‖ � p0 ⊥
� � � �
p1 � p0×p1 ⊥
⊥ � ⊥ ⊥

∧ � p0 ⊥
� � � �
p1 � p0×p1 p1
⊥ � p0 ⊥

∨ � p0 ⊥
� � p0 ⊥
p1 p1 p0×p1 ⊥
⊥ ⊥ ⊥ ⊥

% � p0 ⊥
� ⊥ ⊥ ⊥
p1 � p0×p1 ⊥
⊥ � � ⊥

¬
� ⊥
p p
⊥ �

s0 = s00 ⊗ s01 and → is the smallest relation containing →0 ∪ →1,9 and satisfying
the rules:

p0
α−→0s ′

0 p1
α−→1s ′

1

p0⊗p1
α−→s ′

0⊗s ′
1

p0
a−→0s ′

0 a /∈A1

p0⊗p1
a−→s ′

0⊗p1

p1
a−→1s ′

1 a /∈A0

p0⊗p1
a−→p0⊗s ′

1

Remark. Note the subtlety in the transition rules of P0

∏
∧ P1 and P0

∏
∨ P1.

If we have p0
α−→ p′

0 in P0 and p1
α−→ � in P1, then we have p0 × p1

α−→ p′
0 in

P0

∏
∧ P1. That is, process P1 is discarded after the transition and the rest of

the execution is the solo run of P0.10

We can also lift the state mirror operator ¬ to process level by defining the
pre-mirror operator ¬0; P¬0 interchanges IP and OP as well as � and ⊥ in P.

The definition of parallel synchronised product can be lifted to TIOAs. Given
two ⊗-composable �/⊥-completed TIOAs with disjoint clocks (C0 ∩ C1 = {}),
Pi = (Ci , Ii ,Oi ,Li ,n0

i ,ATi , Invi , coInvi) for i ∈ {0, 1}, their synchronised prod-
uct gives rise to another TIOA P = P0

∏
⊗ P1:

– C = C0 ∪ C1, (I ,O) = (I0,O0) ⊗ (I1,O1), L = L0 × L1 and n0 = n0
0 × n0

1 ;
– AT is the least relation that contains AT0, AT1 and {l0 × l1

g0∧g1,a,rs0∪rs1−−−−−−−−−−→
n ′
0 × n ′

1 | l0
g0,a,rs0−−−−−→ n ′

0 ∈ AT0 ∧ l1
g1,a,rs1−−−−−→ n ′

1 ∈ AT1}
∪ {l0 × l1

g0,a,rs0−−−−−→ n ′
0 × l1 | l0

g0,a,rs0−−−−−→ n ′
0 ∈ AT0, a ∈ (A0\A1)}

∪ {l0 × l1
g1,a,rs1−−−−−→ l0 × n ′

1 | l1
g1,a,rs1−−−−−→ n ′

1 ∈ AT1, a ∈ (A1\A0)}};
– and (Inv(l0 × l1), coInv(l0 × l1)) = (Inv0(l0), coInv0(l0)) ⊗

(Inv1(l1), coInv1(l1)).

We define the invariant/co-invariant composition operation ⊗ as follows11:

– (Inv0, coInv0) ‖ (Inv1, coInv1) = (Inv0 ∧ Inv1, coInv0 ∧ coInv1)
– (Inv0, coInv0) ∧ (Inv1, coInv1) = (Inv0 ∧ Inv1, coInv0 ∨ coInv1)
– (Inv0, coInv0) ∨ (Inv1, coInv1) = (Inv0 ∨ Inv1, coInv0 ∧ coInv1)
– (Inv0, coInv0)%(Inv1, coInv1) = (Inv0 ∧ coInv1, coInv0 ∧ Inv1)

The pre-mirror (P¬0) of a TIOA P interchanges IP and OP as well as the
invariant and co-invariant for each location of P.
9 Containment of →0 ∪ →1 is not required for parallel composition, but is necessary

for conjunction and disjunction.
10 The technique was inspired by a discussion with Roscoe on angelic choice in CSP.
11 Note that the above definition exploits the fact that the addition or removal of

false-guarded transitions to AT will not change the semantics of the automata.



26 C. Chilton et al.

3 Parallel Composition, Refinement and Determinisation

We define the parallel composition of specifications as P0 || P1 = P⊥
0

∏
|| P⊥

1 ,
since

∏
‖ can be extended without modification to work on ⊥-complete TIOTSs.

Informally, we say one specification is a refinement of another if the former
can replace the latter in all closed contexts. A closed context of a specification
P is another specification Q s.t. (1) P and Q are ||-composable and (2) IP ⊆
OQ ∧ IQ ⊆ OP .

Definition 3 (Substitutive Refinement [9]). Let Pimp and Pspec be TIOTSs
with identical alphabets. We say Pspec � Pimp iff for all closed contexts Q,
Pspec ‖ Q is ⊥-free implies Pimp ‖ Q is ⊥-free. We say Pspec � Pimp (i.e.
substitutively equivalent) iff Pimp � Pspec and Pspec � Pimp.

A first observation of the refinement definition is that each specification has
a deterministic counterpart to which it is substitutively equivalent. The coun-
terpart can be constructed by a modified determinisation procedure.

Determinism. A TIOTS is deterministic iff there is no ambiguous transition, i.e.
s α−→ s ′ ∧ s α−→ s ′′ implies s ′ = s ′′. A TIOA is deterministic iff, for each l ∈ L and
a ∈ A, l has a pair of distinct a-transitions l

g1,a,rs1−−−−−→ l1 and l
g2,a,rs2−−−−−→ l2 implies

g1 and g2 are disjoint.
We define the determinisation PD of P as a modified subset construction

procedure on P⊥: given a subset S0 of states reachable by a given trace, we only
keep those which are minimal w.r.t. the state refinement ordering.12

Proposition 1 ([9]). Any TIOTS P is substitutively equivalent to the deter-
ministic TIOTS PD .

From a game theoretical perspective, our modified determinisation procedure
converts an imperfect-information game into a perfect-information game.

On the level of TIOAs, strongly non-zeno TAs are known to be determinisable
with a symbolic procedure [6], based on which we can implement our procedure
(say DET (P)) to determinise TIOA P.

In the sequel we focus on deterministic TIOA/TIOTS, i.e. interfaces.

4 A Story of Two Games

Our realisability theory will build on a pair of two-player games dual to each
other: normalisation and realisation. They are derivatives of the three-player
game in Sect. 2. In all three games, the system tries to steer the game play clear
of � while the environment tries to steer clear of ⊥.

We give the technical definition of the games in this section, deferring the
provision of intuition and their uses in specification theories to the next section.
12 The modified determinisation procedure first appeared in the Definition 4.2 of [26],

which is for the untimed case.



A Specification Theory of Real-Time Processes 27

4.1 Timed Strategies

An interface P, being a game graph, encodes a set of strategies for each of the
three players. We give a formal definition of (timed) strategies below:

– A system strategy Gs is a deterministic tree TIOTS13 s.t. each plain state p in
Gs is ready to accept all possible inputs by the environment (i.e. a is enabled
for all a ∈ I ), but allows a single move by the system.
The system move (denoted mv(p)) can be a delayed output (d , a) for some
a ∈ O and d ∈ R

≥0 or an infinite delay (∞,−).14

Dually, we can define environment strategies (e.g. Ge). A system strategy is a
⊥-complete TIOTS while an environment strategy is �-complete.

– Given TIOTSs P and P ′ with identical alphabets (i.e. O = O ′ and I = I ′), we
say P is a partial unfolding [25] of P ′ if there exists a function f : SP → SP′

such that (1) f maps � to �, ⊥ to ⊥ and plain states to plain states, and (2)
f (s0P) = s0P′ and p α−→P s ⇒ f (p) α−→P′ f (s).

– We say a TIOTS P contains a strategy G, denoted G ∈ P, if G is a partial
unfolding of (P⊥)�. We say there is a strategy G at state p in P, if G ∈ P(p),
where P(p) is the TIOTS P re-initialised to state p.

The coin is treated as a special player. A strategy of the coin is a function h
from tA∗ to {0, 1}. We denote the set of all possible coin strategies as H .

Strategy composition. A composition of a set of three strategies, denoted Gs ×h

Ge , will produce, according to the timed concurrent game rules defined in Sect. 2,
a simple path which is a partial unfolding of both Gs and Ge . The simple path
can be either finite and ending in �/⊥ or infinite.

4.2 Two Games

Normalisation game. In the normalisation game, the system forms a coalition
with the coin to play against the environment and seek ⊥-reachability.

Given an interface P, we say a system strategy G at p and a coin strategy
h ∈ H is winning at p iff L ×h G ends in ⊥ for all possible environment strategies
L at p. Then we say a plain state p in P is ⊥-winning iff the system and the
coin have a winning strategy at p.

13 We say an acyclic TIOTS is a tree if (1) there does not exist a pair of transitions in

the form of p
a−→ p′′ and p′ d−→ p′′, (2) p

a−→ p′′ ∧ p′ b−→ p′′ implies p = p′ and a = b

and (3) p
d−→ p′′ ∧ p′ d−→ p′′ implies p = p′.

14 For the former, Gs generates exactly a time interval (0, d ] of delays from p, after
which Gs arrives at another plain state with a enabled. For the latter, an infinite
time interval (0,∞) of delays are enabled at p. The delays either all lead to plain
states or (0,∞) can be further partitioned into two intervals s.t. the delays in the
first interval lead to plain states while those of the second lead to � or ⊥.



28 C. Chilton et al.

Conversely, we say an environment strategy L at p is a normalising strategy15

at p iff L from p can steer the game play clear of ⊥, i.e. for all coin strategies
h ∈ H and system strategies G at p, L ×h G produces either a finite play ending
in � or an infinite play.

Interestingly, an environment strategy is normalising iff it is normalisable, i.e.
it is free of ⊥. Thus, a state is a ⊥-winning state iff it contains no normalisable
(or normalising) environment strategy.

Synthesis of game winning states is a central problem of the game-theoretical
research. To synthesise ⊥-winning states in interfaces, we focus on the two rep-
resentative subclasses of ⊥-winning states: auto-⊥ and semi-⊥ states.
Auto-⊥ and semi-⊥. Given a �/⊥ complete interface, we say a plain state p is
an auto-⊥ state iff p a−→ ⊥ for some a ∈ O . We say a plain state p is a semi -⊥
state iff (1) all input transitions in p or any of its time-passing successors lead
to ⊥, and (2) there exists d ∈ R

>0 s.t. p d−→ ⊥. For a general interface P, we
say p is an auto-⊥ (or semi-⊥) state in P iff it is an auto-⊥ (or semi-⊥) state in
(P�)⊥.

For auto-⊥ and semi-⊥ states, system (and coin) has a one-step winning
strategy to reach ⊥, which are a delay move and an output move resp. The
absence of semi-⊥/auto-⊥ states characterises the absence of ⊥-winning states.

Lemma 1. An interface is free of ⊥-winning states iff it is free of semi-⊥ and
auto-⊥ states.

Hence we can find and remove all ⊥-winning states in an interface by finding
and removing all auto-⊥ and semi-⊥ states in it.

Normalisation. The normalisation of an interface P, denoted PN , is obtained
by collapsing all ⊥-winning states in P to ⊥, which can be implemented by a ⊥-
backpropagation procedure that repeatedly collapses semi-⊥ and auto-⊥ states
in P to ⊥, until semi-⊥ and auto-⊥ freedom is obtained. Normalisation returns
a normalised interface, which is either the ⊥-TIOTS (i.e. a degenerated TIOTS
with ⊥ as the initial state) or a TIOTS free of ⊥-winning states.

On deterministic TIOAs, we can implement ⊥-backpropagation procedures
by fixpoint calculation via constraint backpropagation (based on weakest pre-
condition calculation), denoted as BP(P,⊥).

Realisation Game. In the realisation game, the environment forms a coalition
with the coin to play against the system and seek �-reachability. By duality we
obtain the definition of �-winning, auto-� and semi-� states.16

15 We choose not to call it a winning strategy as it serves additional purpose for our
paper.

16 Given a �/⊥ complete interface, we say a plain state p is an auto-� iff p
a−→ � for

some a ∈ I ; a plain state p is a semi-� iff (1) all output transitions in p or any
of its time-passing successors lead to the � state, and (2) there exists d ∈ R

>0 s.t.

p
d−→ �.



A Specification Theory of Real-Time Processes 29

We say a system strategy is realising iff it can steer the realisation game play
clear of �, which is equivalent to being realisable, i.e. free of �. Obviously a state
is a �-winning state iff it contains no realisable or realising system strategy.

Lemma 2. An interface is free of �-winning states iff it is free of semi-� and
auto-� states.

Similarly we can find and remove all �-winning states in an interface by a
realisation operation.

Realisation. The realisation of an interface P, denoted PR, is obtained
by collapsing all �-winning states in P to � (implementable by a dual
�-backpropagation procedure on TIOTSes or a constraint-backpropagation pro-
cedure BP(P,�)). Realisation returns a realised interface, which is either the
�-TIOTS (i.e. with � as the initial state) or a TIOTS free of �-winning states.

Interference between the two games. Note that a state in an interface can be
simultaneously ⊥- and �-winning (e.g. simultaneously auto-� and auto-⊥). The
anomaly arises due to the coin being shared by both coalitions.

Since coin can only be on one side at a time, this implies that the two games
must be played one-at-a-time rather than simultaneously.

Hence, in our realisability theory it is meaningless to have states that are
both ⊥- and �-winning. In the sequel we will apply realisation and normalisation
operations alternatingly to ensure all generated interfaces are well-formed, i.e.
having no state simultaneously ⊥- and �-winning.

We say a state is a neutral states iff it is neither �-winning nor ⊥-winning.
An interface free of �-winning and ⊥-winning states is called a neutral interface.

The fundamental principle of interfaces is to ensure that all interactions
between the system and environment stay in neutral states.

5 Realisable Specification Theory

When a component, specified by an interface P, interacts with an environment,
it plays a game with the environment. This game on a closer look, however, is not
identical to the game defined (on the game graph P) in Sect. 4. The component
strategies in the new game is still constrained by P (i.e. as it is for the system
strategies contained by P in the old game). But the environment is entirely
un-constrained, which may choose from all strategies definable by its alphabet.
Thus, the environment can be extremely powerful in such game interactions,
especially when it is further equipped with the timestop operation.

Previously [9], we have developed a specification theory for such systems,
where � gives rise to a weakest congruence w.r.t.

∏
‖,

∏
∧,

∏
∨ and

∏
% opera-

tions of this paper. It results in a greatly simplified theory without the need for
timed game synthesis.

In this section we are going to remove the timestop and its related time-
blocking behaviours from both components and environments, and develop a
new specification theory for realisable components.



30 C. Chilton et al.

For a proper treatment of un-constrained strategies, we need first to define
a notion of aggressiveness.

Comparing strategies. Different strategies vary in their effectiveness to steer the
interaction clear of � or ⊥. Such effectiveness can be compared if two strategies
closely resemble each other: we say G and G′ of the same player are affine if
s0G

tt=⇒ p and s0G′
tt=⇒ p′ implies mvG(p) = mvG′(p′). Intuitively, this means G and

G′ propose the same move at the ‘same’ states.
Given two affine strategies G and G′, we say G is more ⊥-aggressive than G′,

denoted G � G′, if (1) s0G′
tt=⇒ ⊥ implies there is a prefix tt0 of tt s.t. s0G

tt0=⇒ ⊥
and (2) s0G

tt=⇒ � implies there is a prefix tt0 of tt s.t. s0G′
tt0=⇒ �. Intuitively, it

means G can reach ⊥ faster but � slower than G′. � forms a partial order over
the set of strategies possessed by a player. Dually, we can define G being more
�-aggressive than G′ as G′ � G.

‘Representative’ winning strategies. We say an environment strategy Ge is a
winning strategy in the interaction with component P iff Gs ×h Ge does not end
in ⊥ for all coin strategies h and all system strategies Gs ∈ P.

Of all environment winning strategies against component P, the subset of
minimally �-aggressive ones can fully represent the whole set (by an upward-
closure operation on �), since the capability of a less aggressive strategy in
steering clear of ⊥ implies the same capability for more aggressive ones.

Thus, our theory can focus mainly on ‘representative’ environment winning
strategies, which, by the magic of mirror, have already been encoded in P.

Lemma 3. Ge is a minimally �-aggressive environment winning strategy in the
game with component P iff P¬0 (i.e. pre-mirror of P) contains Ge .

In another word, an interface P encodes both a set of component strategies
(say SG) and a ‘representative’ set of environment winning strategies (EG),
which are resp. the component guarantees and environment assumptions of the
interface.

5.1 Unrealisability

The timestop operation � freezes the global time by halting the progress of the
system clock. In general, such capability is too powerful to be realistic. Thus, a
(component or environment) strategy containing timestop is unrealisable, and a
state possessing no realisable component strategy is an unrealisable state.

According to Sect. 4, unrealisable states are exactly �-winning states. Reali-
sation operation is equivalent to removing all unrealisable system strategies from
an interface.

Lemma 4. Given an interface P, the set of realisable component strategies of
P is exactly the set of component strategies of PR.



A Specification Theory of Real-Time Processes 31

5.2 Incompatibility

Given two interfaces P and Q with complementary alphabets (i.e. I and O
interchanged), their parallel composition calculates the intersection of SGP and
EGQ as well as that of SGQ and EGP . That is, the guarantees provided by one
interface will be matched against the assumptions required by the other.

For a general component P, both SGP and EGP may contain unrealisable
strategies. For a realisable component P, only EGP may contain unrealisable
strategies. In a specification theory, environments are also components. If all
components are realisable, the unrealisable part of EGP becomes irrelevant. For
instance, if EGP consists of only unrealisable strategies, it is equivalent to being
empty.

In the process of fulfilling assumptions with guarantees, if there is a match
(i.e. non-empty realisable intersection), assumptions will be absorbed by guar-
antees and disappear since P ‖ Q forms a closed system. Otherwise (i.e. empty
realisable intersection), it gives rise to the so-called incompatible states, i.e. states
in which all ‘representative’ environment winning strategy are unrealisable.

A state p in P is incompatible implies p in P¬0 is unrealisable, which in
turn implies (by duality) p in P is un-normalisable, i.e. a state containing no
normalisable environment strategy. According to Sect. 4, un-normalisable states
are exactly ⊥-winning states.

In assume-guarantee specification theories, auto-⊥ and semi-⊥, as members
of incompatible states, are endowed with specialised interpretations, capturing
resp. safety mismatch errors (aka exception) and liveness mismatch errors (aka
time-out).

Exception. The arrival of an input at a location and time of a component when
it is not expected (i.e. the input is disabled at the location and time) triggers an
exception in the parallel composition. Exception is captured by auto-⊥ states.

Figure 2 shows the parallel composition of the job scheduler with the printer
controller. In the transition from B4 to A1, the guard combines the effects of
the constraints on the clocks x and y . As finish is an output of the controller, it
can be fired at a time when the scheduler is not expecting it, meaning that an
exception is raised due to safety errors. This is indicated by the transition to ⊥
when the guard constraint 5 ≤ x ≤ 8 is not satisfied.

Fig. 2. Parallel composition of the job scheduler and printer controller.



32 C. Chilton et al.

Timeout. The non-arrival of an expected input at a location of a component
before the expiration of its co-invariant triggers a bounded-liveness error (aka
timeout) in the parallel composition.

Fig. 3. Bounded liveness error.

Figure 3 shows an example for bounded-liveness errors. In the closed system
P ‖ Q, at location B2 the system is free to choose either output finish after
y ≥ 2 or delay until x > 3. If it chooses the latter, P component will time out in
location B and the system will enter ⊥. Note that the timeout here is due to the
fact that the urgency requirement at location 2 of Q (i.e. y <= 4) is weaker than
the timeout bound set at location B of P (i.e. x <= 3). (If it is otherwise, the
invariant at B2 will preempt the co-invariant at B2 and eliminate the possibility
of timeout.)

5.3 Realisable Specification and Coarsened Refinement

Now let us start to move back to specifications by defining realisable specifica-
tions, which will give us the advantage of the closure under hiding and renaming
operations.17

We first notice that the definition of auto-� and semi-� can be extended
to specifications. Then we say a specification is realisable iff it is free of both
auto-� and semi-�. Due to the preservation of auto-� and semi-� freedom by
determinisation, we have:

Lemma 5. Given a realisable specification P, PD is a realisable interface.

Recall that P and PD are substitutively equivalent according to the finest �,
in which the timestop operations greatly increase the distinguishing power of
the processes, enabling it to tell two interfaces apart by examining the timing
difference in error occurrences as well as the existence of such occurrences.18

After the removal of timestop and restricting to realisable specifications,
however, the substitutive equivalence is coarsened to be �r .

17 We omit the two operators in this paper due to space limitation.
18 That is, they can distinguish the ⊥ state from the ⊥-winning states by stopping

time immediately.



A Specification Theory of Real-Time Processes 33

Realisable refinement. Let P and Q be realisable specifications with identical
alphabets. P realisably refines Q (i.e. Q �r P), iff, for all realisable specification
R that is a closed context of P, Q ‖ R is ⊥-free implies P ‖ R is ⊥-free. We say
Q �r P (realisably equivalent), iff P �r Q and Q �r P.

It is obvious that �r is the weakest equivalence preserving incompatible
states (over realisable specifications). In the sequel we show that �r is a congru-
ence w.r.t. the parallel ‖, conjunction ∧, disjunction ∨ and quotient % operators.

Note that, even though the sequel focuses on realisable specifications which
are closed under all four operations, we still need unrealisable specifications as
a detour to simplify operator definitions like quotient and conjunction, since
realisable specifications are not closed under

∏
∧ and

∏
%.

Lemma 6. Given a realisable specification P, P �r PD �r (PD)N .

6 Conjunction, Disjunction and Quotient

In this section we will present the operational definition of conjunction, dis-
junction and quotient operators19, building on top of the generic synchronised
product operator in Sect. 2.

Desiderata of the operators. Let us first describe the desired effects these oper-
ators aim to achieve before the formal development.

Over the set of realisable specifications, e.g. P, Q and L, and with respect to
the substitutive refinement �r : (1) P ∨ Q gives rise to the strongest realisable
specification that are weaker than both P and Q; (2) P ∧ Q gives rise to the
weakest realisable specification that are stronger than both P and Q; and (3)
P%Q gives rise to the weakest realisable specification L s.t. L ‖ Q is stronger
than P.

Thus, conjunction and disjunction calculate the meet and join w.r.t. �r ,
whilst quotient synthesises a controller to interact with the specification and
steer its execution away from incompatible states.

Operational definitions. The definition of
∏

∧ can be extended without modifi-
cation to work on ⊥-complete TIOTSs.20 The definitions of

∏
∨ and

∏
% do not

extend to ⊥-complete TIOTSs.
We define P ∨ Q = P� ∏

∨ Q� and P¬ = ((PD)N )¬0 . We define the other
two operators by a three-step recipe: (((PD)N )� ∏

⊗((QD)N )�)R. We start with
normalisation, go on with applying the

∏
⊗ operators (after �-completion), and

finish with realisation. It is easy to verify that realisable specifications are closed
under all three operators.

We can verify that P0%P1 �r (P¬
0 ‖ P1)¬. This is a lifting, from the state

level to the process level, of a corresponding equation in Sect. 2.
19 It is easy to verify that realisable specifications are closed under ‖ defined in Sect. 3

since ‖ preserves auto-� and semi-� freedom.
20 With the extension, blocked synchronisation, i.e. an action being enabled on one

process but not so on the other, becomes possible.



34 C. Chilton et al.

7 Declarative Theory of Contracts

We now present a timed-trace semantics to all the operators defined in this
paper. For this purpose we adopt the contract framework promoted in [5,20]21,
which has the advantage of explicitly separating assumptions from guarantees.

Given a specification P = 〈I ,O ,S , s0,→〉, three sets of traces can be
extracted from ((P⊥)�)D :

– TP is a set of timed traces leading to plain states
– TF is a set of timed traces leading to the erroneous state ⊥
– TM is a set of timed traces leading to the timestop state �.

TF and TM are extension-closed due to the chaotic nature of � and ⊥, while
TP is prefix-closed. Since TF �TP �TM gives rise to the full set of timed traces
(i.e. tA∗), we need only two of the three sets to characterise P.

In a system-environment game play, TF is the set of behaviours that the
environment tries to steer the play away from, whereas TM is the set of behav-
iours that the system tries to steer the play away from. Thus, TF and TM
characterise resp. the assumptions AS and guarantees GR of the specification.

Definition 4 (Contract). A contract is a tuple (I ,O ,AS ,GR), where AS and
GR are two disjoint extension-closed trace sets. The contract of P is defined as
T T (P) := (I ,O ,TF ,TM ).

We say the contract of a specification P is realisable iff GR in T T (P) is I-
receptive. A trace set TT is I-receptive iff, for each tt ∈ TT , we have (1) tt�〈e〉 ∈
TT for all e ∈ I and (2) tt � 〈d〉 /∈ TT for some d ∈ R

>0 implies there exists
some 0 ≤ d0 < d and e0 ∈ O s.t. tt � 〈d0, e0〉 ∈ TT .

We say the contract of a specification P is normalisable iff AS in T T (P)
is O-receptive. A trace set TT is O-receptive iff, for each tt ∈ TT , we have (1)
tt � 〈e〉 ∈ TT for all e ∈ O and (2) tt � 〈d〉 /∈ TT for some d ∈ R

>0 implies
there exists some 0 ≤ d0 < d and e0 ∈ I s.t. tt � 〈d0, e0〉 ∈ TT .

We can lift the realisation and normalisation operations to contracts:

Definition 5 (Realisation). The realisation of a contract is (I ,O ,AS ,
GR)R = (I ,O ,AS\GRR,GRR), where GRR is the least extension-closed super-
set of GR s.t. no tt ∈ GRR is an auto-� or semi-�.

We say a trace tt ∈ TT is an auto-� iff tt � 〈e〉 /∈ TT for some e ∈ I . A
trace tt ∈ TT is an semi -� iff there exists some d ∈ R

>0 s.t. tt � 〈d〉 /∈ TT and
tt � 〈d0, e0〉 /∈ TT for all 0 ≤ d0 < d and e0 ∈ O . It is easy to verify GRR is
I-receptive and T T (P)R = T T (PR).

Dually, we can define a trace tt ∈ TT being an auto-⊥ or semi -⊥.

Definition 6 (Normalisation). Given a contract (I ,O ,AS ,GR), we define
(I ,O ,AS ,GR)N = (I ,O ,ASN ,GR\ASN ), where ASN is the least extension-
closed superset of AS s.t. no tt ∈ ASN is an auto-⊥ or semi-⊥.

It is easy to verify that ASN is O-receptive and T T (P)N = T T (PN ).
21 Bertrand Meyer [18] and Ralph Back [4] first coined the terminology of contract in

the context of programming languages.



A Specification Theory of Real-Time Processes 35

The theory of realisable contracts. A realisable specification gives rise to a realis-
able contract. Over realisable specifications, our contract theory, with the assis-
tance of normalisation operation, provides an alternative characterisation of �r ,
which says that a realisable specification P is a refinement of another one Q iff
P has less assumptions and more guarantees than Q.

Definition 7 (Neutral contract). A contract (I ,O ,AS ,GR) is neutral iff
AS is O-receptive and GR is I-receptive.

The neutral contract of the above P is defined as CT (P) := T T (P)N .

Theorem 1. Given realisable specifications P0 and P1 with CT (P0) = (I ,O ,
AS0,GR0) and CT (P1) = (I ,O ,AS1,GR1), P0 �r P1 iff AS1 ⊆ AS0 and GR0 ⊆
GR1.

Based on neutral contracts, we present the trace semantics of the parallel,
disjunction, conjunction and quotient operations. The core part of the operations
is based on a set of patterns originally presented in [20]. The specialisation
required for the timed theory lies in the application of closure conditions like
normalisation, realisation and alphabet enlargement.

Alphabet enlargement. Given a set Δ of actions disjoint from I ∪ O , we define
(I ,O ,AS ,GR)Δ := (I ∪ Δ,O ,ASΔ,GRΔ), where TTΔ := {tt : (tA ∪ Δ)∗ | tt �
tA ∈ TT} · (tA ∪ Δ)∗.

In the rest of the section we consider two realisable specifications Pi for
i ∈ {0, 1} with CT (Pi) = (Ii ,Oi ,ASi ,GRi) and ī = 1 − i .

Proposition 2 (Parallel Composition). If realisable specifications P0 and
P1 are ‖-composable, then CT (P0 ‖ P1) = (I ,O , (ASΔ0

0 ∪ ASΔ1
1 )\(GRΔ0

0 ∪
GRΔ1

1 ),GRΔ0
0 ∪ GRΔ1

1 )N , where I = (I0 ∪ I1)\O, O = O0 ∪ O1, Δ0 = A1\A0

and Δ1 = A0\A1.

Intuitively, the above says that the composed guarantees are the union of compo-
nent guarantees, whilst the composed assumptions are the union of component
assumptions with those fulfilled by the composed guarantees deducted.

Proposition 3 (Disjunction). If realisable specifications P0 and P1 are
∨-composable, then CT (P0 ∨ P1) = (I ,O , AS0 ∪ AS1,GR0 ∩ GR1)N , where
I = I0 = I1 and O = O0 = O1.

Disjunction places union over assumptions but intersection over guarantees.

Proposition 4 (Conjunction). If realisable specifications P0 and P1 are ∧-
composable, then CT (P0 ∧ P1) = (I ,O , AS0 ∩ AS1,GR0 ∪ GR1)R, where I =
I0 = I1 and O = O0 = O1.

Conjunction places union over guarantees but intersection over assumptions.



36 C. Chilton et al.

Proposition 5 (Quotient). If realisable specifications P0 and P1 are
%-composable, then CT (P0%P1) = (I ,O ,AS0 ∪ GRΔ1

1 , (GR0\GRΔ1
1 ) ∪

(ASΔ1
1 \AS0))R, where I = I0 ∪ O1, O = O0\O1 and Δ1 = A0\A1.

The composed assumptions of quotient is the union of P0-assumptions and
P1-guarantees, whilst the composed guarantees is the union of (1) P0-guarantees
outside of P1-guarantees and (2) P1-assumptions outside of P0-assumptions.

Mirror. The operation simply interchanges assumptions and guarantees.
Proposition 6. CT (P¬) = (O , I ,GR,AS ).

Based on the above theorem we can prove the congruence result.

Theorem 2. �r is a congruence w.r.t. ‖, ∨, ∧ and %, subject to composability.

8 Comparison with Related Work

Our framework builds on the timed specification theories of [12,13] and [10],
albeit with significant differences.

Formalism. All three theories are based on variants of Timed I/O Automata.
Our variant, like that of [12,13], uses two invariants (aka input/output invariants
in [12,13]) in order to recover the duality between assumptions and guarantees;
whereas the TIOAs in [10] possess no such duality. Our TIOA semantics, on
the other hand, differs from those of [12,13] in the formulation of timed games
and adoption of �/⊥, which enable us to reduce the two transition relations
in [12,13] to the one relation of Sect. 2.

Timed Game. Both [12,13] and [10] use two-player games, whereas our theory
uses a three-player game (with a coin), which is crucial for uncovering the inter-
ference between the dual pair of two-player games, normalisation and realisation.

Even with the reduction to two-player games, our treatment of timed games
is still different. In comparison with [12,13], our games require that in each move
a finite delay is followed by an action. Therefore, a play cannot have consecutive
delay moves and the possibility of zeno plays (i.e. an infinite play generating a
finite trace) is ruled out. Furthermore, finite plays ending in timestop or timelock
(i.e. semi-�) can also be removed since we have the realisation game.

In comparison with [10], which is based on the timed game framework of [3,7],
our games are strictly more aggressive in classifying winning states. For instance,
[3,7] do not classify auto-�/⊥ as winning states.

Linking with refinement calculus. The introduction of � and ⊥, inspired by
abort and magic of refinement calculus, significantly simplifies our theory (esp.
the operator and refinement-relation definitions and the duality of games), in
addition to pointing towards future theory unification.

In contrast, without � and ⊥ the pursuit of duality in [12,13] does not end
with a simplified theory22; especially it misses the second game in duality.
22 [12,13] focuses on the definition of one operator, parallel composition, which is of

considerable complexity.



A Specification Theory of Real-Time Processes 37

On the other hand, [10] makes no attempt to link with refinement calculus.

Linear-time and Non-determinism. [10] and [11–13] uses timed alternating sim-
ulation as refinement, which (1) does not admit the weakest precongruence and
(2) restricts [10,12,13] to consider only deterministic timed systems.

In contrast, we use linear-time semantics that gives rise to both the weakest
precongruence and a �/⊥-sensitive determinisation procedure, enabling us to
handle non-deterministic timed systems.

Untimed theories. Finally, we remark that our linear-time specification theory
owes much to the pioneering work on trace theories for asynchronous circuit
verification, especially Dill’s trace theory [14]. It is from this community that we
take inspiration for the notion of game synthesis, double-trace semantics, auto-⊥
(aka auto-failure) and the derivation of quotient from mirror.23

In comparison with untimed theories, where only one game with auto-⊥
is required,24 the timed theory requires timestop, two games in duality, three
players and the new notion of semi-�/⊥. Furthermore, with the use of invariants
and co-invariants in timed specifications, timed theory can give a systematic
treatment to liveness based on finite traces.

9 Conclusion and Future Work

We have devised a fully compositional specification theory for realisable real-time
components. The linear-time theory enjoys strong algebraic properties, supports
a full set of composition operators, and admits the weakest substitutive pre-
congruence preserving safety and bounded-liveness error freedom.

Acknowledgments. We benefit from discussions with Prof. David Dill and Prof. Jeff
Sanders on timed extension of trace theory and refinement calculus.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126, 183–
235 (1994)

2. Armstrong, P.J., Lowe, G., Ouaknine, J., Roscoe, A.W.: Model checking timed
CSP. In: A Festschrift on the Occasion of H. Barringer’s 60th Birthday (2014)

3. Asarin, E., Maler, O., Pnueli, A., Sifakis, J.: Controller synthesis for timed
automata. In: IFAC Symposium on System Structure and Control, Elsevier (1998)

4. Back, R.J., von Wright, J.: Refinement Calculus: A Systematic Introduction.
Springer, New York (1998)

5. Benveniste, A., Caillaud, B., Nickovic, D., Passerone, R., Raclet, J., Reinkemeier,
P., Sangiovanni-Vincentelli, A., Damm, W., Henzinger, T., Larsen, K.: Contracts
for systems design. Technical report RR-8147, S4 team, INRIA, November 2012

23 The mirror-based definition of quotient (for the untimed case) was first presented
by Verhoeff as his Factorisation Theorem [24].

24 Composition of untimed specifications will not generated new unrealisable behav-
iours.



38 C. Chilton et al.

6. Bertrand, N., Stainer, A., Jéron, T., Krichen, M.: A game approach to determinize
timed automata. In: Hofmann, M. (ed.) FoSSaCS 2011. LNCS, vol. 6604, pp. 245–
259. Springer, Heidelberg (2011). doi:10.1007/978-3-642-19805-2 17

7. Cassez, F., David, A., Fleury, E., Larsen, K.G., Lime, D.: Efficient on-the-fly algo-
rithms for the analysis of timed games. In: Abadi, M., Alfaro, L. (eds.) CON-
CUR 2005. LNCS, vol. 3653, pp. 66–80. Springer, Heidelberg (2005). doi:10.1007/
11539452 9

8. Chilton, C., Jonsson, B., Kwiatkowska, M.: Compositional assume-guarantee rea-
soning for input/output component theories. Sci. Comput. Program. 91, 115–137
(2014). Part A

9. Chilton, C., Kwiatkowska, M., Wang, X.: Revisiting timed specification theories:
a linear-time perspective. In: FORMATS 2012 (2012)

10. David, A., Larsen, K.G., Legay, A., Nyman, U., Wasowski, A.: Timed I/O
automata: a complete specification theory for real-time systems. In: HSCC 2010
(2010)

11. de Alfaro, L., Henzinger, T.A.: Interface automata. In: ESEC/FSE 2001 (2001)
12. de Alfaro, L., Henzinger, T.A., Stoelinga, M.: Timed interfaces. In: EMSOFT 2002,

vol. 2491, pp. 108–122 (2002)
13. de Alfaro, L., Stoelinga, M.: Interfaces: a game-theoretic framework for reasoning

about component-based systems. Electron. Notes Theoret. Comput. Sci. 97, 3–23
(2004)

14. Dill, D.L.: Trace theory for automatic hierarchical verification of speed-independent
circuits. In: ACM Distinguished Dissertations. MIT Press (1989)

15. Ebergen, J.C.: A technique to design delay-insensitive VLSI circuits. Technical
report CS-R8622, Centrum voor Wiskunde en Informatica, June 1986

16. He, J., Hoare, C.A.R., Sanders, J.W.: Data refinement refined. In: Robinet, B.,
Wilhelm, R. (eds.) ESOP 1986. LNCS, vol. 213, pp. 187–196. Springer, Heidelberg
(1986). doi:10.1007/3-540-16442-1 14

17. Hoare, C.A.R., He, J., Sanders, J.W.: Prespecification in data refinement. Inf.
Process. Lett. 25(2), 71–76 (1987)

18. Meyer, B.: Design by contract. In: Advances in Object-Oriented Software Engi-
neering. Prentice Hall (1991)

19. Morgan, C.C.: Programming from Specifications. Prentice Hall International Series
in Computer Science, 2nd edn. Prentice Hall, UK (1994)

20. Negulescu, R.: Process spaces. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS,
vol. 1877, pp. 199–213. Springer, Heidelberg (2000). doi:10.1007/3-540-44618-4 16

21. Reed, G.M., Roscoe, A.W., Schneider, S.A.: CSP and Timewise Refinement, pp.
258–280. Springer, London (1991)

22. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice Hall, UK (1998)
23. van de Snepscheut, J.L.A.: Trace Theory and VLSJ Design. LNCS, vol. 200.

Springer, Heidelberg (1985)
24. Verhoeff, T.: A Theory of Delay-Insensitive Systems. Ph.D. thesis, Dept. of Math.

and C.S., Eindhoven University of Technology, May 1994
25. Wang, X.: Maximal confluent processes. In: Haddad, S., Pomello, L. (eds.) PETRI

NETS 2012. LNCS, vol. 7347, pp. 188–207. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-31131-4 11

26. Wang, X., Kwiatkowska, M.Z.: On process-algebraic verification of asynchronous
circuits. Fundam. Inform. 80(1–3), 283–310 (2007)

http://dx.doi.org/10.1007/978-3-642-19805-2_17
http://dx.doi.org/10.1007/11539452_9
http://dx.doi.org/10.1007/11539452_9
http://dx.doi.org/10.1007/3-540-16442-1_14
http://dx.doi.org/10.1007/3-540-44618-4_16
http://dx.doi.org/10.1007/978-3-642-31131-4_11
http://dx.doi.org/10.1007/978-3-642-31131-4_11


Towards Verification of Cyber-Physical Systems
with UTP and Isabelle/HOL

Simon Foster and Jim Woodcock(B)

Department of Computer Science, University of York, York YO10 5GH, UK
{simon.foster,jim.woodcock}@york.ac.uk

Abstract. In this paper, we outline our vision for building verifica-
tion tools for Cyber-Physical Systems based on Hoare and He’s Uni-
fying Theories of Programming (UTP) and interactive proof technol-
ogy in Isabelle/HOL. We describe our mechanisation and explain some
of the design decisions that we have taken to get a convenient and
smooth implementation. In particular, we describe our use of lenses
to encode state. We illustrate our work with an example UTP theory
and describe the implementation of three foundational theories: designs,
reactive processes, and the hybrid relational calculus. We conclude by
reflecting on how tools are linked by unifying theories.

1 Introduction

Cyber-Physical Systems (CPS) are networks of computational devices that inter-
act with the world through an array of sensors and actuators, and combine dis-
crete computation with continuous physical models of their environment. For
example, automated, driverless vehicles that are required to sense their environ-
ment, construct a real-time model of the present situation, make decisions about
developing scenarios, and respond within a sufficiently short amount of time to
ensure the safety of its passengers and other road users. Engineering such systems
whilst demonstrating their trustworthiness is a major challenge. CPS engineer-
ing involves a wide range of modelling and programming paradigms [10], includ-
ing concurrency, real-time, mobility, continuous variables, differential equations,
object orientation, and diagrammatic languages. These aspects are represented
by a variety of domain-specific and general-purpose languages, such as Simulink,
Modelica, SysML, Java, and C, and thus engineering trustworthy CPS requires
that we semantically integrate models in a consistent way, and then form argu-
ments that the system as a whole exhibits certain properties.

Semantic integration has been made possible using the industry-developed
standard FMI [5] (Functional Mockup Interface), which describes a CPS using a
network of FMUs (Functional Mockup Units) that represent components or con-
stituent systems. An FMU exposes a number of observable continuous variables
that characterise the state of the individual model at a particular instant. Vari-
ables can either be of type input, output, or state, depending on whether they are

This paper is dedicated to Bill Roscoe on the occasion of his 60th birthday.
c© Springer International Publishing AG 2017
T. Gibson-Robinson et al. (Eds.): Roscoe Festschrift, LNCS 10160, pp. 39–64, 2017.
DOI: 10.1007/978-3-319-51046-0 3



40 S. Foster and J. Woodcock

under the control of the FMU or the environment. FMUs can be stepped forward
in time, which will cause these variables to evolve. A requested time step may be
rejected and require curtailing if an event, such as a zero-crossing, occurs in the
meantime, since the other FMUs may need to be notified. A master algorithm
manages stepping the individual FMUs forward, and distributing information in
between time steps. Aside from this minimal operational interface, each FMU is
treated as a black box. An FMU can correspond to an abstract model of behav-
iour, an implementation of a particular component, or even a physical piece of
hardware, which allows for Hardware in the Loop (HiL) simulation and testing.
FMI thus allows one to describe heterogeneous multi-models that are described
in different notations, and with different underlying semantic models, but are
nevertheless integrated through a common operational interface.

Though FMI provides the necessary operational interface between different
models and programs, it alone does not provide enough semantic information
to verify them. In order to achieve that, we need a way of tackling the inherent
semantic heterogeneity of the multi-model, for which we use Hoare and He’s Uni-
fying Theories of Programming [8,24,39] (UTP), which is a long-term research
agenda to describe different computing paradigms and the formal links between
them. It allows us to consider the various semantic aspects of a heterogeneous
multi-model as individual theories that characterise a particular abstract pro-
gramming or modelling paradigm. Hoare and He [24] show how the alphabe-
tised relational calculus can be applied to construct a hierarchy of such theories,
including simple imperative programs (relations), designs that correspond to pre-
and postcondition specifications, and various theories of concurrent and paral-
lel programs, including the process algebras ACP, CCS, and CSP [23]. Since
the advent of UTP, a host of additional UTP theories have been developed
that variously tackle paradigms like real-time programming [34], object-oriented
programming [32], security and confidentiality [3], mobile processes [33], prob-
abilistic modelling [6], and hybrid systems [15]. Moreover, the FMI API itself
has been given a UTP-based semantics [9] that can be used as an interface to
the semantic model of individual FMUs, and also allows a network of FMUs to
be verified at this level using the FDR3 refinement checker [18]. The UTP app-
roach allows computational theories to be formalised and explored as indepen-
dent theories, and then later integrated to provide heterogeneous denotational
semantic models. This can either be done directly through theory combination,
or where theories are not directly compatible, such as in the case of discrete and
continuous time, through the use of Galois connections that characterise best
approximations.

In order to make UTP theories practically applicable to program verification,
tool support is needed, and so we are also developing a theorem prover for UTP
based on Isabelle/HOL [28], which we call Isabelle/UTP [16,17]. Isabelle is a
powerful proof assistant that can be used both for the mechanisation of mathe-
matics, and for the application of such mechanisations to program verification,
which is famously illustrated by the seL4 microkernel verification project [26].
Another excellent example is the use of Kleene algebras to build program



Towards Verification of Cyber-Physical Systems with UTP and Isabelle/HOL 41

verification tools [1], from which Hoare logics, weakest-precondition calculi, rely-
guarantee calculi, and separation logics have been created. Specifically of interest
for CPS, there has also been a lot of recent work on formalising calculus, analy-
sis, and ordinary differential equations (ODEs) in Isabelle [25], which can then
be applied to verification of hybrid systems. Similarly, we are also building a
mechanised library of UTP theories1, including associated laws of programming
and verification calculi.

Crucial to all of these developments is the ability to integrate external tools
into Isabelle that can provide decision procedures for specific classes of problems.
Isabelle is well suited to such integrations due to its architecture that is based
on the ML and Scala programming languages, both of which can be used to
implement plugins. Isabelle is sometimes referred to as the Eclipse of theorem
provers [37]. The sledgehammer tool [4], for example, integrates a host of first-
order automated theorem provers and SMT solvers, which often shoulder the
burden of proof effort. Sledgehammer is used, for example, by [1], both at the
theory engineering level, for constructing an algebraic hierarchy of Kleene alge-
bras, and also at the verification level, where it is used to discharge first-order
proof obligations. For verification of hybrid systems, it will also be necessary
to integrate Isabelle with Computer Algebra Systems (CAS) like Mathemat-
ica, MATLAB, or SageMath, to provide solutions to differential equations, an
approach that has been previously well used by the KeYmaera tool [30,31].

Our vision is the use of Isabelle and UTP to provide the basis for CPS
verification through formalisation of the fundamental building-block theories of
a CPS multi-model, and the integration of tools that implement these theories
for coordinated verification. This is, of course, an ambitious task and will require
collaboration with a host of domain experts. Nevertheless, the vision of UTP is
to provide a domain in which such cooperations can be achieved.

This paper gives an overview of the state of our work towards verification
of CPS in UTP. In Sect. 2, we describe our approach to mechanising UTP in
Isabelle/HOL, including its lens-based state model, meta-logical operators, and
the alphabetised relational calculus. In Sect. 3, we show how an example theory
can be mechanised and properties proved in Isabelle/UTP. In Sect. 4, we give an
overview of the UTP theories of CPS that we have mechanised so far. In Sect. 5,
we conclude.

2 Algebraic Foundations of Isabelle/UTP

In this section we summarise the foundations of Isabelle/UTP, our semantic
embedding of the UTP in Isabelle/HOL, including its lens-based state model,
meta-logical functions, and laws. Isabelle/UTP includes a model of alphabe-
tised predicates and relations, proof tactics, and a library of proven alge-
braic laws. Following [11,12], our predicate model is a parametric Isabelle type
α upred =̂ α ⇒ bool where α is the domain of possible observations, that is, the
alphabet.
1 This library can be viewed at github.com/isabelle-utp/utp-main.

http://github.com/isabelle-utp/utp-main


42 S. Foster and J. Woodcock

The predicates-as-sets model is standard for most semantic embeddings of
UTP, both deep [16,29,40] and shallow [11,12], and means that the predicate
calculus operators can be obtained by simple lifting of the HOL equivalents.
This means that we can automatically inherit the fact that, like HOL predi-
cates, UTP predicates also form a complete lattice. Moreover, this facilitates
automated proof for UTP predicates, which we make available through the pred-
icate calculus tactic pred-tac, which can be used to discharge a large number of
conjectures in our UTP theories.

A major difference between Isabelle/UTP and the deep embeddings is that
we use Isabelle types to model alphabets, rather than representing them as finite
sets. Use of types to model alphabets has the advantage that the type checker
can be harnessed to ensure that variables mentioned in predicates are indeed
present in the alphabet. What the predicate model lacks a priori though, is a
way of manipulating the variables present in α; for this we use lenses.

2.1 Lenses in Brief

UTP is based on the paradigm of predicative programming, where programs
are predicates [22]. This view results in a great simplification, with much of the
machinery of traditional denotational semantics swept away, including the brack-
ets mapping fragments of syntax to their denotation, as well as the environment
used to evaluate variables in context. As an example of the latter, x := 1 is
just another way of writing the predicate x ′ = x + 1. This simplified view of an
environment-free semantics is difficult to maintain when thinking about more
sophisticated programming techniques, such as aliasing between variables. See,
for example a UTP semantics for separation logic [38], where environments are
reintroduced to record variables stored on the heap and the stack. This raises the
general methodological question of what is the most convenient way of modelling
the state space for a UTP theory? The answer to this is especially important for
our mechanisation in Isabelle, if we are to provide a generally reusable technique.

Rather than characterising variables as syntactic entities [16], we instead
algebraically characterise the behaviour of variables using lenses [14,17]. Lenses
allow us to represent variables as abstract projections on a state space with
convenient ways to query and update in a uniform, compositional way. Variables
are thus represented by regions of the state space that can be variously related,
namelessly and spatially; these regions can be nested in arbitrary ways. Lenses
are equipped with operators for transforming and decomposing the state space,
enabling a purely algebraic account of state manipulations, including consistent
viewing, updating, and composition. Importantly, the theory of lenses allows us
to formalise meta-logical operations in the predicate calculus, such as freshness
of variables and substitution of expressions for variable names.

A lens X from a view type V to a bigger source type S is a function
X : V =⇒ S that allows us to focus on V independently of S . The signature of
a lens consists of two functions:

get : S → V
put : S → V → S



Towards Verification of Cyber-Physical Systems with UTP and Isabelle/HOL 43

Consider as an example, a record lens. For the record

(| forename : String , surname : String , age : Int |)

there are seven lenses (the record has three components, so there are 23 −1 ways
of decomposing it). Other examples include product, function, list, and finite
map lenses. A number of algebraic laws might be satisfied by a particular lens:

get (put s v) = v (PutGet)
put (put s v ′) v = put s v (PutPut)

put s (get s) = s (GetPut)

Lenses that satisfy combinations of these laws are classified in different ways
[14,17]:

Well-behaved lenses PutGet + GetPut
Very well-behaved lenses addition of PutPut

Mainly well-behaved lenses PutGet + PutPut

The majority of laws in Isabelle/UTP require variables to be modelled as mainly
well-behaved lenses of type τ =⇒ α, where τ is the variable type, though some
laws depend on them being very well-behaved. From these axiomatic bases we
define operations for querying and composing lenses. These include independence
(X �� Y ), sublens (X ⊆L Y ), equivalence (X ≈L Y ), composition (X ; L Y ), and
summation (X +L Y ). All of these operations can be given denotations in terms
of the get and put [17]; here we focus on the intuition and algebraic laws.

Independence, X �� Y , describes when lenses X : V1 =⇒ S and
Y : V2 =⇒ S identify disjoint regions of the common source S . Essentially,
this is defined requiring that their put functions commute. In our example,
the forename and surname lenses can be updated independently and thus
forename �� surname. Lens independence is thus useful to describe when two
variables are different. The sublens partial order, X ⊆L Y , conversely, describes
the situation when X is spatially within Y , and thus an update to Y must affect
X . From this partial order we can also define an equivalence relation on lenses
in the usual way:

X ≈L Y =̂ X ⊆L Y ∧ Y ⊆L X

Lens composition X ; L Y : V1 =⇒ S , for X : V1 =⇒ V2 and Y : V2 =⇒ S ,
allows one to focus on regions within larger regions, and thus allows for state
space nesting. For example, if a record has a field that is itself a record,
then lens composition allows one to focus on the inner fields by compos-
ing the lenses for the outer with those of the inner record. Lens composition
is closed under all the algebraic lens classes. We also define the unit lens,
0L : unit =⇒ S , which has an empty view, and the identity lens, 1L : S =⇒ S ,
whose view is the whole source. Both of these lenses are also very well-behaved.



44 S. Foster and J. Woodcock

Lens sum, X +L Y : V1 × V2 =⇒ S , parallel composes two independent lenses
X : V1 =⇒ S and Y : V2 =⇒ S . This combined lens characterises the regions
of both X and Y . For example, the lens forename+L age allows us to query and
updates both fields simultaneously, whilst leaving surname alone. Finally, the
associated lenses fstL : V1 =⇒ V1 × V2 and sndL : V2 =⇒ V1 × V2 allow us to
view the left and right elements of a product source-type.

Our lenses operations satisfy the following algebraic laws, all of which has
been mechanised [17], assuming X , Y , and Z are well-behaved lenses:

Theorem 1. Lens algebraic laws

X ; L(Y ; L Z ) = (X ; L Y ) ; L Z (L1)
X ; L 1L = 1L ; L X = X (L2)
X �� Y ⇔ Y �� X (L3)

X +L(Y +L Z )≈L(X +L Y )+L Z X �� Y ,X �� Z ,Y �� Z (L4)
X +L Y ≈L Y +L X X �� Y (L5)
X +L 0L ≈L X (L6)

X ⊆L X +L Y X �� Y (L7)
fstL �� sndL (L8)

fstL ; L(X +L Y ) = X X �� Y (L9)
X �� (Y +L Z ) X �� Y ,X �� Z (L10)

The majority of these laws are self explanatory, however we comment on a few.
Sum laws like L4 use lens equality rather than homogeneous HOL equality since
the left- and right-hand sides have different types. Law L9 shows how the fstL

lens extracts the left-hand side of a product. Interestingly, these laws contain
the separation algebra axioms [7], where separateness is characterised by �� ,
and thus shows how our lens approach also generalises memory heap modelling.
Thus we have an abstract model of state and an algebraic account of variables.

2.2 Expressions

Expressions have a similar type to predicates: (τ, α) uexpr =̂ α ⇒ τ , where τ is
the return type and α is the alphabet. We thus harness the HOL type system
for ensuring well-formedness of expressions. HOL contains a large library of
expression operators, such as arithmetic, and we lift these to UTP expressions.
We also introduce the following core expressions constructs:

– e =u f : equality of UTP expressions.
– &x : obtains the value of lens x : α =⇒ τ in the state space.
– «v»: embeds a HOL expression of type τ into a UTP expression.

In general for expressions, we try to follow the standard mathematical syntax
from the UTP book [24] and associated tutorials [8,39]. For example, for the
predicate operators we introduce overloaded constants so that the type system
must determine whether operators like ∧ and ¬ are the HOL or UTP versions.
Where this is not possible, for example equality, we add a u subscript.



Towards Verification of Cyber-Physical Systems with UTP and Isabelle/HOL 45

2.3 Meta-logical Functions

Isabelle/UTP is based on a semantic model for alphabetised predicates, rather
than syntax. Since we do not formalise a fixed abstract syntax tree for UTP
predicates, there are no notions such as free variables or substitution that ordi-
narily would be recursive functions on the tree. Instead, we introduce weaker
semantic notions that are sufficient to characterise the laws of programming:

– Unrestriction, x � P , for lens x and predicate P , that semantically charac-
terises variables that are fresh.

– Semantic substitution, σ †P , for substitution function σ.
– Alphabet extrusion, P ⊕p a, for lens a.
– Alphabet restriction, P �p a, for lens a.

Intuitively, x � P holds, provided that P ’s valuation does not depend on x . For
example, it follows that x � true, x � «v», and x � (∃ x • x >u y), but not
that x � (x =u 1 ∧ y =u 2). What differentiates it from syntactic freshness is
that x � (x =u 0 ∨ x �=u 0), because the semantic valuation of this predicate
is always true. Unrestriction can alternatively be characterised as predicates
which satisfy the fixed point P = (∃ x • P) for very well-behaved lens x . Substi-
tution application σ †P applies a substitution σ to P . A substitution function
σ : α usubst (=̂ α ⇒ α) is a mapping from variables in the predicate’s alpha-
bet α to expressions to be inserted. Substitution update σ(x �→s e) assigns the
expression e to variable x in σ, and

[x1 �→s e1, · · · , xn �→s en ] = id(x1 �→s e1, · · · , xn �→s en)

creates a substitution for n variables. A substitution P [[e1, · · · , en/x1, · · · , xn ]] of
n expressions to corresponding variables is then expressed as

[x1 �→s e1, · · · , xn �→s en ] †P

We now present some of the proven laws of substitutions.

Theorem 2 (Substitution query laws).

〈σ(x �→s e)〉s x = e (SQ1)
〈σ(y �→s e)〉s x = 〈σ〉s x if x �� y (SQ2)

σ(x �→s e, y �→s f ) = σ(y �→s f ) if x ⊆L y (SQ3)
σ(x �→s e, y �→s f ) = σ(y �→s f , x �→s e) if x �� y (SQ4)

SQ1 and SQ2 show how substitution lookup is evaluated. SQ3 shows that an
assignment to a larger lens overrides a previous assignment to a small lens and
SQ4 shows that independent lens assignments can commute.



46 S. Foster and J. Woodcock

Theorem 3 (Substitution application laws).

σ †&x = σ(x ) (SA1)
σ(x �→s e) †P = σ †P if x � P (SA2)

σ †(¬ P) = ¬ (σ †P) (SA3)
σ †(P ∧ Q) = (σ †P) ∧ (σ †Q) (SA4)

(∃ y • P)[[e/x ]] = (∃ y • P [[e/x ]]) if x �� y , y � e (SA5)

These laws effectively subsume the usual syntactic substitution laws, for an arbi-
trary number of variables, many of which simply show how substitution distrib-
utes through predicate operators.

Alphabet extrusion P ⊕p a, for P : α upred, extends the alphabet type using
lens a : α =⇒ β: it projects the predicate’s alphabet α to “larger” alphabet type
β. Lens a can be seen as a coercion that shows how the original state space α
can be embedded into β. Effectively alphabet extrusion retains the predicate’s
characteristic valuation set over α, whilst filling in the rest of the variables in
source alphabet β with arbitrary values.

Alphabet extrusion can be used to map a predicate α upred to a relation
(α×α) upred by application of the lens fstL or sndL, depending on whether a precon-
dition or postcondition is desired. We give these two lifting operations the syntax
�p�< =̂ p ⊕p fstL and �p�> =̂ p ⊕p sndL, respectively, where p is a predicate in only
undashed variables. We similarly create the substitution extension operator �σ�s
that maps all variables and expressions to relational equivalents in undashed vari-
ables. Alphabet restriction is simply the inverse of extrusion:P �p a, forP : β upred
and a : α =⇒ β, yields a predicate of alphabet α. Unlike extrusion this operation
can be destructive if the predicate refers to variables in β but not in α. We demon-
strate the following laws for extrusion and restriction:

Theorem 4 (Alphabet laws).

true⊕p a = true (AE1)
«v» ⊕p a = «v» (AE2)

(P ∧ Q)⊕p a = (P ⊕p a) ∧ (Q ⊕p a) (AE3)
&x ⊕p a = &(x ; L a) (AE4)
x �� a ⇒ x � (P ⊕p a) (AE5)

(P ⊕p a) �p a = P (AE6)

As indicated by laws AE1 and AE2, alphabet extrusion changes only the type
of predicates with no variables; the body is left unchanged. Extrusion distrib-
utes through all the predicate operators, as expected, as indicated by law AE3.
Applied to a variable, extrusion precomposes the variable lens with the given
alphabet lens, as law AE4 demonstrates. Law AE5 shows that extrusion yields
a predicate unrestricted by any variable x in the state-space extension. Finally,
AE6 shows that alphabet restriction inverts alphabet extrusion.



Towards Verification of Cyber-Physical Systems with UTP and Isabelle/HOL 47

2.4 Relations and Laws of Programming

A relation is a predicate with a product state space: α relation =̂ (α × α) upred.
Variables of α can therefore be lifted to input or output variables by composing
the corresponding lens with fstL or sndL respectively.

Definition 1 (Relational variables).

$x =̂ x ; L fstL $x ′ =̂ x ; L sndL

It is important to note that “$x ” is distinguished from “&x ”: the former has a
product alphabet whilst the latter has a scalar one. Thus &x is useful when
writing predicates which should not contain dashed variables: $x =u &y will
usually result in a type error. Alphabet coercion can be used to convert between
relations and predicates, and in particular it follows that �&x�< = $x .

We define the relational calculus operators like P ; Q2 and II by lifting of
the constructs for HOL relations. Again, this gives us access to various built-in
laws for binary relations, and allows us to produce a tactic for relational calcu-
lus, rel-tac. Conditional (if-then-else) is introduced using predicate operators as
P � b �Q =̂ (b ∧ P) ∨ (¬ b ∧ Q). Assignment is defined as a general con-
struct over a state substitution: 〈σ〉a : α relation updates the state by applying the
substitution σ : α usubst to the previous state. The alphabet of the substitution
is α rather than α × α as this ensures that the assigned expressions cannot refer
to post variables, as usual. The unary substitution x := e can then be defined as
〈[x �→s e]〉a , and similarly for simultaneous assignment of n variables. This has
the advantage that the duality between substitution and assignment is clear in the
corresponding algebraic laws. We have proven a large library of laws for relations,
a selection of which is shown below, accompanied by the Isabelle names.

Theorem 5. Relational laws of programming

P ; (Q ; R) = (P ; Q) ; R (seqr-assoc)
II ; P = P (seqr-left-unit)

false ; P = false (seqr-left-zero)

(P � b �(Q � b �R)) = (P � b �R) (cond-shadow)

�p�< ∧ II = II ∧ �p�> (pre-skip-post)

(p ; true) = p ⇔ sndL � p (precond-equiv)

P ; Q = (∃ v • P [[«v»/$x ′]] ; Q [[«v»/$x ]]) (seqr-middle)

〈σ〉a ; P = �σ�s †P (assigns-r-comp)
〈σ〉a ; 〈ρ〉a = 〈ρ ◦ σ〉a (assigns-comp)

We comment on a few of these. Law pre-skip-post shows that a precondition
conjoined with relational identity can become a postcondition, since all variables
2 This is written as P ; ; Q in Isabelle since ; is a delimiter for assumptions.



48 S. Foster and J. Woodcock

are identified. Law seqr-middle allows us to extract the intermediate value of
a single variable in a sequential composition. Constant v is not a UTP state
variable, but rather a logical HOL variable indicated by use of quoting. Law
assigns-r-comp is a generalised version of the law x := v ; P = P [v/x ]—it
states that an assignment of σ followed by P equates to a substitution on P . We
have to extend the alphabet of σ to match the relational alphabet of P using
�σ�s . Finally, law assigns-comp states that the sequential composition of two
assignments corresponds to the functional composition of the two substitutions.
From this law we can prove the assignment commutativity law:

Theorem 6. Assignment commutativity

(x := e ; y := f ) = (y := f ; x := e) if x �� y , x � f , y � e (assign-commute)

Proof. By combination of laws assigns-comp and SQ4. ��
Altogether we have proven over 200 hundred laws of predicate and relational
calculus, many of which can be imported either from HOL or by Armstrong’s
algebraic hierarchy [1]. This then gives us the foundation on which to build UTP
theories for Cyber-Physical Systems.

3 Example UTP Theory

In order to exemplify the use of Isabelle/UTP, we mechanise a simple theory
representing Boyle’s law. Boyle’s law states that, for an ideal gas at fixed tem-
perature, pressure p is inversely proportional to volume V, or more formally that
for k = p · V is invariant, for constant k. We here encode this as a simple UTP
theory. We first create a record to represent the alphabet of the theory consisting
of the three variables k, p and V.

record alpha-boyle =
boyle-k :: real
boyle-p :: real
boyle-V :: real

For now we have to explicitly cast the fields to lenses using the VAR syntactic
transformation function [11] – in the future this will be automated. We also have
to add the definitional equations for these variables to the simplification set for
predicates to enable automated proof through our tactics.

definition k :: real =⇒ alpha-boyle where k = VAR boyle-k
definition p :: real =⇒ alpha-boyle where p = VAR boyle-p
definition V :: real =⇒ alpha-boyle where V = VAR boyle-V

declare k-def [upred-defs] and p-def [upred-defs] and V-def [upred-defs]
We also prove that our new lenses are well-behaved and independent of each
other. A selection of these properties is shown below.

lemma vwb-lens-k [simp]: vwb-lens k by (unfold-locales, simp-all add : k-def )
lemma boyle-indeps [simp]: k �� p p �� k k �� V V �� k p �� V V �� p
by (simp-all add : k-def p-def V-def lens-indep-def )



Towards Verification of Cyber-Physical Systems with UTP and Isabelle/HOL 49

3.1 Static Invariant

We first create a simple UTP theory representing Boyle’s laws on a single state, as
a static invariant healthiness condition. We state Boyle’s law using the function
B, which recalculates the value of the constant k based on p and V.

definition B(ϕ) = ((∃ k · ϕ) ∧ (&k =u &p·&V ))

We can then prove that B is both idempotent and monotone simply by applica-
tion of the predicate tactic. Idempotence means that healthy predicates cannot
be made more healthy. Together with idempotence, monotonicity ensures that
the image of the healthiness function forms a complete lattice, which is useful
to allow the representation of recursive constructions with the theory.

lemma B-idempotent : B(B(P)) = B(P) by pred-tac
lemma B-monotone: X � Y =⇒ B(X ) � B(Y ) by pred-tac

We also create some example observations; the first (ϕ1) satisfies Boyle’s law
and the second doesn’t (ϕ2).

definition ϕ1 = ((&p =u 10 ) ∧ (&V =u 5 ) ∧ (&k =u 50 ))
definition ϕ2 = ((&p =u 10 ) ∧ (&V =u 5 ) ∧ (&k =u 100 ))

We first prove an obvious property: that these two predicates are different obser-
vations. We must show that there exists a valuation of one which is not of the
other. This is achieved through application of pred-tac, followed by sledgeham-
mer [4] which yields a metis proof.

lemma ϕ1-diff-ϕ2: ϕ1 �= ϕ2

by (pred-tac, metis select-convs num.distinct(5 ) numeral-eq-iff semiring-norm(87 ))

We prove that ϕ1 satisfies Boyle’s law by application of the predicate calculus
tactic, pred-tac.

lemma B-ϕ1: ϕ1 is B by (pred-tac)
We prove that ϕ2 does not satisfy Boyle’s law by showing that applying B to it
results in ϕ1. We prove this using Isabelle’s natural proof language, Isar, details
of which can be found in the reference manual [36]. The proof below is annotated
with comments.

lemma B-ϕ2: B(ϕ2) = ϕ1

proof −
— We first expand out the definition of ϕ2

have B(ϕ2) = B(&p =u 10 ∧ &V =u 5 ∧ &k =u 100 )
by (simp add : ϕ2-def )

— Then the definition of B
also have ... = ((∃ k · &p =u 10 ∧ &V =u 5 ∧ &k =u 100 ) ∧ &k =u &p·&V )
by (simp add : B-def )

— The existentially quantifier k can be removed
also have ... = (&p =u 10 ∧ &V =u 5 ∧ &k =u &p·&V )
by pred-tac

— We show that (10 :: ′a) · (5 :: ′a) = (50 :: ′a)
also have ... = (&p =u 10 ∧ &V =u 5 ∧ &k =u 50 )
by pred-tac



50 S. Foster and J. Woodcock

— This is then definitionally equal to ϕ1

also have ... = ϕ1

by (simp add : ϕ1-def )
— Finally we show the overall thesis
finally show ?thesis .

qed

3.2 Dynamic Invariants

Next we build a relational theory that allows the pressure and volume to be
changed, whilst still respecting Boyle’s law. We create two dynamic invariants
for this purpose.

definition D1 (P) = (($k =u $p·$V ⇒ $k´ =u $p´·$V ´) ∧ P)
definition D2 (P) = ($k´ =u $k ∧ P)

D1 states that if Boyle’s law satisfied in the previous state, then it should be
satisfied in the next state. We define this by conjunction of the formal speci-
fication of this property with the predicate. The annotations $p and $p´ refer
to relational variables p and p′. D2 states that the constant k indeed remains
constant throughout the evolution of the system, which is also specified as a
conjunctive healthiness condition. As before we demonstrate that D1 and D2
are both idempotent and monotone.

lemma D1-idempotent : D1 (D1 (P)) = D1 (P) by rel-tac
lemma D2-idempotent : D2 (D2 (P)) = D2 (P) by rel-tac

lemma D1-monotone: X � Y =⇒ D1 (X ) � D1 (Y ) by rel-tac
lemma D2-monotone: X � Y =⇒ D2 (X ) � D2 (Y ) by rel-tac

Since these properties are relational, we discharge them using our relational cal-
culus tactic rel-tac. Next we specify three operations that make up the signature
of the theory.

definition InitSys ip iV
= ((«ip» >u 0 ∧ «iV » >u 0 )� ; ; p,V ,k := «ip»,«iV »,(«ip»·«iV »))

definition ChPres dp
= ((&p + «dp» >u 0 )� ; ; p := &p + «dp» ; ; V := (&k/&p))

definition ChVol dV
= ((&V + «dV » >u 0 )� ; ; V := &V + «dV » ; ; p := (&k/&V ))

InitSys initialises the system with a given initial pressure (ip) and volume (iV ).
It assumes that both are greater than 0 using the assumption construct c� which
equates to II if c is true and false (i.e. errant) otherwise. It then creates a state
assignment for p and V , uses the B healthiness condition to make it healthy
(by calculating k), and finally turns the predicate into a postcondition using the
�P�> function.

ChPres raises or lowers the pressure based on an input dp. It assumes that
the resulting pressure change would not result in a zero or negative pressure,



Towards Verification of Cyber-Physical Systems with UTP and Isabelle/HOL 51

i.e. p + dp > 0. It assigns the updated value to p and recalculates V using the
original value of k . ChVol is similar but updates the volume.

lemma D1-InitSystem: D1 (InitSys ip iV ) = InitSys ip iV by rel-tac
InitSys is D1, since it establishes the invariant for the system. However, it is
not D2 since it sets the global value of k and thus can change its value. We can
however show that both ChPres and ChVol are healthy relations.

lemma D1 : D1 (ChPres dp) = ChPres dp and D1 (ChVol dV ) = ChVol dV
by (rel-tac, rel-tac)

lemma D2 : D2 (ChPres dp) = ChPres dp and D2 (ChVol dV ) = ChVol dV
by (rel-tac, rel-tac)

Finally we show a calculation for a simple animation of Boyle’s law, where the
initial pressure and volume are set to 10 and 4, respectively, and then the pressure
is lowered by 2.

lemma ChPres-example:
(InitSys 10 4 ; ; ChPres (−2 )) = p,V ,k := 8 ,5 ,40

proof −
— InitSys yields an assignment to the three variables
have InitSys 10 4 = p,V ,k := 10 ,4 ,40
by (rel-tac)

— This assignment becomes a substitution
hence (InitSys 10 4 ; ; ChPres (−2 ))

= (ChPres (−2 ))[[10 ,4 ,40/$p,$V ,$k ]]
by (simp add : assigns-r-comp alpha)

— Unfold definition of ChPres
also have ... = ((&p − 2 >u 0 )�[[10 ,4 ,40/$p,$V ,$k ]]

; ; p := &p − 2 ; ; V := &k / &p)
by (simp add : ChPres-def lit-num-simps usubst unrest)

— Unfold definition of assumption
also have ... = ((p,V ,k := 10 ,4 ,40 � (8 :u real) >u 0 � false)

; ; p := &p − 2 ; ; V := &k / &p)
by (simp add : rassume-def usubst alpha unrest)

— (0 :: ′a) < (8 :: ′a) is true; simplify conditional
also have ... = (p,V ,k := 10 ,4 ,40 ; ; p := &p − 2 ; ; V := &k / &p)
by rel-tac

— Application of both assignments
also have ... = p,V ,k := 8 ,5 ,40
by rel-tac

finally show ?thesis .
qed

4 Theories of Cyber-Physical Systems

In this section we describe some the key UTP theories we have mechanised which
form the basis for our future semantic model of Cyber-Physical Systems.



52 S. Foster and J. Woodcock

4.1 Designs

The simplest theory in UTP is that of a nondeterministic imperative program-
ming language expressed in the relational calculus of alphabetised predicates
arranged in a complete lattice. The ordering is refinement, which is defined
as universal inverse implication: (P � Q) = [Q ⇒ P ] (here the brackets are
universal closure over the alphabet). The worst program, the bottom of the lat-
tice, is abort, with semantics true; the best program, the top of the lattice, is
miracle, with semantics false. This theory of nondeterministic programming is
that of partial correctness, with recursion given a strongest fixed-point seman-
tics. The choice of semantics for recursion is a very practical one to make the
theory work. If the weakest fixed-point were chosen, then some desirable laws
would fail to hold. For example, we’d certainly like the following law to hold:
abort ; P = abort . Choosing a weakest fixed-point semantics gives us the equa-
tion (true ; x := 0) = x := 0, for a state with a single variable x : it is possible
to recover from abort (for example, a non-termination recursion) and behave as
though it had never happened. On the other hand, the choice of the strongest
fixed-point would validate the law, thus: (false ; x := 0) = false. It turns out
that the strongest fixed-point is also easier to reason with. Compare the laws
defining the extreme properties of the two operators:

(F (P) � P) ⇒ (μF � P) (S � F (S )) ⇒ (S � νF )

The left-hand law states that if P is a pre-fixed-point of F , then it can’t be any
weaker than the weakest fixed-point. This would be useful in reasoning about a
recursive specification μF of a program P . The right-hand law states that if S
is a post-fixed-point of F , then it can’t be any stronger than the strongest fixed-
point. This would be useful in reasoning about a recursive implementation νF of
a specification S . The left-hand law seems more practically useful than the right-
hand one. The cost of this practical benefit is an inescapable law: S � abort ,
for every specification S , since abort, with a strongest fixed-point semantics, is
the top of the lattice. So the result is a theory of partial correctness: if we have
S � P , and the P terminates (that is, it is not abort), then P is correct. For this
price, a simple rule is obtained in Hoare logic for reasoning about the (partial)
correctness of loops:

{ b ∧ c } P { c }
{ b ∧ c } while b do P {¬ b ∧ c }

So it was that the proof rules for fixed-points determined the early emphasis of
partial correctness in program verification.

UTP’s theory of designs extends the treatment of the nondeterministic imper-
ative programming language from partial to total correctness. This is done by
restricting attention to a subclass of predicate for which the left and right-zero
laws actually hold: (true ; P) = true = (P ; true). These predicates are called
designs.



Towards Verification of Cyber-Physical Systems with UTP and Isabelle/HOL 53

The insight is to capture the theory of assertional reasoning and assumption-
commitment pairs as single relations by adding two observations: that a pro-
gram has started ok and that a program has terminated ok ′. A design is then a
precondition-postcondition pair

(P � Q) =̂ (ok ∧ P ⇒ ok ′ ∧ Q) for P and Q not containing ok or ok ′

This is read as “if the program has started (ok) and the precondition P holds,
then it must terminate (ok ′) in a state where the postcondition Q holds.” This
is clearly a statement of total correctness. Notice that, although the syntax of
a design is a pair of alphabetised predicates, its meaning is encoded as a single
predicate.

Designs form a complete lattice with false � Q (abort) at the bottom and
true � false (miracle) at the top. These two definitions can be simplified as true
and ¬ ok , respectively. Thus, abort permits any and every behaviour, whilst a
miracle, quite properly, cannot be started, and so has no behaviours at all.

A theory in UTP has three components. The first is the signature; here this
is the syntax of the programming language and the syntax of a design pair. The
second component is the alphabet; here this is the two boolean observations ok
and ok ′ NS ny program variables. The third component is a set of healthiness
conditions characterising membership of the theory. In the case of designs, there
are two healthiness conditions, one concerning each observational variable. The
first states that no observation may be made of a program before it has started.
This is necessary for proper initialisation and to make sequential composition
work properly.

H1 (P) =̂ ok ⇒ P

The healthiness condition is presented as a monotone idempotent function; its
fixed points are its healthy predicates.

The second healthiness condition concerns termination and seeks to eliminate
the specification that would require a program not to terminate: ¬ ok ′. Refine-
ment allows us to write a correct program that improves on what a specification
requires. In our programming methodology, anything is better than nontermi-
nation, so you should not be allowed to require nontermination. The following
healthiness condition formalises this:

H2 (P) = P ⇔ [P f ⇒ P t ]

where P f =̂ P [false/ok ′] and P t =̂ P [true/ok ′]. Hoare and He show how to
present this condition in terms of the fixed points of the monotone idempotent
function H2 [H&H]. They also shows how to characterise the space of designs in
three equivalent ways: syntactically, as the fixed points of these two healthiness
conditions, and as the solutions of algebraic equations (left unit and left zero).
Finally, they prove that the lattice of designs is closed under the nondeterministic
programming language’s combinators with assignment as the basis.

The theory of designs has been mechanised in Isabelle/UTP and we show
an excerpt from this theory. We introduce the alphabet by parametric type



54 S. Foster and J. Woodcock

′α alphabet-d [11,12] which extends the alphabet ′α with the variable lens ok.
Moreover, we add the useful type synonym
type-synonym ′α hrelation-d = ( ′α alphabet-d , ′α alphabet-d) relation

which describes a homogeneous relation with a design alphabet. We then use
these to create the signature and healthiness conditions of designs in a similar
way to the theory demonstrated in Sect. 3. Then many standard laws of designs
can be proved automatically, as the following demonstrates.
theorem design-false-pre: (false � P) = true by rel-tac

Of course not all properties can be proved this way, and in any case there is
great value in presenting the intuition behind a theorem through proof. We
demonstrate this firstly that the syntactic form of designs is equivalent to the
healthiness conditions.
theorem H1-H2-eq-design: H1 (H2 P) = (¬ P f ) � P t

proof −
have H1 (H2 P) = ($ok ⇒ H2 (P))
by (simp add : H1-def )

also have ... = ($ok ⇒ (P f ∨ (P t ∧ $ok´)))
by (metis H2-split)

also have ... = ($ok ∧ (¬ P f ) ⇒ $ok´ ∧ $ok ∧ P t)
by rel-tac

also have ... = (¬ P f ) � P t

by rel-tac
finally show ?thesis .

qed

This proof makes use of the auxiliary theorem H2-split to expand out H2 which
states that H2 (P) = P f ∨ (P t ∧ ok ′). We also show that the design identity IID
is a right unit of any design. We define this element of the signature as follows:
definition skip-d :: ′α hrelation-d (IID) where IID = (true �r II )

The turnstile P �r Q is a specialisation of P � Q which requires that neither P
nor Q have ok , ok ′ in their alphabets. It use alphabet extrusion and the Isabelle
type system to ensure this: ok �r P entails a type error. Proof of the right unit
law requires that we can calculate the sequential composition of two designs,
which the following theorem demonstrates.
theorem rdesign-composition-cond :
assumes outα � p1

shows ((p1 �r Q1) ; ; (P2 �r Q2)) = ((p1 ∧ ¬ (Q1 ; ; (¬ P2))) �r (Q1 ; ; Q2))
— proof omitted

This is itself a specialisation of the more complex design composition law [8]
which adds the requirement that the assumption of the first design be a con-
dition. Thus the theorem assumes p1 does not refer to variables in the out-
put alphabet, outα, which is just shorthand for fstL. The law demonstrates the
advantages of the alphabets-as-types approach: we do not require provisos that
p1,Q1,P2, and Q2 do not refer to ok and ok ′ which greatly simplifies the theorem
and its application. We can now prove the unit law, which we do in Isar.



Towards Verification of Cyber-Physical Systems with UTP and Isabelle/HOL 55

theorem rdesign-left-unit :
fixes P Q :: ′α hrelation-d
shows (IID ; ; P �r Q) = (P �r Q)

proof −
— We first expand out the definition of the design identity
have (IID ; ; P �r Q) = (true �r II ; ; P �r Q)
by (simp add : skip-d-def )

— Next, we apply the design composition law above in a subproof
also have ... = (true ∧ ¬ (II ; ; ¬ P)) �r (II ; ; Q)
proof −

— The assumption of identity is true so it is easy to discharge the proviso
have outα � true
by unrest-tac

— From this we can apply the composition law
thus ?thesis
using rdesign-composition-cond by blast

qed
— Simplification then allows us to remove extraneous terms
also have ... = (¬ (¬ P)) �r Q
by simp

— Finally, we can show the thesis
finally show ?thesis by simp

qed

4.2 Reactive Processes

A more sophisticated UTP theory is that of reactive processes. In the reactive
paradigm, a process is a pattern of behaviour expressed in terms of observable
events. In general, the behaviour is as follows. The process minds its own business
internally until it’s ready to interact with its environment; it then pauses and
waits until its environment is cooperative, whereupon it reacts and then returns
to its own business; this behaviour is repeated. A reactive process characteris-
tically has two sorts or after-states: intermediate states, where the process is
waiting for interaction with its environment; and final states, where the process
has reached its ultimate computation, completed its behaviour, and terminated.

We investigate this paradigm in terms of its three components as a UTP
theory.

First, we consider the signature of the theory. We consider a simple exten-
sion of the nondeterministic programming language in the previous section, aug-
mented by an operator that synchronises on an event with the environment. If
P is a reactive process, then a → P is another process that first engages in the
synchronisation of the event a and then behaves like the process P .

Next, we consider the alphabet of observational variables.
We can observe the sequence of events synchronised by an individual reactive

process. We call this sequence a trace, and denote its before-value by tr and its
intermediate or final value by tr ′. It is a sequence over the set of events.



56 S. Foster and J. Woodcock

We can also observe whether a reactive process is in one of its waiting states.
This is an observation that we denote by the boolean variables wait , in the before
state, and wait ′ in the intermediate or final state.

The stability of a reactive process is described in the same way as the termi-
nation of a nondeterministic program. That is, ok ′ describes whether the reactive
process has reached a stable state, whether it be intermediate or final. Thus, the
combination of ok ′ and wait ′ is of interest. If ok ′ ∧ wait ′, then the process
has reached a stable intermediate state. If ok ′ ∧ ¬ wait ′, then the process has
reached a stable final state. Regardless of the value of wait ′, if ¬ ok ′, then the
process is in a divergent state.

The final observation that may be made of a reactive process concerns its
liveness. The process a → SKIP is waiting to perform the event a and then
terminate (SKIP). While it is waiting, it cannot refuse to perform a. The obser-
vational variable ref ′ records this fact. We can think of the value of ref ′ as
an experiment offered by the environment: will the process deadlock if we offer
these events? Suppose that the universe of events is {a, b, c}. Our process will
deadlock if we offer it the empty experiment ∅ (all processes have this property).
It will also deadlock if we offer it either or both b or c. The maximal refusal is
the pair {b, c}; note that the process will refuse any subset: ref ′ is downward
closed. Now consider the nondeterministic process a → SKIP � b → SKIP .
The nondeterministic choice can be resolved in two ways: if the first branch is
taken, then it may refuse b; if the second branch is taken, then it may refuse
a. Note that although ref ′ is downward closed, there is no maximal refusal set.
Recording a refusal set is one way of capturing this kind of nondeterministic
choice. Our process is then partially specified by the predicate

if wait ′ then
(tr ′ = tr) ∧ (ref ′ ⊆ {b, c} ∨ ref ′ ⊆ {a, c}) ∧ ok ′

else
((tr ′ = tr � 〈a〉) ∨ (tr ′ = tr � 〈b〉)) ∧ ok ′

Reactive processes have three healthiness conditions. The first requires that
the trace grows monotonically, so that history is never edited.

R1(P) =̂ P ∧ tr ≤ tr ′

(Here, ≤ denotes the sequence prefix relation.)
The second healthiness condition requires that a process P is insensitive to

the trace of events that occur before P is initiated:

R2(P) =̂ P [〈〉, tr ′ − tr/tr , tr ′]� tr ≤ tr ′ �P

(Here we use the sequence subtraction operator.)



Towards Verification of Cyber-Physical Systems with UTP and Isabelle/HOL 57

Finally, sequential composition must be made to work as it does in a pro-
gramming language, and not merely as relational composition. In the sequence
P ; Q , if P is waiting, then Q must not be initiated. Define

II rea =̂ R1 ◦ H1 ((ok ′,wait ′, tr ′, ref ′, x ′) = (ok ,wait , tr , ref , x ))

where x is a list of the process’s state variables. Our healthiness condition is

R3(P) =̂ (II rea �wait �P)

For the full semantics, other healthiness conditions are needed, but almost all
the process algebraic laws for CSP can be proved correct based on the semantics
presented so far, providing we add two more healthiness conditions concerning
ok and ok ′. Fortunately, we have already presented them: they are H1 and H2 ,
simply adjusted for the larger alphabet of reactive processes.

The CSP processes are the fixed points of the montone idempotent function

CSP =̂ R1 ◦ R2 ◦ R3 ◦ H1 ◦ H2

Equivalently, by theorem H1-H2-eq-design every CSP relation can be stated as
a reactive design of the form R(P � Q), where R =̂ R1 ◦ R2 ◦ R3 , and P
and Q are assumptions and commitments over the trace and program variables.
For example, the worst CSP process is Chaos =̂ R(false � true), which fails
to satisfy its assumption and thus establishes nothing other than that the trace
must increase monotonically (by R1). Every CSP process can be expressed as
such a reactive design [8].

We have likewise mechanised the theory of reactive designs, and here show
a few of the properties proved, though without proofs for reasons of space. The
first property shows that Chaos is indeed the bottom of the lattice – every
CSP process refines it. The second shows that Chaos is a left zero for sequential
composition: since wait ′ is always false the second process can never be executed.

theorem Chaos-least : assumes P is CSP shows Chaos � P
— proof omitted

theorem Chaos-left-zero: assumes P is CSP shows (Chaos ; ; P) = Chaos
— proof omitted

More laws we have proved can be found in our online UTP repository3.

4.3 Hybrid Relational Calculus

Differential Algebraic Equations (DAEs) are often used to model the continu-
ously evolving dynamic behaviour of a system. The theory of hybrid relations in
UTP unifies discrete and continuous variables used in such models. We introduce

3 github.com/isabelle-utp/utp-main/blob/master/utp/utp reactive.thy.

http://github.com/isabelle-utp/utp-main/blob/master/utp/utp_reactive.thy


58 S. Foster and J. Woodcock

a theory of continuous-time processes that embeds in the theory of alphabetised
predicates trajectories of states evolving over time intervals representing piece-
wise continuous behaviour.

We start with the UTP theory of alphabetised relations, which therefore
will not capture continuous process termination or stability. This allows us to
treat the behaviour of hybrid processes as an individual phenomenon, before
augmenting the theory with additional structure to capture such properties by
embedding it in the theory of timed reactive designs [19,35].

Alphabet. Our theory has two variables ti, ti′ : R≥0 that observe the start and
end time of the current computation interval and its duration � = ti′−ti, as in the
Duration Calculus [41]. Following [20], we classify the alphabet of a hybrid rela-
tion in three disjoint parts: input variables, inα(P); output variables, outα(P);
and continuous variables, conα(P) (such as x , y , z ). Continuous variables of type
R describe a value at a particular instant of time; trajectory variables of type
R≥0 → R describe the evolution of a value over all time (values outside [ti, ti′)
are irrelevant).

A junction between the discrete and continuous world is established by
making a discrete copies x , x ′ : R of the values of each continuous variable
x : R≥0 → R at the beginning and end of the interval under observation. Discrete
variables that are not surrogates for continuous variables are in the sub-alphabet

disα(P) =̂ { x ∈ inα(P) | x /∈ conα(P) } ∪ { x ′ ∈ outα(P) | x /∈ conα(P) }

Following [13], we define a continuous variable lifting operator from a predicate
in instant variables to one in trajectory variables:

P @ τ =̂ { x �→ x (τ) | x ∈ conα(P)\{t} } † P
In P @ τ , we map every flat continuous variable (other than the distinguished time
variable t ∈ [ti..ti′)) to a corresponding variable lifted over the time domain. So the
new predicate holds for values of continuous variables at the instant τ , a variable
that is free in P . So each flat continuous variable x : T is transformed to a time-
dependent function x : R → T type. In thisway,we lift timepredicates to intervals.

Our hybrid theory has two healthiness conditions:

HCT1(P) =̂ P ∧ ti ≤ ti′

HCT2(P) =̂
P ∧⎛

⎜⎜
⎝ti < ti′ ⇒ ∧

v∈conα(P)

⎛

⎜⎜
⎝

∃ I : Roseq •
ran(I ) ⊆ {ti . . . ti′}
∧ {ti, ti′} ⊆ ran(I )
∧ (∀n < #I − 1 • v cont-on [In , In+1))

⎞

⎟⎟
⎠

⎞

⎟⎟
⎠

where Roseq =̂ { x : seq R | ∀n < #x − 1 • xn < xn+1 }

f cont-on [m,n) =̂ ∀ t ∈ [m,n) • lim
x→t

f (x ) = f (t)



Towards Verification of Cyber-Physical Systems with UTP and Isabelle/HOL 59

HCT1 requires that time advances monotonically. HCT2 requires that every
continuous variable v is piecewise continuous: for non-empty intervals there is a
finite number of discontinuous points (the range of I ) between ti and ti′. The
set of totally ordered sequences Roseq captures the set of discontinuities; the
continuity of f is defined in the usual way by requiring that at each point in
[ti, ti′), the limit correctly predicts the function.

Both healthiness conditions are idempotent, monotone, and commutative, as
is their composition HCT = HCT2 ◦ HCT1 . The image of HCT a complete
lattice.

The signature of our theory is as follows:

P ,Q ::=II | P ; Q | P � b �Q | x := e | P∗ | Pω |
��P�� | 〈Fn | b 〉 | P [ b ]Q

This syntax extends the signature of the alphabetised relational calculus with
operators to specify intervals ��P��, differential algebraic equations 〈Fn | b 〉, and
behavioural preemption P [ b ]Q . P∗ and Pω describe finite and infinite iteration,
respectively. The following operators of relational calculus P ; Q , P � b �Q ,
P

∗
, II , x := v , true, and false are HCT closed.
Finally, we define the interval operator from the Duration Calculus [41] and

our own variant.

�P� =̂ HCT2(� > 0 ∧ (∀ t ∈ [ti, ti′) • P @ t))

��P�� =̂ �P� ∧ ∧
v∈conα(P)(v = v(ti) ∧ v ′ = lim

t→ti′
(v(t))) ∧ IIdisα(P)

�P� is taken from the Duration Calculus: it is a continuous specification state-
ment that P holds at every instant over all non-empty right-open intervals from
ti to ti′; we make it healthy with HCT2 for piecewise continuity. ��P�� links
discrete and continuous variables with the given property.

By making x ′ the limit of x , rather than its value at the end of the interval, we
do not constrain the trajectory valuation at ti′; so it can be defined by a suitable
discontinuous discrete assignment at this final instant. Following [21], we use
the interval operator to give the basis of systems of differential equations. As a
result, we can refine a DAE, under given initial conditions, to a suitable solution
expressed using the interval operator. Intervals satisfy a number of standard
laws.

�true� = � > 0 �false� = false �P ∧ Q� = �P� ∧ �Q�

�P ∨ Q� � �P� ∨ �Q� ��P�� � ��P�� ; ��P��



60 S. Foster and J. Woodcock

The evolution of a DAE system in semi-explicit form is modelled by an operator,
adapted from HCSP [27,41].

〈 v̇1 = f1; · · · ; v̇n = fn | 0 = b1; · · · ; 0 = bm 〉
=̂ �� (∀ i ∈ 1..n,∀ j ∈ 1..m •

v̇ i(t) = fi(t , v1(t), · · · , vn(t),w1(t), · · · ,wm(t)))
∧ 0 = bj (t , v1(t), · · · , vn(t),w1(t), · · · ,wm(t)) ��

A DAE 〈Fn |Bm 〉 consists of a set of n functions fi : R × R
n × R

m → R,
which define the derivative of variable v i in terms of the independent time vari-
able t and n + m dependent variables. It also contains algebraic constraints
bj : R × R

n × R
m → R that must be invariant for any solution and do not

refer to derivatives. For m = 0 the DAE corresponds to an ODE, which we
write as 〈Fn 〉. The DAE operator is defined using the interval operator to be
all non-empty intervals over which a solution satisfying both the ODEs and
algebraic constraint exists. Non-emptiness is important as it means that a DAE
must make progress: it cannot simply take zero time since � > 0, and so a DAE
cannot directly cause “chattering Zeno” effects when placed in the context of a
loop, though normal Zeno effects remain a possibility.

To obtain a well defined problem description, we require the following condi-
tions to hold [2]: (i) The system of equations is consistent and neither underdeter-
mined nor overdetermined. (ii) the discrete input variables vi provide consistent
initial conditions. (iii) the equations are specific enough to define a unique solu-
tion during the interval �. The system is then allowed to evolve from this point in
the interval between ti and ti′ according to the DAEs. At the end of the interval,
the corresponding output discrete variables are assigned. During the evolution
all discrete variables and unconstrained continuous variables are held constant.

Finally, we define the preemption operator, adapted from HCSP.

P [ b ]Q =̂ (Q � b @ ti�(P ∧ �¬b�)) ∨ ((�¬b� ∧ b @ ti′ ∧ P) ; Q)

P is a continuous process that evolves until the predicate B is satisfied, at which
point Q is activated. The semantics is defined as a disjunction of two predicates.
The first predicate states that, if B holds in the initial state of ti, then Q is
activated immediately. Otherwise, P is activated and can evolve while B remains
false (potentially indefinitely). The second predicate states that ¬B holds on the
interval [ti, ti′) until instant ti′, when B switches to a true valuation; during that
interval P is executing. Following this, P is terminated and Q is activated.

Although space does not permit us to go into details, we have mechanised
this theory in Isabelle/UTP4.

5 Conclusions

In this paper we describe our work towards building a mechanised library of
computational theories in the context of the UTP, including those for concurrent
4 See github.com/isabelle-utp/utp-main/blob/master/utp/utp hybrid.thy.

http://github.com/isabelle-utp/utp-main/blob/master/utp/utp_hybrid.thy


Towards Verification of Cyber-Physical Systems with UTP and Isabelle/HOL 61

and hybrid systems. Our aim in the future is to use these theories to enable
integration of heterogeneous multi-model semantics, as described by FMI, for the
purpose of multi-pronged verification. We are currently working on integrating
hybrid relations and reactive in order to mechanise hybrid reactive designs. A
hybrid reactive design has the form R(P ∧ ��R�� � Q ∧ ��G��), where P and Q
are the precondition and postcondition on the discrete state, and R and G are
assumptions and commitments on the continuous variables. Such a construction
will enable us to apply contractual-style program construction and reasoning
to concurrent Cyber-Physical Systems. Moreover work is underway to explore
other theories relevant for CPS, in particular real-time modelling and probability.
Once these theories are mechanised we will also explore the links between them,
in particular useful Galois connections between discrete and continuous time
domains, which are practically applicable for verification.

Though our Isabelle/UTP theory library is a step forward, further work in
needed particularly in the direction of tool integration. As Hoare and He pointed
out in Chapter 0 of the UTP book [24]:

At present, the main available mechanised mathematical tools are pro-
grammed for use in isolation [...] it will be necessary to build within each
tool a structured library of programming design aids which take the advan-
tage of the particular strengths of that tool. To ensure the tools may safely
be used in combination, it is essential that these theories be unified.

We believe that the Isabelle framework is a significant step towards acquisition
of this goal. Nevertheless, there is certainly more to be done, particularly in the
area of mechanisation of continuous mathematics and application of associated
computational algebra tools.

Acknowledgements. This work is partly by EU H2020 project INTO-CPS, grant
agreement 644047, http://into-cps.au.dk/. We would like to thank our colleagues Ana
Cavalcanti, Bernhard Thiele, and Burkhart Wolff for their collaboration on this work.

References

1. Armstrong, A., Gomes, V., Struth, G.: Building program construction and veri-
fication tools from algebraic principles. Formal Aspects Comput. 28(2), 265–293
(2015)

2. Bachmann, B., Aronsson, P., Fritzson, P.: Robust initialization of differential alge-
braic equations. In: Fritzson, P., Cellier, F.E., Nytsch-Geusen, C. (eds). Proceed-
ings of the 1st International Workshop on Equation-Based Object-Oriented Lan-
guages and Tools, EOOLT 2007, Berlin, Germany, 30 July 2007, vol. 24, Linköping
Electronic Conference Proceedings, pp. 151–163. Linköping University Electronic
Press (2007)

3. Banks, M.J., Jacob, J.L.: Unifying theories of confidentiality. In: Qin, S. (ed.)
UTP 2010. LNCS, vol. 6445, pp. 120–136. Springer, Heidelberg (2010). doi:10.
1007/978-3-642-16690-7_5

http://into-cps.au.dk/
http://dx.doi.org/10.1007/978-3-642-16690-7_5
http://dx.doi.org/10.1007/978-3-642-16690-7_5


62 S. Foster and J. Woodcock

4. Blanchette, J.C., Bulwahn, L., Nipkow, T.: Automatic proof and disproof
in Isabelle/HOL. In: Tinelli, C., Sofronie-Stokkermans, V. (eds.) FroCoS
2011. LNCS, vol. 6989, pp. 12–27. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-24364-6_2

5. Blochwitz, T., Otter, M., Arnold, M., Bausch, C., Elmqvist, H., Junghanns, A.,
Mauss, J., Monteiro, M., Neidhold, T., Neumerkel, D., Olsson, H., Peetz, J.V.,
Wolf, S., Clauß, C.: The functional mockup interface for tool independent exchange
of simulation models. In: Proceedings of the 8th International Modelica Conference,
pp. 105–114 (2011)

6. Bresciani, R., Butterfield, A.: A UTP semantics of pGCL as a homogeneous rela-
tion. In: Derrick, J., Gnesi, S., Latella, D., Treharne, H. (eds.) IFM 2012. LNCS, vol.
7321, pp. 191–205. Springer, Heidelberg (2012). doi:10.1007/978-3-642-30729-4_14

7. Calcagno, C., O’Hearn, P., Yang, H.: Local action and abstract separation logic.
In: LICS, pp. 366–378. IEEE, July 2007

8. Cavalcanti, A., Woodcock, J.: A tutorial introduction to CSP in Unifying Theo-
ries of Programming. In: Cavalcanti, A., Sampaio, A., Woodcock, J. (eds.) PSSE
2004. LNCS, vol. 3167, pp. 220–268. Springer, Heidelberg (2006). doi:10.1007/
11889229_6

9. Cavalcanti, A., Woodcock, J., Amálio, N.: Behavioural models for FMI co-
simulations. In: Sampaio, A., Wang, F. (eds.) ICTAC 2016. LNCS, vol. 9965, pp.
255–273. Springer, Cham (2016). doi:10.1007/978-3-319-46750-4_15

10. Derler, P., Lee, E.A., Sangiovanni-Vincentelli, A.: Modeling cyber-physical sys-
tems. Proc. IEEE (special issue on CPS) 100(1), 13–28 (2012)

11. Feliachi, A., Gaudel, M.-C., Wolff, B.: Unifying theories in Isabelle/HOL. In: Qin,
S. (ed.) UTP 2010. LNCS, vol. 6445, pp. 188–206. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-16690-7_9

12. Feliachi, A., Gaudel, M.-C., Wolff, B.: Isabelle Circus: a process specification and
verification environment. In: Joshi, R., Müller, P., Podelski, A. (eds.) VSTTE
2012. LNCS, vol. 7152, pp. 243–260. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-27705-4_20

13. Fidge, C.J.: Modelling discrete behaviour in a continuous-time formalism. In:
Araki, K., Galloway, A., Taguchi, K. (eds.) Proceedings of the 1st International
Conference on Integrated Formal Methods, IFM 1999, York, UK, 28–29, pp. 170–
188. Springer, London (1999)

14. Foster, J.: Bidirectional programming languages. Ph.D. thesis. University of
Pennsylvania (2009)

15. Foster, S., Thiele, B., Cavalcanti, A., Woodcock, J.: Towards a UTP semantics for
Modelica. In: Proceedings of 6th International Symposium on Unifying Theories
of Programming, June 2016. To appear

16. Foster, S., Zeyda, F., Woodcock, J.: Isabelle/UTP: a mechanised theory engineering
framework. In: Naumann, D. (ed.) UTP 2014. LNCS, vol. 8963, pp. 21–41. Springer,
Cham (2015). doi:10.1007/978-3-319-14806-9_2

17. Foster, S., Zeyda, F., Woodcock, J.: Unifying heterogeneous state-spaces with
lenses. In: Sampaio, A., Wang, F. (eds.) ICTAC 2016. LNCS, vol. 9965, pp. 295–
314. Springer, Cham (2016). doi:10.1007/978-3-319-46750-4_17

18. Gibson-Robinson, T., Armstrong, P., Boulgakov, A., Roscoe, A.W.: FDR3 — a
modern refinement checker for CSP. In: Ábrahám, E., Havelund, K. (eds.) TACAS
2014. LNCS, vol. 8413, pp. 187–201. Springer, Heidelberg (2014). doi:10.1007/
978-3-642-54862-8_13

19. Hayes, I.J., Dunne, S., Meinicke, L.: Linking unifying theories of program refine-
ment. Sci. Comput. Program. 78(11), 2086–2107 (2013)

http://dx.doi.org/10.1007/978-3-642-24364-6_2
http://dx.doi.org/10.1007/978-3-642-24364-6_2
http://dx.doi.org/10.1007/978-3-642-30729-4_14
http://dx.doi.org/10.1007/11889229_6
http://dx.doi.org/10.1007/11889229_6
http://dx.doi.org/10.1007/978-3-319-46750-4_15
http://dx.doi.org/10.1007/978-3-642-16690-7_9
http://dx.doi.org/10.1007/978-3-642-27705-4_20
http://dx.doi.org/10.1007/978-3-642-27705-4_20
http://dx.doi.org/10.1007/978-3-319-14806-9_2
http://dx.doi.org/10.1007/978-3-319-46750-4_17
http://dx.doi.org/10.1007/978-3-642-54862-8_13
http://dx.doi.org/10.1007/978-3-642-54862-8_13


Towards Verification of Cyber-Physical Systems with UTP and Isabelle/HOL 63

20. He, J.: HRML: a hybrid relational modelling language. In: IEEE International
Conference on Software Quality, Reliability and Security (QRS 2015) (2015)

21. He, J.: From CSP to hybrid systems. In: Roscoe, A.W. (ed.) A Classical Mind:
Essays in Honour of C.A.R. Hoare, pp. 171–189. Prentice Hall, Hertfordshire (1994)

22. Hehner, E.C.R.: Predicative programming, parts 1 and 2. Commun. ACM 59,
134–151 (1984)

23. Hoare, T.: Communicating Sequential Processes. Prentice-Hall, Upper Saddle River
(1985)

24. Hoare, T., He, J.: Unifying Theories of Programming. Prentice-Hall, Englewood
Cliffs (1998)

25. Immler, F.: Formally verified computation of enclosures of solutions of ordinary
differential equations. In: Badger, J.M., Rozier, K.Y. (eds.) NFM 2014. LNCS, vol.
8430, pp. 113–127. Springer, Cham (2014). doi:10.1007/978-3-319-06200-6_9

26. Klein, G., et al.: seL4: formal verification of an OS kernel. In: Proceedings of 22nd
Symposium on Operating Systems Principles (SOSP), pp. 207–220. ACM (2009)

27. Liu, J., Lv, J., Quan, Z., Zhan, N., Zhao, H., Zhou, C., Zou, L.: A calculus for
hybrid CSP. In: Ueda, K. (ed.) APLAS 2010. LNCS, vol. 6461, pp. 1–15. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-17164-2_1

28. Nipkow, T., Wenzel, M., Paulson, L.C.: Isabelle/HOL: A Proof Assistant for
Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)

29. Oliveira, M., Cavalcanti, A., Woodcock, J.: Unifying theories in ProofPower-Z.
Formal Aspects Comput. 25(1), 133–158 (2013)

30. Platzer, A.: Differential-algebraic dynamic logic for differential-algebraic programs.
J. Logic Comput. 20(1), 309–352 (2010)

31. Platzer, A.: Logical Analysis of Hybrid Systems. Springer, Heidelberg (2010)
32. Santos, T., Cavalcanti, A., Sampaio, A.: Object-orientation in the UTP. In: Dunne,

S., Stoddart, B. (eds.) UTP 2006. LNCS, vol. 4010, pp. 18–37. Springer, Heidelberg
(2006). doi:10.1007/11768173_2

33. Tang, X., Woodcock, J.: Travelling processes. In: Kozen, D. (ed.) MPC
2004. LNCS, vol. 3125, pp. 381–399. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-27764-4_20

34. Wei, K.: Reactive designs of interrupts in Circus Time. In: Liu, Z., Woodcock, J.,
Zhu, H. (eds.) ICTAC 2013. LNCS, vol. 8049, pp. 373–390. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-39718-9_22

35. Wei, K., Woodcock, J., Cavalcanti, A.: Circus Time with reactive designs. In: 4th
International Symposium on Unifying Theories of Programming, UTP 2012, Paris,
France, 27–28 August 2012, pp. 68–87 (2012). Revised Selected Papers

36. Wenzel, M., et al.: The Isabelle/Isar Reference Manual. http://isabelle.in.tum.de/
doc/isar-ref.pdf

37. Wenzel, M., Wolff, B.: Building formal method tools in the Isabelle/Isar framework.
In: Schneider, K., Brandt, J. (eds.) TPHOLs 2007. LNCS, vol. 4732, pp. 352–367.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-74591-4_26

38. Woodcock, J.: Engineering UToPiA. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.)
FM 2014. LNCS, vol. 8442, pp. 22–41. Springer, Cham (2014). doi:10.1007/
978-3-319-06410-9_3

39. Woodcock, J., Cavalcanti, A.: A tutorial introduction to designs in unifying
theories of programming. In: Boiten, E.A., Derrick, J., Smith, G. (eds.) IFM
2004. LNCS, vol. 2999, pp. 40–66. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-24756-2_4

http://dx.doi.org/10.1007/978-3-319-06200-6_9
http://dx.doi.org/10.1007/978-3-642-17164-2_1
http://dx.doi.org/10.1007/11768173_2
http://dx.doi.org/10.1007/978-3-540-27764-4_20
http://dx.doi.org/10.1007/978-3-540-27764-4_20
http://dx.doi.org/10.1007/978-3-642-39718-9_22
http://isabelle.in.tum.de/doc/isar-ref.pdf
http://isabelle.in.tum.de/doc/isar-ref.pdf
http://dx.doi.org/10.1007/978-3-540-74591-4_26
http://dx.doi.org/10.1007/978-3-319-06410-9_3
http://dx.doi.org/10.1007/978-3-319-06410-9_3
http://dx.doi.org/10.1007/978-3-540-24756-2_4
http://dx.doi.org/10.1007/978-3-540-24756-2_4


64 S. Foster and J. Woodcock

40. Zeyda, F., Foster, S., Freitas, L.: An axiomatic value model for Isabelle/UTP. In:
Proceedings of 6th International Symposium on Unifying Theories of Programming
(2016, to appear)

41. Zhou, C., Hansen, M.R.: Duration Calculus–A Formal Approach to Real-Time Sys-
tems. Monographs in Theoretical Computer Science. An EATCS Series. Springer,
Heidelberg (2004)



FDR: From Theory to Industrial Application

Thomas Gibson-Robinson1(B), Guy Broadfoot1, Gustavo Carvalho2,
Philippa Hopcroft1, Gavin Lowe1, Sidney Nogueira2, Colin O’Halloran1,

and Augusto Sampaio2

1 Department of Computer Science, University of Oxford, Oxford, UK
thomas.gibson-robinson@cs.ox.ac.uk

2 Centro de Informática, Universidade Federal de Pernambuco, Recife, Brazil

Abstract. FDR is the most well-known verification tool for CSP. Since
its early beginnings in 1980s, it has developed into one of the world’s
fastest model checking tools. Over the years, FDR has made a significant
impact across academic subject areas, most notably in cyber-security,
as well as across industrial domains, such as high-tech manufacturing,
telecommunications, aerospace, and defence. In honour of Bill Roscoe’s
60th birthday, this paper provides a brief history of FDR, together with a
collection of notable examples of FDR’s practical impact in these areas.

1 Introduction

FDR (or Failures-Divergences Refinement, to give it its full title) [12,13] is the
most well-known verification tool for CSP [15,29,31]. At its core, FDR is capable
of checking for refinement between CSP processes, which allows it to be used
to verify whether systems meet various specifications. Bill Roscoe has been the
driving force behind the continued advancement of FDR over the last three
decades to its impressive standing today as one of the world’s fastest model
checking tools, FDR3. Over the years, FDR has enabled the exploitation of
formal verification across subject areas and industrial sectors, including cyber
security, aerospace, defence, high tech manufacturing and telecommunications.
FDR is an example of how building tooling to support academic theories, such
as CSP, is one of the essential ingredients for enabling them to be successfully
applied in practice. In turn, this has led to stimulating collaborations between
Roscoe’s research group and numerous industrial partners that have inspired
new avenues of research in the theory of CSP as well as FDR itself.

In honour of Bill Roscoe’s 60th birthday, this paper brings together a selec-
tion of authors who have collaborated with Roscoe and who have extensively
used FDR in practice. This is but a glimpse into the areas where FDR has been
applied and by no means intended to be complete. Following a brief overview of
the CSP notation, this paper gives a brief history of FDR and highlights some

The rights of this work are transferred to the extent transferable according to title
17 § 105 U.S.C.

c© Springer International Publishing AG 2017 (outside the US)
T. Gibson-Robinson et al. (Eds.): Roscoe Festschrift, LNCS 10160, pp. 65–87, 2017.
DOI: 10.1007/978-3-319-51046-0 4



66 T. Gibson-Robinson et al.

of the key advancements made over the years. This is followed by four sections,
each summarising different application areas, where FDR has made a significant
impact over a sustained period of time, in the following areas: analysis of secu-
rity protocols, verification of safety critical systems in aerospace and defence,
verification of embedded software systems in high-tech manufacturing, telecom-
munications and medical systems, and test case generation for aerospace and
telecommunications.

2 Background

CSP is a process algebra in which programs or processes that communicate events
from a set Σ with an environment may be described. We sometimes structure
events by sending them along a channel. For example, c.3 denotes the value 3
being sent along the channel c. Further, given a channel c the set {|c|} ⊆ Σ
contains those events of the form c.x .

The simplest CSP process is the process STOP that can perform no events.
The process a → P offers the environment the event a ∈ Σ and then behaves
like P . The process P � Q offers the environment the choice of the events
offered by P and by Q and is not resolved by the internal action τ . P � Q
non-deterministically chooses which of P or Q to behave like. P � Q initially
behaves like P , but can timeout (via τ) and then behaves as Q .

P A‖B Q allows P and Q to perform only events from A and B respectively
and forces P and Q to synchronise on events in A∩B . P ‖

A

Q allows P and Q to

run in parallel, forcing synchronisation on events in A and arbitrary interleaving
of events not in A. The interleaving of two processes, denoted P � Q , runs P
and Q in parallel but enforces no synchronisation. P\A behaves as P but hides
any events from A by transforming them into the internal event τ . This event
does not synchronise with the environment and thus can always occur. P [[R]]
behaves as P but renames the events according to the relation R. Hence, if P
can perform a, then P [[R]] can perform each b such that (a, b) ∈ R, where the
choice (if more than one such b) is left to the environment (like �).

Skip is the process that immediately terminates. The sequential composition
of P and Q , denoted P ; Q , runs P until it terminates at which point Q is run.
Termination is indicated using a � : Skip is defined as � → STOP and, if the
left argument of P ; Q performs a �, then P ; Q performs a τ to the process Q
(i.e. P is discarded and Q is started).

Recursive processes can be defined either equationally or using the notation
μX ·P . In the latter, every occurrence of X within P represents a recursive call.

The simplest approach to giving meaning to a CSP expression is by defining
an operational semantics. The operational semantics of a CSP process naturally
creates a labelled transition system (LTS) where the edges are labelled by events
from Σ ∪ {τ} and the nodes are process states. Formally, an LTS is a 3-tuple
consisting of a set of nodes, an initial node, and a relation a−−→ on the nodes: i.e.
it is a directed graph where each edge is labelled by an event. The usual way of
defining the operational semantics of CSP processes is by presenting Structured



FDR: From Theory to Industrial Application 67

Operational Semantics (SOS) style rules in order to define a−−→. For instance,
the operational semantics of the external choice operator are defined by:

P a−−→ P ′

P � Q a−−→ P ′
P τ−−→ P ′

P � Q τ−−→ P ′ � Q

with symmetric rules for Q.
CSP also has a number of denotational models, such as the traces, stable

failures and failures-divergences models. In these models, each process is repre-
sented by a set of behaviours: the traces model represents a process by the set
of sequences of events it can perform; the failures model represents a process by
the set of events it can refuse after each trace; the failures-divergences model
augments the failures model with information about when a process can perform
an unbounded number of τ events. Two processes are equal in a denotational
model iff they have the same set of behaviours. If every behaviour of Impl is a
behaviour of Spec in the denotational model X , then Spec is refined by Impl ,
denoted Spec 	X Impl .

CSP can also model processes with priority: prioritise(P , 〈X1, . . . ,Xn〉)
behaves like P , except that in any state, transitions labelled with events in
Xi are only permitted if no event in Xj for j < i is possible.

Fig. 1. Screenshots of FDR3 showing the main window, the debug prompt, and the
built-in process explorer.



68 T. Gibson-Robinson et al.

3 A Brief History of FDR

FDR is a refinement checker for CSP. As input, FDR takes in a file written in a
textual form of CSP describing a number of processes, and can then verify if one
process refines another, according to the CSP denotational models (cf. Sect. 2).
When a refinement check fails, FDR provides a scounterexample that shows a
behaviour of the system that violates the required refinement property. FDR is
also capable of checking other properties such as deadlock freedom, determinism,
and divergence freedom by automatic reduction to a refinement check. Figure 1
shows a screenshot of FDR3’s debug window, showing a counterexample to a
divergence assertion.

All versions of FDR have operated in a similar way, first developed by Jackson
and Roscoe. In order to check if P 	X Q in the denotational model X , P and
Q are converted into LTSs using CSP’s operational semantics (the tools differ
greatly in how this is represented). The refinement check is then performed by
considering the product of these LTSs, and performing either a depth or breadth-
first search over the product. In each state of the product, various properties are
checked according to the denotational model that the refinement check is being
performed in. All versions of FDR have also been explicit, in the sense that
data values are explicitly represented rather than being represented by symbolic
values; the latter is still very much a research topic.

The idea of automatic refinement checking was first considered when Geoff
Barrett was working on the link architecture of the H1 Transputer [35]. Barrett
realised that the best way of proving it correct was to prove that the engine
together with the multiplexer was the same as a number of interleaved com-
munication channels, and realised that such a question could be posed in CSP.
At the time, there was no model checker for CSP and thus no way to automati-
cally verify such a system. Barrett considered the possibility of building a tool to
automatically verify the system in collaboration with Roscoe. Barrett originally
thought that it was necessary to normalise both sides of the refinement check.
Roscoe’s major breakthrough was observing that you only need to normalise the
specification in order to enable automatic refinement checking. Given the com-
plexity of normalisation, this realisation made CSP model checking practical.

Using the above, a proof-of-concept called OxCheck was developed by David
Jackson. OxCheck operated on a network of state machines where the communi-
cation network was described by vectors and masks and was capable of verifying
trace refinement properties.

FDR1. FDR1 [27] was developed by Formal Systems (Europe) Ltd, which was
setup in Oxford by a collection of people who were involved with CSP. Formal
Systems continued to develop FDR until 2007 when development returned to
the University of Oxford. FDR1 differed from OxCheck in several ways. Most
notably, it supported more of CSP as processes could now incorporate hiding
and renaming (at the top-level), and support was also added for the failures
and failures-divergences models. FDR1 also eventually had a graphical debugger
that allowed the user to inspect their processes when a refinement error was



FDR: From Theory to Industrial Application 69

Fig. 2. A screenshot of FDR2 showing the main window and the debug viewer.

detected. This support for visualising counterexamples quickly became one of
the most notable features of FDR, in contrast to most other verification tools
that often lack any sort of visualisation component.

FDR2. Development on FDR21 [12] (shown in Fig. 2) commenced in 1994 as a
joint effort between the University of Oxford and Formal Systems. At the time,
Bryan Scattergood was a DPhil student of Roscoe’s at Oxford, where he worked
on a new input language for FDR called machine-readable CSP, or CSPM . CSPM

combines the CSP process algebra (in an essentially general way) with a lazy
functional programming language that permits general purpose models to be
constructed easily. The generality of CSPM is one of the principle strengths of
FDR2, and is one of the key features that has enabled FDR to tackle the variety
of problems covered later in this paper. CSPM has had a lasting impact, as it is
still in use today in the most recent versions of FDR.

FDR2 was notable for its support for supercombinators. These provide a gen-
eral way of combining a number of LTSs using rules that indicate how transitions
from different LTSs should interact. For example, a rule may specify that the
supercombinator performs the event a in the case that process 1 performs the

1 There were actually several major versions of FDR2 released: FDR 2.83 represented
the final version that Formal Systems produced, whilst FDR 2.94 was a significant
new release of FDR2 that incorporated, amongst numerous other enhancements,
support for several new denotational models.



70 T. Gibson-Robinson et al.

event b and process 2 performs the event c. The main advantage of supercombi-
nators is that it makes it easy to support networks that are built from a complex
combination of CSP operators without incurring any performance impact. For
example, using supercombinators, renaming and hiding are essentially free.

FDR2 pioneered the usage of compression [33] which has proven an
immensely valuable technique for analysing large complex CSP systems. Com-
pression functions take in an LTS and return a second LTS that is semantically
equivalent (in the relevant denotational model) but, hopefully, contains fewer
nodes. For example, the normalisation algorithm outlined above is a compres-
sion function (and frequently performs well), as is strong bisimulation. The work
on compression was instrumental in enabling industrial exploitation of FDR, as
Sect. 6 shows.

FDR2 also incorporated a surprisingly useful function in the form of chase

which is a form of partial-order reduction. chase(P) behaves like P , except that
τ events are forced to occur in an arbitrary order until a stable state is reached.
This has the effect of only considering one possible ordering of the τ actions.
This remarkably simple function was first developed in order to support analysis
of security protocols, as Sect. 4 explores.

FDR3. FDR3 [13] is a complete rewrite of FDR, but rather than being built by
the same team as previous versions, FDR3 started life in 2010 as a side-project of
Gibson-Robinson during his doctorate. During Gibson-Robinson’s undergradu-
ate, he built a CSP generator that enabled FDR2 to model check models written
in other process algebras, based on work of Roscoe [30]. The CSP generator for
this was rather complex, and after becoming frustrated by the number of errors
FDR2 gave along the lines of <> is not a set (with no attached line number),
he wrote a type checker for CSP. This type checker formed the basis of FDR3,
which was then developed over the next few years, culminating in its final release
in December 2013.

Compared to FDR2, FDR3’s major feature is its speed: it is typically three
times faster on a single core but is also capable of using multiple cores. Further,
when running on multiple cores and checking models in the traces and failures
models, it scales linearly [13] (i.e. twice as many cores cause FDR to take half
the time). FDR3 also incorporates a cluster version that is also capable of scaling
linearly as more nodes are added to the cluster [13]. Few other model checkers
are capable of scaling in such ways. One particularly notable experiment involved
the use of FDR3 on a cluster of 64 16-core servers running on Amazon’s EC2
service, which managed to model check a problem with over 1 trillion states.

The other notable difference to users of FDR is the redesigned user inter-
face of FDR3, as shown in Fig. 1. This is particularly noticeable in terms of
the graphical debugger which now shows, at a glance, exactly how the differ-
ent processes interact to produce an event. This sounds straightforward, but it
turns out to be particularly difficult to compute the alignment when divergence
counterexamples are found in processes that include compressions.



FDR: From Theory to Industrial Application 71

4 Analysis of Security Protocols

A security protocol is an exchange of messages between two or more agents,
over a possibly insecure network, with a security-related goal, such as establish-
ing a cryptographic key, or authenticating one agent to another. In the past,
security protocols were very difficult to get right: many were suggested, only to
subsequently be found to be insecure.

The analysis of security protocols is an area where the use of FDR has been
very successful and influential. The technique has proved successful at identifying
attacks upon protocols, and, in other cases, proving protocols secure. It has
influenced many later techniques.

Early models. Roscoe first suggested the use of FDR to analyse security proto-
cols [28]. The technique was subsequently developed by Lowe. This work is best
known for its demonstration [17] of how it could be used to find the (now well
known) attack upon the Needham-Schroeder Public Key Protocol [20]. The basic
technique is outlined below, using this protocol as an example. The protocol can
be described as follows. The encryption of message m by key k is denoted as
{| m |}k , and concatenation of messages is denoted using “.”.

1. a → b : {| na.a |}PK (b)

2. b → a : {| na.nb |}PK (a)

3. a → b : {| nb |}PK (b)

Here a is an initiator who seeks to establish a session with responder b. a selects
a nonce (i.e. a large random number) na, and sends it along with her identity
to b (message 1), encrypted using b’s public key PK (b). When b receives this
message, he decrypts the message to obtain the nonce na. He then returns the
nonce na, along with a new nonce nb, to a, encrypted with a’s key (message 2).
When a receives this message it would seem that she should be assured that she
is talking to b, since only b should be able to decrypt message 1 to obtain na.
a then returns the nonce nb to b, encrypted with b’s key. It would seem that b
should be assured that he is talking to a, since only a should be able to decrypt
message 2 to obtain nb.

The CSP models represent encryption symbolically. For example, the encryp-
tion {| m |}k is written as Encrypt.k.m. Honest agents running the protocol are
modelled as CSP processes. For example, the initiator a using nonce na could
be modelled by the following process.

Initiator (a,na) =

InitRunning .a?b → send .Msg1 .a .b .Encrypt .PK(b) .na .a →
receive .Msg2 .b .a .Encrypt .PK(a) .na?nb →
send .Msg3 .a .b .Encrypt .PK(b) .nb → InitDone .a .b → STOP



72 T. Gibson-Robinson et al.

This represents sending and receiving of messages in an obvious way. An initial
message indicates that a intends to run the protocol with b (who might be the
intruder, or might be an honest agent); and a final message indicates that she
thinks she has completed the protocol with b.

Next, a model of the most nondeterministic intruder is built. The intruder
can (1) overhear and/or intercept any messages being passed in the system;
(2) create new messages from messages he knows, for example by encrypting
or decrypting with keys he knows; (3) send messages he has seen or created to
other agents, possibly using a faked identity.

In order to capture (2), above, a relation � can be defined, such that if S is
a set of messages, and m is a message, S � m if m can be produced in a single
step from S . The rules below capture encryption, decryption, concatenation and
splitting of messages.

{m, k} � {| m |}k , {{| m |}k , k−1} � m,
{m1,m2} � m1.m2, {m1.m2} � m1, {m1.m2} � m2.

An intruder who knows the set of messages S can be defined as follows. The
intruder can: hear a message m on the network and add it to his knowledge;
say some message m that he knows, i.e. send it on the network; or deduce some
message m from some subset S’ of the messages he knows, and add m to his
knowledge.

Intruder (S) =

hear ?m → Intruder(S ∪ {m})
� say?m:S → Intruder(S)

� (� S’ ⊆ S, m ∈ Msg, S’ � m • deduce .S’ .m → Intruder(S ∪ {m}))
This process can be instantiated with some initial knowledge set, for example
containing all public keys and the intruder’s own private key.

In practice, the above definition is impractical, because the FDR compiler
would build the entire Intruder process at compile time, which would be too time
consuming in most cases: if there are n facts that the intruder might learn, the
process has 2n states. A better approach is outlined below.

The intruder can be combined with the honest agents, using a combination
of parallel composition and renaming, for example to create a small system, with
a single initiator A and a single responder B, each running the protocol once.
Each send event of an honest agent can be synchronised with a corresponding
hear event of the intruder and maybe a receive event of the other honest agent,
representing a message being intercepted or correctly transmitted, respectively.
In addition, each receive event can be synchronised with a corresponding say event
of the intruder, representing the intruder faking a message, or sending a message
with his own identity.

FDR is then used to test whether the system satisfies various security
properties. For example, consider the question of whether the initiator A is
authenticated to the responder B. This is equivalent to saying that when-
ever B has apparently completed the protocol with A —modelled by the event



FDR: From Theory to Industrial Application 73

RespDone.B.A— A has indeed been running the protocol with B —modelled by
the event InitRunning.A.B. Hence this property can be tested as follows:

AuthInit = InitRunning .A .B → RespDone .B .A → STOP

assert AuthInit �T System \ (Σ − {InitRunning .A .B, RespDone .B .A})
This refinement fails. The FDR debugger can then be used to reveal the

sequence of events that led to the failure; this is the well known attack on the
protocol, described below.

α.1. A→ I : {| Na .A |}PK (I )

β.1. IA →B : {| Na .A |}PK (B)

β.2. B → IA : {| Na .NB |}PK (A)

α.2. I →A : {| Na .NB |}PK (A)

α.3 A→ I : {| NB |}PK (I )

β.3. IA →B : {| NB |}PK (B)

In run α, the initiator A runs the protocol with the intruder I . In run β, I runs
the protocol with responder B , pretending to be A. The intruder uses the former
run as an oracle in order to fool B in the latter run.

It is possible to capture confidentiality properties in a similar way. For exam-
ple, consider the property: if the responder B completes a run with A, then its
nonce Nb is secret. An event leak.Nb is introduced to indicate that the intruder
knows Nb (by renaming says.Nb). The following refinement check then captures
this property.

SecretNb = leak .Nb → SecretNb � RespDone .B .A?Na !Nb → SecretNb’

SecretNb’ = RespDone .B .A?Na !Nb → SecretNb’

assert SecretNb �T

System \ (Σ − {RespDone .B .A .Na .Nb, leak .Nb | Na ← Nonce})

The lazy intruder. As noted above, the previous model of the intruder is imprac-
tical. Roscoe and Goldsmith [34] developed a better approach, described below.

A set Msg is defined comprising all messages or sub-messages that the intruder
could feasibly learn. Then, for each message m, a two-state process is defined,
corresponding to whether the intruder knows m:

Ignorant(m) =

(� S ⊆ Msg, S � m • deduce .S .m → Knows(m))

� hear .m → Knows(m)

Knows(m) =

(� S ⊆ Msg, m ∈ S, m’ ∈ Msg, S � m’ • deduce .S .m’ → Knows(m))

� hear .m → Knows(m)

� say .m → Knows(m)

If he is ignorant of m, he may deduce it from some set S such that S � m, or
hear it sent by an honest agent. If he knows it, he may use it to deduce other
messages, or he may hear it again, or he may send it to another agent.



74 T. Gibson-Robinson et al.

Combining the above processes together in parallel, synchronising appropri-
ately, gives a model of the intruder equivalent to the previous one. A particular
deduction deduce.S.m can happen only if the intruder knows all the messages
in S, and does not know m. If there are n facts, this model can be compiled in
time O(n) (compared with O(2n) for the previous model).

However, this definition is still inefficient. Suppose, as a result of hearing
a new message, the intruder can make k independent deductions. Then these
deductions could be made in k ! different orders, and FDR could explore each
of these. Therefore, the number of orders explored needs to be reduced. There
are three important observations: all permutations of the same set of deductions
reach the same state; no deduction disables a deduction of a different message;
and no deduction disables the intruder’s ability to send a message. Therefore,
arranging for the deduction events to occur in an arbitrary order until no more
are available, gives the intruder the maximum ability to send messages.

This reduction is a form of partial-order reduction. In order to support it,
FDR was extended with the function chase, as described in Sect. 3: this forces
τ events to happen in an arbitrary order until no more are available. Since it
was introduced, chase has been used as a partial-order reduction in a number of
other analyses.

Further developments. Creating CSP models of security protocols is time-
consuming and error prone. In order to make CSP-based analyses more practical,
Lowe developed a compiler, Casper [18], that creates the CSP model from a much
simpler and more concise description. This makes the technique applicable by
those with no knowledge of CSP; it has been widely used in industry and as a
teaching tool.

Many encryption schemes satisfy some interesting algebraic properties. For
example, if encryption is implemented as bitwise exclusive-or, then it is asso-
ciative and commutative. Such algebraic properties can be captured by defining
the corresponding equivalence as a set of pairs. For example, writing Xor for the
bitwise exclusive-or operator, the commutativity property would be captured by
including (Xor.m1.m2,Xor.m2.m1) in this set, for each m1, m2, and also lifting this
equivalence to all relevant contexts. For each equivalence class, a representative
member can be picked; write rep(m) for the representative member of the equiv-
alence class containing m. Then each message m sent or received by an honest
agent is renamed to rep(m) before synchronizing the agents. This means that if
m and m ′ are equivalent, one agent sends a message using m, and another agent
receives a message using m ′, these two events will synchronize, via an event using
rep(m) = rep(m ′). In order to support this, FDR was extended with a function
mtransclose that calculates an equivalence relation from a set of generators, and
then chooses a representative member for each equivalence class.

A shortcoming of the techniques described so far is that if no attack is found
upon a particular (typically small) system running the protocol, it does not
mean that there is no attack upon some larger system. Roscoe and Hopcroft [32]
developed a technique to simulate a system with an unbounded number of runs,
although with a bound (typically one) of the number of concurrent runs that



FDR: From Theory to Industrial Application 75

a particular agent could be involved in. The idea is to “recycle” values, such
as nonces, to allow them to be reused in subsequent runs, while giving the
impression that new values are used. Techniques from data independence were
used to justify the correctness of this technique. In addition, the functionality of
certain server processes was incorporated within the intruder. These ideas were
extended in [4] by embedding arbitrary processes within the intruder, simulating
an unbounded number of concurrent runs.

Many modern security protocols are layered on top of a general-purpose
secure transport protocol, such as TLS, which provides authentication and con-
fidentiality. A special-purpose application protocol builds on top of this, using
the transport protocol to securely transfer individual messages. Dilloway and
Lowe [11] studied different security properties that might be provided by such
secure transport protocols. They also studied how to analyse the application
within such a setting, abstracting away from the implementation of the secure
transport protocol, and modelling just the services it provides.

Creese et al. [9] investigated empirical channels: typically human-mediated
channels, used to transfer small amounts of data, alongside a less secure net-
work channel. They again investigate different security properties that might be
provided by such channels, and how to model them.

5 Assuring Critical Systems

During the mid-eighties the Royal Signals and Radar Establishment, RSRE,
engaged with the University of Oxford about the use of CSP. For example the
traces model of CSP was used as an example of a concrete category of information
flow properties [22,23] now termed examples of hyperproperties [8]. The lack of
tool support for CSP resulted in little application of CSP to Ministry of Defence
(MOD) projects. It was not until the mid-nineties the Systems Assurance Group
at the Defence Evaluation and Research Agency, DERA, (which RSRE became
part of) first started to carry out research using FDR2 on security protocols in
collaboration with the University of Oxford.

The success of applying FDR to security protocols led the Systems Assurance
Group to speculate whether CSP and FDR could be used to provide objective
information to support a safety case for launching a Tomahawk Land Attack Mis-
sile from a Royal Navy submarine. In collaboration with Formal Systems Ltd, a
CSP constraint-based approach to assessing third party systems was developed.
The approach required only partial information about a system, which was then
checked against safety properties by the FDR model checker. The major con-
cern of the assessment of the procured weapon system was the integration of a
Unix based subsystem, known as ATWCS (Advanced Tomahawk Weapon Con-
trol System), into the Royal Navy’s legacy submarine command and control
system. The integrated system consisted of eight physically distinct, but com-
municating, subsystems. There was already sufficient information relating to the
correctness and reliability of individual components obtained by detailed safety



76 T. Gibson-Robinson et al.

analysis, such as fault-tree analysis. However no formal analysis of the inter-
actions between subsystems had been performed to determine whether unsafe
emergent behaviour could appear.

A system-level hazard analysis had already been performed that identified a
number of hazards which were then grouped into a few hazard categories. Specific
questions of interest were derived from the hazard categories and were carefully
formulated so that they could be conveniently expressed as CSP refinement
assertions. From the viewpoint of formal analysis and model checking, the most
significant feature of this modelling task was the size and complexity of the
system; it was originally believed that the system would not be tractable for
model checking. The initial strategy was to model as much of the system as
possible and then, when the state space exceeded feasible limits, proceed by
making abstractions. However, Roscoe suggested using the partial order method
called chase, which was previously developed for modelling security protocols
(see Sects. 3 and 4); this made the model check feasible.

The technical approach placed all the claims about a subsystem’s behav-
iour in parallel, synchronising over common inputs and outputs. The infor-
mation about a subsystem’s behaviour was derived from documentation and
checked with the customer and supplier. Where documentation was incomplete
or ambiguous, the claim was weakened to ensure that the actual system behav-
iour was contained within the modelled behaviour. Although this is safe, it led to
significantly more behaviours, or states, to be assessed. Separate validation took
place to assess the accuracy of the modelled claims about a subsystem’s behav-
iour. The questions formulated from the system hazard analysis and expressed
in CSP were used as specifications against which the modelled behaviour of
the system, expressed as a conjunction of claims about subsystem behaviour,
was checked. The refinement check showed that if the subsystems behaved as
expected then the system would not manifest system level hazards.

Component failures. The assumption that each subsystem functions correctly
is clearly improbable; however, due to the pessimistic approach to modelling
the claims about a subsystem, the model can still be accurate even though the
subsystem does not function perfectly. Unfortunately this is still not good enough
and the failure modes of the modelled system have to be considered. In the same
way that erroneous behaviour of computer systems can be explored by means of
software fault injection, the failure modes of the modelled system can be assessed
by injecting faults into the subsystems in the CSP model.

The ability to inject errors into the CSP model allowed the Systems Assur-
ance Group to deal with random or systematic failures in a subsystem to deter-
mine their impact on the system, with respect to the safety properties identified
from the system hazard analysis. The results of the analysis demonstrated sce-
narios under which a systematic or random error in certain subsystems could
give rise to a system level hazard. These scenarios were presented to the customer
and system integrators in order to determine whether the identified anomaly was
an artefact of the pessimistic nature of the model, or was a genuine problem.



FDR: From Theory to Industrial Application 77

In fact the problem arose because timing properties were not part of the model
and could not be readily inferred from the system description.

Essentially the model revealed the possibility of a dangerous signal propa-
gating through the system before any interlock could stop it. An independent
model, which gave priorities to signals invoking interlocks over signals which
invoke action by the system, demonstrated that the identified anomalies were due
to race conditions. The CSP/FDR analysis technique was pessimistic, but coun-
terexamples to critical properties allowed directed testing and analysis. Therefore
the generated dangerous scenarios can be used to direct a testing programme to
check that the race conditions are such that the system is safe.

The safety assessment showed that no single subsystem failure could give
rise to a system hazard, with the caveat that there was no underlying common
mode failure that would manifest itself as two apparently independent failures.
Checking the validity of the models was a separate assessment concern, but the
modelling provided a means of focusing the assessment of the system information
and the independent models were used to cross check each other. More technical
detail about this work can be found in [24,40].

Evolution of CSP/FDR system assessment. Although the assessment of third
party systems was developed specifically for the integrated Royal Navy and
ATWICS subsystems, it was quite general and applied to other MOD procure-
ment projects over a number of years. Over those years, a number of mod-
elling patterns were identified that became a Dependability Library which could
be used for modelling various system architectures. To conveniently access and
scale assessments, tool support and a graphical language was developed called
ModelWorks. ModelWorks evolved further in response to a number of challenges
from distributed Service Oriented Architectures, automotive architectures and
distributed collaborative software agents.

In a blind trial run by Jaguar Land Rover, ModelWorks, using FDR2, was
successful in finding a known design flaw in a car immobiliser that comprised 13
separate software systems communicating across a CAN bus. In another experi-
ment, ModelWorks demonstrated an indicative saving of up to 80% of the cost of
developing another automotive software system. The main barrier for adoption
was learning how to model systems in the ModelWorks language. The Model-
Works concept was re-developed from 2013–2016 by D-RisQ Ltd as an interme-
diate representation for other modelling languages, such as Simulink/Stateflow
and SysML, thus obviating the need to learn a new language. ModelWorks repre-
sentations are state machines, which communicate over various media, which are
automatically compiled into efficient machine readable CSP models for FDR3.
The size of typical subsystems within Simulink/Stateflow is now within reach of
FDR3 thanks to the use of a cluster of servers, and the use of SMT solvers to
limit the size of data types required. At the subsystem level the compositional
properties of CSP can be used at a meaningful level for a human, as opposed to
delving into a subsystem to tease out some compositional property. The technol-
ogy has been taken forward through the Advance Manufacturing Supply Chain
Initiative, AMSCI, in order to determine how maximum commercial benefit can



78 T. Gibson-Robinson et al.

be gained by an Original Equipment Manufacturer (such as Jaguar Land Rover)
and its supply chain [39].

Outside of the automotive sector, ModelWorks has been applied to the
development of a safety critical decision engine for an autonomous mode of an
unmanned surface vehicle for over the horizon operation. A Simulink/Stateflow
model of the decision engine has been verified against three criteria: that the
system does what is required; that the system never does what is not required;
and when something goes wrong (e.g. component failure), that the behaviour
of the system under failure conditions is acceptable. The Simulink/Stateflow
model has subsequently been used to automatically generate C code for integra-
tion with the rest of the surface vehicle’s software for the validation of its system
requirements and the development of further system requirements [1].

The application of CSP/FDR to the assessment of critical systems has
spurred on research into scaling the application of FDR and the research results
that continue to be manifested through FDR have spurred on the theory and
practice of assessing critical systems; Roscoe has been at the centre of this
interchange. More exciting theoretical and practical developments are expected
over the coming few years with the challenges presented by the pervasive use of
embedded devices in emerging critical applications.

6 Scalable Verification of Embedded Software

This section gives a summary of how CSP and FDR can play a pivotal role
in successfully applying formal verification in the development of large com-
plex software embedded in cyber-mechanical systems, found in domains such as
high-tech manufacturing, medical systems, telecommunications, aerospace, and
automotive. Such systems are characterised by being long running, event driven,
reactive and concurrent, and are also often distributed over multiple processing
nodes. Systems with these characteristics lend themselves to being modelled and
verified in CSP extremely well. This section gives an example of how FDR was
successfully integrated into a software development framework called Analyti-
cal Software Design (ASD), developed by Broadfoot and Hopcroft in the early
2000s [16,19], and subsequently used in industry.

This work was inspired from Broadfoot’s original work in his MSc thesis [3]
at the University of Oxford, where he realised that, in order to leverage formal
approaches effectively in industry, the following two major hurdles had to be
overcome. Firstly, the approach must be accessible to software engineers without
specialised knowledge, otherwise the adoption barrier is too great. In addition
to user notations, automation is a key part of enabling this. Secondly, it must be
scalable to systems ranging from thousands to millions of lines of code. Broad-
foot and Hopcroft sought to address these challenges by combining an extended
version of the sequence-based specification (SBS) method developed by Poore
and Prowell [25], with automated verification using CSP and FDR and auto-
mated code generation. The SBS notation provided an accessible input notation
for specifying system designs whilst the automatic generation of CSP models and



FDR: From Theory to Industrial Application 79

runtime code ensured consistency of behaviour between representations. Further,
this made formal verification accessible to non-specialist users.

Component-based approach. ASD relies on a component-based approach to spec-
ify, design and implement software systems comprising of components interacting
with one another via synchronous and asynchronous communication. A compo-
nent is a unit of system and subsystem composition with contractually specified
interfaces with its environment and explicit context dependencies. A component
can be deployed independently, provides services to its environment and makes
use of services provided by its environment. The conceptual boundary between a
component and its environment is known as the component boundary. The envi-
ronment comprises all other components, subsystems and systems with which a
component interacts at runtime.

Every component can be specified by two types of models. A design model
specifies the configuration of its provided and required interfaces and the struc-
tural relationships between a component and its environment. This is specified
in the form of a deterministic Mealy machine using a tabular notation derived
from the sequence-based specification. At runtime, this is executed according to
the system’s runtime semantics; these semantics are formally defined in terms
of CSP. An interface model specifies an abstraction of the component’s exter-
nally visible behaviour at the interface, and is modelled as a deterministic or
nondeterministic Mealy machine.

Fig. 3. A component-based architecture with compositional verification.



80 T. Gibson-Robinson et al.

Figure 3 gives an overview of a component-based architecture, which is based
on the client-server model. Clients can initiate synchronous function calls down-
wards to their servers; servers can respond with void or valued return events
that correspond to the synchronous function calls, and post asynchronous noti-
fications in the queues of its clients.

Compositional verification using CSP and FDR. Corresponding CSP models are
generated automatically from design and interface models, and the component
designs can be automatically verified using FDR. The CSP model not only cap-
tures the behaviour in the models as specified by the user, but also captures the
properties of the run-time environment in which the generated code will be exe-
cuted. For a given component X , this includes the externally visible behaviour
of all of the components that X interacts with (representing its environment)
and the runtime execution semantics (e.g. a multi-threaded execution semantics
with the necessary queuing semantics for modelling the asynchronous notifica-
tions). The CSP models are then verified for errors such as deadlocks, livelocks,
interface non-compliance, illegal behaviour, illegal nondeterminism, data range
violations, and refinement of the design and its interfaces by a specification.

In practice, formally model checking the correctness of a complete system in
the target domains is infeasible due to their size and complexity. To scale, it is
essential to make use of abstraction and break the problem down into feasible
verification steps. This is achieved by using CSP abstraction techniques and
the compositional property of CSP refinement. Using the example in Fig. 3, the
system to be developed comprises components A, B and C communicating with
one another via synchronous calls and asynchronously via a queue, and under
the assumptions of the specified runtime semantics. The design models are likely
to comprise millions of states each; furthermore, in reality there would be more
components that form part of A’s environment, thereby causing the complete
system to be infeasible to model check.

Instead, the verification of this system is broken into the following steps:
Firstly, System A is defined as the parallel composition of the design model
of component A, the abstract interface models of B and C , A’s queue, and
processes enforcing the runtime assumptions (for example, multi-threaded exe-
cution semantics), with appropriate synchronisations between them. System A
is then verified against numerous specifications S1, ...,SN , including the abstract
interface of A, as traces and failures-divergences refinement checks using FDR.
Since the interface models are typically significantly smaller state machines com-
pared with their respective design models, due to internal implementation details
being omitted and only exposing the visible client interactions, this becomes fea-
sible to model check in FDR. Secondly, the design models of components B and
C are verified against their abstract interface models as individual refinement
checks in FDR. The compositional properties of CSP refinement can then be
used to automatically deduce that the complete system comprising design mod-
els of A, B and C will satisfy specifications S1, ...,SN and interface model of A.
By applying this compositional approach on industrial scale software systems,
FDR proved to scale extremely well.



FDR: From Theory to Industrial Application 81

Industrial impact. The use of FDR within the ASD framework proved to have sig-
nificant impact within industry. Examples include: Philips Health Care reported
cost savings of 60 % with defects reduced by 90 % (in X-ray machines) [14]; and
Ericsson produced essentially error free software, with a sevenfold increase in
productivity and up to 50 % cost saving over conventional software development
techniques [10]. In the period of July 2009 to July 2013, the commercial product
implementing the ASD framework was used to create more than 250 million lines
of executable code in C, C++, C#, and Java, with individual generated systems
frequently being over 500,000 lines of code [26]. All of the models from which
this code was generated had been verified using FDR.

Future developments. A component-based architecture does not imply that it is
compositional for the purposes of verification using CSP refinement. Therefore,
ASD imposes a strict tree architecture, as well as enforcing runtime semantics
and communication patterns that are compositional. In practice, systems can
rarely be partitioned in such a way completely and this has proven to be a
major challenge, requiring a high level of skill and experience from the software
engineers. Another interesting challenge arises when existing abstraction tech-
niques in CSP are not able to capture certain runtime assumptions, due to the
way in which CSP treats internal τ events. An example of this occurred in mod-
elling asynchronous communication, where the runtime environment assumed
that the rate of processing notifications in a component’s queue far exceeded
their rate of arrival. Roscoe and Hopcroft [36] made significant steps towards
tackling this problem by developing a new type of abstraction, which involved
introducing a new prioritise operator to CSP and FDR, and demonstrated how
this could be applied in practice.

Enabling formal verification to be widely adopted into industrial software
development environments, for the purposes of driving down cost and increas-
ing reliability, is an active area of research within Roscoe’s research group. For
example, they are working on developing a new scalable model-based verification
framework as part of two large research projects, in collaboration with industry
partners in high-tech manufacturing, aerospace and defence. These projects seek
to make it simpler to apply such frameworks in practice, as well as broaden the
scope of system architectures and properties that can be automatically verified
in a compositional manner.

7 Industrial Test Case Generation

In this section, a process algebraic strategy for test case generation from natural-
language requirements or use cases is presented. The underlying formalism is
CSP and the mechanisation of the strategy is based on (traces) refinement asser-
tions that are verified using FDR. Variations of the strategy with two industrial
applications are discussed: testing mobile device applications in the context of a
partnership with Motorola, a Lenovo company; and verifying data-flow reactive
systems, in the aerospace domain, via a cooperation with Embraer.



82 T. Gibson-Robinson et al.

Fig. 4. Overview of the test generation strategy.

Testing mobile devices The strategy for testing mobile devices is summarised in
Fig. 4. It is implemented in the TaRGeT tool [21]. The input is a use case template
written in a (controlled) natural language (CNL), with a well-defined syntax. If the
use case description is syntactically correct, a CSP model, say S , is automatically
derived from the use cases. The test case generation can be guided by a selection
mechanism known as a test purpose (say,TP), which specifies traces of interest but
additionally includesmarking events not in the alphabet ofS . This is also described
in natural language and translated into a CSP process. The model subject to test
case generation is the parallel composition STP = S ‖

αS

TP .

The test purpose TP synchronises on all events of S until there are no further
events to synchronise, when it communicates a marking event. Then both S and
TP deadlock. This happens for all possible parallel executions of TP and S . For
example, for selecting a trace 〈a, b〉 of S , TP needs to include a trace 〈a, b,m〉,
for a marking event m playing the role of an annotation. Then 〈a, b,m〉 is a
trace of STP . Such traces can be automatically generated as counterexamples
of the refinement assertion S 	T STP , since all traces that end with a mark
(and are traces of STP) are not traces of S .

In Fig. 4, these counterexamples are the abstract test cases. They can then be
translated back to construct CNL test cases used for manual execution. Alterna-
tively, these test cases can be fed into another tool, as AutoMano [2], now called
Zygon, and automatically translated into test scripts of automation frameworks
like UI Automator2. These are then executed to test the mobile devices. If a
model of the mobile device application is available, it is possible to perform con-
formance verification directly, by checking whether the implementation model,
say I , is a refinement of S , as also illustrated in Fig. 4.

The conformance notion adopted in this approach is the relation cspio,
intended to capture the ioco [38] relation in the CSP setting. However, ioco

2 UI Automator — https://developer.android.com/topic/libraries/testing-support-
library/index.html{\#}UIAutomator.

https://developer.android.com/topic/libraries/testing-support-library/index.html{#}UIAutomator
https://developer.android.com/topic/libraries/testing-support-library/index.html{#}UIAutomator


FDR: From Theory to Industrial Application 83

is defined in a model called suspension traces [38], which distinguishes between
input and output events, and includes a special output event to represent qui-
escence (δ). It is possible to capture the ioco relation via an encoding in the
standard traces model. This entails splitting the alphabet of specification and
implementation models into disjoint input and output sets of events. The for-
mulation refers only to the set of output events, which is denoted O. The set
Oδ = O ∪ {δ} additionally includes the event δ that represents quiescence.

Definition 1 (CSP input-output conformance).

I cspioS =̂ ∀ σ : traces(S ) • out(I , σ) ⊆ out(S , σ)

where out(R, σ) = {a : Oδ | σ � 〈a〉 ∈ traces(R) }
Informally, this means that after performing a specification trace, the outputs
offered by the implementation must be a subset of those offered by the specifica-
tion, for the same trace. In the context of mobile device applications this relation
is adequate because it allows for partial specifications. The development tends
to proceed on a feature basis, so it is possible, for instance, to test the properties
of a specific feature against an implementation involving several other features.
The following theorem [7,21] states that cspio conformance can be verified using
FDR (as an alternative to testing, when a model of the implementation is avail-
able) in terms of traces refinement. A detailed discussion on how this can be
performed in a compositional way is presented in [37].

Theorem 1 (Verification of cspio).

I cspioS ⇔ Sδ 	T (Sδ � ANY (Oδ,STOP)) ‖
Σδ

Iδ

where ANY (X ,R) = � a : X • a → R

In the above theorem the notation Σδ stands for Σ ∪ {δ}, and Pδ stands for a
process that behaves as P but outputs δ in all quiescent states of P [7]; this is
necessary to capture ioco. The annotation of quiescence can be concisely and
elegantly captured using the CSP notion of priority. In this case, it is necessary
only to give priority to output events over δ.

Definition 2 (Quiescence annotation).

Pδ =̂ prioritise(P � RUN ({δ}), 〈O, {δ}〉)
Most formal approaches to test case generation are based on operational mod-

els like labelled transition systems. A distinguishing feature of using a process
algebra like CSP is that one can benefit from the rich set of operators, semantic
models and tools, as well as, and most importantly, abstraction. Test genera-
tion and conformance verification, as presented here, abstract from any specific
algorithm, and are characterised in terms of refinement assertions in the traces
model. This strongly supports conservative extensibility when considering other



84 T. Gibson-Robinson et al.

aspects like data and time, in addition to control behaviour. For example, as
shown in [21], state can also be incorporated as an orthogonal aspect. A CSP
process, say M , is designed to model a memory to record the state of vari-
ables. The specification, previously represented by the process S , then becomes
SM = (S ‖

αM

M ) \ αM . Despite this model increment, the test generation and

conformance verification strategies are entirely preserved, using SM in place
of M in the formulations. Additionally, one can now perform state based test
selection. Time is addressed in the next section.

As practical achievements, the TaRGeT tool has been used in some Motorola
teams that reported gains between 40% and 50% in productivity related to
test case generation. Concerning the time to generate the test cases, a tool like
TaRGeT is incomparably faster than designing test cases manually. Nevertheless,
there are other activities in the process, beyond test design. Particularly, the
inspection phase used to take a significant amount of time, and this happens
regardless of whether the tests are manually designed or automatically generated.

Data-flow reactive systems. As a variation and extension of the strategy pre-
sented in the previous section, the NAT2TEST framework has been devised [5].
The input is also authored in natural language but, instead of use cases, higher
level requirements are used as the basis to test generation. The output are test
vectors in the form of a matrix, where each line assigns values for input and
output variables, for a particular time value. The approach allows several target
formalisms from which test vectors are generated. One of these options is CSP.

A conformance relation, csptio, has been proposed to consider timed behav-
iour (discrete or continuous), in addition to control and data. Again, due to the
abstraction provided by a process algebraic characterisation in CSP, csptio is a
conservative extension of cspio. To give an intuition, avoiding all the technical
details involved [6], the relation is defined as:

Definition 3 (CSP timed input-output conformance).

I csptioS =̂ ∀ σ : traces(S ) • out(I , σ) ⊆ out(S , σ)
∧ elapse(I , σ) ⊆ elapse(S , σ)

Note that the first conjunct coincides with the definition of cspio. The second
conjunct, significantly simplified here, captures the timed behaviour in a sym-
bolic way. Conformance means that the possible values of the elapsed time in
the implementation, after a specification trace, should be a subset of that of the
specification, after the same trace. Concerning mechanised conformance verifica-
tion, the first part can be checked using FDR, as already explained. The second
conjunct is transformed into a constraint satisfaction problem and is verified
using an SMT solver like Z33.

This framework is not yet deployed, but experiments with some applications
provided by Embraer have shown that the strategy was able to generate the

3 Z3—http://z3.codeplex.com/.

http://z3.codeplex.com/


FDR: From Theory to Industrial Application 85

same vectors that were manually designed by domain specialists, except when
there was tacit information involved. Additional and more elaborate controlled
experiments are necessary to establish the precise productive gains.

Despite the several advantages of a CSP characterisation of test generation
and conformance verification, there are two main potential disadvantages in this
approach. One is efficiency: test generation using specialised algorithms tend to
be more efficient than using a refinement checker. The second drawback is that
working at the CSP level does not allow one to have access to operational model
elements like states and transitions used as coverage criteria in practical testing
approaches. Interestingly, however, using facilities provided by the FDR Explorer
API, it is possible to obtain the LTS of a CSP model, and then devise algorithms
that implement coverage criteria, as a separate concern to test generation.

8 Conclusion

The examples in this paper only scratch the surface of what has been achieved with
FDR over its 25-year history. For example, FDR has also been used to analyse:
unmanned aerial vehicles; fault-tolerant processors; concurrent algorithms; and
numerous puzzles (thanks to Roscoe’s passion for using FDR to solve such things).
Without Roscoe’s contributions and continued enthusiasm for FDR, it would not
be where it is today.

FDR also promises to have a bright future as researchers at Oxford are work-
ing on a number of interesting extensions. For example, the use of SAT solvers for
finding deadlocks, enabling FDR to analyse larger networks for deadlocks, and
support for symmetry reduction, which will help FDR analyse heap structures
in concurrent programs. There are also plans to create a new input language for
FDR to complement CSPM which, whilst it has shown remarkable longevity, is
less ideal for certain applications of FDR.

Acknowledgements. We are hugely grateful to Michael Goldsmith for his expert
memory recalling the early days of FDR.

References

1. Unmanned Safe Maritime Operations Over The Horizon (USMOOTH) (2015).
http://gtr.rcuk.ac.uk/projects?ref=102303

2. Arruda, F., Sampaio, A., Barros, F.: Capture and replay with text-based reuse
and framework agnosticism. In: Software Engineering and Knowledge Engineering
(2016)

3. Broadfoot, G.H.: Using CSP to support the cleanroom development method for
software development. MSc Thesis, University of Oxford (2001)

4. Broadfoot, P.J., Roscoe, A.W.: Embedding agents within the intruder to detect
parallel attacks. J. Comput. Secur. 12(3,4), 379–408 (2004)

5. Carvalho, G., Barros, F.A., Carvalho, A., Cavalcanti, A., Mota, A., Sampaio, A.,
NAT2TEST tool: From natural language requirements to test cases based on CSP.
In: Software Engineering and Formal Methods (2015)

http://gtr.rcuk.ac.uk/projects?ref=102303


86 T. Gibson-Robinson et al.

6. Carvalho, G., Sampaio, A., Mota, A.: A CSP timed input-output relation and a
strategy for mechanised conformance verification. In: ICFEM (2013)

7. Cavalcanti, A., Hierons, R.M., Nogueira, S., Sampaio, A.: A suspension-trace
semantics for CSP. In: Theoretical Aspects of Software Engineering (2016)

8. Clarkson, M.R., Schneider, F.B.: Hyperproperties. J. Comput. Secur. 18(6), 1157–
1210 (2010)

9. Creese, S., Goldsmith, M., Harrison, R., Roscoe, A.W., Whittaker, P., Zakiuddin,
I.: Exploiting empirical engagement in authentication protocol design. In: Security
in Pervasive Computing (2005)

10. de Jongh, H.: Brabantse vinding verslaat Indiase softwaremakers. http://fd.nl/
entrepreneur/wereldveroveraars/634621-1211/brabantse-vinding-verslaat-indiase-
softwaremakers

11. Dilloway, C., Lowe, G.: Specifying secure transport layers. In: CSFW (2008)
12. Formal Systems (Europe) Limited (2013)
13. Gibson-Robinson, T., Armstrong, P., Boulgakov, A., Roscoe, A.W.: FDR3: a paral-

lel refinement checker for CSP. Int. J. Softw. Tools Technol. Transf. 18(2), 149–167
(2016)

14. Groote, J.F., Osaiweran, A., Wesselius, J.H.: Analyzing the effects of formal meth-
ods on the development of industrial control software. In: ICSM (2011)

15. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall Inc., Upper
Saddle River (1985)

16. Hopcroft, P.J., Broadfoot, G.H.: Combining the box structure development method
and CSP. Electron. Notes Theoret. Comput. Sci. 128(6), 127–144 (2005)

17. Lowe, G.: Breaking and fixing the Needham-Schroeder public-key protocol using
FDR. In: TACAS (1996)

18. Lowe, G.: Casper: a compiler for the analysis of security protocols. J. Comput.
Secur. 6(1–2), 53–84 (1998)

19. Mills, H.D., Linger, R.C., Hevner, A.R.: Principles of Information Systems Analysis
and Design. Academic Press, New York (1986)

20. Needham, R., Schroeder, M.: Using encryption for authentication in large networks
of computers. Commun. ACM 21(12), 993–999 (1978)

21. Nogueira, S., Sampaio, A., Mota, A.: Test generation from state based use case
models. Formal Aspects of Comput. (2014)

22. O’Halloran, C.: A calculus of information flow. In: ESORICS (1990)
23. O’Halloran, C.: Category theory and information flow applied to computer security.

DPhil Thesis, University of Oxford (1993)
24. O’Halloran, C.: Assessing Safety Critical COTS Systems (1999)
25. Prowell, S.J., Poore, J.H.: Sequence-based software specification of deterministic

systems. Softw. Practi. Experience 28(3), 329–344 (1998)
26. REF 2014. Automated software design and verification. http://impact.ref.ac.uk/

CaseStudies/CaseStudy.aspx?Id=4907
27. Roscoe, A.W.: Model-checking CSP. In: A Classical Mind, pp. 353–378. Prentice

Hall International (UK) Ltd., Hertfordshire (1994)
28. Roscoe, A.W.: Modelling and verifying key-exchange protocols using CSP and

FDR. In: CSFW (1995)
29. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice Hall, Englewood

Cliffs (1997)
30. Roscoe, A.W.: CSP is expressive enough for π. In: Reflections on the Work of CAR

Hoare (2010)
31. Roscoe, A.W.: Understanding Concurrent Systems. Springer, Heidelberg (2010)

http://fd.nl/entrepreneur/wereldveroveraars/634621-1211/brabantse-vinding-verslaat-indiase-softwaremakers
http://fd.nl/entrepreneur/wereldveroveraars/634621-1211/brabantse-vinding-verslaat-indiase-softwaremakers
http://fd.nl/entrepreneur/wereldveroveraars/634621-1211/brabantse-vinding-verslaat-indiase-softwaremakers
http://impact.ref.ac.uk/CaseStudies/CaseStudy.aspx?Id=4907
http://impact.ref.ac.uk/CaseStudies/CaseStudy.aspx?Id=4907


FDR: From Theory to Industrial Application 87

32. Roscoe, A.W., Broadfoot, P.J.: Proving security protocols with model checkers by
data independence techniques. J. Comput. Secur. (1999)

33. Roscoe, A.W., Gardiner, P.H.B., Goldsmith, M.H., Hulance, J.R., Jackson, D.M.,
Scattergood, J.B.: Hierarchical compression for model-checking CSP or how to
check 1020 dining philosophers for deadlock. In: TACAS (1995)

34. Roscoe, A.W., Goldsmith, M.: The perfect spy for model-checking crypto-protocols.
In: DIMACS (1997)

35. Roscoe, A.W., Goldsmith, M.H., Cox, A.D.B., Scattergood, J.B.: Formal Methods
in the Development of the H1 Transputer. In: WOTUG (1991)

36. Roscoe, A.W., Hopcroft, P.J.: Theories of programming and formal methods.
Chapter Slow Abstraction via Priority (2013)

37. Sampaio, A., Nogueira, S., Mota, A., Isobe, Y.: Sound and mechanised composi-
tional verification of input-output conformance. Softw. Testing Verification Reliab.
24(4), 289–319 (2014)

38. Tretmans, J.: Test Generation with Inputs, Outputs, and Quiescence. In: TACAS
(1996)

39. Tudor, N.J., Botham, J.: Proving properties of automotive systems of systems
under ISO 26262 using automated formal methods. In: System Safety and Cyber
Security (2014)

40. Zakiuddin, I., Moffat, N., O’Halloran, C., Ryan, P.: Chasing events to certify a
critical system. Technical report (1998)



Information Flow, Distributed Systems,
and Refinement, by Example

Joshua D. Guttman1,2(B)

1 The MITRE Corporation, Bedford, MA, USA
2 Worcester Polytechnic Institute, Worcester, MA, USA

guttman@wpi.edu

1 Introduction

Non-interference is one of the foundational notions of security stretching back
to Goguen and Meseguer [3]. Roughly, a set of activities C is non-interfering
with a set D if any possible behavior at D is compatible with anything that
could have occurred at C. One also speaks of “no information flow” from C
to D in this case. Many hands further developed the idea and its variants
(e.g. [12,15]), which also flourished within the process calculus context [1,2,6,13].
A.W. Roscoe contributed a characteristically distinctive idea to this discussion,
in collaboration with J. Woodcock and L. Wulf. The idea was that a system
is secure for flow from C to D when, after hiding behaviors at the source C,
the destination D experiences the system as deterministic [8,11]. In the CSP
tradition, a process is deterministic if, after engaging in a sequence t of events,
it can refuse an event a, then it always refuses the event a after engaging in t [9].

One advantage of this approach via determinism is that it disposed of the
so-called “refinement paradox” of non-interference (for which C. Morgan [7] cites
J. Jacob [6], who does not use the term). Namely, a system might display non-
interference, but refine to a system that caused impermissible information flows.
Refinement does not preserve ignorance, in Morgan’s words. However, if the
system is already deterministic to the destination, no refinement can provide
the destination with information about the behavior of the source.

Unfortunately, non-interference is too strong a property to be desirable except
rarely. One rarely would design a system that has the activities C,D when C
should not interfere with D in any way at all. One would instead like to design
systems in which there are at least clear limitations on how that interference
may occur. For instance, perhaps there is a responsible intermediary M such
that C may influence M and M may then decide what information to make
visible to the destination D. Thus, writing “may influence directly” as �, we
have C � M � D, although C �� D. In this case, the “may-influence” relation
is not transitive. One may view this intransitive non-interference as a kind of
declassification, one in which the permissible intermediaries are trusted to decide
what information may reach the destination. From this point of view, it is a kind
of “who” declassification, in which the policy identifies which domains M are
permitted to choose what information to allow to pass from C to D [14].

c© Springer International Publishing AG 2017
T. Gibson-Robinson et al. (Eds.): Roscoe Festschrift, LNCS 10160, pp. 88–103, 2017.
DOI: 10.1007/978-3-319-51046-0 5



Information Flow, Distributed Systems, and Refinement, by Example 89

A second advantage of Roscoe’s determinism idea turned out to be its sur-
prising and attractive applicability to intransitive non-interference, developed
with M. Goldsmith [10]. Non-interference given an intransitive “may-influence”
relation meant that, hiding the behavior of the sensitive source C, and fixing the
behavior of the permissible intermediary M , the destination D again experiences
the system as deterministic.

However, suppose we have explicit specifications of what we would like to
permit D to learn about C? For instance, the buyer should be able to learn
what the president had for breakfast, so as to replenish the larder, but not who
she vetted for the court opening. This is called “what” declassification, since the
content determines what D may learn and what not. The determinism point of
view does not seem to provide an explanation of “what” declassification, which
would be attractive.

We think it also attractive to recast the notions in a context that makes the
graph structure of distributed systems explicit, and allows us to use the graph
structure as a guide to information flow properties [4]. In this paper, we aim
to explain, largely by example, three aspects of information flow in distributed
systems that are governed by “what” declassification policies:

1. How to define policies bounding “what” declassification, i.e. upper bounds on
information flow, and also functionality goals expressed as lower bounds on
information flow;

2. How to represent distributed systems as directed graphs in which the nodes
are processing elements and the arcs are message channels, in which these
policies are meaningful;

3. How to ensure that these conclusions are preserved when a system is refined
using a surprisingly simple but still useful principle.

Functionality goals as lower bounds on information flow are new in this paper,
as is the simple refinement principle.

2 An Example System

We will consider a system EpiDB with very simple, but nevertheless useful,
behavior. We do not focus on the realism of EpiDB, as we will use it simply
to stimulate intuition for the information flow considerations at hand. EpiDB
is suggested by a related unpublished demonstration system written by two
colleagues.

2.1 The EpiDB idea

EpiDB serves as a database for epidemiological information. Imagine that health-
care providers deposit two kinds of records into the system. First, we have a table
of disease records, that say of a particular person that they had a particular
disease during a period of time. Second, we have a table of personal encounter
records, that say of an unordered pair of people that they had an encounter on a



90 J.D. Guttman

particular date, or that they encounter each other habitually, possibly because
they belong to the same family or school class.

EpiDB will be used by public health analysts who seek to understand the
propagation of diseases through this population. Thus, an analyst A asks a query
about a person p1, a disease d, and a time t0. If that query is permitted from A,
and p1 had the disease d at a time t1 near t0, then the system will return a set
of tuples (p2, e2, t2) such that p2 encountered p1 at time e2, and had disease d at
time t2, where e2 and t2 are near t0. For simplicity, we will choose a parameter
ε, and take “ε-near” to mean that |t′ − t| < ε. Thus, the query takes a sort of
join on the two tables, containing the disease and personal encounter records,
restricted to times near t0.

If the query is permitted from A but p1 did not have the disease d near
t0, it returns a distinctive value unsick denying the diagnosis. If the query is
impermissible from A, it returns a distinctive value imperm denying permission.
Perhaps some analysts are responsible only for certain diseases, and if they start
querying for sexually transmitted diseases instead of influenza (e.g.), they are
letting their curiosity get the better of them. Alternatively, some analysts may
be authorized to ask about some patients but not others, or some time periods.
In this example system, we will assume that permission is independent of the
contents of the database, and does not change as it operates.

If the database’s state consists of the tables of disease records with con-
tents T d and personal encounter records with contents T e, then we will write
ans(A, q, T d, T e) for the result when query q = (p1, d, t0) is received on c, where:

ans(c, q, T d, T e) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

unsick if not sick ε-near t0
imperm if not permitted
{(p2, e2, t2) : ∃t1 . (p1, d, t1) ∈ T d, (p2, d, t2) ∈ T d,

({p1, p2}, e2) ∈ T e,
and t1, t2, e2 are ε-near t0}

To simplify the statement of information flow upper and lower bounds, we
will assume one type of coordination between the analysts and the data provider.
Namely, we will assume that the data provider remains up-to-date, while the
analysts are not concerned with very recent events. Thus, we will assume that if
an analyst ever makes a query q about a time t, and a provider ever deposits a
record r concerning a related time t′ < t + 2ε, then in fact the system received
r before q. As a consequence, no query ever has a result that would have been
altered by records received subsequently. In particular, the analyst can never
detect the order of arrival of records by a sequence of queries.

2.2 Simplest EpiDB system

Thus, the simplest version of our system EpiDB takes the form shown in Fig. 1,
in which a provider PR delivers data into the database E itself, which can be
queried by an analyst A1. We assume that E starts empty, so that its contents
at any time is just what PR has delivered over channel 3.



Information Flow, Distributed Systems, and Refinement, by Example 91

Fig. 1. Schematic system EpiDB

We regard the whole graph as the system, rather than simply the node E,
partly because in subsequent steps there are additional nodes, but also because
the security and functionality goals of the system are about A1 and PR. In
particular, A1 is authorized to learn certain aspects of the behavior of PR. A1

can learn which records PR has submitted that are relevant to a permissible
query. If PR submits records that are not related to any permissible query of
A1, then EpiDB is obliged to ensure that they can have no effect on what A1

observes on channels 1, 2.
We do not need to specify the behavior of A1 and PR, since the goals should

hold regardless of their actions. Thus, we regard them as always willing to send
or receive any message on their outgoing or incoming channels.

By contrast, E has a specification. We can describe it as a state machine
where the state includes two sets of tuples, representing the tables T d, T e. An
additional state component records the not-yet-processed query (p1, d, t0) or else
⊥ if every query has already received a response. A new record rd, re may be
deposited at any moment, even between receiving a query and answering it,
so this state component remembers any as-yet unanswered query. We do, how-
ever, maintain the upper bound t of the times mentioned in all queries we have
received; we refuse to receive a new record whose time does not exceed t+2ε. We
record this maximum query time in the state component m, and we require that
when a record r is received, its time is greater than m + 2ε. We write time(q) or
time(r) for the last component of q, r, which is its time component.

We give the labeled transition relation in Fig. 2. Notice that E does not
accept a new query until it has answered the previous one, and restored ⊥ to
the first state component. Also, channel 2 carries a set of records (p2, e2, t2), or
else a symbol unsick , imperm.

2.3 The Intended Information Flow

EpiDB is intended to limit information flow from the provider PR to the analyst
A1. In particular, the access control system is intended to limit flow to infor-
mation for which A1 is authorized. The remainder of the system is intended to
maximize flow subject to authorization, and relevance to the queries A1 asks.

For definiteness, we will assume that each analyst A has been assigned:

persons(A): A set of persons of interest for A;
diseases(A): A set of diseases A is authorized to consider;
start(A): an earliest time about which to query; and
finish(A): a most recent time about which to query.



92 J.D. Guttman

Fig. 2. Labeled transition relation for E

Since A will be able to learn about disease records within ε of the time t0 in a
query, we will write Int(A) = [start(A)− ε, finish(A)+ ε] to define the the interval
of disease records A is authorized to learn about.

The analyst A who queries p, d, t will learn whether p had disease d at time
t′ near t, as long as p ∈ persons(A), d ∈ diseases(A), and t′ ∈ Int(A). Or more
precisely, A learns whether PR has registered this fact in the relevant portion of
its run. The set of permissible queries creates a region R0 of the space of disease
records that A can learn about directly.

The relevant portion of PR’s run also contains a set of encounter records
of the form ({p, p′}, e), and these records create an adjacency relation between
records rd ∈ R0 and other disease records involving p′, d, and a nearby time t′.
We will refer to the set of disease records adjacent to R0 as R1.

Essentially, the authorization mechanism entails that A should learn nothing
about what disease records and encounter records PR has submitted, except
as they help to determine R0 and R1. In particular, PR messages that provide
encounter records not connected to R0 should be invisible to A. Moreover, given
a set of encounter records, PR messages that provide disease records not in R0

or R1 are also invisible.
In particular, A’s observations as a consequence of a single query must

remain unchanged, regardless of variation in PR’s messages containing encounter
records unconnected to R0 and regardless of variation in disease records not in
R0 ∪ R1. A query imposes no ordering requirement on PR’s messages.

By submitting a sequence of queries, A can learn conjunctions of the con-
clusions returned by the individual queries. But by the timing constraints,
A cannot exclude any particular order in which the records may have arrived. In
particular, a record can have been absent from an earlier response if it is found
in a later response.

Thus, the purpose of the EpiDB system is essentially a what-declassification,
where the regions R0, R1 for each permissible query q determine what aspects of
the sensitive PR runs should be “declassified” and made available to the analyst
A asking q.



Information Flow, Distributed Systems, and Refinement, by Example 93

Later (Sect. 5) we will refine the schematic version of EpiDB from Figs. 1 and
2 into a more complex system with separate components that guide an efficient
and reliable implementation.

3 Information Flow in the Frame Model

In this section, we will summarize the key notions of [4]. Systems (or frames),
represented as directed graphs, have executions; the local portions of an execu-
tion are called local runs; and an observer who sees one local run is trying to
infer information at a source, by determining what local runs at that source are
compatible with the observations. An information flow specification, which we
call a blur, is a specific kind of closure condition on the set of compatible local
runs at the information source.

3.1 Frames and Executions

We formalize systems such as EpiDB by structures we call frames. A frame F
consists of a directed graph, the nodes (or locations) of which are processing
elements each defined by a labeled transition system, and the arcs of which
carry messages. An execution of a frame F is a partially ordered set of events,
where each event e has a channel chan(e) and a message msg(e). The events
associated with a single node n must be linearly ordered, and moreover must form
a possible trace of lts(n). However, events on two channels that are not attached
to a common node may be unordered, unless some causal sequence of events
connects them. We will use the words “node” and “location” synonymously.

Definition 1. Let LO, CH,DA,ST , EV be domains that we will call locations,
channels, data, states, and events, resp.

1. A labeled transition relation is a ternary relation �⊆ ST × EV × ST . A
labeled transition system is a pair (�, s0) of a labeled transition relation and
an “initial state” s0 ∈ ST . lts is the set of labeled transition systems.

2. When � ∈ LO, we define chans(�) = {c ∈ CH : sndr(c) = � or rcpt(c) = �}.
3. A frame is a structure F containing the domains and functions shown in

Table 1 satisfying the following properties:
(a) For all e1, e2 ∈ EV, if chan(e1) = chan(e2) and msg(e1) = msg(e2), then

for all � ∈ LO and s, s′ ∈ ST , s
e1�� s′ iff s

e2�� s′.
(b) For all s, s′ ∈ ST , e ∈ EV, and � ∈ LO, s

e�� s′ implies chan(e) ∈
chans(�).

where we let (��, initial(�)) = lts(�).

The histories of an lts (�, s0) are all finite or infinite alternating sequences
h = 〈s0, e0, s1, . . . , si, ei, si+1, . . .〉 starting with s0, such that (sj , ej , sj+1) ∈
� whenever ej is well defined. In particular, sj+1 is well defined whenever ej

is, so that h does not end with an event ej . A trace of (�, s0) is a finite or



94 J.D. Guttman

Table 1. Signature of frames

LO, CH,DA,ST , EV
sndr: CH → LO rcpt: CH → LO
chan: EV → CH msg: EV → DA
lts: LO → lts

infinite sequence of events tr = 〈e0, e1 . . .〉 such that there is a history h where
tr enumerates the events in h.

An execution is a partially ordered set of events that—when projected onto
chans(�)—always yields a trace for �.

Definition 2. A = (E,
) is an execution for a frame F , written A ∈ Exc(F),
iff E ⊆ EV and 
 is a well-founded partial ordering on E, and, for all � ∈ LO,
letting trA(�) be the set {e ∈ E : chan(e) ∈ chans(�)},
1. trA(�) is linearly ordered by 
; and
2. trA(�) ordered by 
 is a trace of lts(�).

When LO is finite, the “well-founded” condition is redundant. If A = (E,
)
is an execution, and 
′ is a partial order that is stronger than 
, i.e. 
⊆
′,
then A′ = (E,
′) is also an execution. The weakest partial order is generated
from the sequential traces of the individual locations, and extended to events at
other locations when they share an event on some channel that connects them.
However, any strengthening of this order determines another execution based on
the same set E of events.

Our notion of execution ignores what states the locations � reach after engag-
ing in the events trA(�), and thus ignores the effects of nondeterminism. A similar
theory can be developed including the resulting states, which would let us talk
about refusals as well as traces, but we will postpone that opportunity for now.

We have here a synchronous notion of communication; a message m passes
over channel c only if both endpoints can take a transition with label c,m. Thus,
the sender learns that the recipient is willing to accept m over c now. Information
flows over channels in both directions.

3.2 Local Runs and Compatibility

We can now define what an observer with access to a particular set of channels
sees, or what a source of information does. We will assume that the observer
or the source has access to a set of channels C ⊆ CH. Often C is of the form
C = chans(�) for some � ∈ LO or C =

⋃
�∈L chans(�) for some L ⊆ LO, but this

is not always the case.
A local run at C is just the result of restricting the events in some execution

to the channels C.

Definition 3. Let B = (E,R) be a partially ordered set of events, and C ⊆ CH.



Information Flow, Distributed Systems, and Refinement, by Example 95

1. The restriction B |̀ C is (B0, R0), where
B0 = {e ∈ E : chan(e) ∈ C}, and
R0 = R ∩ (B0 × B0).

2. B is a C-run of F iff for some A ∈ Exc(F), B = A |̀ C.
3. C-runs(F) = {B : B is a C-run of F}.
We write C-runs when F is understood, and, when C is understood, we speak of
local runs.

B2 extends B1, when B1 = (E1,
1) and B2 = (E2,
2) are p.o. sets, iff
E1 ⊆ E2; 
1 =
2 ∩(E1 × E1); and {e : ∃e1 ∈ E1 . e 
2 e1} ⊆ E1.

Fix some frame F . What an observer at D knows is that some B ∈ D-runs(F)
occurred, since she observed some B. She wants to consider what local runs are
still possible at some source D ⊆ CH. These are the members of D-runs(F) that
are restrictions of executions that also restrict to B.

Definition 4. Let C,D ⊆ CH and D ∈ D-runs.

1. A local run B ∈ C-runs is compatible with D iff, for some A ∈ Exc, A|̀ C = B
and A |̀ D = D.

2. JC�D(D) = {B ∈ C-runs : B is compatible with D}.
We use the letter J to indicate that these B can occur jointly with D. The
subscripts indicate that information would flow from C to D if JC�D(D) fails to
have suitable closure properties. The subscript D adjacent to the argument D
is meant to remind that D ∈ D-runs, as a kind of type-annotation; the left-most
subscript C is a reminder of the type of the local runs in the result.

3.3 Blurs to Limit Information Flow

Generally speaking, when JC�D(D) is “large” for all D ∈ D-runs, then there is
little flow from C to D. The observations at D leave open many possibilities
for what could have happened at C. We can make precise what the observer
at D cannot learn by considering closure operators on sets of local C-runs. We
think of the observer’s vision as blurred insofar as she cannot distinguish a local
C-run from other members of a closed set. Thus, the relation of coarsening on
closure operators represents the observer’s loss of resolution as information flow
decreases.

Generally speaking, a closure operator obeys three properties. Each set in
included in its closure; closure is idempotent ; and closure is monotonic with
respect to the inclusion relation. We found that information flow respects the
graph structure of frames when we strengthen the montonicity property some-
what [4]. We call operators that satisfy these strengthened conditions blur oper-
ators.

Definition 5. A function φ on sets is a blur operator iff it satisfies:

Inclusion: For all sets S, S ⊆ φ(S);
Idempotence: φ is idempotent, i.e. for all sets S, φ(φ(S)) = φ(S); and



96 J.D. Guttman

Union: φ commutes with unions: If {Sa}a∈I is a family indexed by I, then

φ(
⋃

a∈I

Sa) =
⋃

a∈I

φ(Sa).

S is φ-blurred iff φ is a blur operator and S = φ(S).

Observe that
⋃

a∈I φ(Sa) ⊆ φ(
⋃

a∈I Sa) is equivalent to monotonicity, so that the
union property is effectively monotonicity plus a converse. The union property
ensures that φ is determined by its action on singletons. Since S =

⋃
a∈S{a},

φ(S) =
⋃

a∈S φ({a}).
Blur operators form a lattice under pointwise inclusion, which provides a way

to compare the flow of information in different situations. Thus, φ allows at least
as much information flow as ψ if φ(S) ⊆ ψ(S) for every S.

The EpiDB Blur. In the case of EpiDB, we are interested in a blur φ on the
local runs at channel 3, i.e. C = {3}. Since, by the union property, we only need
to define φ({B}) for singletons of a B ∈ C-runs, we must say which local runs
B′ should be indistinguishable from B for the observer on channels 1, 2, i.e. A1.
However, Sect. 2.3 already makes clear which B′ this should be. Analyst A1 has
permissions defined in terms of persons(A1), diseases(A1), and Int(A1).

Define R0(B) to be the set of disease records (p, d, t) delivered in B such that
p ∈ persons(A1), d ∈ diseases(A1), and t ∈ Int(A1). Define R1(B) to be the set of
disease records (p1, d, t1) in B such that there is an encounter record ({p, p1}, e)
in B with t, e, t1 successively ε-near. Then

φ({B}) = {B′ : R0(B) = R0(B′) and R1(B) = R1(B′)}

We can also express this more operationally: φ(S) is closed under

1. permutations;
2. adding:

(a) records submitted elsewhere in B;
(b) encounter records not connecting R0(B) to any disease record in B;
(c) disease records rd = (p, d, t) such that

i. p �∈ persons(A1), d �∈ diseases(A1), or t �∈ Int(A1), and
ii. rd is not connected to R0(B) by an encounter record;

3. omitting records of the same kinds.

Limited Flow. The blur notion suggests a restricted information flow notion,
and moreover the latter respects the graph structure. Specifically, limiting what
information flows to a cut set in the graph guarantees the same limit applies to
observers beyond that cut set.

Definition 6. Let obs, src ⊆ CH and φ : P(src-runs) → P(src-runs).
F φ-limits src-to-obs flow iff φ is a blur operator, and, for every B ∈ obs-runs

Jsrc�obs(B) is φ-blurred.



Information Flow, Distributed Systems, and Refinement, by Example 97

This notion respects the graph structure of the frame F . First, since effectively
information can flow in either direction over a channel, we consider the undi-
rected graph ungr(F) = (V,E) where the vertices V are the locations, V = LO,
and where an undirected edge (�1, �2) exists iff, for some c ∈ CH, sndr(c) = �1
and rcpt(c) = �2 or vice versa. Now, for C0, C1, C2 ⊆ CH, let us say that C1 is
a cut between C0 and C1 iff, for every path p through ungr(F) that starts at a
c0 ∈ C0 and ends at a c2 ∈ C2, p traverses some c1 ∈ C1. Now:

Theorem 1 (Cut-Blur Principle, [4]). Let src, cut, obs ⊆ CH, where cut is
a cut between src and obs in F .

If F φ-limits src-to-cut flow, then F φ-limits src-to-obs flow.

There is also a two-frame version of the same idea. Here, F2 agrees with F1 on the
portion of the graph that lies from src to cut, and on the lts of those locations. As
long as F2 does not exercise possibilities at cut that F1 does not, then φ-limited
flow is preserved. We write CHi,LOi, C-runsi, etc. for the channels, locations,
local runs etc. of Fi.

Theorem 2 ([4]). Let src, cut ⊆ CH1 in F1.
Let F2 be a frame, with src, cut ⊆ CH2, and such that, if p is any path in

ungr(F1) starting at some c0 ∈ src and traversing no arc in cut, and p reaches
c ∈ CH1, then:

1. c ∈ CH2, sndr1(c) ∈ LO2, and rcpt1(c) ∈ LO2;
2. sndr2(c) = sndr1(c), and rcpt2(c) = rcpt1(c);
3. lts1(sndr1(c)) = lts2(sndr2(c)) and lts1(rcpt1(c)) = lts2(rcpt2(c)).

Let obs ⊆ CH2 be such that cut is a cut between src and obs in F2. If cut-runs2 ⊆
cut-runs1, and F1 φ-limits src-to-cut flow, then F2 φ-limits src-to-obs flow.

In fact, the cut-blur principle is a corollary of this; when we equate F2 = F1,
the assumptions necessarily hold.

This principle is useful for “localizing” the enforcement of φ-limiting to the
portion of the system lying between src and cut. It says that we can freely vary
the structure of the remainder of the system, just so long as we do not force cut
to engage in new local behaviors. For instance, if we consider cut = {1, 2} and
src = {3} in either Fig. 1 or 4, it says that we can freely expand the node A1

into multiple nodes and arcs, as long as cut remains a cut. The assumption that
cut-runs2 ⊆ cut-runs1 is immediate here, since we assume that A1 may attempt
any sequence of communications anyway.

4 Questions and Answers

We would now like a corresponding way to specify functionality goals, i.e. lower
bounds on information flow between a source and an observer. For instance, if
A1 is permitted to submit a query q = (p, d, t) over channel 1, then A1 really
should be able to learn from the system what the answer is, as of the time of this



98 J.D. Guttman

interaction. Thus, the system is guaranteeing that a local run over channels 1, 2
can always extend to one in which A1 submits query q and receives a symbol or
set S of records over channel 2. And this answer tells A1 whether PR has sub-
mitted a nearby disease record, and, in the stream of records PR has submitted
on channel 3, what other disease records are adjacent via encounter records.

Thus, the response is compatible with a set of local PR runs, and serves to
notify A1 that no other type of run remains possible. We will call a classification
like this a question about a set of channels such as the PR’s channel set {3}.

Definition 7. A family of sets Q is a question about a set of channels C ⊆ CH
in F iff

⋃ Q = C-runs(F).

In our example, we can regard each permitted query q = (p, d, t) as determining
a question Q about PR’s channel 3. Namely, two B,B′ ∈ {3}-runs belong to the
same X ∈ Q iff either:

– in both B and B′, p is not sick with d at t, or else
– in both p is sick, with the same sick acquaintances and the same timings.

We can regard an impermissible query as determining a question also, but it is
the trivial, singleton family {{3}-runs}. Thus, each query q determines a question
Qq about channel 3.

An observer at D may want to determine which member of this family Q
obtains. That is, the observer would like to extend the current local run so that
the system’s behavior will determine an A ∈ Q that must have been found at
C. This may require D to engage in certain events that “ask about” Q, after
which the system’s behavior will lead to the information. Naturally, the events
that pose the question must be within the power of the observer at D.

Definition 8. F answers Q for D ⊆ CH iff (i) Q is a question about C in F ,
and (ii), for every D ∈ D-runs, there is an extension D′ of D and a family R of
finite extensions of D′ such that:

1. For all A ∈ Exc, if A |̀ C = D, then there exists an extension A′ of A such
that A′ |̀ C = D′;

2. for every E ∈ R, there exists a X ∈ Q such that JC�D(E) ⊆ X; and
3. for every extension E of D′, there exists a E0 ∈ R such that either E extends

E0 or E0 extends E.

The first of these clauses ensures that the observer can always request the system
to answer Q. The second ensures that an observation in R selects some answer
to the question, although there may be more than one right answer. The second
says that the observations that determine an answer bar the tree of all extensions
of D′, so that any sufficiently long extension will have selected an answer.

Evidently, EpiDB answers the question Qq for each q. The extension D′ to
a local A1-run D consists in waiting for an answer on channel 2 to a previous,
unanswered question (if any), and then submitting q on channel 1. The family
R is then the set of local runs in which D′ is extended by a symbol or set of
records.



Information Flow, Distributed Systems, and Refinement, by Example 99

Of course, if a frame φ-blurs flow from C, then an answerable question about
C can never be more informative than a φ-blurred question:

Lemma 1. Let Q be a question about C in F . Suppose that F answers Q for
D ⊆ CH, and that F φ-limits C-to-D flow.

Then there is a Q′ such that Q is a coarsening of Q′, F answers Q′ for D,
and for every X ∈ Q′, X is φ-blurred.

Indeed, Q′ can be chosen so that a pair of D-runs that can receive the same
answer in Q can receive the same answer in Q′.

Proof. For each choice of D′ and R, collect the sets JC�D(R) for R ∈ R; let
Q′ be the resulting collection. Since F φ-limits C-to-D flow, each JC�D(R) is
φ-blurred.

To preserve “can receive the same answer,” coarsen that Q′ by taking unions:
In particular say that R,R′ ∈ R are Q-similar, which we will write R ∼Q R′,

if there is an X ∈ Q such that JC�D(R) ⊆ X and JC�D(R′) ⊆ X. Define

Q′
R = {

⋃

R′∼QR

JC�D(R′) : R ∈ R}.

The union property of blurs ensures that the resulting sets are φ-blurred.
Now let Q′ collect Q′

R from each choice of D′ and R. ��
In our EpiDB example, the questions Qq are already φ-blurred.

5 Refining EpiDB

Although the simple presentation of EpiDB in Figs. 1 and 2 makes it clear why it
will meet its information flow goals—both upper bounds and lower bounds—they
are very far from a reasonable implementation. A reasonable implementation
should have a number of different properties:

– It should be implemented via a number of virtual machines, so that its com-
ponents can be responsive under high loads;

– It should separate an index from the actual archive that stores the data, to
allow fast retrieval despite large quantities of data;

– It should separate critical services such as authorization from more vulnerable
components that must service potentially malicious connections from analysts
and providers.

All of these considerations militate for breaking the component E in Fig. 1 into
a collection of cooperating components that interact via message channels. This
decomposition fits the frame model very naturally, since the connections among
these components are easy to define statically.

Step 1: Separating Authorization. A natural thing to do first is to identify
a distinct component that uses the credentials of A1 and the query q to make an
authorization decision. For instance, these credentials could be certificates used



100 J.D. Guttman

in a bilateral TLS handshake. The authorization service can emit a cryptographic
token that will be consulted by components in later expansions. Figure 3 shows
the resulting frame graph. Now the state of AR reflects whether authorization
has been requested by the current query, and if so, the value of the resulting
token. The behavior of the system on its channels 1, 2, 3 is actually unchanged:
In particular, given a local run D on channels 1, 2, the set of compatible local
runs on channel 3, J{3}�{1,2}(D) is the same for the two systems.

Fig. 3. EpiDB with authorization service separated

Since the information flow of the system is defined solely in terms of J·�·(·),
any desired upper and lower bounds on flow are necessarily preserved.

A Refined EpiDB Architecture. After several stages of refinement, we obtain
a system of the form shown in Fig. 4. It breaks down the database into compo-
nents with specialized responsibilities:

QC is a query controller. It accepts queries from A1, passes requests to the index
controller IC, which extracts records from the archive controller AC that are
accumulated at QC. It returns the resulting sets to A1.

IC is an index controller. It maintains an association between keys pi naming
people and a list of disease record numbers for those people. It has a similar
association from people to encounter records. When given a person and a
table name, it passes a list of record numbers to AC for retrieval.

AC is an archive controller. It maintains a store of records for each table, orga-
nized by record number.

IG is an ingress controller. It maintains the maximum record number used so
far. It receives new records from the provider PR, assigns the next record
number, and sends the record and number to AC. It notifies IC of the new
association of this record number with the relevant pis.

AU is the authorization service. QC contacts AU for each new query, obtaining
a signed authorization token that accompanies QC’s messages to IC. These
tokens also appear in the system audit logs, if an audit subsystem is added.

The self-loop channels 8, 9 allow QC and AC to signal certain internal events.
The only other channel needing explanation is 6. At the beginning of processing
any query, QC uses channel 6 to request the current maximum record number
from AC, which maintains this. QC then limits all records retrieved to ones
below this maximum. Hence, even when new records are being deposited by PR



Information Flow, Distributed Systems, and Refinement, by Example 101

Fig. 4. Refined architecture for EpiDB

and IG concurrently, the query elicits consistent information reflecting the state
of the database at the time of that maximum record number. Channel 12 is used
only to propagate the maximum query time (shown as m in Fig. 2) to the ingress
controller.

Again, the functional correctness criterion for this system is just that the
same local runs should be possible on its two external interfaces, and with the
same compatibility relations J{3}�{1,2}(D).1 The practical requirement for the
system designer to meet is that the index and archive controllers IC,AC should
cooperate to maintain the database accurately, which is well understood.

The Interface-Preserving Refinement Principle. This refinement strategy
is simple and easily formalized. When F1, F2 are frames, we write J i

C�D(·) for
the compatibility function in Fi.

Theorem 3. Suppose that F1 and F2 are two frames, and C,D ⊆ CH1 ∩ CH2.
If D-runs1 = D-runs2, and for all D ∈ D-runsi, J1

C�D(D) = J2
C�D(D), then:

1. F1 φ-limits C-to-D flow iff F1 φ-limits C-to-D flow;
2. F1 answers Q for D iff F2 answers Q for D.

This follows directly from the forms of the definitions.
However, it is useful. For instance, it immediately follows that the properties

of the system are preserved in case the system serves more than one analyst. In
Fig. 5, we present an augmented system containing multiple analysts. However,
since the behaviors on the interfaces 1, 2 and 3 are unaffected, Theorem 3 imme-
diately entails that the augmented system continues to meet its goals for A1. By
symmetry, it meets the same goals for the other Ai.

As another example, the system we have described has no audit mechanism
built in. However, having designed the system and established its information
flow properties, we can add nodes and channels to perform audit without chang-
ing the local runs and compatibility functions for the interfaces 1, 2 and 3. This
provides a clear argument for orthogonality of design that has sometimes eluded
secure systems methodology.

1 By an interface, we just mean a set of channels, often but not necessarily near each
other in the graph.



102 J.D. Guttman

Fig. 5. EpiDB augmented with multiple analysts. Channels 8, 9 omitted as clutter

6 Conclusion

We have discussed the frame model, and illustrated how to use it to establish
what-declassification policies, or information flow upper bounds. The same ideas
lead to a natural approach for showing lower bounds, i.e. that a system really
answers questions which may be posed on one of these interfaces.

However, the frame model gives an abstraction of a possible system: How
can one determine that an actual system displays the structure and behavior of
a given frame as designed? In particular, two central items are needed. First,
the active components of the actual system should correlate with the nodes of
the frame. The behaviors of each component should conform to the lts of the
correlated node. Second, the message-passing activity of the system should occur
along channels identified in the frame. There should be no other interactions,
whether between components of the system or between components and the
external world.

Similarly, to build a real system using a frame as specification, one needs, first,
a way to build local programs that conform to an lts specification, and various
familiar ideas such as reactive programming and event-handling libraries appear
helpful. In any case, the programming here is purely sequential and independent
of any shared state interactions.

How then to establish, second, that the components interact with each other,
and only with each other, as specified in the graph? This requires cryptographic
support, both for secrecy to ensure that messages between components canot
leak to the external world, and for authenticity to ensure that a component
cannot receive a message off a channel unless its peer transmitted onto the
channel. A protocol is needed also to ensure that message passing approximates
the synchronous semantics the model uses.

Indeed, there is an additional role for cryptography, which is to provide attes-
tation, i.e. digitally signed evidence that a node is genuine and under the con-
trol of the expected code. The Trusted Platform Modules were intended as an
anchor for this sort of evidence, and user-level trusted execution environments
(TEEs) such as Intel’s Software Guard Extensions provide a simpler framework
for achieving attestations [5]. TEEs provide symmetric cryptographic support to



Information Flow, Distributed Systems, and Refinement, by Example 103

protect a thread and local memory, encrypting pages as they leave the proces-
sor’s cache. Moreover, the processor provides digital signatures that attest to
the code in control of the TEE. These attestations allow components to validate
one another, to ensure that they are affiliated in the pattern stipulated in their
model. The attestations also allow an external party to decide to believe this
also, before making a decision as to whether to deliver data into the system, or
accept it from the system. Thus, in addition to hardware support, we need to
be able to use cryptographic protocols in the right way; another area in which
A.W. Roscoe has also made his contributions.

Acknowledgments. I am grateful to Paul D. Rowe and John D. Ramsdell, with
whom I discussed many of these ideas. In particular, John Ramsdell worked out the
successive frame versions summarized in the figures.

References

1. Focardi, R., Gorrieri, R.: The compositional security checker: a tool for the ver-
ification of information flow security properties. IEEE Trans. Softw. Eng. 23(9),
550–571 (1997)

2. Focardi, R., Gorrieri, R.: Classification of security properties. In: Focardi, R., Gor-
rieri, R. (eds.) FOSAD 2000. LNCS, vol. 2171, pp. 331–396. Springer, Heidelberg
(2001). doi:10.1007/3-540-45608-2 6

3. Goguen, J.A., Meseguer, J.: Security policies and security models. In: IEEE Sym-
posium on Security and Privacy (1982)

4. Guttman, J.D., Rowe, P.D.: A cut principle for information flow. In: IEEE Com-
puter Security Foundations. IEEE Computer Society Press, July 2015

5. Intel: Intel Software Guard Extensions (Intel SGX) (2016). https://software.intel.
com/en-us/sgx

6. Jacob, J.: Security specifications. In: IEEE Symposium on Security and Privacy,
pp. 14–23. IEEE Computer Society (1988)

7. Morgan, C.: The Shadow Knows: refinement of ignorance in sequential pro-
grams. In: Uustalu, T. (ed.) MPC 2006. LNCS, vol. 4014, pp. 359–378. Springer,
Heidelberg (2006). doi:10.1007/11783596 21

8. Roscoe, A.W.: CSP and determinism in security modelling. In: IEEE Security and
Privacy, pp. 114–127. IEEE (1995)

9. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice-Hall, Upper
Saddle River (1997)

10. Roscoe, A.W., Goldsmith, M.H.: What is intransitive noninterference? In: 12th
IEEE Computer Security Foundations Workshop, pp. 228–238. IEEE CS Press,
June 1999

11. Roscoe, A.W., Woodcock, J.C.P., Wulf, L.: Non-interference through determinism.
J. Comput. Secur. 4, 27–53 (1996)

12. Rushby, J.: Noninterference, transitivity, and channel-control security policies. SRI
International, Computer Science Laboratory (1992)

13. Ryan, P.Y.A.: A CSP formulation of noninterference and unwinding. IEEE CSFW
3, 19–30 (1990)

14. Sabelfeld, A., Sands, D.: Declassification: dimensions and principles. J. Comput.
Secur. 17(5), 517–548 (2009)

15. Sutherland, D.: A model of information. In: 9th National Computer Security Con-
ference. National Institute of Standards and Technology (1986)

http://dx.doi.org/10.1007/3-540-45608-2_6
https://software.intel.com/en-us/sgx
https://software.intel.com/en-us/sgx
http://dx.doi.org/10.1007/11783596_21


Abstractions for Transition Systems
with Applications to Stubborn Sets

Henri Hansen(B)

Department of Mathematics, Tampere University of Technology, Tampere, Finland
henri.hansen@tut.fi

Abstract. Partial order reduction covers a range of techniques based
on eliminating unnecessary transitions when generating a state space.
On the other hand, abstractions replace sets of states of a system with
abstract representatives in order to create a smaller state space. This
article explores how stubborn sets and abstraction can be combined. We
provide examples to provide intuition and expand on some recent results.
We provide a classification of abstractions and give some novel results
on what is needed to combine abstraction and partial order reduction in
a sound way.

1 Introduction

The term partial order reduction refers to methods that combat state explosion
by eliminating unnecessary transitions. This article focuses on stubborn sets [20].
The theory as presented here, mostly applies to also ample [17] and persistent [9]
sets. We use the term “stubborn set method” or “partial order reduction” to
mean any method that attempts to reduce the size of a state space by exploring
some subset of enabled transitions in each state of a state.

The term abstraction [3] refers to methods that eliminate some features of a
system, by mapping the states of a to a smaller set. The goal of abstraction is to
preserve counterexamples to specifications while bringing down the complexity
of model checking. Abstractions can be thought of as equivalence relations over
states and an abstract state space is generated by expanding the relevant transi-
tions that are enabled in the equivalence class. In this sense abstraction includes
also methods such as symmetry [5]. Abstractions have been combined with par-
tial order reduction methods both in the early literature and more recently.
Significant synergistic benefits between abstraction and reduction was gained
with a relaxed zone abstraction of timed automata [11]. In [1], partial order
reduction was combined with an abstraction that replaces bisimilar states with
a common representative. We discuss the result in this article.

We take the view in this article that transitions of systems are inherently
deterministic, i.e., each transition has a unique outcome. We use the term firing
for the execution of a single transition. Abstraction may then result in nonde-
terminism, because an abstraction may not distinguish between two states from
which a given transition is fired, while still differentiating between the states
that result when the transition is fired.
c© Springer International Publishing AG 2017
T. Gibson-Robinson et al. (Eds.): Roscoe Festschrift, LNCS 10160, pp. 104–123, 2017.
DOI: 10.1007/978-3-319-51046-0 6



Abstractions for Transition Systems with Applications to Stubborn Sets 105

The interpretation of the transitions from a semantic standpoint is done
by associating transitions with actions. Several transitions may be associated
with she same action, and this gives rise to the concept of operational (non)
determinism, which refers to whether the external behavior of the system is
deterministic. The relationship between operational determinism and abstraction
is a complicated one, and we provide some insights on the issue in this article.

This article is organized so that we first explore a general theory of tran-
sition systems in Sect. 2, which gives the ground theory and semantic models,
and also some results regarding determinism. Section 3 defines abstractions and
abstract state spaces, and we prove that general abstractions behave monoto-
nously only with linear time semantic models that are not significantly stronger
than traces and divergence traces. Then, a state-of-the art version of stubborn
sets for preservation of safety properties and some divergence properties are
given in Sect. 4. We also discuss some static relations of transitions that can be
used for the computation of stubborn sets.

Section 5 provides results about how stubborn sets can be combined with
abstraction. We provide a few theorems for certain classes of abstractions, to
show how relations for computing the stubborn sets generalize for the abstract
state spaces. We also provide some examples that show that the results do not
apply for abstractions in general.

The last section provides some concluding remarks and outlines future work.

2 Theoretical Preliminaries

We consider a system where transitions operate on a collection of n variables
with domains X1, . . . , Xn. The domains will in most cases be numerable, but this
need not be the case in general. For example, in the case of timed automata,
clocks can assume non-negative real values. We denote the set of syntactically
possible states by X = X1 × · · · × Xn.

A transition is a pair (g, e), where g : X → {true, false} is called a guard and
e : X → X is called an effect. The set of transitions of the system is denoted
with T .

The initial value of a system is denoted x̂ ∈ X. We call the tuple (X, T , x̂) a
system description, or simply a system.

The execution semantics of a system are defined over labeled transition sys-
tems (LTS s).

Definition 1 (LTS-unfolding). An LTS is a 4-tuple (S, T ,Δ, ŝ), where S is
a set of states, Δ ⊆ S × T × S is a set of semantic transitions, and ŝ ∈ S is
the initial state.

Given a system M = (X, T , x̂), the LTS-unfolding of the system M is given
as L = (S, T ,Δ, ŝ) where

– ŝ = x̂.
– Δ and S are defined as the minimal sets such that



106 H. Hansen

1. x̂ ∈ S, and
2. whenever (g, e) = t and t ∈ T , x ∈ S and g(x) = true, then e(x) ∈ S and

(x, t, e(x)) ∈ Δ.

We refer to the LTS-unfolding of the system as the concrete state space of M .

Given an LTS, we define the following notation for convenience. We write
s

t−→ s′, when (s, t, s′) ∈ Δ. s
t−→ means that ∃s′ : s

t−→ s′. s � t−→ means that
s

t−→ does not hold. For a sequence t1t2 · · · tn ∈ T ∗, s
t1···tn−−−−→ s′ means that

∃s0, . . . , sn such that s = s0 ∧ s′ = sn and, for 0 < i ≤ n, si−1
ti−→ si. When

we write s0
t1···tn−−−−→ sn, we let si for 0 < i ≤ n, denote the state such that

s0
t1···ti−−−→ si. The set en(s) = {t ∈ T |s t−→} refers to transitions enabled at s and

dis(s) = T \en(s) refers to actions disabled at s.
Because an effect of a transition is a function, a concrete state space is always

deterministic, i.e., if s
t−→ s′ and s

t−→ s′′, then s′ = s′′.
The properties of the system are determined as behaviours interpreted over

a set of symbols Σ, called actions or events. We assume that a mapping l :
T → Σ ∪ {ε} is given and fixed, and extended to Σ∗ in the usual manner by
concatenating, i.e., for l(t1 · · · tn) = l(t1)l(t2) · · · l(tn), and ε denotes the empty
string. We write s

σ=⇒ s′ when there are transitions t1, . . . , tn such that s
t1···tn−−−−→ s′

l(t1 · · · tn) = σ.
In keeping with tradition, when there is some t ∈ T such that l(t) = a and

s
t−→ s′, we also write s

a−→ s′, except when a = ε, when we write s
τ−→ s′. We

refer to such transitions as τ -transitions or invisible transitions. We write σ ≤ ρ
if σ is a prefix of ρ and σ < ρ if it is a proper prefix.

A semantic model is an equivalence or pre-order relation for systems or LTSs.
For the purpose of this article, we consider semantics over LTSs. Two systems
are considered equivalent if and only if their concrete state spaces are equivalent.

There are several semantic models which can be considered, we shall con-
sider only a few most relevant. Note that we restrict this study to linear time
properties. The sets of traces, divergence traces, failures, and stable failures of
an LTS are defined as:

Tr(L)= {σ ∈ Σ∗ | ŝ
σ=⇒}

Divtr(L) = {σ ∈ Σ∗ | ∃s : ŝ
σ=⇒ s ∧ s

τω

−−→}
Mindiv(L)= {σ ∈ Divtr(L) | ∀ρ < σ : ρ /∈ Divtr(L)}
Fail(L)= {(σ, F ) ∈ Σ∗ × 2Σ | ∃s : ŝ

σ=⇒ s ∧ ∀a ∈ F : ¬(s a=⇒)}
Sfail(L)= {(σ, F ) ∈ Σ∗ × 2Σ | ∃s : ŝ

σ=⇒ s ∧ ∀a ∈ F ∪ {τ} : ¬(s a−→)}
CSP(L)= Sfail(L) ∪ {(σ,X) | ∃ρ : ρ ≤ σ ∧ ρ ∈ Divtr(L) ∧ X ∈ 2Σ}
The CSP-set is known as the failures-divergences-model, which is named like
this as it is commonly associated with the process-algebra CSP [18]. It preserves
Sfail up to minimal divergence traces, and all divergence traces are extended with
maximal behaviour in terms of Sfail. It is also worth to mention the so called
CFFD-equivalence [24], which preserves infinite traces, Sfail, and Divtr. It also



Abstractions for Transition Systems with Applications to Stubborn Sets 107

preserves, under suitable interpretation, all linear temporal logic properties of a
system. A comprehensive survey of different semantic models and epistemological
considerations behind them can be found in [26].

Let L1 and L2 be LTSs. We write L1 �Tr L2 if and only if Tr(L1) ⊆ (L2).
For the other semantic sets L1 �X L2 is defined analogously. We also write
L1 �X,Y L2 to mean L1 �X L2 ∧ L1 �Y L2 If L1 �X L2 and L2 �X L1, we say
that L1 and L2 are X-equivalent, and write L1 ≡X L2. We also write M1 �X M2

if and only L1 �X L2, where L1 and L2 are concrete state spaces of M1 and
M2. We abuse the notation slightly by writing Tr(s) = {σ | s

σ=⇒} and s �X s′

for states analogously.
We distinguish between determinism of the transition system, and operational

determinism, i.e. determinism from the point of view of the actions it performs.
Operational determinism, also known as determinacy [12,16] is defined as fol-
lows.

Definition 2. An LTS L = (S, T ,Δ, ŝ) is operationally deterministic if and
only if for all traces σ, if ŝ

σ=⇒ s1 and ŝ
σ=⇒ s2, then

1. For each a ∈ Σ, s1
a=⇒ if and only if s2

a=⇒, and
2. s1

τω

−−→ if and only if s2
τω

−−→.

Except for the treatment of divergences, all the semantic equivalences between
trace + divergence trace equivalence and divergence sensitive branching bisimu-
lation collapse into one equivalence for operationally deterministic LTSs [6,12].

The following theorem is evident.

Theorem 1. For every LTS L, there exists an operationally deterministic LD

such that L ≡Tr,Divtr LD.

For trace equivalence the theorem is well-known, and for finite LTSs a simple
variant of the block-splitting algorithm produces exactly the equivalent LTS. For
divergence traces, it is sufficient to store a local τ -loop in diverging states.

We provide a significant strengthening of [12, Corollary 1]. The following
lemma applies in the absence of divergences.

Lemma 1. Assume there are no divergences and L1 ≡Fail L2. Then L1 is oper-
ationally deterministic if and only if L2 is.

Proof. Let ŝ1
σ=⇒ s1 in L1. Now, there must be a state s2 of L2 such that ŝ2

σ=⇒ s2,
due to trace equivalence, which is implied by Fail-equivalence. Assume that L1

is operationally deterministic and denote by F1 = {a ∈ Σ | ¬(s1
a=⇒)} and

F2 = {a ∈ Σ | ¬(s2
a=⇒)}. Firstly, assume a /∈ F1. If ¬(s2

a=⇒), F2 �= F1, which
contradicts Fail-equivalence. Secondly, assume a ∈ F1. Then σa is not a trace of
L1 because L1 is operationally deterministic, so that a ∈ F2 must also hold. This
implies F2 must be the same for every such state and hence L2 is operationally
deterministic. ��
Theorem 2. Let L1 ≡Divtr,Sfail L2. Then L1 is operationally deterministic if and
only if L2 is.



108 H. Hansen

Proof. Assume L1 is operationally deterministic. Let ŝ1
σ=⇒ s1 in L1 and ŝ2

σ=⇒
s2 in L2. If s1 is not diverging, s2 cannot be diverging either due to Divtr-
equivalence. Lemma 1 guarantees then that s1 and s2 must agree on failures.

If s1 is diverging, then σ ∈ Divtr(L1), and (σ,X) /∈ Sfail(L1) for any X. Thus
s2 must also be diverging, or there would be (σ,X) ∈ Sfail(L2) for some X,
which would contradict equivalence. ��
Theorem 2 is strong enough for the purpose of this article, but we conjecture
that a stronger theorem would hold. In process-algebra terms, with a reasonable
set of operators, if ≡P is a “reasonable” congruence and L1 ≡P L2 for any
nondeterministic L1 and L2, then P is not stronger than Tr,Divtr. We leave the
exact formulation of “reasonable” and research of the theory for future research.

τ

(a) Operationally deterministic

τ
τ

(b) Operationally nondeterministic

Fig. 1. Two CSP-equivalent processes

The failures/divergences theory associated with CSP considers divergence as
chaos, or maximally nondeterministic behaviour. Neither Theorem1 nor 2 holds
for CSP-equivalence, the counterexample to the latter is shown in Fig. 1. An oper-
ationally deterministic LTS may be CSP-equivalent with a nondeterministic one.
It should be noted, however, that the interpretation of operational determinism
we use is different from the one usually associated with CSP, as it is customary
to assume that diverging processes are not deterministic in the context of CSP.

A system is specified in terms of some semantic model P by giving a set L, or,
alternatively, an LTS that has the requires semantics. We say that the system
M satisfies the specification if P (L) ⊆ L where L is the concrete state space
of M . If M does not satisfy the specification, then there exists some behaviour
that is not in L. For example, if we specify in terms of traces, then ŝ

σ=⇒ such
that σ /∈ L. The execution ŝ

t1···tn−−−−→ s such that l(t1 · · · tn) = σ is called a
(concrete) counterexample. Similarly, a counterexample with respect to Divtr or
Sfail is execution of L that diverges or has a stable failure not specified by L.

3 Abstraction

Definition 3. Let M = (X, T , x̂) be a system and X ′ be any set. An abstraction
of the system α is a mapping α : X → X ′, and an abstract unfolding or α-
unfolding of M is the LTS Lα = (Sα, T ,Δα, ŝα), which is the minimal LTS
satisfying

1. Sα ⊆ X ′.
2. ŝα = α(x̂) ∈ Sα.



Abstractions for Transition Systems with Applications to Stubborn Sets 109

3. (x1, t, x2) ∈ Δα only if x1 ∈ Sα, and ∃x, y ∈ X : α(x) = x1 and g(x) = true,
y = e(x) and α(y) = x2.

4. If x1 ∈ Sα, ∃x, y ∈ X : α(x) = x1 and g(x) = true, y = e(x) and α(y) = x2,
and x2 �= x1 or l(t) ∈ Σ, then (x1, t, x2) ∈ Δα.

We refer to the α-unfolding as an abstract state space. Please note that as per
the definition, Lα is not required to preserve such τ -transitions of L that firing
the transition results in the same abstract state, though it is allowed to do so.

We use otherwise the same notation for abstract state spaces, but to avoid
confusion we write t−→α and a=⇒α for transitions and executions. An abstract
unfolding gives rise to a different semantic sets than the concrete unfolding. For
example, if L is a specification in terms of traces and given an abstraction α, an
abstract counterexample is an execution ŝα t1···tn−−−−→α such that l(t1 · · · tn) /∈ L.

If α is the identity mapping on X, then Lα is simply the unfolding of the
system. Each α with range X ′ induces an equivalence relation for the states of
the concrete state space, such that s, s′ ∈ S are equivalent if α(s) = α(s′). We
denote by Xα = {[s]α | s ∈ S} where [s]α = {x ∈ X : α(x) = α(s)}. We mostly
use this notation and write [s]α for the states of Lα.

If α1 and α2 are abstractions, we write α1 ≺ α2 iff for every s ∈ X we have
[s]α1 ⊆ [s]α2 . We say in such a case that α1 is a refinement of α2, and α2 is
said to be coarser than α1. The identity mapping on X is a refinement of every
abstraction, and a mapping that maps the whole of X into a single element set
is the coarsest possible abstraction.

It is possible that the abstract unfolding is nondeterministic: if there are two
states u, v such that α(u) = α(v), and (u, t, w1) and (v, t, w2) are two (concrete)
transitions, it may still be that α(w1) �= α(w2). To complicate matters further,
it may be that α1 ≺ α2 such that Lα1 is nondeterministic and Lα2 is determin-
istic. Consider Fig. 2. The fist LTS is a concrete state space, and we have two
abstractions, α1 ≺ α2. Lα1 is nondeterministic, while Lα2 is deterministic.

t1 t2

u

v

u

w

(a) L

t1, t2

u

v

u

w

(b) Lα1

t1, t2

v
w

u

(b) Lα2

Fig. 2. Determinism may be both destroyed and introduced

We give here some properties of abstractions that can be used firstly, to
overcome the limitation imposed by Theorem3, and secondly, to deduce some
important properties later when we combine abstractions with reductions.



110 H. Hansen

Definition 4. Let M = (X, T , x̂), where X = X1 × · · · ×Xn. Let A be a collec-
tion of abstractions for M We say that A
– respects divergences if and only if for every α ∈ A, [s]α

τ−→α [s]α implies that

there is some s′ ∈ [s]α such that s′ τω

−−→,
– preserves divergences if and only if for every α ∈ A if there are s0, . . . , sn−1 ∈

[s]α and s0
τ−→ s1

τ−→ · · · τ−→ sn−1
τ−→ s0, then [s]α

τ−→α [s]α,
– is monotonous with respect to the semantic model P if and only if for every

α1, α2 ∈ A, if α1 ≺ α2, then Lα1 �P Lα2 ,
– preserves the semantic model P if and only if for every α ∈ A, s ∈ S

α(s) ≡P s,
– respects the semantic model P if and only if for every α ∈ A, s1, s2 ∈ S,

s1 �P α(s1).
– is a collection of 1-simulations if and only if for every α ∈ A, s1, s2, s3 ∈ S,

and t ∈ T , if s1
t−→ s2, α(s1) = α(s3) and s3

t−→, then there exists s4 ∈ S such
that s3

t−→ s4 and α(s3) = α(s4),
– preserves (operational) determinism if and only if for every α1, α2 ∈ A such

that α1 ≺ α2, Lα2 is (operationally) deterministic if Lα1 is (operationally)
deterministic,

– respects enabling if and only if, for every α ∈ A, if [s]α = [s′]α, then en(s) =
en(s′),

– A respects stability if and only if, for every α ∈ A, if [s]α = [s′]α, then either
(1) neither s, s′ or [s]α is stable, or (2) there exist stable states s1, s

′
1 ∈ [s]α

such that s
ε=⇒ s1, s′ ε=⇒ s′

1 and en(s1) = en(s′
1) = en([s]α),

– separable if and only if, for every α ∈ A where α : X → X ′, X ′ = X ′
1×· · · X ′

n,
and there exists α1, . . . αn, αi : Xi → X ′

i for i = 1, . . . , n, such that for
x = (x1, . . . , xn) ∈ X, α(x) = (α1(x1), . . . , αn(xn)).

From these definitions, the following proposition is self-evident.

Proposition 1. An arbitrary collection of abstractions is monotonous with
respect to Tr. If it preserves divergences, it is also monotonous with respect to
Divtr.

As a corollary, every concrete counterexample to Tr or Divtr specification has a
corresponding abstract counterexample regardless of abstraction. Proposition 1
is the main reason why we adopt the trace model as our canonical model, as
other semantic models are less robust with respect to abstraction.

Theorem 3. Assume P is a semantic model that preserves Fail. There exists
a family of abstractions A such that A preserves divergences, and there are
α1, α2 ∈ A, α1 ≺ α2 and some L such that Lα1 ��P Lα1 .

Proof. Theorem 2 and the example in Fig. 2 prove this. ��
Theorem 3 together with Theorem 2 mean that except for Tr and Divtr, abstrac-
tion in general is not guaranteed to preserve counterexamples.



Abstractions for Transition Systems with Applications to Stubborn Sets 111

Proposition 2. If A is a collection of 1-simulations that preserves and respects
divergences and respects stability, then A preserves operational determinism.

Proof. Assume L is operationally deterministic. Then there exists a D-relation
as described in [12, Definition 8] on the states of L. Denote this D-relation with
∼. It is simple to show that if α is a 1-simulation that preserves and respects
divergences and stability, then α(s1) = α(s2) implies s1 ∼ s2. ��
Theorem 4. Assume A respects stability and preserves divergences. Then A is
monotonous with respect to CSP.

Proof. Let α, β ∈ A and A respects stability, and α ≺ β. Let (σ,A) ∈ Sfail(Lα).
Then there is a stable state [s]α such that [ŝ]α

σ=⇒α [s]α, and A ∩ en(s) = ∅.
Then [ŝ]β

σ=⇒ [s]β holds, and either [s]β is diverging or it is stable and en([s]β) =
en([s]α), so that (σ,A) ∈ Sfail(Lβ) ��
Example 1. Consider the mapping h(s) which returns a representative of s in the
equivalence class under a strong bisimulation relation. The quotient Lh where
Sh = {h(s) | s ∈ S} and Δh is Δ restricted to Sh. Lh is strongly bisimilar to L.
When A consists of strong bisimulations the abstractions preserve virtually all
reasonable semantic models. Such abstractions were used in [1].

Example 2. In Predicate abstraction, a set of predicates over states is defined,
and an abstract state consists of the set of states which agree on the truth
value of all predicates. Predicate abstraction is used for example in the so-called
CEGAR approach [2]. Predicate abstraction is not separable or monotonous in
general, nor does it respect enabling or stability.

The abstractions described in [2], however, do result in A that respects
enabledness, because the coarsest abstraction h has the property that for every
guard g, h(s) = h(s′) if and only if g(s) = g(s′).

Example 3. Data abstraction or value abstraction is a general term for abstrac-
tions that replace the set of values of a variable with a smaller set. Data abstrac-
tions are easily expanded into separable sets of abstractions, where each variable
is abstracted separately.

4 Stubborn Set Reductions

4.1 State-of-the Art for Finite Traces

In this section we start with definition of stubborn sets that is as such applicable
to any LTSs.

Definition 5 (Reduced LTS). Given an LTS (S, T ,Δ, ŝ), a function T :
S �→ 2T is a reduction function. We define the reduced LTS of L by T , as LT =
(ST , T ,ΔT , ŝ), where ST and ΔT are minimal subsets of S and Δ, respectively,
that satisfy the following conditions:



112 H. Hansen

– ŝ ∈ ST , and
– if s ∈ ST , s

t−→ s′ and t ∈ T (s), then s′ ∈ ST and (s, t, s′) ∈ ΔT .

By definition, a reduced LTS is a sub-LTS of the original LTS. For the remain-
der of this section we shall refer to LT an L as the reduced and full LTSs,
respectively. The properties preserved in the reduction depend on the properties
of the reduction function. The term stubborn set in this article is a collective
term for the sets produced by reduction functions. We describe the stubborn set
reduction functions by giving various conditions.

Such conditions can be given towards one of two goals. The first goal, adopted
in most of the literature on partial order reduction, is to provide a set of condi-
tions sufficient for preserving the semantics of the system in the fullest. In the
case of traces, this would mean that the reduced LTS should be trace-equivalent
to the original. That is, the reduced LTS should satisfy Tr(L) = Tr(LT ). We will
explore such conditions in what follows, but they will be of secondary impor-
tance.

The second goal, one which we shall be primarily aiming for, is the preser-
vation of the existence of a counterexample. For example, with traces, given
a specification L, the reduction should satisfy Tr(L) ∩ L �= ∅ if and only if
Tr(LT ) ∩ L �= ∅.

We introduce the conditions incrementally to make them more understand-
able. The first two (or their equivalents in the case for abstract state spaces) are
common to all versions. We also give a third condition, which is more restrictive,
but it is used in practical analysis. Every condition is given for a state s.

D1. For every t ∈ T (s) and t1, . . . , tk /∈ T (s), if s
t1···tkt−−−−→ s′, then s

tt1···tk−−−−→ s′.
N. There exists t ∈ T (s) such that for every t1, . . . , tk /∈ T (s), if s

t1···tk−−−−→ and
s

t−→ s′, then s′ t1···tk−−−−→. Such a transition is called a neutral transition.
D2. For every t ∈ T (s) and every t1, . . . , tk /∈ T (s), if s

t−→, then s′ t1···tkt−−−−→.

The classical stubborn sets are defined using D1 and D2; D1 and D2 clearly
imply N. We give our theoretical treatment for N as it theoretically has the
potential to overcome the optimality result of [22]. The conditions above are
not sufficient for preservation of properties such as traces. This stems from two
issues. The first one is that they allow the reduction to ignore permutations of
transitions in such a way that the order of symbols in the trace is not preserved.

The trace-preserving version requires the concept of visible transition. A tran-
sition t is visible if and only if l(t) �= ε, i.e., if its occurrence in an execution has
an effect on the trace.

V. If there is some visible transition t ∈ T (s) such that t ∈ en(s), then T (s)
contains all visible transitions, including the disabled ones.

But for preserving counterexamples, we do not need to be quite as strict.
Assume ŝ

σ=⇒ s and σρ /∈ L. Let u1, . . . , un ∈ T such that ρ = l(u1 · · · un). We
define the following conditions:



Abstractions for Transition Systems with Applications to Stubborn Sets 113

Va. If ui ∈ T (s) for some i and uj /∈ T (s) for 1 ≤ j < i, then for some prefix of
ρ′ ≤ l(uiu1 · · · ui−1ui+1 · · · un), σρ′ /∈ L.

Vb. If ui /∈ T (s) for each i, then there is a neutral transition t ∈ T (s) such that
for some prefix ρ′ ≤ l(tu1 · · · · · · un), σρ′ /∈ L.

Verbally, the condition Va states that if we take a transition that is a part
of a counterexample, then commuting the said transition to the front of the
execution will also result in a counterexample. Vb states that if we explore a
neutral transition and ignore transitions remaining of a counterexample, we can
still continue and find a counterexample. Note that V trivially implies Va by
forcing all visible transitions in the stubborn set and Vb is implied when the
stubborn set contains only τ -transitions.

We still need to solve the so-called ignoring problem, where neutral transi-
tions are taken indefinitely. Such a scenario is possible if the system contains,
for example, a cycle consisting of neutral transitions. To ensure progress, the
literature suggests rather crude rules such as those requiring that the stubborn
set contains all transitions if a cycle is closed. We forgo such rules for a more
nuanced approach.

We need to define the set of interesting transitions at a state s. If we set
out to preserve all traces, the set of interesting transitions will be the set of
visible transitions in every state. When we set out to preserve only the existence
of counterexamples, we can choose the set of interesting transitions in several
ways, as long as it has the property that all possible ways of completing a
counterexample will contain at least one interesting transition.

We say that a set U of transitions is interesting at state s for every relevant
execution ŝ

σ=⇒T s
t1···tn−−−−→ there is some 1 ≤ i ≤ n such that ti ∈ U . Note

that “relevant execution” may mean one of several things. If the reduction must
preserve all traces, then U = {t | l(t) ∈ Σ}, the set of visible transitions must be
interesting. If it must preserve counterexamples of some type, then the set must
guarantee that every counterexample that visits s, requires the firing of at least
one interesting transition at s.

We say that a set W ⊆ T is closed under enabling at state s, if for every
t ∈ W , s

t1···tnt−−−−→ implies that either s
t−→ or ti ∈ W for some 1 ≤ i ≤ n.

S. There exists a set W that is closed under enabling at s and contains all
interesting transitions, and for every u ∈ W ∩ en(s) there exists a sequence
s

t1···tn−−−−→ s′ of neutral transitions such that u ∈ T (s′).

The proof of the following theorem was given in [13].

Theorem 5. Let L be a trace specification. If T is a reduction function that
satisfies conditions D1, N, Va, Vb, and S. Then LT has a trace σ /∈ L if and
only if L some trace ρ /∈ L.

Proof. If LT has an illegal trace, then L trivially has an illegal trace, because
all traces of LT are traces of L. The other direction is by induction on the
unexplored part of an illegal trace. Let s be a state of LT . The situation where



114 H. Hansen

ŝ
σ=⇒T s and σ /∈ L is the trivial base case. Let σρ /∈ L be some trace of LT

and let ŝ
σ=⇒T s be such that s

ρ
=⇒. Let u1, . . . , un ∈ T be transitions such that

s
u1···un−−−−→ and l(u1 · · · un) = ρ.
Firstly, assume ui ∈ T (s) for some 1 ≤ i ≤ n, and without loss of generality,

assume i is chosen as the minimal such i. Let si be such that s
u1···ui−−−−→ si and Now,

D1 guarantees that ui must be enabled and that s
uiu1···ui−1−−−−−−−→ si. Then s

ui−→T s′

holds for some state. Va then guarantees that some prefix of s′ u1···ui−1ui+1···un−−−−−−−−−−−−→
completes the illegal trace, and we have an inductive step.

Secondly, assume that ti /∈ T (s) for every 1 ≤ i ≤ n. Then N guarantees
there is a neutral transition t ∈ T such that s

t−→T s′ and s′ u1···un−−−−→. Vb then
guarantees that some prefix of l(tu1 · · · un) will complete the illegal trace, so
that σl(t)ρ′ /∈ L, where ρ′ is some prefix of ρ. If the prefix is shorter than ρ, this
constitutes an inductive step.

If ρ = ρ′, we need to employ S. Note that because s
u1···un−−−−→ completes an

illegal trace, it is guaranteed that ui is interesting in s for some 1 ≤ i ≤ n.
Let uk be interesting. Let W be the set stipulated by S that is closed under
enabling. Because it W is closed under enabling, then some ui ∈ W such that
ui is enabled at s and i < k. Then there exists s0

t1−→T s1
t2−→T · · · tm−−→T sm

of neutral transitions such that s0 = s and ui ∈ T (sm). N guarantees that in
each of these states sl, as long as uj /∈ T (sl) for 1 ≤ j ≤ n, sl+1

u1···un−−−−→ holds,
and Vb guarantees some prefix u1 · · · un of completes the illegal trace from sl+1.
If uj ∈ T (sl) for some 1 ≤ j ≤ n and 1 ≤ l < m, the first inductive case
materializes. At the latest in sm this happens, because ui ∈ T (sm). ��

4.2 Stable Failures, Divergences, and Branching Time

The condition S, Va and Vb are sufficient for finite counterexamples, but not in
general for infinite traces; we cannot just extend Va to infinite traces. Consider
the language over Σ = {a, b} that contains all infinite traces such that either a
or b (but not both) can appear infinitely many times. Counterexamples consist
of infinite sequences where both a and b appear infinitely many times. Consider
Fig. 3(a). We label the transitions directly with elements of Σ. Va and Vb
are satisfied by exploring only a in the initial state, because if ρ is an infinite
counterexample of any kind, then aρ is also. This holds no matter how many finite
steps we have taken, both a and b are needed to complete counterexamples, i.e.,
every counterexample contains at least an a-transition, so that {a} is interesting
and it is immediately chosen as the stubborn set. It is also neutral with respect
to b. V would be sufficient with S to preserve traces, and this implies for finite
systems that infinite traces are preserved.

Consider then Fig. 3(b) and the requirement that Divtr ⊆ {ε}. Counterexam-
ples to this include any divergences after any visible transitions. In the initial
state {τ1, τ2} is a stubborn set that satisfies V in addition to all the conditions
in Theorem 5. Because aτω

1 is a counterexample, τ1 is interesting because it is
needed before any counterexample is finished. τ2 is neutral, as a−→ is the only



Abstractions for Transition Systems with Applications to Stubborn Sets 115

a b

(a) Infinite trace

a
τ1

τ2

τ1

τ2

a

(b) Divergence trace

Fig. 3. Counterexamples to infinite properties

execution consisting of transitions that are not in the stubborn set, and it is
preserved.

The best conditions for preserving all divergence traces all require conditions
such as the following. It has recently been discussed in [23].

L. For every visible transition t, every infinite execution s0
t1−→T s1

t2−→T · · · in
the reduced state space contains a state si such that t ∈ T (si).

For finite state spaces, this is called a cycle condition because all infinite execu-
tions are cyclic. We shall not explore their use in this article.

For CSP-semantics the problem in Fig. 3 does not manifest, because CSP
does not require us to preserve all divergences, only minimal ones, which then
are extended with otherwise maximal behaviour. The traditional stubborn sets
as described, for example, in [21,23], require the conditions V and a condition
called I, which unfortunately loses its meaning when we use the condition N.

IN. T (s) contains either a neutral τ -transition or all τ -transitions.

Lemma 2. If T is a reduction function that satisfies D1, N and IN in every
state of LT , and if s

τω

−−→, then s
τω

−−→T .

Proof. Let s be a state of LT and let s
t1t2···−−−−→ be a diverging execution starting

from s. If none of ti is in T (s), then IN guarantees there is a neutral τ -transition
t and s′ such that s

t−→T s′ and s′ t1t2···−−−−→. On the other hand, if ti ∈ T (s) for
some i, we choose the minimal i such that this holds. then let s

t1t2···ti−−−−−→ si. D1
guarantees that s

ti−→T s′ for some s′ such that s′ t1t2···ti−1ti+1···−−−−−−−−−−→.
This gives an infinite sequence of τ -transitions in LT whenever a state is

diverging. ��
Unfortunately D1, N and IN are not enough, even with V, to preserve stable

failures, as is witnessed by Fig. 4, but D1, D2, V and IN are. In the presence
of D2 all transitions are neutral, so IN is equivalent to I. Various solutions that
use conditions more restrictive than N have been used in practice with good
empirical results when preserving traces or CSP [8,14].

For completeness we restate the important results that are well-known about
preservation of the semantic models discussed earlier, as well as one for branching
properties. We need two further conditions.



116 H. Hansen

τ1 a

τ2

τ1

a

b

Fig. 4. Counterexample to stable failures

D0. en(s) ∩ T (s) = ∅ if and only if en(s) = ∅.
B. en(s) ⊆ T (s) or T (s) ∩ en(s) contains a single invisible transition.

Theorem 6. Assume T satisfies D1 at every state of LT . Then the following
hold:

1. If T satisfies D0 and D2 at every state of LT , then LT contains all reachable
states s of L such that en(s) = ∅.

2. If all visible transitions are interesting and T satisfies N, IN, and V at every
state of LT , then LT ≡Mindiv L.

3. If all visible transitions are interesting and T satisfies D2, S, IN, and V at
every state of LT , then LT ≡CSP L.

4. If all visible transitions are interesting and T satisfies D0, D2, V, and L at
every state of LT , then LT ≡Sfail,Divtr L.

5. If L is deterministic and T(s) satisfies D2, V, B, and S in every state of
LT , then LT is branching bisimilar to L.

Mostly the theorem was proven in [21], albeit with a slightly different set of
rules which, nevertheless, for deterministic transition systems are implied by the
given conditions. The second statement of the theorem is novel, and follows from
Lemma 2.

4.3 Considerations for Computing Stubborn Sets

Various methods for actually computing stubborn sets as defined in the ear-
lier parts of this section have been proposed. Most commonly they include a
form of dependency relation, or dependency graph, such as in [8,10,14]. Several
authors discuss strategies based on shared variables and they range from forbid-
ding changes of variables [4] to more nuanced approaches such as using write-up
sets [19], analysis of guards [15]. It was proven in [22] that the classic stubborn
sets are optimal in a model-theoretic sense with respect to symmetric depen-
dency relations such as those used in [7]. We discuss some relations that can
be defined by the rather coarse level of analysis [7], based on so-called effect
sets. Unfortunately, these sets do not make it possible to employ the theoretical
benefits afforded by the use of condition N instead of D2.



Abstractions for Transition Systems with Applications to Stubborn Sets 117

Definition 6. Let L be an LTS. We define the following relations.

– A left dependency relation � over T is any relation such that if either t � u

or for every state s, if s
ut−→ s2 then there is a state s3 such that s1

u−→ s3 and
s3

t−→ s2. We write t �� u when t � u does not hold.
– A dependency relation � over T is any relation such that if either t � u

or for every state s, if s
u−→ s1 and s

t−→ s2 then there is a state s3 such that
s1

t−→ s3 and s2
u−→ s3. We write t �� u when t � u does not hold.

The following lemma is given for the left-dependency and dependency relations

Lemma 3. Let s0, sn ∈ S, t, t1, . . . , tn ∈ T and s0
t1···tn−−−−→ sn

– If t �� ti for 1 ≤ i ≤ n, and sn
t−→ s′

n for some s′
n then there is a state s′

0 such
that s0

t−→ s′
0 and s′

0
t1···tn−−−−→ s′

n.
– If t �� ti for 1 ≤ i ≤ n, and s0

t−→ then sn
t−→.

Recall that a guard is a binary function X → {true, false}. Recall that tran-
sitions are of the form (g, e), where g is a guard.

Definition 7. Let G be a set of guards. A guard relation for state s is a relation
↪→ over T × G ∪ G × T that has the following properties.

1. If t = (g, e) ∈ T and g(s) = false, then t ↪→ gi if gi ∈ G such that gi(s) = false
and for all x ∈ X, g(x) = true implies gi(x) = true.

2. If g ∈ G and g(s) = false, then g ↪→ t if t ∈ T and there exists some states
s1 and s2 such that s1

t−→ s2, g(s1) = false and g(s2) = true.

The following lemma is useful in calculation of stubborn sets:

Lemma 4. Let U ⊆ T be a set of transitions and G be a set of guards. The set
U is closed under enabling at state s if there exists a guard relation ↪→ for s and
a subset G′ ⊆ G such that

1. For every t ∈ dis(s) ∪ U , there is some g ∈ G′ such that t ↪→ g.
2. For every g ∈ G′ and t ∈ T , if g ↪→ t then t ∈ U .

Lemma 4 was proven, for example, in [14]. Lemmas 3 and 4 are useful in the
computation of stubborn sets; We do not go into details about particular algo-
rithms, they have been discussed in [7,8,10,15,22,25] to name a few. We give
the theorem that the computation of stubborn sets is based on.

Theorem 7. Let � be a dependency relation and ↪→ be a guard relation for s.
The set T (s) satisfies D1 and D2 if there exists a set of guards G such that

1. For every t ∈ T (s) ∩ en(s) and u ∈ T , if t � u then u ∈ T (s).
2. For every t ∈ T (s) ∩ dis(s), there exists some g ∈ G such that t ↪→ g.
3. For every g ∈ G and t ∈ T , if g ↪→ t then t ∈ T (s).



118 H. Hansen

Recall that X = X1 × · · · × Xn. Let x = (x1, . . . , xn) and y = (y1, . . . , yn).
We write δ(x, y) = {i | xi �= yi} Given a transition t = (g, e) we define the effect
sets as:

– The guard set of t as Gd(t) = {i | ∃x, y ∈ X : δ(x, y) = i ∧ g(x) �= g(y)},
– the write set of t as Wr(t) = {i | ∃x ∈ X : i ∈ δ(x, e(x)}, and
– the read set of t as Rr(t) = {i | ∃x, y ∈ X : δ(x, y) = i ∧ ∃j ∈ Wr(t) : j ∈

δ(e(x), e(y))}.

The union of these sets, Vr(t) = Gd(t) ∪ Wr(t) ∪ Rr(t) is called variable set of
t. Intuitively, the guard set consists of variables whose value has an effect on the
guard, the write set is the set of variables whose value is subject to change when
the transition is fired, and the read set is the set of variables whose value has an
effect on the resulting state, i.e. if a variable in a read set changes its value, then
firing the transition will result in some change in some variable in the write set.

Given t1, t2 ∈ T , if we define the relation �G so that t1 ��G t2 implies
Wr(t1) ∩ Vr(t2) = Wr(t2) ∩ Vr(t1) = ∅, then this will result in a dependency
relation. It is also a left dependency relation.

We can define ↪→G using the guard of each transition, or, if the guard is given
as a conjunction of clauses, for example so that g = g1 ∧ · · · ∧ gk, we can use the
conjuncts in G and have gi ↪→G t if Wr(t) contains some variable appearing in
gi, for example.

5 Stubborn Sets and Abstraction

As we saw in Sect. 3, abstraction may lead to nondeterminism. We also saw in
Sect. 4 that the state-of-the art stubborn sets do not preserve all counterexamples
if transitions may be nondeterministic. In this section we discuss some problems
with combining stubborn sets and abstractions. We discuss the results of [1], and
show that the approach applies only to a narrow class of abstractions.

The proof of Theorem5 does not require the system is deterministic, but
abstraction nevertheless gives rise problem. Consider the following hypothesis:
given an abstraction α, the set U satisfies N at that state [s]α in Lα if for
every state s′ ∈ [s]α, U satisfies N in L. Figure 5(a) and (b) demonstrate a
counterexample to the hypothesis; abstractions do not in general satisfy this
property. The transition τ1 is neutral in all the states of the equivalence class
(indicated by the gray states).

Firstly we note that we could define a dependency relation �α for the tran-
sitions of Lα directly, analogously to Definition 6. Then Theorem 6 would hold
for all other parts, except part 5 which assumes transitions are deterministic,
and this is not true for Lα in general. The following lemma is trivial, but we
state it in any case.

Lemma 5. If α is separable, then the relations �G and ↪→G are dependency
and guard relations for Lα.



Abstractions for Transition Systems with Applications to Stubborn Sets 119

τ3τ2
a

a

b

τ1τ1

a

τ1
b

(a) Neutral τ1

τ2, τ3
a b

τ1

τ1

a

(b) Non-neutral τ1

Fig. 5. Troublesome cases for abstraction and stubborn sets

This lemma is important in practice, as it applies to several methods that are
used in practice. For example in [4], the analysis is carried out using this type of
dependency. Thus, all linear time stubborn set methods based on these relations
are in fact robust with respect to separable abstractions.

Definition 8. Let α be an abstraction. The relation �α over T is an abstract
dependency relation, or α-dependency, if for every s, if t, u ∈ en(s) either t �α

u or the following hold:

1. For for every s′ such that s
t−→ s′ we have s′ u−→ (and symmetrically for u),

and
2. For every state s1 such that s

tu−→ s1 there is a state s2 such that s
ut−→ s2 and

[s1]α = [s2]α (and symmetrically).

Lemma 6. Assume A respects enabledness and α ∈ A. For every t1, . . . , tn such
that ti ��α t for 1 ≤ i ≤ n, if [s]α

t1···tn−−−−→α [sn]α and [s]α
t−→ [s′]α, then there is

a state [s′
n]α such that [s′]α

t1···tn−−−−→α [s′
n]α and [sn]α

t−→α [sn]′.
Furthermore, if A is a collection of 1-simulations, then for every [s′

n]α such
that [sn]α

t−→α [s′
n]α, [s]α

tt1···tn−−−−→α [s′
n]α holds.

Proof. We prove the claims by induction. If n = 0, both claims holds triv-
ially. Assume as inductive hypothesis that the first claim holds for n − 1.
Let [s0]α

t1···tn−−−−→α [sn]α and [s0]α
t−→α [s′

0]α. By inductive hypothesis we have

[s′
0]α

t1···tn−1−−−−−→α [s′
n−1]α and [sn−1]α

t−→α [s′
n−1]α. Let sn−1 be one of the states

in [sn−1]α such that sn−1
t−→ s′

n−1.

Because α respects enabledness, sn−1
tn−→ sn for some state sn. And because

�α is an α-dependency relation, we must have sn
t−→ s′

n for some state s′
n and

s′
n−1

tn−→ s∗
n for some state s∗

n ∈ [s′
n]α.

Hence [sn−1]α
tnt−−→α [s′

n]α and [s′
n−1]α

tn−→α [sn]′α, finishing the inductive step
for the first part of the lemma.

Assume then that α is a 1-simulation and the second claim holds for n − 1.
Let [sn]α

t−→α [s′
n]α. Then, for every state sn ∈ [sn]α there exists some state



120 H. Hansen

s′
n ∈ [s′

n]α such that sn
t−→ s′

n. For at least one of them we have sn−1
tn−→ sn

t−→ s′
n,

and again, sn−1
t−→ s′

n−1 because α respects enabledness. And because of α-

dependency, we have some state s∗
n ∈ [s′

n]α such that s′
n−1

tn−→ s∗
n, finishing the

inductive step for the second part of the lemma. ��
Definition 9. Let α be an abstraction. Let G be a set of of Boolean functions
α(X) → {true, false}. The relation ↪→α over T ×G∪G×T is an abstract guard
relation for [s]α if

1. For every t ∈ disα([s]α) there exists a guard g ∈ G such that g([s]α) = false
and t ↪→α g.

2. For every state g ∈ G and t ∈ T , if there is some states s′, s′′ such that
s′ t−→ s′′, g([s′]α) = false and g([s′′]α) = true then g ↪→α t.

Theorem 8. Assume A is a collection of 1-simulations and that it respects
enabledness. Let α ∈ A. Let [s]α be an abstract state. Then the set U satisfies
D1 and D2 if there exist some abstract guard relation ↪→α, a set of guards G,
and an abstract dependency relation �α such that

1. For every t ∈ enα([s]α) and u ∈ T , if t ∈ U and t �α u then u ∈ U .
2. For every t ∈ disα([s]α) there is some g ∈ G such that t ↪→α g and for every

[s′]α.
3. For every g ∈ G and t ∈ T , if g ↪→α t, then t ∈ U .

Proof. Because Definition 9 is strictly analogous to Definition 7 and Lemma 4
applies, we skip the proof that U will be closed under enabling. Lemma 6 applied
to the first condition proves D2. Because α is a 1-simulation, Lemma 6 guaran-
tees that also D1 holds. ��
The restriction that A must respect both enabledness and determinism is a severe
one. The result of [1] merits discussion in light of the weakness of the above
theorem. The result of using α-dependency when α is a strong bisimulation is
sound, because two states cannot be strongly bisimilar unless they have the same
enabled transitions. It does not hold, however, for weaker equivalences. Consider
Fig. 6(a). The grey states are branching bisimilar, but not strongly bisimilar.
α-dependency would declare the transitions labeled a and τ2 as independent
regardless of what happens after they are fired, because they are not enabled
together. In fact, simple as it is, Fig. 6(a) leaves little hope for developing a
method that is based on dependencies significantly less restrictive than those
that consider the whole equivalence class, i.e., dependency in Definition 6 applied
to the whole abstract state space.

The counterexample to abstractions that are not 1-simulations is given in
Fig. 6(b). The abstraction equates the gray states in the figure. We can then
define an abstract dependency relation that declares a and b independent. c and
b are likewise independent. The set {a} would satisfy the conditions of Theorem8
under this abstraction. The abstraction also respects enabledness. In the state
that follows the execution of a, {c} is a set that likewise satisfies the conditions



Abstractions for Transition Systems with Applications to Stubborn Sets 121

τ1

τ1a τ2

(a) Branching bisimilar states

a b

c

b

cb

a

c

d

(b) Nondeterminism destroys correctness

Fig. 6. Counterexamples to α-dependency

of the theorem, and the execution of d is missed. The example leaves open the
possibility that forbids possibly nondeterministic transitions (such as c) from
being stubborn.

6 Discussion and Future Work

As this article is to appear in a collection to honor professor Bill Roscoe, I break
the convention and write in first person. I do so out of respect for the community
and the person, as I hope to explain in a more personal manner what has been
written here. I also wish to express my gratitude and sense of honor to have been
invited to write this article.

The main theorem in [11] states that for timed automata, relaxing zone
abstractions and applying an abstract dependency very similar to the one in
Theorem 8 will preserve the existence of counterexamples. In fact, it not only
does this, but sometimes it is able to reduce away abstract counterexamples
that are spurious. When I started writing this article, I started with a hypothesis
stronger than Theorem8, one that would replicate the same powerful results.

A series of counterexamples, given in the previous sections, emerged while I
was trying to prove a similar result, and in the end, the result was not signif-
icantly stronger than the main theorem of [1]. Instead of this article providing
groundbreaking results as I had hoped, it thus is more of a document of how
such a result does not hold for the abstract dependency relation as defined here.
I hope that a careful analysis of the counterexamples to weaker hypothesis might
prove fruitful in the pursuit of a more general theorem, one that may still be out
there. I am still haunted by the intuition that there is a hidden diamond amid
the ashes of this failed theorem.

For other parts, the results in this article are mostly re-stated facts that have
been known separately with a couple of minor improvements to existing results.
I hope my analysis may serve as a starting point for a more careful analysis of
properties of abstractions and how they combine with the myriad other methods.



122 H. Hansen

For future work, there are two important avenues. Firstly, the classification
of abstractions is in its own right an important topic, and this rather truncated
treatment merely scratches the surface. Results pertaining to preservation of
determinism and monotony with respect to semantic models is something that
we plan to pursue further.

Secondly, the combination of stubborn set methods with abstractions. There
are probably good reasons why the relaxed zone abstraction combine in a syner-
gistic manner with stubborn sets but abstractions labeled transition systems in
general do not. Understanding of the said reasons may lead to powerful methods,
or at least understanding, in the never ending battle against state explosion. The
guard relation, for example, was simply lifted verbatim to abstract state spaces.
It remains a possibility that some version of such a relation might be the key to
unlock a more powerful theory.

Acknowledgements. I wish to thank the editors for inviting me to submit an article,
Antti Valmari for pioneering the field and his eagerness to discuss the topic after all
these years, Xu Wang for discussions we have had over the years about the merits
and pitfalls of various approaches, and Dragan Bosnacki for providing some insights
on the matter. I am grateful to Bill Roscoe, for asking me one instrumental question
about partial order reduction years ago. Answering that question led me to write a few
articles, and, in a way, also this one.

References

1. Bošnački, D., Scheffer, M.: Partial order reduction and symmetry with mul-
tiple representatives. In: Havelund, K., Holzmann, G., Joshi, R. (eds.) NFM
2015. LNCS, vol. 9058, pp. 97–111. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-17524-9 8

2. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000). doi:10.1007/10722167 15

3. Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM
Trans. Programm. Lang. Syst. (TOPLAS) 16(5), 1512–1542 (1994)

4. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT press, Cambridge
(1999)

5. Emerson, E.A., Sistla, A.P.: Symmetry and model checking. In: Courcoubetis, C.
(ed.) CAV 1993. LNCS, vol. 697, pp. 463–478. Springer, Heidelberg (1993). doi:10.
1007/3-540-56922-7 38

6. Engelfriet, J.: Determinancy → (observation equivalence = trace equivalence).
Theor. Comput. Sci. 36, 21–25 (1985)

7. Geldenhuys, J., Hansen, H., Valmari, A.: Exploring the scope for partial order
reduction. In: Liu, Z., Ravn, A.P. (eds.) ATVA 2009. LNCS, vol. 5799, pp. 39–53.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-04761-9 4

8. Gibson-Robinson, T., Hansen, H., Roscoe, A.W., Wang, X.: Practical partial
order reduction for CSP. In: Havelund, K., Holzmann, G., Joshi, R. (eds.) NFM
2015. LNCS, vol. 9058, pp. 188–203. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-17524-9 14

http://dx.doi.org/10.1007/978-3-319-17524-9_8
http://dx.doi.org/10.1007/978-3-319-17524-9_8
http://dx.doi.org/10.1007/10722167_15
http://dx.doi.org/10.1007/3-540-56922-7_38
http://dx.doi.org/10.1007/3-540-56922-7_38
http://dx.doi.org/10.1007/978-3-642-04761-9_4
http://dx.doi.org/10.1007/978-3-319-17524-9_14
http://dx.doi.org/10.1007/978-3-319-17524-9_14


Abstractions for Transition Systems with Applications to Stubborn Sets 123

9. Godefroid, P. (ed.): Partial-Order Methods for the Verification of Concurrent Sys-
tems. LNCS, vol. 1032. Springer, Heidelberg (1996). doi:10.1007/3-540-60761-7

10. Hansen, H., Kwiatkowska, M., Qu, H.: Partial order reduction for model checking
Markov decision processes under unconditional fairness. In: Quantitative Evalua-
tion of Systems (QEST 2011), pp. 203–212. IEEE (2011)

11. Hansen, H., Lin, S.-W., Liu, Y., Nguyen, T.K., Sun, J.: Diamonds are a girl’s best
friend: partial order reduction for timed automata with abstractions. In: Biere, A.,
Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 391–406. Springer, Heidelberg
(2014). doi:10.1007/978-3-319-08867-9 26

12. Hansen, H., Valmari, A.: Operational determinism and fast algorithms. In: Baier,
C., Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 188–202. Springer,
Heidelberg (2006). doi:10.1007/11817949 13

13. Hansen, H., Valmari, A.: Safety property-driven stubborn sets. In: Larsen, K.G.,
Potapov, I., Srba, J. (eds.) RP 2016. LNCS, vol. 9899, pp. 90–103. Springer,
Heidelberg (2016). doi:10.1007/978-3-319-45994-3 7

14. Hansen, H., Wang, X.: Compositional analysis for weak stubborn sets. In: 2011
11th International Conference on Application of Concurrency to System Design
(ACSD), pp. 36–43. IEEE (2011)

15. Laarman, A., Pater, E., van de Pol, J., Hansen, H.: Guard-based partial-order
reduction. Int. J. Softw. Tools Technol. Transfer 18(4), 427–448 (2016)

16. Milner, R. (ed.): A Calculus of Communicating Systems. LNCS, vol. 92. Springer,
Heidelberg (1980). doi:10.1007/3-540-10235-3

17. Peled, D.: All from one, one for all: on model checking using representatives.
In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 409–423. Springer,
Heidelberg (1993). doi:10.1007/3-540-56922-7 34

18. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice-Hall, Upper
Saddle River (1997)

19. Valmari, A.: A stubborn attack on state explosion. In: Clarke, E.M., Kurshan, R.P.
(eds.) CAV 1990. LNCS, vol. 531, pp. 156–165. Springer, Heidelberg (1991). doi:10.
1007/BFb0023729

20. Valmari, A.: Stubborn sets for reduced state space generation. In: Rozenberg, G.
(ed.) ICATPN 1989. LNCS, vol. 483, pp. 491–515. Springer, Heidelberg (1991).
doi:10.1007/3-540-53863-1 36

21. Valmari, A.: Stubborn set methods for process algebras. In: Proceedings of the
DIMACS Workshop on Partial Order Methods in Verification (1997)

22. Valmari, A., Hansen, H.: Can stubborn sets be optimal? Fundamenta Informaticae
113(3–4), 377–397 (2011)

23. Valmari, A., Hansen, H.: Stubborn set intuition explained. In: International Work-
shop on Petri Nets and Software Engineering 2016, pp. 213–232 (2016)

24. Valmari, A., Tienari, M.: Compositional failure-based semantic models for basic
lotos. Formal Aspects Comput. 7(4), 440–468 (1995)

25. Valmari, A., Vogler, W.: Fair testing and stubborn sets. In: Bošnački, D., Wijs,
A. (eds.) SPIN 2016. LNCS, vol. 9641, pp. 225–243. Springer, Heidelberg (2016).
doi:10.1007/978-3-319-32582-8 16

26. Glabbeek, R.J.: The linear time — branching time spectrum II. In: Best, E. (ed.)
CONCUR 1993. LNCS, vol. 715, pp. 66–81. Springer, Heidelberg (1993). doi:10.
1007/3-540-57208-2 6

http://dx.doi.org/10.1007/3-540-60761-7
http://dx.doi.org/10.1007/978-3-319-08867-9_26
http://dx.doi.org/10.1007/11817949_13
http://dx.doi.org/10.1007/978-3-319-45994-3_7
http://dx.doi.org/10.1007/3-540-10235-3
http://dx.doi.org/10.1007/3-540-56922-7_34
http://dx.doi.org/10.1007/BFb0023729
http://dx.doi.org/10.1007/BFb0023729
http://dx.doi.org/10.1007/3-540-53863-1_36
http://dx.doi.org/10.1007/978-3-319-32582-8_16
http://dx.doi.org/10.1007/3-540-57208-2_6
http://dx.doi.org/10.1007/3-540-57208-2_6


A Hybrid Relational Modelling Language

He Jifeng and Li Qin(B)

Shanghai Key Laboratory of Trustworthy Computing,
International Research Center of Trustworthy Software,

East China Normal University, Shanghai, China
qli@sei.ecnu.edu.cn

Abstract. Hybrid systems are usually composed by physical compo-
nents with continuous variables and discrete control components where
the system state evolves over time according to interacting laws of dis-
crete and continuous dynamics. Combinations of computation and con-
trol can lead to very complicated system designs. We treat more explicit
hybrid models by proposing a hybrid relational calculus, where both
clock and signal are present to coordinate activities of parallel compo-
nents of hybrid systems. This paper proposes a hybrid relational mod-
elling language with a set of novel combinators which support complex
combinations of both testing and signal reaction behaviours to model the
physical world and its interaction with the control program. We provide
a denotational semantics (based on the hybrid relational calculus) to the
language, and explore healthiness conditions that deal with time and
signal as well as the status of the program. A number of small examples
are given throughout the paper to demonstrate the usage of the language
and its semantics.

Keywords: Formal language and semantics · Unifying theories
of programming · Relation calculus · Hybrid systems

1 Introduction

Hybrid system is an emergent area of growing importance, emphasising a sys-
tematic understanding of dynamic systems that combine digital and physical
effects. Combinations of computation and control can lead to very complicated
system designs. They occur frequently in automotive industries, aviation, factory
automation and mixed analog-digital chip design.
The basic conceptional definition of a hybrid system includes a direct specifica-
tion of its behaviours associated with both continuous and discrete dynamics and
their non-trivial interactions [dSS00,Bra95]. The states of hybrid systems evolve
over time according to interacting laws of discrete and continuous dynamics. For

This work was supported by Shanghai Knowledge Service Platform Project (No.
ZF1213), Doctoral Fund of Ministry of Education of China (No. 20120076130003)
and the NSFC-Zhejiang Joint Fund for the Integration of Industrialization and
Informatization (No. U1509219).

c© Springer International Publishing AG 2017
T. Gibson-Robinson et al. (Eds.): Roscoe Festschrift, LNCS 10160, pp. 124–143, 2017.
DOI: 10.1007/978-3-319-51046-0 7



A Hybrid Relational Modelling Language 125

discrete dynamics, the hybrid system changes state instantaneously and discon-
tinuously; while during continuous transitions, the system state is a continuous
function of continuous time and varies according to a differential equation.
Hybrid system modelers mix discrete time reactive systems with continuous
time ones. Systems like Simulink treat explicit models made of Ordinary Differ-
ential Equations, while others like Modelica provide more general implicit mod-
els defined by Differential Algebraic Equations. A variety of models for hybrid
systems have been developed, such as hybrid automata [ACH93,Hen96,Tav87],
phase transition system [MMP91], declarative control [Koh88], extended state
transition system [ZH04], and hybrid action systems [RRS03,Ben98]. Platzer
proposed a logic called Differential Dynamic Logic for specifying properties of
hybrid systems [Pla08,Pla10]. His hybrid systems analysis approach has also
been implemented in the verification tool KeYmaera for hybrid systems. We
refer the readers to [CPP06] for an overview of languages and tools related to
hybrid systems modeling and analysis.
There are a number of specification languages developed for hybrid systems.
Inspired by the work in [He94], Zhou et al. [ZWR96] presented a hybrid vari-
ant of Communicating Sequential Processes (HCSP) [Hoa85] as a language for
describing hybrid systems. They gave a semantics in the extended duration cal-
culus [ZH04]. Rönkkö et al. [RRS03] extended the guarded command language
[Dij76] with differential relations and gave a weakest-precondition semantics in
higher-order logic with built in derivatives. Rounds and Song [RS03] developed
a hybrid version of the π-calculus [Mil99] as a modelling language for embed-
ded systems. Modelling languages for hybrid systems further include SHIFT
[Des96] for networks of hybrid automata, and R-Charon for reconfigurable sys-
tems [Kra06].
Rather than addressing the formal verification of hybrid systems using simulation
based approaches or model checking, this paper focuses on a general framework.
It uses a simple hybrid modelling language to model non-trivial interactions
between hybrid dynamics. This language captures the defining features of the
hybrid systems such as monitoring physical variables over continuous time, asyn-
chronous reacting to control signals, etc. Following the UTP approach advocated
in [HH98], we build a mathematical theory of the hybrid relations as the founda-
tion of the hybrid modelling languages. This is a presentation within predicate
calculus of Tarski’s theory of relations [Tar41], enriched with his fixed point
theory [Tar55]. We show that the hybrid relational calculus is a conservative
extension of the classical relational calculus, i.e., all the algebraic laws of the
operators remain valid in the new calculus.
The rest of the paper is organised as follows.
The hybrid relational modelling language is proposed in Sect. 2. Its semantical
model is provided in Sect. 3 with UTP approaches. Section 3.1 adds continu-
ous variables into the alphabet of relations to record the continuous dynamic
behaviors of the hybrid system.



126 H. Jifeng and L. Qin

In Sect. 3.2, healthiness conditions placed on hybrid relations are proposed to
ensure that the hybrid relations satisfy additional desirable properties related to
clocks, signals and intermediate observations between initiation and termination.
Sections 3.3 to 3.5 give a denotational semantics to every primitive command and
combinator in the hybrid modelling language including the concurrent composi-
tion and the novel synchronous constructs until and when proposed to specify
the interactions between components.
The paper ends with Sect. 4 for conclusion and future works.

2 A Hybrid Modelling Language

This section presents a hybrid modelling language, which extends the guarded
command language [Dij76] by adding output command, synchronisation con-
structs and parallel operator. The syntax of the hybrid modelling language is as
follows where x is a discrete variable, v is a continuous variable and s is a signal.

AP :: = skip | chaos | idle | x := e | x ← v | !s | delay | delay(δ)

EQ :: = R(v, v̇) | EQ init (v = e) | EQ|EQ

P :: = AP | P � P | P ;P | P � b(x) � P | P‖P | μX • P (X) |
EQ until g | when(G) | timer c • P | signal s • P

g :: = I | signal | test | g · g | g + g

test :: = true | v ≥ e | v ≤ e | ¬test | test ∧ test | test ∨ test

G :: = g& P | G[]G

AP is a collection of atomic commands. skip is an atomic program that termi-
nates immediately without changing any state value. chaos is an atomic program
that diverges immediately. idle is an atomic program that never terminates and
does not send out signals. x := e is the conventional assignment which assigns
the value of a discrete expression e to a discrete variable x. x ← v samples the
current value of a continuous variable v and assigns it to a discrete variable x.
!s emits a signal s. delay acts like skip but its terminating time is unknown in
advance. delay(δ) keeps idle and terminates after δ time units.
EQ contains statements for continuous dynamics. R(v, v̇) is a differential rela-
tion specifying the dynamics of the continuous variable v. EQ init v0 assigns
the initial value v0 to the continuous variable v governed by EQ. EQ|EQ is a
conjunction of two dynamics.
P lists all combinators in the hybrid language. The first line includes classic
sequential composition operators, parallel composition operators and recursion
operator. The first two structures in the second are new hybrid structures spec-
ifying the interactions between the continuous and discrete components of the
hybrid system. They will be introduced in detail in Sect. 3.5. The last two oper-
ations of P are hiding operators for timers and signals.



A Hybrid Relational Modelling Language 127

The last three lines of the syntax comprise the structure of a guard command
language for G which is a core element of the new hybrid structures. The guard
condition g can be a signal, a value test and their combination. The notation I
stands for a guard condition which will always be triggered immediately. g&P
is a reactive structure that will execute P when g is triggered. G[]G stands for a
guarded choice operator.

Example 1 (Temperature control system). Consider a simple hybrid system con-
trolling the temperature of a room. We use a continuous variable θ to record the
room temperature and a discrete variable H : {on, off} to denote the status of
the heater. When the room temperature is below 19 degrees, the heater will be
turned on and when the temperature exceeds 20, the heater will be turned off.
Let Δ be the changing rate of the temperature, the specification of such system
in our modelling language is as follows.

H := off ; (θ̇ = −Δ init θ = 25) until (θ ≤ 19);

when
(

θ ≤ 19 & (H := on; (θ̇ = Δ) until θ ≥ 20) []
θ ≥ 20 & (H := off ; (θ̇ = −Δ) until θ ≤ 19)

)∗

where P ∗ stands for the recursive program μX • (P ;X).

3 Semantical Model

The semantics of the hybrid language is defined based on the UTP theory. We
will first choose the alphabet and healthiness conditions for the hybrid programs
and provide the denotational semantics for every command and combinator. We
refer the readers to [HH98] for the basic notations of UTP theory. And for the
lack of space, we omit all proofs of the theorems in this section.

3.1 Alphabet

The hybrid programs studied in this paper are formalised with hybrid relations
with an enlarged alphabet including continuous variables.

Definition 1 (Hybrid Relation).
A hybrid relation is a pair (αP, P ), where P is a predicate containing no free
variables other than in αP . Its alphabet αP contains sets of input and output
discrete variables and a set conαP of continuous variables.

αP = inαP ∪ outαP ∪ conαP

The input variable set inαP =df {st, t, pos} ∪ PV ar ∪ ClockV ar

where
st, st′ ∈ {term, stable, div} represent the program status at its start and finish
time respectively. The meanings of program status term, stable, div are intro-
duced in Sect. 3.2.



128 H. Jifeng and L. Qin

t, t′ ∈ Time (of the type non-negative real numbers) are discrete variables denot-
ing the start and end time instances of the observation one makes during the
execution of the program.

pos : N (of the type nature numbers) is a variable introduced to facilitate the
mechanism for describing the dependency of the signals. Its value will be recorded
in the clock of each signal when it is emitted. The detailed usage will be demon-
strated later associated with the clock variables.

PV ar denotes the set of discrete program variables.

ClockV ar denotes the set of clock variables

ClockV ar =df {s.clock | s ∈ InSignal ∪ OutSignal}
where InSignal and OutSignal stand for the sets of input signals and output
signals respectively with the constraint InSignal ∩ OutSignal = ∅.
A clock variable s.clock is a sequence of pairs with the type Time × N. For a
pair (τ, p) as an entry of the sequence, τ stands for the time instant at which
s occurs, while p denotes its emitting position in the queue of the dependent
signals that are observed at the same instant. For example, if the emission of s2
depends on the emission of s1 at time τ , then we have (τ,m) ∈ s1.clock and
(τ, n) ∈ s2.clock with m < n.

The output alphabet contains the dashed variables from input alphabet.

outαP = {x′ | x ∈ inαP}
The continuous variables in conαP are mappings from time to corresponding
physical status of the physical components, i.e., of the type Time → Real. The
set conαP = ownαP ∪ envαP is divided into two sets: ownαP and envαP
where the former comprises those continuous variables owned by the relation,
and the latter denotes the set of variables that are accessible by P but managed
by the environment. The set ownαP = phyαP ∪ timerαP includes a special
subset timerαP to specify the timers owned by P .
A refinement order can be defined over hybrid relations as follows.

Definition 2 (Refinement).
Let P and Q be hybrid relations with the same alphabet A. We will use the nota-
tion P � Q to abbreviate the formula ∀x, y, ..., u, v • (P ⇒ Q) where x, y, ..., u, v
are all the variables of the alphabet A.

3.2 Healthiness Conditions

In this section, we will introduce healthiness conditions one by one and show
that every healthiness condition obtains a subset of the previous domain and
the healthy programs form a complete lattice w.r.t. the refinement order.

Time.
To describe the dynamical behaviour of physical components we will focus on



A Hybrid Relational Modelling Language 129

those hybrid relations in which the termination time is not before its initial time.
As a result, we require a hybrid relation P to meet the following healthiness
condition:

(HC1)P = P ∧ (t ≤ t′)

A hybrid relation is called HC1-healthy if it satisfies the condition HC1.
We introduce a function H1 to turn a hybrid relation into a HC1-healthy hybrid
relation:

H1(P ) =df P ∧ (t ≤ t′)

It is trivial to show that H1 is monotonic and idempotent.

Signals.
Signals are means of communications and synchronisations between different
components and between a program with its environment. In general, a signal,
denoted by its name, has two types of status, i.e., either presence or absence.
A signal is present if it is received by a program from its environment, or it is
emitted as the result of an output command.
For any signal s, we use a clock variable s.clock to record the time instants at
which s has been present. As usual, we adopt s.clock and s.clock′ to represent
the values at the start time t and the finish time t′ correspondingly. s.clock has
to be a subset of s.clock′ since the latter may be added some time instants of
[t, t′] at which the signal s is present. Consequently, we require a hybrid relation
P to meet the following healthiness condition:

(HC2)P = P ∧ inv(s)

where inv(s) =df (s.clock ⊆ s.clock′) ∧ (s.clock′ ⊆ (s.clock ∪
[t, t′] × N))

H2(P ) =df P ∧ inv(s)

It is trivial to prove that the order in which H1 and H2 are composed is irrel-
evant, i.e., H1 ◦ H2 = H2 ◦ H1. With this fact, we can define a composite
mapping H12 =df H1◦H2. And it can be proved that HC1 and HC2-healthy
hybrid relations are closed under choice, conditional and sequential composition.

Theorem 1.

(1) H12(P ) � H12(Q) = H12(P � Q)
(2) H12(P ) � b � H12(Q) = H12(P � b � Q)
(3) H12(P );H12(Q) = H12(H12(P );H12(Q))

For simplicity, we will confine ourselves to HC1 and HC2-healthy hybrid rela-
tions in the next section.

Intermediate Observation and Divergence.
In this section, we add logical variables st and st′ to the input alphabet and the
output alphabet of a hybrid relation to describe the program status before it



130 H. Jifeng and L. Qin

starts, and the status it completes respectively. These variables range over the
set {term, stable, div}, where
st = term indicates the predecessor of the hybrid program terminates success-
fully. As a result, the control passes to the current hybrid program.
st = stable indicates its predecessor is waiting for ignition. Therefore, the hybrid
program can not start its execution because its predecessor has not finished yet.
st = div indicates the behaviour of the predecessor becomes chaotic, and it can
not be rescued by the execution of the current hybrid program.
Here we propose an order < over the set of program status:

div < stable < term
This order can be adopted to define the merge mechanism for the parallel com-
position operator in Sect. 3.5.

Example 2 (Atomic Hybrid Relations).

Let PV ar be a set of discrete data variables, and

A =df {st, t, pos} ∪ PV ar ∪ {s.clock | s ∈ OutSignal}
(1) The hybrid relation skip does nothing, and terminates immediately.

skip =df IIA � (st �= div) � H12(⊥A)
where IIA is the identity relation over set A and ⊥A =df true.

(2) chaos represents the worst hybrid program, and its behaviour is totally
unpredictable.
chaos =df H12(⊥A) � st = term � skip

(3) delay behaves like hybrid program skip except its termination time is
unknown in advance.
delay =df H12(IIA\{t}) � st = term � skip

From Theorem 1 it follows that these atomic hybrid programs are HC1 and
HC2 healthy. Note that the above atomic hybrid relations have no constraints
to the continuous variables. �

The healthiness conditions relevant to st are proposed to capture the interme-
diate observation (HC3) and divergence (HC4) features of hybrid programs.
A hybrid program P remains idle until its sequential predecessor terminates
successfully. This constraint requires P to satisfy the following healthiness con-
dition:

(HC3) P = P � st = term � skip
We can prove that all atomic hybrid programs of Example 2 are HC3-healthy.

H3(P ) =df P � st = term � skip
A HC3-healthy program has skip as its left unit and chaos as its left zero.

Theorem 2 (Left unit and left zero).

(1) skip;H3(P ) = H3(P )
(2) chaos;H3(P ) = chaos



A Hybrid Relational Modelling Language 131

Once a hybrid program enters a divergent state, its future behaviour becomes
uncontrollable. This requires it to meet the following healthiness condition:

(HC4) P = P ; skip
H4(P ) =df P ; skip

HC4-healthy programs are closed under choices, conditional and sequential com-
position.

Theorem 3.

(1) H4(P ) � H4(Q) = H4(P � Q)
(2) H4(P ) � b � H4(Q) = H4(P � b � Q)
(3) H4(P );H4(Q) = H4(P ;Q) provided that Q is HC3-healthy.

The composition order of H3 and H4 is irrelevant, i.e., H4 ◦ H3 = H3 ◦ H4.
Define H =df (H1 ◦ H2 ◦ H3 ◦ H4). We can prove that H is monotonic and
idempotent and H = H3 ◦ H4.
The mapping H distributes over non-deterministic choice, conditional and
sequential composition.

Theorem 4.

(1) H(P ) � H(Q) = H(P � Q)
(2) H(P ) � b � H(Q) = H(P � b � Q)
(3) H(P );H(Q) = H(H(P );H(Q))

The distributivity of H over parallel operators will be shown in Sect. 3.5. To sum-
marize, the healthy hybrid program domain is closed under these composition
operators.

Theorem 5.
The domain of healthy hybrid programs P =df {P | P = H(P )} and the refine-
ment order � forms a complete lattice L =df (P,�).

3.3 Atomic Commands

The definitions of atomic commands skip, chaos and delay are already given
in Example 2. One can verify that they are all healthy w.r.t. the mapping H.
Let e be an expression with only discrete variables. Assignment x := e assigns
the value of e to the discrete variable x instantaneously. It supports the discrete
state change of the hybrid programs.

(x := e) =df H(IIinα[e/x])

Let v be a continuous variable in ownα. Assignment x ← v assigns the current
value of v to the discrete variable x instantaneously. It provides a direct way
in the language for sampling the value of a continuous variable to a discrete
program variable.

(x ← v) =df H(IIinα\{x} ∧ x′ = v(t′))

The output command !s emits signal s, and then terminates immediately. Its



132 H. Jifeng and L. Qin

execution does not take time.

!s =df H(IIinα[(s.clock ∪ {(t, pos)})/s.clock])

The program idle never terminates, and keeps stable status forever.

idle =df H(IIB ∧ time−passing ∧ st′ = stable)

where

B =df {s.clock | s ∈ OutSignal}
time−passing =df

∧
c∈timerα ∀τ ∈ [t, t′) • (ċ(τ) = 1)

Let δ ≥ 0. The delay command delay(δ) suspends the execution δ time units.

delay(δ) =df H

⎛

⎜
⎝

IIB ∧ time−passing ∧
(

(t′ − t) < δ ∧ st′ = stable ∨
(t′ − t) = δ ∧ II{pos}∪PV ar ∧ st′ = term

)
⎞

⎟
⎠

Notice that the difference between delay and delay(δ) is that the end time t′

of delay is unspecified (arbitrarily after its start time).

3.4 Dynamics of Continuous Variables

Let v be a continuous variable used to model the status of a physical device. The
continuous transitions of v governed by the physical laws can usually be specified
by a hybrid relation R(v, v̇), whose dynamic behaviour over an interval [t, t′] is
described by

R =df ∀τ ∈ [t, t′) • R(v, v̇)(τ)

Let e be an expression with only discrete variables. The hybrid relation
R init (v = e) sets the value of e as the initial value of continuous variable v.

R init (v = e) =df R ∧ (v(t) = e)

Let R1 and R2 be hybrid relations of distinct variables v and w. Their compo-
sition R1 | R2 is simply defined as the conjunction of R1 and R2:

R1 | R2 =df R1 ∧ R2

Differential equation v̇ = f(v) and differential-algebraic equation (F (v, v̇, t) = 0)
are both seen as a special kind of hybrid relations over continuous variable v.

Example 3. Let v be a continuous variables over continuous time c. A differential-
algebraic equation F (v, v̇, c) = 0 can be treated as a hybrid relation where

DF =df (t ≤ t′) ∧ ∀τ : [t, t′) • (F (v(τ), v̇(τ), τ) = 0) �
The refinement order defined for hybrid relations in Sect. 3.1 can be applied to
the relation R.

Definition 3.
Assume that R1(v, v̇) and R2(v, v̇) are equipped with the same alphabet (say
{v}), we define

R1 � R2 =df ∀t, t′,∀v • (R1 ⇒ R2)



A Hybrid Relational Modelling Language 133

It means that if a continuous variable v is a solution of R1, then it is also a
solution of R2. In other terms, R1 can be considered as a refinement of R2 since
any continuous evolvement it allows for the continuous variable v is also allowed
by R2.

3.5 Combinators

Let P and Q be hybrid programs, the combinators of the hybrid language
include the classic sequential operators, parallel operators and recursion oper-
ators. Besides, it has two hybrid reactive structures specifying the interactions
between the continuous and discrete components of the system. In this section,
we will give the definitions of the combinators.

Sequential Operators.
The sequential programming operators, including nondeterministic choice
P � Q, conditional choice P � b � Q and sequential composition P ;Q can be
defined by the same predicates as in [HH98] but over the enriched alphabet for
hybrid relations satisfying healthiness conditions. For lack of space, we only give
the definition of P ;Q for example.

Definition 4 (Sequential Composition).
Let P and Q be hybrid relations with outαP = {x′ | x ∈ inαQ}, ownαP =
ownαQ and envαP = envαQ. The sequential composition P ;Q is defined by
the following predicate:

P ;Q =df ∃m • P [m/x′] ∧ Q[m/x]

with α(P ;Q) =df inαP ∪ outαQ ∪ conαP .

The sequential composition operator enjoys the same set of algebraic laws as its
counterpart given in [HH98].

Parallel Operators.
Before we get to the definition of the parallel composition of hybrid programs, we
first revisit two notions of parallel composition operators that will be employed
in the definition.

Definition 5 (Disjoint Parallel Operator).
Let P and Q be hybrid relations with disjoint outα and ownα. The notation
P | Q represents the following hybrid relation

P | Q =df P ∧ Q

with inα(P | Q) =df inαP ∪ inαQ, ownα =df ownαP ∪ ownαQ and
envα =df (envαP \ ownαQ) ∪ (envαQ \ ownαP ).

The operator | is symmetric and associative. It distributes over conditional, and
has II∅ as its unit. Moreover, | and ; satisfy the mutual distribution law.
For programs whose outα and ownα are overlapped, we employ a parallel by
merge operator to merge the results of the parallel components.



134 H. Jifeng and L. Qin

Definition 6 (Merge Mechanism).
A merge mechanism M is a pair (x : Val, op), where x is a variable of type Val,
and op is a binary operator over Val.

Definition 7 (Parallel by Merge).
Let P and Q be hybrid relations with the shared output x′ and its merge mecha-
nism M = (x : Val, op). We define their parallel composition by merge, denoted
P ‖M Q, as follows:

P ‖M Q =df ∃m, n : Val •
(

P [m/x′] ∧ Q[n/x′] ∧
x′ = op(m, n)

)

with inα(P ‖M Q) =df inαP ∪ inαQ, ownα(P ‖M Q) =df ownαP ∪ ownαQ
and envα(P ‖M Q) =df (envαP \ ownαQ) ∪ (envαQ \ ownαP ).

With the above notions of parallel operator, we can define the semantics of
general parallel composition P ‖ Q. We need to merge the program status st
and the pos variables from both components.

For st, we select the merge operator for the program status as the greatest lower
bound, i.e., glb (remember that we have the order div < stable < term).

For pos, we select the merge operator as max which selects the greater value.

Definition 8 (Parallel Operator for Hybrid Programs).

Let P and Q be hybrid programs satisfying the following conditions:

PV ar(P ) ∩ PV ar(Q) = ∅, ownα(P ) ∩ ownα(Q) = ∅,
timerα(P ) ∩ envα(Q) = ∅, timerα(Q) ∩ envα(P ) = ∅ and

OutSignal(P ) ∩ OutSignal(Q) = ∅
The parallel composition P ‖ Q is equipped with the following alphabet:

PV ar =df PV ar(P ) ∪ PV ar(Q), phyα =df phyα(P ) ∪ phyα(Q),

timerα =df timerα(P ) ∪ timerα(Q),

envα =df (envα(P ) \ ownα(Q)) ∪ (envα(Q) \ ownα(P )),

InSignal =df (InSignal(P )\OutSignal(Q))∪(InSignal(Q)\OutSignal(P )),

OutSignal =df OutSignal(P ) ∪ OutSignal(Q).

The dynamic behaviour of P ‖ Q is described by

P ‖ Q =df (((P ;delay) ‖M Q) ∨ (P ‖M (Q;delay))); skip

where the merge mechanism M is defined by

M =df ((st, pos) :

(
({term, stable, div}, N),

(glb, max)

)

The delay commands are used to synchronise the end time of the two compo-
nents and the successive skip command makes the program satisfy HC4. The



A Hybrid Relational Modelling Language 135

merge mechanism M merges the status of the parallel components with a great-
est lower bound operator. For example, if st′ of P is term and st′ of Q is stable,
then the st′ of P ‖ Q is stable. It also merges the pos′ for the output signals to
be the greater one, i.e. if pos′ of P is m and pos′ of Q is n, then the pos′ of P ||Q
is max(m,n).

With the definition of the merge mechanism M , we can obtain that the domain
of healthy hybrid relations is closed w.r.t. parallel composition.

Theorem 6.
If P and Q is healthy hybrid relations, i.e., P = H(P ) and Q = H(Q), then so
does P‖MQ, i.e., P‖MQ = H(P‖MQ).

The parallel composition is symmetric and associative, and distributes over con-
ditional and nondeterministic choices. Furthermore, it has skip and chaos as its
unit and zero respectively. Moreover, the parallel composition has a true concur-
rent semantics: parallel components proceed independently and simultaneously.

Theorem 7.

(1) (x := e;P ) ‖ Q = (x := e); (P ‖ Q)
(2) (delay(δ);P ) ‖ (delay(δ);Q) = delay(δ); (P ‖ Q)
(3) delay(ε) ‖ delay(δ) = delay(max(ε, δ))

Guard Condition.
This subsection focusses on the guard conditions that will appear in the new
hybrid structures when and until which will be defined in the next section.
In our hybrid language, the guard condition supports the following form:
(1) value test: monitoring the value changing of a continuous variable. (2) signal:
monitoring the emission of a signal. (3) their combinations via operator · and +.
Like the hybrid automata, our language supports a transition when the value
of a continuous variable exceeds a given bound. In addition, our language can
support the reactions to receiving certain signals from the environment.

Example 4 (Gear shifting). Consider a car-driving control system. For a manual
transmission car, its accelerating process can be divided into 4 shifting modes
depending on the running gears. Assume that the proper speed interval for shift-
ing from gear 1 to gear 2 is 20 kph to 30 kph. The car will change gear from 1
to 2 when (1) the current speed lies in the interval, and (2) the driver pushes
the gear lever from 1 to 2. Let signal gear up means the driver pushes the gear
lever, the specification of the shifting can be written as follows.

when ((20 < v ≤ 30) · gear up & Gear2)

where v is a continuous variable representing the speed of the car; Gear2 repre-
sents the specification for the running mode of the car with gear 2. The guard
condition involves both value testing and signal reception. �



136 H. Jifeng and L. Qin

To specify the reactive behaviours, we need to define the trigger condition of
the guards. We introduce the following function fired to specify the status of a
guard g over time interval:

g.fired : Interval → Time → Bool

where for any τ ∈ [t, t′], g.fired([t, t′])(τ) = true indicates g is fired at the
time instant τ . In other terms, given a time instant τ within the time interval
[t, t′], the function tells us whether the guard g is fired at τ .
This function is defined by induction as follows:

1. I is ignited immediately after it starts its execution.
I.fired([t, t′])(τ) =df (τ = t)

2. s is fired whenever an input signal s is received.
s.fired([t, t′])(τ) =df ∃n ∈ N • (τ, n) ∈ s.clock′

3. test is fired whenever the value of expression test is true at that time instant.
test.fired([t, t′])(τ) =df test(τ)

4. the composite guard g1 · g2 is fired only when both g1 and g2 are fired simul-
taneously.

(g1 · g2).fired =df g1.fired ∧ g2.fired
5. the composite guard g1 + g2 is fired when either g1 or g2 is fired.

(g1 + g2).fired =df g1.fired ∨ g2.fired

Two guards are identical if they have the same firing function:
(g = h) =df (g.fired = h.fired)

From the above definitions and the properties of predicate combinators we con-
clude that both guard combinators · and + are idempotent, symmetric and
associative, and furthermore · distributes over +.

Theorem 8.

(1) (Guard, +, ·, true, false) forms a Boolean algebra.
(2) g + true = true.
(3) g · false = false.

We say g is weaker than h (denoted by g ≤ h), if the ignition of h can awake g
immediately:

g ≤ h =df h = (h · g)
From Theorem 8(1) it follows that ≤ is a partial order. Then we have

g ≤ h iff g = (g + h).
In order to specify the blocking behaviour of the when construct, we need to
define a trigger condition for the guard condition so that it is fired at the endpoint
of a time interval and before that it remains unfired. To identify such cases we
introduce the boolean function g.triggered : Interval → Bool.

g.triggered([t, t′]) =df

(
g.fired([t, t′])(t′) ∧
∀τ ∈ [t, t′) • ¬g.fired([t, t′])(τ)

)



A Hybrid Relational Modelling Language 137

To specify those cases when the guard g remains inactive we introduce the
boolean function g.inactive : Interval → Bool.

g.inactive([t, t′]) =df ∀τ ∈ [t, t′] • ¬g.fired([t, t′])(τ)

Note that g.triggered �= ¬g.inactive. For example, let g be (c = 3) where
c is a timer. For the interval [0, 4], we have both g.triggered = false and
g.inactive = false since g.fired([0, 4])(3) = true.
The corresponding boolean functions for the composition of guards have the
following properties.

Theorem 9.

(1) (g1+g2).triggered =

(
g1.triggered ∧ (g2.triggered ∨ g2.inactive) ∨
g2.triggered ∧ (g1.triggered ∨ g1.inactive)

)

(2) (g1 + g2).inactive = g1.inactive ∧ g2.inactive

When Statement.
With the boolean functions triggered and inactive defined above, we can define
the semantics of the when construct.
The program when(g1&P1[]....[]gn&Pn) waits for one of its guards to be fired,
then selects a program Pi with the ignited guard to be executed. It is much
like the conventional guarded choice construct except that its guards refer to
continuous variables and signals whose status change through time.
In detail, the behaviour of when(g1&P1[]....[]gn&Pn) can be interpreted as fol-
lows.

(1) It will keep waiting (st′ = stable) when every guard is inactive in its execu-
tion interval [t, t′].

(2) It will execute Pi when gi is triggered during its execution interval [t, t′].
If more than one guard is triggered, the triggered branches are selected
nondeterministically.

Definition 9.

when(g1&P1[]....[]gn&Pn) =df

H(st′ = stable ∧ IIB ∧ time−passing ∧ (g1 + ... + gn).inactive)) ∨
∨

1≤i≤n

H

(
st′ = term ∧ IIPV ar∪B ∧ time−passing ∧ update(pos, gi) ∧
gi.triggered ∧ (g1 + .. + gn).triggered

)
; Pi

where

B =df {s.clock | s ∈ OutSignal}
update(pos, g) =df (pos′ = pos) � g ∩ Signal = ∅ � (pos′ > max(pos, index(g))

index(g) =df max({0} ∪ {π2(last(s.clock′)) | s ∈ g})



138 H. Jifeng and L. Qin

The update(pos, g) makes sure that the variable pos′ records the maximum
index of the signals emitted at the same time so far.
From Theorem 4 we conclude that when(g1&P1[]...[]gn&Pn) lies in the complete
lattice L introduced in Theorem5 whenever all guarded programs Pi are elements
of L. In other words, the healthy hybrid relation domain is closed w.r.t. the when
construct.

Some interesting algebraic laws of the when statement are listed below:

Theorem 10.

(1) The guards of the same guarded branch can be composed by + operator.
when(g1&P [] g2&P [] G) = when((g1 + g2)&P [] G)

(2) The effect of true guard is equivalent to the guard I.
when(true&P [] G) = when(I&P [] G)

(3) The successive program of the when construct can be distributed to every
branch of the when construct.
when(g1&P1 []...[] gn&Pn);Q = when(g1&(P1;Q) []...[] gn&(Pn;Q))

(4) The previous assignment can be distributed to every branch of the when
construct.

(x := e);when(g1&P1 []...[] gn&Pn)

= when(g1[e/x]&(x := e;P1) []...[] gn[e/x]&(x := e;Pn))
(5) The branches with the same guard can be combined with nondeterministic

choice.
when(g&P [] g&Q [] G) = when(g&(P � Q) [] G)

(6) A branch with conditional choice can be divided into two branches.

when(g&(P � b � Q) [] G) = when((b · g)&P [] (¬b · g)&Q [] G)

Until Statement.
The statement R until g specifies a hybrid program where the change of the con-
tinuous variables is governed by the hybrid relation R until the guard condition
g is triggered. It is suitable to specify the behaviour of the control plant which
evolves accordingly until receiving control signals from the controlling device.

Definition 10.
Let R(v, v̇) be a hybrid relation specifying the dynamics of the continuous vari-
able v. Let g be a guard. Assume that all the signals of g are included in the
alphabet of R, then

α(R until g) =df αR

and the behaviour of R until g is described by

R until g =df H

⎛

⎜⎜
⎜⎜
⎝

(
st′ = stable ∧ IIB ∧ R ∧
time−passing ∧ g.inactive

)

∨
(

st′ = term ∧ IIPV ar∪B ∧ update(pos, g) ∧ R ∧
time−passing ∧ g.triggered

)

⎞

⎟⎟
⎟⎟
⎠



A Hybrid Relational Modelling Language 139

where B =df {s.clock | s ∈ OutSignal}.
The R until g statement will keep stable when the guard g is inactive during the
execution interval where the continuous variables evolve as the hybrid relation
R specifies. It will terminate when the guard g is triggered.

Theorem 11.
The until constructor is monotonic with respect to its hybrid relation component.

If R1 � R2 then (R1 until g) � (R2 until g).

Example 5 (Bouncing ball). Consider the bouncing ball system. Let q be a
continuous variable indicating the distance between the ball and the floor. The
dynamics of the ball in its falling phase can be specified as follows.

Fall =df ((q ≥ 0 ∧ q̈ = −g) init q̇ = 0) until q = 0

where g is the acceleration imposed by gravity.
When the ball hits the ground at time τ , its velocity q̇ will change to −rq̇(τ)
instantaneously where r is a restitution coefficient ranging over (0, 1]. In order
to set the initial value of q̇ for the bouncing-back phase, we use the sampling
assignment x ← q̇ to copy the value of q̇(τ) to a discrete variable x after Fall.

The dynamics of the ball in its bouncing-back phase can be specified as follows.

Bounce =df ((q ≥ 0 ∧ q̈ = −g) init q̇ = −rx) until q̇ = 0

In summary, the bouncing ball system with the initial height h0 > 0 from the
ground can be specified as

BBall =df (q ← h0); (Fall; (x ← q̇);Bounce)∗.

Note that when r < 1, the initial position of the ball in the falling phase is
decreased for each iteration. It results to Zeno behaviour when the execution
time is large enough and the time cost for each iteration becomes significantly
close to 0. In this case, the process can perform infinite transitions within a very
small time interval, which is considered as chaos in our model. To avoid the
Zeno behaviour, we let the system stop bouncing when the speed of the ball is
smaller than a small enough value δ.

Non Zeno BBall =df (q ← h0); (Fall; (x ← q̇); (Bounce � x ≥ δ � idle))∗ �

Signal Hiding.
Let P be a program, and s an output signal of P . The signal hiding operator
signals • P makes the signal s a bounded signal name of P which cannot be
observed by P ’s environment. Through signal hiding operator, the scope of a
signal can be set by the designers so that only the parallel components can react
to a signal. It is helpful when modeling a distributed hybrid system where each
component has limited communication capacity.

Definition 11 (Signal Hiding).
The signal hiding statement signal s • P behaves like P except that s becomes
invisible to its environment.



140 H. Jifeng and L. Qin

signal s • P =df ∃s.clock′ • P [ε/s.clock]

with α(signal s • P ) =df α(P ) \ {s.clock, s.clock′}
where ε denotes the empty sequence.

Timer Declarations.
Let P be a hybrid program, and c a timer of P . The timer declaration operator
timer c • P declares P as the region of permitted use of timer c. A timer c is a
special continuous variable with its derivation ċ = 1.

Definition 12 (Timer declaration).
The timer declaration statement set c to be a local timer of P starting from 0.

timer c • P =df ∃c • P [0/c[t]]

with α(timer c • P ) =df α(P ) \ {c}

The timer declaration operator facilitates the modeling of time-out mechanism
which is one of the common reaction mechanisms in hybrid systems.

Example 6. Consider a control requirement that a program will execute P when
a signal s is received within 3 s, otherwise, it will execute Q. This requirement
can be specified with the time-out mechanism as follows.

timer c • when((c < 3) · s & P [] (c ≥ 3) & Q) �

Theorem 12.
The delay command can be rewritten as the following time-out form.

delay(δ) = timer c • idle until (c ≥ δ)

Recursion.
Based on the conclusion in Sect. 3.2 and the combinators defined in above subsec-
tions, the healthy hybrid programs form a complete lattice L and is closed w.r.t.
all above combinators. In this sense, we can obtain the semantics of recursive
programs in this domain.

Definition 13 (Recursion).
A recursive program is defined as the weakest fixed point, denoted as μX.F (X),
of the equation X = F (X) in the complete lattice L.

The notation νX.F (X) is used to stand for the strongest fixed point of the above
equation. The fixed points μF and νF are subject to the following laws:

Theorem 13.

(1) Y � μX.F (X) whenever Y � F (Y )
(2) νX.F (X) � Y whenever F (Y ) � Y
(3) If F (X) � G(X) for all X, then μX.F (X) � μX.G(X) and νX.F (X) �

νX.G(X).



A Hybrid Relational Modelling Language 141

For simplicity we will use the notation P ∗ to stand for the recursive program
μX.(P ;X).
Theorem 14.
If P � Q then P ∗ � Q∗

Following the concept of approximation chain explored in [HH98], we are going
to show that under some conditions the strongest and weakest fixed points of
the equation X = P ;X are in fact the same.
Theorem 15.
If there exists l > 0 such that P [term, term/st, st′] � (t′ − t) ≥ l, then
(1) μX.(P ;X) = νX.(P ;X)
(2) P ∗ � S whenever (P ;S) � S

This theorem provides us a verification approach for the iterative program in
which each iteration takes some time to finish. In other terms, it does not consider
the programs with Zeno behaviours. According to this theorem, to prove that
the non-Zeno iterative program satisfy a given specification, it is sufficient for
us to prove its single iteration does not violate the specification.
For the systems that contains Zeno behaviour, we need to change the specifi-
cation to make an approximation for avoiding the Zeno behaviour by setting a
lower bound to the interval for each iteration. It can be reviewed in Example 5.

4 Conclusion

This paper proposes a hybrid modelling language, where the discrete transitions
are modelled by assignment and output as zero time actions, while the contin-
uous transitions of physical world are described by differential equations and
synchronous constructs. We adopt a signal-based interaction mechanism to syn-
chronise the activities of control programs with physical devices. A rich set of
guard compositions allows us to construct sophisticated firing conditions of the
transition of physical devices.
Compared with hybrid automata and HCSP, our language enriches the inter-
action mechanisms between processes via supporting asynchronous reactions to
more complicated guards allowing combinations of testing and signals inspired
by Esterel language. Besides, our language is equipped with true concurrency
semantics of parallel composition and the communications between components
are not restricted to fixed channels. In our language, the physical state of the
system can be observed by all control programs and the signals can be exchanged
between them with engineered protocols. It can specify the coordination control
patterns in many modern control scenarios in which a set of physical objects are
controlled by a network of control components.
In the future we plan to work on a proof system for hybrid program based on
the algebraic laws obtained from the UTP semantics of the hybrid language.
Besides the conventional sequential combinators, the proof system will focus on
verification of parallel programs. We also intend to carry out non-trivial case
studies with multiple physical objects and network of control components using
the hybrid language and the proof system.



142 H. Jifeng and L. Qin

References

[dSS00] van der Schaft, A.J., Schumacher, J.M.: An Introduction to Hybrid Dynam-
ical Systems. Springer, Verlag (2000)

[Bra95] Branicky, M.S.: Studies in hybrid systems: modeling, analysis, and control.
Ph.D. Thesis, EECS Department, Massachusetts Institute of Technology
(1995)

[ACH93] Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.-H.: Hybrid automata: an
algorithmic approach to the specification and verification of hybrid systems.
In: Grossman, R.L., Nerode, A., Ravn, A.P., Rischel, H. (eds.) HS 1991-
1992. LNCS, vol. 736, pp. 209–229. Springer, Heidelberg (1993). doi:10.1007/
3-540-57318-6 30

[Ben98] Benveniste, A.: Compositional and uniform modelling of hybrid systems.
IEEE Trans. Autom. Control 43(4), 579–584 (1998)

[BCP10] Benveniste, A., Cailland, B., Pouzet, M.: The fundamentals of hybrid system
modelers. In: CDC, pp. 4180–4185. IEEE (2010)

[BG92] Berry, G., Gonthier, G.: The esterel synchronous programming language:
design, semantics and implementation. Sci. Comput. Program. 19(2), 87–
152 (1992)

[Ber96] Berry, G.: Constructive semantics of Esterel: from theory to practice
(abstract). In: Wirsing, M., Nivat, M. (eds.) AMAST 1996. LNCS, vol. 1101,
pp. 225–225. Springer, Heidelberg (1996). doi:10.1007/BFb0014318

[CPP06] Carloni, L.P., Passerone, R., Pinto, A.: Languages and tools for hybrid sys-
tems design. Found. Trends Electron. Des. Autom. 1(1/2), 1–193 (2006)

[Des96] Deshpande, A., Göllü, A., Varaiya, P.: SHIFT: a formalism and a program-
ming language for dynamic networks of hybrid automata. In: Antsaklis, P.,
Kohn, W., Nerode, A., Sastry, S. (eds.) HS 1996. LNCS, vol. 1273, pp. 113–
133. Springer, Heidelberg (1997). doi:10.1007/BFb0031558

[Dij76] Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall, Englewood
Cliffs (1976)

[He94] Jifeng, H.: From CSP to hybrid systems. In: Roscoe, A.W. (ed.) a classical
mind: essays in honour of C.A.R. Hoare, pp. 171–189 (1994)

[He03] Jifeng, H.: A clock-based framework for constructions of hybrid systems. In:
The Proceedings of ICTAC 2013 (2013)

[Hen96] Henzinger, T.A.: The theory of hybrid automata. In: LICS, pp. 278–292.
IEEE Computer Society (1996)

[Hoa85] Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall, Upper
Saddle River (1985)

[HH98] Hoare, C.A.R., Jifeng, H.: Unifying Theories of Programming. Prentice Hall,
Englewood Cliffs (1998)

[Koh88] Kohn, W.: A declarative theory for rational controllers. In: Proceedings of
27th CDC, pp. 130–136 (1988)

[Kra06] Kratz, F., Sokolsky, O., Pappas, G.J., Lee, I.: R-Charon, a modeling lan-
guage for reconfigurable hybrid systems. In: Hespanha, J.P., Tiwari, A. (eds.)
HSCC 2006. LNCS, vol. 3927, pp. 392–406. Springer, Heidelberg (2006).
doi:10.1007/11730637 30

[MMP91] Maler, O., Manna, Z., Pnueli, A.: Prom timed to hybrid systems. In: Bakker,
J.W., Huizing, C., Roever, W.P., Rozenberg, G. (eds.) REX 1991. LNCS,
vol. 600, pp. 447–484. Springer, Heidelberg (1992). doi:10.1007/BFb0032003

http://dx.doi.org/10.1007/3-540-57318-6_30
http://dx.doi.org/10.1007/3-540-57318-6_30
http://dx.doi.org/10.1007/BFb0014318
http://dx.doi.org/10.1007/BFb0031558
http://dx.doi.org/10.1007/11730637_30
http://dx.doi.org/10.1007/BFb0032003


A Hybrid Relational Modelling Language 143

[Mil99] Milner, R.: Communicating and Mobile Systems: the π-calculus. Cambridge
University Press, New York (1999)

[Pla08] Platzer, A.: Differential dynamic logic: automated theorem proving for
hybrid systems. Ph.D. thesis, Department of Computing Science, Univer-
sity of Oldenburg (2008)

[Pla10] Platzer, A.: Logical analysis of hybrid systems. In: Kutrib, M., Moreira, N.,
Reis, R. (eds.) DCFS 2012. LNCS, vol. 7386, pp. 43–49. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-31623-4 3

[RRS03] Ronkko, M., Ravn, A.P., Sere, K.: Hybrid action systems. Theoret. Comput.
Sci. 290(1), 937–973 (2003)

[RS03] Rounds, W.C., Song, H.: The Ö-calculus: a language for distributed control
of reconfigurable embedded systems. In: Maler, O., Pnueli, A. (eds.) HSCC
2003. LNCS, vol. 2623, pp. 435–449. Springer, Heidelberg (2003). doi:10.
1007/3-540-36580-X 32

[Sim] Simulink. www.mathworks.com/products/simulink/
[Tar41] Tarski, A.: On the calculus od relations. J. Symbolic Logic 6(3), 73–89 (1941)
[Tar55] Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pac.

J. Math. 5, 285–309 (1955)
[Tav87] Tavermini, L.: Differential automata and their discrete simulations. Non-

Linear Anal. 11(6), 665–683 (1987)
[ZH04] Chen, Z.C., Hansen, M.R.: Duration Calculus: A Formal Approach to Real-

time Systems. Springer, Heidelberg (2004)
[ZWR96] Chaochen, Z., Ji, W., Ravn, A.P.: A formal description of hybrid systems.

In: Alur, R., Henzinger, T.A., Sontag, E.D. (eds.) HS 1995. LNCS, vol. 1066,
pp. 511–530. Springer, Heidelberg (1996). doi:10.1007/BFb0020972

http://dx.doi.org/10.1007/978-3-642-31623-4_3
http://dx.doi.org/10.1007/3-540-36580-X_32
http://dx.doi.org/10.1007/3-540-36580-X_32
www.mathworks.com/products/simulink/
http://dx.doi.org/10.1007/BFb0020972


What Makes Petri Nets Harder to Verify:
Stack or Data?

Ranko Lazić1(B) and Patrick Totzke2

1 Department of Computer Science, DIMAP, University of Warwick, Coventry, UK
R.S.Lazic@warwick.ac.uk

2 LFCS, School of Informatics, University of Edinburgh, Edinburgh, UK

Abstract. We show how the yardstick construction of Stockmeyer, also
developed as counter bootstrapping by Lipton, can be adapted and
extended to obtain new lower bounds for the coverability problem for two
prominent classes of systems based on Petri nets: Ackermann-hardness
for unordered data Petri nets, and Tower-hardness for pushdown vector
addition systems.

1 Introduction

Unordered Data Petri Nets. (UDPN [15]) extend Petri nets by decorating
tokens with data values taken from some countable data domain D, broadly in
the vein of coloured Petri nets [13]. These values act as pure names: they can only
be compared for equality or non-equality upon firing transitions. Such systems
can model for instance distributed protocols where process identities need to be
taken into account [24]. UDPNs also coincide with the natural generalisation
of Petri nets in the framework of sets with atoms [3]. In spite of their high
expressiveness, UDPNs fit in the large family of Petri net extensions among the
well-structured ones [1,8]. As such, they still enjoy decision procedures for several
verification problems, prominently safety through the coverability problem.

UDPNs have an interesting position in the taxonomy of well-structured Petri
net extensions (see Fig. 1). Indeed, all their extensions forgo the decidability of
the reachability problem (whether a target configuration is reachable) and of the
place boundedness problem (whether the number of tokens in a given place can
be bounded along all runs): this is the case of ν-Petri nets [24] that allow to
create fresh data values, of ordered data Petri nets [15] that posit a dense linear
ordering on D, and of unordered data nets [15] that allow to perform ‘whole-
place’ operations, which move and/or duplicate all the tokens from a place to
another. By contrast, it is currently open whether reachability is decidable for
UDPNs, but recent results on computing their coverability trees [11] and on
linear combinations of unordered data vectors [12] suggest to conjecture decid-
ability.

Supported by the EPSRC, grants EP/M011801/1 and EP/M027651/1, and by the
Royal Society, grant IE150122.

c© Springer International Publishing AG 2017
T. Gibson-Robinson et al. (Eds.): Roscoe Festschrift, LNCS 10160, pp. 144–161, 2017.
DOI: 10.1007/978-3-319-51046-0 8



What Makes PN Harder: Stack or Data? 145

ordered data Petri nets [15]
Fωωω -complete [10]

decidable coverability ordered data nets [15]
Fωωω -complete [10]

ν-Petri nets [24]
Fω·2-complete [17] unordered data nets [15]

Fωω -complete [23]

affine nets [7]
Fω-complete [27,6]

unordered data Petri nets [15]
Fω ≤ ? ≤ Fω·2

Petri nets
ExpSpace-complete [21,22]

+whole-p
lace

+
o
rd

er

+
o
rd

er

+fresh
+whole-place

+
d
a
ta

+
d
a
ta

+whole-place
decidable
place boundedness

Fig. 1. A short taxonomy of some well-structured extensions of Petri nets. The com-
plexities refer to the coverability problems, and can be taken as proxies for expressive-
ness; the new lower bound in this paper is displayed in blue, and the exact complexity
for UDPNs remains open. Place boundedness is decidable below the yellow line and
undecidable above. As indicated by the dashed arrows, freshness can be enforced using
a dense linear order or whole-place operations. (Color figure online)

The Power of Well-Structured Systems. This work is part of a general
programme that aims to understand the expressive power and algorithmic com-
plexity of well-structured transition systems (WSTS), for which the complexity
of the coverability problem is a natural proxy. Besides the intellectual satisfac-
tion one might find in classifying the worst-case complexity of this problem, we
hope indeed to gain new insights into the algorithmics of the systems at hand,
and into their relative ‘power’. A difficulty is that the generic backward algo-
rithm [1,8] developed to solve coverability in WSTS relies on well-quasi-orders
(wqos), for which complexity analysis techniques are not so widely known.

Nevertheless, in a series of recent papers, the exact complexity of coverabil-
ity for several classes of WSTSs has been established. These complexities are
expressed using ordinal-indexed fast-growing complexity classes (Fα)α [25], e.g.
Tower complexity corresponds to the class F3 and is the first non elementary
complexity class in this hierarchy, Ackermann corresponds to Fω and is the
first non primitive-recursive class, hyper-Ackermann to Fωω and is the first
non multiply-recursive class, etc.; see Fig. 2. To cite a few of these complex-
ity results, coverability is Fω-complete for reset Petri nets and affine nets [6,27],
Fω·2-complete for ν-Petri nets [17], Fωω -complete for lossy channel systems [4,26]
and unordered data nets [23], and even higher complexities appear for timed-arc
Petri nets and ordered data Petri nets (Fωωω -complete [10]) and priority channel
systems and nested counter systems (Fε0 -complete [5,9]); see the complexities
in violet in Fig. 1 for the Petri net extensions related to UDPNs.



146 R. Lazić and P. Totzke

Elementary

F3 = Tower

⋃
kFk=Primitive-Recursive

Fω
Fω+1

Fω·2

⋃
α<ωω Fα = Multiply-Recursive

Fωω

Fig. 2. Some complexity classes beyond Elementary. The two new lower bounds in
this paper are F3 (Sect. 3) and Fω (Sect. 7), whereas the best known upper bound for
UDPN coverability is Fω·2 [17].

New Lower Bound for UDPNs. In this paper, we tackle the huge gap in what
is known about the worst-case complexity of the coverability problem for UDPNs:
between the Tower, i.e. F3, lower bound established in [15] and the Fω·2 upper
bound that holds even for the more general class of ν-Petri nets [17]. Our main
result is an increased Fω lower bound, making it known that coverability for
UDPNs cannot be decided in primitive recursive time or space.

For this Ackermann lower bound, we follow the pattern of Stockmeyer’s
yardstick construction [28] and Lipton’s classical proof of ExpSpace-hardness
for Petri nets [21], in that we design an ‘object-oriented’ implementation of
the Ackermann function in UDPNs. By this, we mean that the implementation
provides an interface with increment, decrement, zero, and max operations on
larger and larger counters up to an Ackermannian value. This allows then the
simulation of a Minsky machine working in Ackermann space.

The difficulty is that the bootstrapping implementation in UDPNs of the
hierarchy of counters requires an iteration operator on ‘counter libraries’—of
the kind employed recently in the context of channel systems with insertion
errors to obtain Fω-hardness [16] and in the context of ν-Petri nets to obtain
Fω·2-hardness [17]—but UDPNs have fundamentally unordered configurations
as well as no basic mechanism for creating fresh data values. To overcome that
obstacle—and this is the key technical idea in the paper—we enrich the inter-
faces of the counter implementations by a local freshness test : verifying that a
given data value is distinct from all data values that the implementation (and,
recursively, the implementations of all lesser counters in the hierarchy) currently
employs internally; see Sects. 5 and 6.

Pushdown Vector Addition Systems. Motivations for considering exten-
sions of Petri nets by a pushdown stack include verifying procedural programs



What Makes PN Harder: Stack or Data? 147

with unbounded integer variables [2] and optimising two-variable queries on XML
documents with unbounded data at leaf nodes [14]. The boundedness problem, as
well as the coverability and counter-boundedness problems in the restricted set-
ting of pushdown vector addition systems (PVAS) of dimension 1, have recently
been shown decidable [18–20]. However, the coverability and reachability prob-
lems are interreducible for PVASs in general [14,20], and the whether they are
decidable remains a challenging open question.

Partly in order to introduce the bootstrapping technique that is the basis of
our Fω lower bound for UDPN coverability, we present a proof that the reach-
ability problem for PVASs (also the coverability and boundedness problems) is
F3-hard; this Tower lower bound means that the latter problems cannot be
decided in elementary time or space.

Outline. In the two sections, we introduce the bootstrapping technique using
pushdown vector addition systems and obtain Tower-hardness of their reacha-
bility problem. The four sections that follow develop the more involved Acker-
mann-hardness of the coverability problem for unordered data Petri nets. The
latter lower bound still leaves a gap to the best known Fω·2 upper bound, and
we finish with some remarks about that in the concluding section.

2 Pushdown Vector Addition Systems

It is convenient for our purposes to formalise PVASs as programs that operate
on non-negative counters and a finite-alphabet stack. More precisely, we define
them as finite sequences of commands which may be labelled, where a command
is one of:

– an increment of a counter (x := x + 1),
– a decrement of a counter (x := x − 1),
– a push (push a),
– a pop (pop a),
– a nondeterministic jump to one of two labelled commands (goto L or L′),
– or termination (halt).

Initially, all counters have value 0 and the stack is empty. Whenever a decrement
of a counter with value 0 or an erroneous pop is attempted, the program aborts.
In every program, halt occurs only as the last command.

Example 2.1. We display in Fig. 3 a PVAS fragment, which will be useful in the
next section. It is shown diagramatically, where multiple outgoing edges from a
node are to be implemented by the nondeterministic jumps.

The reachability problem for PVASs can now be stated as follows:

Input: A PVAS P.
Question: Does P have a computation which reaches the halt command with
all counters being 0 and the stack being empty?



148 R. Lazić and P. Totzke

Fig. 3. PVAS procedure Deck+1. The calls of procedures Deck and Deck use the stack
in the standard manner. The latter is the variant of Deck that decrements s̄k exactly
tower(k) times, i.e. with sk and s̄k swapped.

3 Tower-Hardness

Theorem 3.1. The reachability problem for PVASs is Tower-hard.

Proof. We reduce from the tower(n)-bounded halting problem for Minsky pro-
grams with n commands, where:

– for k ∈ N, the ‘tetration’ operation is defined by

tower(0) = 1 and tower(k + 1) = 2tower(k) ;

– the Minsky programs are defined like PVASs, except that they have no stack,
have only deterministic jumps (goto L), but can test counters for zero (if x =
0 then L else L′).

The following problem is Tower-hard [25, Sect. 2.3.2 and Theorem 4.1]:

Input: A Minsky program M with n commands.
Question: Can M reach the halt command by a computation during which all
counter values are at most tower(n)?

Given such a Minsky program M, we construct in time polynomial in n a
PVAS P(M) that simulates M as long as its counters do not exceed tower(n).
Similarly to Stockmeyer’s yardstick construction [28] and Lipton’s proof of
ExpSpace-hardness for Petri nets [21], the idea is to bootstrap the ability to
simulate zero tests of counters that are bounded by tower(1), tower(2), . . . ,
tower(n).

More precisely, for each counter x of M, P(M) have a pair of counters x and
x̄, on which it maintains the invariant x + x̄ = tower(n). Thus, every increment



What Makes PN Harder: Stack or Data? 149

of x in M is translated to x := x + 1; x̄ := x̄ − 1 in P(M), and similarly for
decrements.

For every zero test of x in M, P(M) uses auxiliary counters sn and s̄n, for
which it also maintains sn + s̄n = tower(n). Moreover, we assume that sn =
0 at the start of each zero-test simulation. The simulation begins by P(M)
transferring some part of x̄ to sn (while preserving the invariants). It then calls
a procedure Decn that decrements sn exactly tower(n) times. For the latter to
be possible, x must have been 0. Otherwise, or in case not all of x̄ was transferred
to sn, the procedure can only abort. When Decn succeeds, the initial values of
x and x̄ are reversed, so to finish the simulation, everything is repeated with x
and x̄ swapped.

The main part of the construction is implementing Deck for k = 1, 2, . . . , n.
Assuming that Deck which decrements sk exactly tower(k) times and maintains
sk + s̄k = tower(k) has been implemented for some k < n, Deck+1 consists of
performing the following by means of sk, s̄k and Deck, cf. Fig. 3:

– push exactly tower(k) zeros onto the stack;
– keep incrementing the tower(k)-digit binary number that is on top of the stack

until no longer possible, and decrement sk+1 for each such increment;
– pop tower(k) ones that are on top of the stack, and decrement sk+1 once more.

Following the same pattern: starting with all counters having value 0, P(M)
can initialise each auxiliary counter s̄k to tower(k), and each x̄ to tower(n); also
provided M reaches its halt command, P(M) can empty all its counters, as
required.

��

4 Unordered Data Petri Nets

This extension of classical Petri nets is by decorating tokens with data values
taken from some countably infinite data domain D. These values act as pure
names: they can only be compared for equality or non-equality upon firing tran-
sitions. We recall the definition from [23,24].

A multiset over set X is a function M : X → N. The set X⊕ of all multisets
over X is ordered pointwise, and the union of M,M ′ ∈ X⊕ is (M ⊕ M ′) ∈ X⊕

with (M ⊕ M ′)(α) def= M(α) + M ′(α) for all α ∈ X. If M ≥ M ′ holds then the
difference (M � M ′) is defined as the unique M ′′ ∈ X⊕ with M = M ′ ⊕ M ′′.

Definition 4.1. An unordered data Petri net (UDPN) over domain D consists
of finite sets P, T,Var of places, transitions and variables, respectively, and a
flow function F : (P × T ) ∪ (T × P ) → Var⊕ that assigns each place p ∈ P and
transition t ∈ T a finite multiset of variables.

A marking is a function M : P → D
⊕. Intuitively, M(p)(α) denotes the

number of tokens of type α in place p. A transition t ∈ T is enabled in marking
M with mode σ if σ : Var → D is an injection such that σ(F (p, t)) ≤ M(p) for



150 R. Lazić and P. Totzke

all p ∈ P . There is a step M −→ M ′ between markings M and M ′ if there exists
t and σ such that t is enabled in M with mode σ, and for all p ∈ P ,

M ′(p) = M(p) � σ(F (p, t)) ⊕ σ(F (t, p)) .

For notational convenience we will sometimes write that a marking M has
tokens 〈n1, n2, . . . , nk〉 of type α in places 〈p1, p2, . . . , pk〉 if M(pi)(α) = ni holds
for all 1 ≤ i ≤ k. Similarly, we write that a transition t takes (resp. puts)
〈n1, n2, . . . , nk〉 tokens of type α in places 〈p1, p2, . . . , pk〉 if for all 1 ≤ i ≤ k it
holds that F (pi, t)(α) = ni (resp. F (t, pi)(α) = ni).

Notice that UDPN are a generalization of ordinary P/T nets, which have
only one type of token, i.e. D = {•}. See Fig. 4 for a depiction of an UDPN in
the usual Petri net notation.

p1

t

p2

xxy

y
z

Fig. 4. An UDPN with places p1, p2, variables x, y, z and a single transition t. The
transition t takes 〈2, 0〉 tokens of type x and 〈1, 0〉 tokens of type y in places 〈p1, p2〉.
It puts 1 token of type z onto p2 and 1 token of type y onto p1.

The Coverability Problem for UDPN is the following decision problem where
∗−→ denotes the transitive and reflexive closure of the step relation.

Input: An UDPN (P, T,Var , F ) and two markings I, F : P → D
⊕.

Question: Does there exist a marking F ′ ≥ F such that I
∗−→ F ′?

The following example shows that three places and a simple addressing mech-
anism are enough to simulate ordinary Petri nets with an arbitrary number of
places. This suggests that UDPN are more succinct than Petri nets and indeed,
as we shall see in Sect. 6, UDPN can be used to design more involved addressing
mechanisms. This will allow us to push the classical approach of [21] to simulate
bounded counter machines from a double exponential bound to an Ackermannian
bound.

Example 4.2. Given a Petri net with places P = {p0, . . . , pn−1}, we build a
UDPN with three places a, ā, and v and variables Var = {x0, . . . , xn−1}.

The intuition is for a and ā to maintain an addressing mechanism for the
original places in P , while v maintains the actual token counts of the original
net. The places a and ā hold n − 1 different data values such that all reachable
configurations are of the form

⊕n−1
i=0 Mi where Mi(a) = i and Mi(ā) = n − 1 − i

for all 0 ≤ i < n.
Each partial marking Mi represents a marking of the place pi in the original

net by holding in Mi(v) the number of tokens in place pi. Each transition of the



What Makes PN Harder: Stack or Data? 151

p0

p1

p2

p3

2 �
a

ā

v

x1x2
2x3

3

x
3
0x

2
1x2

x0x1x3

x1x
2
2

Fig. 5. Simulation of a Petri net transition (left) by a UDPN (right).

original net translates into a UDPN transition where the flows of the variables
with places a and ā identify uniquely the places of the original net, while the
flows with place v update the token counts accordingly.

Figure 5 shows how a transition of a Petri net with 4 places (on the left) is
simulated with this construction (on the right).

5 Counter Libraries in UDPNs

To present our lower bound construction, we indirectly describe UDPNs in terms
of sequential programs. For this purpose we will now develop a simple but con-
venient language for programming with UDPNs.

Routines, Libraries, and Programs. Let a library mean a sequence of named
routines

�1 :R1, . . . , �K :RK

where �1, . . . , �K are pairwise distinct labels. In turn, a routine is a sequence
of commands c1, . . . , cK′ , where the last command cK′ is return and each ci for
i < K ′ is one of the following:

– a UDPN transition,
– a nondeterministic jump goto G for a nonempty subset G of {1, . . . , K ′}, or
– a subroutine invocation call �′.

When a library contains no subroutine calls, we say it is a program. The
denotation of a program L is a UDPN N (L) constructed so that:

– The places of N (L) are all the places that occur in transition commands of L,
and four special places p, p, p′, p′. Places 〈p, p〉 are used to store the pair
of numbers 〈i,K − i〉 where �i : Ri is the routine being executed, and then
places 〈p′, p′〉 to store the pair of numbers 〈i′,K ′ − i′〉 where i′ is the current
line number in routine Ri and K ′ is the maximum number of lines in any
R1, . . . , RK .

– Each transition of N (L) either executes a transition command ci′ inside some
Ri ensuring that 〈p, p〉 contains 〈i,K−i〉 and modifying the contents of 〈p′, p′〉
from 〈i′,K ′−i′〉 to 〈i′+1,K ′−(i′+1)〉, or similarly executes a nondeterministic
jump command.



152 R. Lazić and P. Totzke

We shall refer to the special places p, p, p′, p′ as control places, to the rest as
tape places, and to markings of the latter places as tape contents.

For two tape contents M and M ′, we say that a routine �i :Ri in a program
L can compute M ′ from M if and only if N (L) can reach in finitely many steps
M ′ with the control at the last line of Ri from M with the control at the first
line of Ri. When �i :Ri cannot compute any M ′ from M , we say that it cannot
terminate from initial tape content M .

Note that there are two sources of nondeterminism in routine computations:
choosing how to instantiate the variables in the commands that are UDPN tran-
sitions, and resolving the destinations of the jump commands. The computations
can also become blocked, which happens if they reach a UDPN transition that
is disabled due to insufficient tokens being available in the current tape content.

Interfaces and Compositions of Libraries. For a library L, let us write
Λin(L) and Λout(L) for the set of all routine labels that are invoked in L and
provided by L, respectively. We say that libraries L0 and L1 are compatible if and
only if Λin(L0) is contained in Λout(L1). In that case, we can compose them to
produce a library L0 ◦L1 in which tape contents of L1 persist between successive
invocations of its routines, as follows:

– Λin(L0 ◦ L1) = Λin(L1) and Λout(L0 ◦ L1) = Λout(L0).
– L0 ◦ L1 has an additional place w used to store the name space of L0 (i.e.,

for each name manipulated by L0, one token labelled by it) and an additional
place w for the same purpose for L1.

– For each routine � : R of L0, the corresponding routine � : R ◦ L1 of L0 ◦ L1 is
obtained by ensuring that the transition commands in R (resp., L1) maintain
the name space stored on place w (resp., w), and then inlining the subroutine
calls in R.

Example 5.1. Suppose that in L1 the routine with label �1 consists only of the
transition command a b

y y followed by return. Suppose further
that L0 has a routine with label �0 and commands a cx x followed
by call �. Then the corresponding routine �0 in the composition L0 ◦ L1 is

a c

w w

x x

x followed by
a b

w w

y y

y .

Notice that, in the above definition of N (L0 ◦ L1), the places of N (L0) and
N (L1) are not duplicated: a transion command in L0 may operate on some place
which is also used in L1. The name space places w and w and the way transition
commands translate into actual UDPN transitions in N (L0 ◦ L1) ensure that
the commands of the two libraries do not interfere. However, this relies on an
additional mechanism for preventing the same name to be used by both L0 and
L1—unless disjointness of corresponding places is guaranteed—and that is what
the local freshness checks developed in the sequel provide.



What Makes PN Harder: Stack or Data? 153

Counter Libraries. We aim to write programs that simulate bounded two-
counter Minsky machines. For this purpose we will now focus on libraries that
provide the necessary operations to manipulate a pair of counters. Letting Γ
denote the set of labels of operations

Γ
def= {init , fresh, eq , i.inc, i.dec, i.iszero, i.ismax : i ∈ {1, 2}} ,

we regard L to be a counter library if and only if Λout(L) = Γ and Λin(L) ⊆ Γ .
When L is also a program, and N is a positive integer, we say that L is N -

correct if and only if the routines behave as expected with respect to the bound
N and correctly implement a freshness test on a special tape place ν. Namely,
for every tape content M that can be computed from the empty tape content by
a sequence σ of operations from Γ , provided init occurs only as the first element
of σ, every routine in Γ \ {init} either does not terminate or computes a unique
tape content from M . If ni is the difference between the numbers of occurrences
in σ of i.inc and i.dec, we must have for both i ∈ {1, 2}:

– i.inc can terminate from M if and only if ni < N − 1;
– i.dec can terminate from M if and only if ni > 0;
– eq can terminate from M (and compute M) if and only if n1 = n2;
– i.iszero can terminate from M (and compute M) if and only if ni = 0;
– i.ismax can terminate from M (and compute M) if and only if ni = N − 1.

Moreover, N -correctness requires that L behaves with respect to fresh and ν so
that:

– only transition commands in the routines init and fresh use the place ν;
– if M is computed from the empty tape content by init , then M has no tokens

on place ν;
– for every tape content A that has one token of type α on place ν and is

otherwise empty, and for every tape content M computed by a sequence σ as
above, we have that fresh can terminate from M ⊕ A (and compute M ⊕ A)
if and only if α is not in the support of M(p) for all places p �= ν.

We also need a notion of correctness for counter libraries that may not be
programs, i.e. may invoke operations on another pair of counters (which we call
auxiliary). Given a counter library L, and given a function F : N+ → N

+, we
say that L is F − correct if and only if, for all N -correct counter programs C,
the program L ◦ C is F (N)-correct.

We now present two example counter libraries, which will be used in our later
constructions.

Example 5.2 (An Enumerated Counter Program). For every positive integer
N , one can implement a pair of N -bounded counters by manipulating the values
and their complements directly as follows. Let Enum(N) be the counter program
which uses four places e1, e1, e2, e2 and such that for both i ∈ {1, 2}:

– routine init chooses a datum β, and puts N − 1 tokens onto e1 and N − 1
tokens onto e2, all carrying β;



154 R. Lazić and P. Totzke

– routine fresh takes one token from e1 or e1, and checks it for inequality with
the token on ν;

– routine eq guesses n ∈ {0, . . . , N −1}, takes 〈n,N −1−n, n,N −1−n〉 tokens
from places 〈e1, e1, e2, e2〉, and then puts them back;

– routine i.inc moves a token from ei to ei;
– routine i.dec moves a token from ei to ei;
– routine i.iszero takes N − 1 tokens from place ei and then puts them back;
– routine i.ismax takes N − 1 tokens from place ei and then puts them back.

It is simple to verify that Enum(N) is computable in space logarithmic in N ,
and that:

Lemma 5.3. For every N , the counter program Enum(N) is N -correct.

Example 5.4 (A Counter Library for Doubling). Let Double be a counter library
which uses four places b1, b1, b2, b2, is such that:

– routine init first initialises the auxiliary counters (call init), then chooses a
datum β and checks that it is fresh with respect to the auxiliary counters
(call fresh), and finally puts one token carrying β onto both b1 and b2;

– routine fresh checks that the given datum (on the special place ν) is both fresh
with respect to the auxiliary counters, and distinct from the datum on b1 or
b1 (equivalently, b2 or b2), see Fig. 6 for the code that implements this;

– routine eq first calls eq on the auxiliary counters, then either takes 〈1, 0, 1, 0〉
or 〈0, 1, 0, 1〉 tokens from places 〈b1, b1, b2, b2〉, and finally puts them back;

and for both i ∈ {1, 2}:

– routine i.inc calls i .inc, or calls i .ismax and moves a token from bi to bi;
– routine i.dec calls i .dec, or calls i .iszero and moves a token from bi to bi;
– routine i.iszero calls i .iszero, takes a token from bi and puts it back;
– routine i.ismax calls i .ismax , takes a token from bi and puts it back.

Given a correct program C that provides counters bounded by N , the library
Double essentially uses two extra bits (each represented by a pair 〈bi, bi〉 of
places) to implement a program Double ◦ C , where the bound on the provided
counters is 2N .

Lemma 5.5. The counter library Double is λx.2x-correct.

1: call fresh

2: goto {3, 5}
3: ν b0

x y

4: goto {6}
5: ν b1

x y

6: return

Fig. 6. The routine fresh of the counter library Double. Here, the numbers on the left
of the commands are line numbers to be referenced in goto commands.



What Makes PN Harder: Stack or Data? 155

Proof. When the control reaches the end of the init routine, Double ◦ C has as
tape content a marking M ⊕MC , where MC is a marking of N (C ) representing
two 0-valued counters with bound N , and M has 〈0, 1, 0, 1〉 tokens of some type
β on places 〈b1, b̄1, b2, b̄2〉. So by adding two new most significant bits, this tape
content represents two 0-counters with bound 2N . Notice that all routines apart
from init preserve the invariant that tape contents have exaxtly two tokens of
type β on the places b1, b̄1, b2, b̄2. We can easily check that those routines satisfy
the respective correctness criteria.

For example, take the routine eq and let n1, n2 ∈ N denote the values of the
counters represented by the current tape content M . If n1 = n2, then M ⊕ MC

has 〈1, 0, 1, 0〉 or 〈0, 1, 0, 1〉 tokens on places 〈b1, b̄1, b2, b̄2〉 and the numbers n′
1, n

′
2

represented by MC are the same. Since C is N -correct, the command call eq ter-
minates. Moreover, one of the two operations to take 〈1, 0, 1, 0〉 or 〈0, 1, 0, 1〉 from
〈b1, b̄1, b2, b̄2〉 is possible. So eq terminates. Conversely, if n1 �= n2, then either
the content of places 〈b1, b̄1, b2, b̄2〉 is 〈0, 1, 1, 0〉 or 〈1, 0, 0, 1〉, or the values repre-
sented by the auxiliary counters are not equal. In the first case, the commands to
take 〈1, 0, 1, 0〉 or 〈0, 1, 0, 1〉 are disabled; in the latter case, the command call eq
does not terminate, by the correctness assumption on C .

In a similar fashion we can see that the routine fresh (see Fig. 6) is correct:
suppose the current tape content is M ⊕MC and A is the tape content that has
one token α on place ν and is otherwise empty. If α is different from β (used on
places bi, b̄i) and also different from all data values in the configuration of C ,
then the routine must terminate without changing the tape content. If α = β
then then both commands in lines 3 and 5 will block. If α appears in MC then
the command call fresh in line 1 must block. ��

6 Bootstrapping Counter Libraries

The most complex part of our construction is an operator −∗ whose input is
a counter library L. Its output L∗ is also a counter library which behaves like
an arbitrary number of copies of L composed in sequence. Namely, for every
N -correct counter program C, the counter operations provided by L∗ ◦C behave
in the same way as those provided by

N
︷ ︸︸ ︷
L ◦ · · · ◦ L ◦Enum(1).

Hence, when L is F -correct, we have that L∗ is F ′-correct, where F ′(x) = F x(1).
The main idea for the definition of L∗ is to combine a distinguishing of

name spaces as in the composition of libraries with an arbitrarily wide indexing
mechanism like the one employed in Example 4.2. The key insight here is that
a whole collection of ‘addressing places’ 〈ai, āi〉i as used in Example 4.2 can be
simulated by adding one layer of addressing. We will use the routine fresh to set
up this addressing mechanism during initialisation, recursively.

Let us write here I, I ′ for the two N -bounded auxiliary counters and number
the copies of L by 0, . . . , N −1, writing �1 :R1 up to �K :RK for the routines of L



156 R. Lazić and P. Totzke

and K ′ for the maximum number of commands in a routine. Since L is a counter
library, it has K = |Γ ′| = 11 routines, and we assume without loss of generality
that �1 = init and �2 = fresh. The net for L∗ can maintain the control and the
tape of each copy of L in the implicit composition as follows.

– To record that the program counter of the ith copy of L is currently in routine
�j :Rj at line j′, 〈i,N − 1 − i, j,K − j, j′,K ′ − j′〉 tokens carrying a separate
name αi are kept on special places 〈w,w, p, p, p′, p′〉.

– The current height i of the stack of subroutine calls is kept in one of the
auxiliary counters, and we have that:
• for all i′ < i, the program counter of the i′th copy of L is at some subroutine

invocation call �′ such that the program counter of the (i′ + 1)th copy of L
is in the routine named �′;

• for all i′ > i, there are 〈i′, N −1− i′, 0, 0, 0, 0〉 tokens carrying αi′ on places
〈w,w, p, p, p′, p′〉.

– For every name manipulated by the ith copy of L, 〈i,N −1−i〉 tokens carrying
it are kept on special places 〈w′, w′〉.

Table 1. A glossary of tape places in L∗. Not listed are places that are internally used
in transition commands of L, nor the control places of N (L∗ ◦ C ).

w, w̄ Contain the addressing mechanism for recording the current control
information of the Li

w′, w̄′ Contain the name spaces of the Li, where the multiplicities of
tokens identify the indices i

p, p̄ Identify the currently active routines of the Li

p′, p̄′ Identify the currently active commands of the Li

f Temporarily stores a guessed datum for comparison

ν Stores the datum to be checked for freshness

To define L∗, its places are all the places that occur in L, plus nine special
places w, w, w′, w′, p, p, p′, p′ and f . Table 1 summarises how those places
are used. All routines of the library L∗ end in the same sequence of commands,
which we will just call the simulation loop. This uses I ′ and place f repeatedly
to identify numbers j′ and j′′ such that there are exactly 〈I,N − 1 − I, j′,K −
j′, j′′,K ′ −j′′〉 tokens carrying αI on 〈w,w, p, p, p′, p′〉, and then advance the Ith
copy of L by performing its command c at line j′′ in routine �j′ : Rj′ of L as
follows.

– If c is a UDPN transition, use I ′ and place f to maintain the Ith name space,
i.e. to ensure that all names manipulated by c have 〈I,N − 1 − I〉 tokens on
places 〈w′, w′〉.

– If c has put a datum β on place ν, invoke routine fresh of the auxiliary counters.



What Makes PN Harder: Stack or Data? 157

1: call I.inc

2:
w f

x x

3: call I ′.inc

4: goto {5, 8}

5:
w f

x

x

x

6: call I ′.inc

7: goto {4}
8: call eq

9: goto {10, 13}

10:

w f
x

x

x

11: call I ′.inc

12: goto {9}
13: call I ′.ismax

14:
p

p

f p′

p′

x (j †
)

x(K−j†)

x

x(K′−1)

x x

15: goto {16, 19}

16:

w f
x

x

x

17: call I ′.dec

18: goto {15}
19: call eq

20: goto {21, 24}

21:
w f

x

x

x

22: call I ′.dec

23: goto {20}
24:

w f
x x

25: call I ′.dec

26: call I ′.iszero

Fig. 7. Performing a call �j† provided I < N − 1. At the beginning, I ′ is assumed to
be zero, and the same is guaranteed at the end.

– If c is a nondeterministic jump goto G, choose j‡ ∈ G and ensure that there
are 〈j‡,K ′ − j‡〉 tokens carrying αI on places 〈p′, p′〉.

– If c is a subroutine invocation call �j† and I < N −1, put 〈j†,K −j†, 1,K ′ −1〉
tokens carrying αI+1 on places 〈p, p, p′, p′〉, and increment I. Example code
that implements this can be found in Fig. 7.

– If c is a subroutine invocation call �′, I = N − 1 and �′ is not an increment
or a decrement (of the trivial counter program Enum(1)), simply increment
the program counter by moving a token carrying αI from place p′ to place p′.
When �′ is an increment or a decrement, L∗ blocks.

– In the remaining case, c is return. Remove the tokens carrying αI from places
〈p, p, p′, p′〉. If I > 0, move a token carrying αI−1 from p′ to place p′ and
decrement I. Otherwise, exit the loop and return.

The code of this simulation loop is used (inlined) in the actual code for the
routines R∗

j of L∗, which simulate the routines of the outmost copy L0 as follows.

Initialization (�j = �1 = init)):

– call init to initialise the auxiliary counters;
– for each i ∈ {0, . . . , N − 1}, put 〈i,N − 1 − i〉 tokens carrying a fresh name αi

onto places 〈w,w〉 (this uses the auxiliary counters, their fresh routine, and
place f);

– put 〈1,K − 1, 1,K ′ − 1〉 tokens carrying name α0 onto places 〈p, p, p′, p′〉 to
record that the first routine (init) of L0 should be simulated from line 1;

– enter the simulation loop.



158 R. Lazić and P. Totzke

Freshness test (�j = �2 = fresh):

– call fresh to check that the datum β on place ν is distinct from all data used
in the auxiliary counters;

– verify that β �= αi for all i ∈ {0, . . . , N − 1};
– put 〈2,K − 2, 1,K ′ − 1〉 tokens carrying name α0 onto places 〈p, p, p′, p′〉 to

record that the 2nd routine (fresh) of L0 should be simulated from line 1;
– enter the simulation loop.

Routines �j :R∗
j for j > 2:

– put 〈2,K − j, 1,K ′ − j〉 tokens carrying name α0 onto places 〈p, p, p′, p′〉 to
record that the jth routine of L0 should be simulated from line 1;

– enter the simulation loop.

Notice that these routines do not actually call routines of L but simulate them
internally and terminate only after the whole simulation loop terminates.

Observe that L∗ is computable from L in logarithmic space.

Lemma 6.1. For every function F : N → N and F -corrent counter library L,
the couner library L∗ is λx.F x(1)-correct.

Proof. Recall that for any N ∈ N, the program LN ◦ Enum(1), the N -fold
composition of L with itself and the trivial 1-bounded counter program, is F k(1)-
correct by our assumption on L and Lemma 5.3.

We need to show that L∗ ◦ C is FN (1)-correct for every N -correct counter
program C. We argue that, after initialisation and with respect to termina-
tion/nontermination of the counter routines Γ \ {init}, the program L∗ ◦ C
behaves just as LN ◦ Enum(1).

Fix k ≤ {1, . . . , N}. We say a tape content M of Lk ◦Enum(1) is represented
by a tape content M† of L∗ ◦ C if, for all i ∈ {0, . . . , k − 1},

1. there is a unique name αN−k+i that labels 〈N − k + i, k − i − 1〉 tokens on
places 〈w, w̄〉 in M†, and

2. the restriction Mi of M to the names in the name space to the ith copy of L
equals the restriction M†

N−k+i of M† to the names that label 〈N − k + i, k −
i − 1〉 tokens on places 〈w′, w′〉 and to the places of L.

Let us now look at how the code of the simulation loop in L∗ acts on repre-
sentations of tape contents of Lk ◦ Enum(1).

For two tape contents M and M ′ of Lk ◦Enum(1), we say that the simulation
loop 〈j, j′〉 − computes M ′ from M if from a tape content (of L∗ ◦ C ) that
represents M , where the stack height stored in the first auxiliary counter is N −k
and there are 〈j,K−j, j′,K ′−j′〉 tokens carrying αN−k on places 〈p, p̄, p′, p̄′〉, the
net N (L∗ ◦C ) can reach, by simulating a single command and without reducing
the stack height below N − k, a tape content that represents M ′.



What Makes PN Harder: Stack or Data? 159

The following claim can be shown by induction on k ≤ N .

Claim. For two tape contents M,M ′ of Lk ◦ Enum(1), command j′ of routine
�j :Rj computes M ′ from M in Lk ◦Enum(1), if and only if, the simulation loop
in L∗ ◦ C 〈j, j′〉-computes M ′ from M .

This in particular (for k = N) implies that, after correct initialisation and
with respect to termination of routines other than init , L∗ ◦C bahaves just like
LN ◦ Enum(1). Notice that if L∗ ◦ C computes a fresh command within the
init routine of LN ◦ Enum(1), the simulation loop ensures that the new datum
is also distinct from all values used in the auxiliary counters of L∗. It remains
to show that, for any tape content M that is computed from the empty tape
content by the init routine of LN ◦ Enum(1), there is a tape content of L∗ ◦ C
that represents M and that is computed from the empty tape content by the
init routine of L∗ ◦ C .

To see this, observe that the first command of init in L∗ ◦ C calls the ini-
tialisation routine of C , providing the auxiliary counters. By the assumption
that C is N -correct, this allows to place exactly 〈i,N − 1 − i〉 tokens carrying a
fresh name αi onto places 〈w,w〉 for each i ∈ {0, . . . , N − 1}. Thus, after these
commands, the tape content of L∗ ◦ C represents the empty tape content of
LN ◦ Enum(1). The rest of the initialisation routine contains the code of the
simulation loop, so the conclusion follows from the claim above, where k = N . ��

7 Ackermann-Hardness

We work with a hierarchy of functions Ai, defined as follows for all k and x in N:

A1(x) def= 2x and Ak+2(x) def= Ax
k+1(1).

The Ackermann function is then defined as Aω(x) def= Ax+1(x), and by [25,
Sect. 2.3.2 and Theorem 4.1], we have that the next problem is Ackermann-
complete (cf. Sect. 3) and that the class Ackermann is closed under primitive
recursive reductions:

Input: A 2-counter Minsky program M with n commands.
Question: Can M reach the halt command by a computation during which both
counter values are less than Aω(n)?

Theorem 7.1. The coverability problem for UDPNs is Ackermann-hard.

Proof. Suppose M is a 2-counter Minsky program with n commands.
By Lemmas 5.3, 5.5 and 6.1, we have that the counter program

Acker(n) def= (· · · (Double

n
︷ ︸︸ ︷
∗)∗ · · · )∗ ◦Enum(n)

is Aω(n)-correct.



160 R. Lazić and P. Totzke

Since the star operator is computable in logarithmic space and increases the
number of places by adding a constant, we have that Acker(n) is computable in
time elementary in n, and that its number of places is linear in n.

It remains to simulate M by a one-routine library that uses the two Aω(n)-
bounded counters provided by the counter program Acker(n). The resulting one-
routine program can terminate if and only if its UDPN can cover the marking
in which the two line-number places point to the last command. ��

8 Conclusion

We have shown that the reachability, coverability and boundedness problems
for pushdown vector addition systems are F3-hard. Whether they are decidable
remains unknown, in the case of reachability even with only one counter, i.e. in
dimension 1. The best known lower bound for the latter problem is NP [20].

For unordered data Petri nets, we have advanced the state-of-the-art lower
bound of the coverability (and thus also reachability) problem from F3 [15] to Fω.
A gap therefore remains to the best known Fω·2 upper bound [17]. We conjecture
Fω-completeness, which would complement nicely the Fω·2-completeness [17]
and Fωω -completeness [23] results for the extensions of UDPN by fresh name gen-
eration and whole-place operations, respectively. However, the tightening from
Fω·2 to Fω membership seems a considerable challenge for the following reason:
by providing UDPNs with an initial supply of N fresh names on some auxiliary
place, they can operate for N steps indistinguishably from ν-Petri nets, and so
the classical backward coverability algorithm [1,8] cannot terminate for UDPNs
in only Ackermann many iterations.

References

1. Abdulla, P.A., Čerāns, K., Jonsson, B., Tsay, Y.-K.: Algorithmic analysis of pro-
grams with well quasi-ordered domains. Inform. Comput. 160(1–2), 109–127 (2000)

2. Atig, M.F., Ganty, P.: Approximating Petri net reachability along context-free
traces. In: FSTTCS. LIPIcs, vol. 13, pp. 152–163. LZI (2011)

3. Bojańczyk, M., Klin, B., Lasota, S.: Automata theory in nominal sets. Logic. Meth.
Comput. Sci. 10(3:4), 1–44 (2014)

4. Chambart, P., Schnoebelen, P.: The ordinal recursive complexity of lossy channel
systems. In: LICS, pp. 205–216. IEEE Press (2008)

5. Decker, N., Thoma, D.: On freeze LTL with ordered attributes. In: Jacobs, B.,
Löding, C. (eds.) FoSSaCS 2016. LNCS, vol. 9634, pp. 269–284. Springer, Heidel-
berg (2016). doi:10.1007/978-3-662-49630-5 16

6. Figueira, D., Figueira, S., Schmitz, S., Schnoebelen, P.: Ackermannian and
primitive-recursive bounds with Dickson’s Lemma. In: LICS, pp. 269–278. IEEE
Press (2011)

7. Finkel, A., McKenzie, P., Picaronny, C.: A well-structured framework for analysing
Petri net extensions. Inform. Comput. 195(1–2), 1–29 (2004)

8. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Theor.
Comput. Sci. 256(1–2), 63–92 (2001)

9. Haase, C., Schmitz, S., Schnoebelen, P.: The power of priority channel systems.
Logic. Meth. Comput. Sci. 10(4:4), 1–39 (2014)

http://dx.doi.org/10.1007/978-3-662-49630-5_16


What Makes PN Harder: Stack or Data? 161

10. Haddad, S., Schmitz, S., Schnoebelen, P.: The ordinal recursive complexity of
timed-arc Petri nets, data nets, and other enriched nets. In: LICS, pp. 355–364.
IEEE Press (2012)

11. Hofman, P., Lasota, S., Lazić, R., Leroux, J., Schmitz, S., Totzke, P.: Coverability
trees for Petri nets with unordered data. In: Jacobs, B., Löding, C. (eds.) FoSSaCS
2016. LNCS, vol. 9634, pp. 445–461. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49630-5 26

12. Hofman, P., Leroux, J., Totzke, P.: Linear combinations of unordered data vectors.
arXiv:1610.01470 [cs.LO] (2016)

13. Jensen, K.: Coloured Petri Nets - Basic Concepts, Analysis Methods and Practical
Use - Volume 1. Monographs in Theoretical Computer Science. An EATCS Series,
2nd edn. Springer, Heidelberg (1996)

14. Lazić, R.: The reachability problem for vector addition systems with a stack is not
elementary. arXiv:1310.1767 [cs.FL] (2013)

15. Lazić, R., Newcomb, T., Ouaknine, J., Roscoe, A.W., Worrell, J.: Nets with tokens
which carry data. Fund. Inform. 88(3), 251–274 (2008)

16. Lazić, R., Ouaknine, J., Worrell, J.: Zeno, Hercules, and the Hydra: Safety metric
temporal logic is Ackermann-complete. ACM Trans. Comput. Logic 17(3), 1–27
(2016). Article 16

17. Lazić, R., Schmitz, S.: The complexity of coverability in ν-Petri nets. In: LICS, pp.
467–476. ACM (2016)

18. Leroux, J., Praveen, M., Sutre, G.: Hyper-Ackermannian bounds for pushdown
vector addition systems. In: CSL-LICS, pp. 63:1–63:10. ACM (2014)

19. Leroux, J., Sutre, G., Totzke, P.: On boundedness problems for pushdown vec-
tor addition systems. In: Bojańczyk, M., Lasota, S., Potapov, I. (eds.) RP
2015. LNCS, vol. 9328, pp. 101–113. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-24537-9 10

20. Leroux, J., Sutre, G., Totzke, P.: On the coverability problem for pushdown vector
addition systems in one dimension. In: Halldórsson, M.M., Iwama, K., Kobayashi,
N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9135, pp. 324–336. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-47666-6 26

21. Lipton, R.: The reachability problem requires exponential space. Technical report
62. Yale University (1976)

22. Rackoff, C.: The covering and boundedness problems for vector addition systems.
Theor. Comput. Sci. 6(2), 223–231 (1978)

23. Rosa-Velardo, F.: Ordinal recursive complexity of unordered data nets. Technical
report TR-4-14. Universidad Complutense de Madrid (2014)

24. Rosa-Velardo, F., de Frutos-Escrig, D.: Decidability and complexity of Petri nets
with unordered data. Theor. Comput. Sci. 412(34), 4439–4451 (2011)

25. Schmitz, S.: Complexity hierarchies beyond Elementary. ACM Trans. Comput.
Theor. 8(1), 1–36 (2016)

26. Schmitz, S., Schnoebelen, P.: Multiply-recursive upper bounds with Higman’s
lemma. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol.
6756, pp. 441–452. Springer Berlin Heidelberg, Berlin, Heidelberg (2011). doi:10.
1007/978-3-642-22012-8 35

27. Schnoebelen, P.: Revisiting Ackermann-hardness for lossy counter machines and
reset Petri nets. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281,
pp. 616–628. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15155-2 54

28. Stockmeyer, L.J.: The complexity of decision procedures in Automata Theory and
Logic, Ph.D. thesis. MIT, Project MAC TR-133 (1974)

http://dx.doi.org/10.1007/978-3-662-49630-5_26
http://dx.doi.org/10.1007/978-3-662-49630-5_26
http://arxiv.org/abs/1610.01470
http://arxiv.org/abs/1310.1767
http://dx.doi.org/10.1007/978-3-319-24537-9_10
http://dx.doi.org/10.1007/978-3-319-24537-9_10
http://dx.doi.org/10.1007/978-3-662-47666-6_26
http://dx.doi.org/10.1007/978-3-642-22012-8_35
http://dx.doi.org/10.1007/978-3-642-22012-8_35
http://dx.doi.org/10.1007/978-3-642-15155-2_54


Analysing Lock-Free Linearizable Datatypes
Using CSP

Gavin Lowe(B)

Department of Computer Science, University of Oxford, Oxford, UK
gavin.lowe@cs.ox.ac.uk

Abstract. We consider how we can use the process algebra CSP and the
model checker FDR in order to obtain assurance about the correctness
of concurrent datatypes. In particular, we perform a formal analysis of
a concurrent queue based on a linked list of nodes. We model the queue
in CSP and analyse it using FDR. We capture two important properties
using CSP, namely linearizability and lock-freedom.

1 Introduction

Many concurrent programs are designed so that threads interact only via a small
number of concurrent datatypes. Code outside of these concurrent datatypes can
be written in pretty-much the same way as the corresponding sequential code;
only the code of the datatypes themselves needs to be written in a way that
takes concurrency into account.

Modern concurrent datatypes are often designed to be lock-free. No locks (or
lock-like mechanisms) are used. This means that threads should not be indef-
initely blocked by other threads, even if a thread is permanently de-scheduled.
Many clever lock-free datatypes have been designed, e.g. [9,16,24,25]. However,
these datatypes tend to be complex, and less obviously correct than traditional
lock-based datatypes. Clearly we need techniques for gaining greater assurance
in their correctness.

In this paper we use CSP [20] and the model checker FDR [7] to analyse
the lock-free queue of [16]. The queue is based on a linked list of nodes. More
precisely, we analyse the version of the queue given in [9], which simplifies the
presentation by assuming the presence of a garbage collector (although our CSP
model will include that garbage collection); by contrast, the version in [16] per-
forms explicit de-allocation of nodes by threads.

CSP has been used to analyse concurrent programs on a number of previous
occasions, e.g. [13,23,28]. However, to the best of our knowledge, this is the first
model of a dynamic data structure. Further, we include a mechanism—akin to
garbage collection—that reclaims nodes when they become free, allowing them
to be re-used. This extends the range of behaviours that our model captures to
include behaviours with an unbounded number of enqueue and dequeue operations
(on a bounded-length queue).

c© Springer International Publishing AG 2017
T. Gibson-Robinson et al. (Eds.): Roscoe Festschrift, LNCS 10160, pp. 162–184, 2017.
DOI: 10.1007/978-3-319-51046-0 9



Analysing Lock-Free Linearizable Datatypes Using CSP 163

a) t0:
enqueue(4)

t1:
enqueue(5) dequeue:4

b) t0:
enqueue(4)

t1:
enqueue(5) dequeue:4

Fig. 1. Two timelines of executions: (a) a linearizable execution; (b) an unlinearizable
execution. Time runs from left to right; each horizontal line indicates the duration of
a method call, labelled with the name of the method and (for a dequeue) the value
returned; the identities of threads are at the left.

A concurrent datatype is said to be linearizable [10] if:

– Each method call appears to take place atomically: different method calls do
not interfere with one another. The order in which method calls appear to
take place is consistent with a sequential execution.

– Each call appears to take place at some point between the call’s invocation
and response; this point is referred to as the linearization point. Put another
way, if one call ends before another begins, then the former should appear to
take place before the latter.

For example, consider Fig. 1, which displays timelines of two possible exe-
cutions of a concurrent queue. In execution (a), threads t0 and t1 perform
concurrent enqueues of 4 and 5, and then t1 performs a dequeue, obtaining 4.
This execution is linearizable. The two enqueues appear to have taken place
atomically, with the 4 being enqueued before the 5. Alternatively, if the dequeue

had obtained 5, the execution would still have been linearizable. The second
clause, above, allows the two enqueues to appear to take place in either order.

By contrast, execution (b) is not linearizable. Here the enqueue of 5 finishes
before the enqueue of 4. Hence we would expect that the subsequent dequeue

would obtain 5; the second clause above enforces this.
In this paper we use FDR to show that our model of the lock-free queue

is indeed a linearizable queue. We believe that CSP allows such linearizable
specifications to be captured in a very elegant way. Our method of capturing
the specification is modular: it can easily be adapted to other linearizable spec-
ifications. Our method does not require the user to identify the linearization
points.

Linearizability is a safety property: it specifies that no method call returns
a “bad” result; however, it does not guarantee that the system makes progress.
The property of lock freedom guarantees progress. Formally, a concurrent
datatype is lock-free if, in every state, it guarantees that some method call
finishes in a finite number of steps [9]. Unsurprisingly, a datatype that uses
locks in a meaningful way is not lock-free: if one thread acquires a lock, but is



164 G. Lowe

permanently de-scheduled, other threads may perform an unbounded number of
steps trying to obtain the lock. But further, a datatype may fail to be lock-free
even if it doesn’t use locks, for example if threads repeatedly interfere with one
another and so have to re-try.

We show that our model of the lock-free queue is indeed lock-free. We capture
the property in CSP using a combination of deadlock freedom and divergence
freedom.

Finally, we also verify that the model is free from null-pointer references, and
dangling references (where deallocated objects are accessed).

FDR has recently been extended with a form of symmetry reduction [8]. We
use this symmetry reduction in our analysis. The model will contain a large
amount of symmetry: it will be symmetric in the type of identities of nodes, the
type of identities of threads, and the type of data, in the sense that applying
any permutation over one of these types to any state of the model will produce
another state of the model. The symmetry reduction factors the model by this
symmetry. We show that this gives a significant speed up in checking time, and
hence an increase in the size of system that we can analyse.

One additional benefit of our approach is that it is easy to adapt the model
in order to consider variants in the design of the datatype. We briefly illustrate
how such changes in the model can explain a couple of non-obvious aspects of
the datatype.

To summarise, our main contributions are as follows:

– A technique for modelling and analysing concurrent datatypes;
– A generic modular technique for capturing linearizability;
– A straightforward technique for capturing lock freedom;
– A technique for modelling reference-linked data structures, including a mech-

anism for recycling of nodes;
– An investigation into the performance improvements provided by symmetry

reduction;
– An instructive case study in the application of CSP-based verification.

The rest of the paper is structured as follows. We present the lock-free queue
datatype in Sect. 2. We present the CSP model in Sect. 3, and describe our
analysis using FDR in Sect. 4. We sum up and discuss prospects for this line of
work in Sect. 5.

1.1 Related Work

A number of other papers have considered the verification of linearizability,
using either model checking or other verification techniques. However, we are
not aware of other examples of the verification of lock freedom.

Vechev et al. [27] study linearizabilty using the SPIN model checker, using
two different approaches. One approach uses bounded-length runs, at the end of
which it is checked whether the run was linearizable, by considering all relevant
re-orderings of the operations. The other approach requires linearization points



Analysing Lock-Free Linearizable Datatypes Using CSP 165

to be identified by the user. Like us, they model a garbage collector. The
approach suffers from state-space explosion issues: for a concurrent set based
on a linked list, applicability is limited to two threads and two keys, even when
linearization points are provided.

Liu et al. [12] also study linearizability in the context of refinement checking,
in their case, using the model checker PAT. They capture linearizability but not
liveness properties. They describe experiments using symmetry reduction and
partial order reduction to improve the efficiency of the search. By way of com-
parison, we (with Tom Gibson-Robinson) have built a CSP model corresponding
to one of their examples, in a similar style to the model of this paper; our exper-
iments suggest that FDR is several hundred times faster on these models (on
similar architectures).

Burckhardt et al. [2] analyse for linearizability as follows. They randomly
pick a small number of threads to perform a small number of operations, typically
three threads each performing three operations. They then use the CHESS model
checker to generate all behaviours caused by interleaving these operations, and
test whether each corresponds to a sequential execution of the same operations.
They uncover a large number of bugs within the .NET Framework 4.0.

C̆erný et al. [3] show that linearizability is decidable for a class of linked-list
programs that invoke a fixed number of operations in parallel. Their restrictions
exclude the example of this paper: they assume a fixed head node, no tail
reference, and that threads traverse the list monotonically; however, it is not
clear how essential these restrictions are. Their approach shows that a program
is a linearizable version of its own sequential form, rather than a linearizable
version of a more abstract specification, such as a queue. In practice, their
approach is limited to a pair of operations in parallel, because of the state space
explosion.

Vafeiadis [26] uses abstract interpretation to verify linearizability, by consid-
ering candidate linearization points. The technique works well on some exam-
ples, but does not always succeed, and works less well on examples with more
complex abstractions. Colvin et al. [5] and Derrick et al. [6] prove linearizability
by verifying a simulation against a suitable specification, supported by a theorem
prover. These approaches give stronger guarantees than our own, but require
much more effort on the part of the verifier.

1.2 CSP

In this section we give a brief overview of the syntax for the fragment of CSP
that we will be using in this paper. We then review the relevant aspects of
CSP semantics, and the use of the model checker FDR in verification. For more
details, see [20].

CSP is a process algebra for describing programs or processes that interact
with their environment by communication. Processes communicate via atomic
events. Events often involve passing values over channels; for example, the event
c.3 represents the value 3 being passed on channel c. Channels may be declared



166 G. Lowe

using the keyword channel; for example, channel c : Int declares c to be a channel
that passes an Int. The notation {|c|} represents the set of events over channel c.

The simplest process is STOP, which represents a deadlocked process that
cannot communicate with its environment. By contrast, div is a divergent process
that performs an unbounded number of internal τ events.

The process a → P offers its environment the event a; if the event is per-
formed, the process then acts like P. The process c?x → P is initially willing to
input a value x on channel c, i.e. it is willing to perform any event of the form c.x;
it then acts like P (which may use x). Similarly, the process c?x:X → P is willing
to input any value x from set X on channel c, and then act like P. Within input
constructs, we use “ ” as a wildcard: c? indicates an input of an arbitrary value.
The process c!v → P outputs value v on channel c. Inputs and outputs may be
mixed within the same communication, for example c?x!v → P.

The process P � Q can act like either P or Q, the choice being made by the
environment: the environment is offered the choice between the initial events
of P and Q. By contrast, P � Q may act like either P or Q, with the choice being
made internally, not under the control of the environment. � x:X • P(x) is an
indexed external choice, with the choice being made over the processes P(x) for x

in X. The process if b then P else Q represents a conditional. The process b & P

is a guarded process, that makes P available only if b is true; it is equivalent to
if b then P else STOP.

The process P [| A |] Q runs P and Q in parallel, synchronising on events
from A. The process ‖ x:X • [A(x)] P(x) represents an indexed parallel composi-
tion, where, for each x in X, P(x) is given alphabet A(x); processes synchronize
on events in the intersection of their alphabets. The process P ||| Q interleaves
P and Q, i.e. runs them in parallel with no synchronisation. ||| x:X • P(x) rep-
resents an indexed interleaving.

The process P \ A acts like P, except the events from A are hidden, i.e. turned
into internal τ events.

A trace of a process is a sequence of (visible) events that a process can
perform. We say that P is refined by Q in the traces model, written P �T Q, if
every trace of Q is also a trace of P. FDR can test such refinements automatically,
for finite-state processes. Typically, P is a specification process, describing what
traces are acceptable; this test checks whether Q has only such acceptable traces.

Traces refinement tests can only ensure that no “bad” traces can occur: they
cannot ensure that anything “good” actually happens; for this we need the stable
failures or failures-divergences models. A stable failure of a process P is a pair
(tr,X), which represents that P can perform the trace tr to reach a stable state
(i.e. where no internal events are possible) where X can be refused, i.e., where
none of the events of X is available. We say that P is refined by Q in the stable
failures model, written P �F Q, if every trace of Q is also a trace of P, and every
stable failure of Q is also a stable failure of P.

We say that a process diverges if it can perform an infinite number of internal
(hidden) events without any intervening visible events. If P �F Q and Q is



Analysing Lock-Free Linearizable Datatypes Using CSP 167

divergence-free, then if P can stably offer an event a, then so can Q; hence such
tests can be used to ensure Q makes useful progress.

2 The Lock-Free Queue

In this section we present the lock-free queue. Our presentation is based on that
from [9]. The code, in Scala, is in Fig. 2.

The lock-free queue uses atomic references1. An atomic reference encapsu-
lates a standard reference, say to an object of class A, and provides get and set

operations. In addition, it provides an atomic compare-and-set (CAS) operation,
which can be thought of as an atomic implementation of the following:

def compareAndSet(expected: A, update: A) : Boolean = {
if(expected == current){ current = update; true} else false

}
A thread passes in two values: expected, which the thread believes the atomic
reference holds; and update, the value the thread wants to update it to. If
the current value is indeed as expected, it is updated. The thread receives an
indication as to whether the operation was successful. This operation can be
used to allow concurrent threads to interact safely in a lock-free way.

The lock-free queue is built as a linked list of Nodes: each node holds a value

field, of (polymorphic) type T; nodes are linked together using next fields which
are atomic references to the following node.

The lock-free queue employs two shared variables, both atomic references
(lines 9–10 of Fig. 2): head is a reference to a dummy header node; and tail is
normally a reference to the last node in the linked list, but will temporarily refer
to the penultimate node when an item has been partially enqueued.

The main idea of the algorithm, which gives it its lock-free property, is as
follows: if one thread partially enqueues an item, but is de-scheduled and leaves
the queue in an inconsistent state with tail not referring to the final node, then
other threads try to tidy up by advancing tail; one will succeed, and so progress
is made, and eventually a thread will complete its operation.

The enqueue operation starts by creating a node to store the new value2. It
then reads tail and the following node into local variables myTail and myNext.
As an optimization, it re-reads tail, in case it has changed, retrying if it has.
Otherwise, in the normal case that myNext is null, it attempts a CAS operation
on myTail.next (line 19), to set it to the new node. If this succeeds, the value is
correctly enqueued. It then attempts to advance the tail reference to the new
node, and returns regardless of whether this is successful: if the CAS fails, some
other thread has already advanced tail. If myNext is not null (line 23), it means

1 http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/atomic/Atomic
Reference.html.

2 The Scala code ignores the possibility of new nodes not being available, but we will
need to consider this possibility in our CSP models.

http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/atomic/AtomicReference.html
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/atomic/AtomicReference.html


168 G. Lowe

1 class LockFreeQueue[T]{
2 // We build linked lists from Nodes of the following type
3 class Node(val value: T, val next: AtomicReference[Node])
4

5 // initial dummy header
6 private val firstNode =
7 new Node(null.asInstanceOf[T], new AtomicReference[Node](null))
8 // Atomic references to head and tail nodes
9 private val head = new AtomicReference(firstNode)

10 private val tail = new AtomicReference(firstNode)
11

12 /∗∗ Add value to the queue ∗/
13 def enqueue(value: T) : Unit = {
14 val node = new Node(value, new AtomicReference[Node](null))
15 while(true){
16 val myTail = tail .get ; val myNext = myTail.next.get
17 if (myTail == tail.get) // in case it has been changed (optimization)
18 if (myNext == null){
19 if (myTail.next.compareAndSet(null, node)){
20 tail .compareAndSet(myTail, node); return
21 } // else re−try
22 }
23 else // myNext != null, try to advance tail
24 tail .compareAndSet(myTail, myNext) // and retry
25 // else retry
26 } }
27

28 /∗∗ Dequeue and return a value if the queue is non−empty; else return null ∗/
29 def dequeue : T = {
30 while(true){
31 val myHead = head.get; val myTail = tail .get ; val myNext = myHead.next.get
32 if (myHead == head.get) // in case it has been changed (optimization)
33 if (myHead == myTail){
34 if (myNext == null) return null // empty queue, return null
35 else // new item partially enqueued
36 tail .compareAndSet(myTail, myNext) // try to advance tail; retry
37 }
38 else{ // non−empty queue; try to remove node from queue
39 if (head.compareAndSet(myHead, myNext)) return myNext.value
40 // else myNext.value already taken; retry
41 }
42 // else Head changed; retry
43 } } }

Fig. 2. The lock-free queue in Scala.

that a value has been partially enqueued, with tail not advanced to the last node:
it attempts to so-advance tail, and retries.

The dequeue operation starts by reading head, tail and the node after head

into local variables myHead, myTail, and myNext. It then re-reads head, in case it



Analysing Lock-Free Linearizable Datatypes Using CSP 169

has changed, retrying if it has. Otherwise, if the head and tail are equal, and
myNext is null (line 34), the queue is empty, and the operation returns the special
value null to indicate this. Alternatively, if head and tail are equal but myNext is
non-null (line 35), there is a partially enqueued item, so it tries to advance tail

and retries. Otherwise, the queue is non-empty (line 38). It tries to advance
the head to myNext using a CAS operation; if the CAS succeeds, it returns the
value in myNext; otherwise, another thread has taken the value in myNext, so the
operation retries.

Note that an individual enqueue or dequeue operation is not guaranteed to ter-
minate: it may repeatedly find partially enqueued items, and so repeatedly retry.
However, if this happens infinitely often then infinitely many other operations
will terminate, so the data structure is still lock-free.

3 The CSP Model

In this section we present our CSP model of the lock-free queue.3 In Sect. 3.1 we
model the nodes of the list, and the atomic references head and tail. In Sect. 3.2
we model the program threads that perform the enqueueing and dequeueing
operations. In Sect. 3.3 we describe the technique for re-cycling nodes, which
identifies nodes that have been removed from the linked list and that have no
relevant references to them, and frees them up, making them available for reuse.
We put the system together in Sect. 3.4.

Our model is parameterized by three types (see Fig. 3): the type NodeIDType

of node identities; the type T of data held in the queue; and the type ThreadID

of thread identities. The type NodeIDType contains a distinguished value Null,
which models the null reference; we write NodeID for the set of “proper” nodes.
We will consider larger values for these types in Sect. 4.5. The models will be
symmetric in the types NodeID, T and ThreadID.

datatype NodeIDType = Null | N0 | N1 | N2 −− node identities

NodeID = diff(NodeIDType, {Null}) −− real nodes

datatype T = A | B −− data values

datatype ThreadID = T0 | T1 −− thread identities

Fig. 3. The basic types of the model.

3.1 Nodes, Head, Tail, and the Constructor

The CSP model of the nodes of the linked list is presented in Fig. 4. We declare
channels corresponding to actions by threads upon nodes. The event initNode.t.n.v

3 The CSP script is available from http://www.cs.ox.ac.uk/people/gavin.lowe/
LockFreeQueue/LockFreeQueueLin.csp.

http://www.cs.ox.ac.uk/people/gavin.lowe/LockFreeQueue/LockFreeQueueLin.csp
http://www.cs.ox.ac.uk/people/gavin.lowe/LockFreeQueue/LockFreeQueueLin.csp


170 G. Lowe

−− Channels used by nodes .

channel initNode : ThreadID . NodeIDType . T

channel getValue : ThreadID . NodeIDType . T

channel getNext : ThreadID . NodeIDType . NodeIDType

channel CASnext : ThreadID . NodeIDType . NodeIDType . NodeIDType . Bool

channel removeNode : ThreadID . NodeIDType

channel free : NodeID

channel noFreeNode : ThreadID

−− A node process, with identity me, currently free .

FreeNode :: (NodeIDType) → Proc

FreeNode(me) =

initNode ? ! me? value → Node(me, value, Null, false)

e : diff (alphaNode(me), {|initNode,free,noFreeNode|}) • e → div

−− A node process, identity me, holding datum value and next pointer next;

−− removed indicates whether the node has been removed from the list .

Node :: (NodeIDType, T, NodeIDType, Bool) → Proc

Node(me, value, next, removed) =

getValue? ! me . value → Node(me, value, next, removed)

getNext? !me .next → Node(me, value, next, removed)

CASnext? !me? expected?new ! (expected=next) →
Node(me, value, if expected=next then new else next, removed)

not(removed) & removeNode? !me → Node(me, value, next, true)

removed & free .me → FreeNode(me)

noFreeNode? → Node(me, value, next, removed)

−− Alphabet of node me .

alphaNode(me) = {| free .me, initNode . t .me, removeNode . t .me, noFreeNode . t,

getValue . t .me, getNext . t .me, CASnext . t .me | t ← ThreadID |}
−− All nodes

AllNodes = ‖ id : NodeID • [alphaNode(id)] FreeNode(id)

Fig. 4. Model of the nodes.

represents thread t initialising node n to hold v; getValue.t.n.v represents t read-
ing value v from n; getNext.t.n.n1 represents t obtaining the value n1 of n’s next

field; CASnext.t.n.expected.new.res represents t performing a CAS on n’s next field,
trying to change it from expected to new, with res giving the boolean result;
removeNode.t.n represents t marking n as removed from the linked list; free.n rep-
resents n being recycled; and noFreeNode.t represents t failing to obtain a new
node.

A free node (process FreeNode) can be initialised with a particular value and
with its next field Null. Our model also allows the node to perform various events



Analysing Lock-Free Linearizable Datatypes Using CSP 171

corresponding to a thread incorrectly accessing this node, after which it diverges;
later we verify that the system cannot diverge, and so verify that no such event
can occur.

An initialised node can: (1) have its value field read by a thread; (2) have its
next field read by a thread; (3) have a CAS operation performed on its next field
by a thread: if the expected field matches the current value of next, the value
is updated to the new field and the result is true; otherwise next is unchanged
and the result is false; (4) be marked as removed from the linked list (if not so
already); (5) be freed up, if already marked as removed from the linked list;
(6) signal that no free node is available (all nodes will synchronize on this event,
so it will be available only if all nodes are in this state).

We combine the nodes in parallel with the natural alphabets.
Figure 5 gives the CSP model of the atomic reference variables, head and tail,

together with a “constructor” process Constructor that initialises these variables
and the dummy header node. The type AtomicRefID gives identities of these
atomic references. Event getNode.t.ar.n represents thread t reading the value n

of atomic reference ar. Event CAS.t.ar.expected.new.res represents t performing a
CAS operation on ar, trying to change it from expected to new, with res giving
the boolean result. Event initAR.h represents the two atomic references being
initialised to refer to initial dummy header node h.

datatype AtomicRefID = Head | Tail −− The IDs of atomic references

−− Channels used by Head and Tail

channel getNode : ThreadID . AtomicRefID . NodeIDType

channel CAS : ThreadID . AtomicRefID . NodeIDType . NodeIDType . Bool

channel initAR : NodeID

−− An atomic reference to node

AtomicRefNode :: (AtomicRefID, NodeIDType) → Proc

AtomicRefNode(me, node) =

getNode? t !me .node → AtomicRefNode(me, node)

CAS? t !me? expected?new ! (expected=node) →
AtomicRefNode(me, if expected=node then new else node)

−− The atomic reference variables

HeadAR = initAR?h → AtomicRefNode(Head, h)

TailAR = initAR?h → AtomicRefNode(Tail, h)

AllARs = HeadAR [| {|initAR|} |] TailAR

−− The constructor

Constructor = initAR?h → initNode? !h? → RUN({|beginEnqueue, beginDequeue|})

Fig. 5. Model of the head and tail atomic references, and the constructor.



172 G. Lowe

The model of an atomic reference is similar in style to the model of a node,
but simpler. The constructor chooses an initial dummy header node h, initialises
the two atomic references to refer to it, initialises h to hold a nondeterministic
initial value, and then allow begin events to occur; the effect of the last step is
to block other threads until the construction is complete.

3.2 Enqueueing and Dequeueing Threads

Figures 6 and 7 give the models of the threads. In order to later capture the
requirements, we include additional events to signal the start or end of an
enqueue or dequeue operation, including the end of a dequeue operation that
failed because the queue was empty, or an enqueue operation that failed because
the queue was full (i.e. there was no free node). We also include events on channel
releaseRefs to represent a thread releasing its references (before re-trying).

−− events to signal the start or end of operations

channel beginEnqueue, endEnqueue, endEnqueueFull, endDequeue : ThreadID . T

channel beginDequeue, endDequeueEmpty : ThreadID

channel releaseRefs : ThreadID −− a thread releases its references

−− A thread, which enqueues or dequeues .

Thread(me) =

beginEnqueue .me? value → Enqueue(me, value)

beginDequeue .me → Dequeue(me)

Fig. 6. Model of a thread.

Each Thread process represents a thread that repeatedly performs enqueue
or dequeue operations. The process Enqueue(me, value) represents a thread with
identity me trying to enqueue value. It starts by trying to initialise a node to
hold value; if this fails, as indicated by the noFreeNode event, it signals that the
queue is full. The process Enqueue’ corresponds to the while loop in the enqueue

function of Fig. 2. Most of the definition is a direct translation of the Scala code
from that figure: the reader is encouraged to compare the two. If the enqueue
succeeds, this is signalled with an endEnqueue event. If the enqueue fails, and the
thread has to retry, it releases the references it held, so these can potentially be
recycled. The dequeue operation is modelled in a very similar way.

3.3 Recycling Nodes

We now describe our mechanism for recycling nodes in the model. While the
mechanism is very similar to memory management techniques in implemen-
tations, the intention is different: our aim is to increase the coverage of our



Analysing Lock-Free Linearizable Datatypes Using CSP 173

−− An enqueueing thread

Enqueue :: (ThreadID, T) → Proc

Enqueue(me, value) =

initNode .me?node ! value → Enqueue’(me, value, node)

noFreeNode .me → endEnqueueFull .me . value → Thread(me)

Enqueue’ :: (ThreadID, T, NodeIDType) → Proc

Enqueue’(me, value, node) =

getNode .me .Tail?myTail → getNext .me .myTail?myNext →
getNode .me .Tail?myTail’ →
if myTail=myTail’ then −− in case it’s been changed (optimization)

if myNext=Null then

CASnext .me .myTail .Null .node? result →
if result then −− enqueue succeeded, so advance tail

CAS .me .Tail .myTail .node? → endEnqueue .me . value → Thread(me)

else −− CASnext failed; retry

releaseRefs .me → Enqueue’(me, value, node)

else −− myNext�=Null, try to advance tail

CAS .me .Tail .myTail .myNext? →
releaseRefs .me → Enqueue’(me, value, node)

else −− Tail changed; retry

releaseRefs .me → Enqueue’(me, value, node)

−− A dequeuing thread

Dequeue :: (ThreadID) → Proc

Dequeue(me) =

getNode .me .Head?myHead → getNode .me .Tail?myTail →
getNext .me .myHead?myNext → getNode .me .Head?myHead’ →
if myHead=myHead’ then −− in case it’s been changed (optimization)

if myHead=myTail then

if myNext=Null then endDequeueEmpty .me → Thread(me) −− empty queue

else −− new item partially enqueued

CAS .me .Tail .myTail .myNext? → −− try to advance tail; retry

releaseRefs .me → Dequeue(me)

else −− non−empty queue; try to remove node from queue

CAS .me .Head .myHead .myNext? result →
if result then

getValue .me .myNext? value → removeNode .me .myHead →
endDequeue .me . value → Thread(me)

else −− myNext .value already taken; retry

releaseRefs .me → Dequeue(me)

else releaseRefs .me → Dequeue(me) −− Head changed; retry

Fig. 7. Model of a thread (continued).



174 G. Lowe

HPs :: (ThreadID, NodeIDType, NodeIDType, NodeIDType, Bool) → Proc

HPs(me, h, t, n, enq) =

beginEnqueue .me? → HPs(me, h, t, n, true)

beginDequeue .me → HPs(me, h, t, n, false)

getNode .me .Tail? t’ → HPs(me, h, if enq then t’ else Null, n, enq)

getNode .me .Head?h’ → HPs(me, if enq then Null else h’, t, n, enq)

getNext .me? :NodeID?n’ → HPs(me, h, t, if enq then Null else n’, enq)

( e : releaseEvents (me) • e →
HPs(me, Null, Null , Null , if e= ( releaseRefs .me) then enq else false ))

free ? : diff (NodeID, {t, h, n}) → HPs(me, h, t, n, enq)

−− The events on which me releases all its hazard pointers .

releaseEvents (me) = {|endEnqueue .me, endEnqueueFull .me, endDequeue .me,

endDequeueEmpty .me, releaseRefs .me|}

−− All hazard pointer processes, synchronizing on free events .

alphaHP(me) = union( releaseEvents(me),

{| beginEnqueue .me, beginDequeue .me, getNode .me, getNext .me, free |})

HazardPointers = ‖ me ← ThreadID • [alphaHP(me)] HPs(me,Null,Null,Null,false)

Fig. 8. The hazard pointers.

model, capturing executions with an arbitrary number of enqueue and dequeue
operations.

We use a technique inspired by hazard pointers [17]. The idea (as an imple-
mentation technique) is that each thread has a few pointer variables, known
as hazard pointers: no node referenced by such a pointer should be recycled.
When a thread removes a node from a data structure, it can add the node to
a list of removed nodes. The thread intermittently reads the hazard pointers of
all threads, and recycles any removed node that is not referenced by a hazard
pointer.

In the lock-free list, the hazard pointers should be each thread’s myTail during
an enqueue operation, and its myHead and myNext during a dequeue operation. It
is obvious that it would be hazardous to recycle any of these nodes, since fields
of each are accessed by the thread. Our subsequent analysis shows that these
are sufficient hazard pointers.

Figure 8 gives the relevant part of the CSP model. The process
HPs(me, h, t, n, enq) records the hazard pointers of thread me; the parameters
h, t and n store the thread’s myHead, myTail and myNext variables, where rele-
vant; the parameter enq records whether the thread is enqueueing; these are
updated by synchronizing with the relevant events of the thread. The hazard
pointer parameters are reset to Null when the thread releases the references.
This process allows any node other than its hazard pointers to be freed. All HPs



Analysing Lock-Free Linearizable Datatypes Using CSP 175

processes synchronize on the free events, so a node can be freed when it is not
referenced by any hazard pointer.

3.4 The Complete System

We combine the system together in parallel in Fig. 9.

−− All threads

AllThreads0 = ||| id : ThreadID • Thread(id)

AllThreads = AllThreads0 [| {|beginEnqueue, beginDequeue|} |] Constructor

−− synchronisation set between Threads and HazardPointers .

HPSyncSet = union( {| beginEnqueue, beginDequeue, getNode, getNext |},

Union({ releaseEvents (t) | t ← ThreadID }) )

−− synchronisation set between Threads/HazardPointers and Nodes/AtomicRefs

syncSet = union( {| initNode . t .n, getValue . t .n, getNext . t .n, CASnext . t .n |
t ← ThreadID, n ← NodeID |},

{| getNode, CAS, free, removeNode, noFreeNode, initAR |} )

−− Put components together in parallel

System0 = (AllThreads [| HPSyncSet |] HazardPointers)

[| syncSet |] (AllNodes ||| AllARs)

−− Prioritise releaseRefs , free and removeNode over all other events .

PriEvents = {|releaseRefs, free , removeNode|}
System1 = prioritise (System0, <PriEvents , diff (Events, PriEvents)> )

System = System1 \ union(syncSet, {|releaseRefs|})

Fig. 9. The complete system.

We prioritise releaseRefs, free and removeNode events over all other events, for
two reasons. Firstly, we want to ensure that nodes are recycled as soon as
possible, so a thread does not fail to obtain a new node when there is one
waiting to be recycled. Secondly, this acts as a form of partial-order reduction,
and markedly reduces the size of the state space. This prioritisation is sound
since forcing these events to occur does not disable any of the standard events
on nodes (on channels getValue, getNext and CASnext).

We then hide other events: in the resulting process System, the only visible
events are the begin and end events.

4 Analysis

We now describe our FDR analysis of the model. In Sect. 4.1 we show that the
datatype is a linearizable queue. In Sect. 4.2 we show that the queue is lock-
free, and also that no thread attempts to access a freed node (i.e. there are no



176 G. Lowe

dangling pointers). In Sect. 4.3 we show that no node attempts to de-reference
a null reference. In Sect. 4.4 we discuss the use of symmetry reduction in the
checks. In Sect. 4.5 we discuss our results. Finally, in Sect. 4.6 we discuss how
the model can be adapted to alternative designs, and so understand why some
details of the datatype are as they are.

4.1 A Linearizable Queue

Recall that a datatype is linearizable if each method call appears to take place
atomically at some point between the call’s invocation and response; these points
are called linearization points. We prove that our model is a linearizable queue
by building a suitable specification in two steps: first we build a specification of
a queue, where the events correspond to the linearization points; and then we
ensure that these events occur between the corresponding begin and end events.
(Alur et al. [1] have proposed a similar technique.)

Our specification (Fig. 10) introduces events to correspond to the lineariza-
tion points. The process QueueSpec models a queue, based on these events,
where the parameter q records the sequence of values currently in the queue.
A dequeue attempt succeeds when the queue is non-empty; otherwise it sig-
nals that the queue is empty. An enqueue may succeed or fail, depending
upon the queue’s current length. An enqueue is guaranteed to succeed when
#q+2∗card(ThreadID)−1 < card(NodeID), since a free node will always be available
in this case. When #q+1 <card(NodeID) ≤ #q+2∗card(ThreadID)−1, an enqueue
may either succeed or fail, depending upon how many deleted nodes are still
referenced by hazard pointers of other threads.

We then ensure that the events of QueueSpec occur between the corresponding
begin and end events. The process Linearizer(me) does this for events of thread me.
We combine the components together in parallel, hiding the events of QueueSpec.
The resulting specification requires that each trace (of begin and end events)
is linearizable: each operation appears to happen atomically at the point of
the corresponding (hidden) linearization event; the results of these operations
are consistent with an execution of a sequential queue (as enforced by the
QueueSpec process); each linearization event occurs between the corresponding
begin and end events (as enforced by the corresponding Linearizer process).

Note that we carry out the check in the stable failures model. On the assump-
tion that System is divergence-free, this also ensures liveness properties: that the
relevant events eventually become available (if not preempted by other events).
We discharge the divergence-freedom assumption below.

Spec is nondeterministic. Each state that is reachable after a particular
trace tr corresponds to a state of Queue that represents a possible lineariza-
tion that is consistent with tr. FDR normalises the specification: each state of
the normalised specification corresponds to the set of states that the original
specification can reach after a particular trace, i.e. the set of linearizations that
are consistent with the visible trace so far.



Analysing Lock-Free Linearizable Datatypes Using CSP 177

channel enqueue, dequeue : ThreadID . T

channel dequeueEmpty, enqueueFull : ThreadID

QueueSpec = Queue(<>)

Queue(q) =

( if q �= <> then dequeue? t !head(q) → Queue(tail(q))

else dequeueEmpty? t → Queue(q) )

if #q+2∗card(ThreadID)−1 < card(NodeID) then enqueue? t? x → Queue(q̂<x>)

else if #q+1 < card(NodeID) then

enqueue? t? x → Queue(q̂<x>) � enqueueFull? t → Queue(q)

else enqueueFull ? t → Queue(q)

Linearizer (me) =

beginEnqueue .me? value → (

enqueue .me . value → endEnqueue .me . value → Linearizer(me)

enqueueFull .me → endEnqueueFull .me . value → Linearizer(me) )

beginDequeue .me → (

dequeueEmpty .me → endDequeueEmpty .me → Linearizer(me)

dequeue .me? value → endDequeue .me . value → Linearizer(me) )

AllLinearizers = ||| id : ThreadID • Linearizer ( id)

specSyncSet = {| enqueue, dequeue, dequeueEmpty, enqueueFull |}
Spec = ( AllLinearizers [| specSyncSet |] QueueSpec) \ specSyncSet

assert Spec �F System

Fig. 10. Testing for linearizability.

4.2 Lock-Freedom and Dangling Pointer Freedom

Recall that a concurrent datatype is said to be lock-free if it always guarantees
that some method call finishes in a finite number of steps, even if some (but not
all) threads are permanently desscheduled. A failure of lock freedom can occur
in two ways:

– One or more threads perform an infinite sequence of events without an oper-
ation ever finishing;

– A thread reaches a state where it is unable to perform any event, so if all
other threads are permanently descheduled, the system as a whole makes no
progress.

The former type of failure of lock freedom is easy to capture: a violation
of this property would involve an unbounded number of events without an end

event, which would represent a divergence of SystemE, below.



178 G. Lowe

−− System with only end events visible

SystemE = System \ {| beginEnqueue, beginDequeue|}
assert SystemE :[divergence free]

In order to capture the latter type of failure, we need to be able to model
the permanent descheduling of threads. We do this via a process Scheduler that
allows all but one thread to be descheduled: the descheduling of thread t is
captured by the event dies.t; the regulator allows events of a thread only if it
has not been descheduled. We then check that the resulting system is deadlock
free.

−− Alphabet of thread t

alpha(t) =

{| initNode . t, getValue . t, getNext . t, CASnext . t, getNode . t, removeNode . t,

CAS . t, beginEnqueue . t, endEnqueue . t, endEnqueueFull . t, endDequeue . t,

beginDequeue . t, endDequeueEmpty . t |}

channel dies: ThreadID −− A particular thread dies

−− A regulator for the lock freedom property .

Scheduler(alive) =

(� t: alive, e: alpha(t) • e → Scheduler(alive))

� card(alive) > 1 & dies? t:alive → Scheduler(diff(alive,{t}))

SchedulerSyncSet = Union({alpha(t) | t ← ThreadID})

SystemLF0 = System0 [| SchedulerSyncSet |] Scheduler(ThreadID)

SystemLF = prioritise(SystemLF0, <PriEvents , diff(Events,PriEvents)>)

\ union(syncSet, {|releaseRefs, beginEnqueue, beginDequeue|})

assert SystemLF :[deadlock free]

Recall that dereferencing a dangling pointer (i.e. referencing a node that has
been freed) leads to a divergence. The above divergence-freedom check therefore
also ensures freedom from such dangling pointer errors. This check also guaran-
tees that System is divergence-free, giving the liveness properties mentioned at
the end of the last subsection.

4.3 Null Reference Exceptions

Finally, we check that no thread ever tries to de-reference the Null reference: we
hide all other events and check that no event can occur.

nullRefs =

{|initNode . t .Null,getValue . t .Null,getNext . t .Null,CASnext . t .Null | t ← ThreadID|}
assert STOP �T System0 \ diff(Events,nullRefs)



Analysing Lock-Free Linearizable Datatypes Using CSP 179

4.4 Using Symmetry Reduction

Each of the above refinement checks can be run either with or without symme-
try reduction. In order to use symmetry reduction, the refinement assertion is
labelled with

: [symmetry reduce]: diff(NodeIDType,{|Null|}), T, ThreadID

This tells FDR to perform symmetry reduction in the types of real node identities
(excluding Null), data and thread identities. The script uses no constant from
these types, other than within the definition of the types; it is shown in [8] that
the model is symmetric in the types under this condition, and so the symmetry
reduction is sound.

4.5 Results

As noted at the start of Sect. 3, the model is parameterized by three types: the
type NodeID of “proper” nodes; the type T of data; and the type ThreadID of
thread identities. We have used FDR to check the above assertions, for various
sizes of these types. All the checks we tried succeeded.

Parameters Check No sym. red. Sym. red.
#states time #states time

2, 2, 3 lin. queue 207K 0.5s 9.3K 0.5s
2, 2, 3 divergences 150K 0.9s 6.7K 0.4s
2, 2, 3 lock freedom 406K 0.5s 18K 0.4s
2, 2, 3 null refs 150K 0.5s 6.7K 0.2s

3, 3, 4 lin. queue 5465M 7196s 6.7M 55s
3, 2, 4 divergences 234M 647s 1.1M 22s
3, 2, 4 lock freedom 1354M 1015s 5.2M 28s
3, 3, 4 null refs 1454M 1679s 2.1M 10s

3, 3, 5 lin. queue — — 109M 1520s
3, 3, 6 divergences — — 98M 1638s
3, 3, 6 lock freedom — — 584M 3265s
3, 3, 6 null refs — — 98M 460s

Fig. 11. Results of analyses. The “Parameters” column shows the sizes of
ThreadID, T and NodeID, respectively. In the “Check” column, “lin. queue” repre-
sents the check for being a linearizable queue (Sect. 4.1), “divergences” represents the
divergences-based check (Sect. 4.2), “lock freedom” represents the deadlock-based check
(Sect. 4.2), and “null refs” represents the check for null reference exceptions (Sect. 4.3).

Figure 11 gives information about some of the checks we carried out, including
the number of states and the time taken (on a 32-core machine, with two 2 GHz
Intel(R) Xeon(R) E5-2650 0 CPUs, with 128 GB of RAM, FDR version 3.4.0).
Figures are given both without and with symmetry reduction.



180 G. Lowe

The first block of entries is for our standard test case: here the checks are
effectively instantaneous, either with or without symmetry reduction. The sec-
ond block of entries is indicative of the maximum sizes of parameters that can
be checked without symmetry reduction. Here, symmetry reduction gives signif-
icant reductions in both the number of states and the checking time. The third
block is indicative of the maximum sizes of parameters that can be checked with
symmetry reduction.

4.6 Alternative Designs

It is straightforward to adapt the above model so as to consider alternative
designs for the lock-free queue: this can help us understand some of the details
of the original design from [16].

For example, if an enqueue finds that myNext �= null, it attempts to advance
tail via a CAS operation (line 23 of Fig. 2). To investigate why this is necessary,
we can remove the corresponding event from the definition of Enqueue. FDR then
finds that the datatype is no longer lock-free. It finds a divergence of SystemE

which corresponds to the following trace of System0

<beginEnqueue .T0 .A, beginEnqueue .T1 .A, initNode .T1 .N2 .A, initNode .T0 .N1 .A,

getNode .T1 .Tail .N0, getNext .T1 .N0 .Null, getNode .T0 .Tail .N0,

getNode .T1 .Tail .N0, CASnext .T1 .N0 .Null .N2 . true, getNext .T0 .N0 .N2,

getNode .T0 .Tail .N0, releaseRefs .T0, getNode .T0 .Tail .N0 >,

after which the last four events can be repeated indefinitely. Thread T1 par-
tially enqueues node N2, but fails to advance Tail to it. As a result, thread T0

repeatedly reads N0 from Tail, finds that its next reference is non-null, and retries.
A similar behaviour explains why the dequeue operation attempts to advance

tail if myNext �= Null (line 36 of Fig. 2).

5 Conclusions

In this paper we have used CSP and its model checker FDR to analyse a lock-
free queue. Novel aspects include the modelling of a dynamic datatype with
a mechanism for recycling nodes. We have shown how to capture linearizable
specifications and lock-freedom using CSP refinement checks.

We should be clear about the limitations of our analysis. We have verified
the datatype for the small values of the parameters listed in Fig. 11 and a few
others. This does not necessarily imply that the datatype is correct for larger
parameters. However, the analyses should certainly give us great confidence in
its correctness—more confidence than standard testing. It seems likely that any
error in such a datatype would manifest itself for small values of the parameters.

– If there is a flaw caused by one thread’s execution being interfered with by
other threads, then it is likely that the actions of the interfering threads could
have been performed by a single thread, and so such a flaw would manifest



Analysing Lock-Free Linearizable Datatypes Using CSP 181

itself in a system of just two threads. One approach to formalise this argument
would be counter abstraction [14,15,18], which counts the number of processes
in each state, but in an abstracted domain.

– The enqueue and dequeue operations affect just the first two and last two
nodes in the list. Hence any flaw is likely to manifest itself when there are
at most two nodes in the list, and so will be captured by a system with
2 + #ThreadID nodes (since each enqueueing thread can hold a node that it
has not yet enqueued).

– The implementation is data independent: it performs no operations on the
data itself. Any flaw concerning data values (of type T) must manifest itself
in an inappropriate value being dequeued, since this is the only part of the
specification that cares about data values. One can create a corresponding
flaw when T contains just two values A and B, by renaming the incorrectly
dequeued value to A, and every other value to B. (Lazić and Roscoe have
developed a general theory of data independence, formalising arguments like
this; however, there results are not applicable here, because our Spec process
does not satisfy their Norm property [19, Sect. 15.2].)

It might be interesting to try and formalise some of these ideas, although these
are very challenging problems.

I believe that concurrent data structures are a very good target for CSP-style
model checking. The algorithms are small enough that they can be accurately
modelled and analysed using a model checker such as FDR. The requirements
are normally clear. Yet the algorithms are complex enough that it is not obvious
that they are correct.

Translating from executable code to a CSP model is straightforward. Indeed,
I believe that there are good prospects for performing this translation automat-
ically.

It also seems straightforward to produce the corresponding specifications.
In particular, CSP seems well suited for capturing linearizability. The compo-
nents of the specification correspond to the different aspects of the requirements:
QueueSpec captures the queue behaviour, and each Linearizer captures that the
actions of a particular thread are linearized. Adapting this to a different lin-
earizable specification requires only replacing the QueueSpec, and adapting the
events of Linearizer appropriately. It is interesting that this specification uses
parallel composition and hiding: this creates a much clearer structure than the
corresponding sequential process.

Building on the work in this paper, Chen [4] and Janssen [11] have studied
a number of other concurrent datatypes, including several implementations of
a set based on a linked list, a stack, a combining tree, an array-based queue,
and a lock-based hash set. Some of these datatypes made use of a potentially
unbounded sequence counter. However, this counter can be captured in a finite
model using the observation that (in most cases) the counter is actually used
as a nonce: the exact value of the counter is unimportant; what matters is
whether the value changes between two reads. Hence we can use the technique



182 G. Lowe

of Roscoe and Broadfoot [21] (developed for the analysis of security protocols)
for simulating an unbounded supply of nonces within a finite model.

Our approach does not require identifying the linearization points (the points
at which the operations seem to take effect). However, we suspect that when
there are identifiable linearization points, our check can be made more effi-
cient: the implementation events corresponding to the linearization events can
be renamed to the corresponding specification events, and those events left vis-
ible in the specification; this will often reduce the size of the search. However,
it is not always possible to identify linearization points at the time they are
performed; for example, for an unsuccessful dequeue the linearization point is
the read of null for myNext (line 31 of Fig. 2), but only if the subsequent re-read
of head (line 32) gives an unchanged value: one can only be sure that the read
of myNext was a linearization point at a later point in the trace.

We proved that the queue is lock-free. A related condition is wait freedom.
A datatype is wait-free if each method call terminates within a finite number
of steps. The queue we have studied is not wait-free: for example, an enqueue
operation will not terminate if the CAS operation in line 19 of Fig. 2 repeatedly
fails: however, this would imply that other threads are repeatedly successfully
enqueueing other items. Surprisingly, it turns out to be impossible to capture
wait freedom using a CSP refinement check. Roscoe and Gibson-Robinson have
shown [22] that every finite- or infinite-traces-based property that can be cap-
tured by a CSP refinement check can also be captured by the combination of a
finite-traces refinement check and satisfaction of a deterministic Büchi automa-
ton. It is reasonably straightforward to show that capturing the infinite-traces
wait freedom property requires a nondeterministic Büchi automaton.

Acknowledgements. This work has benefited from my working with Bill Roscoe for
over 25 years. It would have been impossible without his contributions to CSP and
FDR. Many of the techniques used in this paper are based on his ideas.

I would like to thank Tom Gibson-Robinson for useful discussions on this work,
in particular concerning our joint work on adding symmetry reduction to FDR, and
for producing the CSP model that allowed comparison with the work of [12]. I would
also like to thank Ke Chen and Ruben Janssen for more general discussions concerning
CSP model checking of concurrent datatypes.

References

1. Alur, R., McMillan, K., Peled, D.: Model-checking of correctness conditions for
concurrent objects. In: Proceedings of the 11th Annual IEEE Symposium on Logic
in Computer Science, LICS 1996 (1996)

2. Burckhardt, S., Dern, C., Musuvathi, M., Tan, R.: Line-Up: a complete and
automatic linearizability checker. In: Proceedings of the 2010 ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI 2010),
pp. 330–340 (2010)



Analysing Lock-Free Linearizable Datatypes Using CSP 183

3. Černý, P., Radhakrishna, A., Zufferey, D., Chaudhuri, S., Alur, R.: Model check-
ing of linearizability of concurrent list implementations. In: Touili, T., Cook, B.,
Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 465–479. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-14295-6 41

4. Chen, K.: Analysing concurrent datatypes in CSP. Master’s thesis. University of
Oxford (2015)

5. Colvin, R., Dohery, S., Groves, L.: Verifying concurrent data structures by simu-
lation. Electron. Notes Theor. Comput. Sci. 137, 93–110 (2005)

6. Derrick, J., Schellhorn, G., Wehrheim, H.: Mechanically verified proof obligations
for linearizability. ACM Trans. Programm. Lang. Syst. 33(1), 4:1–4:43 (2011)

7. Gibson-Robinson, T., Armstrong, P., Boulgakov, A., Roscoe, A.W.: Failures Diver-
gences Refinement (FDR) Version 3 (2013)

8. Gibson-Robinson, T., Lowe, G.: Symmetry reduction in CSP model checking.
Submitted for publication (2016)

9. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming, 1st edn. Morgan
Kaufmann, San Francisco (2012)

10. Herlihy, M., Wing, J.: Linearizability: a correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990)

11. Janssen, R.: Verification of concurrent datatypes using CSP. Master’s thesis. Uni-
versity of Oxford (2015)

12. Liu, Y., Chen, W., Liu, Y.A., Sun, J., Zhang, S.J., Dong, J.S.: Verifying lin-
earizability via optimized refinement checking. IEEE Trans. Softw. Eng. 39(7),
1018–1039 (2013)

13. Lowe, G.: Implementing generalised alt – a case study in validated design using
CSP. In: Communicating Process Architectures, pp. 1–34 (2011)

14. Mazur, T., Lowe, G.: Counter abstraction in the CSP/FDR setting. In: Proceed-
ings of the Seventh International Workshop on Automated Verification of Critical
Systems (AVoCS 2007). Electronic Notes on Theoretical Computer Science, vol.
250, pp. 171–186 (2007)

15. Mazur, T., Lowe, G.: CSP-based counter abstraction for systems with node iden-
tifiers. Sci. Comput. Program. 81, 3–52 (2014)

16. Michael, M., Scott, M.: Simple, fast, and practical non-blocking and blocking
concurrent queue algorithms. In: Proceedings of the Fifteenth Annual ACM Sym-
posium on Principles of Distributed Computing, pp. 267–275 (1996)

17. Michael, M.M.: Safe memory reclamation for dynamic lock-free objects using
atomic reads and writes. In: Proceedings of Principles of Distributed Comput-
ing (PODC 2002) (2002)

18. Pnueli, A., Jessie, X., Zuck, L.D.: Liveness with (0, 1, ∞)-counter abstraction. In:
Proceedings of the 14th International Conference on Computer Aided Verification
(CAV 2002), pp. 107–122 (2002)

19. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice Hall, Upper
Saddle River (1998)

20. Roscoe, A.W.: Understanding Concurrent Systems. Springer, London (2010)
21. Roscoe, A.W., Broadfoot, P.J.: Proving security protocols with model checkers by

data independence techniques. J. Comput. Secur. 7(2,3), 147–190 (1999)
22. Roscoe, A.W., Gibson-Robinson, T.: The relationship between CSP. FDR and

Büchi automata, Draft paper (2016)
23. Roscoe, A.W., Hopkins, D.: SVA, a tool for analysing shared-variable programs.

In: Proceedings of AVoCS 2007, pp. 177–183 (2007)
24. Shalev, O., Shavit, N.: Split-ordered lists: lock-free extensible hash tables. J. ACM

53(3), 379–405 (2006)

http://dx.doi.org/10.1007/978-3-642-14295-6_41


184 G. Lowe

25. Sundell, H., Tsigas, P.: Lock-free deques and doubly linked lists. J. Parallel Distrib.
Comput. 68(7), 1008–1020 (2008)

26. Vafeiadis, V.: Automatically proving linearizability. In: Touili, T., Cook, B.,
Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 450–464. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-14295-6 40

27. Vechev, M., Yahav, E., Yorsh, G.: Experience with model checking linearizability.
In: Păsăreanu, C.S. (ed.) SPIN 2009. LNCS, vol. 5578, pp. 261–278. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-02652-2 21

28. Welch, P., Martin, J.: A CSP model for Java multithreading. In: Proceedings of
the International Symposium on Software Engineering for Parallel and Distributed
Systems, pp. 114–122. IEEE (2000)

http://dx.doi.org/10.1007/978-3-642-14295-6_40
http://dx.doi.org/10.1007/978-3-642-02652-2_21


Discrete Random Variables
Over Domains, Revisited

Michael Mislove(B)

Department of Computer Science, Tulane University, New Orleans, LA 70118, USA
mislove@tulane.edu

Abstract. We revisit the construction of discrete random variables over
domains from [15] and show how Hoare’s “normal termination” sym-
bol � can be used to achieve a more expressive model. The result is a
natural model of flips of a coin that supports discrete and continuous
(sub)probability measures. This defines a new random variables monad
on BCD, the category of bounded complete domains, that can be used to
augment semantic models of demonic nondeterminism with probabilis-
tic choice. It is the second such monad, the first being Barker’s monad
for randomized choice [3]. Our construction differs from Barker’s monad,
because the latter requires the source of randomness to be shared across
multiple users. The monad presented here allows each user to access a
source of randomness that is independent of the sources of randomness
available to other users. This requirement is useful, e.g., in models of
crypto-protocols.

Keywords: Domain random variable · Sequential domain monoids ·
Continuous random variables

1 Introduction and Related Work

About ten years ago, the author presented a model for finite random variables
over domains [15]. That model was based on work of Varacca [21,22], whose
indexed valuations monads for probabilistic choice enjoy distributive laws over
the standard power domains at the price of weakening one of the laws for prob-
abilistic choice [11]. The model in [15] is arcane, but it nevertheless inspired an
attempt to extend the ideas to a model that would support continuous probabil-
ity measures over domains [9], an approach that was unfortunately flawed [16,17].
Here we present an improved construction for the model described in [15] that
has the advantage of supporting all sub-probability measures – including both
discrete and continuous – over sequences of flips of a random coin, yielding a
new model for computational processes that involve probabilistic choice.

The last assertion can be understood by considering a natural model for
sequences of coin tosses, the full binary tree, CT = {0, 1}∗ ∪ {0, 1}ω. The root
represents the starting point, and the nth level Cn of n-bit words represents

M. Mislove—Work partially supported by AFOSR Grant FA9550-13-1-0135-1.

c© Springer International Publishing AG 2017
T. Gibson-Robinson et al. (Eds.): Roscoe Festschrift, LNCS 10160, pp. 185–202, 2017.
DOI: 10.1007/978-3-319-51046-0 10



186 M. Mislove

the possible outcomes of n flips of the coin. A probability distribution over this
family is then a probability measure on CT. Endowed with the prefix order,
CT is a domain whose set of maximal elements is a Cantor set, C, and so this
model is called the Cantor tree. If we endow Cn with a probability distribution μn

representing the chances for a specific sequence of outcomes of n flips of the coin,
and if πm,n : Cn −→ Cm satisfies πm,n μn = μm for m ≤ n, then the sequence
μn −→w μ has a limit μ in the weak topology which is concentrated on C.
Likewise, any such measure μ gives rise to an associated sequence of measures,
πn μ, where πn : C −→ Cn is the natural projection. Everything appears to be
fine, until one tries to construct a monad based on these ideas, and then the
construction falters when one tries to define a Kleisli lift (for details, see [16,17]).

In more detail, the flaw in the definition of the Kleisli lift in [9] was its use of
concatenation of strings, which is not monotone in its first argument. Our remedy
is to replace the Cantor tree CT with a domain monoid where composition is
Scott continuous. Our construction yields a new monad on domains using a
domain monoid M{0, 1} = {x�, x⊥ | x ∈ {0, 1}∗}∪{0, 1}ω. This domain monoid
utilizes an idea first devised by Hoare that appears prominently in models of
CSP [5]: a �-symbol that denotes normal termination. Algebraically, � is an
identity for multiplication, and making strings ending in � maximal makes the
multiplication in the monoid Scott continuous. Adding infinite strings requires
a least element ⊥ with strings ending in ⊥ denoting terms that might diverge.

Probability is introduced by applying the sub-probability monad, V; then
monoid structure on M{0, 1} then induces an affine domain monoid structure
on VM{0, 1} where multiplication is convolution, induced by the monoid mul-
tiplication on M{0, 1} with δ� the identity. Moreover, since M{0, 1} is a tree,
it follows that VM {0, 1} is a bounded complete domain (cf. Corollary 1). The
remainder of the construction follows along lines similar to those in [9]. How-
ever, restricting to random variables defined only on antichains as in [3,9] is not
necessary for our construction, and this simplifies things somewhat.

1.1 The Plan of the Paper

The next section begins with a review of some background material from domain
theory and other areas we need, including a result about the probability monad
on the category of compact Hausdorff spaces and continuous maps and on
the subcategory of compact monoids and continuous monoid homomorphisms.
We also introduce our new “sequential domain monoid” construction, which is
inspired by sequential composition from the process calculus world, and which
forms a monad M on various categories of domains. Then we show that following
M with the subprobability monad V yields a monad that supports convolution of
subprobability measures as a Scott-continuous operation. While the facts that M
and VM are monads are not necessary to show the main results of the paper, we
include them to show that our constructions are canonical. In any case, Sect. 3
contains the main results of the paper, where we give the construction of our new
monad, CRV , of random variables, and the paper concludes with a summary
and comments about future work.



Discrete Random Variables over Domains, Revisited 187

2 Background

2.1 Domains

Most of the results we need about domain theory can be found in [1] or [8]; we
give specific references for those that appear elsewhere.

To start, a poset is a partially ordered set. A subset S ⊆ P is directed if each
finite subset of S has an upper bound in S, and P is directed complete if each
of P ’s directed subsets has a least upper bound. A directed complete partial
order is called a dcpo. The relevant maps between dcpos are the monotone maps
that also preserve suprema of directed sets; these maps are usually called Scott
continuous. The resulting category is denoted DCPO.

These notions can be presented in a purely topological fashion: a subset
U ⊆ P of a poset is Scott open if (i) U = ↑U ≡ {x ∈ P | (∃u ∈ U) u ≤ x} is an
upper set, and (ii) if supS ∈ U implies S∩U �= ∅ for each directed subset S ⊆ P .
It is routine to show that the family of Scott-open sets forms a topology on any
poset; this topology satisfies ↓x ≡ {y ∈ P | y ≤ x} = {x} is the closure of a
point, so the Scott topology is always T0, but it is T1 iff P is a flat poset. In any
case, a mapping between dcpos is Scott continuous in the order-theoretic sense
iff it is a monotone map that is continuous with respect to the Scott topologies
on its domain and range. The category DCPO is Cartesian closed.

If P is a poset, and x, y ∈ P , then x approximates y iff for every directed set
S ⊆ P , if supS exists and if y ≤ supS, then there is some s ∈ S with x ≤ s.
In this case, we write x � y and we let ↓↓y = {x ∈ P | x � y}. A basis for a
poset P is a family B ⊆ P satisfying ↓↓y ∩ B is directed and y = sup(↓↓y ∩ B) for
each y ∈ P . A continuous poset is a poset that has a basis, and a dcpo P is a
domain if P is a continuous dcpo. An element k ∈ P is compact if x � x, and P
is algebraic if KP ≡ {k ∈ P | k � k} forms a basis. Domains are sober spaces
in the Scott topology (cf. [14]).

We let DOM denote that category of domains and Scott continuous maps;
this is a full subcategory of DCPO, but it is not Cartesian closed. Nevertheless,
DOM has several Cartesian closed full subcategories. For example, there are the
full subcategories SDOM of Scott domains, and BCD, its continuous analog: a
Scott domain is an algebraic domain P for which KP is countable, and every
non-empty subset of P has a greatest lower bound, or equivalently, every subset
of P with an upper bound has a least upper bound. A domain is bounded complete
if every non-empty subset has a greatest lower bound; BCD denotes the category
of bounded complete domains and Scott-continuous maps.

Domains also have a Hausdorff refinement of the Scott topology which will
play a role in our work. The weak lower topology on a poset P has the sets of
the form O = P\↑F as a basis, where F ⊂ P is a finite subset. The Lawson
topology on a domain P is the common refinement of the Scott- and weak lower
topologies on P . This topology has the family

{U\↑F | U Scott open & F ⊆ P finite}
as a basis. The Lawson topology on a domain is always Hausdorff. A domain is
coherent if its Lawson topology is compact. We denote the closure of a subset



188 M. Mislove

X ⊆ P of a domain in the Lawson topology by X
Λ
, and Coh denotes the cate-

gory of coherent domains and Scott-continuous maps. While the subcategory of
Coh of coherent domains is Cartesian, and the subcategory of coherent domains
having least elements is closed under arbitrary products, the category Coh is not
Cartesian closed.

Example 1. This example is used extensively in [3,9]. Let C denote the middle
third Cantor set from the unit interval. This is a Stone space, and so it can be
realized as a projective limit of finite spaces C � lim←−α∈A

Cα. Since C is second
countable, we can define a countable family of finite spaces Cn for which C �
lim←−n

Cn. Indeed, we can take C = {0, 1}ω and Cn = {0, 1}n for each n.
From a domain-theoretic perspective, CT =

⋃
n Cn ∪ C = {0, 1}∗ ∪ {0, 1}ω,

the finite and infinite words over {0, 1} in the prefix order. The finite words
form the set of compact elements, KCT, and so CT is an algebraic domain. It is
called the Cantor Tree, and it can be viewed as the state space of the outcomes
of flipping a coin: the root is the starting point, and with 0 denoting Tails and 1
Heads, the outcomes as we work our way up the tree give all possible results of
flipping a coin some number of times. For example, the family CTn =

⋃
m≤n Cm

gives the finite tree of possible outcomes of n flips of the coin.
As we commented in the introduction, CT is alluring as a model for the out-

comes of tossing a coin, but it does not work well as a computational model.
In particular, viewing CTn as the possible outcomes of n tosses of a coin, the
“obvious” mechanism to compose one sequence of tosses with another is concate-
nation, the operation used in [9]. But concatenation is not monotone in its first
argument, and this undermines the approach. We define an alternative model
of coin flips below as the family M{0, 1}. This is the heart of our model for
probabilistic choice.

There is one technical result we will need, which comes from [8]:

Lemma 1. If f : B −→ E is a monotone map from a basis for a domain D into
a dcpo E, then f̂ : D −→ E defined by f̂(x) = sup f(↓↓x ∩ B) defines the largest
Scott-continuous map below f . Moreover, if for each x ∈ D there is a directed
set Bx ⊆ ↓↓x ∩ B with x = supBx and sup f̂(Bx) = f(x), then f̂ extends f .

Proof. This is Lemma IV-9.23 of [8].

2.2 M{0, 1} as a Domain Monoid

In this section we define a domain monoid M{0, 1} based on the finite and infinite
words over {0, 1}.

Proposition 1. We define M{0, 1} ≡ ({x�, x⊥ | x ∈ {0, 1}}∗ ∪ {0, 1}ω,≤),
where ≤ is defined by:

– If x ∈ {0, 1}∗�, y ∈ M{0, 1}, then x ≤ y iff x = y;
– If x ∈ {0, 1}∗⊥ , y ∈ M{0, 1}, then x ≤ y iff (∃m ≤ n < ω)x ∈ {0, 1}m⊥ , y ∈

{0, 1}n⊥ ∪ {0, 1}n� ∪ {0, 1}ω and xi ≤ yi for all i ≤ m; and
– If x ∈ {0, 1}ω, y ∈ M{0, 1}, then x ≤ y iff x = y.



Discrete Random Variables over Domains, Revisited 189

Then MD is a bounded complete algebraic domain whose set of compact elements
is KM{0, 1} = {x�, x⊥ | x ∈ {0, 1}∗}.
Proof. It is routine to show that the partial order defined above endows M{0, 1}
with a tree structure whose root is ⊥ and whose leaves (=maximal elements) are
{x� | x ∈ {0, 1}∗} ∪ {0, 1}ω. It’s then obvious that the elements x� and x⊥ are
compact for x finite, and that each infinite word x satisfies x = supn x1 · · · xn⊥ .

Theorem 1. Endowed with the Lawson topology, (M{0, 1},≤, ·) is a compact
ordered monoid under the multiplication given by:

x · y =

{
x′y, if x = x′� ∈ {0, 1}∗�,

x, if x ∈ {0, 1}∗⊥ ∪ {0, 1}ω.

Proof. Proposition 1 implies M{0, 1} is a bounded complete algebraic domain,
which implies it is coherent. If x1 < x2 ∈ M{0, 1}, then x1 ∈ {0, 1}∗⊥ , so
x1 · y1 = x1 < x2 ≤ x2 · y2 for any y1 ≤ y2. On the other hand, if x1 is maximal,
then x1 = x2. If x1 ∈ {0, 1}∗�, then x1 · y1 = x′y1 ≤ x′y2 = x1 · y2, if y1 ≤ y2.
And if x1 ∈ {0, 1}ω, then x1 · y1 = x1 = x1 · y2. It follows that the multiplication
is monotone. By definition, � is an identity for the multiplication. So it only
remains to prove multiplication is jointly Lawson continuous.

It’s straightforward to show multiplication is Scott continuous in each vari-
able separately, which implies it is jointly Scott continuous. For Lawson conti-
nuity, it’s sufficient to show that, given z ∈ KM{0, 1}, A = {(x, y) | x · y ∈ ↑z}
is Scott compact. But z ∈ KM{0, 1} implies z = z′� or z = z′⊥ , for a finite
z′ ∈ {0, 1}∗. From this if follows that there are only finitely many ways to write
z′ is a concatenation of a prefix p ∈ {0, 1}∗ and a suffix s ∈ {0, 1}∗, and then

z =

{
p� · s⊥ if z ∈ {0, 1}∗⊥ ,

z = p� · s� if z ∈ {0, 1}�.

Then z ≤ x · y implies there is some factorization z = p� · s⊥ or z = p� · s⊥
with p� = x and either s� ≤ y or s⊥ ≤ y. Then A is a finite union of sets of
the form ↑(p�, s′�) or ↑(p�, s⊥ ).

2.3 The Subprobability Monad

Probability on Comp and Dom. It is well known that the family of probability
measures on a compact Hausdorff space is the object level of a functor which
defines a monad on Comp, the category of compact Hausdorff spaces and con-
tinuous maps (Theorem 2.13 of [7]). As outlined in [10], this monad gives rise to
two related monads:

1. On Comp, it associates to a compact Hausdorff space X the free barycentric
algebra over X, the name deriving from the counit ε : Prob(S) −→ S which
assigns to each measure μ on a probabilistic algebra S its barycenter ε(μ)
(cf. Theorem 5.3 of [13], which references [20]).



190 M. Mislove

2. A compact affine monoid is a compact monoid S for which there also is
a continuous mapping · : [0, 1] × S × S −→ S satisfying the property that
translations by elements of S are affine maps (cf. Sect. 1.1ff. of [10]). On the
category CompMon of compact monoids and continuous monoid homomor-
phisms, Prob gives rise to a monad that assigns to a compact monoid S the
free compact affine monoid over S (cf. Corollary 7.4 of [10]).

Remarkably, these results have analogs in domain theory. Before we describe
them, we first review some basic facts about (sub)probability measures on
domains. Most of these results can be found [11].

Definition 1. A valuation on a dcpo D is a mapping μ : Σ(D) −→ [0, 1], where
Σ(D) denotes the Scott-open subsets of D, satisfying:

Strictness: μ(∅) = 0.
Monotonicity: U ⊆ V Scott-open imliess μ(U) ≤ μ(V ).
Modularity: μ(U ∪ V ) + μ(U ∩ V ) = μ(U) + μ(V ), ∀U, V ∈ Σ(D),
Continuity: If {Ui}i∈I ⊆ Σ(D) is ⊆-directed, then supi μ(Ui) =
μ(

⋃
i Ui).

If μ(D) = 1, then μ is normalized. We let V(D) denote the family of valuations
on D under the pointwise order: μ � ν iff μ(U) ≤ ν(U) for all U ∈ Σ(D);
V1(D) denotes the family of normalized valuations.

It was first shown by Sahib-Djarhomi [19] that V(D) is a dcpo if D is one. The
main result describing the domain structure of V(D) is the following:

Theorem 2 (Splitting Lemma [11]). Let D be a domain with basis B. Then
V(D) is a domain with a basis consisting of the simple measures with supports
in B. Moreover, for simple measures μ =

∑
x∈F rrδx and ν =

∑
y∈G syδy, the

following are equivalent:

– μ ≤ ν (respectively, μ � ν).
– There are non-negative transport numbers 〈tx,y〉(x,y)∈F×G satisfying:

1. rx =
∑

y∈G tx,y ∀x ∈ F ,
2.

∑
x∈F tx,y ≤ sy ∀y ∈ G,

3. tx,y > 0 implies x ≤ y (respectively, x � y) ∀(x, y) ∈ F × G.
Moreover, if μ and ν are probability measures, then we can refine (ii) above to
(ii’)

∑
x∈F tx,y = sy ∀y ∈ G.

It is well-known that each Borel subprobability measure on a domain D gives
rise to a unique valuation in the obvious way. Conversely, it was shown by
Alvarez-Manilla, Edalat and Sahib-Djarhomi [2] that the converse holds, so we
can identify the family of Borel subprobability measures on D with the family of
valuations, including the order structure. Throughout this paper, we will refer
to (sub)probability measures, rather than valuations, but the order structure
is the one defined from valuations; for coherent domains, using the traditional
functional-analytic approach to defining measures, the order can be realized as:
For μ, ν ∈ V(D), μ ≤ ν iff

∫
D

fdμ ≤ ∫
D

fdν for all f : D −→ R+ monotone and
Lawson continuous.



Discrete Random Variables over Domains, Revisited 191

Now for the analogs of (i) and (ii) at the start of this subsection:

Proposition 2. Let D be a domain. Then

1. V defines a monad on DCPO.
2. V defines an endofunctor on Coh, the category of coherent domains and Scott-

continuous maps.
3. If D is a domain with a Scott-continuous multiplication · : D × D −→ D

under which D is a topological semigroup, then there is a Scott-continuous
convolution operation ∗ : V(D) × V(D) −→ V(D) defined by (μ ∗ ν)(U) =
(μ × ν){(x, y) ∈ D × D | x · y ∈ U}. Under this operation, V(D) is an affine
topological semigroup.

Proof. The result in (i) is contained in [11], and (ii) is from [12]. For (iii), it
is well-known that the family of simple subprobability measures {∑x∈F rxδx |∑

x∈F rx ≤ 1 & F ⊆ S finite} is a semigroup under convolution if S is a semi-
group. Since the operation ∗ is nothing more than V(·), it is Scott-continuous
on V(D × D) if D is a domain semigroup. And since the simple measures con-
tain a basis for V(D × D), it follows that convolution is associative on all of
V(D × D). Thus (V(D), ∗) is a domain semigroup. The fact that V defines a
monad on Dom means the only thing left to show is that each component of
the unit η : 1Coh

·−→ | | ◦ V is a semigroup homomorphism. Since ηD(d) = δd,
this amounts to showing that δx ∗ δy = δx·y for each x, y ∈ D, for D a domain
semigroup. But given x, y ∈ D, and U ∈ Σ(D), we have

(δx ∗ δy)(U) = δx × δy({(r, s) ∈ D × D | r · s ∈ U})

=

{
1 iff x · y ∈ U

0 otherwise
= δx·y(U).

The final claim that V(D) is an affine semigroup is clear.

Remark 1. There is a wealth of material on the semigroup of probability mea-
sures on a compact or locally compact (semi)group, but the assumption is invari-
ably that the (semi)group is Hausdorff. The results above show that basic facts
still hold if one generalizes to subprobability measures over domain semigroups
endowed with the Scott topology. It turns out that, if the domain D is coher-
ent and the multiplication · : D × D −→ D is Lawson continuous, then one can
retrieve the “classic” result, extended to subprobability measures.

V(D) is in BCD if D is a Tree Domain. Our next goal is to show that
VM{0, 1} is in BCD. Then, using a function space construction, if E is in BCD, we
can define a monad of random variables over BCD. We begin with the following
result; it is stated in [12], although no proof is provided; we include one here for
completeness sake:

Lemma 2. If T is a finite tree, then V(T ) is closed under finite infima. Hence
V(T ) ∈ BCD.



192 M. Mislove

Proof. We prove that if μ, ν ∈ V(T ), then μ∧ν ∈ V(T ). We proceed by induction
on |T |: the case that |T | = 1 is obvious, since V({∗}) � [0, 1]. So suppose the
result holds for |T | ≤ n, and let T be a tree with n + 1 elements. If T ′ =

T\{⊥T }, then T ′ is a forest of k trees, T ′ =
·⋃

i≤kT ′
i . The inductive hypothesis

implies V(T ′
i ) is closed under finite infima for each i. So, if μ, ν ∈ V(T ), then

μ|T ′
i

∧ μ|T ′
i

∈ V(T ′
i ) for each i ≤ k, and since the T ′

i s are pairwise disjoint, it
follows that μ|T ′ ∧ ν|T ′ ∈ V(T ′). So, for any open sets U, V ⊆ T ′, we have

μ ∧ ν (U ∪ V ) + μ ∧ ν (U ∩ V ) = μ ∧ ν (U) + μ ∧ ν (V ).

The only remaining case to show μ∧ν ∈ V(T ) is when U = T or ν = T ; without
loss of generality, we assume U = T . In that case,

μ ∧ ν (U ∪ V ) + μ ∧ ν (U ∩ V ) = μ ∧ ν (T ) + μ ∧ ν (V ) = μ ∧ ν (U) + μ ∧ ν (V ).

Corollary 1. If T � bilimnTn is a the bilimit of finite trees, then V(T ) is in
BCD. In particular, VM{0, 1} ∈ BCD.

Proof. If T � bilimnTn with each Tn a finite tree, then the continuity of the func-
tor V implies V(T ) � limn V(Tn), and since BCD is closed under limits, the result
follows. The final claim follows from our remark in the proof of Proposition 1.

2.4 Domains of Partial Maps

In the last subsection we alluded to a “function space construction” that we’d
need in our random variables model. We address that issue in this subsec-
tion, where we give some results about partial maps defined on the non-empty
Scott-closed subsets of a domain. The results are needed for our analysis of
sub-probabilities on domains.

To begin, recall that the support of a finite positive Borel measure μ on a
topological space X is the smallest closed set C ⊆ X satisfying μ(C) = μ(X). For
measures on a domain D, we let suppΣ μ denote the support of μ with respect
to the Scott topology, and suppΛ μ denote the support of μ with respect to the
Lawson topology. The appropriate domain for the random variables we plan to
study is suppΣ μ, the smallest Scott-closed subset X satisfying μ(D\X) = 0,
where μ is the measure assigned to the domain of the random variable.

Recall that the lower power domain over a domain D is the family Γ (D)
of non-empty Scott-closed subsets of D ordered by inclusion; in fact, PL(D) =
(Γ (D),⊆) is the free sup-semilattice domain over D. PL(D) defines a monad on
every Cartesian closed category of domains; in fact, PL(D) is bounded complete
for any domain D. This leads us to an important construction that we need, one
which we believe should be useful in applications of domains; although we have
made only a cursory effort at best to locate the result, we find it surprising that
we have been unable to find it in the literature.

Proposition 3. Let D and E both be BCD. Let

[D ⇀ E]
def
= {f : C −→ E | C ∈ PL(D)}



Discrete Random Variables over Domains, Revisited 193

denote the family of Scott-continuous partial maps defined on non-empty Scott-
closed subsets of D. We order [D ⇀ E] by

f ≤L g iff dom f ⊆ dom g and f ≤ g|dom f .

Then [D ⇀ E] is a bounded complete domain.

Proof (Outine). The proof can be broken down into three claims:

1. [D ⇀ E] is a dcpo: Given F ⊆ [D ⇀ E] directed, one first shows
supF ∈ [C −→ E], where C =

⊔
f∈F dom f , the Scott-closure of the

union of the Scott-closed sets {dom f | f ∈ F}. This is done by noting
that X =

⋃
f∈F dom f is a directed union of Scott-closed subsets of the

domain D, so it is a lower set that has a basis, which implies X is a con-
tinuous poset. Then F : X −→ E by F (x) = sup{f(x) | x ∈ dom f ∈ F}
is well-defined because F is directed, so the same is true of those f ∈ F
for which x ∈ dom f . In fact, F is Scott-continuous, because, given Y ⊆ X
directed for which x = supY ∈ X exists, then x ∈ dom f for some f ∈ F .
Since f : dom f −→ E is Scott-continuous, we have f |↓x : ↓x −→ E is Scott-
continuous. Thus F |↓x = sup{f |↓x | f ∈ F & x ∈ dom f} is the supremum
of a directed family of Scott-continuous functions on ↓x, so it also is Scott-
continuous on ↓x. Thus F (supY ) = supF (Y ) since Y ⊆ ↓ supY = ↓x. Then
this continuous map extends continuously to the round ideal completion of
X, and one argues this extension satisies F = supF , so [D ⇀ E] is a dcpo.

2. Next show [D ⇀ E] is a domain: The set [D ⇀ E] =
⋃

C∈Γ (D)[C −→ E] is
the directed union of domains [C −→ E] for C ∈ Γ (D), and each of these
domains has a basis, BC ⊆ [C −→ E]. We let B =

⋃
C∈Γ (D) BC be the

(directed) union of these function families. It follows that B is a basis for
[D ⇀ E].

3. Finally, validate the category claims. If D,E are both in BCD, then given
f, g ∈ [D ⇀ E], we can define f ∧ g by dom f ∧ g = dom f ∩ dom g, and for
x ∈ dom f ∧ g, we let (f ∧ g)(x) = f(x) ∧ g(x). That f ∧ g is the inf of f and
g follows from the fact that h ≤ f, g implies dom h ⊆ dom f ∩ dom g, and
then the result is clear.

2.5 Domain Random Variables

With the results of the previous subsection in hand, we’re now ready to begin
our construction of domain random variables. We start with a lemma that will
underpin our main result.

Lemma 3. Let D be a domain and let μ, ν ∈ V(D). Then μ � ν implies
suppΣ μ ⊆ suppΣ ν. Moreover, if {μi}i∈I ⊆ V(D) is directed with supi μi = μ,
then supi suppΣ μi = suppΣ μ.



194 M. Mislove

Proof. For the first claim, μ � ν iff μ(U) ≤ ν(U) for each Scott-open set U . So,
μ(U) = 0 if ν(U) = 0, and it follows that suppΣ μ ⊆ suppΣ ν. For the second
claim, since (Γ (D),⊆) (the family of Scott-closed subsets of D) is a domain, the
first result implies supi suppΣ μi ⊆ suppΣ μ. Conversely, A = D\ supi suppΣ μi

is Scott-open, and μ(A) > 0 would violate supi μi = μ. So μ(A) = 0, which
implies suppΣ μ ⊆ D\A = supi suppΣ μi.

We now define domain random variables based on a given domain D.

Definition 2. Let D be a domain. A domain random variable on D is a mapping
X : suppΣ μ −→ E where μ is a subprobability measure on D and X : suppΣ −→
E is a Scott-continuous map. Given domains D and E, we define

RV(D,E)
def
= {(μ,X) ∈ V(D) × [suppΣ μ −→ E]} where

(μ,X) ≤ (ν, Y ) iff μ � ν & X ≤ Y |suppΣ μ

Proposition 4. If D and E are domains, then

– RV (D,E) is a dcpo.
– If D and E are in a CCC of domains, then RV (D,E) is a domain.
– If V(D),D and E are all in a CCC C of domains, then so is RV (D,E).

Proof. The fact that the relation ≤ on RV (D,E) is well defined follows from part
(i) of Lemma 3. The proof of the first statement is straightforward, using part
(ii) of Lemma 3. For the second part, first note that Proposition 3 implies V(D)×
[D ⇀ E] is a domain since V(D) is one. The first part implies RV (D,E) ⊆
V(D) × [D ⇀ E] is closed under directed suprema. Moreover, for (μ,X) ∈
RV (D,E),

↓↓(μ,X) ⊇ {(μ′,X ′) | μ′ � μ & X ′ � X|suppΣ μ′ in [suppΣ μ′ −→ E]},

and that the right-hand set is directed with supremum (μ,X). This implies
RV (D,E) is a domain. The third statement is then clear.

Theorem 3. Fix a domain D. Then RV(D,−) is the object level of a continuous
endofunctor on DCPO that leaves each CCC of domains that contains V(D)
invariant.

Proof. Given a Scott-continuous map f : E −→ F between domains E and F ,
define RV(D, f) : RV(D,E) −→ RV(D,F ) by RV(D, f)(μ,X) = (μ, f ◦ X). The
third part of Proposition 4 then implies that RV (D,−) is an endofunctor on
any CCC of domains that contains D and V(D). This endofunctor is continuous
because its components are.

3 A Monad of Continuous Random Variables

The development so far has been about domain theory with only a passing ref-
erence to a particular model of computation. We now focus more narrowly to



Discrete Random Variables over Domains, Revisited 195

obtain a monad of continuous random variables designed to model the prototyp-
ical source of randomness, the tosses of a fair (and also an unfair) coin. Such a
model underlies the work in [3,9], for example, where the focus is on measures μ
on the Cantor tree for which suppΛ μ is an antichain. We begin with a discussion
around such a model.

3.1 Modeling Coin Flips

We have chosen the sequential domain M{0, 1} because it provides a model for
a series of coin flips that might occur during a computation. Our intuitive view
is that a random choice of some element of from a semantic domain D would
consist of a coin flip followed by a choice of the element from D based on the
outcome. So, it is essentially a two-step process: the random process flips the
coin resulting in a 0 (tails) or a 1 (heads), and then successfully terminates,
adding a � to the outcome, and then a random variable X is applied to this
result to select the element of D. Note that a sequence of coin flips followed by
a choice is a process that iterates the coin flips a prescribed number of times,
represented by x1� · x2� · · · xn� = x1 · · · xn�, followed by the application of
the random variable X.

3.2 The Inevitability of Nondeterminism

Our choice of M{0, 1} to model coin flips naturally leads to the question of how
to combine sequences of coin flips by two processes combined under sequential
composition. The multiplication operation is used here, but it raises an additional
issue.

Example 2. Suppose we have processes, P and Q, both of which employ proba-
bilistic choice, and that we want to form the sequential composition P ;Q. Let’s
assume P can flip a fair coin 0, 1 or 2 times, and on each toss, if there is a 0, then
an action a is executed, while if there is a 1, then action b is executed, and con-
trol then is passed to Q. Likewise, suppose Q can toss a fair coin 0, 1 or 2 times
and if the result is a 0, it executes an action c, while if a 1 appears, an action d
is executed, and again, Q terminates normally after each execution. In our app-
roach based on M {0, 1}, if we represent P as (μ,X), and Q as (ν, Y ). then the
composition P ;Q = (μ ∗ ν,X � Y ), where ∗ represents a convolution operator on
measures, and � an appropriate operation on the random variable components.

Consider now the value of X � Y on the outcome of two 0s. This outcome
could arise in any of three ways:

– P could terminate without making any coin tosses, and Q could toss its coin
twice, then normally terminate. This would produce the value X � Y (00) =
cc�;

– P could toss its coin once, pass control, and Q could toss its coin once, and
terminate. This would produce X � Y (00) = ac�;

– P could toss its coin twice, pass control to Q, which terminates normally
without tossing its coin. This would produce X � Y (00) = aa�.



196 M. Mislove

Since we have no way of knowing which of the three possibilities occurred, we
must allow X�Y to account for all three possibilities. This means X�Y (00) must
contain all three outcomes. The traditional way of representing such multiple
outcomes is through a model of nondeterministic choice, i.e., a power domain.

Notation 1. Throughout the remainder of the paper, we assume the seman-
tic domains D where random variables take their values are bounded complete
domains, and the inf-operation models probabilistic choice. Thus, such domains
support a Scott-continuous nondeterministic choice operator– the inf-operation
– which we denote by ⊕D.

3.3 Constructing a Monad

We now focus more narrowly by restricting random variables to be defined on
a particular probability space, namely, M{0, 1}. This amounts to restricting the
functor to RV (M{0, 1},−). However, this restriction is not enough to define a
monad – we must restrict the measures on M{0, 1} that are allowed. We do this
by restricting the simple measures that are allowed, and then taking the smallest
subdomain of VM{0, 1} containing them.

Definition 3. We say a simple measure
∑

x∈Fμ
rxδx on M{0, 1} is normal if

Fμ ⊆ {0, 1}∗�. We denote the set of normal simple measures by VNM{0, 1}.
Since each normal measure is concentrated on a subset of {0, 1}∗� ⊆

MaxM{0, 1}, the suprema of a directed set of normal simple measures is another
such. However, the following will be useful:

Proposition 5. Let μn ∈ VNM{0, 1} be a sequence of normal measures. Then
the following are equivalent:

1. μn −→ μ in the weak topology on VM{0, 1}.
2. μn −→ μ in the Lawson topology on VM{0, 1}.
3. The sequence {infm≥n μm | n ≥ 1} satisfies μ = supn(infm≥n μm).

Proof. From Corollary 1 we know VM{0, 1} ∈ BCD, and hence it is a coherent
domain. The equivalence of (i) and (ii) is then Corollary 15 of [4], while the
equivalence of (ii) and (iii) is Proposition VII-3.10 of [8].

Theorem 4. If μ ∈ VM{0, 1} is concentrated on {0, 1}ω, then there are normal
simple measures μn ∈ VNM{0, 1} with μn −→ μ in the weak topology.

Proof. Define φn : {0, 1}ω −→ {0, 1}n� by φn(x1 · · · ) = x1 · · · xn�. This is Law-
son continuous between compact Hausdorff spaces (in the relative topologies),
and then Proposition 2 of [6] implies Prob {0, 1}ω � limn(Prob {0, 1}n�, φn). But
the same argument verbatim shows V({0, 1}ω) � limn(V({0, 1}n�), φn). Since
VM{0, 1} is a coherent domain and all the measures μ, φn μ are concentrated on
Max VM{0, 1}, the relative Lawson topology agrees with the weak topology on
these measures.



Discrete Random Variables over Domains, Revisited 197

Definition 4. If D is a dcpo, we define the family of random variables on D
to be

CRV (D)
def
= RV (M {0, 1},D) = {(μ,X) ∈ VM {0, 1} × [suppΣ μ −→ D]}.

Theorem 5. If D is a dcpo, then so is CRV (D). Moreover, if D is in BCD,
then so is CRV (D). Finally, CRV extends to a continuous endofunctor on BCD.

Proof. Proposition 4 implies CRV (D) is a dcpo if D is one. Together with Corol-
lary 1, it also implies CRV (D) is in BCD if D is, since VM {0, 1} ∈ BCD.

As for the final claim, If f : D −→ E, then define CRV f : CRV (D) −→
CRV (E) by CRV f(μ,X) = (μ, f ◦X). It’s clear that this makes CRV a functor,
and the comments above show it’s an endofunctor on BCD. It’s also continuous
because its components are.

In the general theory we often couch the discussion in terms of sub-probability
measures, with the implicit assumption that any mass unallocated is associated
with nontermination. Since we have an explicit nontermination symbol in the
current situation, this is a convenient place to describe the relationship between
sub-probability measures and probability measures on the same domain.

Notation 2. If D is a domain, we let

PRV (D) = {(μ,X) ∈ ProbM {0, 1} × [suppΣ μ −→ D]},

We call PRV (D) the family of probabilistic random variables over D.

Proposition 6. If D is a domain in BCD, then the mapping

(μ,X) �→ (μ ⊕ (1 − ||μ||)δ⊥,X) : CRV (D) −→ PRV (D)

is a closure operator on CRV (D), and its image, PRV (D), also is a domain
in BCD. Moreover, a basis for PRV (D) is the family {(μ,X) ∈ PRV (D) |
μ is simple}.
Proof. It’s straightforward to show that the mapping μ �→ μ + (1 − ||μ||)δ⊥ is
a closure operator on VM{0, 1}, and clearly its image is ProbM{0, 1}, which
is a dcpo. It follows from Corollary I-2.5 of [8] that ProbM{0, 1} is a domain,
and that μ � ν ∈ V D implies μ + (1 − ||μ||)δ⊥ � ν + (1‖|ν||)δ⊥. This last
point implies ProbM{0, 1} has a basis of simple measures. It now follows that
(μ,X) �→ (μ + (1 − ||μ||)δ⊥,X) is a closure operator on CRV (D); note that
X(⊥) is well-defined since D is bounded complete. Thus, the image of CRV (D)
is PRV (D), and the same result from [8] applies to finish the proof.

The Structure of VM{0,1}. Since M{0, 1} = {x�, x⊥ | x ∈ {0, 1}∗}∪{0, 1}ω,
we can exploit the structure of M{0, 1}, and the structure this induces on
VM{0, 1}, as follows:



198 M. Mislove

Definition 5. For each n ≥ 1, we let Mn = ∪k≤n{x�, x⊥ | x ∈ {0, 1}k}. We

also define πn : M{0, 1} −→ Mn by πn(x) =

{
x if x ∈ Mn,

x1 · · · xn⊥ if x �∈ Mn.

If m ≤ n, let πm,n : Mn −→ Mm by πm,n(x) =

{
x if x ∈ Mm,

x1 · · · xm⊥ if x ∈ Mn\Mm.

Note that πm = πm,n ◦ πn for m ≤ n.

Proposition 7. M{0, 1} � bilim (Mn, πm,n, ιm,n), where ιm,n : Mm ↪→ Mn is
the inclusion. Moreover, VM{0, 1} = proj limn(VMn,Vπm,n).

Proof. It’s straightforward to verify that ιm,n : Mm −→ Mn : πm,n forms an
embedding–projection pair for m ≤ n, and then it follows that M{0, 1} =
bilim (Mn, πm,n, ιm,n). This implies M{0, 1} � proj limn(Mn, πm,n) in the Scott
topologies, and the same argument as in the proof of Theorem 1 shows this
also holds for the Lawson topology. Then the same argument we used in
the proof of Theorem 4 implies ProbM{0, 1} � limn(ProbMn,Probπm,n) and
VM{0, 1} � proj limn(VMn,Vπm,n).

Corollary 2. If D is a domain, we define:

• CRVn(D) = {(Vπn μ,X|suppΣ Vπn μ) | (μ,X) ∈ CRV (D)}, and
• Πn : CRV (D) −→ CRVn(D) by Πn(μ,X) = (Vπn μ,X|suppΣ Vπn μ).

Then CRVn(D) ⊆ CRV (D) and 1CRV (D) = supn Πn.

Proof. This follows from Propositions 3 and 7.

For CRV to define a monad, we have to show how to lift a mapping h : D −→
CRV (E) to a mapping h† : CRV (D) −→ CRV (E) satisfying the laws listed in
Lemma 4 below. Corollary 2 reduces the problem to showing the following:

Given h : D −→ CRV (E), let hn = Πn ◦ h : D −→ CRVn(D). Then there is
a mapping h†

n : CRVn(D) −→ CRVn(E), satisfying the monad laws listed in
Lemma 4 below for each n.

Since CRVn(E) has two components, we let h†
n = (hn,1, hn,2). Using this nota-

tion, we note the following:

If (
∑

x∈F rxδx,X) ∈ CRVn(D), then for each x ∈ F

hn,1(X(x)) =
∑

y∈Gx

syδy ∈ VMn,



Discrete Random Variables over Domains, Revisited 199

where Gx denotes the set on which the simple measure hn,1X(x) is concentrated
for each x ∈ F . Moreover,

hn,1(
∑

x∈F

rxδx,X) =
∑

x∈F

rx(δx ∗
∑

y∈Gx

syδy)

=
∑

x∈F

∑

y∈Gx

rxsyδx·y.

This implies suppΣ hn,1(
∑

x∈F rxδx) =
⋃

x∈F ↓x · Gx =
⋃

x∈F & y∈Gx
↓(x · y).

Definition 6. We define h†
n = (hn,1, hn,2) : CRVn(D) −→ CRVn(E), where

• hn,1(
∑

x∈F rxδx,X) =
∑

x∈F rx(δx ∗ hn,1(X(x)))
=

∑
x∈F rx(δx ∗ ∑

y∈Gx
syδy), and

• hn,2(
∑

x∈F rxδx,X) : supp∑
x∈F rx(δx∗∑y∈Gx

syδy) −→ E by
hn,2(

∑
x∈F rxδx,X)(z)

= ∧{hn,2(X(x′))(y′) | z ≤ x′ · y′, x′ ≤ x ∈ F, y′ ≤ y ∈ Gx}
Lemma 4. Given h : D −→ CRV (E), the mapping h†

n : CRVn(D) −→
CRVn(E) satisfies the monad laws:
(1) If ηD : D −→ CRV (D) is ηD(d) = (δ�, χd), then

η†
D : CRVn(D) −→ CRVn(D) is the identity;

(2) h†
n ◦ ηD = hn; and

(3) If k : CRV (E) −→ CRV (P ) and kn = Πn ◦ k, then (k†
n ◦ hn)† = k†

n ◦ h†
n.

Proof. (1) Note that ηD(D) ⊆ CRVn(D) for each n ≥ 1, so Πn ◦ ηD =
ηD. Then (η†

D)1(
∑

x∈F rxδx,X) =
∑

x∈F rx(δx ∗ δ�) =
∑

x∈F rxδx, and
(η†

D)2(
∑

x∈F rxδx,X)(z) = ∧{(ηD)2(X(x′))(y′) | z ≤ x′ · y′, x′ ≤ x ∈ F, y′ ≤ �}

=

{
χX(z)(�) if z ∈ {0, 1}∗�
χX(z)(⊥) if z ∈ {0, 1}∗⊥ = X(z).

(2) If hn,1(d) =
∑

x∈F rxδx, then
hn,1(δ�, χd) =

∑
x∈F rx(δx ∗ δ�) =

∑
x∈F rxδx. Likewise,

hn,2(δ�, χd)(z)
= ∧{hn,2(χd(x′))(y′) | z ≤ x′ · y′, x′ ≤ �, y′ ≤ y ∈ G�}
= hn,2(d)(y′) =

{
hn,2(d)(z) if ⊥< z

hn,2(d)(⊥) if z =⊥ = hn,2(ηD(d)).

(3) k†
n ◦ h†

n(
∑

x∈F rxδx,X)
= k†

n(hn,1(
∑

x∈F rxδx,X), hn,2(
∑

x∈F rxδx,X))
= (kn,1(hn,1(

∑
x∈F rxδx,X), hn,2(

∑
x∈F rxδx,X)),

kn,2(hn,1(
∑

x∈F rxδx,X), hn,2(
∑

x∈F rxδx,X))).
Now, kn,1(hn,1(

∑
x∈F rxδx,X), hn,2(

∑
x∈F rxδx,X))

= kn,1(
∑

x∈F rx(δx ∗ (
∑

y∈Gx
syδy)), hn,2(

∑
x∈F rxδx,X))

= kn,1(
∑

x∈F

∑
y∈Gx

rxsyδx·y, hn,2(
∑

x∈F rxδx,X))
=

∑
x∈F & y∈Gx

rxsy(δx·y ∗ kn,1(hn,2(
∑

x∈F rxδx,X)(x · y))).
On the other hand,
(k†

n ◦ hn)†(
∑

x∈F rxδx,X)



200 M. Mislove

= ((k†
n ◦ hn)1(

∑
x∈F rxδx,X), (k†

n ◦ hn)2(
∑

x∈F rxδx,X))
= (

∑
x∈F rx(δx ∗ k†

n ◦ hn,1(X(x)),
(k†

n ◦ hn)2(
∑

x∈F rxδx,X))
= (

∑
x∈F rx(δx ∗ (k†

n)1(
∑

y∈Gx
syδy, hn,2(

∑
x∈F rxδx,X)),

(k†
n ◦ hn)2(

∑
x∈F rxδx,X))

= (
∑

x∈F rx(δx ∗ (
∑

y∈Gx
sy(δy ∗ kn,1(hn,2(

∑
x∈F rxδx,X)(x · y)))),

(k†
n ◦ hn)2(

∑
x∈F rxδx,X)))

We conclude that
(k†

n ◦ h†
n)1(

∑
x∈F rxδx,X)

= kn,1(hn,1(
∑

x∈F rxδx,X), hn,2(
∑

x∈F rxδx,X))
=

∑
x∈F & y∈Gx

rxsy(δx·y ∗ kn,1(hn,2(
∑

x∈F rxδx,X)(x · y))))
=

∑
x∈F rx(δx ∗ (

∑
y∈Gx

sy(δy ∗ kn,1(hn,2(
∑

x∈F rxδx,X)(x · y))))
= (k†

n ◦ hn)1(
∑

x∈F rxδx,X),
which shows the first components of k†

n ◦ h†
n and (k†

n ◦ hn)† agree. A similar
(laborious) argument proves the second components agree as well.

Theorem 6. The functor CRV defines a monad on BCD.

Proof. This follows from Lemma 4 and Corollary 2.

Remark 2. As noted earlier, if M is a compact monoid, convolution satisfies
(μ∗ν)(A) = (μ×ν){(x, y) ∈ M ×M | xy ∈ A}, so it is a mapping ∗ : Prob(M)×
Prob(M) −→ Prob(M). Our use of ∗ in Theorem 6 is of a different character,
since we are integrating along a measure μ to obtain a measure f̂(μ,X) =∫

x
d f ◦ X(x) ∗ μ(x), where f : CRV (D) −→ VM {0, 1}.

3.4 CRV and Continuous Probability Measures

An accepted model for probabilistic choice is a probabilistic Turing machine,
a Turing machine equipped with an second infinite tape containing a random
sequence of bits. As a computation unfolds, the machine can consult the random
tape from time to time and use the next random bit as a mechanism for making
a choice. The source of randomness is not usually defined, and in a sense, it’s
immaterial. But it’s common to assume that the same source is used throughout
the computation – i.e., there’s a single probability measure that’s governing the
sequence of random bits written on the tape.

In the models described in [9] and in [3], the idea of the random tape is
captured by the Cantor tree CT =

⋃
n Cn ∪ C, where the “single source of ran-

domness” arises naturally as a measure μ on the Cantor set (at the top). That
measure μ can be realized as μ = supn φn μ, where φn : C −→ Cn is the natural
projection. As a concrete example, one can take μ to be Haar measure on C
regarded as an infinite product of two-point groups, and then μn is the normal-
ized uniform measure on Cn � 2n. Then the possible sequence of outcomes of
coin tosses on a particular computation are represented by a single path through
the tree CT, and the results at the nth-level are governed by the distribution



Discrete Random Variables over Domains, Revisited 201

φn μ. The outcome at that level is used to define choices in the semantic domain
D via a random variable X : Cn −→ D for each n.

The same ideas permeate our model CRV , but our structure is different. The
mappings φn : CT −→ Cn are replaced in our model by the mappings

πn : M{0, 1} −→ Mn given by πn(x) =

{
x if x ∈ Mn

x1 · · · xn⊥ if |x �∈ Mn

described in Definition 5. Then Mn is a retract of M{0, 1} under πn.
To realize any measure μ concentrated on C ⊆ M{0, 1}, and the measures

μn, we define new projections ρn : C −→ Cn� from the Cantor set of maximal
elements ofM{0, 1} to the n-bit words ending with � in the obvious fashion. These
mappings are continuous, but their images μn = ρn μ are incomparable (since
the set Cn� ⊆ MaxM{0, 1} for each n). Nevertheless, Proposition 5 implies the
sequence ρn μ −→ μ in M{0, 1} in the Lawson topology. From a computational
perspective, we can consider the related measures πm μ = νm, then νm ≤ μn for
each m and each n ≥ m. But μ = supm νm since 1M{0,1} = supm πm, and then
νm ≤ μn for n ≥ m implies μn −→ μ in the Scott topology, since νm � μ for
each m.

4 Summary and Future Work

We have constructed a new monad for probabilistic choice using domain theory.
The model consists of pairs (μ,X), where μ ∈ VM {0, 1} and X : suppΣ μ −→ D
is a Scott-continuous random variables that defines the choices in the semantic
domain D. The fact that CRV forms a monad relies crucially on the convolution
operation on VM{0, 1} that arises from the monoid operation on M{0, 1}, and
the new order on M{0, 1}, rather than the prefix order on the set of finite and
infinite words over {0, 1}.

Our construction is focused on bounded complete domains, in order to utilize
the inf-operation to define the Kleisli lift – in particular, in the random variable
component of a pair (μ,X). One fault that was identified in the monad V is its
lack of a distributive law over and of the power domains, which model nonde-
terministic choice. But here we see that we must assume the domain of values
for our random variables already must support nondeterminism, since it arises
naturally when one composes random variables (cf. Subsect. 3.2).

With all the theory, one might rightfully ask for some examples. An obvious
target would be the models of CSP, starting with the seminal paper [5]. Morgan,
McIver and their colleagues [18] have developed an extensive theory of CSP with
probabilistic choice modeled by applying the sub-probability monad V to CSP
models. It would be interesting to compare the model developed here, as applied,
e.g., to the model in [18].

Acknowledgement. The author wishes to thank Tyler Barker for some very helpful
discussions on the topic of monads of random variables.



202 M. Mislove

References

1. Abramsky, S., Jung, A.: Domain Theory. In: Handbook of Logic in Computer
Science, pp. 1–168. Clarendon Press, Oxford (1994)

2. Alvarez-Manilla, M., Edalat, A., Saheb-Djahromi, N.: An extension result for con-
tinuous valuations. J. Lond. Math. Soc. 61(2), 629–640 (2000)

3. Barker, T.: A Monad for Randomized Algorithms. Tulane University Ph.D. disser-
tation (2016)

4. van Breugel, F., Mislove, M., Ouaknine, J., Worrell, J.: Domain theory, testing
and simulations for labelled Markov processes. Theor. Comput. Sci. 333, 171–197
(2005)

5. Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A theory of communicating sequential
processes. J. ACM 31, 560–599 (1984)

6. Fedorchuk, V.: Covariant functors in the category of compacta, absolute retracts,
and Q-manifolds. Russ. Math. Surv. 36, 211–233 (1981)

7. Fedorchuk, V.: Probability measures in topology. Russ. Math. Surv. 46, 45–93
(1991)

8. Gierz, G., Hofmann, K.H., Lawson, J.D., Mislove, M., Scott, D.: Continuous Lat-
tices and Domains. Cambridge University Press, Cambridge (2003)

9. Goubault-Larrecq, J., Varacca, D.: Continuous random variables. In: LICS 2011,
pp. 97–106. IEEE Press (2011)

10. Hofmann, K.H., Mislove, M.: Compact affine monoids, harmonic analysis and infor-
mation theory. In: Mathematical Foundations of Information Flow, AMS Symposia
on Applied Mathematics, vol. 71, pp. 125–182 (2012)

11. Jones, C.: Probabilistic nondeterminism, Ph.D. thesis. University of Edinburgh
(1988)

12. Jung, A., Tix, R.: The troublesome probabilistic powerdomain. ENTCS 13, 70–91
(1998)

13. Keimel, K.: The monad of probability measures over compact ordered spaces
and its Eilenberg-Moore algebras, preprint (2008). http://www.mathematik.
tu-darmstadt.de/∼keimel/Papers/probmonadfinal1.pdf

14. Mislove, M.: Topology, domain theory and theoretical computer science. Topol.
Appl. 89, 3–59 (1998)

15. Mislove, M.: Discrete random variables over domains. Theor. Comput. Sci. 380,
181–198 (2007). Special Issue on Automata, Languages and Programming

16. Mislove, M.: Anatomy of a domain of continuous random variables I. Theor. Com-
put. Sci. 546, 176–187 (2014)

17. Mislove, M.: Anatomy of a domain of continuous random variables ll. In: Coecke,
B., Ong, L., Panangaden, P. (eds.) Computation, Logic, Games, and Quantum
Foundations. The Many Facets of Samson Abramsky. LNCS, vol. 7860, pp. 225–
245. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38164-5 16

18. Morgan, C.A., McIver, K., Seidel, J.W.: Saunders: a probabilistic process algebra
including demonic nondeterminism. Formal Aspects Comput. 8, 617–647 (1994)

19. Saheb-Djahromi, N.: CPOs of measures for nondeterminism. Theor. Comput. Sci.
12, 19–37 (1980)

20. Swirszcz, T.: Monadic functors and convexity. Bulletin de l’Académie Polonaise
des Sciences, Série des sciences math. astr. et phys. 22, 39–42 (1974)

21. Varacca, D.: Two denotational models for probabilistic computation, Ph.D. thesis.
Aarhus University (2003)

22. Varacca, D., Winskel, G.: Distributing probabililty over nondeterminism. Math.
Struct. Comput. Sci. 16(1), 87–113 (2006)

http://www.mathematik.tu-darmstadt.de/~keimel/Papers/probmonadfinal1.pdf
http://www.mathematik.tu-darmstadt.de/~keimel/Papers/probmonadfinal1.pdf
http://dx.doi.org/10.1007/978-3-642-38164-5_16


A Demonic Lattice of Information

Carroll Morgan(B)

University of New South Wales, and Data61, Sydney, Australia
carroll.morgan@unsw.edu.au

Abstract. Landuaer and Redmond’s Lattice of Information was an
early and influential formalisation of the pure structure of security [8]:
a partial order was defined for information-flow from a hidden state.
In modern terms we would say that more-security refines less-security.
For Landauer, the deterministic case [op. cit.], the refinement order is a
lattice.

Very recently [3,9] a similar approach has been taken to purely prob-
abilistic systems and there too a refinement order can be defined; but it
is not a lattice [12].

In between deterministic and probabilistic is demonic, where behav-
iour is not deterministic but also not quantifiable. We show that our
own earlier approach to this [15,16] fits into the same pattern as deter-
ministic and probabilistic, and illustrate that with results concerning
compositionality, testing, soundness and completeness. Finally, we make
some remarks about source-level reasoning.

1 A Deterministic Lattice of Information — The Original

1.1 Historical Introduction and Intuition

Landauer and Redmond proposed in 1993 A Lattice of Information [8] for deter-
ministic channels that accept hidden input and produce visible output. The
“information” in Landauer’s title is what the channel’s output tells an observer
about the input that we are trying to hide from her.1

Definition 1. Deterministic channel Given non-empty input space I
and output space O, a deterministic channel is a total function from I to O. For
channel C: I → O, an input i in I produces an output C(i) in O. ��
With “deterministic” we emphasise that for any input i the channel C always
outputs the same output o, that is o = C(i).

Take for the input space I the letters {A,B,E,W}, and let the output
space O1 be {vowel,cons} for “vowel” or “consonant”; then define channel
C1: I → O1 in the obvious way. Define another channel C2: I → O2 where O2

is {early, late} for “early” or “late” in the alphabet. These two channels C1,2

1 We use the feminine she/her consistently for adversaries. Plural we/us is used for
the designers or users of programs, or the readers of this article; and neuter “it” or
plural “they” is used for third parties.

c© Springer International Publishing AG 2017
T. Gibson-Robinson et al. (Eds.): Roscoe Festschrift, LNCS 10160, pp. 203–222, 2017.
DOI: 10.1007/978-3-319-51046-0 11



204 C. Morgan

W

A B

E

(a) vowel/cons partition for C1

W

A B

E

(b) early/late partition for C2

Fig. 1. Partitions induced on I by the channels C1 and C2

W

A B

E

(a) Both cookie-cutters applied

W

A B

E

(b) The meet is finer than both.

Fig. 2. Induced partitions

have different output spaces O1,2 (but the same input space) because they are
observing different things. We compare them therefore only wrt. the information
they release about their inputs: the precise values of their outputs will be seen
to be irrelevant.

Each channel induces a partition on I via the kernels of the functions C1,2,
as shown in Fig. 1, where the partitions’ cells show just which elements of I can
be distinguished by an observer who sees the output of the channel: two input
elements can be distinguished by an observer just when they are not in the same
cell. Thus Fig. 1(a) shows that B,W cannot be distinguished by an observer of
C1’s output, because they are both consonants; but Fig. 1(b) shows that B,W
can be distinguished by C2, because B is early but W is late.

W

A B

E

Fig. 3. The join is coarser
than both C1,2.

In general we write EI for the set of partitions of
I; clearly EI is a subset of the powerset PI of I, and
there is partial order that relates two partitions in
EI just when one can be formed from the other by
dividing cells into smaller pieces (or, in the opposite
direction, by merging cells). It is a lattice because
both meet (greatest lower bound) and join (least
upper bound) are defined. The meet can be visu-
alised by thinking of partitions as “cookie cutters”,
with set I being the “dough” and both partitions



A Demonic Lattice of Information 205

applied, one on top of the other: the pieces formed by both cookie-cuts together
determine the cells of the meet, shown for C1 and C2 in Fig. 2. It is the least
informative channel that reveals as much about the input as each of C1,2 does:
for example the meet must distinguish A, B because C1 does, and it must distin-
guish B, W because C2 does. Complementarily, the join is the most informative
channel that reveals no more than C1,2 and is shown in Fig. 3: in this case it is
the channel that reveals nothing.2 Note that none of these constructions –neither
the partial order, nor the meet/join– require details of output sets O1,2; only
the partitions induced by the channels are important.

In software engineering the refinement order relates specifications S to imple-
mentations P just when P is as good as or better than S according to precise
criteria set by the user. The available criteria are determined carefully, even
“legally”, beforehand and can be seen as the terms of reference available for
writing contracts between user and supplier. Normally, program-refinement is
written S � P , that specification S is refined by implementation P . Since here
our focus is on security, we consider “revealing less” to be better than “revealing
more”, so that we would write (exhaustively) for the examples above

Fig. 2(b) � Fig. 1(a) Fig. 1(a) � Fig. 3

Fig. 2(b) � Fig. 1(b) Fig. 1(b) � Fig. 3

Fig. 2(b) = Fig. 1(a) � Fig. 1(b) Fig. 3 = Fig. 1(a) � Fig. 1(b).

This shows (unfortunately) that the mathematical term “partition refine-
ment” (finer cells) and the computer-science term “program refinement” (fewer
distinctions made, less information revealed, better for the user) go exactly in
opposite directions. We follow the Computer-Science convention.

1.2 Definition of Secure Refinement for Channels

The definition of secure refinement for deterministic channels is that for S: I →
OS and P : I → OP we have S �P just when there is a refinement-function
R:OS → OP such that P = R ◦ S. The relation (�) is reflexive and transitive
(obviously), and it is antisymmetric. Note that channels can be in refinement
even when their output spaces differ.

The intuition for its definition is that having such an R means that P ’s
output cannot tell you anything you do not already know, at least implicitly,
from the output of S: that is if you know oS (i.e. S(i)), then you do not need
to run P to know oP as well (i.e. P (i)) — it is simply R(oS), i.e. determined by
the result oS you already have, precisely because P = R ◦ S.

2 Although both C1 and C2 distinguish A, W, their join cannot. Because C2 does not
distinguish A, B, the join cannot; it can’t distinguish B, W because C1 does not: by
transitivity therefore the join must regard A, W as equal. The same applies to E, W.



206 C. Morgan

vowel consonant

A TRUE false

B false TRUE

E TRUE false

W false TRUE

input

output

input cells induced by output observations

Fig. 4. Matrix representation of a
deterministic channel

An equivalent formulation of refinement
is to see S, P,R as Boolean matrices, with
for example Si,o = true just when S.i = o,
as in Fig. 4.3 Because the channels S, P are
deterministic (and total) the corresponding
matrices have exactly one true in each row,
and the induced cells are given by the matrix
columns, with true entries identifying mem-
bers of the cell corresponding to that column.
Similarly because R represents a function, it
too has exactly one true in each row. With
matrices the formulation of refinement is that
if channel S is a Boolean I × OS matrix and channel P is a Boolean I ×OP

matrix then S �P just when there is a Boolean OS × OP matrix R such that
P = SR.4

Figure 5 shows how the meet of C1,2 in Fig. 2(b) is refined in this style, i.e
by a matrix R by a matrix to C1. Notice that the column-labels 0, 1, 2 of the
meet (and the rows of the refinement matrix, in the middle) have no external
significance: this emphasises that it is the partition of the input cells, alone, that
indicates the information flow induced by a channel. Figure 6 uses a different
matrix R′ to refine the same meet to C2 instead.

0 1 2

A TRUE false false

B false TRUE false

E TRUE false false

W false false TRUE

vowel consonant

0 TRUE false

1 false TRUE

2 false TRUE

vowel consonant

A TRUE false

B false TRUE

E TRUE false

W false TRUE

=
The column labels 0,1,2 for the matrix representing C1 � C2 are chosen arbitrarily.

Fig. 5. Refinement of C1 � C2 to C1.

0 1 2

A TRUE false false

B false TRUE false

E TRUE false false

W false false TRUE

=
early late

A TRUE false

B TRUE false

E TRUE false

W false TRUE

early late

0 TRUE false

1 TRUE false

2 false TRUE

Fig. 6. Refinement of C1 � C2 to C2.

3 For matrix M indexed by r, c we write Mr,c for the value in row r and column c.
4 We write SR for the matrix multiplication of S and R.



A Demonic Lattice of Information 207

1.3 Testing, Soundness and Completeness

In Sect. 1.2 the refinement function, eqv. matrix, is a witness to the refinement
S �P , showing not only that the partition cells induced by S can be merged
to form the cells of P , but actually how to do it; the existence of such an R is
in fact refinement’s definition. In principle this gives a method for constructing
implementations P from specifications S, a “security by design” approach where
suitable matrices R guide the programmer’s efforts.

The complementary problem however is how a customer should convince a
court that S ��K, that when he bought S but got K he was cheated.5 It’s not
practical to go through all the (infinitely many) potential R matrices and show
the court, for each one, that P �=SR.6 Just as R provides a witness for (�), we
need a witness for (��) too.

In this deterministic setting a witness for (��) is a subset ι of I such that
some cell of K is a subset of ι but no cell of S is a subset of ι. Intuitively this
means that there is a “Could we have let slip that i is an ι?” test that K would
fail by revealing some cell κ ⊆ ι, since K cannot release κ unless i ∈ κ. Because
no cell σ of S satisfies σ ⊆ ι, that slip was excluded by the specification.

These two witnesses, refinement matrix R for (�) and subset ι of I for (��),
are related by “soundness” and “completeness”. Soundness says that whenever
S �X, i.e. there exists a suitable witness R for refinement, then there cannot
be any refuting witness ι that (inconsistently) would establish S �� X. In intu-
itive terms, it is that if a software engineer follows sound practices then he will
never lose a court case. Completeness says that whenever S ��X, i.e. there is no
refinement witness R, then there exists a refuting witness ι of that; we do not
have to try (and reject) every single R.

Another way of looking at soundness and completeness in practical terms
is as follows. On the one hand we want (�) to be weak, since the weaker it is
the more implementation strategies are available to the engineer and the less he
will charge for his work. But it cannot be too weak, e.g. the universal relation,
since then he could build faulty implementations: this is soundness. On the other
hand, we want (�) to be strong, since the stronger it is the less likely it is that
implementations will disappoint their customers. But it cannot be too strong,
e.g. the identity, since in that case the engineer will have so few design options
that his products will be expensive or even impracticable. This is completeness.

And finally, we can think of witness R as a method of construction, whereas
ι is a method of testing. Follow R and our implementation P is guaranteed at
least as secure as the specification S (soundness); but if we simply dream-up (i.e.
cobble together) a product without such an R, and in fact there turns out not to
be one, then there will be a test ι that S will pass but K will fail (completeness).
And we might meet that ι in a courtroom.

5 The mnemonics are S for Specification and P for an imPlementation (or Program)
that is supposed to refine S, and K for a “Kludge” that, as an example, in fact does
not refine S. In uncommitted cases, neither P nor K, we will use X.

6 In the probabilistic case Sect. 2, there would be infinitely many R’s to check: it would
literally take forever.



208 C. Morgan

2 A Probabilistic Partial Order (Not Lattice)
of Information

The probabilistic analogue of the deterministic case Sect. 1 is communication
channels with probabilistic transmission [17]. Here the input is a message to be
sent and the output is the message received, chosen from a distribution deter-
mined by the input. The traditional representation of such channels is stochastic
matrices where, real numbers in each row i give for each column o the probability
that input i will result in output o. Deterministic channels are special cases of
probabilistic channels, where true is probability 1 and false is probability 0.

As shown elsewhere [1–3,5,9–11,13,14] and mentioned above, there is a prob-
abilistic analogue of secure refinement S � P that can be formulated as a gener-
alisation of Sect. 1.2: the refinement matrix R is now stochastic, representing a
“probabilistic merge” of S-outputs to P -outputs mediated by R such that again
P = SR. This relation (between matrices) is reflexive and transitive (obviously).
But it is not antisymmetric: for that we quotient to abstract channels where all-
zero columns are removed, similar columns are merged and the order of (the
remaining) columns is ignored [14].7 Unfortunately the resulting abstracted par-
tial order is not a lattice [12] but, aside from that, it shares many structural
properties with deterministic refinement. In particular there are probabilistic
analogues of soundness and completeness, with tests based on “gain functions”
over I which are more general than the subsets of I that suffice for deterministic
channels [3,9].8

3 A Demonic Lattice of Information

3.1 Basic Structure

With Sects. 1 and 2 as motivating examples, we now treat our main topic: the
demonic case, where observations are not necessarily wholly determined by the
inputs, but we have no quantitative information about possible variations. This
was earlier proposed in [15,16], but the probabilisitic model Sect. 2 was not
known (we believe) at that time.

Definition 2. Demonic channel: matrix formulation A demonic
channel from I to O is a Boolean matrix with I-indexed rows and O-indexed
columns in which each row has at least one true element. ��
Whereas deterministic channels induce partitions on their input-space I,
demonic channels induce more generally simply sets of subsets of I, i.e. like
7 The identity matrix is stochastic, and the product of two stochastic matrices is sto-

chastic. Matrix columns are similar just when each is a multiple of the other. Col-
umn order can then be ignored by representing the matrix as a set of (the remaining)
columns.

8 The completeness property was called the Coriaceous Conjecture in [3]. It was proved
in [1,9] and, it turns out, earlier by [4].



A Demonic Lattice of Information 209

partitions but allowing the cells to overlap. The overlaps occur just for those
i-rows containing more than one true: those shared i’s “belong” more to than
one o-column, i.e. to more than one cell.9 We now give a more abstract definition
in those terms.

Definition 3. Secure refinement for demonic channels: matrix formulation
A demonic “specification” channel S: I � OS is secure-refined by

an “implementation” channel P : I � OP just when there is a demonic matrix
R:OS � OP such that P = SR where R is also a demonic channel.10 We write
S �P for that. ��
The similarity between the three models is striking: in each case refinement is
post-multiplication by a matrix of the same kind.

Demonic (secure-) refinement is reflexive and transitive but, as we observe
in the example below, and as in the probabilistic case Sect. 2, the relation is not
anti-symmetric: so far, we have only a pre-order.

Each column of the refinement matrix R makes a cell in P by taking the
union of the S-cells that have true in that column. With that insight, we can
rephrase Definition 3 as

S is (demonic/secure) refined by P iff for every cell of P
there is a set of cells of S of which it is the union.

(1)

Put still another way, every cell of the more-refined P must be “justified”
as the union of some set of cells in the less-refined S. An example of anti-
symmetry’s failure is then that X = {{i0}, {i1}, {i0, i1}, {i0, i1, i2}} and
Y = {{i0}, {i1}, {i0, i1, i2}} refine each other: to refine X to Y ignore the
cell {i0, i1} in X; to refine Y back to X merge the {i0} and {i1} in Y to replace
the {i0, i1} in X. Using matrices with 1 for true and 0 for false, with matrices
we would have for X to Y the refinement

X R Y

i0
i1
i2

⎛

⎝
1 0 1 1
0 1 1 1
0 0 0 1

⎞

⎠

⎛

⎜⎜
⎝

1 0 0
0 1 0
0 0 1
0 0 1

⎞

⎟⎟
⎠ =

⎛

⎝
1 0 1
0 1 1
0 0 1

⎞

⎠ ,

where for example the third column of R shows that X’s cells {i0, i1} and
{i0, i1, i2} are merged to a single cell {i0, i1, i2}, and so {i0, i1} is “lost”. For

9 We continue to call them “cells”, as for partitions, in spite of the possible overlaps.
10 We write X � Y for matrices (of any element-type) with X -indexed rows and

Y-indexed columns. For deterministic matrices I � O is isomorphically functions
I → O.



210 C. Morgan

the other direction Y to X we would have the matrices

Y R′ X

i0
i1
i2

⎛

⎝
1 0 1
0 1 1
0 0 1

⎞

⎠

⎛

⎝
1 0 1 0
0 1 1 0
0 0 0 1

⎞

⎠ =

⎛

⎝
1 0 1 1
0 1 1 1
0 0 0 1

⎞

⎠ ,

where the third column of R′ “creates” {i0, i1} from {i0} and {i1}.
We achieve anti-symmetry via the usual closure construction.

Definition 4. Union-closure for anti-symmetry Say that a subset
of PI is union closed just when the union of each of its subsets is also an element
of it. Define the union closure of some subset X of PI to be the smallest union-
closed subset of PI that contains X, well defined because PI is union-closed,
and any intersection of union-closed sets is again union-closed. Write X∪ for the
union-closure of X. ��
Note that all union-closed subsets of PI contain ∅, and so are non-empty.11

Lemma 1. Anti-symmetry on union-closed sets Take refinement (�)
as in Definition 3. If X,Y :PI are union-closed, with both X � Y and Y � X,
then in fact X = Y .

Proof. Any element of Y must be the union of some subset of X and hence an
element of X∪, which latter equals X again, because of its union-closure. ��
Definition 5. Demonic-refinement domain for information hiding
Let UI be the union-closed subsets of PI that cover I: it is the abstract
model for demonic information-hiding. The refinement relation (�) is as defined
above (Definition 3) for PI; but on UI it is (also) antisymmetric, thus a partial
order. ��
Note that reflexivity and transitivity of (�) on UI are inherited, since UI ⊆ PI.

Lemma 2. UI is a lattice On UI the refinement relation (Defini-
tion 3) is simply (⊇). Thus for X,Y :UI, both therefore union-closed, their join
X � Y is simply X ∩ Y , because it is union-closed as well and (⊇) is a lat-
tice. Their meet however needs explicit union closure: we define X � Y to be
(X ∪ Y )∪.

Proof. Omitted. ��

11 For any subset I of I we have ∅ ⊆ I and so ∅ = ∪∅ ∈ I∪ also.



A Demonic Lattice of Information 211

3.2 Spies in Action: An Example of Demonic Nondeterminism

Recall the channels from Fig. 1. We can see that the union-closure of C1 from
Fig. 1(a) is {∅,AE,BW,AEBW}, where we write AE for {A,E} etc. The union-
closure of C2 is {∅,W,ABE,AEBW}. Therefore from Lemma 2 the join C1 � C2

is {∅,AEBW} as in Fig. 3, and the meet C1 � C2 is

{∅,W,AE,BW,ABE,AEW,AEBW}, (2)

where the underlined AEW has been added by union-closure (Lemma 2). We
note however that (2) is not simply the union-closure of the meet Fig. 2(b) in
the deterministic lattice: that would instead be {B,W,AE}∪, that is

{∅,B,W,AE,BW,ABE,AEW,ABEW}. (3)

In fact in UI we have (3) � (2) by discarding {B} from the former.
Thus in this case UI admits a more-refined, that is a more secure meet (2)

than the (3) admitted by EI; that is because (2) describes behaviour that no
deterministic channel can realise, as we now discuss.

Suppose that C1,2 are real spies, named Ms. Vowel and Mrs. Early, and our
adversary M sends them into the field to discover the value of our hidden letter
i. The mission however is so dangerous that she knows that only one of the
spies will return: she just don’t know beforehand which it will be. That is the
nondeterminism. How do we describe this situation in UI?

In UI this mission is in fact C1 � C2, as in (2) and, as we remarked above,
it is a strict refinement of the deterministic (3) where both spies return. The
following lemma shows that (2) cannot be deterministic.

Lemma 3. Characterisation of determinism within UI For input space I,
the (union-closures of the) deterministic subset EI of its demonic channels UI
comprise exactly those that are complement-closed. That is, any X in UI is in
fact Y ∪ for some Y in EI iff X is intersection- and complement-closed.

Proof. “Only if” is trivial. If X in UI is complement-closed, then it is also
intersection-closed. For each i in I let Xi be the intersection of all elements
(subsets of I) of X that contain i. By intersection-closure of X each Xi is itself
in X: in fact it is the smallest element of X that contains i.

Now for any two i �= i′ we have that Xi and Xi′ are either equal or disjoint: if
they had a proper overlap then either Xi or Xi′ , or both, could be made smaller.

The sets Xi are the cells of the partition of which X is the union-closure:
they are pairwise disjoint, non-empty, and cover I. ��

Lemma 3 shows that (2) cannot be deterministic, because it can reveal BW
if Ms. Vowel returns (and says cons); and it can also reveal ABW if Mrs. Early
returns (saying early). But this mission can never reveal B, that is the inter-
section BW ∩ ABW, since for that both spies would have to return.

Now we consider an intriguing further possibility, where the spies report by
radio instead of in person, using Booleans agreed beforehand (a one-time pad):



212 C. Morgan

for Ms. Vowel “true” encodes vowel etc. On this even more dangerous mission
M knows that both spies will be captured, but she knows also that exactly one
will send a report back to her by radio, either true or false. But she won’t know
which spy it was. Here the demonic channel is

{∅,BW,ABE, I} (4)

which, by Lemma 3 again, is also properly demonic. This use of encoding, we
should remark, underscores our abstraction from output values: from our point
of view “Ms. Consonant” would be exactly the same spy as Ms. Vowel, and Mrs.
Late would have the same utility as Mrs. Early.

3.3 Testing, Soundness and Completeness

The methodological concerns of Sect. 1.3 apply to demonic channels too: if we
suspect that S ��K, how can we prove the refinement’s failure in court?

Our earlier technique, for testing deterministic channels, does not work for
demonic channels. Let S be {∅, {i0, i1}, {i2}, {i0, i1, i2}} and K, not a refine-†
ment, be {∅, {i0, i1}, {i1, i2}, {i0, i1, i2}}. We know that S �� K because {i1, i2}
in K is not the union of any cells in S. But no deterministic test ι in the style
of Sect. 1.3 shows S �� K, because every cell of K is a superset of some cell of
S. Thus deterministic tests are too weak, not complete for demonic channels.
Strangely, every cell of K’s being a superset of come cell of S, in a sense more
demonic, is still not sufficient for refinement.12

In this section we synthesise a complete test-suite for demonic channels.
By definition we have S ��K just when there is some cell κ in K that is not

the union of any set of cells σ1,··· ,N drawn from S — which, in turn, is just when
there is further some single element i of I such that every i-containing cell σ of
S is not a subset of κ. That is we have S �� K just when

there are i, κ with i ∈ κ ∈ K such that for every σ in S
we have i ∈ σ ⇒ σ �⊆ κ. (5)

Our preliminary definition of the “suite” of demonic tests is therefore that they
are pairs (i, ι) with i ∈ ι ⊆ I. A demonic channel X passes such a test just when
every cell χ in X with i ∈ χ satisfies χ �⊆ ι.13

For soundness of the (preliminary) test suite, argue the contrapositive by
assuming that we have S � P and a test (i, ι) that P fails, so that there is some
cell π in P with i ∈ π⊆ι. But π = ∪nσn for some σ1,··· ,N , and so i ∈ (∪nσn) ⊆ ι
whence, for some n, we have i ∈ σn ⊆ ι with σn ∈ S. That is, there is a cell σn

of S that fails the test, and so S fails as a whole.
For completeness of the test suite, suppose S ��K and appeal to (5) above

to choose i, κ; then set ι:= κ. The test (i, ι) itself is passed by S, by (5); but it is

12 They are trivially sound, however, since weakening a test suite trivially preserves its
soundness: with fewer tests, there will be fewer failures.

13 In fact i ∈ ι is not necessary, since a pair (i, ι) with i /∈ ι would be a test passed by
every cell, vacuously sound for all channels. Allowing it would make no difference.



A Demonic Lattice of Information 213

failed by K because we do not have i ∈ ι ⇒ ι �⊆ ι — the antecedent is true but
the consequent is trivially false. For example the test that shows

{∅, {i0, i1}, {i2}, {i0, i1, i2}} �� {∅, {i0, i1}, {i1, i2}, {i0, i1, i2}},
the example from (†) above, is (i1, {i1, i2}) — the cells σ on the left that satisfy
i1 ∈ σ are {i0, i1} and {i0, i1, i2} and, for both, we have σ �⊆ {i1, i2}. The cell
κ:= {i1, i2} on the right however satisfies i1 ∈ κ but not of course κ �⊆ {i1, i2}.

For our preferred definition of demonic testing we reformulate the above in
terms of two subsets of I, rather than an element i and a subset ι, because that
will be more convenient for source-level reasoning over programs.14

Definition 6. Tests for demonic refinement A test for demonic
refinement over space I is a pair (α, β) of subsets of I. A demonic channel X
passes the test (α, β) just when all its cells pass the test; a cell χ of X passes
the test just when χ ⊆ α ⇒ χ ⊆ β. ��
The top of the UI lattice is the reveal-nothing channel {∅, I}, and it passes
every non-trivial test; the bottom of the lattice is the reveal-everything channel
PI which fails them all.15

Lemma 4. Equivalence of testing suites The test suite of Defini-
tion 6 is equivalent in power to the preliminary test suite (i, ι) discussed at (5).

Proof. We show that S �� K can be established by an (α, β)-test iff it can be
established by an (i, ι)-test.

if — Any (i, ι)-test can be expressed as an (α, β)-test by setting α:= ι and
β:= (I−{i}). To see that, let χ be an arbitrary cell and reason

i ∈ χ ⇒ χ �⊆ ι
iff χ �⊆ (I−{i}) ⇒ χ �⊆ ι
iff χ ⊆ ι ⇒ χ ⊆ (I−{i})
iff χ ⊆ α ⇒ χ ⊆ β. “set α, β := ι, (I−{i})”

Thus (α, β)-tests are at least as discriminating as (i, ι)-tests.
only if — If S �� K is established by (α, β), then for all cells σ in S we have

σ ⊆ α ⇒ σ ⊆ β; and for some cell κ in K we have κ ⊆ α ∧ κ �⊆ β. Now reason

κ ⊆ α ∧ κ �⊆ β
iff κ ⊆ α ∧ i ∈ κ “for some i /∈ β”

hence κ fails test (i, α),

14 Subsets of I, rather than individual elements, are more easily turned into predicates
for source-level reasoning over a state space of typed variables: if you add another
variable, a subset remains a subset but a point is no longer a point.

15 Non-trivial tests make at least one distinction. Tests (α, β) are trivial when α ⊆ β
(passed by every cell), and when α, β are disjoint (passed only by cell ∅.) In general
(α, β) is equivalent to (α, α ∩ β).
Also for example (α′, β′) is weaker than (α, β) when α′ ⊆ α and β ⊆ β′. Compare
Footnote 22 below.



214 C. Morgan

and for a contradiction
if σ fails test (i, α) “for the same i /∈ β as above”

then i ∈ σ ∧ σ ⊆ α
hence i ∈ σ ∧ σ ⊆ β “assumption σ passes test (α, β)”

hence i ∈ β,
which contradicts i /∈ β, and so in fact σ cannot fail test (i, α).

Thus test (i, α) establishes S �� K, as required.

��
Although UI is restricted to union-closed subsets of I, we can give an

“abridged” representation of demonic channels in which union-closure is taken
implicitly. In abridged form the non-refinement example from (†) becomes

{{i0, i1}, {i2}} �� {{i0, i1}, {i1, i2}},
and the (α, β)-test for this non-refinement is ({i1, i2}, {i0, i2}). In fact we have

Lemma 5. Testing abridged representations For any subset X of PI
and subsets α, β of I, we have that X passes the test (α, β) iff the channel X∪

passes that same (α, β).

Proof. If X∪ passes the test then so does X, because X ⊆ X∪.
If X∪ fails the test (α, β) then for some χ1,··· ,N in X we have ∪(χ1,··· ,N ) ⊆ α

but ∪(χ1,··· ,N ) �⊆ β. From the latter we have χn �⊆ β for some n; but from the
former we still have χn ⊆ α for that n. Because that χn from X fails the test,
so does X itself. ��
From here on, we will use abridged representations if convenient. In fact, among
abridged representations of a channel there is a smallest one where no cell is the
union of any other cells (except itself). We call that the “reduced” representation
of the channel, and note that all deterministic channels EI are reduced.

Definition 7. Reduced demonic channels A subset X of PI is
a reduced channel just when ∪X = I and no cell χ in X is the union ∪χ1,··· ,N
of any other cells in X except trivially ∪{χ}. Note that ∅ is excluded from an
abridged representation, since it is ∪{} (as well as ∪{∅}.) ��
We say that a reduced Y with X = Y ∪ is a reduction of X.

Lemma 6. Uniqueness of reductions Any demonic channel X in UI
has a unique reduction, a unique reduced channel Y in PI such that X = Y ∪.

Proof. Existence of a reduction of X is trivial: keep removing superfluous cells
in X until no more are superfluous.

For uniqueness we argue from Lemma 5 and the soundness of testing that
two reductions Y, Y ′ of the same X must satisfy Y �Y ′ and Y ′ �Y , so that any
cell γ of Y is expressible as a union ∪γ′

1,··· ,N of cells γ′
n from Y ′.

In turn, each of those γ′
n’s must be a union of cells ∪γn,(1,··· ,M) back in Y ,

so that γ = ∪γ(1,··· ,N),(1,··· ,M).
Because Y is reduced, each γ(1,··· ,N),(1,··· ,M) must be just γ itself. Thus γ is

in Y ′. ��



A Demonic Lattice of Information 215

3.4 Justifying Refinement’s Definition

The tests of Definition 6 justify a refinement failure S ��K by guaranteeing that
there is a test that S passes but K fails. The utility of a discriminating test is
that, if you can find it, it proves the failure with a single witness. But the tests
(α, β) are hardly an obvious, intuitive choice themselves.

To justify refinement’s definition to both client and vendor, we appeal to a
more primitive notion of correctness that we take as self-evidently desirable for
security (of demonic channels): that if K can reveal its input is some i exactly
but S never can, then K cannot be a refinement of S.

Definition 8. Primitive refinement of channels We say that S
is primitively refined by P just when there is no singleton cell {i} in P that is
not also in S. We write it S � P . ��
Put more simply, Definition 8 says that S � P unless there is a particular i that
P can reveal but S cannot. “I might not know any theory; but I know that if S
guarantees never to leak my password, then P can’t either.”16

It’s the simplicity of (��), in everyday terms, that is its justification. But it
is however too simple for general use: Definition 8 does not justify (�) directly.
If S leaks the last character of a password, but K leaks the last two characters,
then probably S ��K — but we will still have S � K because neither leaks the
password exactly.

Therefore to justify (�) using Definition 8 we must do more: for that, we
recognise that channels will probably not be used alone: larger channels can be
made from a collection of smaller ones. In particular, we define

Definition 9. Channel composition The composition of two chan-
nels C1,2 over the same input I but outputs O1,2 respectively a new channel of
type I → (O1 × O2) defined

(C1‖C2).i := (C1.i, C2.i). ��
Thus an adversary with access to two channels C1,2 acting on the same input

can be considered to be using a single channel C1‖C2: she observes its composite
output (o1, o2) where o1,2 := C1,2.i respectively.

We now give two desirable principles that should apply to (�) in general:17

robustness If S �P then we should have primitive refinement even in the context
of an arbitrary (other) channel C, that is (S‖C) � (P‖C).

necessity If S �� P then for there must be some (other) channel C that justifies
the failure, i.e. such that (S‖C) �� (P‖C).

16 Just to be clear: a security breach releasing some large number N of passwords
usually means in our terms that there are N singleton cells, not that there is just
one cell with N passwords in it. The former means that each of N people has
his password leaked exactly. The latter means instead that someone’s password is
leearned to be one of those N .

17 Together they are an equivalence because S � P iff (S‖C) � (P‖C) for all C.



216 C. Morgan

From the two principles above we can derive two others:

safety If S �P then S � P , from applying robustness with the identity context.
monotonicity If S �P then (S‖C)� (P‖C) for any (other) channel C — for,

if not, by necessity there would be (still another) channel D such that
(S‖C)‖D �� (P‖C)‖D, that is by associativity S‖(C‖D) �� P‖(C‖D); and
that, by robustness wrt. channel C‖D, implies S ��P .

We note that the basic principles rest on two informal notions: that (��) rea-
sonably captures “is clearly broken” in the sense a layman might understand
it, and that (‖C) describes “contexts” in which laymen would expect our chan-
nels reasonably to be able to operate. In particular, robustness emphasises that
checking channels’ security properties individually is not enough: two adversaries
could have one channel each and, if they combined their results, they would in
fact be acting like a single adversary using the channels’ composition, probably
a more powerful attack than is possible with either channel alone.

Once those notions (�) and (‖C) are fixed, robustness and necessity deter-
mine refinement (�) uniquely. That is, justification of (�) and (‖C) and robust-
ness and necessity are collectively a justification of (�) and, further, it is the
only relation that can be justified that way. This process is called compositional
closure, that (�) is the compositional closure under (‖) of (�).

The derived principles have direct significance for everyday use when a sys-
tem C1‖ · · · ‖CN might be composed of many subsystems Cn: safety says that
if a vendor establishes S � P through his software-development safe practices
then, because (as well) he has established S � P , his client will be happy;
and monotonicity says that the vendor can use stepwise refinement [19] on his
Cn’s separately to modularise his software-development process that ultimately
produces the whole system C1‖ · · · ‖CN . We now have

Theorem 1. Refinement is justified Definition 5 of refine-
ment satisfies robustness and necessity wrt. Definition 8 (primitive refinement)
and Definition 9 (composition).

Proof.

Robustness
Assume that S � P but suppose for a contradiction that S‖C �� P‖C. In
that case there must be π, γ from P,C respectively and input i such that the
intersection π ∩γ is {i} for some i in I, indicating than when the observation
of P‖C is (π, γ) an adversary would know that the input was i exactly, and
furthermore that that does not occur with any σ from S. Now because S � P†
we have π = ∪σ1,··· ,N for some σ1,··· ,N each in S, so that

(σ1 ∩ γ) ∪ · · · ∪ (σN ∩ γ) = {i} also,

and so for at least one n we must have σn ∩ γ = {i}, contradicting “further-
more” at (†) above. Thus S‖C � P‖C as desired.



A Demonic Lattice of Information 217

Necessity
If S �� K then by Sect. 3.3 (completeness and Definition 6) there is an (α, β)
test that S passes but K fails. Choose therefore a cell κ in K such that κ ⊆ α%
but κ �⊆ β, and choose an element k in κ − β.
Define channel C: I → Bool so that

C.i := i = k ∨ i /∈ α, (6)

and form channel K‖C which for input k can give18 output (κ, true). In that
case the adversary reasons

i ∈ κ ∧ (i = k ∨ i /∈ α)
implies i ∈ α ∧ (i = k ∨ i /∈ α) “ κ ⊆ α ”

hence i = k,

so that she deduces that i is k exactly.
Now we show that S‖C can never reveal that i = k exactly. If S‖C is given
(the same) input k then it will produce output (σ, true) for some σ. Now
assume for a contradiction that the adversary can deduce that i is k exactly
in this case also. Write α for I − α and reason

implies σ ∩ ({k} ∪ α) = {k} “assumption for contradiction19”
implies σ ∩ ({k} ∪ α) ∩ α = {k} ∩ α “(∩α) both sides”
implies σ ∩ α = ∅ “k ∈ α”
iff σ ⊆ α
implies σ ⊆ β “assumption that S passes test (α, β)”
implies k ∈ β, “k ∈ σ”

which contradicts that k was chosen from κ − β at (%) above.
So we conclude that if S ��K then there is an input k and a channel C such
that running K‖C on k can reveal k exactly but S‖C on k can never reveal
k exactly, that is that S‖C �� K‖C.

��
Corollary 1. Refinement is sound and monotonic Definition 5 of refine-
ment satisfies soundness and monotonicity wrt. Definition 8 (primitive refine-
ment) and Definition 9 (composition).

Proof. Immediate from Theorem 1. ��

18 It’s “can” rather than “must” because K is nondeterministic: it might not select cell
κ for input k; but because k ∈ κ, it can.

19 The left-hand side is the possibilities the observer deduces for the input i when she
sees that i ∈ σ and that C.i = true. The equality therefore says that she concludes
the only possible input value is k.



218 C. Morgan

4 “Weakest Pre-tests” and Source-Level Reasoning

For eventual source-level reasoning, where e.g. leakage via channels is made
a primitive imperative-programming statement, we can imagine asking what
security guarantees we must have before a program runs in order to be sure that
running the program has not leaked “too much” information afterwards.

Suppose that in our letters example it’s especially important that the spies
never learn that our i is exactly A, because A is information about an especially
important person. For us the other people B,E,W are not so important.

Let our program (i.e. channel) be X with typical cell-names χ. To express
“X never reveals that i is A” using a test in the style of Definition 6, we could
write χ ⊆ {A} ⇒ χ ⊆ ∅ for all χ ∈ X. We can see by inspection from Fig. 2 that
both the “one spy returns” channel and the “radio spies” channel pass that test
(because all of their cells χ do).

(a) Only one spy returns. (b) A Boolean radio message is received.

Fig. 7. Ms. Vowel and Mrs. Early in action

So now we complicate things by imagining that, as a result of previous mis-
sions, M has some “a priori” knowledge about our i, knowledge that we would
also like to express as a test. For example we could say that she knows before
she sends Vowel and Early that i cannot be E, expressing that with the test
χ ⊆ I ⇒ χ ⊆ {ABW}. Could she ever learn from her spies that actually i = A?$

The general “weakest pre-test” question for protecting A is20.

What security criterion must our i satisfy before the spies are sent in order
to ensure that M cannot not learn i = A once the spies have reported?

Obviously the pre-test i �=A would be strong enough — if you don’t want A to
be leaked, don’t put it in your database. But can we do better?

The effect that M ’s a-priori knowledge, expressed as a cell μ say, has on
her spies’ output cells is simply that each cell χ becomes χ ∩ μ — she learns
χ from the channel, and she knew μ already. Thus to convert our post-test
χ⊆ {A} ⇒ χ ⊆ ∅ on χ to a pre-test on μ alone, we replace χ by χ ∩ μ, to give

(χ ∩ μ) ⊆ {A} ⇒ (χ ∩ μ) ⊆ ∅ , and then (7)
20 This is obviously by analogy with weakest preconditions [6].



A Demonic Lattice of Information 219

instantiate that for every χ in the (abridged) channel Fig. 7(a) — we can do
that because we know the channel’s construction and so we know what χ’s it
can produce. If we take χ = {W}, we get ({W} ∩ μ) ⊆ {A} ⇒ ({W} ∩ μ) ⊆ ∅,
which is equivalent to μ ⊆ ABE ⇒ μ ⊆ ABE, that is just true. For all four cells
it’s

μ ⊆ ABE ⇒ μ ⊆ ABE true when χ = W (done just above)
μ ⊆ ABW ⇒ μ ⊆ BW — when χ = AE
μ ⊆ AE ⇒ μ ⊆ AE true when χ = BW
μ ⊆ AW ⇒ μ ⊆ W — when χ = ABE ,

(8)

where in each case we get a test again, but of “pre-cell” μ rather than “post-cell”
χ, because χ ∩ μ ⊆ ι can be written μ ⊆ ι ∪ χ. Thus our overall pre-test for
Fig. 7(a) and the post-test χ ⊆ {A} ⇒ χ ⊆ ∅ is the conjunction

μ ⊆ ABW ⇒ μ ⊆ BW and μ ⊆ AW ⇒ μ ⊆ W (9)

that we get by discarding the true’s from (8).
Thus a single post-test can generate a conjunction of pre-tests, which con-

junctions we take therefore as our general form of test.21 In this case however
the first conjunct of (9) implies the second, and so we end up with only the first
one.22 To cast it back into everyday language, we rewrite (9) equivalently as
E /∈ μ ⇒ A /∈ μ , that is that †

if M believes i is not E, she must also believe it’s not A.

Under those conditions, her one-spy-returns attack will never reveal that i = A.
In the case of the “radio spies” Fig. 7(b) we get only the second conjunct

(because the case χ = AE of (8) is missing), which as we have just seen is weaker
than the first and so we can withstand “M ’s knowing more”. That is, in Fig. 7(b)
we are secure against M ’s knowing beforehand that i �=B as at ($) above; but
in Fig. 7(a) we are not. That’s not surprising, since Fig. 7(a)� Fig. 7(b) and
therefore we expect to be less at risk from the radio spies.

For source-level reasoning we could e.g. write channels as primitive state-
ments leak c in Φ(o,i) where Φ is a formula in state variables i and bound
variable c is the emitted value: in state i the channel can emit any o satisfying
Φ. As a special case we’d write leak Exp(i) for the deterministic case, when Φ
is c = Exp(i) for some expression Exp in i. A modality KΨ(i) would express that
the current cell χ satisfied χ ⊆ {i: I|Ψ(i)}, and our tests would then be of the
form (∀c • KΨ(i, c) ⇒KΩ(i, c)) where the universal quantifier would if necessary
express wt-generated conjunctions (which distribute through subsequent wt’s).
21 Starting again, from conjunctions of post-tests, will just generate conjunctions of

conjunctions of pre-tests, so we do not have to expand our expressiveness any further.
Furthermore, every member of UI is characterised uniquely by a conjunction of such
tests: every conjunction of tests “is” union-closed (easy); and for every union-closed
set there is a conjunction of tests that only it satisfies (sneaky).

22 In (9) here the (α′, β′) on the right is weaker than (α, β) on the left because we have
α′ ⊆ α and α′ ∩ β ⊆ β′. Compare Footnote 15 above.



220 C. Morgan

With all that, expressing our “weakest pre-test” approach at the source level
(and making reference to variables implicit) would give in general

wt( leak c in Φ(c), KΨ ⇒ KΩ )
= (∀c • K(Φ ⇒ Ψ) ⇒ K(Φ ⇒ Ω)),

and for the deterministic case (∀c • K(Exp = c ⇒ Ψ) ⇒ K(Exp = c ⇒ Ω)).
The pre-test E/∈μ ⇒ A/∈μ that we discovered at (†) above, to constrain M ’s

prior knowledge, would be therefore be rendered at the source level as

K(i �=E) ⇒ K(i �=A) If M knows i is not E,
then she also knows it’s not A.

Looking further ahead, we remark that for updates to the hidden state i
the weakest pre-test is particularly simple, because updates leak nothing: if for
example statement S is some assignment i:= Exp(i), then the weakest pre-test
is given by23

wt(S, KΨ ⇒ KΩ ) = K(wp(S, Ψ)) ⇒ K(wp(S,Ω)), (10)

where wp is conventional weakest-precondition [6]; and this applies even when S
is a demonic assignment (like a choice from a set). Non-leaking statements gen-
erate no pre-conjunctions. Conventional pre-and postconditions are embedded
as “half tests” K(true) ⇒ KΩ, equivalently just KΩ, and are respected by (10).

5 Conclusion

We have located a demonic model of information flow “in between” Landuaer
and Redmond’s deterministic model [8] and a more recent probabilistic model
[3,9]. Originally presented ab initio as “The Shadow” [15], it is now more clearly
structured; and as a result its properties can be divided into those inherent in
demonic choice, and those shared with other models of information flow.

The deterministic model is a restriction (not an abstraction) of the demonic
model: they give the same level of detail, but the latter describes more situations
than the former. For example collaboration of the Spies (Sect. 3.2) cannot be
expressed at all in the deterministic mode. The demonic model is however an
abstraction (not a restriction) of the probabilistic: they can describe the same
systems, but the latter gives a more detailed (i.e. quantitative rather than only
qualitative) description. For the Spies, we are abstracting from the probabilities
that one or the other might return, and the prior probability on the secret letter
A,B,E,W.

All three systems have the the same structural definition of secure refinement,
particularly evident when we use the matrix formulation: one channel P is a
secure refinement of another channel S just when P can be obtained via post-
multiplication by a so-called refinement matrix. This is in fact channel cascade,

23 We assume here that S is everywhere terminating.



A Demonic Lattice of Information 221

if the refinement matrix is for that purpose considered to be a channel from
S-observables to P -observables.

The deterministic- and the demonic systems are lattices wrt. the refinement
order; but the probabilistic system is not [12]: it is however a partial order if
properly quotiented.

All three systems have a complementary testing semantics, one that provides
a witness to any refinement failure. All three systems can justify their refinement
order by general principles, robustness and necessity (Sect. 3.4) whereby the
refinement relation is reduced to a more primitive form that is accepted “by the
layman”. (In the probabilistic case, the reduction is to the more primitive Bayes
Vulnerability, the probability of guessing the secret in one try [5,9].)

Finally, we mention that these systems show how the notion of security has
become more sophisticated over the decades. Originally a system was said to be
secure or insecure, an absolute black-or-white judgement, based on whether is
suffered from “interference” or not [7]. Later it was realised that this criterion is
too strong, since almost no useful system can be wholly interference-free: even
a password-based login system releases information when a login attempt fails.

That led to the idea comparing two programs’ information flow, particularly
comparing a specification with an implementation: refinement holds just when
the implementation cannot leak except when the specification can. In the prob-
abilistic case, the comparison is even more sophisticated: the implementation
must leak no more than the specification does.

Our aim is to enable this kind of refinement-based reasoning at the source-
code level, based on “information-flow aware” assertions like those proposed in
Sect. 4. From those it should be possible to construct an algebra of program
transformations that preserve security- and functional characteristics during the
program-development process in which specifications are manipulated to become
implementations.

Finally, in the longer term we would like to add a fourth layer above the three
mentioned here: one where probability, demonic choice and secrecy are handled
all at once.



222 C. Morgan

References

1. Alvim, M.S., Chatzikokolakis, K., McIver, A., Morgan, C., Palamidessi, C., Smith,
G.: Additive and multiplicative notions of leakage, and their capacities. In: IEEE
27th CSF 2014, pp. 308–322. IEEE (2014)

2. Alvim, M.S., Chatzikokolakis, K., McIver, A., Morgan, C., Palamidessi, C., Smith,
G.: Axioms for information leakage. Proc. CSF 2016, 77–92 (2016)

3. Alvim, M.S., Chatzikokolakis, K., Palamidessi, C., Smith, G.: Measuring informa-
tion leakage using generalized gain functions. In: Proceedings of 25th IEEE (CSF
2012), pp. 265–279, June 2012

4. Blackwell, D.: Comparison of experiments. In: Proceedings Second Berkeley Sym-
posium on Mathematical Statistics and Probability, pp. 93–102 (1951)

5. Bordenabe, N.E., Smith, G.: Correlated secrets in information flow. Proc. CSF
2016, 93–104 (2016)

6. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall, New Jersey (1976)
7. Goguen, J.A., Meseguer, J.: Unwinding and inference control. In: Proceedings of

IEEE Symposium on Security and Privacy, pp. 75–86. IEEE Computer Society
(1984)

8. Landauer, J., Redmond, T.: A lattice of information. In: Proceedings of 6th IEEE
CSFW 1993, pp. 65–70, June 1993

9. McIver, A., Meinicke, L., Morgan, C.: Compositional closure for Bayes risk in
probabilistic noninterference. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer
auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 223–235.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-14162-1 19

10. McIver, A., Meinicke, L., Morgan, C.: A Kantorovich-Monadic powerdomain for
information hiding, with probability and nondeterminism. In: Proceedings LICS
2012 (2012)

11. McIver, A., Meinicke, L., Morgan, C.: Hidden-Markov program algebra with iter-
ation. Mathematical Structures in Computer Science (2014)

12. McIver, A., Morgan, C., Meinicke, L., Smith, G., Espinoza, B.: Abstract channels,
gain functions and the information order. In: FCS 2013 (2013). http://prosecco.
gforge.inria.fr/personal/bblanche/fcs13/fcs13proceedings.pdf

13. McIver, A., Morgan, C., Rabehaja, T.: Abstract hidden Markov models: a monadic
account of quantitative information flow. In: Proceedings LICS 2015 (2015)

14. McIver, A., Morgan, C., Smith, G., Espinoza, B., Meinicke, L.: Abstract channels
and their robust information-leakage ordering. In: Abadi, M., Kremer, S. (eds.)
POST 2014. LNCS, vol. 8414, pp. 83–102. Springer, Heidelberg (2014). doi:10.
1007/978-3-642-54792-8 5

15. Morgan, C.: The shadow knows: refinement of ignorance in sequential programs. In:
Uustalu, T. (ed.) MPC 2006. LNCS, vol. 4014, pp. 359–378. Springer, Heidelberg
(2006). doi:10.1007/11783596 21

16. Morgan, C.C., Knows, T.S.: Refinement of ignorance in sequential programs. Sci.
Comput. Program. 74(8), 629–653 (2009). Treats Oblivious Transfer

17. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J.
27(379–423), 623–656 (1948)

18. Smith, G.: On the foundations of quantitative information flow. In: Alfaro, L. (ed.)
FoSSaCS 2009. LNCS, vol. 5504, pp. 288–302. Springer, Heidelberg (2009). doi:10.
1007/978-3-642-00596-1 21

19. Wirth, N.: Program development by stepwise refinement. Commun. ACM 14(4),
221–227 (1971)

http://dx.doi.org/10.1007/978-3-642-14162-1_19
http://prosecco.gforge.inria.fr/personal/bblanche/fcs13/fcs13proceedings.pdf
http://prosecco.gforge.inria.fr/personal/bblanche/fcs13/fcs13proceedings.pdf
http://dx.doi.org/10.1007/978-3-642-54792-8_5
http://dx.doi.org/10.1007/978-3-642-54792-8_5
http://dx.doi.org/10.1007/11783596_21
http://dx.doi.org/10.1007/978-3-642-00596-1_21
http://dx.doi.org/10.1007/978-3-642-00596-1_21


A Brief History of Security Protocols

Peter Y.A. Ryan(B)

University of Newcastle, Newcastle upon Tyne, UK
peter.ryan@uni.lu

Abstract. The universe seethes with protocols, from the interactions of
elementary particles (Feynman diagrams) to the power plays of nation
states. Security protocols allow remote entities to interact safely, and as
such they form the glue that holds the information society together. In
this chapter we give an overview of the evolution of security protocols,
from the Needham-Schroeder Secret Key protocol to quantum and post-
quantum cryptography, and the tools and techniques used to understand
and analyse them with particular emphasis on the major and seminal role
played by Bill Roscoe in this history.

1 Introduction

Protocols are the rules governing the interaction of entities and as such they can
be found everywhere, from the interactions of elementary particles, through the
ordering of wine from the sommellier in a fancy restaurant, to the power plays
between nations. In this chapter I will focus on a particular type of protocol:
security protocols, also often known as cryptographic protocols. These first arose
with the emergence of networked computing but have now become pervasive
across the internet. Every time you place an order on Amazon or initiate an e-
banking transaction you are invoking security protocols, probably without even
being aware of it.

The information society depends critically on such protocols: without them
the formation of remote trust relationships would not be possible. It is therefore
essential that they are designed and verified with great care. It was realised very
early on that their design and analysis is immensely challenging; in the words of
the late Roger Needham: “Crypto protocols are three line programs that people
still manage to get wrong.” In this chapter I provide a brief, rather biased and
far from exhaustive, outline of the rich panorama of security protocols and the
techniques and tools to analyse and verify them, with particular emphasis on
the significant contributions made by Bill Roscoe to this field.

2 Security Protocols

Security protocols enable people or entities to interact safely and securely in
a potentially hostile environment, such as the internet. Thus, for example, you
want to be sure that the party that you are interacting with really is who you
c© Springer International Publishing AG 2017
T. Gibson-Robinson et al. (Eds.): Roscoe Festschrift, LNCS 10160, pp. 223–245, 2017.
DOI: 10.1007/978-3-319-51046-0 12



224 P.Y.A. Ryan

think they are, e.g. that you are really passing your credit card details to Ama-
zon and not to some cyber-criminal. You will typically want to be confident
that your information is not leaked to entities eavesdropping on the communica-
tions channels. Furthermore, it may be important to guarantee that information
exchanged is not altered in transit.

The above requirements are usually referred to as authentication, confiden-
tiality/secrecy and integrity/authenticity, but other, often even more subtle,
properties may be required in some contexts, for example for digital contracts
we may require non-repudiation, that nobody can deny their actions, and fair-
ness, i.e. that no party gains an advantage over others. Already making such
requirements mathematically precise is very challenging, let alone designing and
proving protocols to guarantee them.

Describing a basic protocol is typically fairly straightforward: for each role
you specify the expected sequence of sends and receives of messages required
for a successful execution of the protocol. Where the challenges arise is in pre-
cisely formulating the security goals and in accurately modelling the attacker’s
capabilities.

3 Cryptographic Primitives and Notation

Crypto protocols are built out of crypto primitives: encryption, digital signa-
tures, hashes etc. We will not go into details as to how these work and formal
definitions here, but rather just indicate the properties they provide and intro-
duce some notation.

Encryption of a plaintext M under a key k is denoted by {M}k. Decryption
of a ciphertext C using key k is denoted by Dk(C). Of course, any self-respecting
encryption algorithm should satisfy:

∀M ∈ P, ∀k ∈ K : Dk−1({M}k) = M

where k−1 denotes the inverse key to k. For symmetric algorithms we often have
k = k−1, see the discussion later. We will typically assume that the plaintext
can only be extracted by someone possessing the appropriate (decryption) key.

The digital signature on the message M computed using the signing key sk,
corresponding to the public/verification key pk is denoted: Sigsk(M). There will
be a verification algorithm that, given the verification key pk and the signature
returns 1 or 0 according to whether the signature is valid or not. We assume that
a valid signature cannot be generated for a given text M without possession of
the signing key.

The cryptographic hash applied to a message M is denoted Hash(M), or
Hashk(M) in the case of a keyed hash. We assume that it is straightforward to
compute such a hash given M but infeasible to compute the pre-image M given
Hash(M). Furthermore, computing collisions, i.e. finding M and M ′ such that:

Hash(M) = Hash(M ′)

is deemed intractable.



A Brief History of Security Protocols 225

An important notion is that of so-called nonces: a node A generates a fresh,
hard to guess (high entropy) value NA and sends off a message containing this
value. When A receives back a message containing NA or values that are function
of NA, then A can be confident that the received message was generated after
her creation of NA. In other words, she can place an upper bound on the age of
the incoming message.

3.1 Symmetric Cryptography

For almost the entire history of cryptography it was (implicitly) assumed that
for two parties to communicate securely over open channels they would have
to have previously shared some secret key material. The key used to encrypt
is identical to the key used to decrypt, or if not precisely identical it is trivial
to derive one from the other. The Caesar cipher for example involves shifting
each letter forward by c places in the alphabet to encrypt, and shifting forward
by −c mod 26 to decrypt. Modern block ciphers such as AES and stream ciphers
fall in this class, now usually referred to as symmetric crypto.

A consequence of this is that for large networks of users key distribution is
a serious problem. Suppose that we have a network of N nodes and we want to
allow any pair to be able to communicate securely, then we need to distribute
N − 1 keys to each node, resulting in O(N2) keys. In an open system like the
internet where the community of users is unbounded key distribution is effec-
tively impossible.

3.2 Public Key/Asymmetric Cryptography

In the 1960s this assumption that secure communication is only possible with a
prior shared secret was overthrown by Diffie and Hellman, [11], triggering a rev-
olution in cryptography with the development of public key cryptography, often
also referred to as asymmetric cryptography. The key idea is to tease the encryp-
tion and decryption keys apart in such a way as to ensure that deriving the secret
key from the public key be intractable. This means that the encryption key, usu-
ally referred to as the public key, can be published openly while keeping the
decryption key secret. This of course is impossible with conventional algorithms
and involves the introduction of new concepts such as so-called hard problems
and one-way functions, easy to compute in one direction but intractable in the
other, and trapdoor functions, which are easy to compute with knowledge of a
secret trapdoor but intractable without. The resulting revolution in cryptogra-
phy is arguably comparable to that in astronomy brought about by Copernicus
or in physics with Einstein’s theory of relativity.

Later, Rivest, Shamir and Adelman, [23], proposed the RSA algorithm which
relies on the assumed hardness of factorising the products of large primes. A little
later El Gamal published an algorithm based on the difficulty of taking discrete
logs, [14]. We outline the latter to illustrate:

We work in a group G of large prime order q with generator g. Anne gen-
erates a random value x ∈ {0, · · · , q − 1} and computes hA := gx, which



226 P.Y.A. Ryan

she makes public. To encrypt a message m for Anne, Bob randomly chooses
r ∈ {0, · · · , q − 1} and computes the pair:

(α, β) := (gr,m · hr
A)

Anne can now decrypt this knowing x:

m = β/αx

Besides encryption, public key crypto gives rise to the idea of digital signa-
tures: allowing the possessor of a secret key to prove that he is the originator
of a digital document. Anyone with access to the corresponding verification key
can verify the signature, but only the person possessing the signing key should
be able to generate a signature on a given document that will verify against the
verification key.

It is probably fair to say that the time was ripe for such ideas: on the one
hand people were getting increasingly concerned about key distribution problems
and on the other ideas of computational complexity and hard problems were in
the air.

As a historical aside: similar ideas were proposed in secret at GCHQ a few
years earlier by James Ellis, Clifford Cox and Malcolm Williamson. It seems
though that GCHQ did not realise the full significance or potential of these
ideas, nor did they come up with the important idea of digital signatures.

4 Key Distribution and Establishment

We now outline some representative examples of key establishment protocols,
starting with one that employs only symmetric crypto.

4.1 Needham-Schroeder Secret Key Protocol

Already, using just symmetric crypto we can alleviate the key distribution prob-
lem, but at the cost of having to introduce trusted third parties responsible for
generating and distributing new session keys on demand. Suppose that we have
N nodes and a trusted server S. Suppose further that at setup time each node
A is provided with a distinct key that it shares with S, denoted KAS .

Now suppose that Anne decides that she would like to set up a secure channel
with Bob. To do this she initiates the following Needham-Schroeder Symmetric
Key protocol:

A → S : A,B,NA

S → A : {B,NA, kAB , {A,KAB}KBS
}KAS

A → B : {A,KAB}KBS

B → A : {NB}KAB

A → B : {NB − 1}KAB

(1)



A Brief History of Security Protocols 227

In the first step Anne signals to S her desire to communicate with Bob,
enclosing a nonce NA. In the second step S responds to her by sending a nested
encryption: the inner part is encrypted under the key KBS , the outer layer is
encrypted with the key shared with KAS . Thus A is able to strip off the outer
layer and reveal NA, KAB and B, where KAB is a fresh key that S has just
generated. A should confirm that the identity B revealed at this point agrees
with the one she included in her request; if it does not it indicates that her
request was corrupted and so S will have encrypted the inner layer under a
key other than that shared with B. She should also check that the NA agrees
with that she supplied. If either check fails she should abandon the protocol
immediately.

Assuming that all this checks out, Anne now forwards on the third step the
inner encrypted term to Bob. On receipt Bob can decrypt this to reveal KAB

and A and concludes that S has provided the key KAB for him to communicate
with Anne. Of course there should be suitable redundancy in the plaintexts such
that decrypting a message with the wrong key will reveal what will be evident
as garbage. The last two exchanges are designed to allow the parties to confirm
that they share KAB .

The protocol was analysed by the authors using the BAN-logic (Burroughs-
Abadi-Needham), which we will discuss shortly, and was deemed secure, although
the analysis did identify the impossibility of proving freshness of the third mes-
sage to Bob. This is indicative of the attack we describe in the next section. The
protocol is secure within the scope of its assumptions, in particular that keys are
not compromised, but flawed if we step outside this assumption. This is rather
the pattern in the design and analysis of crypto protocols: proof within a given
threat model only to later find that the protocol is flawed if the assumptions are
relaxed, or the requirement strengthened.

Denning-Sacco Attack. If we allow for the possibility that past session keys
get compromised then the NSSK protocol is found to be flawed. This might occur
due to leakage of keys or to an attacker succeeding in breaking out the key after
cryptanalysis of past ciphertexts. Now of course such breaches will happen and
the flaw lies not with the protocol but with the storage of keys or weaknesses
of the crypto algorithm. Any past traffic encrypted under the broken key is of
course compromised. The difficulty with the protocol is that its design allows
the attacker Yves, Y , to exploit such a compromise further: he can fool the
responder in the protocol, Bob in our example, to accept an old, compromised
key as fresh by simple replaying the third message to Bob:

Y → B : {A,KAB}KBS

B → Y : {NB}KAB

Y → B : {NB − 1}KAB

(2)

This flaw was identified by Denning and Sacco, [10], Now, unless Bob is
assiduously recording the messages of all past runs and checking them against



228 P.Y.A. Ryan

new runs, he has no way of knowing that this is not a freshly generated message
from S, via A. He assumes therefore that Anne has recently requested a fresh
session key to talk to him and now Yves will be able to impersonate Anne,
breaching the confidentiality and authenticity of their communications.

Freshness. This attack is significant as it illustrates the importance of the
notion of freshness in crypto protocols. Like groceries, crypto keys go stale
over time. There are essentially two ways to provide guarantees of freshness:
timestamps and nonces.

Timestamps work by cryptographically binding an indication of the time of
creation to a term or value. This is rather tricky to get right: you need rather
well synchronised clocks across the network, you need to know that timestamps
are generated by a reliable entity and have not been altered in transit etc. One
fix of the NSSK protocol takes the form of the Kerberos protocol, [20] which
uses timestamps to counter the Denning-Sacco attack.

Another way to fix NSSK without introducing timestamps is to redesign it, in
particular altering the flow of the messages. This is what happens, for example,
with the Yahalom protocol1, the details of which we omit, but simply remark
that here Anne sends a request to Bob, with a nonce NA, and Bob forward this
to S along with NA and a nonce of his own NB . Both nonces are included in the
response from S, so providing both Anne and Bob with freshness guarantees for
the key material provided.

Nonces arguably provide a more robust mechanism to guarantee freshness
than timestamps, in that the entity obtaining the guarantee is much more self-
reliant: it just has to rely on the quality of the mechanism generating its nonces.
On the other hand, nonces do require a two way exchange while timestamps only
require one way communication.

4.2 NSPK

We’ve seen that, with protocols like NSSK, we can alleviate the key distribution
problem to some extent using only symmetric crypto, but we still have to dis-
tribute O(N) keys in advance and we need trusted servers. To do better than
this we need to venture into the realms of public key crypto. Given a Public
Key Infrastructure (PKI) we can build protocols using PK primitives. We start
by illustrating with an early, rather simple protocol again due to Needham and
Schroder:

A → B : {A,NA}KB

B → A : {NA, NB}KA

A → B : {NB}KB

(3)

The intuition behind the design is that only B can extract NA from the first
message, and so when A gets the second message back and decrypts it to find

1 Invented by Raphael Yahalom and communicated to Roger Neeedham and published
along with the BAN-logic proof in [7].



A Brief History of Security Protocols 229

NA buried inside she can be sure that it came from B. Similarly, only A can
extract NB from the second message, so when B gets the third message and
decrypts it to reveal NB he can be sure that it came from A. Note furthermore
that the nonces give them both freshness guarantees on the messages that they
receive.

The protocol was analysed by the authors using the BAN logic and given a
clean bill of health. Exactly how to interpret this analysis is rather delicate and
indeed people have fallen into pitfalls as a result. Some years ago I reviewed a
paper that proposed using the NA ⊕ NB as a new session key. At first glance
this seems plausible, the argument above suggests that the nonces should only
be known to A and B. However there is a problem, that was only uncovered
about 17 years after the protocol and the BAN proof was published

Lowe’s Attack. In 1995, [17], Lowe published the now famous attack on NSPK:

A → Y : {A,NA}KY

Y → B : {A,NA}KB

B → A : {NA, NB}KA

A → Y : {NB}KY

Y → Y : {NB}KB

(4)

The upshot of this is that Anne believes, correctly, that she has been inter-
acting with Yves, but Bob has been misled into believing that he has been inter-
acting with Anne, and hence he might conclude that NA and NB are secrets
known only to Anne and him.

This tale is very instructive and it is worth asking how come the protocol
was given a clean bill of health and yet is so badly flawed. Indeed some have
argued that Lowe’s scenario is not really an attack given that the authors of the
protocol never claimed that the secrecy of NA and NB would be guaranteed.

– The NSPK authors were not explicit about what security properties the proto-
col was intended to achieve. They described it as an authentication protocol,
and indeed it does achieve a weak form of authentication even in the pres-
ence of Lowe’s scenario: Anne must indeed be involved in the execution for it
to occur. If Bob’s concern is just to know that Anne as alive and responsive
online then the protocol achieves this.

– Lowe’s scenario violates one of the assumptions of the BAN logic: that recog-
nised players in the protocol are honest. Yves is a recognised player with a
recognised PK but he does not play by the rules.

The lesson here is that the interpretation of the outcome of an analysis is
very delicate. It is not enough to claim that a protocol is secure, you must make
precise exactly what flavour of security property you are claiming and under
what assumptions about the system and the attacker’s capabilities.



230 P.Y.A. Ryan

5 Diffie-Hellman Based Key Establishment Protocols

Using public key crypto primitives we can design endless protocols to provide
authenticated key establishment. Many of these are based on the Diffie-Hellman
mechanism, [11]. We work in a group G of large prime order q with generator g.
A and B generate fresh random values x, y ∈ {0, · · · , q − 1} respectively. They
each raise g to their secret values and exchange the resulting values:

A → B : X := gx

B → A : Y := gy

Now A computes the shared secret KA := Y x = gyx and B computes
KB := Xy = gxy. Due to the commutativity of exponentiation, and assuming
the messages are not corrupted in transit, we should have KA = KB .

This allows two parties with no prior shared secret to establish a fresh
shared secret by communicating over open channels. Its security depends on
the assumed difficulty of taking discrete logs in appropriately chosen groups. An
eavesdropper on the channel sees the X and Y terms but without being able to
extract either x or y he is unable to compute the key. It does not of itself provide
any authentication: you have a secure channel, but you can’t be sure who is at
the other end.

5.1 Authenticating Key Establishment

In this section we overview some of the more interesting and representative of
the Authenticated DH-based Key Establishment (AKE) protocols.

Explicit Authentication. A crucial challenge in public key crypto is how to
ensure that public keys are correctly bound to the rightful owner, i.e. the person
holding the corresponding secret key. If you want to send a message for Anne’s
eyes only you want to be sure that the PK you use to encrypt the message is
indeed the one for which Anne holds the secret key. Achieving such assurance
is usually achieved with a Public Key Infrastructure (PKI): a trustworthy way
of binding PKs to identities. For this we use Certificate Authorities (CAs) who
issue signed certificates linking PK and identities. Using such a PKI to support
the authentication there are two main styles of AKE:

– Explicitly authenticated.
– Implicitly authenticated via key confirmation.

Station to Station. The Station-to-station (STS) protocol is a classic instance
of the former: the messages are digitally signed to provide authentication of the
resulting session key.

A → B : gx

B → A : gy, {(SigB(gy, gx))}K

A → B : {(SigA(gx, gy))}K



A Brief History of Security Protocols 231

where again K = gxy. The protocol is thus DH at its core with some extra
constructs to authenticate the exchanges. On receiving Anne’s DH term, and
having generated is own y value, Bob can already compute the key K. He signs
both the DH terms and encrypts this with K and sends this, along with his
DH term gy, back to Anne. Anne can now compute K, decrypt the term using
K, and verify Bob’s signature. She now signs the DH terms, signs and encrypts
under K and sends this back to Bob.

5.2 Implicit Authentication

A different approach is not to sign the messages but rather to fold long-term key
values into the computation of the session key. The key establishment phase is
followed by a key confirmation phase in which the parties exchange values that
allow then to confirm, or not, that they have computed the same key, from which
they can infer that the other party (or parties) are indeed whom they thought.
A prime example of this style of protocol is the MTI family, [18], of which we
mention one to illustrate:

Let yA = gxA denote Anne’s PK, and yB = gxB Bob’s PK, with correspond-
ing secret keys xA and xB respectively. They now run DH style protocol:

A → B : tA := gx

B → A : tB := gy

and compute their keys: KA = txA

B · yrA

B = grB ·xA+xB ·rA and KB = txB

A · yrB

A =
grA·xB+xA·rB .

Key Confirmation. Various techniques have been proposed for key confirma-
tion but we will just illustrate with one: hash key confirmation:

A → B : Hash(1, kAB)
B → A : Hash(2, kAB)

(5)

Anne computes the hash of a fixed, agreed value such as 1 concatenated with
her key and sends this to Bob. Bob computes the hash on his key and checks
that these values agree, in which case he is convinced that he ran the protocol
with Alice. He now sends the hash applied to 2 concatenated with his key value
back to Alice for her to check that this agrees with the value she computes.

5.3 Password Authenticated Key Establishment

If we do not have access to a PKI, we need other ways to authenticate an AKE.
One approach is to assume that Anne and Bob previously exchanged a low
entropy secret such as a password π and to use this to authenticate a typically
DH based key establishment. This is usually done by again folding π into the
calculation of K, followed by some form of key establishment. The challenge in



232 P.Y.A. Ryan

the design of such protocols is to avoid giving the attacker the means to launch
off-line dictionary attacks: the low entropy nature of the shared secret means
that brute force search is feasible if the attacker has a way to confirm guesses.

To illustrate, a naive attempt might be to use a DH protocol but then
compute the key as (a function of) gx·y·π, followed by key confirmation. This
fails immediately to an active attacker: suppose Yves masquerades as Bob.
He gets gx from Anne and sends gy to Anne who replies with something like
Hash(1, gx·y·π)). Yves can now use this value to test guesses at π at his leisure.

A simple PAKE is PPK, [6],

A → B : X := h(π) · gx

B → A : Y := h(π) · gy

With KA = (Y/h(π))x and KB = (X/h(π))y. As long as they indeed share
the same password the h(π) terms cancel in the key computation and both
derive K = gx·y. If not, the attacker has to deal with a non-zero term raised to
an unknown, high-entropy value created by the honest party which masks the
correct key value and so foils off-line dictionary search.

6 HISPs

If we have access to an authenticated out of bands channel we can take yet
another approach to designing a AKE. These are channels that typically do not
provide any secrecy but are assumed to provide authentication. An example is a
visual channel between a mobile device and a server. Suppose that a user wants
to establish a secure channel between his mobile device and a nearby printer,
and assume that he can see the display on both and can compare short strings
displayed on them. We can design a protocol that will establish a fresh key
between the devices whose authenticity is guaranteed with high probability if
the codes displayed on the two devices match. More precisely, if another device
attempts a man-in-the middle attack it has only a slim chance of injecting a
fake DH terms that will give rise to matching codes. The probability of success
of such an attack falls off exponentially with the length of codes, so there is a
tradeoff between the level of security and usability.

A naive design would fall prey to the fact that the space of possible codes is
rather small for short codes, say six digits, so it would be feasible for a NITM to
quickly search over DH terms to find one that yields a match. This is countered by
requiring the devices first to crypto commit the DH terms and then compete the
protocol. Due to space constraints we do not go into details here but just remark
that again Bill played a major role in the development of such protocols, [25].

More recently, [28], Bill observed that an attacker could attempt repeated
man-in-the-middle (MitM) attacks by disguising a failed attack by aborting the
protocol as soon as he knows of the failure, but before the honest party has
enough information to establish that it was an attack. The honest party might
attribute such events to network failures so allowing the attacker to launch many



A Brief History of Security Protocols 233

attempts before taking counter-measures. Bill introduced a new class of protocols
known as Auditable HISPs to counter such a strategy. This requires a new delay
primitive, a form of crypto commitment that can be prised open without the
opening key but it takes some lower bounded amount of time to do so. Thus,
even if an attacker attempting a MitM attack aborts, the honest party will in
due course be able to detect the attempted attack when the relevant delay term
is opened.

7 Analysis Frameworks and Tools

We have not said much yet about the tools and techniques that have been
developed for the analysis of security protocols. We turn our attention to this in
this section.

7.1 BAN-Logic

The BAN-logic, due to Burrows, Abadi and Needham, [7], is one of the earliest
frameworks proposed for the analysis of security protocols. It is described as
a logic of authentication and is designed to allow the analyst to reason about
the way the honest parties’ beliefs evolve as the protocol unfolds. Accordingly a
number of postulates are provided asserting for example:

A | ≡ A k←→B,A � {X}k,

A | ≡ B | ∼ X

which can be interpreted as: if A believes (| ≡) that the key k is good for
communication with B (A k←→B) (i.e. is known only to A and B) and A receives
(�) a message X encrypted under K, then A can be confident that X originated
(| ∼) from B. This assumes that agents recognise their own messages and this
postulate is appropriate for symmetric, non-malleable encryption. Informally
this is justified by observing that if K is indeed known only to A and B then,
aside from A, only B could have constructed the ciphertext.

To analyse a protocol you first formulate the initial beliefs of the parties
as statements of the logic, for example regarding shared secrets and keys, the
association of public keys to identities etc. Then there is a so-called idealisation
step in which the protocol transitions are mapped into the logic. Then you apply
the postulates to the initial predicates and try to derive the goals of the protocol.
A typical goal for an AKE might be:

A | ≡ A k←→B

i.e., at the end of a successful run of the protocol A believes that the session
key k is “good” for communication with B. Or even:

B | ≡ A | ≡ A k←→B

i.e., that B believes that A believes that k is good to communicate with him.



234 P.Y.A. Ryan

7.2 Getting Off the BAN-Wagon

The BAN-logic was seminal and ground breaking and in the words of the late
Roger Needham (the “N” of “BAN”) “....it has a number of scalps under its
belt.” However it has a number of limitations:

– What exactly is meant by “authentication” is not explicit.
– There is no explicit model of the attacker’s capabilities, these are implicitly

buried in the choice of inference rules.
– There is no clear semantics of notion of “belief”, “freshness” etc.
– Recognised agents are assumed “honest”.
– The idealisation process is informal and error-prone.

Considerable effort was invested in providing a more formal semantics and a
degree of automation to the BAN-logic but certain limitations remain intrinsic to
the approach. It was a feeling of unease with the BAN-logic that prompted me,
while at the Defence Research Agency, to submit a project proposal to explore
the application of mainstream formal methods, in particular process algebra
and model-checking to the analysis of security protocols. The project was in
collaboration with the University of Oxford and the spin-off company Formal
Systems, as well as Royal Holloway. Bill’s contributions were the main driver in
the success of the project.

Soon after the start of the project, Gavin Lowe found the attack on the
NSPK protocol. This showed up clearly the deficiencies of the BAN-logic and
demonstrated the power of the process algebra and model-checking approach. As
a consequence of the success of the approach virtually all work on BAN-logic and
related belief logics ceased and the application of model-checkers and theorem
provers is now mainstream for the modelling and analysis of security protocols.

7.3 The Dolev-Yao Model

Roughly contemporaneous with the BAN-logic another seminal approach to the
analysis of security protocols was proposed: the Dolev-Yao model, [12]. Here, in
contrast to the BAN-logic, the capabilities of the attacker are modelled explic-
itly: we assume that the attacker has complete control over the communications
network, constrained only by the cryptography. Thus the attacker can eaves-
drop, intercept, delay, reroute, replay etc. messages at will. He can also inject
fake messages, up to the constraints of the cryptography. An inference system
specifies exactly what terms attacker is able to construct given the knowledge
and terms that he already possesses. Thus he can de-concatenate or concate-
nate terms, compute hashes. He can extract plaintext only if he possesses the
decryption key and he can construct a signature on a term only if he possesses
the signing key and so on.

This is usually referred to as the assumption of perfect cryptography, in other
words we assume the cryptography works exactly as specified and we treat the
algebra of terms as a free algebra. We do not concern ourselves with how terms
are actually formed as bit strings but rather we handle everything symbolically.



A Brief History of Security Protocols 235

The symbolic approach has the advantage of simplicity and lends itself well
to automation, in particular using established formal methods tools. It is clear
however that it is an approximation to reality. It is not true for example that:

m 	= m′ ∧ k 	= k′ ⇒ {m}K 	= {m′}k

It may be true that the attacker cannot derive a sensitive value exactly, but
he may still be able to derive some information about the value. Also, while we
can include known algebraic properties of the crypto primitives in the inference
rules of the model, there is always the possibility that we may miss some critical
structure in the underlying crypto primitives. Thus it can be argued that while
an analysis in the Dolev-Yao model can provide good assurance of the correct-
ness of a protocol it cannot provide a full proof. To take proper account of the
characteristics of the crypto algorithms we need to turn to another approach, the
so-called provable security or computational approaches, that we discuss below.

It is also worth remarking that the distinction between the symbolic and the
computational approaches to the analysis of protocols is somewhat analogous
to that between access control models, e.g. Bell-Lapadula [2] and information
flow properties such as non-interference, [15]. The former has the advantage of
simplicity but is a rough approximation to reality. Terms like read and write as
used in the Bell-Lapadula model have at best an approximate semantics. Access
control models regulate overt channels but fail to capture covert channels, ways
that information can flow outside the explicit channels of the model. It was such
observations that prompted the development of information flow models such as
non-interference, [15].

7.4 Process Algebra and Model-Checking

The Dolev-Yao model is incorporated in the process algebra approach as the
basis for the model of the attacker. The set of inference rules are coded up and
an algorithm that forms the transitive closure of the information available to
the attacker is implemented (this requires a extension to the basic FDR model-
checker). “Honest” agents can be modelled straightforwardly in CSP, and the
attacker can be equipped with a recognised identity, credentials etc. (or equiva-
lently we can think of “honest” agents being corrupted by the attacker acquiring
keys and credentials).

The security goals can be captured quite directly as CSP specifications. Thus,
for example, a secrecy property can be captured by stating that certain sensitive
terms not become known to the attacker, i.e. never show up in the attacker’s
knowledge base. Similarly authentication properties can be encoded by requiring
that for all traces if a message M appears apparently from an agent A then earlier
in the trace A sent M .

Once we have a model of the system S, including the model of the attacker,
and we have a specification process P , we can perform the analysis by using FDR
to check if S is a refinement of P . If the check fails it returns a trace that violates
the refinement and that embodies an attack scenario against the protocol. We
thus have a very powerful, automated tool for finding flaws in protocol designs.



236 P.Y.A. Ryan

The difficulty is, as always with model-checkers, that in order for the refine-
ment checks to go through we need to keep the state space of the system modest.
A naive encoding of the system will quickly lead to exponential explosion of the
size of the state space and so great skill and ingenuity is required to keep the
state space to a manageable size while at the same time performing meaningful
checks. This where the skill and ingenuity of Bill and others in Oxford really
comes to the fore.

It is well known that the analysis of security protocols is undecidable, and
hence model-checking analysis, while very effective at finding flaws, cannot typi-
cally prove a protocol secure, any more than testing a system can guarantee the
absence of bugs. Various ingenious techniques have been developed by Bill and
others to push the envelop, e.g. data independence, [22], inductive techniques,
[9], nonce recycling [24] etc.

7.5 Provable Security

In parallel with the development of the symbolic approaches described above,
that emerged from the formal methods community, the cryptographic commu-
nity have been developing their own, very different style of analysis, often referred
to as Provable Security or the computational approach. Here the idea is to pro-
vide reduction style proofs showing that if an attack exists on the protocol then
this can be used as an oracle to break the underlying “hard” problem. The
security property is typically formulated as an indistinguishability game: that
an attacker with polynomially bound computing power can distinguish between
instances with different sensitive information with a probability only negligibly
better than random guessing.

For example, the secrecy of an encryption algorithm can be formulated by a
game along the following lines:

The attacker Y chooses two messages of the same length, mH and mT and
submits these to the Challenger C. C flips a coin and encrypts mb, where b is
the outcome of the coin flip, and returns {mb}K to Y . Y now has to guess at b,
let’s call his guess b′. Y wins the game when he guesses right and loses when he
guesses wrong. We define Y ’s advantage AdvY as:

AdvY := Prob[b = b′] − 1/2

We deem the algorithm to be secure if AdvY is a negligible function of the
security parameter, usually taken to be the key length. By negligible we mean
that this falls off faster than any polynomial.

The idea is that if the algorithms leaks essentially no information about the
plaintext then Y ’s guesses should be scarcely better than random. More precisely,
we can drive the advantage down as small as we like by suitable choice of the
size of the security parameter. Turning this around: if the algorithm leaks even
the slightest information about the plaintext then Y will be able to exploit this
to win the game. The fact that Y is allowed to choose the messages means that
he is free to choose a pair for which information leakage is maximised, so neatly
sidestepping the need to quantify over all pairs of plaintexts.



A Brief History of Security Protocols 237

Some encryption algorithms, e.g. the one-time-pad provide perfect, uncondi-
tional security, regardless of the computational power of the attacker. For such
algorithms we require that the advantage be strictly zero.

Similar, but more elaborate games are formulated to capture the security
properties of protocols as opposed to algorithms. Arguably such proofs are more
compelling than symbolic style analysis as they take more faithful account of
the nature of cryptographic algorithms and also take account of probabilities
and the computational resources of the adversary. However, they too have their
share of downsides: the proofs are typically very long and complex and error
prone. At any point in time there are probably only a handful of people with
the expertise and time to carefully check such proofs. Some experts, [16], have
severely criticised the whole approach. And of course such proofs are only as
good as the underlying hardness assumptions.

A challenge is to understand how the symbolic and computational approaches
are related, and in particular how the approximations of the symbolic approach
might be justified using computational techniques. A first step in this direc-
tion was taken by Abadi et al. [1] which presented conditions under which the
approximations of the symbolic approach are justified for some primitives.

Provable security proofs are typically extremely complex and hard to check so
a way to cryptographically justify the approximations of the symbolic approach
would help get the best of both worlds: the automation and clarity of the sym-
bolic along with the rigorous foundations of the cryptographic/computational.

8 Composability and Refinement

One of the sources of the special challenges posed by the design and analysis
of secure systems is the fact that, contrary to safety-critical systems, security
properties typically do not compose or refine. That is to say, you can have two
systems, for instance protocols, that each individually satisfy a security property
and yet when they are composed in a seemingly sensible way fail to satisfy the
property. Similarly, you can have a system that satisfies a secrecy property, non-
interference say, and yet a conventional (trace) refinement fails to satisfy the
property.

The canonical example of the latter is a stream cipher: suppose that we
have an excellent such cipher that generates a key stream that is effectively
indistinguishable from random as far as the attacker is concerned and so is
deemed secure. A perfectly satisfactory refinement of such a device is one that
generates only one key stream, but this is manifestly insecure. In essence the
problem is that classical, safety refinement is all about reducing non-determinism
in behaviour. This is clearly appropriate for a safety-critical system, but secrecy
properties rely on uncertainty.

Bill has made significant contributions here too: co-inventing the idea of
secrecy as low-determinism, [26]. Here a system is deemed not to leak informa-
tion to a low (classification) environment if the system is deterministic from the
low point of view. This means that whatever sensitive activities may be going on



238 P.Y.A. Ryan

behind the interface cannot affect low’s observations, and hence cannot convey
any sensitive information to low. The beauty of this approach is that it is pre-
served by refinement and is rather easy to automatically check (FDR has been
equipped with a determinism button).

Another of Bill’s contributions to the area of information flow is to identify
a number of ways that information may be abstracted from the attacker (envi-
ronment) view, and how to formalise these in CSP. The most obvious way is
to simply hide events from view, but here care has to be taken: in CSP hidden
events are assumed to occur eagerly, i.e. as soon as enabled. This may not be
appropriate for events under the control of the sensitive process that may block
or delay their occurence in a way that leaks information. To handle this Bill pro-
posed, besides the usual eager hiding operator, a lazy hiding operator. Besides
hiding events we can merge their identity: low sees the occurence of an event
but does not know which of a certain set it is. A further abstraction operator is
to mask an event by adding spurious, fake events. Thus, when the environment
sees an event it does not know if this is a genuine or fake occurence, Full details
can be found in [27].

8.1 Universal Composability

Canetti’s notion of universal composability (UC), [8], is an elaboration of prov-
able security that seeks to address the issue of composability of crypto primi-
tives and protocols. If two protocols are shown to satisfy properties in the UC
model then it will be possible to safely compose them to give a secure result.
This allows for a more modular approach to the design and analysis of security-
critical systems, but it does come at a price: designs that satisfy UC are typically
more complex than ones satisfying conventional characterisations of security. It
is often not clear if this complexity is strictly necessary for security or arises as
an artefact of the model.

9 Quantum Computing

There is much activity currently in the area of quantum computing. We know
that, for certain classes of problem at least, we can obtain an exponential speed
up over classical computers. We know in theory how to build and even program
a quantum computer and we know of a few algorithms, [31], that can solve prob-
lems believed to be intractable with a classical computer. Interestingly, these
problems are also the main hard problems on which much of public key cryp-
tography is based: factorisation of products of large primes and taking discrete
logarithms. Nobody, as far as is publicly known, has yet constructed a quantum
computer of any scale and serious engineering obstacles remain, but if a large
scale quantum computer is constructed then much of contemporary cryptogra-
phy will come crashing down.

One response to the threat posed by quantum computing is to develop quan-
tum cryptography. While quantum phenomena threaten conventional cryptogra-
phy on the one hand, they also open up new possibilities for quantum based infor-
mation assurance. In the next section we outline the basics of quantum crypto.



A Brief History of Security Protocols 239

Another response to the threat is to explore so-called post-quantum cryp-
tography. Here the idea is to identify hard problems Peterefficient solution on a
quantum computer. We outline these in Sect. 11.

10 Quantum Crypto

In 1984 Bennett and Brassard. [4], proposed the idea of performing key establish-
ment where the security is based on the postulates of quantum mechanics rather
than on the assumed hardness of certain classes of problem. Thus, in principle,
quantum crypto offers the possibility of unconditional secrecy, i.e. guaranteed
even in the presence of an attacker with unbounded computational power. Due
to space constraints we omit the full details but rather just give a high-level
indication of the techniques.

Key establishment is carried out over a quantum channel: Anne sends a
stream of photons, each of which she prepares in an independently chosen state
from amongst the four possible conjugate coding states: (↑) 0◦ (↗) 45◦ (→) 90◦

(↘) 135◦. Typically these will be linear polarisations of photons.
Bob, at the other end of the quantum channel measures each photon in one

of the two possible conjugate measurement frames, chosen at random for each
photon: the horizontal (⊕) or diagonal (⊗) basis. We take the convention that
in the ⊕ basis, a 0◦ photon encodes a 1 and a 90◦ photon encodes a 0, while in
the ⊗ basis, 45◦ encodes a 1 and 135◦ a 0.

We will not go into the details of the “operational semantics” arising from the
quantum mechanics, except to remark that when the polarization of a photon is
measured with the “correct” basis the state will collapse to the correct Eigen-
state with 100% probability. If the “wrong” basis is used, the wave function will
collapse into either of the Eigenstates with 50% probability. Thus, for example,
if a ↑ photon is measured in the ⊕ basis it will collapse to the ↑ state. If a ↗ pho-
ton is measured in the ⊕ basis it will collapse to a ↑ state with 50% probability
and a → state with 50% probability, and similarly for the other combinations.
More generally, if the angle between the photon state and an Eigenstate is θ,
then the probability that it will collapse to this Eigenstate is given by cos2(θ).

The design is such that if Y attempts to eavesdrop on the quantum channel,
i.e. attempts to measure the states of the photons, he will inevitably perturb
the state of many. After the quantum phase there follows a series of classical
exchanges between Anne and Bob, typically in the clear but authenticated:

– Key Sifting: For roughly half the photons Bob will have chosen the wrong
measurement frame, resulting in a random bit. They need to identify these
and bin them.

– Quantum Error Rate Estimation: Now Anne and Bob need get an estimate of
how much noise/eavesdropping occurred. Note that they cannot distinguish
noise from eavesdropping. For this they agree a random sample of the surviving
photons on which they compare classical bits. From this they can derive an
estimate of the error rate. For BB’84, if this is below 11% they can proceed,
if above they abort.



240 P.Y.A. Ryan

– Information Reconciliation: They now discard the sample set and perform
error correction of the remaining bits.

– Secrecy Amplification: they now distill the resulting bit stream to eliminate
any information that may have flowed to the attacker from eavesdropping on
the quantum or classical channels.

– Key Confirmation: Finally, to confirm that Anne and Bob indeed share the
same distilled key and to authenticate the key, they perform a final key con-
firmation.

They now have a secret key that can be used for secure communication in
a One-Time-Pad (Vernam) encryption mode to provide unconditional secrecy
Alternatively, the key can be used for encryption under a suitable block cipher
such as AES, but in this case the security properties are no longer unconditional.

So far we have not said anything about authentication of the protocol, so in a
sense we have a quantum equivalent of DH in the classical world. To authenticate
the key-establishment we could use digital signatures, but of course this provides
only conditional guarantees, i.e. that depend on the assumed hardness of certain
problems. QKE usually strives for unconditional guarantees, depending only on
the postulated of quantum mechanics. Consequently, authentication is usually
provided by assuming that Anne and Bob share a secret bit string beforehand.
Chunks of this string are used in a one-time fashion in Message Authentication
Codes based on universal hash functions. This means that each authentication
burns plenty of bits and hence runs of the protocol have to generate enough fresh
key to replenish that burnt up in authentication as well as provide a surplus of
fresh key for subsequent communication.

Since the original BB’84 protocol many new protocols have been proposed,
for example based on entanglement, Ekert’92 [13], rather than the prepare and
measure approach of BB’84. A further development of this approach is the notion
of device independent QKE, [32], in which the device that provides Anne and
Bob with entangled pairs need not be trusted. A further, rather amazing proposal
is counter-factual QKE, [21], in which key is derived from photons that are not
even transmitted.

Quantum cryptography has its proponents and opponents. Proponents claim
that in the face of the possibility of efficient classical algorithms and quan-
tum computers to solve supposedly hard problems, and intelligence agencies’
undermining of security standards, e.g. [5], the time is ripe for unconditionally
secure cryptography. Opponents argue that although in theory providing perfect
secrecy, in practice all implementations have been found to be flawed. Assump-
tions underlying the proofs of security turn out to be false in actual implemen-
tations. For example it proves extremely hard to generate single photon pulses,
and an attacker can potentially exploit multi-photon pulses. Current technol-
ogy means that quantum channels can only operate over limited distances and
favourable conditions and typically only in a point to point fashion. In any case
the theory is fascinating and the technology will doubtless continue to improve.



A Brief History of Security Protocols 241

11 Post-quantum Crypto

Shor’s algorithm gives an exponential speed up on factoring and taking discrete
logs, but for many other problems believed to be hard there is no known quantum
algorithm giving such a speed up. There is now a very active research commu-
nity exploring the use of such problems to design cryptographic algorithms and
protocols. Amongst the problems studies are: Lattice based, multivariate equa-
tions, hash-based, code-based and supersingular elliptic curve isogeny. For some
of these there are known reductions to problems known to be HP-hard, such as
the Shortest Vector Problem. Whether these problems are really hard, in the
classical context let alone the quantum is not of course proven. How to charac-
terise the class of problems for which efficient quantum algorithms exist is not
known, but it appears that the key observation is that quantum algorithms are
particularly good at finding hidden periodicity.

12 Voting Protocols

An area that has seen intense activity over the past decade or so is that of
secure voting schemes. With pressure in many democracies to move to digital
elections, and even to internet-based elections this has become an urgent issue.
While digital technologies can bring advantages they also bring many new, poorly
understood threats. The crypto and security communities have been active in
developing protocols to make computer aided voting more secure, in particular
the so-called end-to-end verifiable schemes that provide voters with the means
to confirm to their own satisfaction that their vote is accurately included in the
tally and yet not provide any proof to third party as to how they voted.

At an abstract level, voting protocols can be viewed as instances of secure,
distributed computation, but in fact they turn out to present special challenges
of their own. The difficulties arise at the edges, with the creation of the encrypted
inputs, i.e. votes. Ideally we want to avoid the need to trust any of the tech-
nology and in particular the devices that encrypt the vote’s choice. We need to
encrypt the vote in a way that gives the voter assurance that the vote is correctly
encrypted and yet, in order to avoid coercion or vote buying threats, provides
no way to convince a third party of this. This is usually handled by some form
of cut-and-chose protocol: the device is required to produce n encryptions of the
voter’s choice and all but one is chosen at random for audit. If the n− 1 audited
encryptions are shown to be correct this provides evidence that the remaining
encryption is also correct. A sequential version of this, in which the voter is given
the choice to cast or audit a ballot an unbounded number of times is referred to
as Benaloh challenges, [3].

A more sophisticated approach, [19], that leads to a higher level of assur-
ance, is to have the voter perform an interactive zero-knowledge proof of the
correctness of the encryption in the booth. In order to mask the vote the device
also provides fake transcripts of proofs for the alternative votes. Only the voter
knows which was the genuine, interactive proof. This very elegant approach was



242 P.Y.A. Ryan

implemented in a commercial system called VoteHere but this ultimately failed,
due presumably to the complexity of the ceremony from the voter’s point of
view.

As if all this were not challenging enough, we have the additional requirement
that if something goes wrong it is important to be able to identify the culprit.
Without this we have the danger of users seeking to discredit the system or the
election crying foul when in fact the system has performed perfectly correctly.
Consider the following scenario: a voter inputs a vote for Trump and opts to
audit this. On audit the encryption indeed shows a vote to Trump but the voter
complains that he input a vote for Clinton. It is now hard to establish whether
it is the system or the voter that is at fault.

One approach that resolves this issue, at least regarding the ballot audit
step, is Prêt à Voter, [29]. In this scheme each ballot form has an independent,
random permutation of the candidate list. The encryption is now not of the
vote but of the order in which the candidates are listed on the ballot. In the
booth the voter marks the ballot and detaches and discards the candidate list
leaving only an indication of the position marked (or perhaps a ranking vector)
and the encryption of the candidate order. The beauty of this approach is that
ballot auditing can now be performed on blank ballots rather than encrypted
votes. The correctness of the encryption of the vote follows from the correct
construction of the ballot, i.e. that the order of the candidates printed on the
form is consistent with the order buried in the ciphertext. Thus we can audit
blank forms and there can be no dispute: the ballot is either correctly formed
or it is not. Furthermore the audit can be performed entirely independent of the
voter or the vote, hence there is no privacy issue.

Such schemes are appealing, at least in theory, in that they hold out the pos-
sibility of avoiding any reliance on the correctness of the technology: the guiding
principle is that of auditability and any corruption or malfunction of any compo-
nent is detectable. The problem is that understanding the arguments on which
this assurance is based is far from straightforward: voters have to be convinced
that their vote is correctly encrypted, that this encryption is accurately included
in the tally and is correctly handled and decrypted. This fine for someone with a
PhD in modern crypto but a bit hard to swallow for the average voter or indeed
voting official or politician.

A different approach to providing voter verifiability is to provide voters with
secret tracker numbers: votes are posted in the clear alongside their associated
tracker, allowing voters to confirm in a very direct, intuitive fashion that their
vote is accurately included in the tally. The drawback with doing this in a naive
way is that it opens up coercion and vote-buying possibilities: if the voter is able
to simply check her vote then so is a coercer. However we notice that such a
coercion attack is only effective if the coercer demands the tracker before the
vote/tracker pairs are posted to the bulletin board. If he asks for the tracker
after posting the voter has the possibility to provide a alternative tracker that
points to whatever vote the coercer required.



A Brief History of Security Protocols 243

The above observation provides the key idea behind the Selene scheme, [30],
Here some rather simple crypto under the bonnet ensures:

– Each voter gets a unique tracker.
– The trackers are committed to the voters but not revealed to them until after

the vote/tracker pairs have been posted. Furthermore this is done in such a
way as to provide high assurance that it is the correct, assigned tracker but
in a way that the voter can deny if pressed further by the coercer.

Selene thus provides a very simple, understandable way for voters to verify
their vote while providing a good level of mitigation against coercion and vote
buying. It still does not provide sufficient levels of security to be used critical,
binding elections, but then no existing internet based voting system currently
provides adequate security for such elections.

13 Socio-Technical Aspects of Security

I would like to finish by mentioning an important but until recently largely
neglected aspect of protocol design and analysis: the human aspects. All secu-
rity critical systems involve humans and the humans typically have a critical
role to play in both contributing to and undermining the security. Many of the
major security breaches that regularly hit the headlines are due to attackers
manipulating the humans rather than any exploitation of failures of the purely
technical aspects, the crypto algorithms and protocols etc. Users are fooled into
visiting fake web sites and revealing credentials, or are subjected to social engi-
neering attacks in which they reveal passwords, or they simply pick up a free
USB stick from a bowl in the lobby bearing the company logo but carrying
malware etc. Attackers exploit the frailties of human nature but also very often
poorly-designed user interfaces.

An interesting question in itself is: why have the socio-technical aspects been
so neglected by the information security community when it is clear that they are
so critical? The answer I suspect is that for techie folk these aspects are hard to
deal with: it is fiendishly difficult to model and understand how humans behave
in arbitrary contexts. However, things are changing: people are starting to model
ceremonies rather than just protocols. Such ceremonies take account of the role
of the human in the unfolding of the protocol. For many years now the SOUPS
workshop has been addressing issues of usable security, and more recently the
STAST workshop the Socio-Technical Aspects of Security and Trust.

14 Conclusions

Security protocols are essential to enable safe, secure interactions and establish
trust relations. As such they lie at the heart of the information society. They
have seen a rich and rapid evolution over the last few decades. Their design and
analysis is one of the most formidable challenges in computing science. In this



244 P.Y.A. Ryan

chapter we have attempted to give a overview of the rich diversity of protocols,
security goals and tools and techniques for their analysis. Bill has played a major
role in the development of analysis tools and, more recently, in the design of
protocols, in particular of HISPs.

Acknowledgements. This chapter is based on a Taft Lecture delivered at the Uni-
versity of Cincinnati. I thank Jintai Ding for the invitation and the Taft Foundation
for supporting the visit. I also thank the EPSRC and Luxembourg FNR for funding
my research in these areas over many years. Above all though I thank Bill Roscoe for
his insights, guidance and friendship over the years.

References

1. Abadi, M., Rogaway, P.: Reconciling two views of cryptography. In: Leeuwen, J.,
Watanabe, O., Hagiya, M., Mosses, P.D., Ito, T. (eds.) TCS 2000. LNCS, vol. 1872,
pp. 3–22. Springer, Heidelberg (2000). doi:10.1007/3-540-44929-9 1

2. Elliott Bell, D., Lapadula, L.J.: Secure computer systems: mathematical founda-
tions. Technical report. Mitre Corporation, Bedford, MA, USA (1973)

3. Benaloh, J.: Simple verifiable elections. In: 2006 on Electronic Voting Technology
Workshop Proceedings of the USENIX/Accurate Electronic Voting Technology
Workshop, EVT 2006, Berkeley, CA, USA, p. 5. USENIX Association (2006)

4. Bennett, C.H., Brassard, G.: Quantum public key distribution reinvented. SIGACT
News 18(4), 51–53 (1987)

5. Bernstein, D.J., Lange, T., Niederhagen, R.: Dual EC: a standardized back door.
Cryptology ePrint Archive, Report 2015/767 (2015). http://eprint.iacr.org/2015/
767

6. Boyko, V., MacKenzie, P., Patel, S.: Provably secure password-authenticated key
exchange using Diffie-Hellman. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 156–171. Springer, Heidelberg (2000). doi:10.1007/3-540-45539-6 12

7. Burrows, M., Abadi, M., Needham, R.: A logic of authentication. Proc. Royal Soc.
Lond. 426, 233–271 (1989)

8. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. Cryptology ePrint Archive, Report 2000/067 (2000). http://eprint.iacr.
org/2000/067

9. Creese, S.J., Roscoe, A.W.: Data independent induction over structured networks.
In: International Conference on Parallel and Distributed Processing Techniques
and Applications. CSREA Press, Las Vegas (2000)

10. Dorothy, E., Denning, D.E., Sacco, G.M.: Timestamps in key distribution proto-
cols. Commun. ACM 24(8), 533–536 (1981)

11. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theor.
22(6), 644–654 (2006)

12. Dolev, D., Yao, A.C.: On the security of public key protocols. Technical report,
Stanford, CA, USA (1981)

13. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67,
661–663 (1991)

14. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 10–18. Springer, Heidelberg (1985). doi:10.1007/3-540-39568-7 2

http://dx.doi.org/10.1007/3-540-44929-9_1
http://eprint.iacr.org/2015/767
http://eprint.iacr.org/2015/767
http://dx.doi.org/10.1007/3-540-45539-6_12
http://eprint.iacr.org/2000/067
http://eprint.iacr.org/2000/067
http://dx.doi.org/10.1007/3-540-39568-7_2


A Brief History of Security Protocols 245

15. Goguen, J.A., Meseguer, J.: Security policies and security models. In: 1982 IEEE
Symposium on Security and Privacy, Oakland, CA, USA, 26–28 April 1982, pp.
11–20 (1982)

16. Koblitz, N., Menezes, A.J.: Another look at provable security. J. Cryptol. 20(1),
3–37 (2007)

17. Lowe, G.: Breaking and Fixing the Needham-Schroeder Public-key Protocol Using
FDR. Springer, Heidelberg (1996)

18. Matsumoto, T., Takashima, Y., Imai, H.: On seeking smart public-key-distribution
systems. Trans. Inst. Electron. Commun. Eng. Jpn. E69(2), 99–106 (1986). Section
E

19. Neff, C.A.: Practical high certainty intent verification for encrypted votes (2004)
20. Neuman, B.C., Ts’o, T.: Kerberos: an authentication service for computer net-

works. Commun. Mag. 32(9), 33–38 (1994)
21. Noh, T.-G.: Counterfactual quantum cryptography. Phys. Rev. Lett. 103 (2009).

230501
22. Ranko, L., David, N.: A unifying approach to data-independence. Technical report,

Oxford, UK (2000)
23. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures

and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)
24. Roscoe, A.W., Broadfoot, P.J.: Proving security protocols with model checkers by

data independence techniques. J. Comput. Secur. 7(2–3), 147–190 (1999)
25. Roscoe, A.W., Nguyen, L.H.: Efficient group authentication protocols based on

human interaction. In: Proceedings of ARSPA (2006)
26. Roscoe, A.W., Woodcock, J.C.P., Wulf, L.: Non-interference through determin-

ism. In: Gollmann, D. (ed.) ESORICS 1994. LNCS, vol. 875, pp. 31–53. Springer,
Heidelberg (1994). doi:10.1007/3-540-58618-0 55

27. Roscoe, A.W.: Understanding Concurrent Systems, 1st edn. Springer-Verlag New
York Inc., New York (2010)

28. Roscoe, A.W.: Detecting failed attacks on human-interactive security protocols
(2016)

29. Ryan, P.Y.A.: A variant of the Chaum voter-verifiable scheme. In: Proceedings of
the 2005 Workshop on Issues in the Theory of Security, WITS 2005, pp. 81–88.
ACM, New York (2005)

30. Ryan, P.Y.A., Rønne, P.B., Iovino, V.: Selene: voting with transparent verifiability
and coercion-mitigation. In: Financial Cryptography and Data Security - FC 2016
Workshops, pp. 176–192 (2016)

31. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

32. Vazirani, U., Vidick, T.: Fully device-independent quantum key distribution. Phys.
Rev. Lett. 113 (2014). 140501

http://dx.doi.org/10.1007/3-540-58618-0_55


More Stubborn Set Methods
for Process Algebras

Antti Valmari(B)

Department of Mathematics, Tampere University of Technology,
P.O. Box 553, FI-33101 Tampere, Finland

Antti.Valmari@tut.fi

Abstract. Six stubborn set methods for computing reduced labelled
transition systems are presented. Two of them preserve the traces, and
one is tailored for on-the-fly verification of safety properties. The rest pre-
serve the tree failures, fair testing equivalence, or the divergence traces.
Two methods are entirely new, the ideas of three are recent and the adap-
tation to the process-algebraic setting with non-deterministic actions is
new, and one is recent but slightly generalized. Most of the methods
address problems in earlier solutions to the so-called ignoring problem.
The correctness of each method is proven, and efficient implementation
is discussed.

1 Introduction

Stubborn set methods reduce the number of states that are constructed during
state space-based verification of concurrent systems. That is, they alleviate the
state explosion problem. They are the “s” of a group that we call aps set methods,
whose other members are ample sets [1, Chap. 10] and persistent sets [5]. The
similarities and differences of the three are discussed in [19].

The first publication on stubborn sets [13] used Petri nets and shared variable
programs. Application of the ideas to process algebras proved difficult, because
originally stubborn sets assumed deterministic transitions, and actions in process
algebras are not necessarily deterministic. Therefore, it took four years before
the first successful application to process algebras came out [14]. To the best
knowledge of the present author, ample and persistent sets are restricted to
deterministic transitions/actions even today. In particular, [8] uses deterministic
transitions.

After winning the difficulties with non-determinism, existing stubborn set
methods for linear-time safety and liveness properties were carried over to process
algebras, yielding a method that preserves the traces and another that preserves
the traces, stable failures, and divergence traces. Preserving the minimal diver-
gence traces proved much simpler than preserving all divergence traces. There-
fore, a natural method for the failures–divergences semantics of CSP [11] was
obtained as a byproduct. A method for mainstream branching-time logics was

c© Springer International Publishing AG 2017
T. Gibson-Robinson et al. (Eds.): Roscoe Festschrift, LNCS 10160, pp. 246–271, 2017.
DOI: 10.1007/978-3-319-51046-0 13



More Stubborn Set Methods for Process Algebras 247

developed in [4]. It was generalized to non-deterministic actions and the above-
mentioned results were summarized in [15], titled “Stubborn Set Methods for
Process Algebras”.

These and other early publications focused on finding conditions that suffice
to guarantee that the reduction preserves the desired properties. Most conditions
formalize various aspects of the idea that some enabled action or transition a
need not be fired now (and is thus left out of the aps set), because there is
an enabled action or transition b (in the aps set) such that whatever relevant
information may be obtained by firing a now, may also be obtained by firing
b now and postponing the firing of a (or, in some cases, without ever firing a).
However, if a is postponed also in the state reached by firing b and so on, it may
be that a is never fired and the property is not preserved. This is known as the
ignoring problem. Most methods contain a condition that has been designed to
solve the ignoring problem.

Until 2010 [2], little attention was paid to how the conditions for the ignoring
problem affect reduction results. Today this seems a significant omission, because
there are simple examples where established conditions work remarkably badly,
at least unless some so far unwritten guidelines are obeyed in their use ([2,19,20],
and Sect. 4).

Since 2015, the present author has been involved in a series of publications
that aim at improving the solutions to the ignoring problem or otherwise develop
stubborn set methods further [6,16,19,20]. The present publication adapts these
results into the process-algebraic setting (except [20]), improves various details,
and presents some novel results. In particular, Sect. 8 and Method 4 are new.

Section 2 presents the process-algebraic framework and the basic facts on
stubborn sets in it. To see the ignoring problem in appropriate light, an old
method that preserves the stable failures is recalled in Sect. 3. Two new trace-
preserving methods heavily based on [16,19] are presented in Sects. 5 and 4.
Section 6 presents and slightly improves a method [20] that preserves so-called
fair testing equivalence [10], and develops a new method for tree failures. An idea
towards on-the-fly verification [6] is the topic of Sect. 7. Section 8 introduces a
new method for detecting divergence traces.

2 System Models and Basic Stubborn Sets

The invisible action is denoted with τ. The empty sequence is denoted with ε.
We assume that τ �= ε.

A labelled transition system (abbreviated LTS ) is a 4-tuple (S,Σ,Δ, ŝ) such
that τ /∈ Σ, ε /∈ Σ, Δ ⊆ S × (Σ ∪ {τ}) × S, and ŝ ∈ S. The elements of S, Σ, and
Δ are called states, visible actions, and transitions, and ŝ is the initial state. If
L, L′, L1 and so on are LTSs, then, unless otherwise stated, L = (S,Σ,Δ, ŝ),
L′ = (S′,Σ′,Δ′, ŝ′), L1 = (S1,Σ1,Δ1, ŝ1) and so on.

The notation s −a1 · · · an→ s′ means that there are s0, . . . , sn such that
s = s0, sn = s′, and (si−1, ai, si) ∈ Δ for i ∈ {1, . . . , n}. By s −a1 · · · an→ we
mean that there exists s′ such that s −a1 · · · an→ s′, and s −a1a2 · · · → denotes



248 A. Valmari

an infinite path that starts at s and has the labels a1, a2, . . . . The set of enabled
actions of a state s is en(s) = {a ∈ Σ ∪ {τ} | s −a→}. State s is stable if and
only if ¬(s − τ →), that is, τ /∈ en(s). It is a deadlock if and only if ¬(s −a→)
for every a ∈ Σ ∪ {τ}, that is, en(s) = ∅.

The notation s =a1 · · · an⇒ s′ means that there are b1, . . . , bm such that
the removal of every τ from b1 · · · bm yields a1 · · · an, and s −b1 · · · bm→ s′.
Like with “− · · · →”, s =a1 · · · an⇒ means that s =a1 · · · an⇒ s′ for some s′.
A trace of s is any σ ∈ Σ∗ such that s =σ⇒. A stable failure of s is any
(σ,A) ∈ Σ∗ ×2Σ such that there is s′ such that s =σ⇒ s′ and s′ refuses A∪{τ},
that is, en(s′)∩(A∪{τ}) = ∅. State s diverges, denoted with s − τω →, if and only
if there are s1, s2, . . . such that s − τ → s1 − τ→ s2 − τ → · · · . A divergence
trace of s is any σ ∈ Σ∗ such that there is s′ such that s =σ⇒ s′ − τω →. A trace,
stable failure, and divergence trace of an LTS is a trace, etc., of its initial state.

State s′ is reachable from s if and only if there is σ ∈ (Σ ∪ {τ})∗ such that
s −σ→ s′. That s′ is reachable means that s′ is reachable from ŝ. The reachable
part of L is (S′,Σ,Δ′, ŝ), where S′ is the set of the reachable states of L and
Δ′ = Δ ∩ (S′ × (Σ ∪ {τ}) × S′).

The parallel composition of L1, . . . , LN is denoted with L1 ‖ · · · ‖LN . It
means the reachable part of (S,Σ,Δ, ŝ), where S = S1 ×· · ·×SN , Σ = Σ1 ∪· · ·∪
ΣN , ŝ = (s1, . . . , sN ), and (s1, . . . , sn) −a→ (s′

1, . . . , s
′
n) if and only if either

a = τ, (si, τ, s
′
i) ∈ Δi for some i ∈ {1, . . . , n}, and s′

i = si for the remaining
i ∈ {1, . . . , n}; or a �= τ, (si, a, s′

i) ∈ Δi when a ∈ Σi, and s′
i = si when a /∈ Σi.

The hiding of A in L is denoted with L \ A. It means (S,Σ′,Δ′, ŝ), where
Σ′ = Σ \ A and (s, a, s′) ∈ Δ′ if and only if there is b such that (s, b, s′) ∈ Δ and
either a = τ and b ∈ A, or a = b /∈ A.

We restrict ourselves to systems of the form

L = (L1 ‖ · · · ‖LN ) \ H,

where L1, . . . , LN are LTSs and H ⊆ Σ1 ∪ · · · ∪ ΣN . To simplify discussion on
stubborn sets, we consider a modified system of the form

L̄ = (L̄1 ‖ · · · ‖ L̄N ) \ ({τ1, . . . , τN} ∪ H),

where the τi are new distinct action names and each L̄i has been obtained from Li

by changing the labels of its τ-transitions to τi. More formally, for i ∈ {1, . . . , N}
we have:

– τi /∈ Σ1 ∪ · · · ∪ ΣN ∪ {ε, τ, τ1, . . . , τi−1},
– S̄i = Si,
– Σ̄i = Σi ∪ {τi},
– Δ̄i = {(s, a, s′) ∈ Δi | a �= τ} ∪ {(s, τi, s

′) | (s, τ, s′) ∈ Δi}, and
– ¯̂

is = ŝi.

By the definitions of parallel composition and hiding, L̄ is the same LTS as L.
We denote the set of actions of L̄1 ‖ · · · ‖ L̄N by Acts, and split it to two sets

according to whether the actions correspond to visible or invisible actions of
L = L̄:



More Stubborn Set Methods for Process Algebras 249

– Acts = Σ1 ∪ · · · ∪ ΣN ∪ {τ1, . . . , τN} ∪ H,
– Vis = (Σ1 ∪ · · · ∪ ΣN ) \ H, and
– Inv = {τ1, . . . , τN} ∪ H.

When discussing stubborn sets, visible actions refer to the elements of Vis, and
invisible actions to the elements of Inv. We can now write

L = (L̄1 ‖ · · · ‖ L̄N ) \ Inv.

If a1 · · · an ∈ Acts∗, then by Vis(a1 · · · an) we mean the sequence that is
obtained by removing all elements of Inv from a1 · · · an.

Given L̄1, . . . , L̄N , and Inv, a stubborn set method constructs a reduced LTS
Lr = (Sr,Vis,Δr, ŝ). At the heart of the method is a function T (s) that, for any
s ∈ S, computes a subset of Acts. The set T (s) is called stubborn set. The set
Sr is the smallest set such that (1) ŝ ∈ Sr and (2) if s ∈ Sr, a ∈ T (s), and
(s, a, s′) ∈ Δ, then s′ ∈ Sr. We have (s, a, s′) ∈ Δr if and only if s ∈ Sr and there
is b ∈ T (s) such that (s, b, s′) ∈ Δ and either a = τ and b ∈ Inv, or a = b ∈ Vis.

By r-states, r-paths, r-stable failures, and so on we refer to states, paths,
stable failures, and so on of the reduced LTS. For added clarity, we often refer to
entities in the full LTS by f-states, f-paths, f-stable failures, and so on. We often
use the subscript r or f in path notation. For instance, if ŝ −σ→r s, s − τ →f , but
¬(s − τ →r), then (σ, ∅) is an r-stable failure but not necessarily an f-stable failure
(not necessarily, because there may be another state s′ such that ŝ −σ→f s′ but
¬(s′ − τ→f)).

The set T (s) depends on the properties that we want to be preserved during
reduced LTS construction. For instance, in Sects. 4 and 5 of the present publi-
cation, the reduced LTS has precisely the same traces as the full LTS, and in
Sect. 3 it has precisely the same stable failures. To preserve a certain property, a
set of conditions is stated that T (s) must satisfy. Then an algorithm is developed
that constructs sets that satisfy the conditions.

At this stage, we introduce the following conditions. Most of the methods in
this publication use at least four of them.

D0 If en(s0) �= ∅, then T (s0) ∩ en(s0) �= ∅.
D1 If a ∈ T (s0), ai /∈ T (s0) for 1 ≤ i ≤ n, and s0 −a1 · · · ana→f s′

n, then there
is s′

0 such that s0 −a→r s′
0 −a1 · · · an→f s′

n.
D2r If a ∈ T (s0), ai /∈ T (s0) for 1 ≤ i ≤ n, s0 −a1 · · · an→f sn, and s0 −a→r,

then sn −a→f .
D2b If a ∈ T (s0), ai /∈ T (s0) for 1 ≤ i ≤ n, s0 −a1 · · · an→f , and s0 −a→r s′

0,
then s′

0 −a1 · · · an→f .
D2rb If a ∈ T (s0), ai /∈ T (s0) for 1 ≤ i ≤ n, s0 −a1 · · · an→f sn, and s0 −a→r

s′
0, then there is s′

n such that sn −a→f s′
n and s′

0 −a1 · · · an→f s′
n.

V If T (s0) ∩ en(s0) ∩ Vis �= ∅, then Vis ⊆ T (s0).
I If en(s0) ∩ Inv �= ∅, then T (s0) ∩ en(s0) ∩ Inv �= ∅.

D0 says that if the state has enabled actions, then its stubborn set must
contain at least one. It prevents us from choosing T (ŝ) = ∅ and thus constructing



250 A. Valmari

a reduced LTS consisting of just the initial state and no transitions, if the full
LTS is bigger. More generally, D0 guarantees that if a state has at least one
future, then at least one future of the state is investigated by the stubborn set
method. Most, but definitely not all, methods in this publication use D0.

All methods in this publication use D1. It says that for any path that starts
at s0 and contains at least one occurrence of an element of T (s0), the first such
occurrence can be moved to the front. The first transition of the resulting path
is in the reduced LTS.

When no element of T (s0) occurs in a non-empty path, some variant of D2
is often used to prove the existence of a transition in the reduced LTS that,
informally speaking, can be added to the front of the path. Different methods in
this publication use different variants. Clearly D2rb implies D2r and D2b. D1
and D2r imply D2b, but not necessarily D2rb, because only D2rb rules out
the possibility of s′

0 −a1 · · · an→f s′
n and s0 −a→r s′′

0 −a1 · · · an→f s′′
n such that

sn −a→f s′
n but ¬(sn −a→f s′′

n). The letter “D” reflects the fact that D0, D1,
and D2r guarantee that the reduced LTS has precisely the same deadlocks as
the full LTS.

V guarantees that when a visible action is moved to the front by D1, the
actions that it jumps over are invisible. This is because they are not in T (s0),
but by V, the visibility of a, and s0 −a→, every visible action is in T (s0).

I is like D0 applied to invisible actions. Not surprisingly, it will be used for
preserving divergence traces in Sect. 8. We will see in Sect. 3 that it is also used
for preserving stable failures, to avoid concluding that (σ,A) is a stable failure
when it is not.

Let s = (s1, . . . , sN ) be any state of the system. Let eni(s) = {a | ∃s′
i :

(si, a, s′
i) ∈ Δ̄i}. Let dis(s, a) be a function such that if a /∈ en(s), then it returns

an i ∈ {1, . . . , N} such that a ∈ Σi but a /∈ eni(s). (One option is to return
the smallest such i.) Sets that satisfy a desired subset of the above-mentioned
conditions can be computed with the aid of the following leads to -relation.

Definition 1. For a ∈ Acts and b ∈ Acts, we define a �s b, if and only if a �= b
and either

1. a /∈ en(s) and b ∈ endis(s,a)(s), or
2. a ∈ en(s) and there is j ∈ {1, . . . , N} such that a ∈ Σj and b ∈ enj(s).

Let cls(s, u) denote the reflexive transitive closure of u with respect to “�s”,
and cls(s,A) =

⋃
u∈A cls(s, u). Let a ∈ cls(s, u) and s −a1 · · · an→f s′, where a1 /∈

cls(s, u), . . . , an /∈ cls(s, u). If a /∈ en(s), then item 1 of Definition 1 guarantees
that ai /∈ endis(s,a)(s) for 1 ≤ i ≤ n. So L̄dis(s,a) does not move when ai occurs,
yielding a /∈ en(s′). If a ∈ en(s), then item 2 tells that no L̄j that participates
a can start moving during s −a1 · · · an→f s′. So a is concurrent with a1 · · · an.
These imply that cls(s, u) satisfies D1 and D2rb. V can be made to hold by
adding a �s b for every a ∈ en(s) ∩ Vis and b ∈ Vis \ {a}. D0 is ensured by
choosing an enabled u. If cls(s, u) does not satisfy I, cls(s, a) may be added to
it for some enabled invisible a, that is, T (s) = cls(s, u) ∪ cls(s, a).



More Stubborn Set Methods for Process Algebras 251

Depending on the choice of u, cls(s, u) may contain unnecessary enabled
actions. A better result is obtained by traversing the directed graph Gs = (Acts,
“�s”) in depth-first order and recognizing its strong components using Tarjan’s
algorithm [12] (please see [3] for an optimization). In the sequel, we will need
variants of this theme. Therefore, let gsc(s, c, A,B) (“good strong component”)
denote an algorithm that traverses Gs starting from c without entering actions in
A until it finds a strong component such that it contains an enabled action, it and
strong components that are reachable from it do not contain actions from B, and
no other strong component reachable from it contains enabled actions. (Actions
in A are not treated as reachable.) It may also reply that such a component does
not exist.

The idea of A is that it is a “�s”-closed set whose actions have already
been included in the stubborn set. So, to save effort, it is not entered. It is often
reasonable to disfavour enabled visible actions, because if any is taken, V tends
to make the stubborn set big. This is facilitated with B.

The gsc algorithm is an adaptation of the esc algorithm used in many ear-
lier publications. We have esc(s, c) = gsc(s, c, ∅, ∅). The esc algorithm has been
implemented in the ASSET tool [17]. The experiments reported in [6,16,17,20]
suggest that it runs very quickly.

The Petri net a a1 satisfies D2r but not D2b. This is why it
is reasonable to have three variants of D2, although the “�s”-relation in the
present publication does not exploit their differences.

While claims that aps set methods preserve the desired properties are based
on theorems and proofs, claims that some design choice tends to yield better
reduction results than some other are mostly based on engineering intuition and
experiments. Unfortunately, for the following reason, experiments are unreliable
and theorems on performance are difficult to obtain. Consider

u c ‖ v c ‖ u τ3‖ v → L̄′
4 ‖ · · · ‖ v → L̄′

N ,

where v → L̄′
i denotes the LTS obtained from L̄′

i by adding a new initial state and
a v-transition from it to ¯̂′

is. Assume that the Σ̄′
i do not contain c, u, and v. The

computation of gsc(ŝ, c, ∅, ∅) starts with traversing either the edge c �ŝ u or the
edge c �ŝ v. In the former case, because L̄3 disables u, the traversal continues
u �ŝ τ3 and yields {τ3}. We get a reduced LTS with only one transition, that is,
ŝ − τ3 →r ŝ. In the latter case, {v} is obtained. Firing v switches on L̄′

4 ‖ · · · ‖ L̄′
N .

If subsequent calls of gsc only use elements of Σ̄′
4 ∪ · · · ∪ Σ̄′

N as their starting
points, a copy of the reduced LTS of L̄′

4 ‖ · · · ‖ L̄′
N is obtained, which may be

arbitrarily big. This means that reduction results may dramatically depend on
implementation details and even on the order in which the component LTSs and
their transitions are listed in the input of a verification tool.

Reduction results may also depend on the choice of the function dis. (It
is not known how to quickly optimize it.) It is also possible to improve the
definition of the “�s”-relation at the cost of more complicated definition and
implementation. In the above example, u �ŝ τ3 was intuitively unnecessary.



252 A. Valmari

Indeed, in case 1, a �s b is unnecessary if there is no path in L̄dis(s,a) of the
form si −bσa→, where σ ∈ Acts∗.

As a consequence, numerical results of an experiment may depend on details
that are not central to the main ideas of a publication and, therefore, are not
reported in it. This makes it hard to meaningfully compare published experi-
mental results.

3 Stable Failures

Most of this publication deals with the so-called “ignoring problem”. To appre-
ciate the problem, this section discusses a situation where it does not arise. The
main result of this section is from [15]. It will reveal that visible actions may be
ignored only in states from which stable states cannot be reached.

We prove now that five conditions mentioned earlier guarantee together that
all stable states are preserved in the reduction, and so are also the traces that
lead to them.

Lemma 2. Assume that the reduced LTS satisfies D0, D1, D2r, V, and I.
If s is an r-state and s −a1 · · · an→f s′ where s′ is f-stable, then there is a
permutation b1 · · · bn of a1 · · · an such that s −b1 · · · bn→r s′ and Vis(b1 · · · bn) =
Vis(a1 · · · an).

Proof. Assume that sn is an r-state and sn −a1 · · · an→f s′, where s′ is f-stable.
If n = 0, the claim is obvious.

From now on n > 0. We show that {a1, . . . , an} ∩ T (sn) �= ∅. Because n > 0,
we have sn −a1→f . By D0, T (sn) contains an enabled action. Assume first that
T (sn) contains an enabled invisible action a. If {a1, . . . , an} ∩ T (sn) = ∅, then
s′ −a→f by D2r. This contradicts the f-stability of s′ and thus yields the claim.
In the opposite case, T (sn) contains an enabled visible action. By V, T (sn)
contains all visible actions. By I, all enabled actions, and in particular a1, are
visible. So a1 ∈ T (sn).

So there is i ∈ {1, . . . , n} such that ai ∈ T (sn) but aj /∈ T (sn) when 1 ≤ j <
i. By D1, there is sn−1 such that sn −ai→r sn−1 −a1 · · · ai−1ai+1 · · · an→f s′.
If ai ∈ Vis, then the aj are invisible by V and the minimality of i. Therefore,
Vis(aia1 · · · ai−1ai+1 · · · an) = Vis(a1 · · · an). This claim obviously holds also if
ai ∈ Inv. By the induction assumption, there is a permutation b1 · · · bn−1 of
a1 · · · ai−1ai+1 · · · an such that sn−1 −b1 · · · bn−1→r s′ and Vis(b1 · · · bn−1) =
Vis(a1 · · · ai−1ai+1 · · · an). So sn −ai→r sn−1 −b1 · · · bn−1→r s′ has the same
trace as sn −a1 · · · an→f s′. �
Theorem 3. Assume that the reduced LTS satisfies D0, D1, D2r, V, and I.
Then

1. An r-state is r-stable if and only if it is f-stable.
2. An r-stable r-state r-refuses precisely the same actions as it f-refuses.
3. Each r-state has precisely the same r-stable failures as f-stable failures.



More Stubborn Set Methods for Process Algebras 253

4. The reduced and full LTSs have precisely the same stable states.
5. The reduced and full LTSs have precisely the same stable failures.

Proof. If an r-state is not r-stable, then trivially it is not f-stable either. If it is
r-stable, then I implies that it is also f-stable. Item 1 has been proven.

To prove 2, assume that s is r-stable. By 1, s is also f-stable. If s −a→r, then
trivially s −a→f . If s −a→f , then by D0 and the r-stability of s, s −b→r for
some b ∈ Vis. By V, s −c→r for every c ∈ en(s) ∩ Vis. By the f-stability of s,
a ∈ Vis. So s −a→r.

If (σ,A) is an f-stable failure of an r-state s, then there is an f-path s =σ⇒f s′

such that s′ is f-stable and f-refuses A. By Lemma 2, s =σ⇒r s′, and by 1 and 2,
s′ r-refuses A. So (σ,A) is an r-stable failure of s. If (σ,A) is an r-stable failure
of s, then s =σ⇒r s′ where s′ r-refuses A ∪ {τ}. By 2, this path demonstrates
that (σ,A) is an f-stable failure of s.

Because ŝ is an r-state, 4 follows from Lemma 2 and 1, and 5 follows from 3. �
Although item 4 of Theorem 3 is elegant, often we would rather not have

it. This is because any theorem of the form “the reduced LTS contains at least
these states” works against the purpose of making the reduced LTS small, when
the states are unimportant for the properties that we want to preserve during
reduction. Leaving I out liberates us from (or deprives us of, depending on our
goal) 4, as can be seen from the example a ‖ τ , where a ∈ Vis. In it,
without I, we could have T (ŝ) = {a} and thus lose the stable state s that has
ŝ − τ→f s.

Unfortunately, without I, an r-stable failure need not be an f-stable failure.
This is illustrated by a ‖ τ , where a ∈ Vis. We could have T (ŝ) = {a},
yielding only one state ŝ and only one transition ŝ −a→r ŝ in the reduced LTS.
Then (ε, ∅) would be an r-stable failure although it is not an f-stable failure.

In this example, we could also have T (ŝ) = {τ}. Then we would only get
ŝ − τ→r ŝ and lose the trace a. This means that the conditions listed in Sect. 2
do not suffice for preserving all traces. By Lemma 2, this can only happen if no
stable state is reachable after the trace.

The trace a was lost because action a was not taken in any r-state, although
a is relevant for preserving the traces. We say that a was ignored. The ignoring
problem is that from some state on, a stubborn set method may ignore an action
that is relevant for the interesting property at that state. In the next two sections
we adapt two recent solutions to the ignoring problem, with the goal of preserving
all traces.

4 Visibility-Driven Stubborn Sets

We start this section by presenting another example of the ignoring problem
that was introduced towards the end of the previous section. Then we recall the
solution used in the trace-preserving method of [15]. With a couple of examples
we illustrate that there is room for improvement. Then we present an improved
method.



254 A. Valmari

Fig. 1. An example with Vis = {a, b, c} and Inv = {τ1, τ2, τ3}

Figure 1 left shows a parallel composition of three LTSs, and right shows
the reduced LTS that the new algorithm in this section will yield. We use an
obvious indexing scheme for denoting the states. For instance, the initial state is
111. Assume that stubborn sets are constructed by trying esc(s, τ1), esc(s, τ2),
esc(s, τ3), esc(s, a), esc(s, b), and esc(s, c) until a set satisfying D0, D1, D2rb,
and V is found or the list is exhausted. This method chooses T (111) = {τ1},
yielding 111 − τ1 →r 211. In 211, the method again chooses {τ1}. We get
211 − τ1 →r 111. Because 111 has already been investigated, the method termi-
nates without ever trying other actions of the system. So we have the ignoring
problem.

In the trace-preserving stubborn set method in [15], the ignoring problem was
solved as follows. The reduced LTS was computed in depth-first order. Tarjan’s
algorithm [12] was applied on top of the computation, to recognize terminal
strong components of the reduced LTS. (A strong component is terminal if and
only if every transition that starts at a state in it also ends at a state in it.) Let
the root of a strong component be the state in it that depth-first search enters
first (and, as a consequence, backtracks from last).

Whenever the search is about to backtrack from a terminal strong component,
the algorithm checks whether every enabled action of its root occurs somewhere
within the component. If not, the algorithm extends the stubborn set of the root
(keeping D0, D1, D2rb, and V valid) such that it contains at least one new
enabled action. Instead of backtracking, the algorithm continues the depth-first
search via the resulting new transitions. This implements the following condition:

Sen For every r-reachable s′′ and every a ∈ en(s′′), there is an r-path from s′′

to some s′ such that a ∈ T (s′).

In our example, the algorithm first constructs the cycle 111 − τ1 →r

211 − τ1 →r 111 and backtracks to 111. Then the algorithm detects that it
is about to backtrack from the root 111 of the terminal strong component
{111, 211}. Because τ2 and τ3 are enabled in 111 but have not been fired in the
component, the algorithm adds either cls(111, τ2) = {τ2} or cls(111, τ3) = {τ3}
to the stubborn set of 111. Let us assume that it chooses {τ2}. We get
111 − τ2 →r 121.

Because of the order in which the esc-sets are tried, the algorithm uses
esc(121, τ1) and constructs 121 − τ1 →r 221 − τ1 →r 121. Intuitively, this seems
a bad choice indeed. Therefore, we suggest a simple but (as far as we know) novel
heuristic. We state it in a form that can also be used later in this publication.



More Stubborn Set Methods for Process Algebras 255

Method 4. Consider a stubborn set construction algorithm that tries
gsc(s, c, A,B) for each c in some set of actions {c1, . . . , cn} until a suitable
stubborn set is found or the set is exhausted. Assume that s′ was first found
by firing s −d→r s′, and gsc(s, ci, A,B) was used as the original stubborn
set or extension in s that contains d. At s′, try the elements in the order
ci, ci+1, . . . , cn, c1, . . . , ci−1.

In our example, because 121 was first found via τ2 ∈ esc(111, τ2), Method 4
uses τ2 as the first starting point of the esc-algorithm in 121. Item 1 of
Definition 1 draws attention to what L̄2 can execute next, that is, a and b.
Because b is enabled in 121 but a is not, we have b �121 a �121 τ3. Because
121 − τ3 →f and there is no x such that τ3 �121 x, we have esc(121, τ2) = {τ3}.
So the method constructs 121 − τ3 →r 122. Then the method chooses T (122) =
esc(122, τ2) = {a, b, c}. One of the resulting states is 133. There the method
constructs 133 − τ1 →r 233 − τ1 →r 133, because only τ1 is enabled.

Taking τ1 in 133 made the reduced LTS grow unnecessarily in the sense that
it did not eventually lead to an occurrence of a visible action and thus did not
contribute to the traces. For this reason, the following alternative condition was
suggested in [15], but it was also pointed out that it is difficult to implement:

SV For every r-reachable s′′ and every a ∈ Vis, there is an r-path from s′′ to
some s′ such that a ∈ T (s′).

If a terminal strong component contains an r-occurrence of a visible action,
then Vis ⊆ T (s′) by V, where s′ is a state where a visible action r-occurs. So
the condition holds for the component.

In the opposite case, it is not easy to see whether each a ∈ Vis can be
thought of as having been taken into account within the component. It may
be that a was not encountered when computing the stubborn sets of the states
of the component, but for some s′ in the component, all enabled actions in
cls(s′, a) are in T (s′). Then cls(s′, a) ∪ T (s′) could replace T (s′), making SV
hold for a while not changing the reduced LTS. Let us replace b by τ2 in our
example, and consider 113 − τ1 →r 213 − τ1 →r 113. This cycle could have arisen
from computing T (s) = esc(s, τ1) = {τ1} for s ∈ {113, 213}, not explicitly
encountering a; but it could also have arisen from first computing esc(s, a) = {a}
(because L̄3 keeps a disabled) and then expanding the set to esc(s, a)∪esc(s, τ1).

The condition SV could be easily made to hold by adding cls(r,Vis) to
the stubborn set of the root r of the terminal strong component, if no visi-
ble action occurs in the component. The problem with this approach is that it
may introduce more enabled actions than necessary, even if |Vis| = 1. Consider

τ1 u ‖ τ2 v ‖ L̄3, where a is visible, u and v are not, and L̄3 is ready to
execute each of them. With it, cls(s, a) contains unnecessarily both τ1 and τ2.

In [19], a way of combining the advantages of Sen and SV was found. We
now describe an adaptation of it to the preservation of traces. In it, the following
condition replaces both SV and D0:



256 A. Valmari

S From each r-reachable s′′ there is an r-path to some s′ that has a set VIS(s′)
such that
1. Vis ⊆ VIS(s′),
2. if a /∈ en(s′), a ∈ VIS(s′), a1 /∈ VIS(s′), . . . , an /∈ VIS(s′), and

s′ −a1 · · · an→f ṡ, then a /∈ en(ṡ), and
3. for every a ∈ en(s′) ∩ VIS(s′), there is an r-path from s′ to some s such

that a ∈ T (s).

Let us discuss the intuition of this rather complicated condition. Item 2
says that disabled actions in VIS(s′) remain disabled until an action in VIS(s′)
occurs. By item 1, this implies that to enable a disabled visible action, an enabled
action in VIS(s′) must occur. Item 3 promises that no enabled action in VIS(s′)
is ignored. So for every visible action that can occur in the future, a step towards
its occurrence will be taken. If a visible action can occur immediately, that is, is
enabled in s′, then item 3 promises that it is not ignored.

Because explicit activity against ignoring is only needed in the roots of the
terminal strong components, the condition has been formulated so that VIS(s′)
need not be computed in every r-state. It suffices that from each r-state, a state
where VIS(s′) is computed is r-reachable.

Let “�̆s” be any relation that satisfies item 1 (but not necessarily item 2) of
Definition 1. A set satisfying items 1 and 2 of S can be obtained by computing
the reflexive transitive closure of Vis with respect to “�̆s′”. This means that
en(s′)∩VIS(s′) can be constructed efficiently with techniques that we are already
familiar with, and that then VIS(s′) ⊆ cls(s′,Vis). Item 3 will be established in
the sequel by recognizing the terminal strong components and extending the
stubborn sets of their roots.

By choosing s′ = s′′ and VIS(s′) = Acts we see that Sen implies S. The
opposite does not necessarily hold. We can choose VIS(133) = {a, b, c}, because
L̄2 and L̄3 disable all visible actions. So S allows leaving τ1 out from the stubborn
set, avoiding the construction of 233 and the transitions 133 − τ1 →r 233 − τ1 →r

133. In this sense, S is better than Sen.
Let us now prove that this method indeed preserves all traces, and after

that discuss its implementation. We first prove a lemma that will be used in the
proofs of four theorems.

Lemma 5. Assume that the reduced LTS satisfies D1, D2b, and V. Let sn be
an r-state and sn −a1 · · · an→f s′

n. If there is an r-path from sn to an r-state s
such that ¬(s −a1 · · · an→f) or {a1, . . . , an} ∩ T (s) �= ∅, then there are m ∈ N,
b1, . . . , bm, r-states sn−1 and zm, an f-state s′

n−1, and i ∈ {1, . . . , n} such that

– sn −b1 · · · bm→r zm −ai→r sn−1 −a1 · · · ai−1ai+1 · · · an→f s′
n−1,

– if the reduced LTS satisfies D2rb, then s′
n −b1 · · · bm→f s′

n−1,
– sn −b1 · · · bm→r zm is a prefix of the r-path from sn to s,
– Vis(b1 · · · bmaia1 · · · ai−1ai+1 · · · an) = Vis(a1 · · · anb1 · · · bm), and
– if any of a1, . . . , an is visible, then b1, . . . , bm are invisible.



More Stubborn Set Methods for Process Algebras 257

Proof. Let the r-path from sn to s be z0 −b1→r · · · −bM→r zM , where z0 = sn

and zM = s. Let z′
0 = s′

n, so z0 −a1 · · · an→f z′
0. Let m ∈ {0, . . . , M} be the

smallest such that m = M or {a1, . . . , an} ∩ T (zm) �= ∅. By m applications of
D2b, there are f-states z′

1, . . . , z′
m such that zj −a1 · · · an→f z′

j for 1 ≤ j ≤ m.
If D2rb is obeyed, then also z′

0 −b1→f · · · −bm→f z′
m. We choose s′

n−1 = z′
m.

If m = M , then s = zM −a1 · · · an→f z′
M . The assumption on s yields

{a1, . . . , an} ∩ T (zm) �= ∅. So {a1, . . . , an} ∩ T (zm) �= ∅ both if m < M and if
m = M .

Let i ∈ {1, . . . , n} be the smallest such that ai ∈ T (zm). There is an f-state
z′ such that zm −a1 · · · ai→f z′ −ai+1 · · · an→f z′

m. By D1, there is an r-state
sn−1 such that zm −ai→r sn−1 −a1 · · · ai−1→f z′ −ai+1 · · · an→f z′

m.
If each one of a1, . . . , an is invisible, then Vis(b1 · · · bmaia1 · · · ai−1

ai+1 · · · an) = Vis(a1 · · · anb1 · · · bm). Otherwise, there is v ∈ {1, . . . , n} such
that av is visible. The minimality of m yields av /∈ T (zj) for 0 ≤ j < m.
By V, b1, . . . , bm are invisible. If ai ∈ Vis, then by V and the minimality of
i, a1, . . . , ai−1 are invisible. These yield Vis(b1 · · · bmaia1 · · · ai−1ai+1 · · · an) =
Vis(a1 · · · anb1 · · · bm). �
Theorem 6. Assume that the reduced LTS satisfies D1, D2b, V, and S. Then
each r-state has precisely the same r-traces as f-traces.

Proof. Every r-trace of every r-state is trivially an f-trace of the state.
To prove the other direction, let sn be any r-state. We prove by induction

that for any f-path sn −a1 · · · an→f s′
n of length n that starts at sn, there is an

r-path that starts at sn and has the same trace.
If none of a1, . . . , an is visible, then the r-path of length 0 that consists solely

of sn has the required trace ε. When n = 0, this case applies.
The case remains where there is v ∈ {1, . . . , n} such that av ∈ Vis. Our next

goal is to prove that there is an r-path from sn to some s such that {a1, . . . , an}∩
T (s) �= ∅. Consider the r-path from s′′ = sn to the s′ whose existence is promised
by S. If at least one state s along the path has {a1, . . . , an}∩T (s) �= ∅, then the
claim obviously holds. In the opposite case, repeated application of D2b implies
s′ −a1 · · · an→f . Because av ∈ Vis and Vis ⊆ VIS(s′) by item 1 of S, there is a
smallest i ∈ {1, . . . , v} such that ai ∈ VIS(s′). Item 2 of S yields ai ∈ en(s′).
Item 3 yields an r-path from s′ to some r-state s such that ai ∈ T (s).

The assumptions of Lemma 5 hold such that av is visible. It yields
sn −b1 · · · bmai→r sn−1 −a1 · · · ai−1ai+1 · · · an→f s′

n−1 such that it has the
same trace as sn −a1 · · · an→f s′

n. By the induction assumption, sn−1 has
an r-path with the trace Vis(a1 · · · ai−1ai+1 · · · an). This path preceded by
sn −b1 · · · bmai→r sn−1 implies the claim. �

Before suggesting an implementation of this method, let us discuss the ratio-
nale for it. If cls(s,Vis) ⊆ T (s) holds for any s that is r-reachable from s′′, then
S holds for s′′. This can be seen by letting s′ = s and VIS(s′) = cls(s′,Vis) in the
definition of S. Because cls(s,Vis) may be big, our algorithm uses it only as a last
resort. If an enabled visible action is taken to T (s), then by V and its implemen-
tation via the “�s”-relation, cls(s,Vis) ⊆ T (s). Therefore, the algorithm tries to



258 A. Valmari

avoid taking enabled visible actions. Even so, it prefers visible actions as start-
ing points, in an attempt to avoid firing actions that do not eventually lead to
the occurrence of visible actions and thus do not contribute towards preserving
additional traces.

Let V (s) = en(s)∩Vis. When a stubborn set is computed for an r-state s for
the first time, gsc(s, v, ∅, V (s)) is tried for each v ∈ Vis in the order of Method 4
until a set is obtained or Vis is exhausted. In the latter case, cls(s,Vis) is used.
We have gsc(s, v, ∅, V (s)) ⊆ cls(s,Vis).

If the terminal strong component condition calls for extending the stubborn
set of s, then V ′(s) = en(s) ∩ VIS(s) is computed as mentioned above. Then
gsc(s, c, ∅, V (s)) is tried for each c ∈ V ′(s) \ A, where A is the set of actions
a such that there is σ ∈ Acts∗ such that s −σa→r. If V (s) ∩ A becomes non-
empty, then T (s) need not be extended further. If V ′(s) has been exhausted and
an extension is still needed, cls(s,Vis) is used. These are correct by the remarks
made above.

The stubborn set is extended in a stepwise manner, to benefit from the facts
that an extension may put some a ∈ V ′(s) into A and s may cease to be the
root of any terminal strong component. Each of these makes it unnecessary to
consider a in s.

The algorithm is visibility-driven in the sense that it only uses subsets of
cls(s,Vis). We saw above that this helps avoiding firing unproductive actions,
such as τ1 in our example. If cls(s,Vis) ∩ en(s) = ∅, then nothing is fired, even
if this violates D0. Figure 1 right shows the reduced LTS that the algorithm
constructs in our example.

5 Traces and Always May-Stabilizing Systems

In this section we will present an alternative method for computing trace-
preserving reduced LTSs that does not need any condition for solving the ignor-
ing problem. It is thus free from the implementation problems and growth of
reduced LTS size that such conditions cause. The method is from [16], but its
adaptation to process algebras is novel work. In particular, [16] used determinis-
tic transitions and always may-terminating systems instead of the always may-
stabilizing LTSs that we now define.

Definition 7. An LTS is always may-stabilizing if and only if from every reach-
able state, a stable state is reachable.

Method 8

1. Choose an action name stop that is not in Acts.
2. Add to each L̄i a new state and zero or more transitions labelled stop from

selected states to the new state. The resulting LTSs are called L#
i . This is

done manually. We will later discuss it in more detail. The added transitions
are called stop-branches.

3. Compute a reduced LTS L# of (L#
1 ‖ · · · ‖L#

N ) \ Inv obeying D0, D1, D2r,
D2b, and V.



More Stubborn Set Methods for Process Algebras 259

4. If L# is not always may-stabilizing, then go back to Step 2, to add more
stop-branches. As explained in [16], the test can be performed efficiently with
graph-theoretical algorithms either on-the-fly or as a post-processing step.

5. Otherwise let L′ be computed by removing all stop-transitions from L#. It
has precisely the same traces as the original system.

Even when not using Method 8, it may be necessary to make a model always
may-stabilizing, to ensure that non-progress errors of a certain type are caught.
For instance, assume that Client i and the server of a mutual exclusion system
communicate via requesti, granti, and releasei. A server that just runs around
the cycle request1 grant1 release1 request2 grant2 release2 is clearly unacceptable,
because Client 2 cannot get service if Client 1 never requests. However, to catch
the error, it is necessary to model that Client 1 may refrain from requesting.
This can be done by adding a τ-transition from its initial state to a deadlock.
This was discussed in [16]. In this section this is irrelevant, because traces do
not suffice for catching non-progress errors. It will become relevant in Sect. 6.

If this does not make the model always may-stabilizing, a stop-branch may
be added to each component LTS that generates new work to do (for instance,
sends messages for transmission) just before where it generates the work. By
using a common label for the stop-branches, potentially numerous states are
avoided where some but not all LTSs have taken the stop-branch.

Compared to Sect. 3, we have dropped I and added D2b. As a consequence, it
is possible that L# is always may-stabilizing even if the model is not. Fortunately,
this affects neither the set of traces nor Sect. 6. The important thing is that L#

can be made always may-stabilizing by making the model always may-stabilizing,
so that step 5 can be reached. The following theorem promises this.

Theorem 9. Assume that the reduced LTS satisfies D1 and D2r. If the full LTS
is always may-stabilizing, then also the reduced LTS is always may-stabilizing.

Proof. Let the distance to stability of each f-state s be the shortest length of any
f-path from s to an f-stable state (∞, if no such path exists). By the assumption,
every f-state has finite distance to stability.

To derive a contradiction, assume that there is an r-state such that there is
no r-path from it to an r-stable r-state. Let s0 be such an r-state with minimal
distance to stability, and let this distance be n. By this choice, there are an
f-stable f-state sn and actions a1, . . . , an such that s0 −a1 · · · an→f sn.

Because s0 has an r-path (of length 0) to itself, s0 is not r-stable. That is,
T (s0) contains an enabled invisible action a. If none of a1, . . . , an is in T (s0),
then by D2r a is enabled at sn, contradicting the assumption that sn is f-stable.
So there is a smallest i ∈ {1, . . . , n} such that ai ∈ T (s0). By D1 there is an
r-state s′

0 such that s0 −ai→r s′
0 −a1 · · · ai−1ai+1 · · · an→f sn. This contradicts

the minimality of n. �
We still have to prove that if step 5 is reached, the correct traces are obtained.

Theorem 10. Assume that the reduced LTS satisfies D0, D1, D2b, and V.
If the reduced LTS is always may-stabilizing, then each r-state has precisely the
same r-traces as f-traces.



260 A. Valmari

Proof. Every r-trace of every r-state is trivially an f-trace of the state.
To prove the other direction, assume that the reduced LTS is always may-

stabilizing. Let sn be any r-state. We prove by induction that for any f-path
sn −a1 · · · an→f s′

n of length n that starts at sn, there is an r-path that starts
at sn and has the same trace.

If none of a1, . . . , an is visible, then the r-path of length 0 that consists solely
of sn has the required trace ε. When n = 0, this case applies.

The case remains where av ∈ Vis for some v ∈ {1, . . . , n}. There is an r-
path from sn to an r-stable r-state s. If T (s) contains no enabled actions, then
¬(s −a1 · · · an→f). Otherwise, let a ∈ T (s) such that s −a→r. Because s is r-
stable, a is visible. By V, av ∈ T (s). So the assumptions of Lemma 5 hold both
when T (s) does and when it does not contain enabled actions.

Lemma 5 yields sn −b1 · · · bmai→r sn−1 −a1 · · · ai−1ai+1 · · · an→f s′
n−1 such

that b1, . . . , bm are invisible and the path has the same trace as sn −a1 · · · an→f

s′
n. By the induction assumption, sn−1 has an r-path that yields the trace
Vis(a1 · · · ai−1ai+1 · · · an). This path preceded by sn −b1 · · · bmai→r sn−1 implies
the claim. �
Theorem 11. The LTS L′ yielded by Method 8 has precisely the same traces as
the original system.

Proof. Let {stop} be the LTS with one state, no transitions, and the alphabet
{stop}. For any LTS L, let �L�stop = (L ‖ {stop}) \ {stop}, read as “block stop in
L”. Clearly each L̄i is strongly bisimilar to �L#

i �stop. So (L̄1 ‖ · · · ‖ L̄N ) \ Inv and
thus also the original system are strongly bisimilar to

(�L#
1 �stop ‖ · · · ‖�L#

N�stop
) \ Inv.

Blocking stop-transitions in each component is strongly bisimilar to blocking
them after the parallel composition. So the original system is strongly bisimilar to

�L#
1 ‖ · · · ‖L#

N�stop \ Inv

=
(
((L#

1 ‖ · · · ‖L#
N ) ‖ {stop}) \ {stop}) \ Inv

=
(
((L#

1 ‖ · · · ‖L#
N ) ‖ {stop}) \ Inv

) \ {stop}
=

(
((L#

1 ‖ · · · ‖L#
N ) \ Inv) ‖ {stop}

) \ {stop}
= �(L#

1 ‖ · · · ‖L#
N ) \ Inv�stop.

By Theorem 10, L# has precisely the same traces as (L#
1 ‖ · · · ‖L#

N )\Inv. As a
consequence, �L#�stop has precisely the same traces as �(L#

1 ‖ · · · ‖L#
N ) \ Inv�stop

and thus the original system. �

6 Failures, Tree Failures, and Fair Testing

The sets of traces and stable failures catch illegal deadlocks, but no other non-
progress errors, that is, errors where something that should happen actually



More Stubborn Set Methods for Process Algebras 261

never happens. We will discuss a process-algebraic adaptation of the standard
approach to non-progress errors in Sect. 8. There is, however, a surprising result
that allows to catch all so-called may-progress errors with the methods that we
already have. It is presented in this section.

The standard approach to progress requires that in all futures, eventually the
awaited thing happens. May-progress only requires that in all futures always,
there is a future where eventually the awaited thing happens. It is a strictly
weaker notion. Sometimes it is actually more appropriate than classical progress.
Even when it is not, it can be used as an incomplete approach that catches some
but not all non-progress errors, and never gives false alarms.

Fair testing equivalence [10] preserves a wide range of may-progress proper-
ties, and is the weakest congruence that preserves “in all futures always, there is a
future where eventually a occurs”. Theorem 14 tells how it can be preserved dur-
ing LTS reduction. It has been slightly modified from [20]. Theorem 12 presents
a related result that is new, but is intended to appear in the journal version
of [20] that is currently in preparation.

A tree failure of an LTS consists of a trace and a set of non-empty finite
sequences of visible actions such that after executing the trace, the LTS may be
in a (not necessarily stable) state where it refuses the set, that is, the LTS cannot
execute any sequence in the set to completion. The set cannot contain ε, because
it cannot be refused. To preserve tree failures, we first present a condition that
implies V. It is adapted from [1] to the present framework, and its name is from
there. Its implementation is obvious.

C2 If T (s0) ∩ en(s0) ∩ Vis �= ∅, then T (s0) = Acts.

The following theorem lets us harness any trace-preserving method to pre-
serve tree failures, with the small adaptations possibly needed to establish C2
and D2rb. A counter-example in [20] demonstrates that V cannot replace C2
in the theorem.

Theorem 12. Assume that the reduced LTS satisfies D0, D1, D2rb, and C2,
and for every r-state s, the set of the r-traces of s is the same as the set of the
f-traces of s. Then for every r-state s, the set of the r-tree failures of s is the
same as the set of the f-tree failures of s.

Proof. Assume first that (σ,K) is an r-tree failure of the r-state s. That is, there
is an r-state s′ such that s =σ⇒r s′ and s′ r-refuses K. For any ρ ∈ Vis∗, if
s′ = ρ ⇒f , then by the assumption s′ = ρ ⇒r. As a consequence, s′ f-refuses K
and (σ,K) is an f-tree failure of s.

Assume now that (σ,K) is an f-tree failure of the r-state sn. There is an
f-path sn −a1 · · · an→f s′

n such that Vis(a1 · · · an) = σ and s′
n f-refuses K.

If n = 0, then sn = s′
n and σ = ε. Because s′

n f-refuses K, sn = s′
n r-refuses

K. So sn has the r-tree failure (ε,K) = (σ,K).
From now on n > 0. We discuss first the case where there is v ∈ {1, . . . , n}

such that av is visible and a1, . . . , av−1 are invisible. So sn =av⇒f . By the
assumption, there is s such that sn = ε ⇒r s −av→r. So av ∈ T (s) and Lemma 5



262 A. Valmari

can be applied. It yields sn −b1 · · · bmai→r sn−1 −a1 · · · ai−1ai+1 · · · an→f s′
n−1

and s′
n −b1 · · · bm→f s′

n−1 such that b1, . . . , bm are invisible. Because s′
n f-refuses

K, also s′
n−1 f-refuses K. So sn−1 has the f-tree failure (σ′,K), where σ′ = σ if

ai is invisible and otherwise σ = aiσ
′. By the induction assumption, sn−1 has it

also as an r-tree failure. This implies that (σ,K) is an r-tree failure of sn.
The case remains where a1, . . . , an are invisible. That implies σ = ε. If there

is no r-path from sn to any state s with an enabled visible action in T (s), then sn

r-refuses Vis+. So it r-refuses K and has (ε,K) as an r-tree failure. Otherwise,
let sn = ε ⇒r s −a→r, where a ∈ Vis. By C2, {a1, . . . , an} ⊆ T (s) = Acts.
Because n > 0, this implies that Lemma 5 can be applied. The lemma promises
that sn −b1 · · · bm→r zm is a prefix of sn = ε ⇒r s, implying that b1, . . . , bm

are invisible. So, similarly to the previous case, s′
n−1 f-refuses K and sn−1 has

the f-tree failure (ε,K). By the induction assumption, sn−1 has the r-tree failure
(ε,K). This implies that also sn has it. �

Fair testing equivalence is obtained by weakening the equivalence that com-
pares the alphabets and tree failures. For ρ ∈ Σ∗ and K ⊆ Σ∗, we let ρ−1 K
denote {π | ρπ ∈ K}. A prefix of K is any ρ such that ρ−1 K �= ∅.

Definition 13. The LTSs L1 and L2 are fair testing equivalent if and only if

1. Σ1 = Σ2,
2. if (σ,K) is a tree failure of L1, then either (σ,K) is a tree failure of L2 or

there is a prefix ρ of K such that (σ ρ, ρ−1 K) is a tree failure of L2, and
3. item 2 holds with the roles of L1 and L2 swapped.

The first part of 2 does not follow from the second, when K = ∅. We have a
similar theorem as above, but now V suffices.

Theorem 14. Assume that the reduced LTS satisfies D0, D1, D2rb, and V,
and for every r-state s, the set of the r-traces of s is the same as the set of the
f-traces of s. Then the reduced LTS is fair testing equivalent to the full LTS.

Proof. The proof is similar to the proof of Theorem 12 with two differences.
First, when n > 0 and av is visible, application of the induction assumption

yields what is promised in item 2 of Definition 13.
Second, the treatment of the case where n > 0 but none of a1, . . . , an

is visible is different. If sn r-refuses K, then (ε,K) is an r-tree failure of sn.
Otherwise, there is κ ∈ K such that sn =κ⇒r but ¬(s′

n =κ⇒f). There is
an r-path z0 −b1 · · · bM→r zM such that z0 = sn and Vis(b1 · · · bM ) = κ. If
{a1, . . . , an} ∩ T (zj) = ∅ for 0 ≤ j < M , then D2rb yields s′

n −b1 · · · bM→f ,
contradicting ¬(s′

n =κ⇒f). So {a1, . . . , an} ∩ T (zm) �= ∅ for some minimal
m ∈ {0, . . . , M − 1}. Therefore, Lemma 5 can be applied. Let π = Vis(b1 · · · bm).
So s′

n−1 and sn−1 have (ε,π−1 K) as an f-tree failure. By the induction assump-
tion, sn−1 has some (ρ, ρ−1(π−1 K)) as an r-tree failure. This implies that sn

has the r-tree failure (π ρ, (π ρ)−1K). �



More Stubborn Set Methods for Process Algebras 263

The method for mainstream branching-time logics in [4,8] relies on a very
strong condition: either the ample set contains only one enabled transition and
it is invisible, or it contains all enabled transitions. Its adaptation to non-
determinism requires even more [15]. These seriously restrict the reduction
results that may be obtained. Although Milner’s observation equivalence (a.k.a.
weak bisimilarity) [7] preserves less information than mainstream branching-time
logics, no method is known that exploits this difference. These facts had made
the present author believe that powerful aps set methods for proper branching-
time properties are not possible. The perhaps most often used example of a
proper branching-time property is “in all futures always, there is a future where
eventually ϕ holds”. Theorem 14 says, in bold contradiction with the belief, that
very little is needed to preserve it! By Theorem 12, even more can be preserved
at little extra cost.

Aps set methods that support the standard approach to progress only work
well when no explicit fairness assumptions are needed. Integrating a fairness
assumption into the property makes too many actions visible, and a series
of counter-examples presented in the hopefully forthcoming journal versions
of [16,19] makes fairness-preserving aps set methods seem a distant goal. As
a consequence, the method in [20] and this section is perhaps the first aps set
method that can, in a useful sense, verify progress properties whose standard
treatment needs fairness assumptions.

It is perhaps worth mentioning also that there are no congruences strictly
between fair testing and trace equivalences [18].

7 Automata-Theoretic Visibility

In this section we discuss an alternative to the standard notion of visibility that
introduces fewer “�s”-pairs and thus facilitates better reduction results. The
results of this section are adapted from [6].

In automata-theoretic model checking, the system under verification is put
in parallel with an automaton that keeps track of some information on the exe-
cuted sequence of actions, and eventually accepts or rejects the sequence. In
this section, we apply this idea to safety properties, that is, properties whose
counter-examples are finite sequences of actions.

So we assume that in addition to the system, the verification model contains
an automaton (Q,Vis,Λ, q̂, F ), where Λ ⊆ (Q \ F ) ×Vis× Q, q̂ ∈ Q, and F ⊆ Q.
Its acceptance condition is the same as with finite automata (and not the same as
with Büchi automata). It synchronizes with every visible action of the system.
(We will later see that it could equally well synchronize with every action.)
Transitions out from acceptance states are banned, because they are irrelevant
for the verification criterion mentioned below.

Let q ∈ Q and σ ∈ Vis∗. We say that σ is accepted in q if and only if there
is a path from q to some q′ ∈ F such that its sequence of actions is σ. The goal
of the verification is to find out whether the system can execute any sequence
of visible actions that is accepted in q̂. For that purpose, a reduced LTS of the



264 A. Valmari

parallel composition of the system and the automaton is constructed. Its states
are elements of S1 × · · · × SN × Q and its initial state is (ŝ1, . . . , ŝN , q̂). For
brevity, we write them as S × Q and (ŝ, q̂). It has a transition from (s, q) to
(s′, q′) if and only if T ((s, q)) contains an enabled action a such that s −a→f s′

and either a ∈ Vis and (q, a, q′) ∈ Λ, or a ∈ Inv and q′ = q.
Even without stubborn sets, the use of an automaton reduces LTS size in two

ways. First, it facilitates on-the-fly verification: when an accepting path has been
found, the construction of the LTS can be stopped, potentially saving a huge
number of states (but only if the system is incorrect). Second, it makes it easy to
avoid constructing many states that are certainly irrelevant for the verification
question. For instance, assume that we are checking “if the first visible action is
a, then the second visible action is b and the third is c”. If a trace begins with b
or c, then it cannot lead to a violation of the property. The construction of such
traces can be prevented simply by not having any transition of the form (q̂, b, q′)
or (q̂, c, q′) in Λ.

On the other hand, the approach may also make the number of states grow,
because the same state s of the system may occur in two reachable states (s, q1)
and (s, q2) of the parallel composition. In practice, this has not been a significant
problem.

The goal of this section is to obtain a third kind of improvement: the condition
V can be replaced by two strictly weaker conditions, yielding smaller stubborn
sets and better LTS reduction. The method works with every solution to the
ignoring problem that has been presented in this publication. In this section, we
use a variant of the S condition. The computation of stubborn sets obeys D1
and D2b on the system, and the following three conditions that also consider
the automaton:

V1 If a ∈ T ((s0, q0)) ∩ en(s0) ∩ Vis, ai ∈ Vis \ T ((s0, q0)) for 1 ≤ i ≤ n,
σ ∈ Vis∗, and a1 · · · anaσ is accepted at q0, then also some prefix of aa1 · · · anσ
is accepted at q0.

V2 If a ∈ T ((s0, q0)) ∩ en(s0) ∩ Vis, ai ∈ Vis \ T ((s0, q0)) for 1 ≤ i ≤ n, and
a1 · · · an is accepted at q0, then also some prefix of aa1 · · · an is accepted at
q0.

SA From each r-reachable (s′′, q′′) there is an r-path to some (s′, q′) that has a
set A ⊆ Acts such that
1. every σ that is accepted in q′ contains at least one element of A,
2. if a /∈ en(s′), a ∈ A, a1 /∈ A, . . . , an /∈ A, and s′ −a1 · · · an→f ṡ, then

a /∈ en(ṡ), and
3. for every a ∈ en(s′)∩A, there is an r-path from (s′, q′) to some (s, q) such

that a ∈ T ((s, q)).

V1 has been designed to guarantee that in proofs of theorems, whenever
D1 is applied to a path that yields an accepted sequence of visible actions, also
the resulting path yields an accepted sequence of visible actions. V2 has been
designed to work similarly with D2b, and SA protects against ignoring, similarly
to S. This implies that the proof of Theorem 6 applies with small changes. As a



More Stubborn Set Methods for Process Algebras 265

consequence, the reduced LTS contains a reachable state where the automaton
accepts if and only if the full LTS contains such a state. A similar result holds
for Theorems 10 and 11.

To efficiently construct sets that satisfy V1 and V2, let next(q) be defined
as {a | ∃q′ : (q, a, q′) ∈ Λ}. We let a �(s,q) a1 if and only if a �s a1 or the
following conditions hold:

1. a ∈ en(s) ∩ next(q), and
2. there is a path (q, a1, . . . , an, qn) in the automaton such that qn ∈ F and

there is no path of the form (q, a, q′
0, b1, . . . , bk, q′

k) in the automaton such
that 0 ≤ k ≤ n, q′

k ∈ F , and either
– k < n and i ∈ {1, . . . , k} is the smallest such that ai = a; and b1 = a1,

. . . , bi−1 = ai−1, bi = ai+1, . . . , bk = ak+1, or
– b1 = a1 �= a, . . . , bk = ak �= a.

Condition 2 may look like cheating: it is complicated and has been designed so
that it is obvious that its use implies V1 and V2. However, it is not cheating,
because it only talks about the automaton. There are common situations where it
is easy to see that condition 2 does not hold. They can be exploited to improve
LTS reduction. We will now discuss two.

First, consider the mutual exclusion property, where e1, e2, �1 and �2 model
Clients 1 and 2 entering and leaving the critical section. Consider any accepted
sequence of actions that starts with e2. If e1 is added or moved to its front, the
result starts with e1e2. It violates mutual exclusion and is thus accepted. As a
consequence, for any path (q, a1, . . . , an, qn) where a1 = e2 that satisfies the first
line of condition 2 above, there is a path of the form (q, e1, q

′
0, e2, q

′
1) such that

q′
1 ∈ F . So condition 2 does not hold, and, unlike V, we need not introduce

e1 �(s,q) e2, although both e1 and e2 are visible.
Second, consider the property “after the first occurrence of a, there is no c

until b has occurred”. To not lose such counter-examples as aac, the automaton
must allow more than one a, although only the first a is relevant. This can
be implemented by adding a self-loop (q, a, q) to each q /∈ F after the first
a-transition. If a′

1 · · · a′
n′ is accepted in q, then, by the nature of the property, it

remains accepted if all instances of a are removed from it, resulting in a1 · · · an.
After that, (q, a, q, a1, . . . , an, qn) is a path that makes condition 2 fail. So, unlike
V, no pair of the form a �(s,q) a1 need be added, although a ∈ Vis.

As a matter of fact, the reasoning in this example makes the distinction
between visible and invisible actions unnecessary. If each accepted sequence of
actions remains accepted when i-actions are arbitrarily added to or removed
from it, then treating i as invisible is equivalent to treating i as visible and
having a self-loop (q, i, q) for each q ∈ Q \ F . By the reasoning, no pair of the
form i �(s,q) a1 need be added.

On the other hand, a cannot be made invisible in the example, because
its first occurrence is important. The example illustrates relaxed visibility : an
action becomes unimportant at some point of a counter-example, after which it
is treated as if it were invisible [9].



266 A. Valmari

It is also worth pointing out that the automata are typically small. Therefore,
it is realistic to pre-compute for each q ∈ Q, a ∈ next(q), and b ∈ next(q), whether
condition 2 holds. We leave the development of good algorithms for this purpose
as a research topic for the future.

8 Divergence Traces

In this section we present a new idea for reducing the amount of work involved
in preserving divergence traces. We first discuss earlier methods and their disad-
vantages, then present a theorem underlying the new method, then present the
method itself, briefly discuss its implementation, and finally illustrate it with a
tiny example.

An example in [15] demonstrates that the conditions presented until now
do not suffice for preserving divergence traces. Therefore, a new condition was
presented. We show a slight variant of it.

L If s0 −a1→r s1 −a2→r · · · , then for every a ∈ Vis there is i ∈ N such that
a ∈ T (si).

As a matter of fact, there must be infinitely many such i. This can be seen
by applying the condition to si+1 −ai+2→r · · · .

If an r-state s is an f-deadlock, we can pretend that T (s) = Acts and thus
contains all visible actions. Therefore, D0 and L imply SV.

Let D3 be like D2b, but apply to infinite f-paths s0 −a1a2 · · · →f . We show
now that D0, D1, D3, V, I, and L guarantee that all divergence traces are
preserved. If a first ai ∈ T (s0) exists, D1 moves it to the front. If ai ∈ Vis,
then a1, . . . , ai−1 are invisible by V, so the trace does not change. If ai ∈ Inv,
obviously the trace does not change either. If no ai is in T (s0), then either
D0 and V (if a1 ∈ Vis) or I (if a1 ∈ Inv) guarantee that T (s0) contains an
enabled invisible a. D3 yields s0 −a→r s′

0 −a1a2 · · ·→f , which does not change
the trace. Infinite repetition of this reasoning implies the existence of an infinite
r-path s0 = s0 −b1→r s1 −b2→r · · · whose trace Vis(b1b2 · · · ) is a prefix of
Vis(a1a2 · · · ). To derive a contradiction, assume that it is a proper prefix, that
is, there is v ∈ N such that av ∈ Vis and Vis(b1b2 · · · ) = Vis(a1 · · · av−1). By
L, av ∈ T (sj) for infinitely many j. For each such j, D1 moves ai to the front
for some i ∈ {1, . . . , v}. But this can happen at most v times, so we have a
contradiction.

If Sr is finite, then D3 follows from D2b, and L is equivalent to the claim
that for every visible a, every cycle in the reduced LTS has a state s such that
a ∈ T (s). In [1], this was ensured—in our terminology—by constructing the
reduced LTS in depth-first order and ensuring that when any s −a→r s′ is
constructed, either s′ is not in the depth-first search stack or—in our setting—
Vis ⊆ T (s). (The condition in [1] corresponds to T (s) = Acts. It includes also
the invisible actions and is thus strictly worse than Vis ⊆ T (s). Because the
equivalent of T (s) in [1] cannot contain disabled actions, Vis ⊆ T (s) cannot be
formulated naturally in the formalism of [1].)



More Stubborn Set Methods for Process Algebras 267

In [2, Fig. 4] it was pointed out that this condition works badly on a variant
of the dining philosophers’ system. In [19] it was demonstrated that in the case
of cyclic non-interacting LTSs, the condition may lead to the construction of
all reachable states. Intuition and both examples suggest that it is better to
ensure Vis ⊆ T (s′) instead. Unfortunately, it is not known whether this is the
case more generally. L allows distributing the a ∈ Vis to the stubborn sets of
all states in the cycle. However, the cycle detection condition does not justify
the use of other states than s and s′, because in addition to the detected cycle
s′ −a1→r s1 −a2→r · · · −an→r s −a→r s′ there may be another cycle s′ −b1→r

z1 −b2→r · · · −bm→r s −a→r s′ such that it is not detected separately and none
of s1, . . . , sn−1 is in it. Examples of this are easy to construct. This observation
makes it reasonable to ask: is it certain that both the use of s and the use of s′

are correct. By the following lemma, it is.

Lemma 15. Consider a directed graph and depth-first search that starts in its
vertex v0. Any cycle that is reachable from v0 contains an edge (v, v′) such that
when the search investigates the edge, v′ is in depth-first search stack.

Proof. Let v be the first state in the cycle that the search backtracks from, and
let (v, v′) be the edge in the cycle that starts at v. (If there are more than one
such edge, any can be chosen.) At the time when the search backtracks from v, it
has investigated all edges that start at v, including (v, v′). So v′ is not unfound.
It has not already been backtracked from, because otherwise v would not be the
first. The only remaining possibility is that it is in the depth-first search stack. �

Fig. 2. An example with Vis = {a, b, c} and Inv = {τ1, τ3}

That Vis ⊆ T (s′) holds can be ensured by replacing the original stubborn set
T (s′) with T (s′) ∪ cls(s′,Vis).

The example in Fig. 2 has the divergence traces ε, b, ba, and infinitely many
others. Assume that a reduced LTS is obtained with the method described above.
To represent both ε, a, and ba, it must contain at least three instances of the
τ1 τ1-cycle, one where L̄2 stays in state 1, one where L̄2 stays in state 2, and one
where L̄2 stays in state 3. We now develop a new method where one τ1 τ1-cycle
suffices. Let ens(s0, . . . , sm−1) be defined as

⋃m−1
j=0

(T (sj) ∩ en(sj)
)
.

Theorem 16. Assume that the reduced LTS obeys D1 and D2rb. Assume fur-
ther that s0 −b1→r s1 −b2→r · · · −bm→r s0, where b1, . . . , bm are invisible. If
s0 −a1 · · · an→f s′

0 where {a1, . . . , an} ∩ ens(s0, . . . , sm−1) = ∅, then s′
0 − τω →f .



268 A. Valmari

Proof. Let j mod m = j − m�j/m�. For j ≥ m, let sj = sj mod m and bj+1 =
b(j mod m)+1. We prove by induction that for j ∈ N there are s′

j such that
sj −a1 · · · an→f s′

j and, if j > 0, we also have s′
j−1 −bj→f s′

j .
The case j = 0 is given in the assumptions. We now prove the induction

step from j to j + 1. If any of a1, . . . , an is in T (sj), then by D1 and the
induction assumption, ai ∈ en(sj), where i is the smallest such that ai ∈ T (sj).
So ai ∈ T (sj mod m) ∩ en(sj mod m). Because this contradicts the assumptions of
the theorem, we conclude that {a1, . . . , an} ∩ T (sj) = ∅. Now D2rb yields an
s′

j+1 such that sj+1 −a1 · · · an→f s′
j+1 and s′

j −bj+1→f s′
j+1.

So s′
0 −b1→f s′

1 −b2→f · · · . Because b1, b2, . . . are invisible, we have
s′
0 − τω →f . �

This theorem justifies the following method for reducing the work involved
in preserving divergence traces. The condition DV0 in the method is explained
later in this section. Until then, please assume that D0 is used instead.

The method does not try to exploit the theorem in all possible situations;
it only exploits it when it is easy. Information on the divergence caused by
s0 −b1→r · · · −bm→r s0 is propagated when actions outside ens(s0, . . . , sm−1)
occur, and dropped when inside actions occur. If s′

0 −a2→r s′′
0 has already

been constructed when s0 −a1→r s′
0 is constructed, then it may be that the

information never reaches s′′
0 . Fortunately, this does not mean that the method

gives wrong answers; it only means that the savings are not obtained. If the
information never reaches s′′

0 , then I is applied in it in the usual way, leading to
the detection of a divergence.

Method 17. The reduced LTS construction obeys depth-first order, DV0, D1,
D2rb, V, and L, with the following additional activity. Each r-state has an
initially empty associated set of sets of actions. These sets of actions are called
div-sets. They are maintained as follows during the reduced LTS construction:

1. Whenever a cycle s0 −b1→r s1 −b1→r · · · −bm→r s0 is detected where
b1, . . . , bm are invisible, then ens(s0, . . . , sm−1) is added to each r-state of
the cycle.

2. Whenever an r-transition s −a→r s′ is constructed, those div-sets of s are
copied to s′ that do not contain a.

For each r-state s, when the algorithm is about to backtrack from it, the algorithm
checks whether it has any div-set. If it has none, then, before backtracking, the
algorithm ensures that I is obeyed (this may imply extending T (s), obtaining new
r-states, and entering them). If it has any, then the algorithm adds s − τ →r s
before backtracking.

To maximize the benefit, it seems reasonable to try to avoid firing enabled
actions in the div-sets. The use of Method 4 automatically disfavours some of
them. It may be possible to improve the results by modifying the order in which
the starting points of the gsc-algorithm are chosen. This idea has not yet been
studied.



More Stubborn Set Methods for Process Algebras 269

We will soon see an example where the algorithm enters an r-state s0 such
that it inherits a div-set and cls(s0,Vis) contains no enabled actions. In such a
situation, no visible action can become enabled, and it is already known that s0

diverges. Therefore, no new information on traces or divergence traces can be
obtained by continuing the analysis from s0. To exploit this, we replace D0 by
a condition that only differs from D0 by allowing T (s0) to not contain enabled
actions in such a situation.

DV0 If cls(s0,Vis) ∩ en(s0) �= ∅, then T (s0) ∩ en(s0) �= ∅.

An abstract version of the condition could be formulated using the formula-
tion of S as a model. However, the concrete version shown above is much simpler,
so we chose to present it instead.

Let V (s) = en(s) ∩ Vis. In r-states with div-sets, DV0 may be implemented
by trying gsc(s0, v, ∅, V (s)) for each v ∈ Vis and then cls(s0,Vis), similarly to
Sect. 4. In r-states without div-sets, after trying the last gsc(s0, v, ∅, V (s)) in
vain, it is reasonable to try gsc(s0, c, ∅, V (s)) for each enabled invisible c. This
is because I forces to take an enabled invisible action if there are any. (Trying
gsc(s0, c, ∅, V (s)) may yield enabled actions that are all outside cls(s0,Vis), but
this is correct, because DV0 does not require that T (s0)∩ cls(s0,Vis)∩ en(s0) �=
∅.) If also these attempts are unsuccessful, cls(s0,Vis) is computed. If it violates
I, gsc(s0, c, cls(s0,Vis), ∅) is computed for an arbitrary enabled invisible c, and
the result is added to the stubborn set.

When L forces to extend the stubborn set of s0, cls(s0,Vis) is used.
Because many r-states are likely to share div-sets, it is reasonable to store

the div-sets outside the r-states and only have a list of pointers to them in each
r-state. Because implementing a single pointer is simpler than implementing a
list of pointers, and because it is not known whether more than one div-set on
an r-state brings significant additional benefit, it may also be reasonable to only
implement a single pointer.

Consider Method 17 on the example in Fig. 2. It first constructs 111 − τ3 →r

112, because gsc(111, x, ∅, en(s) ∩ Vis) yields {τ3} for any x ∈ {a, b, c}. Then it
constructs 112 − τ1 →r 212 − τ1 →r 112, because gsc fails with visible actions
and τ3, but succeeds with τ1. The method detects that this is a divergence
cycle, and thus adds the div-set {τ1} to 112 and 212. From then on, all new
r-states get the same div-set, because there is no “�s”-path from a, b, or c to
τ1 in any state, and I is no longer obeyed thanks to the existence of a div-set
in the state. Furthermore, because of 112 −c→f 111, also ŝ = 111 inherits a
div-set. Therefore, unlike with the old method, altogether only one τ1 τ1-cycle is
constructed.

9 Conclusions

We discussed many recent or new stubborn set methods for process-algebraic
verification that address in particular, but not only, problems related to earlier



270 A. Valmari

solutions to the ignoring problem. The methods in Sects. 5 to 7 have been exper-
imented with a bit with good results, using the ASSET tool [17]. The models
were always may-terminating, to avoid the need of the S condition that ASSET
does not implement. To get wider experimental results, a proper implementa-
tion of each method would be needed. This means that the research on better
solutions to the ignoring problem is progressing well, but not yet ready.

References

1. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(1999). 314 pages

2. Evangelista, S., Pajault, C.: Solving the ignoring problem for partial order reduc-
tion. Softw. Tools Technol. Transfer 12(2), 155–170 (2010)

3. Eve, J., Kurki-Suonio, R.: On computing the transitive closure of a relation. Acta
Informatica 8(4), 303–314 (1977)

4. Gerth, R., Kuiper, R., Peled, D., Penczek, W.: A partial order approach to branch-
ing time logic model checking. In: Proceedings of Third Israel Symposium on the
Theory of Computing and Systems, pp. 130–139. IEEE (1995)

5. Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems:
An Approach to the State-Explosion Problem. LNCS, vol. 1032. Springer, Heidel-
berg (1996)

6. Hansen, H., Valmari, A.: Safety property-driven stubborn sets. In: Larsen, K.G.,
Potapov, I., Srba, J. (eds.) RP 2016. LNCS, vol. 9899, pp. 90–103. Springer, Hei-
delberg (2016). doi:10.1007/978-3-319-45994-3 7

7. Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs
(1989)

8. Peled, D.: Partial order reduction: linear and branching temporal logics and process
algebras. In: Peled, D., Pratt, V., Holzmann, G. (eds.) Proceedings of a DIMACS
Workshop on Partial Order Methods in Verification. DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, vol. 29, pp. 233–257. American
Mathematical Society (1997)

9. Peled, D., Valmari, A., Kokkarinen, I.: Relaxed visibility enhances partial order
reduction. Formal Meth. Syst. Des. 19, 275–289 (2001)

10. Rensink, A., Vogler, W.: Fair testing. Inf. Comput. 205(2), 125–198 (2007)
11. Roscoe, A.W.: Understanding Concurrent Systems. Springer, Heidelberg (2010)
12. Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM J. Comput.

1(2), 146–160 (1972)
13. Valmari, A.: Error detection by reduced reachability graph generation. In: Pro-

ceedings of the 9th European Workshop on Application and Theory of Petri Nets,
pp. 95–122 (1988)

14. Valmari, A.: Alleviating state explosion during verification of behavioural equiva-
lence. Department of Computer Science, University of Helsinki, Report A-1992-4,
Helsinki, Finland (1992). 57 pages

15. Valmari, A.: Stubborn set methods for process algebras. In: Peled, D., Pratt, V.,
Holzmann, G. (eds.) Proceedings of a DIMACS Workshop on Partial Order Meth-
ods in Verification. DIMACS Series in Discrete Mathematics and Theoretical Com-
puter Science, vol. 29, pp. 213–231. American Mathematical Society (1997)

16. Valmari, A.: Stop it, and be stubborn! In: Haar, S., Meyer, R. (eds.) 15th Inter-
national Conference on Application of Concurrency to System Design, pp. 10–19.
IEEE Computer Society (2015). doi:10.1109/ACSD.2015.14

http://dx.doi.org/10.1007/978-3-319-45994-3_7
http://dx.doi.org/10.1109/ACSD.2015.14


More Stubborn Set Methods for Process Algebras 271

17. Valmari, A.: A state space tool for concurrent system models expressed in C++.
In: Nummenmaa, J., Sievi-Korte, O., Mäkinen, E. (eds.) SPLST 2015, Symposium
on Programming Languages and Software Tools. CEUR Workshop Proceedings,
vol. 1525, pp. 91–105 (2015)

18. Valmari, A.: The congruences below fair testing with initial stability. In: Desel, J.,
Yakovlev, A. (eds.) 16th International Conference on Application of Concurrency
to System Design (The proceedings to officially appear when IEEE Computer
Society condescends to publish it. Based on earlier experience, it may take more
than half a year)

19. Valmari, A., Hansen, H.: Stubborn set intuition explained. In: Cabac, L., Kris-
tensen, L.M., Rölke, H. (eds.) Proceedings of the International Workshop on Petri
Nets and Software Engineering 2016. CEUR Workshop Proceedings, vol. 1591, pp.
213–232 (2016)

20. Valmari, A., Vogler, W.: Fair testing and stubborn sets. In: Bošnački, D., Wijs, A.
(eds.) SPIN 2016. LNCS, vol. 9641, pp. 225–243. Springer International Publishing,
Cham (2016). doi:10.1007/978-3-319-32582-8 16

http://dx.doi.org/10.1007/978-3-319-32582-8_16


A Branching Time Model of CSP

Rob van Glabbeek1,2(B)

1 Data61, CSIRO, Sydney, Australia
2 Computer Science and Engineering,

University of New South Wales, Sydney, Australia
rvg@unsw.edu.au

Abstract. I present a branching time model of CSP that is finer than
all other models of CSP proposed thus far. It is obtained by taking a
semantic equivalence from the linear time – branching time spectrum,
namely divergence-preserving coupled similarity, and showing that it is
a congruence for the operators of CSP. This equivalence belongs to the
bisimulation family of semantic equivalences, in the sense that on transi-
tion systems without internal actions it coincides with strong bisimilarity.
Nevertheless, enough of the equational laws of CSP remain to obtain a
complete axiomatisation for closed, recursion-free terms.

1 Introduction

The process algebra CSP—Communicating Sequential Processes—was presented
in Brookes, Hoare & Roscoe [4]. It is sometimes called theoretical CSP, to
distinguish it from the earlier language CSP of Hoare [10]. It is equipped with a
denotational semantics, mapping each CSP process to an element of the failures-
divergences model [4,5]. The same semantics can also be presented operationally,
by mapping CSP processes to states in a labelled transition system (LTS), and
then mapping LTSs to the failures-divergences model. Olderog & Hoare [13]
shows that this yields the same result. Hence, the failures-divergences model of
CSP can alternatively be seen as a semantic equivalence on LTSs, namely by
calling two states in an LTS equivalent iff they map to the same element of the
failures-divergences model.

Several other models of CSP are presented in the literature, and each can be
cast as a semantic equivalence on LTSs, which is a congruence for the operators
of CSP. One such model is called finer than another if its associated equivalence
relation is finer, i.e., included in the other one, or more discriminating. The
resulting hierarchy of models of CSP has two pillars: the divergence-strict models,
most of which refine the standard failures-divergences model, and the stable
models, such as the model based on stable failures equivalence from Bergstra,
Klop & Olderog [2], or the stable revivals model of Roscoe [16].

Here I present a new model, which can be seen as the first branching time
model of CSP, and the first that refines all earlier models, i.e. both pillars men-
tioned above. It is based on the notion of coupled similarity from Parrow &
Sjödin [14]. What makes it an interesting model of CSP—as opposed to, say,
c© Springer International Publishing AG 2017
T. Gibson-Robinson et al. (Eds.): Roscoe Festschrift, LNCS 10160, pp. 272–293, 2017.
DOI: 10.1007/978-3-319-51046-0 14



A Branching Time Model of CSP 273

strong or divergence-preserving weak bisimilarity—is that it allows a complete
equational axiomatisation for closed recursion-free CSP processes that fits within
the existing syntax of that language.

2 CSP

CSP [4,5,11] is parametrised with a set Σ of communications. In this paper I
use the subset of CSP given by the following grammar.

P,Q : := STOP | div | a → P | P � Q | P � Q | P � Q |
P‖AQ | P\A | f(P ) | P � Q | P ΘA Q | p | μp.P

Here P and Q are CSP expressions, a ∈ Σ, A ⊆ Σ and f : Σ → Σ. Furthermore,
p ranges over a set of process identifiers. A CSP process is a CSP expression in
which each occurrence of a process identifier p lays within a recursion construct
μp.P . The operators in the above grammar are inaction, divergence, action pre-
fixing, internal, external and sliding choice, parallel composition, concealment,
renaming, interrupt and throw. Compared to [15,17], this leaves out

– successful termination (SKIP) and sequential composition (;),
– infinitary guarded choice,
– prefixing operators with name binding, conditional choice,
– relational renaming, and
– the version of internal choice that takes a possibly infinite set of arguments.

The operators STOP , a →, �,�, \A, f( ) and recursion stem from [4], and div
and ‖A from [13], whereas �,� and ΘA were added to CSP by Roscoe [15,17].
The operational semantics of CSP is given by the binary transition relations

α−→ between CSP processes. The transitions P
α−→ Q are derived by the rules in

Table 1. Here a, b range over Σ and α, β over Σ
.∪ {τ}, and relabelling operators

f are extended to Σ
.∪ {τ} by f(τ) = τ . The transition labels α are called

actions, and τ is the internal action.

3 The Failures-Divergences Model of CSP

The process algebra CSP stems from Brookes, Hoare & Roscoe [4]. It is also
called theoretical CSP, to distinguish it from the language CSP of Hoare [10].
Its semantics [5] associates to each CSP process a pair 〈F,D〉 of failures F ⊆
Σ∗ × P(Σ) and divergences D ⊆ Σ∗, subject to the conditions:

(ε, ∅) ∈ F (N1)
(st, ∅) ∈ F ⇒ (s, ∅) ∈ F (N2)
(s,X) ∈ F ∧ Y ⊆ X ⇒ (s, Y ) ∈ F (N3)
(s,X) ∈ F ∧ ∀ c ∈ Y. (sc, ∅) /∈ F ⇒ (s,X ∪ Y ) ∈ F (N4)
∀ Y ∈ Pfin(X). (s, Y ) ∈ F ⇒ (s,X) ∈ F (N5)
s ∈ D ⇒ st ∈ D (D1)
s ∈ D ⇒ (st,X). (D2)



274 R. van Glabbeek

Table 1. Structural operational semantics of CSP

Here ε ∈ Σ∗ is the empty sequence of communications and st denotes the con-
catenation of sequences s and t ∈ Σ∗. If 〈F,D〉 is the semantics of a process P ,
(s, ∅) ∈ F , with s �∈ D, tells that P can perform the sequence of communications
s, possibly interspersed with internal actions. Such a sequence is called a trace
of P , and Conditions N1 and N2 say that the set of traces of any processes is
non-empty and prefix-closed. A failure (s,X) ∈ F , with s /∈ D, says that after
performing the trace s, P may reach a state in which it can perform none of the
actions in X, nor the internal action. A communication x ∈ Σ is thought to occur
in cooperation between a process and its environment. Thus (s,X) ∈ F indicates
that deadlock can occur if after performing s the process runs in an environment
that allows the execution of actions in X only. From this perspective, Conditions
N3 and N4 are obvious.

A divergence s ∈ D is a trace after which an infinite sequence of inter-
nal actions is possible. In the failures-divergences model of CSP divergence is
regarded catastrophic: all further information about the process’ behaviour past
a divergence trace is erased. This is accomplished by flooding : all conceivable
failures (st,X) and divergences st that have s as a prefix are added to the model
(regardless whether P actually has a trace st).

A CSP process P from the syntax of Sect. 2 has the property that for any
trace s of P , with s /∈ D, the set next(s) of actions c such that sc is also a trace
of P is finite. By (N3–4), (s,X) ∈ F iff (s,X ∩ next(s)) ∈ F . It follows that if
(s,X) /∈ F , then there is a finite subset Y of X, namely X ∩ next(s), such that
(s, Y ) /∈ F . This explains Condition (N5).

In Brookes & Roscoe [5] the semantics of CSP is defined denotationally:
for each n-ary CSP operator Op, a function is defined that extracts the failures
and divergences of Op(P1, . . . , Pn) out of the failures and divergences of the



A Branching Time Model of CSP 275

argument processes P1, . . . , Pn. The meaning of a recursively defined CSP process
μp.P is obtained by means of fixed-point theory. Alternatively, the failures and
divergences of a CSP process can be extracted from its operational semantics:

Definition 1. Write P =⇒ Q if there are processes P0, . . . , Pn, with n ≥ 0, such
that P = P0, Pi

τ−→ Pi+1 for all 0 ≤ i < n, and Pn = Q.
Write P

α=⇒ Q if there are processes P ′, Q′ with P =⇒ P ′ α−→ Q′ =⇒ Q.
Write P

α̂=⇒ Q if either α ∈ Σ and P
α=⇒ Q, or α = τ and P =⇒ Q.

Write P
s=⇒ Q, for s = a1a2 . . . an ∈ Σ∗ with n ≥ 0, if there are processes

P0, . . . , Pn such that P = P0, Pi
ai=⇒ Pi+1 for all 0 ≤ i < n, and Pn = Q.

Let I(P ) = {α ∈ Σ ∪ {τ} | ∃Q.P
α−→ Q}.

Write P⇑ if there are processes Pi for all i≥0 with P
s=⇒ P0

τ−→ P1
τ−→ . . . .

s ∈ Σ∗ is a divergence trace of a process P if there is a Q with P
s=⇒ Q⇑.

The divergence set of P is D(P ) := {st | s is a divergence trace of P}.
A stable failure of a process P is a pair (s,X) ∈ Σ∗ × P(Σ) such that

P
s=⇒ Q for some Q with I(Q) ∩ (X ∪ {τ}) = ∅. The failure set of a process P

is F (p) = {(s,X) | s ∈ D(P ) or (s,X) is a stable failure ofP}.
The semantics [[P ]]FD of a CSP process P is the pair 〈F (P ),D(P )〉.
Processes P and Q are failures-divergences equivalent, notation P ≡FD Q, iff

[[P ]]FD = [[Q]]FD . Process P is a failures-divergences refinement of Q, notation
P �FD Q, iff F (P ) ⊆ F (Q) ∧ D(P ) ⊆ D(Q).

The operational semantics of Sect. 2 (then without the operators �, � and ΘA)
appears, for instance, in [13], and was created after the denotational semantics.
In Olderog & Hoare [13] it is shown that the semantics [[P ]] of a CSP process
defined operationally through Definition 1 equals the denotational semantics
given in [5]. The argument extends smoothly to the new operators �, � and ΘA

[17]. This can be seen as a justification of the operational semantics of Sect. 2.
In Brookes, Hoare & Roscoe [4] a denotational semantics of CSP was

given involving failures only. Divergences were included only implicitly, namely
by thinking of a trace s as a divergence of a process P iff P has all failures
(st,X). So the semantics of div or μX.X is simply the set of all failure pairs.
As observed in De Nicola [6], this approach invalidates a number of intuitively
valid laws, such as P � div = div. The improved semantics of [5] solves this
problem.

In Hoare [11] a slightly different semantics of CSP is given, in which a
process is determined by its failures, divergences, as well as its alphabet. The
latter is a superset of the set of communications the process can ever perform.
Rather than a parallel composition ‖A for each set of synchronising actions
A ⊆ Σ, this approach has an operator ‖ where the set of synchronising actions
is taken to be the intersection of the alphabets of its arguments. Additionally,
there is an operator |||, corresponding to ‖∅. This approach is equally expressive
as the one of [5], in the sense that there are semantics preserving translations in
both directions. The work reported in this paper could just as well have been
carried out in this typed version of CSP.



276 R. van Glabbeek

4 A Complete Axiomatisation

In [4–6,11,15,17] many algebraic laws P = Q, resp. P � Q, are stated that are
valid w.r.t. the failures-divergences semantics of CSP, meaning that P ≡FD Q,
resp. P �FD Q. If Th is a collection of equational laws P = Q then Th � R = S
denotes that the equation R = S is derivable from the equations in Th using
reflexivity, symmetry, transitivity and the rule of congruence, saying that if Op
is an n-ary CSP operator and Pi = Qi for i = 1, . . . , n then Op(P1, . . . , Pn) =
Op(Q1, . . . , Qn). Likewise, if Th is a collection of inequational laws P � Q then
Th � R � S denotes that the inequation R � S is derivable from the inequations
in Th using reflexivity, transitivity and the rule saying that if Op is an n-ary CSP
operator and Pi � Qi for i = 1, . . . , n then Op(P1, . . . , Pn) � Op(Q1, . . . , Qn).

Definition 2. An equivalence ∼ on process expressions is called a congruence
for an n-ary operator Op if Pi ∼ Qi for i = 1, . . . , n implies Op(P1, . . . , Pn) ∼
Op(Q1, . . . , Qn). A preorder � is a precongruence for Op, or Op is monotone for
�, if Pi � Qi for i = 1, . . . , n implies Op(P1, . . . , Pn) � Op(Q1, . . . , Qn).

If ∼ is a congruence for all operators of CSP (resp. � is a precongruence for all
operators of CSP) and Th is a set of (in)equational laws that are valid for ∼
(resp. �) then any (in)equation R = S with Th � R = S (resp. R � S with
Th � R � S) is valid for ∼ (resp. �).

≡FD is a congruence for all operators of CSP. This follows immediately from
the existence of the denotational failures-divergences semantics. Likewise, �FD

is a precongruence for all operators of CSP [4–6,11,13,15,17].

Definition 3. A set Th of (in)equational laws—an axiomatisation—is sound
and complete for an equivalence ∼ (or a preorder �) if Th � R = S iff R ∼ S
(resp. Th � R � S iff R � S). Here “⇒” is soundness and “⇐” completeness.

In De Nicola [6] a sound and complete axiomatisation of �FD for recursion-free
CSP, and no process identifiers or variables, is presented. It is quoted in Table 2.
As this axiomatisation consist of a mix of equations and inequations, formally
it is an inequational axiomatisation, where an equation P = Q is understood as
the conjunction of P � Q and Q � P . This mixed use is justified because ≡FD

is the kernel of �FD: one has P ≡FD Q iff P �FD Q ∧ Q �FD P .
In [6], following [4,5], two parallel composition operators ‖ and ||| were con-

sidered, instead of the parametrised operator ‖A. Here ‖ = ‖Σ and |||= ‖∅. In
Table 2 the axioms for these two operators are unified into an axiomatisation
of ‖A. Additionally, I added axioms for sliding choice, renaming, interrupt and
throw—these operators were not considered in [6]. The associativity of parallel
composition (Axiom P0) is not included in [6] and is not needed for complete-
ness. I added it anyway, because of its importance in equational reasoning.

The soundness of the axiomatisation of Table 2 follows from �FD being a pre-
congruence, and the validity of the axioms—a fairly easy inspection using the
denotational characterisation of [[ ]]. To obtain completeness, write �

i∈I
Pi, with



A Branching Time Model of CSP 277

Table 2. A complete axiomatisation of �FD for recursion-free CSP



278 R. van Glabbeek

I ={i1, . . . , in} any finite index set, for Pi1 �Pi2 � . . .�Pin , where �
i∈∅ Pi repre-

sents STOP . This notation is justified by Axioms E2–4. Furthermore, �
j∈J

Pj ,
with J ={j1, .., jm} any finite, nonempty index set, denotes Pj1 �Pj2 � . . .�Pjm .
This notation is justified by Axioms I2 and I3. Now a normal form is a defined as
a CSP expression of the form div or �

j∈J
Rj , with Rj =

(
�

k∈Kj
(akj → Rkj)

)

for j ∈ J , where the subexpressions Rkj are again in normal form. Here J and
the Kj are finite index sets, J nonempty.

Axioms ⊥ and I4 derive P � div = div. Together with Axioms D1, SC,
P1–4, H1–4, R1–5, T1–6 and U1–5 this allows any recursion-free CSP expres-
sion to be rewritten into normal form. In [6] it is shown that for any two nor-
mal forms P and Q with P �FD Q, Axioms ⊥, I1–4, E1–5 and D1–4 derive
� P = Q. Together, this yields the completeness of the axiomatisation of Table 2.

5 Other Models of CSP

Several alternative models of CSP have been proposed in the literature, includ-
ing the readiness-divergences model of Olderog & Hoare [13] and the sta-
ble revivals model of Roscoe [16]. A hierarchy of such models is surveyed in
Roscoe [17]. Each of these models corresponds with a preorder (and associated
semantic equivalence) on labelled transition systems. In [7] I presented a survey
of semantic equivalences and preorders on labelled transition systems, ordered
by inclusion in a lattice. Each model occurring in [17] correspond exactly with
with one of the equivalences of [7], or—like the stable revivals model—arises as
the meet or join of two such equivalences.

In the other direction, not every semantic equivalence or preorder from [7]
yields a sensible model of CSP. First of all, one would want to ensure that it
is a (pre)congruence for the operators of CSP. Additionally, one might impose
sanity requirements on the treatment of recursion.

The hierarchy of models in [17] roughly consist of two hierarchies: the stable
models, and the divergence-strict ones. The failures-divergences model could be
seen as the centre piece in the divergence-strict hierarchy, and the stable failures
model [15], which outside CSP stems from Bergstra, Klop & Olderog [2],
plays the same role in the stable hierarchy. Each of these hierarchies has a maxi-
mal (least discriminating) element, called FL⇓ and FL in [17]. These correspond
to the ready trace models RT ↓ and RT of [7].

The goal of the present paper is to propose a sensible model of CSP that
is strictly finer than all models thus far considered, and thus unites the two
hierarchies mentioned above. As all models of CSP considered so far have a
distinctly linear time flavour, I here propose a branching time model, thereby
showing that the syntax of CSP is not predisposed towards linear time models.
My model can be given as an equivalence relation on labelled transition system,
provided I show that it is a congruence for the operators of CSP. I aim for
an equivalence that allows a complete axiomatisation in the style of Table 2,
obtained by replacing axioms that are no longer valid by weaker ones.



A Branching Time Model of CSP 279

One choice could be to base a model on strong bisimulation equivalence [12].
Strong bisimilarity is a congruence for all CSP operators, because their opera-
tional semantics fits the tyft/tyxt format of [9]. However, this is an unsuitable
equivalence for CSP, because it fails to abstract from internal actions. Even the
axiom I1 would not be valid, as the two sides differ by an internal action.

A second proposal could be based on weak bisimilarity [12]. This equivalence
abstracts from internal activity, and validates I1. The default incarnation of weak
bisimilarity is not finer than failures-divergences equivalence, because it satisfies
div = STOP . Therefore, one would take a divergence-preserving variant of this
notion: the weak bisimulation with explicit divergence of Bergstra, Klop &
Olderog [2]. Yet, some crucial CSP laws are invalidated, such as I3 and D1.
This destroys any hope of a complete axiomatisation along the lines of Table 2.

My final choice is divergence-preserving coupled similarity [7], based on cou-
pled similarity for divergence-free processes from Parrow & Sjödin [14]. This
is the finest equivalence in [7] that satisfies I3 and D1. In fact, it satisfies all of
the axioms of Table 2, except for the ones marked red: ⊥, I4, E1, E5, D2–4,
SC, P2, P3, H2, U2, U3 and U5.

Divergence-preserving coupled similarity belongs to the bisimulation family
of semantic equivalences, in the sense that on transition systems without internal
actions it coincides with strong bisimilarity.

In Sect. 6 I present divergence-preserving coupled similarity. In Sect. 7 I prove
that it is a congruence for the operators of CSP, and in Sect. 8 I present a
complete axiomatisation for recursion-free CSP processes without interrupts.

6 Divergence-Preserving Coupled Similarity

Definition 4. A coupled simulation is a binary relation R on CSP processes,
such that, for all α ∈ Σ ∪ {τ},

– if P R Q and P
α−→ P ′ then there exists a Q′ with Q

α̂=⇒ Q′ and P ′ R Q′,
– and if P R Q then there exists a Q′ with Q =⇒ Q′ and Q′ R P .

It is divergence-preserving if P R Q and P⇑ implies Q⇑. Write P �Δ
CS Q if there

exists a divergence-preserving coupled simulation R with P R Q. Two processes
P and Q are divergence-preserving coupled similar, notation P ≡Δ

CS Q, if P �Δ
CS

Q and Q �Δ
CS P .

Note that the union of any collection of divergence-preserving coupled simu-
lations is itself a divergence-preserving coupled simulation. In particular, �Δ

CS

is a divergence-preserving coupled simulation. Also note that in the absence of
the internal action τ , coupled simulations are symmetric, and coupled similarity
coincides with strong bisimilarity (as defined in [12]).

Intuitively, P �Δ
CS Q says that P is “ahead” of a state matching Q, where

P ′ is ahead of P if P =⇒ P ′. The first clause says that if P is ahead of a
state matching Q, then any transition performed by P can be matched by Q—
possibly after Q “caught up” with P by performing some internal transitions.



280 R. van Glabbeek

The second clause says that if P is ahead of Q, then Q can always catch up, so
that it is ahead of P . Thus, if P and Q are in stable states—where no internal
actions are possible—then P �Δ

CS Q implies Q �Δ
CS P . In all other situations,

P and Q do not need to be matched exactly, but there do exists under- and
overapproximations of a match. The result is that the relation behaves like a weak
bisimulation w.r.t. visible actions, but is not so pedantic in matching internal
actions.

Proposition 1. �Δ
CS is reflexive and transitive, and thus a preorder.

Proof. The identity relation Id is a divergence-preserving coupled simulation,
and if R , R ′ are divergence-preserving coupled simulations, then so is R ;
R ′ ∪ R ′ ; R . Here R ; R ′ is defined by P R ; R ′ R iff there is a Q with
P R QR ′R.

R ;R ′ is divergence-preserving: if P R QR ′R and P⇑, then Q⇑, and thus
R⇑. The same holds for R ′ ; R , and thus for R ; R ′ ∪ R ′ ; R .

To check that R ; R ′ ∪ R ′ ; R satisfies the first clause of Definition 4, note
that if QR ′R and Q

α̂=⇒ Q′, then, by repeated application of the first clause of
Definition 4, there is an R′ with R

α̂=⇒ R′ and Q′ R ′R′.
Towards the second clause, if P R QR ′R, then, using the second clause for

R , there is a Q′ with Q =⇒ Q′ and Q′ R P . Hence, using the first clause
for R ′, there is an R′ with R =⇒ R′ and Q′ R ′R′. Thus, using the sec-
ond clause for R ′, there is an R′′ with R′ =⇒ R′′ and R′′ R ′Q′, and hence
R′′ R ′ ; R P ′. ��
Proposition 2. If P =⇒ Q then P �Δ

CS Q.

Proof. I show that Id ∪ {(Q,P )}, with Id the identity relation, is a coupled
simulation. Namely if Q

α−→ Q′ then surely P
α=⇒ Q′. The second clause of Def-

inition 4 is satisfied because P =⇒ Q. Furthermore, if Q⇑ then certainly P⇑, so
the relation is divergence-preserving. ��
Proposition 3. P �Δ

CS Q iff P � Q ≡Δ
CS Q.

Proof. “⇒”: Let R be the smallest relation such that, for any P and Q, P �Δ
CS

Q implies P R Q, (P � Q)R Q and QR (P � Q). It suffices to show that R is
a divergence-preserving coupled simulation.

That R is divergence-preserving is trivial, using that (P � Q)⇑ iff P⇑ ∨ Q⇑.
Suppose P ∗ R Q and P ∗ α−→ P ′. The case that P ∗ = P with P �Δ

CS Q is
trivial. Now let Q be Q∗ � P ∗. Since P ∗ α−→ P ′, surely Q

α=⇒ P ′, and P ′ R P ′.
Finally, let P ∗ = (P � Q) with P �Δ

CS Q. Then α = τ and P ′ is either P or Q.
Both cases are trivial, taking Q′ = Q.

Towards the second clause of Definition 4, suppose P ∗ R Q. The case P ∗ = P
with P �Δ

CS Q is trivial. Now let Q be Q∗ � P ∗. Then Q =⇒ P ∗ and P ∗ R P ∗.
Finally, let P ∗ = (P � Q) with P �Δ

CS Q. Then Q =⇒ Q and QR (P � Q).
“⇐”: Suppose P � Q �Δ

CS Q. Since P � Q
τ−→ P there exists a Q′ with

Q =⇒ Q′ and P �Δ
CS Q′. By Proposition 2 Q′ �Δ

CS Q and by Proposition 1
P �Δ

CS Q. ��



A Branching Time Model of CSP 281

7 Congruence Properties

Proposition 4. ≡Δ
CS is a congruence for action prefixing.

Proof. I have to show that P ≡Δ
CS Q implies (a → P ) ≡Δ

CS (a → Q).
Let R be the smallest relation such that, for any P and Q, P �Δ

CS Q implies
P R Q, and P ≡Δ

CS Q implies (a → P )R (a → Q). It suffices to show that R is
a divergence-preserving coupled simulation.

Checking the conditions of Definition 4 for the case P R Q with P �Δ
CS Q is

trivial. So I examine the case (a → P )R (a → Q) with P ≡Δ
CS Q.

Suppose (a → P ) α−→ P ′. Then α = a and P ′ = P . Now (a → Q) α−→ Q and
P R Q, so the first condition of Definition 4 is satisfied.

For the second condition, (a → Q) =⇒ (a → Q), and, since Q ≡Δ
CS P ,

(a → Q)R (a → P ). Thus, R is a coupled simulation.
As a → P does not diverge, R moreover is divergence-preserving. ��
Since STOP �Δ

CS (a→STOP )�STOP but STOP ��Δ
CS (a→STOP )�STOP ,

and thus b → STOP ��Δ
CS b → (

(a → STOP ) � STOP
)
, the relation �Δ

CS is not
a precongruence for action prefixing.

It is possible to express action prefixing in terms of the throw operator:
a → P is strongly bisimilar with (a → STOP)Θ{a} P . Consequently, �Δ

CS is not
a precongruence for the throw operator.

Proposition 5. ≡Δ
CS is a congruence for the throw operator.

Proof. Let A ⊆ Σ. Let R be the smallest relation such that, for any P1, P2, Q1,
Q2, P1 �Δ

CS Q1 and P2 ≡Δ
CS Q2 implies P1 R Q1 and (P1 ΘA P2)R (Q1 ΘA Q2).

It suffices to show that R is a divergence-preserving coupled simulation.
So let P1 �Δ

CS Q1, P2 ≡Δ
CS Q2 and (P1 ΘA P2)

α−→ P ′. Then P1
α−→ P ′

1

for some P ′
2, and either α /∈ A and P ′ = P ′

1 ΘA P2, or α ∈ A and P ′ = P2.
So there is a Q′

1 with Q1
α̂=⇒ Q′

1 and P ′
1 �Δ

CS Q′
1. If α /∈ A it follows that

(Q1 ΘA Q2)
α̂=⇒ (Q′

1 ΘA Q2) and (P ′
1 ΘA P2)R (Q′

1 ΘA Q2). If α ∈ A it follows
that (Q1 ΘA Q2)

α=⇒ Q2 and P2 R Q2.
Now let P1 �Δ

CS Q1 and P2 ≡Δ
CS Q2. Then there is a Q′

1 with Q1 =⇒ Q′
1 and

Q′
1 �Δ

CS P1. Hence Q1 ΘA Q2 =⇒ Q′
1 ΘA Q2 and (Q′

1 ΘA Q2)R (P1 ΘA P2).
The same two conditions for the case P R Q because P �Δ

CS Q are triv-
ial. Thus R is a coupled simulation. That R is divergence-preserving follows
because P1 ΘA P2⇑ iff P1⇑. ��
I proceed to show that �Δ

CS is a precongruence for all the other operators of
CSP. This implies that ≡Δ

CS is a congruence for all the operators of CSP.

Proposition 6. �Δ
CS is a precongruence for internal choice.

Proof. Let R be the smallest relation such that, for any Pi and Qi, Pi �Δ
CS Qi

for i = 1, 2 implies Pi R Qi (i = 1, 2) and (P1 � P2)R (Q1 � Q2). It suffices to
show that R is a divergence-preserving coupled simulation.



282 R. van Glabbeek

So let Pi �Δ
CS Qi for i = 1, 2 and (P1 � P2)

α−→ P ′. Then α = τ and P ′ = Pi

for i = 1 or 2. Now Q1 � Q2 =⇒ Qi and Pi R Qi.
Now let Pi �Δ

CS Qi for i = 1, 2. Then there is a Q′
1 with Q1 =⇒ Q′

1 and
Q′

1 �Δ
CS P1. By Proposition 2 P1 �Δ

CS P1 � P2 and by Proposition 1 Q′
1 �Δ

CS P1�
P2.

The same two conditions for the case P R Q because P �Δ
CS Q are triv-

ial. Thus R is a coupled simulation. That R is divergence-preserving follows
because P1 � P2⇑ iff P1⇑ ∨ P2⇑. ��
Proposition 7. �Δ

CS is a precongruence for external choice.

Proof. Let R be the smallest relation such that, for any Pi and Qi, Pi �Δ
CS Qi

for i = 1, 2 implies Pi R Qi (i = 1, 2) and (P1 � P2)R (Q1 � Q2). It suffices to
show that R is a divergence-preserving coupled simulation.

So let Pi �Δ
CS Qi for i = 1, 2 and (P1 � P2)

α−→ P ′. If α ∈ Σ then Pi
α−→ P ′

for i = 1 or 2, and there exists a Q′ with Qi
α=⇒ Q′ and P ′ �Δ

CS Q′. Hence
Q1 � Q2

α=⇒ Q′ and P ′ R Q′. If α = τ then either P1
τ−→ P ′

1 for some P ′
1 with

P ′ = P ′
1 � P2, or P2

τ−→ P ′
2 for some P ′

2 with P ′ = P1 � P ′
2. I pursue only the

first case, as the other follows by symmetry. Here Q1 =⇒ Q′
1 for some Q′

1 with
P ′
1 �Δ

CS Q′
1. Thus Q1 � Q2 =⇒ Q′

1 � Q2 and (P ′
1 � P2)R (Q′

1 � Q2).
Now let Pi �Δ

CS Qi for i = 1, 2. Then, for i = 1, 2, there is a Q′
i with Qi =⇒ Q′

i

and Q′
i �Δ

CS Pi. Hence Q1 � Q2 =⇒ Q′
1 � Q′

2 and (Q′
1 � Q′

2)R (P1 � P2).
Thus R is a coupled simulation. That R is divergence-preserving follows

because P1 � P2⇑ iff P1⇑ ∨ P2⇑. ��
Proposition 8. �Δ

CS is a precongruence for sliding choice.

Proof. Let R be the smallest relation such that, for any Pi and Qi, Pi �Δ
CS Qi

for i = 1, 2 implies Pi R Qi (i = 1, 2) and (P1 � P2)R (Q1 � Q2). It suffices to
show that R is a divergence-preserving coupled simulation.

So let Pi �Δ
CS Qi for i = 1, 2 and (P1 �P2)

α−→ P ′. If α ∈ Σ then P1
α−→ P ′,

and there exists a Q′ with Q1
α=⇒ Q′ and P ′ �Δ

CS Q′. Hence Q1 � Q2
α=⇒ Q′ and

P ′ R Q′. If α=τ then either P ′ =P2 or P1
τ−→ P ′

1 for some P ′
1 with P ′ =P ′

1�P2.
In the former case Q1 � Q2 =⇒ Q2 and P2 R Q2. In the latter case Q1 =⇒ Q′

1 for
some Q′

1 with P ′
1 �Δ

CS Q′
1. Thus Q1 � Q2 =⇒ Q′

1 � Q2 and (P ′
1�P2)R (Q′

1�Q2).
Now let Pi �Δ

CS Qi for i = 1, 2. Then there is a Q′
2 with Q2 =⇒

Q′
2 and Q′

2 �Δ
CS P2. By Proposition 2 P2 �Δ

CS P1 � P2 and by Proposition 1
Q′

2 �Δ
CS P1 � P2.

Thus R is a coupled simulation. That R is divergence-preserving follows
because P1 � P2⇑ iff P1⇑ ∨ P2⇑. ��
Proposition 9. �Δ

CS is a precongruence for parallel composition.

Proof. Let A ⊆ Σ. Let R be the smallest relation such that, for any Pi and Qi,
Pi �Δ

CS Qi for i = 1, 2 implies (P1‖AP2)R (Q1‖AQ2). It suffices to show that
R is a divergence-preserving coupled simulation.

So let Pi �Δ
CS Qi for i = 1, 2 and (P1‖AP2)

α−→ P ′. If α /∈ A then Pi
α−→ P ′

i

for i = 1 or 2, and P ′ = P ′
1‖AP ′

2, where P ′
3−i := P3−i. Hence there exists a Q′

i



A Branching Time Model of CSP 283

with Qi
α̂=⇒ Q′

i and P ′
i �Δ

CS Q′
i. Let Q′

3−i := Q3−i. Then Q1‖AQ2
α̂=⇒ Q′

1‖Q′
2

and (P ′
1‖P ′

2)R (Q′
1‖Q′

2). If α ∈ A then Pi
α−→ P ′

i for i = 1 and 2. Hence, for
i = 1, 2, Qi

α=⇒ Q′
i for some Q′

i with P ′
i �Δ

CS Q′
i. Thus Q1‖AQ2

α=⇒ Q′
1‖AQ′

2 and
(P ′

1‖AP ′
2)R (Q′

1‖AQ′
2).

Now let Pi �Δ
CS Qi for i = 1, 2. Then, for i = 1, 2, there is a Q′

i with Qi =⇒ Q′
i

and Q′
i �Δ

CS Pi. Hence Q1‖AQ2 =⇒ Q′
1‖AQ′

2 and (Q′
1‖AQ′

2)R (P1‖AP2).
Thus R is a coupled simulation. That R is divergence-preserving follows

because P1‖AP2⇑ iff P1⇑ ∨ P2⇑. ��
Proposition 10. �Δ

CS is a precongruence for concealment.

Proof. Let A ⊆ Σ. Let R be the smallest relation such that, for any P and Q,
P �Δ

CS Q implies (P\A)R (Q\A). It suffices to show that R is a divergence-
preserving coupled simulation.

So let P �Δ
CS Q and P\A

α−→ P ∗. Then P ∗ = P ′\A for some P ′ with
P

β−→ P ′, and either β ∈ A and α = τ , or β = α /∈ A. Hence Q
β−→ Q′ for some

Q′ with P ′ �Δ
CS Q′. Therefore Q\A

α−→ Q′\A and (P ′\A)R (Q′\A).
Now let P �Δ

CS Q. Then there is a Q′ with Q =⇒ Q′ and Q′ �Δ
CS P . Hence

Q\A =⇒ Q′\A and (Q′\A)R (P\A).
To check that R is divergence-preserving, suppose (P\A)⇑. Then there are

Pi and αi ∈ A ∪ {τ} for all i > 0 such that P
α1−→ P1

α2−→ P2
α3−→ . . . . By the

first condition of Definition 4, there are Qi for all i > 0 such that Pi R Qi and
Q

α̂1=⇒ Q1
α̂2=⇒ Q2

α̂3=⇒ . . . . This implies Q\A =⇒ Q1\A =⇒ Q2\A =⇒ . . . .
In case αi ∈ Σ for infinitely many i, then for infinitely many i one has

Qi−1
αi=⇒ Qi and thus Qi−1\A

τ=⇒ Qi\A. This implies that (Q\A)⇑.
Otherwise there is an n > 0 such that αi = τ for all i ≥ n. In that case Pn⇑

and thus Qn⇑. Hence (Qn\A)⇑ and thus (Q\A)⇑. ��
Proposition 11. �Δ

CS is a precongruence for renaming.

Proof. Let f : Σ → Σ. Let R be the smallest relation such that, for any P and
Q, P �Δ

CS Q implies f(P )R f(Q). It suffices to show that R is a divergence-
preserving coupled simulation.

So let P �Δ
CS Q and f(P ) α−→ P ∗. Then P ∗ = f(P ′) for some P ′ with

P
β−→ P ′ and f(β) = α. Hence Q

β−→ Q′ for some Q′ with P ′ �Δ
CS Q′. Therefore

f(Q) α−→ f(Q′) and f(P ′)R f(Q′).
Now let P �Δ

CS Q. Then there is a Q′ with Q =⇒ Q′ and Q′ �Δ
CS P . Hence

f(Q) =⇒ f(Q′) and f(Q′)R f(P ).
To check that R is divergence-preserving, suppose f(P )⇑. Then P⇑, so Q⇑

and f(Q)⇑. ��
Proposition 12. �Δ

CS is a precongruence for the interrupt operator.

Proof. Let R be the smallest relation such that, for any Pi and Qi, Pi �Δ
CS Qi

for i = 1, 2 implies P2 R Q2 and (P1 � P2)R (Q1 � Q2). It suffices to show that
R is a divergence-preserving coupled simulation.



284 R. van Glabbeek

So let Pi �Δ
CS Qi for i = 1, 2 and (P1�P2)

α−→ P ′. Then either P ′ = P ′
1�P2

for some P ′
1 with P1

α−→ P ′
1, or α = τ and P ′ = P1 � P ′

2 for some P ′
2 with

P2
τ−→ P ′

2, or α ∈ Σ and P2
α−→ P ′.

In the first case there is a Q′
1 with Q1

α̂=⇒ Q′
1 and P ′

1 �Δ
CS Q′

1. It follows that
(Q1 � Q2)

α̂=⇒ (Q′
1 � Q2) and (P ′

1 � P2)R (Q′
1 � Q2).

In the second case there is a Q′
2 with Q2 =⇒ Q′

2 and P ′
2 �Δ

CS Q′
2. It follows

that (Q1 � Q2) =⇒ (Q1 � Q′
2) and (P1 � P ′

2)R (Q1 � Q′
2).

In the last case there is a Q′
2 with Q2

α=⇒ Q′
2 and P ′

2 �Δ
CS Q′

2. It follows that
(Q1 � Q2)

α=⇒ Q′
2 and P ′

2 R Q′
2.

Now let Pi �Δ
CS Qi for i = 1, 2. Then, for i = 1, 2, there is a Q′

i with Qi =⇒ Q′
i

and Q′
i �Δ

CS Pi. Hence Q1 � Q2 =⇒ Q′
1 � Q′

2 and (Q′
1 � Q′

2)R (P1 � P2).
Thus R is a coupled simulation. That R is divergence-preserving follows

because P1 � P2⇑ iff P1⇑ ∨ P2⇑. ��

8 A Complete Axiomatisation of ≡Δ
CS

A set of equational laws valid for ≡Δ
CS is presented in Table 3. It includes the laws

from Table 2 that are still valid for ≡Δ
CS . I will show that this axiomatisation

is sound and complete for ≡Δ
CS for recursion-free CSP without the interrupt

operator. The axioms U2 and U3, which are not valid for ≡Δ
CS , played a crucial

rôle in reducing CSP expressions with interrupt into normal form. It is not trivial
to find valid replacements, and due to lack of space and time I do not tackle this
problem here.

The axiom H5 replaces the fallen axiom H2, and is due to [17]. Here the
result of hiding actions results in a process that cannot be expressed as a normal
form built up from a →, � and �. For this reason, one needs a richer normal form,
involving the sliding choice operator. It is given by the context-free grammar

N → D | D � I
I → D | I � I
D → STOP | div | E | div � E
E → (a → N) | (a → N) � E .

Definition 5. A CSP expression is in head normal form if it is of the form(
[div �] �

i∈I
(ai → Ri)

)
� �

j∈J
Rj , with Rj =

(
[div �] �

k∈Kj
(akj → Rkj)

)

for j ∈ J . Here I, J and the Kj are finite index sets, and the parts between square
brackets are optional. Here, although �

i∈∅ Pi is undefined, I use P � �
i∈∅ Pi

to represent P . An expression is in normal form if it has this form and also the
subexpressions Ri and Rkj are in normal form.

A head normal form is saturated if the div-summand on the left is present
whenever any of the Rj has a div-summand, and for any j ∈ J and any k ∈ Kj

there is an i ∈ I with ai = akj and Ri = Rkj .

My proof strategy is to ensure that there are enough axioms to transform any
CSP process without recursion and interrupt operators into normal form, and



A Branching Time Model of CSP 285

to make these forms saturated; then to equate saturated normal forms that are
divergence-preserving coupled simulation equivalent.

Due to the optional presence in head normal forms of a div-summand and a
sliding choice, I need four variants of the axiom H5; so far I have not seen a way
around this. Likewise, there are 4 × 4 variants of the axiom P4 from Table 2, of
which 6 could be suppressed by symmetry (P4–P13). There are also 3 axioms
replacing P2 (P14–P16).

9 Soundness

Since divergence-preserving coupled similarity is a congruence for all CSP oper-
ators, to establish the soundness of the axiomatisation of Table 3 it suffices to
show the validity w.r.t. ≡Δ

CS of all axioms. When possible, I show validity w.r.t.
strong bisimilarity, which is a strictly finer equivalence.

Definition 6. Two processes are strongly bisimilar [12] if they are related by a
binary relation R on processes such that, for all α ∈ Σ ∪ {τ},

– if P R Q and P
α−→ P ′ then there exists a Q′ with Q

α−→ Q′ and P ′ R Q′,
– if P R Q and Q

α−→ Q′ then there exists a P ′ with P
α−→ P ′ and P ′ R Q′.

Proposition 13. Axiom I1 is valid for ≡Δ
CS.

Proof. {(P � P, P ), (P, P � P ) | Pa process} ∪ Id is a divergence-preserving cou-
pled simulation. ��
Proposition 14. Axiom I2 is valid even for strong bisimilarity.

Proof. {(P � Q,Q � P ) | P,Qprocesses} ∪ Id is a strong bisimulation. ��
Proposition 15. Axiom I3 is valid for ≡Δ

CS.

Proof. The relation {(P � (Q�R), (P �Q)�R
)
,
(
(P �Q)�R,P � (Q�R)

)
,
(
Q�

R, (P �Q)�R
)
,
(
P �Q,P �(Q�R)

)
,
(
R,Q�R

)
,
(
P, P �Q

) |P,Q,R processes}∪Id
is a divergence-preserving coupled simulation. ��
Proposition 16. Axioms E2–4 are valid for strong bisimilarity.

Proof. The relation {(P � (Q � R), (P � Q) � R
) | P,Q,R processes} ∪ Id is

a strong bisimulation. So is {(P � Q,Q � P ) | P,Qprocesses} ∪ Id , as well as
{(P � STOP , P ) | P a process} ∪ Id . ��
Proposition 17. Axiom S1 is valid for ≡Δ

CS.

Proof. {(P ′ � P, P ), (P, P ′ � P ) | P ′ �Δ
CS P} ∪ Id is a divergence-preserving

coupled simulation. This follows from Proposition 2. ��
Proposition 18. Axiom S2 is valid for ≡Δ

CS.



286 R. van Glabbeek

Table 3. A complete axiomatisation of ≡Δ
CS for recursion-free CSP without interrupt

(continued)



A Branching Time Model of CSP 287

Table 3. (continued)

(continued)



288 R. van Glabbeek

Table 3. (continued)

Proof. {(P � (Q � R), (P � Q) � R
)
,
(
(P � Q) � R,P � (Q � R)

) |
P,Q,R processes} ∪ Id is a divergence-preserving coupled simulation. ��
Proposition 19. Axiom S3 is valid for ≡Δ

CS.

Proof. {((P � Q) � R, (P � Q) � R
)
,
(
(P � Q′) � R, (P � Q) � R

)
,
(
Q � R, (P �

Q) � R
)
,
(
R,Q � R

) | Q′ �Δ
CS Q} ∪ Id is a divergence-preserving coupled

simulation. ��
Proposition 20. Axiom S4 is valid for ≡Δ

CS.

Proof. {((P � Q) � R, (P � Q) � R
)
,
(
(P ′ � Q′) � R, (P � Q) � R

)
,
(
P �

R, (P � Q) � R
)
,
(
Q � R, (P � Q) � R

)
,
(
R,Q � R

) | P ′ �Δ
CS P ∧ Q′ �Δ

CS

Q} ∪ Id is a divergence-preserving coupled simulation. Checking this involves
Proposition 2. ��
Proposition 21. Axiom S5 is valid for ≡Δ

CS.

Proof. The relation {(STOP � P, P ), (P,STOP � P ) | P a process} ∪ Id is a
divergence-preserving coupled simulation.

��
Proposition 22. Axiom S6 is valid for ≡Δ

CS.

Proof. {((P �Q)�(R�S), (P �R)�(Q�S)
)
,
(
(P ′�R′)�(Q�S), (P �Q)�(R�

S)
)
,
(
P �Q, (P �R)�(Q�S)

)
,
(
R�S, (P �R)�(Q�S)

)
,
(
Q�S, (P �Q)�(R�

S)
)
,
(
S, (P ′ �R′)� (Q�S)

)
,
(
S,R�S

)
,
(
S,Q�S

) | P ′ �Δ
CS P ∧R′ �Δ

CS R}∪ Id
is a divergence-preserving coupled simulation. ��
Proposition 23. Axiom S7 is valid for ≡Δ

CS.

Proof. {((P � Q) � (R � S), (P � R) � (Q � S)
)
,
(
(P � R) � (Q � S), (P � Q) �

(R � S)
)
,
(
Q′ � (R � S), (P � R) � (Q � S)

)
,
(
(P � Q) � S′, (P � R) � (Q �

S)
)
,
(
Q′ � S′, Q′ � (R � S)

)
,
(
Q′ � S′, (P � Q) � S′), | Q =⇒ Q′ ∧ S =⇒ S′} ∪ Id

is a divergence-preserving coupled simulation. ��



A Branching Time Model of CSP 289

Proposition 24. Axiom D1 is valid for ≡Δ
CS.

Proof. {(P ′ � (Q � R), (P � Q) � (P � R)
)
,
(
(P � Q) � (P � R), P � (Q �

R)
)
,
(
P ′ � Q,P ′ � (Q � R)

) | P =⇒ P ′} ∪ Id is a divergence-preserving coupled
simulation. ��
Proposition 25. Axiom Prune is valid for ≡Δ

CS.

Proof. {((a→P )�a→(P �Q), a→(P �Q)
)
,
(
a→(P �Q), (a→P )�a→(P �Q)

)}∪
Id is a divergence-preserving coupled simulation. ��
Proposition 26. Axioms P0–1 and P4–10 are valid for strong bisimilarity.
Axioms P11–16 are valid for ≡Δ

CS.

Proof. Straightforward. ��
Proposition 27. Axioms U4, H1, R0–5 and T0–6 are valid for strong bisim-
ilarity. Axioms H5–8 are valid for ≡Δ

CS.

Proof. Straightforward. ��
Proposition 28. Axiom U1 is valid for ≡Δ

CS.

Proof. {((P � Q) � R′, (P � R) � (Q � R)
)
,
(
(P � R) � (Q � R), (P � Q) �

R
)
,
(
P � R′, (P � Q) � R′) | R =⇒ R′} ∪ Id is a divergence-preserving coupled

simulation. ��

10 Completeness

Let Th be the axiomatisation of Table 3.

Proposition 29. For each recursion-free CSP process P without interrupt oper-
ators there is a CSP process Q in normal form such that Th � P = Q.

Proof. By structural induction on P it suffices to show that for each n-ary CSP
operator Op, and all CSP processes P1, ..., Pn in normal form, also Op(P1, ..., Pn)
can be converted to normal form. This I do with structural induction on the
arguments Pi.

– Let P = STOP or div. Then P is already in normal form. Take Q := P .
– Let P = a → P ′. By assumption P ′ is in normal form; therefore so is P .
– Let P = P1 � P2. By assumption P1 and P2 are in normal form. So P =((

[div �] �
i∈I

(ai → Ri)
)

� �
j∈J

Rj

)
�

((
[div �] �

l∈L
(al → Rl)

)
� �

j∈M
Rj

)

with Rj =
(
[div�]�

k∈Kj
(akj → Rkj)

)
for j ∈ J ∪M . With Axiom S5 I may

assume that J,M �= ∅. Now Axiom S6 converts P to normal form.



290 R. van Glabbeek

– Let P = P1 � P2. By assumption P1 and P2 are in normal form. So P =((
[div �] �

i∈I
(ai → Ri)

)
� �

j∈J
Rj

)
�

((
[div �] �

l∈L
(al → Rl)

)
� �

j∈M
Rj

)

with Rj =
(
[div�]�

k∈Kj
(akj → Rkj)

)
for j ∈ J ∪M . With S5 I may assume

that J,M �= ∅. Now Axioms S7 and D1 convert P to normal form.
– Let P = P1 � P2. Axioms S2–4 and D1 convert P to normal form.
– Let P = P1‖AP2. Axioms P1 and P4–16, together with the induction hypoth-

esis, convert P to normal form.
– Let P = P\A. Axioms H1 and H5–8, together with the induction hypothesis,

convert P to normal form.
– Let P = f(P ). Axioms R0–5, together with the induction hypothesis, convert

P to normal form.
– Let P = P1 ΘA P2. Axioms T0–6, together with the induction hypothesis,

convert P to normal form.

Lemma 1. For any CSP expression P in head normal form there exists a sat-
urated CSP expression Q in head normal form.

Proof. Let P =
(
[div�]�

i∈I
(ai →Ri)

)
��

j∈J
Rj . Then P has the form S �R.

By Axioms S1–3 Th � P = (S � R) � R. By means of Axioms D1 and S4 the
subexpression S � R can be brought in the form [div �] �

l∈L
(al → Rl). The

resulting term is saturated. ��
Definition 7. A CSP expression

(
�

i∈I
(bi → Pi)

)
is pruned if, for all i, h ∈ I,

bi = bh ∧ Pi �Δ
CS Ph ⇒ i = h.

Theorem 1. Let P and Q be recursion-free CSP processes without interrupt
operators. Then P ≡Δ

CS Q iff Th � P = Q.

Proof. “⇐” is an immediate consequence of the soundness of the axioms of Th,
and the fact that ≡Δ

CS is a congruence for all operators of CSP.
“⇒”: Let depth(P ) be the length of the longest trace of P—well-defined

for recursion-free processes P . If P ≡Δ
CS Q then depth(P ) = depth(Q). Given

P ≡Δ
CS Q, I establish Th � P = Q with induction on depth(P ).

By Proposition 29 I may assume, without loss of generality, that P and Q are
in normal form. By Lemma 1 I furthermore assume that P and Q are saturated.
Let P =

(
[div�] �

i∈I
(ai → Ri)

)
� �

j∈J
Rj and Q =

(
[div�] �

l∈L
(al → Rl)

)
�

�
j∈M

Rj with Rj =
(
[div �] �

k∈Kj
(akj → Rkj)

)
for j ∈ J ∪ M , where Ri, Rl

and Rkj are again in normal form.
Suppose that there are i, h ∈ I with i �= h, ai = ah and Ri �Δ

CS Rh.
Then Ri � Rh ≡Δ

CS Rh by Proposition 3. Since depth(Ri � Rh) < depth(P ),
the induction hypothesis yields Th � Ri � Rh = Rh. Hence Axiom Prune
allows me to prune the summand ai → Ri from �

i∈I
(ai → Ri). Doing this

repeatedly makes �
i∈I

(ai → Ri) pruned. By the same reasoning I may assume

that �
l∈L

(al → Rl) is pruned.



A Branching Time Model of CSP 291

Since P⇑ ⇔ Q⇑ and P and Q are saturated, P has the div-summand iff Q
does. I now define a function f : I → L such that af(i) = ai and Ri �Δ

CS Rf(i)

for all i ∈ I.
Let i ∈ I. Since P

ai−→ Ri, by Definition 4 Q
ai=⇒ Q′ for some Q′ with

Ri �Δ
CS Q′. Hence either there is an l ∈ L such that al = ai and Rl =⇒ Q′, or

there is a j ∈ M and k ∈ Kj such that akj = ai and Rkj =⇒ Q′. Since P is
saturated, the first of these alternatives must apply. By Proposition 2 Q′ �Δ

CS Rl

and by Proposition 1 Ri �Δ
CS Rl. Take f(i) := l.

By the same reasoning there is a function g : L → I such that ag(l) = al

and Rl �Δ
CS Rg(l) for all l ∈ L. Since �

i∈I
(ai → Ri) and �

l∈L
(al → Rl) are

pruned, there are no different i, h ∈ I (or in L) with ai = ah and Ri �Δ
CS Rh.

Hence the functions f and g must be inverses of each other. It follows that
Q =

(
[div�]�

i∈I
(ai → Rf(i))

)
��

j∈M
Rj with Ri ≡Δ

CS Rf(i) for all i ∈ I. By
induction Th � Ri = Rf(i) for all i ∈ I.

So in the special case that I = M = ∅ I obtain Th � P = Q. (*)
Next consider the case J = ∅ but M �= ∅. Let j ∈ M . Since Q =⇒ Rj , there is

a P ′ with P =⇒ P ′ and Rj �Δ
CS P ′. Moreover, there is a P ′′ with P ′ =⇒ P ′′ and

P ′′ �Δ
CS Rj . Since J = ∅, P ′′ = P ′ = P , so P ≡Δ

CS Rj . By (*) above Th � P=Rj .
This holds for all j ∈ J , so by Axiom I1 Th � Q =

(
[div �] �

i∈I
(ai → Ri)

)
� P .

By Axiom S1 one obtains Th � P = Q.
The same reasoning applies when M = ∅ but J �= ∅. So henceforth I assume

J,M �= ∅. I now define a function h : J → M with Th � Rj = Rh(j) for all j ∈ J .
Let j ∈ J . Since P

τ=⇒ Rj , by Definition 4 Q =⇒ Q′ for some Q′ with
Rj �Δ

CS Q′, and Q′ =⇒ Q′′ for some Q′′ with Q′′ �Δ
CS Rj . There must be an m ∈

M with Q′′ =⇒ Rm. By Definition 4 Rj =⇒ R′ for some R′ with Rm �Δ
CS R′,

and R′ =⇒ R′′ for some R′′ with R′′ �Δ
CS Rm. By the shape of Rj one has

R′′ = R′ = Rj , so Rj ≡Δ
CS Rm. By (*) above Th � Rj = Rm. Take h(j) := m.

By the same reasoning there is a function e : M → J with Th � Rm = Re(m)

for all m ∈ M . Using Axioms I1–3 one obtains Th � P = Q. ��

11 Conclusion

This paper contributed a new model of CSP, presented as a semantic equivalence
on labelled transition systems that is a congruence for the operators of CSP. It
is the finest I could find that allows a complete equational axiomatisation for
closed recursion-free CSP processes that fits within the existing syntax of the
language. For τ -free system, my model coincides with strong bisimilarity, but in
matching internal transitions it is less pedantic than weak bisimilarity.

It is left for future work to show that recursion is treated well in this model,
and also to extend my complete axiomatisation with the interrupt operator of
Roscoe [15,17].

An annoying feature of my complete axiomatisation is the enormous col-
lections of heavy-duty axioms needed to bring parallel compositions of CSP
processes in head normal form. These are based on the expansion law of Mil-
ner [12], but a multitude of them is needed due to the optional presence of



292 R. van Glabbeek

divergence-summands and sliding choices in head normal forms. In the process
algebra ACP the expansion law could be avoided through the addition of two
auxiliary operators: the left merge and the communication merge [3]. Unfor-
tunately, failures-divergences equivalence fails to be a congruence for the left-
merge, and the same problems exists for any other models of CSP [8, Sect. 3.2.1].
In [1] an alternative left-merge is proposed, for which failures-divergences equiva-
lence, and also ≡Δ

CS , is a congruence. It might be used to eliminate the expansion
law P4 from the axiomatisation of Table 2. Unfortunately, the axiom that splits
a parallel composition between a left-, right- and communication merge (Axiom
CM1 in [3]), although valid in the failures-divergences model, is not valid for
≡Δ

CS . This leaves the question of how to better manage the axiomatisation of
parallel composition entirely open.

References

1. Aceto, L., Ingólfsdóttir, A.: A theory of testing for ACP. In: Baeten, J.C.M.,
Groote, J.F. (eds.) CONCUR 1991. LNCS, vol. 527, pp. 78–95. Springer,
Heidelberg (1991). doi:10.1007/3-540-54430-5 82

2. Bergstra, J.A., Klop, J.W., Olderog, E.-R.: Failures withoutchaos: a new process
semantics for fair abstraction. In: Wirsing, M. (ed.) Formal Description of Pro-
gramming Concepts - III, Proceedings of the 3th IFIP WG 2.2 working conference,
Ebberup 1986, North-Holland, Amsterdam, pp. 77–103 (1987)

3. Bergstra, J.A., Klop, J.W.: Process algebra for synchronous communication.
Inform. Control 60, 109–137 (1984). doi:10.1016/S0019-9958(84)80025-X

4. Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A theory of communicating sequential
processes. J. ACM 31(3), 560–599 (1984). doi:10.1145/828.833

5. Brookes, S.D., Roscoe, A.W.: An improved failures model for communicating
processes. In: Brookes, S.D., Roscoe, A.W., Winskel, G. (eds.) CONCURRENCY
1984. LNCS, vol. 197, pp. 281–305. Springer, Heidelberg (1985). doi:10.1007/
3-540-15670-4 14

6. De Nicola, R.: Two complete Axiom systems for a theory of communicat-
ing sequential processes. Inf. Control 64(1–3), 136–172 (1985). doi:10.1016/
S0019-9958(85)80048-6

7. Glabbeek, R.J.: The linear time — branching time spectrum II. In: Best, E. (ed.)
CONCUR 1993. LNCS, vol. 715, pp. 66–81. Springer, Heidelberg (1993). doi:10.
1007/3-540-57208-2 6

8. van Glabbeek, R.J., Vaandrager, F.W.: Modular specification of process algebras.
Theor. Comput. Sci. 113(2), 293–348 (1993). doi:10.1016/0304-3975(93)90006-F

9. Groote, J.F., Vaandrager, F.W.: Structured operational semantics and bisim-
ulation as a congruence. Inf. Comput. 100(2), 202–260 (1992). doi:10.1016/
0890-5401(92)90013-6

10. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8), 666–
677 (1978). doi:10.1145/359576.359585

11. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Upper Saddle
River (1985)

http://dx.doi.org/10.1007/3-540-54430-5_82
http://dx.doi.org/10.1016/S0019-9958(84)80025-X
http://dx.doi.org/10.1145/828.833
http://dx.doi.org/10.1007/3-540-15670-4_14
http://dx.doi.org/10.1007/3-540-15670-4_14
http://dx.doi.org/10.1016/S0019-9958(85)80048-6
http://dx.doi.org/10.1016/S0019-9958(85)80048-6
http://dx.doi.org/10.1007/3-540-57208-2_6
http://dx.doi.org/10.1007/3-540-57208-2_6
http://dx.doi.org/10.1016/0304-3975(93)90006-F
http://dx.doi.org/10.1016/0890-5401(92)90013-6
http://dx.doi.org/10.1016/0890-5401(92)90013-6
http://dx.doi.org/10.1145/359576.359585


A Branching Time Model of CSP 293

12. Milner, R.: Operational and algebraic semantics of concurrent processes. In: van
Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, Chap. 19, pp. 1201–
1242. Elsevier Science Publishers B.V., North-Holland (1990). Alternatively see
Communication and Concurrency. Prentice-Hall (1989), of which an earlier version
appeared as A Calculus of Communicating Systems. LNCS, vol. 92. Springer (1980)

13. Olderog, E.-R., Hoare, C.A.R.: Specification-oriented semantics for communicating
processes. Acta Informatica 23, 9–66 (1986). doi:10.1007/BF00268075

14. Parrow, J., Sjödin, P.: Multiway synchronization verified with coupled simulation.
In: Cleaveland, W.R. (ed.) CONCUR 1992. LNCS, vol. 630, pp. 518–533. Springer
Berlin Heidelberg, Berlin, Heidelberg (1992). doi:10.1007/BFb0084813

15. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice-Hall, Upper Sad-
dle River (1997). http://www.comlab.ox.ac.uk/bill.roscoe/publications/68b.pdf.

16. Roscoe, A.W.: Revivals, stuckness and the hierarchy of CSP models. J. Logic Alge-
braic Program. 78(3), 163–190 (2009). doi:10.1016/j.jlap.2008.10.002

17. Roscoe, A.W.: Understanding Concurrent Systems. Springer, London (2010).
doi:10.1007/978-1-84882-258-0

http://dx.doi.org/10.1007/BF00268075
http://dx.doi.org/10.1007/BFb0084813
http://www.comlab.ox.ac.uk/bill.roscoe/publications/68b.pdf.
http://dx.doi.org/10.1016/j.jlap.2008.10.002
http://dx.doi.org/10.1007/978-1-84882-258-0


Virtualization Based Development

Jay Yantchev(&) and Atanas Parashkevov

VLAB Works™, Adelaide, Australia
{jay.yantchev,atanas.parashkevov}@vlabworks.com

Abstract. Virtualization involves replacing all elements of an embedded
development environment, including paper specifications, target hardware, test
instruments, and plant and equipment, with software representations, for an
all-in-software path to creating working executable versions of an embedded
system or of any of its components or sub-systems. A virtualization based
development process leverages virtualization in all phases of development. It
enables acceleration by allowing development tasks to start earlier and by
proceeding at a higher pace and on a wider front, for example through
automation of development and test, optimization of design, increased test scope
and coverage, and calibration procedures that are not feasible with real hardware
implementations. This paper outlines the concepts and some of the applications
of virtualization based development, defines the technology, tool and process
requirements, and introduces VLAB™ as a tool and operating environment for
virtualization based development of embedded software and systems. In order to
make these concepts as fully covered and easily understood as possible, we will
focus and contain the scope of the paper to their application to the development
of automotive controller modules, or ECUs, for modern engine systems control.

1 Introduction

This paper, and the concepts, technologies, and methodologies it describes, are
developed in a commercial embedded engineering environment. They address prob-
lems of the current practices and seek to provide new practical solutions to develop-
ment engineers, teams, and projects operating under the pressures, constraints, and
imperfections of such commercial environments. The goal is practical commercial
improvements rather than prohibitively hard to apply or unsustainable academic
methods and perfection. However, this paper hopes that a bridge between the two may
be built, that future research and academic effort may formalize further the concepts,
technologies and methodologies it outlines, or may find that this is already in place, and
allow further improvements in their application and automation.

Though virtualization based development, or VBD, is broadly applicable to any
embedded development segment and project, in order to cover the concepts and their
application as fully as possible, this paper will focus on the area of development of
automotive controller modules, or ECUs, and more specifically to ECUs for modern

VLAB Works™ is a company of ASTC, and can be contacted at http://www.vlabworks.com.

© Springer International Publishing AG 2017
T. Gibson-Robinson et al. (Eds.): Roscoe Festschrift, LNCS 10160, pp. 294–318, 2017.
DOI: 10.1007/978-3-319-51046-0_15

http://www.vlabworks.com


engine systems control, or ECMs. Typically, the development of a next generation,
advanced ECU involves the joint development effort of a whole supply chain of
companies, from a car manufacturing OEM driving the ECU requirements and spec-
ifications, through the ECU development and manufacturing supplier, or Tier 1 sup-
plier, to semiconductor companies supplying advanced custom IC components and
software companies supplying software modules and stacks. The significance of this is
that a new ECU development project involves a development process that spans over
multiple unrelated companies, multiple engineering disciplines, and multiple levels of
system complexity. The opportunities for improvement are therefore numerous, as are
the challenges and complexities in achieving them.

There are other significant fundamentals of the automotive ECU industry. One is
the balance between cost of development and cost of volume manufacturing and final
product. The manufacturing life time of an ECU module is long, the current norms
being in the range of 15 years, the costs of manufacturing are high, the cost of
individual modules is relatively high, volumes are high, and all these factors combine
to make the total post release costs a significant consideration during development and
this in turn puts sufficient value and return to upfront development process costs for
improved design, optimized performance, and improved quality. In other words, there
is budget for good development processes. Another important fundamental is the long
ECU development time frames, driven by the long new vehicle platform introduction
timeframes. A typical new generation production ECU development cycle is about 3 to
4 years. In addition, each production development project, which requires that all or
most of the new technology, tools, and methodology be trialed in advance and fixed at
the start of production development, is preceded by an earlier advanced technology
phase, may be over a 2 to 3 year timeframe, in which such trials and preparations take
place. In other words, there is time to do things right and time to prepare for that.
A final fundamental is the importance of regulatory and market driven requirements for
safety, reliability, and robustness of the total end system, the vehicle, of which the ECU
is a critical part. These requirements have to be designed into each component, ECU
module, and subsystem, and tested at that level as well as within the final integrated
vehicle. This puts additional requirements on the design process and on the test,
verification, and validation process and coverage.

One other important consideration, characteristic of contemporary automotive
electronics industry, which is not so much a fundamental but a recent trend, is the
rapidly increasing complexity of ECU function, ECU hardware, and most of all of ECU
software. The overall volume and complexity of automotive software today exceeds
100 million lines of code and has surpassed the complexity of full computer desktop
stacks. In the last seven years alone, software complexity in automotive applications
has grown by a factor of 10� and has surpassed that of most aerospace applications.
Much of this automotive code is in safety critical applications and needs to be
developed, verified and validated under strict safety requirements such as those
imposed by ISO 26262. The regulatory and market trends towards improved fuel
efficiency, cleaner environment impact, improved safety, increased complexity of
integrated function, some involving all subsystems in the vehicle, such as autonomous
driving systems, lead to rapid increase in complexity of the ECUs required to deliver
and control these functions. With ECUs, this increased complexity of function tends to

Virtualization Based Development 295



be control complexity, a rapid increase in the range of possible operating conditions
and behaviors, exceeding our unaided abilities to understand, design, and test. The
significance of this to our topic is that this requires development processes capable of
handling complexity, including understanding, designing, and testing, within some
manageable process for project planning and execution. In other words, the tools,
methods, and processes of yesterday, which were a good fit for yesterday and may be
just managing today, will not be a good fit for tomorrow.

On the flip side of this trend of rapidly increasing complexity of function and
operation is the slow pace of change of development methods, tools, and practices in
the automotive industry. Due to the high cost and value in the investments in earlier
vehicle models, especially in test, validation, and certification, any change in devel-
opment process needs to ensure an almost unbroken continuity from previous projects.
Processes change slowly because they are not allowed to change within a production
development ECU project and because, when they could change from one project to
the next, there is the risk of high cost of change from the potential loss of prior
development or validation investments in moving from one ECU generation to the
next. New development tools, methods, and approaches take a long time to evaluate
and even longer to adopt and deploy. In the face of this glacial pace of internal change,
significant pressures are required to build up as a force for change or the limits of
current practice to be reached, for change to happen at all. It was in circumstances like
this, when the current development processes, including methods and tools, of major
Tier 1s proved inadequate for the ECU plans and commitments already made to major
OEM customers, that the technologies, tools, and methods, described here have been
applied in practice, honed for purpose, and prove their effectiveness unequivocally.

Another trend affecting not only the automotive ECU industry, but any other supply
chains, is the increased globalization of development teamwork. Supply chain devel-
opment projects may involve companies in different continents, and each company may
involve development teams around the world. This requires means for exchanging and
reproducing information, environments, and artefacts, including design prototypes,
target hardware, software, test set ups, configuration and automation scripts, test sce-
narios, test results, debug information, and other execution data and user history to be
stored, exchanged, and replicated with ease anywhere in the world.

To help with the trends and challenges outlined above, we describe some concepts,
technologies, and processes aiming to deliver improvements and advances in embed-
ded development.

2 Virtualization

Virtualization involves replacing all components of an embedded development and test
environment, including textual paper specifications, target hardware, test instruments,
and plant and equipment, with software representations, for an all-in-software path to a
working and executable build of a new ECU or of any of its components in each
interim stage of development.

296 J. Yantchev and A. Parashkevov



The task of virtualization is to replace a component in the development process, say
an ECU prototype hardware board, with a representation in software, which can be
used for some purpose instead of the hardware itself, but which can, unlike the
hardware itself, be used for that same purpose with all the flexibilities that software can.
For example, copy and multiply freely, store, exchange, link with other software,
configure, build, load, run, control, instrument, and also debug and test it in the same
way as a software component can be. This is the essential task. The precise type of
software representation used, and what the methods and tools for developing such a
representation are, are of secondary importance and largely depend on the specific
purpose. Provided the benefits of use outweigh the effort and time taken to create it,
then the goal of virtualization is achieved.

Target Hardware Virtualization. One of the means for virtualization of an ECU
hardware component, such as an MCU, and ASIC or an ECU hardware prototype
board, is to use a hardware simulation model. This can, for example, be developed in
the system level hardware modeling language SystemC, typically using the TLM
library extensions for transaction level interaction between such models, and running
on a SystemC/TLM simulator. This is now becoming mainstream and well understood.
The model of the hardware may be at different levels of internal functional or interface
detail, as well as timing abstraction and accuracy. Depending on the purpose, more or
less detailed and complex models may be sufficient.

Another means for virtualization of an ECU hardware component is to use an
emulation model, which does not model the internal state and operation of the hardware
component in any detail, but outwardly fulfills the same function as the hardware
component for the intended purpose. For example, Fig. 2, consider testing the opera-
tion of low level injection control ECU software running on the main processing

Fig. 1. Virtualization model of a main CPU SoC (MCU) for engine control ECU, and
comprising CPU ISS models, and models of memories, of on chip IP blocks, peripheral IO
blocks, and interconnects, such as buses, interrupts, and other signals running in VLAB on a PC.

Virtualization Based Development 297



module, or MCU, with a microcode programmable Fuel Injection Driver ASIC. It may
be sufficient to virtualize the ASIC by emulating it as a simple test bench component
with select interfaces and little or no internal function. The outward functional behavior
relevant to the planned test scenarios can be programmed in the test scripts via test
bench control SW APIs. The Fuel Injection Driver ASIC virtualization can then
emulate the necessary interactions with the MCU in the way the test scenarios require.
This allows significant simplification in the effort to virtualize the ASIC for these
purposes. The complex internal operation of the ASIC and its implementation, which
includes a microcode programmable instruction engine, can be abstracted away and
much effort and cost saved.

On the other hand, if the purpose is to develop an environment for the simulation
and test of the microcode running on that same Fuel Injection Driver ASIC, then such
an ASIC emulation as described above will be inadequate. Instead, a more detailed
simulation model is required, involving, among other things, an Instruction Set Sim-
ulator (ISS) model, as well as other logic and structure, and accurately simulating the
internal state and operation. Such a Fuel Injection Driver ASIC Simulation model will
resemble the MCU simulation model shown in Fig. 1.

Fuel Injection Driver ASICs, and other ECU ASICs, such as air flow sensor ASICs,
are analog/mixed signal systems, whose system level outward function includes analog
functions and interfaces as well as digital ones. However, for ECU software devel-
opment and test, usually only the digital functions are relevant and require virtual-
ization, using simple abstractions in software. Sometimes, the analog functions and
components may need to be included in the virtualization process and represented by
software. For example, for simulation of fault injection in the analog connections and
sub-systems and of the ASIC fault diagnosis and response. This is required in envi-
ronments aimed at analyzing the ECU software safety functions, their handling of faults
signaled by the ASICs, and the behavior of the overall system in the presence of such
faults. Even for such purposes, the analog subsystems can be modelled and virtualized

Fig. 2. Virtualization of ECU hardware components, (a) Emulation of an injection ASIC for
testing injection control low level software in an open loop testbench, with the ASIC internal
function emulated by the test bench scripts via the SW Control API, and (b) Emulation model of
the same ASIC with the addition of SPI interface for control by target software running on MCU
and external injection control interfaces to an engine model for a closed loop test bench, the
injection ASIC internal function emulated by the model component internally.

298 J. Yantchev and A. Parashkevov



with the help of simple digital functional abstractions, as illustrated in Fig. 3. Very
rarely, analog models and simulations are required, usually when the goal of such
environments is analysis of the specifications and behavior of the ASIC itself, such as
during ASIC or PCB HW design and verification.

The sample target hardware virtualizations described in this section are usually
developed and used for software development and test, or for hardware/software
architecture level analysis and validation, or for functional safety analysis. In general,
they are not used for verification of the hardware itself. Therefore, it is usually not
necessary to represent the details of their internal operation or the details of their
signaling interfaces; it suffices to have simpler representations at the minimum level of
detail relevant to the overall system function or the operation of the software under test.

Fig. 3. Virtualization of a current sensor, (a) a sample real current sensor circuit, and (b) the
current sensor virtualization as a one line transfer function.

Fig. 4. Virtualization components for ECU low level engine control software testing
comprising: (a) an open loop Crank/CAM generator test bench model, and (b) a closed loop
engine plant test bench abstraction.

Virtualization Based Development 299



Test Hardware, Plant and Equipment Virtualization. The examples given so far
are all of different target hardware components, such as MCU components, peripheral
ECU ASIC components, or entire ECU abstractions. The same and wider options are
available for the virtualization of other hardware components, such as other operating
environment hardware, test and measurement instruments, communications networks,
plant and equipment. Simple software abstractions that are programmable, light weight,
and flexible, allow the rapid and low cost virtualization of expensive and bulky
hardware test benches and test equipment, to a significant productivity and cost benefit.
As an example, consider a recent ECU project for a next generation diesel engine for a
year 2020 vehicle model. The entire low level engine control software for engine
position and fuel injection control was developed and tested for release to the OEM
development partner with the help only of a simple programmable Crank/CAM gen-
erator model and simple engine models, in a programmable virtual test environment for
automated verification and validation testing; this is illustrated in Fig. 4. This envi-
ronment is capable of regressing over 1,200 system level tests in less than a few hours
on a CPU farm no bigger than a desktop box. In addition, alongside the open loop
Crank/CAM generator test set up, an equally simple engine virtualization was used for
basic closed loop validation of the same software in a virtual test bench for validation
and issue analysis and diagnostic.

Test and measurement devices, such as oscilloscopes and logic analyzers, in a
hardware test bench are used to observe various hardware signals, such as fuel injection
pulses on a the MCU timer IO pins. These functions are easily supported by the native
mechanisms for software event or virtual hardware event tracing and logging, Fig. 5
such as an advanced virtualization environment like VLAB provides as part of its base
features. Virtual instruments can be attached interactively at the click of the mouse or
programmatically by simple API calls. Furthermore, volumes of software or hardware

a)      b)

Fault 
Injected

Fig. 5. Virtual oscilloscope tracing and plotting (a) Fuel injection control software events as
well as interleaved hardware events and signals, and (b) Motor control system variables, incl
calculated PWM and motor velocity in RPM.

300 J. Yantchev and A. Parashkevov



events can be logged unobtrusively during execution, and visualized, processed and
analyzed by native data analysis and visualization functions of the VLAB virtual
environment.

Target Software and System Virtualization. Another means of virtualization of an
ECU prototype hardware board, comprise an OS software emulator, running on only an
Instruction Set Simulator (ISS) of the CPU subsystem of the main MCU. This type of
virtual platform provides an all-in-software environment for running application level
tasks - for task debug, task unit test coverage analysis, or for a closed loop ECU
software calibration test procedure in conjunction with engine models. The last set up is
illustrated in Fig. 6,

Such an environment allows an entire unmodified ECU binary, including the low
level and base software, to be loaded and the operation of its application tasks accu-
rately simulated, on a virtual platform comprising only the CPU ISS sub-system
platform. None of the peripheral IP and IO blocks in the MCU or any of the ECU ASIC
components are required, which reduces the effort to create such platforms and
increases the speed of simulation. Speed of closed loop calibration test operation in this
virtual environment is very high and bounded by speed of Engine/Plant simulation; it
can exceed real time speeds by up to 50� of real time.

The ECU binary software calibration test virtual platform is an example of what we
may call a late stage virtualization use case. It is used at the very end of a new ECU
development and deployment project, after completing all ECU level development,
test, and functional validation activities, as part of the integration with the engine in a
vehicle by an OEM of a new ECU supplied by a Tier 1 company. In this case, for
commercial reasons between the Tier 1 and the OEM, the OEM will usually not have
access to anything more than just the final ECU software binary, no software source
code or debug information and no detailed internal hardware specifications are made
available from the Tier 1. Even in such a constrained development situation, we can
virtualize the ECU environment to a significant commercial benefit, allowing faster
than real time calibration procedures, new adaptive optimization algorithms, cheaper
all-in-software calibration environments, and calibration test start before availability of
the integrated software/hardware ECU module.

Specification Virtualization. At the beginning of an embedded development project,
is the System Design phase. The key scope and goal of this phase is to design the
intended function of the new embedded system, the “What?” it is supposed to do when
completed and installed in its intended operating environment. In the development of a
new engine control ECU, this is the phase when the new engine control algorithms and
other ECU functions, such as diagnostics support, interactions with other vehicle
systems, and any other ECU functions of a more basic or of a more application specific
nature, are designed. The primary design goal is to achieve the target system and
engine operation key performance indicators, such as fuel efficiency, CO2 emissions,
and others.

The design process may be informal and manual, involving little more than pen and
paper, or it may be more formal, with the help of various tools and computer based
methodologies. Such examples include the use of algorithm models and system models
and simulations, using environments such as the Mathworks® MATLAB®/Simulink®

Virtualization Based Development 301



environment for Model Based Design or MBD. MBD uses a type of virtualization in
the form of models and simulations of a certain kind that are suitable for a wider
engineering community; this usually includes application or system engineers from a
diverse range of domains and disciplines, such as control engineers, who may not be
trained or skilled as software engineers. We will skip over the further discussion of
MBD itself and leapfrog towards the end of this System Design/Specification phase,
whatever the process and methodology for design may be. As we come to the end of
this phase, a set of ECU specifications needs to emerge, for use in the subsequent
development phases. These include Controller Technical Requirements (CTR) specifi-
cation documents and Controller Validation Requirements (CVR) specification docu-
ments. The CTR document describes the requirements for the new ECU to be
developed and the CVR document describes how the new ECU should be tested by the
ECU supplier and what should be the results of such tests.

Such ECU specifications, usually developed, provided, and mandated for compli-
ance by the OEM, are large and detailed documents, comprising many hundreds or
even thousands of pages, combined. These specifications need to be used both by the
OEM engineers creating them, who should know them in a certain way, as they created
them, but also, most importantly, by the Tier 1 ECU supplier teams who will need to
implement them, and to whom these specifications are new, unknown, and fraught with
questions, ambiguities, and unknowns. Written specifications and other human read-
able materials, whether in paper or electronic form, are very useful to us. We can read a
book, understand its concepts and comprehend overall meaning. However, such human
readable specifications do little to help with the accurate and comprehensive under-
standing of the intricate details of the design. This is especially true regarding the
intended, or even unintended, dynamic behavior, especially under different or varying
operating conditions. In addition, machine readable specifications are required, which
can be animated, simulated, or executed for the purpose of trialing, analyzing, or
validating our understanding of them, for subsequent implementation, test and vali-
dation of the ECU software and hardware module.

If algorithmic models or other system models are available, from an earlier MBD
process, they may be used by the implementation teams for the purposes of specifi-
cation analysis and generation of tests. In general, traditional MBD models, while very
useful during the design itself, provide limited help in the transition from design to
implementation. They fall short of the needs for describing and understanding the
wider requirements for function, interface, and structure. They also fall short of the
needs for a shared means for analysis and discussion, between the design team and the
implementation team; for example, the different ways in which an implementation may
proceed and for feedback from the implementation team back to the system design and
specifications team. Such feedback often leads to modification, clarification or elabo-
ration of the specifications, in cases where gaps, contradictions or infeasible require-
ments are identified by the implementation team during the later implementation
phases. These MBD models are developed and used to the extent sufficient to help
develop the specifications. However, they may not cover all that an implementation
team may require in order to understand the specifications fully, capture all specifi-
cation requirements, and figure out what is a correct or optimal implementation.

302 J. Yantchev and A. Parashkevov



For this purpose, virtualizations of the OEM ECU specifications, both of CTR and
CVR, are very useful at the start or in the early implementation phases of development.
They provide rapidly developed executable implementations or prototypes of the new
specifications; for example, during the Specification Analysis phase at a Tier 1 supplier
or, either later on or in parallel, by the OEM software teams who need to develop new
applications software to run on the ECU module. The division between an OEM
customer and a Tier 1 ECU supplier in this example into separate companies is not an
essential one. The same situation arises in a Tier 1 designing and developing a new
standard product ECU for multiple customers, where both the ECU System
Engineering/Design and the ECU Development Engineering functions are internal to
the Tier 1, usually as different departments. Similarly, in an OEM with an internal ECU
Development Engineering organization, it will act as an internal Tier 1 ECU supplier.

The virtualization of ECU Specifications takes the form of Executable Specification
Models or Virtual Specification Prototypes developed and run in a virtual environment
like VLAB. This is done either by the ECU System Engineering/Design team
responsible for developing the specifications, or by the ECU Development team
responsible for the implementation, test, and supply of the ECU. In either case, they
serve the role of a very first prototype realization of the ECU, or a Proto 0, as they are
known within the context of contemporary ECU supply chain development project,
which involve so called Proto 1, Proto 2, and Proto 3, phases to final manufacturing
and release.

In the example given in Fig. 7, a low-level engine control subsystem for a diesel
engine is defined in 150 pages of paper specifications. A virtual specification prototype
in VLAB, of the integrated software and hardware behavior described in these 150
pages, is implemented in about 3,000 lines of Python/SystemC code, in a fraction of the
time and effort required to implement the same specification as prototype software and
hardware. The virtual specification prototype implements the same software API

Fig. 6. Virtual platform for ECU software calibration test of unmodified ECU binaries in a
closed loop with engine models and INCA™ calibration software.

Virtualization Based Development 303



interfaces and function as the prototype ECU. The application software can therefore
link with the virtual specification prototype using the same target tools chain and
execute the same as on the prototype ECI. In addition, on the hardware side, the virtual
specification prototype senses and generates the same signals as the hardware would.
This allows a virtual specification prototype to be used instead of the first
hardware/software prototype to validate the analysis and understanding of the system
requirements and specifications by the implementation team, saving time, costs, and
expensive hardware based trials and tests.

Fig. 7. Engine control low level software (BSW), executable specification models, (a) Example
from the reference paper specification, obfuscated to protect proprietary information, (b) Engine
position module with SW/HW interfaces, (c) Integrated engine position and fuel injection control
sub-system in an open loop test bench, with Crank/CAM generator and an Injection Driver ASIC
emulation model.

304 J. Yantchev and A. Parashkevov



Test Specifications and Procedures. Once an ECU functional specification, or CTR,
has been virtualized and a test bench built around it, as shown in Fig. 7, it is possible to
implement all ECU test specifications, or CVR test procedures, as executable test
software scripts, as illustrated in Fig. 8. This is akin to virtualizing the paper test
specifications, which are in the form of human readable test procedures, as executable
test scripts. The entire CVR plan can be implemented, or virtualized, during the
Specification Analysis phase, and CVR test cases programmed, run, debugged, and
validated in the virtual test environment with the virtual CTR specification prototype.

Types of Virtualizations. The purpose of these examples in this section is not to
provide a comprehensive introduction to the technology and methodology of virtual-
ization. Rather, it is to illustrate that the means for virtualization are diverse and that the
essential requirement is not that we use any particular rigid approach or a particular
type of software representation, but only that a software representation, suitable for the
intended purpose, can be developed and used with the desired effect.

For example, for the virtualization of hardware we may use an interface stub, a
function emulation model, a detailed specification accurate hardware simulation model,

Fig. 8. Virtualization of ECU test procedures, (a) Sample test procedure from ECU CVR test
specification document, in English, (b) The same realized as a VLAB Python test script in for a
virtual test bench with a virtual specification prototype of the corresponding CTR functional
specification.

Virtualization Based Development 305



a virtual prototype, or any other software abstraction and simplification of the hardware
operation or function, which is suitable for the purpose. can be a valid means for
virtualization for embedded development and test.

In the cases described in this section, abstracting away all detail unnecessary for the
target purposes of virtualization, thereby simplifying the effort and cost, is of the most
importance. This requires a good understanding of the purposes and goals of virtual-
ization as well as a good understanding of the relevant function of the device being
virtualized. The goal is to minimize the cost and time and maximize the return on
investment in virtualization, which is measured in terms of improvements in the
development process, such as improvements in cycle time, costs, quality, performance
and even feasibility.

Such software representations for virtualization are sometimes referred to by several
different terms. In some cases, different terms are applied to the same type of repre-
sentation. In other cases, different terms denote truly different types of software rep-
resentations and virtualizations. The most common terms used in the case of
virtualization for development are Model, Virtual Component, Virtual Prototype, and
Virtual Platform. The term Model is perhaps the most generic name and is widely used
to describe any type of software representation of a component or system being vir-
tualized. For example, as in ‘model of an ECU,’ or ‘model of a CAN network,’ or
‘model of a Crank/CAM generator.’ Virtual Component is a type of model with the
purpose of being a building block in a bigger virtual environment. Virtual Prototype is
an all-in-software implementation of a design specification usually for the purpose of
analyzing the design specification, learning, and evaluating or assessing the possible
implementation choices and paths, or for use in a wider virtual environment in con-
junction with other virtual components. A Virtual Platform, or VP, on the other hand, is
usually an environment comprising one or more models or virtual prototypes,
assembled together, operating potentially in different configurations and modes, and
usually integrated with simulation software and user tools. They are typically used for
complex and multiple purposes, generally to ‘provide a platform’ for carrying out some
development task, such as for development and test of software, architecture and
performance analysis, or for fault injection and functional safety analysis.

In contrast, a Virtual Machine, or VM, is used in the virtualization of a host for
runtime in the field, as opposed to virtualization for development. At this time, we will
not extend our scope to cover such VMs for field runtime use, but will focus on the
development phase of a new embedded system.

Virtualization vs. Modeling. There is commonality and overlap between the two
concepts and there are differences, though any distinction is not a clear cut one and
more a matter of purpose and method. From the point of view of this paper, virtual-
ization is the broader concept and it includes modelling as a special case of
virtualization.

In general, the goal of modelling is to create computer based models which are
intended to capture faithfully the function, and may be the structure and other important
aspects, of a component or system being studied or designed. For existing systems, this
is done either in order to study and analyze or to simulate and reproduce their oper-
ation. For example, the case of plant models used in a test bench. During new system

306 J. Yantchev and A. Parashkevov



design, models are used in order to capture and develop a new design, for example a
new controller design for a new engine. In Model Based Design, a model-centric
development methodology, the starting point and the scope of modeling is to model the
system under design at the system level and then perhaps find a path to implement that
system design model in the final product.

In the specific case of virtualization during the system design phase, i.e. virtual-
ization of system specifications and designs, the goals and use cases of virtualization
overlap with those of modelling in Model Based Design. Virtual specification proto-
types and executable specification models are developed for similar or the same pur-
poses as system models in Model Based Design. To model, simulate, and analyze the
specification. To serve as a reference for test development and during design imple-
mentation. And, for possible design refinement into more detailed models in moving
towards implementation.

However, virtualization as defined here, has broader goals and scope than the design
phase. Like Model Based Design, virtualization includes modeling and use of design
models in the system design phase; however, it extends further than the scope of
system design and targets wider application in all end to end phases of the development
process and to all elements of the development environment.

Virtualization involves replacing any component or system in the development
process with any suitable type of software representation fit for a particular purpose in
the development process; the goal is to improve the development process by turning it
into a software based process, accelerating and automating any, potentially all,
development tasks. Any software representation, however imperfect, of the component
or system it replaces, which fits this purpose, is a valid means of virtualization for
development. For some purposes, detailed models will be required, such as in the case
of virtual platforms of hardware for the purpose of development of very low level,
hardware specific, real time software, where the detailed operation of the hardware
needs to be modelled in order to simulate and test the interactions between the software
and the hardware. In other cases, little more than an empty shell may be sufficient.
There is not one starting point for virtualization of development; any task or any phase
in the development process may become the target of virtualization in order to
accelerate and automate the development and test. For example, the ECU software
verification and validation (V&V) test environment of the Integration and Test team
may be virtualized for the purpose of automating and parallelizing the test execution of
the already developed target software, regardless of the availability models of the
system or of the software or the lack thereof such models.

3 Virtualization Based Development

Virtualization-Based Development (or VBD) is a methodology for embedded devel-
opment that leverages virtualization to establish an all-in-software development envi-
ronment and a software-based process in all phases, from specification through
architecture design, implementation, validation, optimization, to field release and
support. Critically, VPD enables the application of modern software tools, method-
ologies, and processes to embedded development. This in turn allows a significant

Virtualization Based Development 307



increase in development productivity, corresponding reduction in costs and cycle time,
as well as an increase in the quality, reliability, and predictability of the development
process and its resulting artifacts.

The central method of VBD is to look for elements in the embedded development
process which are not in software form and hence constrain the development process;
devise process improvements which benefit from replacing these elements with soft-
ware representations; identify the simplest possible virtualizations that support the
identified uses; asses the feasibility/costs/benefits as well as the time to implement;
deploy and exploit all the scalability, automation, and all other flexibilities of software
environments and processes. By turning all elements of the embedded development
environment into software, all the tools, methods and processes for software engi-
neering in a desktop environment become available in the embedded development
process and can be leveraged alongside the hardware based methods, tools, and
processes.

Defined in this way, VBD can be applied either, in a case by case way to the tasks
or phases of development, where the greatest improvement can be made, or, in an end
to end way replacing or supplementing all hardware based development processes. In
the earlier section introducing the concept of virtualization, point examples of virtu-
alization and applications of virtualization were described addressing one or another
development task. In this section, we will take an end to end view and will outline how
virtualization can be applied in all phases of the end to end development and how VBD
processes in different phases integrate into an end to end VBD flow.

We will describe the concept of a VBD flow within a simplified high level ECU
development process. To cover some of the complexities inherent in modern ECU
development, we will assume that the sample ECU project involves more than one
commercial entity. On one side, the demand side, an OEM specifying the requirements,
commissioning the ECU, and conducting the ECU acceptance tests, system integration
and validation tests involving the ECU and the rest of the vehicle engine system. On
the other side, the supply side, a Tier 1 ECU company designing and implementing the
ECU module, including the hardware and software, conducting internally verification
and validation tests in preparation for release to the OEM. We will also allow for the
possibility that some of the ECU semiconductor hardware, such as custom MCU and
ASICs, are co-developed alongside by a third commercial entity, a semiconductor
company. The tasks and processes involved in such a large development project
involving several companies are on a scale of complexity and detail which cannot be
adequately covered in a limited paper such as this one. We will attempt to be close to
the true picture in the outline, but in the detail we will at most hope to somewhat
approximate and resemble the structure and contents of actual ECU projects of this
scale.

First, let us consider the target for development in an ECU development project, the
ECU module. As Fig. 9 illustrates, the ECU module comprises integrated hardware and
software. Hardware, such as boards with MCU, ASIC, and other electronic and
electro-mechanical components, is integrated with software, itself comprising a com-
plex multi-layer stack from the lowest level device drivers and a next layer of hardware
abstractions and complex drivers, through OS, middleware, and run time environment
layer, to application level tasks and supporting services.

308 J. Yantchev and A. Parashkevov



This is complex software. It requires a great deal of effort to develop and test. Much
of the complexity of the software arises from the complex and intricate interactions of the
software with the hardware, which are required to implement and deliver the complex
integrated ECU functions, including sensing and driving complex signals. The rest of the
complexity is inherent in the complex algorithms and functions of the ECU itself.

Now, referring back to the discussion on the contrast between Model Based Design,
and Virtualization Based Development, we can draw out a helpful illustration. At best,
MBD will involve the use of a model to design and validate the system design,
followed by a process of refinement of this system design model into a level of detail
and structure, from which generation of application level code is possible, either by
automated tools or manually. Therefore, the scope and goals of MBD in Engine
Control ECU development are limited only to the development of the application
software component of the ECU software stack, the box in the top left corner of Fig. 9,
labelled “OEM Controller Application SW.” The development of the complex
remaining layers and components of the ECU software stack are beyond the scope and
goals of MBD and are in fact assumed to be somehow made available as the target
environment for the application level code generated by MBD. However, in contrast,
while MBD is of no help in the development of the rest of the ECU software, hardware,
and the integrated ECU module as a whole, the scope and goals of Virtualization Based
Development, or VBD, extend to include precisely these activities as well. Any vir-
tualization that allows the development of any of the ECU and ECU software or
hardware in an all-in-software environment is within the scope and goals of VBD.

Consider the high level ECU development flow in Fig. 10. The ECU system
function is designed and specified by the OEM. If system level models are developed

Fig. 9. Engine systems ECU development targets the development of (a) ECU software, and
(b) ECU hardware module.

Virtualization Based Development 309



and available within an MBD process, they may be supplied as well, to be used by the
Tier 1 to implement these, or, to be used to test the rest of the ECU software and
hardware. A specification, a Controller Technical Requirements, or CTR, a human
readable paper document of some form, is produced by the OEM and supplied to the
Tier 1. A specification of how the ECU controller is to be validated by the Tier 1 and
accepted by the OEM may also be produced in the form of a Controller Validation
Requirements, or CVR, document, which lists the various test procedures that need to
be carried out by the Tier 1, along with the expected results, and this CVR document, is
also supplied to the Tier 1 as a supplement to the CTR specifications. An application
level test software layer may be specified or supplied by the OEM, to be used to test the
ECU deliverable by the Tier 1.

For simplicity, we will assume that the application level functions and software are
to be implemented internally by the OEM and we will focus on the development flow
for the rest of the ECU software and hardware developed and supplied by the Tier 1. In
other words, here, in terms of our picture in Fig. 9, we will focus on everything but the
development of the “OEM Controller Application SW.” The OEM will be responsible
for the integration of the OEM Controller Application SW with the rest of the ECU
software, for the test of the whole integrated ECU module in the system of the vehicle,
for the validation of the ECU operation against the original system requirements and
design, and for any changes and updates to the ECU requirements and specifications as
a result of these test and validation activities or due to other changes in the OEM ECU
product plans. These are key tasks and responsibilities within the overall end to end
ECU flow, but we will leave them at the periphery of our scope in this introduction of
VBD and contain the focus of our description to the process inside the Tier 1, from the
receipt of a CTR/CVR specification through the development, test, and validation of a
new ECU module, and the delivery to the OEM, including any feedback from the OEM
test and validation processes.

The two processes, those running at the OEM, and, on the other side of the line,
those run by the Tier 1, are illustrated at a high level on Fig. 10. Usually, an ECU
development project by an OEM, for a new generation ECU and a new engine, takes 3
to even 4 years elapsed, and involves several hardware and software prototype phases,
may be as many as 3 or 4 such phases. In each phase, a new hardware module is
designed, implemented, and manufactured, and a new software build is developed,
integrated with the hardware, and the two tested together or separately to some extent.

The Tier 1 is responsible for the development and supply of each ECU prototype. In
some cases, the sequence of prototypes is planned, as part of an incremental develop-
ment and test plan, or, in other cases, unplanned prototypes may be required due to
implementation issues or unplanned specification changes. A prototype cycle may take 1
to 1.5 or even 2 years, from start to end of validation and feedback from the OEM.

As Fig. 10 illustrates, the ECU prototype development flow is largely sequential.
The key elements and dependencies limiting this flow are the limitations of largely
paper based, human readable, but machine un-executable, specifications and designs,
and the dependencies on hardware availability for the development and test of any
software and for the development and validation of any tests. Due to these process
limitations and dependencies the overall process suffers from the following:

310 J. Yantchev and A. Parashkevov



– Working and executable builds of the ECU are available and can be run and tested
only very late in the process.

– Testing starts late, which means issues accumulate over a long period of and any
essential learnings and feedback from internal and from OEM trials and tests
become available very late.

– The cost of identifying, diagnosing, and fixing any functional or design issues is
disproportionately high and the timeframes for validation are long.

– Project planning is complex and prone to inaccuracies, as it involves end to end
timeframes, risks, and complexities of work flows.

VBD seeks to improve the development process by leveraging virtualization.
Virtualization, brings the following new capabilities to the development process:

– Remove from the schedule dependencies due to limitations in availability.
– Replace missing components with executable alternatives.
– Replace human readable but not executable components with executable

alternatives.
– Allow essentially unlimited replication and supply of development components for

scalability of concurrent execution and engineering.
– Replace manual processes involving hardware and paper with processes involving

software which can execute much faster and be automated.
– Increase the level of visibility into the internal operation and structure of the system,

the number of points which can be observed and traced.
– Increase the volume and diversity of data that can be collected and analyzed both

manually and automatically.

Fig. 10. End to end ECU development process, including OEM, or demand side, processes of
ECU design, specification, validation and acceptance, as well as calibration, and Tier 1, or supply
side, processes for implementation of these specifications, verification, and delivery to the OEM.

Virtualization Based Development 311



– Allow configurations, operation, and tests which are not possible with real hardware
or very difficult to create or impossible to replicate reliably.

As a result, in a VBD process:

– Tasks can start earlier.
– Tasks can be scheduled and completed in a different order.
– Tasks can proceed faster due to scaling of resources and automation.
– Working, executable builds can be created and tested much earlier, more frequently,

and independently from the rest.
– Tests can be developed and validated earlier and be available to assist development

rather than simply test after the fact.
– Data and feedback are available much earlier, in greater volume and in a form

amenable to more complex analysis algorithms and procedures.
– Issues are identified and resolved earlier, development proceeds with much fewer

latent issues and accumulates along far less risk.
– Learning happens earlier, and in turn adaptation and improvement of plans and of

implementations can occur much earlier.

Figure 11 below illustrates how a VBD process can be applied to an ECU proto-
type development cycle and the transformation of work flow and time frames this in
turn can achieve.

Fig. 11. Improvement in ECU prototype development schedule via VBD, comparing sequential
conventional development process above to the concurrent development process possible with
VBD.

312 J. Yantchev and A. Parashkevov



In the VBD development process, we observe, most notably, that:

– Test development, debug and validation begin as early as the start of the Specifi-
cation Analysis phase and continue throughout development, in a test driven
methodology.

– Software development can begin before hardware development begins and before
hardware is available to run the software.

– Hardware development can be delayed, without delaying software development, to
allow as much opportunity for test and learning as possible before committing to
costly development and manufacture of hardware.

– Software/hardware integration can begin soon after software development begins
and proceed well before the hardware development begins.

– Software/hardware tests and validation begins and proceeds early.
– Tasks take less effort due to automation and ongoing issue resolution.
– Some tasks may be extended in time to allow concurrent incremental development

with other tasks. For example, test development can start earlier and proceed for
longer alongside the software and hardware development and integration to allow
the addition of new tests on the way.

In general, significant reductions in prototype cycle time are possible, with a
reduction in overall cycle time of 30% to 40%, or even as high as 50%, being a realistic
target for actual commercial ECU projects.

At the next level up, the level of the OEM ECU development process, one or more
prototype cycles can be eliminated altogether, with the corresponding savings in cycle
time and cost. The OEM ECU test and system validation process accelerates by earlier
starts in each phase and much more rapid rate of coverage and quality convergence.
Consider the example in Fig. 6 (ECU Software Calibration test) where the ECU
software calibration test, usually of an average of 3 months or more in duration, can
begin and mostly complete, with the final software build before the final ECU hardware
is developed or manufactured. The enabler for this acceleration and parallelization of
work flow in VBD is virtualization, namely the transformation of the development
environment into an all-in-software virtual development environment.

The VBD environment elements and platforms are developed prior or, as shown in
Fig. 12, just-in-time alongside the other development tasks. In the case of an agile,
iterative, continuous integration and test, development process, the overall develop-
ment may be broken down into many short iterations, or sprints, each potentially as
short as 1 or 2 weeks. New features are added incrementally, one or more at a time in
each sprint, in a concurrent engineering process where in parallel the new feature
specification is prototyped for reference, new tests are developed and added to the test
suite, new software is developed to implement the feature, and new hardware virtu-
alizations are added to support the feature in the virtual development environment. All
these tasks proceed in parallel and all coming together at the end of the iteration cycle,
where everything is integrated and tested, progress confirmed or corrective feedback
and lessons learned derived.

Virtualization Based Development 313



This is an important point and critical to the feasibility and application of VBD in
practice. Virtualization requires time and effort, and there is a cost associated with that.
The benefits are overall reduction in ECU development cycle time, in development
costs, and improvements in product quality, reliability, and performance. However,
effective application of VBD will require that the benefits outweigh the costs of vir-
tualization. Here is one of the key challenges and pre-requisites for the successful
deployment and adoption of VBD. The cost and lead time for virtualization need to be
reduced as much as possible, the process of virtualization itself to be simplified and
automated as much as possible, and the availability and reuse of virtual components
increased as much as possible. Good architecture and design of the virtual development
environment is key to selecting the rights abstractions and simplifications that are
sufficient for the intended uses, on one hand, and, on the other hand, require the least
amount of time and cost to create.

Figure 13 below summarizes some key examples and applications of virtualization,
for select phases and tasks in the ECU development flow, with a focus on the ECU
software development process. For this listing, we revert back to using the picture of
the conventional serial waterfall development process. We do this for illustration and to
present this from the perspective of someone trying to improve their conventional
process towards a VBD process and looking for guidance as to where the opportunities
are and what the suitable virtualizations are.

Fig. 12. VBD requires a virtual development environment to be created before or in time with
the other tasks.

314 J. Yantchev and A. Parashkevov



An end to end VBD process for ECU development would involve a wide range of
virtualizations. In the example here, Fig. 13, the list includes:

– System specifications, requirements and designs, including algorithmic level, but
also including concrete software and hardware interfaces.

– Architecture abstractions of systems, software and hardware, for architecture level
design exploration and performance analysis, capable of running both without
software, as software may not yet be available, and with target compiled software,
where such exists.

– Software virtualization and real software in the loop, from target independent
application level tasks, through RTOS, middleware, control software, communi-
cations protocol software, through to low level target specific driver software, and
software APIs and interfaces.

– Hardware virtualizations able to run accurately target compiled software builds,
including virtual boards with MCUs, memories, I/O, buses, interconnects, ASICs,
analog/mixed signal components, sensors, actuators, and other hardware interfaces,
including for debug and test.

– Tests, test procedures, test benches, test scenarios, including fault injection, test
instruments, debug and test results, analysis, and visualization.

– Data, signals, events, interactions, concurrency, and time, from system level, for
example the event of setting a target RPM value, through CAN messages com-
municating RPM values, down to software variable values, peripheral register bit
settings, interrupt signals of sufficient timing resolution to preserve the order of
interrupt events, and waveforms at IO pins at clock cycle edge accuracy.

Fig. 13. Key virtualizations and applications of virtualization in the ECU development flow.

Virtualization Based Development 315



This is a wide ranging list. The concerns of the reader may be that the overheads
and complexities of establishing and operating such environment and process are
overwhelming and outweigh the benefits. There is a clear danger of that. There several
answers to this concern. VBD is not an all or nothing methodology. It can be applied
piecemeal to select tasks or phases in the development process, where the greatest
benefit is to be derived. For example, to accelerate software development ahead of
hardware availability. Or, to establish an automated regression test and test coverage
environment for the software. Or, for fault injection and functional safety analysis. Any
of the examples in Fig. 13 can be established profitably on its own.

More importantly, it is our belief, and our purpose, that methods, tools, and pro-
cesses can be developed to systematically simplify the complexity and reduce the time
and effort required to establish a VBD environment and process, which will deliver
overall benefits far outweighing any costs.

4 Virtualization Tools and Operating Environments, VLAB

To make virtualization and VBD a practical proposition, we need:

– Virtualization tools, for the rapid and cost effective creation of virtual components
and the assembly of virtual platforms, supporting all levels of abstraction and detail
required by the end to end use cases, from the abstract to the concrete. From the
highest level of embedded system complexity and abstraction, down to the concrete
levels of target compiled software images and detailed hardware specifications,
where direct interoperation with detailed implementation tools is possible, such as
target software toolchains and hardware design implementation environments.

– Virtual operating environments, for the operation of this wide range of virtual
components and platforms, and for the user programmable build, configuration, run,
command, control, and instrumentation, including the ability to inject faults and
simulate failures. Open and interoperable with other tools and environments, such
as system simulation tools, software debug and analysis tools, hardware develop-
ment environments, test tools, hardware in the loop simulations tools, and real
hardware.

– Automation tools for the automation of development tasks and processes in the
virtual environment, including complete use case pre-integrated solutions, such as
for automation of software build, run and debug tasks, automated regression testing,
automated test generation and test coverage analysis, or functional safety testing
against a specified standard.

VLAB™, short for Virtualization LABoratory, is perhaps the first tool environment
which targets this wide, end to end, range of virtualizations, and seeks to enable an end
to end virtualization-based development process, with a focus on the embedded soft-
ware engineer as the target virtualization engineer and user, not the specialist modeling
engineer.

VLAB seeks to achieve this by leveraging general purpose software engineering
languages and methodologies in the process of virtualization and operation of a virtual
environment, not by introducing specialist modeling notations and environments.

316 J. Yantchev and A. Parashkevov



– Python is used, for its simple syntax, object orientation and modularization capa-
bilities, to provide a powerful interactive user environment, both for programming
and automating the creation and operation of a virtual environment, and for
developing virtual components and platforms more rapidly. VLAB contains a full
standard Python stack, including not only the standard language and libraries, but
also the majority of the popular additional packages for scientific computations,
visualization, and software development.

– SystemC is used, at the most basic level, to represent in software the structure,
behavior, communications and concurrency, of components and systems, including
of hardware systems, VLAB uses the paradigm of SystemC, the industry standard
library extensions of SystemC/TLM and SystemC/AMS to the standard C++ lan-
guage. A programmable SystemC simulator operating in a standard desktop envi-
ronment, is used to simulate the operation of such virtual components and systems.
However, SystemC is a rather low level language for virtualization. VLAB builds
on the fundamentals of SystemC by providing many higher level abstractions of the
SystemC constructs, most notably in Python. The VLAB environment significantly
simplifies the process of virtualization, of creating new virtual components and
assembling virtual platforms and environment using Python.

– Any other software library can be imported and linked within VLAB with the rest of
the virtual environment, to leverage existing virtualizations in other languages or for
data analysis and other computations, e.g. in MATLAB™ and FORTRAN. Also,
most significantly, embedded target languages, such as C can be used, including to
model software or as target compiled software.

This makes VLAB a very flexible and powerful virtualization, automation, and
development tool, and makes it accessible to a very large pool of engineers. It inte-
grates well with industrial scale, production grade, embedded development processes,
including the test, verification and validation processes.

At the same time, the use of general purpose programming languages, while an
advantage in the adoption by development engineers, presents challenges in the for-
malization of the underlying concepts and methods. In turn, this limits the opportunities
for automation of the process of virtualization and in the application of virtual software
representations and models to the automation of design, analysis, test generation, and
verification. This is an area we would like to collaborate with and seek help from
academic research.

5 Conclusions

We introduced Virtualization Based Design (VBD) as a methodology for converting
the embedded system development process into an all-in-software process, with the
goals of acceleration and automation. We contrasted VBD to the well-known Model
Based Design (MBD) methodology in the area of ECU controller development. The
scope of VBD includes MBD but extends further than system design and targets wider
application in all phases of the embedded development process and targets all elements
of the development environment. Critically, VBD enables the application of modern

Virtualization Based Development 317



software tools, methodologies, and processes to embedded and deeply embedded
systems in general and to ECU development in particular. We provided a high level
overview of VLAB, a software desktop environment that supports end-to-end, indus-
trial scale virtualization of embedded software and system development.

References

1. Broy, M., Kirstan, S., Krcmar, H., Schätz, B., Zimmermann, J.: What is the benefit of a
model-based design of embedded software systems in the car industry? In: Software Design
and Development: Concepts, Methodologies, Tools, and Applications: Concepts, Method-
ologies, Tools, and Applications, p. 310 (2013)

2. Why We Model: Using MBD Effectively in Critical Domains. Keynote address at the
Modeling in Software Engineering Workshop (MiSE 2013), May 2013

3. Moriyama, Y., et al.: Application of ISS-less technology to Virtual CRAMAS (SILS). Fujitsu
Ten Tech. J. 32, 3–11 (2009)

4. Lantz, J.: Multi-domain model-driven development. In: MAC 2015 (2015)
5. Charette, R.N.: This car runs on code. IEEE Spectr. 46, 3–11 (2009)
6. VLAB™ documentation and user guides (2016). http://www.vlabworks.com

318 J. Yantchev and A. Parashkevov

http://www.vlabworks.com


Author Index

Broadfoot, Guy 65

Carvalho, Gustavo 65
Chen, Olga 1
Chilton, Chris 18

Foster, Simon 39

Gibson-Robinson, Thomas 65
Guttman, Joshua D. 88

Hansen, Henri 104
Hopcroft, Philippa 65

Jifeng, He 124

Kwiatkowska, Marta 18

Lazić, Ranko 144
Lowe, Gavin 65, 162

Meadows, Catherine 1
Mislove, Michael 185

Moller, Faron 18
Morgan, Carroll 203

Nogueira, Sidney 65

O’Halloran, Colin 65

Parashkevov, Atanas 294

Qin, Li 124

Ryan, Peter Y.A. 223

Sampaio, Augusto 65

Totzke, Patrick 144
Trivedi, Gautam 1

Valmari, Antti 246
van Glabbeek, Rob 272

Wang, Xu 18
Woodcock, Jim 39

Yantchev, Jay 294


	Preface
	Bill Roscoe, on His 60th Birthday
	A Tribute to Bill Roscoe, on the Occasion of His 60th Birthday
	Herding Cats, Oxford Style
	Contents
	Stealthy Protocols: Metrics and Open Problems
	1 Introduction
	2 General Framework
	3 Overview of Methods
	3.1 Higher Layer Network Covert Channels
	3.2 Wireless Physical Layer Channels
	3.3 Characteristics of Network Covert Channels

	4 Stealthiness Metrics
	4.1 Throughput and Capacity
	4.2 Detectability
	4.3 Putting It All Together: Steganographic Capacity and Asymptotic Bounds
	4.4 Desirable Metrics for Variables and Cover Sources

	5 Open Problems
	References

	A Specification Theory of Real-Time Processes
	1 Introduction
	2 Minimal TA Extension for Timed Specification
	2.1 Timed I/O Automata (TIOA)
	2.2 Timed I/O Transition Systems (TIOTSes)
	2.3 A Game-Based Interpretation
	2.4 Conventions on Disabled Transitions
	2.5 Liveness and Safety
	2.6 Specification Composition: Generic Synchronised Product

	3 Parallel Composition, Refinement and Determinisation
	4 A Story of Two Games
	4.1 Timed Strategies
	4.2 Two Games

	5 Realisable Specification Theory
	5.1 Unrealisability
	5.2 Incompatibility
	5.3 Realisable Specification and Coarsened Refinement

	6 Conjunction, Disjunction and Quotient
	7 Declarative Theory of Contracts
	8 Comparison with Related Work
	9 Conclusion and Future Work
	References

	Towards Verification of Cyber-Physical Systems with UTP and Isabelle/HOL
	1 Introduction
	2 Algebraic Foundations of Isabelle/UTP
	2.1 Lenses in Brief
	2.2 Expressions
	2.3 Meta-logical Functions
	2.4 Relations and Laws of Programming

	3 Example UTP Theory
	3.1 Static Invariant
	3.2 Dynamic Invariants

	4 Theories of Cyber-Physical Systems
	4.1 Designs
	4.2 Reactive Processes
	4.3 Hybrid Relational Calculus

	5 Conclusions
	References

	FDR: From Theory to Industrial Application
	1 Introduction
	2 Background
	3 A Brief History of FDR
	4 Analysis of Security Protocols
	5 Assuring Critical Systems
	6 Scalable Verification of Embedded Software
	7 Industrial Test Case Generation
	8 Conclusion
	References

	Information Flow, Distributed Systems, and Refinement, by Example
	1 Introduction
	2 An Example System
	2.1 The EpiDB idea
	2.2 Simplest EpiDB system
	2.3 The Intended Information Flow

	3 Information Flow in the Frame Model
	3.1 Frames and Executions
	3.2 Local Runs and Compatibility
	3.3 Blurs to Limit Information Flow

	4 Questions and Answers
	5 Refining EpiDB
	6 Conclusion
	References

	Abstractions for Transition Systems with Applications to Stubborn Sets
	1 Introduction
	2 Theoretical Preliminaries
	3 Abstraction
	4 Stubborn Set Reductions
	4.1 State-of-the Art for Finite Traces
	4.2 Stable Failures, Divergences, and Branching Time
	4.3 Considerations for Computing Stubborn Sets

	5 Stubborn Sets and Abstraction
	6 Discussion and Future Work
	References

	A Hybrid Relational Modelling Language
	1 Introduction
	2 A Hybrid Modelling Language
	3 Semantical Model
	3.1 Alphabet
	3.2 Healthiness Conditions
	3.3 Atomic Commands
	3.4 Dynamics of Continuous Variables
	3.5 Combinators

	4 Conclusion
	References

	What Makes Petri Nets Harder to Verify: Stack or Data?
	1 Introduction
	2 Pushdown Vector Addition Systems
	3 Tower-Hardness
	4 Unordered Data Petri Nets
	5 Counter Libraries in UDPNs
	6 Bootstrapping Counter Libraries
	7 Ackermann-Hardness
	8 Conclusion
	References

	Analysing Lock-Free Linearizable Datatypes Using CSP
	1 Introduction
	1.1 Related Work
	1.2 CSP

	2 The Lock-Free Queue
	3 The CSP Model
	3.1 Nodes, blue!50!blackHead, blue!50!blackTail, and the Constructor
	3.2 Enqueueing and Dequeueing Threads
	3.3 Recycling Nodes
	3.4 The Complete System

	4 Analysis
	4.1 A Linearizable Queue
	4.2 Lock-Freedom and Dangling Pointer Freedom
	4.3 Null Reference Exceptions
	4.4 Using Symmetry Reduction
	4.5 Results
	4.6 Alternative Designs

	5 Conclusions
	References

	Discrete Random Variables Over Domains, Revisited
	1 Introduction and Related Work
	1.1 The Plan of the Paper

	2 Background
	2.1 Domains
	2.2 M{0,1} as a Domain Monoid
	2.3 The Subprobability Monad
	2.4 Domains of Partial Maps
	2.5 Domain Random Variables

	3 A Monad of Continuous Random Variables
	3.1 Modeling Coin Flips
	3.2 The Inevitability of Nondeterminism
	3.3 Constructing a Monad
	3.4 CRV and Continuous Probability Measures

	4 Summary and Future Work
	References

	A Demonic Lattice of Information
	1 A Deterministic Lattice of Information --- The Original
	1.1 Historical Introduction and Intuition
	1.2 Definition of Secure Refinement for Channels
	1.3 Testing, Soundness and Completeness

	2 A Probabilistic Partial Order (Not Lattice) of Information
	3 A Demonic Lattice of Information
	3.1 Basic Structure
	3.2 Spies in Action: An Example of Demonic Nondeterminism
	3.3 Testing, Soundness and Completeness
	3.4 Justifying Refinement's Definition

	4 ``Weakest Pre-tests'' and Source-Level Reasoning
	5 Conclusion
	References

	A Brief History of Security Protocols
	1 Introduction
	2 Security Protocols
	3 Cryptographic Primitives and Notation
	3.1 Symmetric Cryptography
	3.2 Public Key/Asymmetric Cryptography

	4 Key Distribution and Establishment
	4.1 Needham-Schroeder Secret Key Protocol
	4.2 NSPK

	5 Diffie-Hellman Based Key Establishment Protocols
	5.1 Authenticating Key Establishment
	5.2 Implicit Authentication
	5.3 Password Authenticated Key Establishment

	6 HISPs
	7 Analysis Frameworks and Tools
	7.1 BAN-Logic
	7.2 Getting Off the BAN-Wagon
	7.3 The Dolev-Yao Model
	7.4 Process Algebra and Model-Checking
	7.5 Provable Security

	8 Composability and Refinement
	8.1 Universal Composability

	9 Quantum Computing
	10 Quantum Crypto
	11 Post-quantum Crypto
	12 Voting Protocols
	13 Socio-Technical Aspects of Security
	14 Conclusions
	References

	More Stubborn Set Methods for Process Algebras
	1 Introduction
	2 System Models and Basic Stubborn Sets
	3 Stable Failures
	4 Visibility-Driven Stubborn Sets
	5 Traces and Always May-Stabilizing Systems
	6 Failures, Tree Failures, and Fair Testing
	7 Automata-Theoretic Visibility
	8 Divergence Traces
	9 Conclusions
	References

	A Branching Time Model of CSP
	1 Introduction
	2 CSP
	3 The Failures-Divergences Model of CSP
	4 A Complete Axiomatisation
	5 Other Models of CSP
	6 Divergence-Preserving Coupled Similarity
	7 Congruence Properties
	8 A Complete Axiomatisation of CS
	9 Soundness
	10 Completeness
	11 Conclusion
	References

	Virtualization Based Development
	Abstract
	1 Introduction
	2 Virtualization
	3 Virtualization Based Development
	4 Virtualization Tools and Operating Environments, VLAB
	5 Conclusions
	References

	Author Index



