
Chapter 6
Federated Simulations

Wim Huiskamp and Tom van den Berg

Abstract The integration of simulation components into a federated, interoperable
simulation environment introduces a large number of engineering challenges. Many
of these challenges are technical issues, but there are also several challenges from
the project management perspective. For example, when simulation components are
provided by different organizations from different domains there is a need to ensure
coordinated and timely interaction among these organizations, and a need for a
common view on the engineering process. Recognizing and mitigating these
technical and project management issues are critical to controlling risk across a
simulation development effort. This chapter provides an overview of several
standards that have been developed over time in the area of distributed (or feder-
ated) simulation. These standards address both simulation environment architecture
and engineering process. This chapter starts with an introduction to distributed
simulation, followed by an overview of:

• the High Level Architecture (HLA), a technical standard for distributed simu-
lation environments;

• the Distributed Simulation Engineering and Execution Process (DSEEP), an
engineering process to address the needs of a very large and diverse user
community in the engineering of distributed simulation environments;

• the Federation Agreements Template (FEAT), a standardized format for
recording simulation environment agreements to increase their usability and
reuse.

W. Huiskamp (&) � T. van den Berg
Netherlands Organisation for Applied Scientific Research (TNO),
Oude Waalsdorperweg 63, 2597 AK The Hague, The Netherlands
e-mail: wim.huiskamp@tno.nl

© The Author(s) 2016
R. Setola et al. (eds.), Managing the Complexity of Critical Infrastructures,
Studies in Systems, Decision and Control 90,
DOI 10.1007/978-3-319-51043-9_6

109

1 Introduction

Critical Infrastructures are complex systems of systems. They are interdependent
and if one part fails there may be cascading effects on other parts in the system,
sometimes with catastrophic results. Different modeling approaches have been
employed to capture their behavior, analyze their interdependencies and vulnera-
bilities, and forecast the effects on other systems, environment and people.
Modelling approaches include agent based modelling, system dynamics modelling,
and input-output modelling.

Developing a single simulation model for such a complex system of systems is a
hard to impossible task. Large monolithic simulation models are generally hard to
re-use and no single simulation model can solve all problems. In some instances
simulation models must be federated in order to be able to analyze the system of
interest, simply because there are no other options. In addition, smaller simulation
models of suitable granularity provide more flexibility and opportunities for model
reuse. Therefore it makes sense to federate disparate simulation models of Critical
Infrastructure in a single simulation environment. This idea is illustrated in Fig. 1,
where three simulation models are connected through some run-time infrastructure.

The integration of simulation models in a federated, interoperable simulation
environment introduces several engineering challenges. Many of these challenges
are technical issues, but there are also challenges from the project management
perspective. For example, when simulation models are provided by different
organizations in different domains, there is a need to ensure coordinated and timely
interaction among these organizations, and a need for a common view on the
engineering process. Recognizing and mitigating these technical and project man-
agement issues are critical to controlling risk across a simulation development
effort.

Determine
Exposed

Area

Determine
Electricity

Loss

Determine
Effect on

PopulaƟon

Water
level

Impacted
area Needs

Some Run-Time Infrastructure

What if?

Fig. 1 Federated models through some run-time infrastructure

110 W. Huiskamp and T. van den Berg

This chapter provides an overview of several standards that have been developed
over time in the area of distributed (or federated) simulation. These standards
address simulation interoperability as well as the engineering of distributed simu-
lation environments.

The structure of this chapter is as follows:

• Section 2 starts with an introduction to distributed simulation and two main
challenges, namely interoperability and composability of simulation models;

• Section 3 provides an overview of the High Level Architecture (HLA), an
interoperability standard for distributed simulation;

• Section 4 introduces the Distributed Simulation Engineering and Execution
Process (DSEEP), an engineering process to address the needs of a very large
and diverse user community in the engineering of distributed simulation
environments;

• Section 5 discusses the Federation Agreements Template (FEAT), a standard-
ized format for recording simulation environment agreements to increase their
usability and reuse;

• And lastly, Sect. 6 provides a summary.

2 Distributed Simulation

2.1 Introduction

Distributed simulation is a key technology in modern simulation systems and refers
to the distributed execution of simulation models in a common synthetic environ-
ment. The simulation models may be located on a set of processing nodes in a local
area network, or geographically spread across different processing nodes connected
through a wide area network. The distributed simulation models execute together as
if they were all combined on a single processing node.

Distributed simulation can contribute to cost-reduction by the reuse of simula-
tion models, increase flexibility by exchanging simulation models, improve scala-
bility, reduce execution times, include hardware or man in the loop that may be
located elsewhere, include simulation assets that are tied to a certain location,
improve quality through the reuse of validated simulation models, etc.

Two major challenges in distributed simulation are to achieve interoperability
and composability of different simulation models, as discussed in the next section.
These challenges are equally applicable to modeling and simulation for Critical
Infrastructures.

6 Federated Simulations 111

http://dx.doi.org/10.1007/978-3-319-51043-9_1
http://dx.doi.org/10.1007/978-3-319-51043-9_1
http://dx.doi.org/10.1007/978-3-319-51043-9_1
http://dx.doi.org/10.1007/978-3-319-51043-9_1
http://dx.doi.org/10.1007/978-3-319-51043-9_1

2.2 Levels of Interoperability

Over the years the topics of interoperability and composability have been discussed
in several papers. In [1] Petty defines interoperability as:

the ability of different simulations, connected in a distributed simulation, to meaningfully
collaborate to simulate a common scenario or virtual world

And composability as:

the capability to select and assemble simulation components in various combinations into
simulation systems to satisfy specific user requirements

Also, as stated in the same paper: Interoperability is necessary but not sufficient
for composability. Composability requires interoperability, but interoperability is
possible without composability, i.e., without the ability to combine and recombine.
For example, two models A and B may be interoperable but it does not make sense
to compose them together if their objectives and underlying assumptions are not
aligned. E.g. the composition of an engine model that produces supersonic aircraft
velocities and a flight dynamics model that is only valid for subsonic velocities,
does not make sense although both models might be interoperable. An example of
composability is shown in Fig. 2: LEGO building blocks are interoperable and
composable.

In [2] Page et al. describe three dimensions to the simulation interconnection
problem:

• Composability—realm of the model (e.g. two models are composable if their
objectives and assumptions are properly aligned).

• Interoperability—realm of the software implementation of the model (e.g. are the
data types consistent, have the little endian/big endian issues been addressed, etc.)

Fig. 2 Composability:
objectives and underlying
assumptions are aligned

112 W. Huiskamp and T. van den Berg

• Integratability—realm of the site the simulation is running at (e.g. have the host
tables been set up; are the NIC cards working properly).

To successfully achieve the cooperative execution of two or more models, each
of these dimensions of the interconnection problem must be “solved”.

Tolk defines in [3] five levels at which simulation models can interoperate.
These levels are called Levels of Conceptual Interoperability (LCIM) between
simulation models. In [4] these levels got expanded to the current seven Levels of
Conceptual Interoperability between simulation models:

• Level 0: no interoperability.
• Level 1: technical interoperability: a communication protocol exists for

exchanging data between participating systems. On this level, a communication
infrastructure is established allowing systems to exchange bits and bytes, and
the underlying networks and protocols are unambiguously defined.

• Level 2: syntactic interoperability: a common protocol to structure the data is
used and the format of the information exchange is unambiguously defined. This
layer defines structure.

• Level 3: semantic interoperability: a common information exchange reference
model is used, the meaning of the data is shared and the content of the infor-
mation exchange requests are unambiguously defined. This layer defines (word)
meaning.

• Level 4: pragmatic interoperability: the interoperating systems are aware of the
methods and procedures that each system is employing. The use of the data is
understood by the participating systems and the context in which the informa-
tion is exchanged is unambiguously defined. This layer puts the (word) meaning
into context.

• Level 5: dynamic interoperability: the interoperating systems are able to com-
prehend the state changes that occur in the assumptions and constraints that each
is making over time, and they are able to take advantage of those changes. When
interested specifically in the effects of operations, this becomes increasingly
important; the effect of the information exchange within the participating sys-
tems is unambiguously defined.

• Level 6: conceptual interoperability: the assumptions and constraints of the
meaningful abstraction of reality are aligned. This requires that conceptual
models are documented based on engineering methods enabling their interpre-
tation and evaluation by other engineers.

The seven levels of the LCIM are shown in Fig. 3, including the three dimen-
sions of the simulation interconnection problem listed alongside the levels.

On the left side of seven levels in Fig. 3 the three dimensions of the simulation
interconnection problem are shown:

• Integratability (level 1): refers to the physical and technical connections between
systems, which include hardware and firmware, and network protocols.

6 Federated Simulations 113

• Interoperability (level 2–4): refers to the simulation and implementation details
of interoperations, including exchange of data elements based on a common data
interpretation.

• Composability (level 5–6): refers to the alignment of issues on the modeling
level.

In [5] Wang et al. use the Levels of Conceptual Interoperability Model (LCIM)
as a framework for conceptual modeling and for descriptive and prescriptive uses.
In Table 1 the implications of the LCIM are listed, showing per level: premise,
information and contents that should be defined, domain, focus, and capability to
compose models.

In the same paper Wang et al. show how the LCIM can be used in a prescriptive
role by providing the requirements that must be satisfied to reach a certain level of
interoperability between simulation models, and engineering approaches on how to
achieve that. The requirements and approaches are summarized in Table 2.

In Table 2 the High Level Architecture (HLA) is listed at levels 1–3. The HLA is
a standard architecture for distributed simulation and is described in more detail in
Sect. 3. According to the LCIM the HLA Runtime Infrastructure (RTI) is listed at
level 1, providing technical interoperability between participating systems.
The HLA Object Model Template (OMT) specification defines the structure of the
information and is therefore at level 2. The HLA Real-time Platform Reference
(RPR) Federation Object Model (FOM) is an example of a standard and reference
object model that conforms to the HLA OMT specification, providing a common

Fig. 3 Levels of conceptual interoperability model (LCIM)

114 W. Huiskamp and T. van den Berg

T
ab

le
1

Im
pl
ic
at
io
ns

of
L
C
IM

(a
da
pt
ed

fr
om

[5
])

L
ev
el

Pr
em

is
e

In
fo
rm

at
io
n
de
fi
ne
d

C
on

te
nt
s
cl
ea
rl
y
de
fi
ne
d

D
om

ai
n

Fo
cu
s

C
ap
ab
ili
ty

L
ev
el

6
C
on

ce
pt
ua
l

C
om

m
on

co
nc
ep
tu
al

m
od

el
A
ss
um

pt
io
ns
,

co
ns
tr
ai
ns
,
et
c.

D
oc
um

en
te
d
co
nc
ep
tu
al

m
od

el
M
od

el
in
g

ab
st
ra
ct
io
n

C
om

po
sa
bi
lit
y
of

m
od

el
s

H
ig
h

L
ev
el

5
D
yn

am
ic

C
om

m
on

ex
ec
ut
io
n

m
od

el
E
ff
ec
t
of

da
ta

E
ff
ec
t
of

in
fo
rm

at
io
n

ex
ch
an
ge
d

L
ev
el

4
Pr
ag
m
at
ic

C
om

m
on

w
or
kfl

ow
m
od

el
U
se

of
da
ta

C
on

te
xt

of
in
fo
rm

at
io
n

ex
ch
an
ge
d

Si
m
ul
at
io
n

im
pl
em

en
ta
tio

n
In
te
ro
pe
ra
bi
lit
y
of

m
od

el
s

M
ed
iu
m

L
ev
el

3
Se
m
an
tic

C
om

m
on

re
fe
re
nc
e

m
od

el
M
ea
ni
ng

of
da
ta

C
on

te
nt

of
in
fo
rm

at
io
n

ex
ch
an
ge
d

L
ev
el

2
Sy

nt
ac
tic

C
om

m
on

da
ta

st
ru
ct
ur
e

St
ru
ct
ur
ed

da
ta

Fo
rm

at
of

in
fo
rm

at
io
n

ex
ch
an
ge
d

L
ev
el

1
T
ec
hn

ic
al

C
om

m
on

co
m
m
un

ic
at
io
n
pr
ot
oc
ol

B
its

an
d
by

te
s

Sy
m
bo

ls
of

in
fo
rm

at
io
n

ex
ch
an
ge
d

N
et
w
or
k

co
nn

ec
tiv

ity
In
te
gr
at
ab
ili
ty

of
m
od

el
s

L
ow

L
ev
el

0
N
o

N
o
co
nn

ec
tio

n
N
A

N
A

6 Federated Simulations 115

agreement for many participating systems [6]. The RPR-FOM is therefore at the
semantic level 3. Simulation environment agreements (see Sect. 4, DSEEP step 4)
—although not part of the HLA standard—are at the pragmatic level 4 when they
capture the methods and procedures that each system is employing in using the
data. However, at present simulation environment agreements tend to be mostly
textual and a formal language such as UML, OWL or OWL-S is preferred to
express agreements in order to reach a higher level of interoperability. As can be
concluded from the LCIM, the HLA focuses on network connectivity as well as on
simulation implementation, in particular on syntactic and semantic interoperability
between simulation models. The HLA targets simulation interoperability, and,
currently, much less simulation composability.

Another standard worth pointing out is Base Object Model (BOM) Template
Specification [7] listed in Table 2 at level 5. The BOM Template Specification
defines the format and syntax for describing a BOM. A BOM describes small parts
of the interactions between simulation models as so called “patterns of interplay”
together with a data model that is comparable to the concept of “FOM module”
(described further in Sect. 3.4). The patterns of interplay are implementation
independent descriptions of sequences of events between simulation entities.
The BOM Template Specification can be used to describe the dynamic interoper-
ability between simulation models at level 5.

Table 2 Prescriptive role of LCIM (adapted from [5])

Level Prescription of requirements to reach
this level

Common reference engineering
approaches

Level 6
Conceptual

A shared understanding of the
conceptual model of a system
(exposing its information, processes,
states, and operations)

DoDAF; platform independent models
of the MDA; SysML

Level 5
Dynamic

The means of producing and
consuming the definitions of meaning
and context is required

Ontology for Services; UML artifacts;
DEVS; complete UML; BOM

Level 4
Pragmatic

A method for sharing meaning of terms
and methods for anticipating context
are required

Taxonomies; Ontology; UML artifacts,
in particular sequence diagrams;
DEVS; OWL; MDA

Level 3
Semantic

Agreement between all systems on a set
of terms that grammatically satisfies the
syntactic level solution requirements is
required

Common reference model; dictionaries;
glossaries; protocol data units; HLA
RPR-FOM

Level 2
Syntactic

An agreed-to protocol that can be
supported by the technical level
solution is required

XML-XSD; HLA OMT; interface
description language; WSDL

Level 1
Technical

Ability to produce and consume data in
exchange with systems external to itself
is required

Network connection standards such as
HTTP; TCP/IP; UDP/IP, messaging
middleware, such as HLA-RTI

Level 0
No

NA NA

116 W. Huiskamp and T. van den Berg

http://dx.doi.org/10.1007/978-3-319-51043-9_1

2.3 Approach for Coupling Simulation Models

At the technical level of the LCIM (LCIM Level 1) two common approaches to
federate simulation models are pairwise coupling and service bus coupling.

Pairwise coupling

Every simulation models connects to every other model as needed (see Fig. 4). For
each connection a specific interface may need to be constructed, a dedicated data
exchange model defined and operating agreements established. This approach may
work fine for connecting just a few models, but obviously when the number of
models grow also the number of connections grow rapidly! Furthermore, connec-
tions between models may become solution specific, thus hampering model
reusability.

Service bus coupling

In this approach each simulation model has a common interface to a so called
“service bus” (see Fig. 5). This bus provides standard simulation services that
models may use to coordinate their activities, exchange data, and progress simu-
lation time. Common topologies for a service bus are: centralized (communication
between connected simulation models is via a central server component or broker)
or decentralized (communication is directly between connected models), or a mix of
these two. This approach has the advantage of limiting the number connections and
interfaces and stimulating reuse of simulation models over time. Regardless of the
topology, the simulation models use a common interface to communicate with each
other. Often this common interface is realized by a software component called
“run-time infrastructure”.

Fig. 4 Pairwise coupling

6 Federated Simulations 117

The HLA is a general reference architecture for distributed simulation and
defines a service bus for connecting simulation models (in HLA terminology these
are called “federates”). The service bus is called the HLA Run Time Infrastructure
(HLA-RTI). An overview of the HLA is provided in the next chapter.

3 Overview of the High Level Architecture

3.1 Introduction

The High Level Architecture (HLA) is an international standard for the develop-
ment of distributed simulation environments. In the terminology of the HLA,
individual simulation applications are known as federates. Federates may be sim-
ulation models, data collectors, simulators, computer generated forces or passive
viewers. The collection of federates brought together to form a synthetic environ-
ment is known as a federation. It is the common interpretation of a shared data
model, called the Federation Object Model (FOM), that allows federates to interact
within a single synthetic environment. A federation execution refers to the process
of conducting a distributed simulation. Federates interact via a Runtime
Infrastructure (RTI). The RTI provides a number of Application Programming
Interface (API) service groups that are used by a federate to interact with the
underlying communication layer.

Figure 6 provides an example of an HLA federation, where simulators, support
tools, and live participants interact through a common Runtime Infrastructure.

The HLA is focused on interoperability between various types of simulations,
and to promote reuse of simulations and their components. The HLA follows two
general design principles:

Fig. 5 Service bus coupling

118 W. Huiskamp and T. van den Berg

• modularity: simulation components (federates) are composed into larger systems
(federations) to obtain a specific functional behavior;

• separation of concerns: the functional behavior of the components (federates)
are separated from the supporting communication infrastructure (RTI) via a
well-defined interface.

The HLA was originally developed for defense applications but there is a
growing non-defense user base of the HLA. Numerous publications on HLA
applications can be found via google scholar. A search on the publications from
2010 with keywords “HLA RTI” yields over 2700 hits, and shows a variety of
topics such as warfare simulation, distributed-parallel computer simulations, cyber
physical simulation, aircraft flight simulation, railway simulation, off-shore mar-
itime simulation, engineering design analysis simulation, engine simulation, and
lunar landing simulation.

The HLA is an international standard, developed and maintained by the
Simulation Interoperability Standards Organization (SISO) and published by IEEE.
The first complete version of the standard was published in 1998. It was known as
“HLA 1.3”. HLA became an IEEE standard (IEEE 1516) in 2000. The IEEE 1516
standard has been updated in 2010, and is known as “HLA Evolved”.

The HLA standard is composed of three parts: the HLA Framework and Rules,
the HLA Interface Specification, and the HLA Object Model Template
(OMT) Specification:

HLA Run Time Infrastructure (RTI)
(Data exchange services)

FederaƟon management DeclaraƟon management
Object management Ownership management
Time management Data distribuƟon management

Support tools SimulaƟon
‘Live’

parƟcipants

Interface Interface Interface

Fig. 6 A graphical view of the HLA: federates operate together through a common runtime
infrastructure (RTI)

6 Federated Simulations 119

• IEEE 1516-2010. HLA Framework and Rules: ten rules describing the respon-
sibilities of federations and federates and their relationship with the RTI [8];

• IEEE 1516.1-2010. HLA Interface Specification: identifies how federates
interact within the federation. In fact, it specifies the API (Application
Programmer’s Interface) of the HLA Run Time Infrastructure (HLA-RTI) [9];

• IEEE 1516.2-2010. HLA Object Model Template (OMT) Specification: pro-
vides a common format for describing all HLA objects and interactions, and
establishes the syntax and format of the Federation Object Model (FOM) and
Simulation Object Model (SOM) [10].

These parts are discussed in the following sections.

3.2 Framework and Rules

The HLA Framework and Rules [8] mandate a certain structure for federates and
federations to ensure that the models are re-usable across applications.

There are 10 rules.
The rules for federations are in summary:

1. Federations shall have an HLA FOM, documented in accordance with the HLA
OMT;

2. In a federation, all simulation-associated object instance representation shall be
in the federates, not in the RTI;

3. During a federation execution, all exchange of FOM data among joined fed-
erates shall occur via the RTI;

4. During a federation execution, joined federates shall interact with the RTI in
accordance with the HLA interface specification;

5. During a federation execution, an instance attribute shall be owned by at most
one joined federate at any given time;

and the rules for federates are in summary:

1. Federates shall have an HLA SOM, documented in accordance with the HLA
OMT;

2. Federates shall be able to update and/or reflect any instance attributes and send
and/or receive interactions, as specified in their SOMs;

3. Federates shall be able to transfer and/or accept ownership of instance attributes
dynamically during a federation execution, as specified in their SOMs;

4. Federates shall be able to vary the conditions (e.g., thresholds) under which they
provide updates of instance attributes, as specified in their SOMs;

5. Federates shall be able to manage local time in a way that will allow them to
coordinate data exchange with other members of a federation.

120 W. Huiskamp and T. van den Berg

3.3 Interface Specification

The HLA Interface Specification [9] describes seven service groups which are used
by the federate to interact with the underlying communication layer, called the Run
Time Infrastructure (RTI). A service group is a term to refer to a collection of
related interface calls to the RTI. All communications between the federates are
processed through the RTI. The federates may give advice, or send requests to the
RTI, and the RTI can respond asynchronously by invoking certain well-known
call-back methods. A callback is a user-defined piece of software code (with a given
interface) that is invoked by the RTI when a certain event occurs.

The seven service groups are in summary:

1. Federation Management. These services allow for the coordination of
federation-wide activities throughout the life of a federation execution. Such
services include federation execution creation and destruction, federate appli-
cation joining and resigning, federation synchronization points, and save and
restore operations. This can for example be used to create “snapshots” of the
simulation in order to resume execution at a later stage.

2. Declaration Management. These services allow joined federates to specify the
types of data they will supply to, or receive from, the federation execution. This
process is done via a set of publication and subscription services along with
some related services.

3. Object Management. These services support the life-cycle activities of the
objects and interactions used by the joined federates of a federation execution.
These services provide for registering and discovering object instances, updating
and reflecting the instance attributes associated with these object instances,
deleting or removing object instances as well as sending and receiving inter-
actions and other related services. (Note: Formal definitions for each of these
terms can be found in the definitions clause of all three HLA specifications.)

4. Ownership Management. These services are used to establish a specific joined
federate’s privilege to provide values for an object instance attribute as well as
to facilitate dynamic transfer of this privilege (ownership) to other joined fed-
erates during a federation execution.

5. TimeManagement. These services allow joined federates to operate with a logical
concept of time and to jointly maintain a distributed virtual clock. These services
support discrete event simulations and assurance of causal ordering among events.

6. Data Distribution Management. These services allow joined federates to further
specify the distribution conditions (beyond those provided via Declaration
Management services) for the specific data they send or ask to receive during a
federation execution. The RTI uses this information to route data from pro-
ducers to consumers in a more tailored manner, for example to receive only
updates from objects that are in the geographical vicinity in the simulated world.

6 Federated Simulations 121

7. Support Services. This group includes miscellaneous services utilized by joined
federates for performing such actions as name-to-handle and handle-to-name
transformations, the setting of advisory switches, region manipulations, and RTI
start-up and shutdown.

The RTI services provide many ways to optimize the federation execution in
terms of wall clock execution time and the amount of data exchanged. For example,
via advanced time management schemes, object update rate reduction, data interest
management, attribute ownership transfer, and data distribution management.

It is impossible to discuss all of these service specifics in the available space of
this chapter. However, an overview of a typical usage of the services is discussed
below.

The first service group that a federate will use is federation management.
The federation management services enable federates to join the federation as

depicted in Fig. 7. A federate typically provides a list of FOM modules that it will
use for communication.

Next, federates will need to declare their interest in the data described in the FOMor
FOMmodules, and tell the RTI what data they provide and consume. The declaration
management services are used for this purpose. This is shown in Fig. 8.

To communicate with each other, federates use the object management services
as depicted in Fig. 9. The object management services deal with the registration,
modification, and deletion of object instances and the sending and receipt of
interactions.

Messages (object instance updates and interactions) that federates exchange may
be time managed. The RTI is responsible for keeping the federates
time-synchronized.

A federate can ask the RTI if it is allowed to proceed in time. The RTI checks
whether all other federates are ready to proceed. If so, it tells the federates with
which Dt they can progress. A federate uses the RTI time management services to
manage logical time and to ensure that the data that is exchanged with the object

What if?

Flooding

I join! Me Too! Me Too! Me Too!

Electricity
Network

Pump
Network

Effects on
Population

Me Too!

RunƟme Infrastructure
FederaƟon Management

Fig. 7 Federates joining a federation

122 W. Huiskamp and T. van den Berg

management services is delivered at the correct logical time at other federates.
Figure 10 provides an example what could happen if time is not synchronized; each
federate progresses time at its own pace and the federates are all at a different
logical time when they exchange date. The time management services support
different ways to progress logical time (e.g. time stepped, event driven) and opti-
mize time advancement and concurrency in federation execution.

What if?

Flooding

I provide water
levels & want
reducƟon levels

I want water
level & provide
electricity supply

I want water
level & provide
reducƟon levels

Electricity
Network

Pump
Network

Effects on
Population

RunƟme Infrastructure

FederaƟon Management

DeclaraƟon Management

I want electrity
supply & provide
effected area

I want
effected
area

Fig. 8 Federates need to describe what data they provide/consume

What if?

Flooding

Water level
at (x,y) is z

Supply staƟon
S is out of order

Water reducƟon
at (x,y) is z

Electricity
Network

Pump
Network

Effects on
Population

RunƟme Infrastructure

FederaƟon Management

DeclaraƟon Management

Area A has
no electricity

Area A has no
electricy

Object Management

RTI Service Calls / Call Backs

Fig. 9 Federates need to exchange data and interactions

6 Federated Simulations 123

To increase scalability of a federation and performance of federates, updating of
information can be optimized. As depicted in Fig. 11 a federate can instruct the RTI
to forward only the information that is relevant for him. This mechanism reduces
the work load on the federate: it doesn’t have to process data that can be discarded
anyway.

What if?

Flooding

10:04 10::30 15:00

Electricity
Network

Pump
Network

Effects on
Population

RunƟme Infrastructure

FederaƟon Management

DeclaraƟon Management

10:33 ?

Object Management

Time Management

10:10

Fig. 10 Federate simulation time need to be synchronized

What if?

Flooding
Electricity
Network

Pump
Network

Effects on
Population

RunƟme Infrastructure

FederaƟon Management

DeclaraƟon Management

Object Management

Time Management

Data DistribuƟon Management

Only tell me
about area B

Only inform
me when
water level > Z

Only tell me
about staƟon
S1 , S2 and S3

Only tell me
about area B

Only tell me
about area B

Fig. 11 Updating of information can be optimized

124 W. Huiskamp and T. van den Berg

Federates can internally use different concepts than specified in the FOM of the
federation it wants to join, such as units. The FOM may specify distance in kilo-
meters, whereas the federate internally uses meter as unit. Mapping of FOM
attribute values to internal values is the responsibility of the joining federate.

Finally, Figs. 12 and 13 show a high level schema of the steps to create and
execute a federated simulation. These are the typical steps performed in the life-
cycle of a federation.

3.4 Object Model Template Specification

All possible data exchanged by federates in a federation is captured in an object
model [10]. The object model may contain “HLA objects” to describe the persistent
state of entities, and “HLA interactions” to describe transient events. The
HLA-OMT provides a format for this object model. There are three kinds of such
object models in the HLA framework: SOM, FOM and MOM.

An individual federate is described by its Simulation Object Model (SOM).
The SOM is an object model in the HLA-OMT format that provides details of the
object attributes and interactions that this federate either provides or receives
information about.

All data that is potentially exchanged in a collection of federates (i.e., the fed-
eration) is described by the FOM. The FOM is also an object model in the

Create FederaƟon
Join FederaƟon

Publish Classes
Subscribe Classes

Register Objects
Discover Objects

Update AƩribute Values
Reflect AƩribute Values

Resign FederaƟon
Destroy FederaƟon

Class Handles
AƩribute Handles

t + Δt

Fig. 12 Schematized HLA
program walkthrough:
lifecycle of a federation

6 Federated Simulations 125

HLA-OMT format that contains all objects and interactions that the federates may
exchange. Since all information is available in the individual SOMs, the FOM can
be constructed out of the SOMs. In addition, the FOM may contain some
federation-wide information for efficient data distribution management. Figure 14
provides an example of a FOM as an intersection of SOM A and SOM B.

The FOM and SOMs may be regarded as technical contracts that serve as
interface specifications for the federate developers. A particular federate in a fed-
eration may be replaced by another version if it complies with the same SOM and
federation agreements as the original federate.

A third object model is the Management Object Model (MOM). The MOM is a
group of predefined constructs that provide support for monitoring and controlling a
federation execution. A predefined FOM module, called MOM and Initialization
Module (MIM), contains predefined HLA constructs such as object and interaction
roots, data types, transportation types, and dimensions.

Ru
nƟ

m
e

In
fr

as
tr

uc
tu

re

Fe
de

ra
Ɵo

n
M

an
ag

em
en

t

D
ec

la
ra
Ɵo

n
M

an
ag

em
en

t

O
bj

ec
t M

an
ag

em
en

t

Federate

Fe
de

ra
Ɵo

n
Li

fe
 C

yc
le

FederaƟon

unpublish/unsubscribe

destroy federaƟon

resign federaƟon

remove objects

delete objects

update/ reflect

discover objects

register objects

publish/subscribe

join federaƟon

create federaƟon

Ti
m

e
M

an
ag

em
en

t

t + Δt

Fig. 13 Program walkthrough schema and interactions: lifecycle of a federation

SOM
Federate A

SOM
Federate B

FOM
FederaƟon AB

Fig. 14 FOM and SOM

126 W. Huiskamp and T. van den Berg

The FOM may be developed from the individual SOMs, but the use of a ref-
erence FOM is often a good starting point, as shown in Fig. 15. An example of a
reference FOM is the RPR-FOM (Real-time Platform-level Reference FOM) [6].
The RPR-FOM is a reference FOM that defines HLA classes, attributes and
parameters that are appropriate for real-time, platform-level simulations in the
military domain.

The HLA does not mandate any particular Federation Object Model (FOM).
HLA is intended to be a domain independent simulation framework. However,
several “reference FOMs” have been developed to promote interoperability within a
specific application domain. HLA federations must always agree on a common
FOM (among other things), and reference FOMs provide ready-made FOMs that
are supported by a wide variety of tools and federates. Reference FOMs can be used
as-is, or can be extended to add new simulation concepts that are specific to a
particular federation or simulation domain.

A new concept introduced in HLA Evolved is that of “FOM module”. A FOM
can consist of multiple FOMmodules, each providing a part of the object model. The
modularization of the FOM enables a number of things, for example (see also [11]):

• Different working groups can easily develop different parts of a FOM;
• Agreements related to a certain FOM module can be re-used between many

federations;

SOM

SOM

SOM

RFOM

FOM

Reference FOM

Develop FederaƟon Object
Model:

Establish a common data
exchange model based on

the capabiliƟes of the
parƟcipaƟng federates and
the federaƟon objecƟves

SimulaƟon
Environment

Design

Conceptual
Model

Fig. 15 Develop a federation object model

6 Federated Simulations 127

• Extensions to a reference FOM can be put in a FOM module to avoid modifying
standard FOMs;

• New concepts to an already running federation can be added in new modules
when new federates join;

• FOMs can become more agile as it is easy to add a new or change an existing
FOM module that only some federates use;

• A service oriented approach is possible where a federate defines the provided
service data in a FOM module;

• A more decentralized approach with self-organizing federates can be applied:
only federates that use the same FOM module exchange data and need to make
agreements between each other.

3.5 HLA RTI Implementations

A brief (and not up to date) overview of available HLA RTI implementations can be
found on Wikipedia [12]. The most relevant implementations are listed in Table 3.

Pitch and MÅK are the two major competitors that provide an IEEE 1516-2010
compliant RTI, plus additional tools and professional services. Tools include
gateways, object model template editors, code generators, data recorders, and
visualization tools. The open source alternatives are all partial implementations and
it is not always clear what functionality is lacking. For example, for poRTIco, there

Table 3 HLA RTI implementations

Vendor URL Standard Binding License

Pitch http://pitch.se HLA 1.3 C++, Java Commercial

IEEE 1516-2000 C++, Java

IEEE 1516-2010 C++, Java

MÅK http://www.mak.com HLA 1.3 C++, Java Commercial

IEEE 1516-2000 C++, Java

IEEE 1516-2010 C++, Java

CERTI http://savannah.
nongnu.org/projects/
certi

HLA 1.3
(partial)

C++, Java Open source: GPL
(sources) and LGPL
(libraries)IEEE 1516-2000

(partial)
C++

IEEE 1516-2010
(partial)

C++

poRTIco http://porticoproject.
org

HLA 1.3
(partial)

C++, Java Open source: CDDL 1.0

IEEE 1516-2000
(partial)

C++

IEEE 1516-2010
(partial)

C++, Java

(continued)

128 W. Huiskamp and T. van den Berg

http://pitch.se
http://www.mak.com
http://savannah.nongnu.org/projects/certi
http://savannah.nongnu.org/projects/certi
http://savannah.nongnu.org/projects/certi
http://porticoproject.org
http://porticoproject.org

is no MOM support, but most other HLA Evolved services appear to be imple-
mented. In general, the CERTI RTI and poRTIco RTI are mature open source
implementations and form a good alternative for the commercial RTI
implementations.

An HLA tutorial with accompanying materials (sample federates, FOMs, RTI)
can be found on the Pitch website. MÅK also provides a tutorial and a free RTI for
two federates on their website. Several organizations (e.g. SISO) offer training
courses, documentation etc.

4 Distributed Simulation Environment Development

As distributed simulations become more complex, and tend to be systems in their
own right, a structured systems engineering approach is needed to develop and
maintain them. Although traditional software development processes may be
applied to the development of distributed simulation environments, these processes
lack simulation specific steps and activities that are important for distributed sim-
ulation environments. For example, the development of a simulation conceptual
model and simulation scenario, and the development of a simulation data exchange
model with associated operating agreements between member applications. The
only recognized industry standard process for distributed simulation environment
development is described in [13], called Distributed Simulation Engineering and
Execution Process (DSEEP). This process is independent of a particular simulation
environment architecture (e.g. HLA) and provides a consistent approach for
objectives definition, conceptual analysis, design and development, integration and
test, simulation execution, and finally data analysis.

The DSEEP was originally developed under the umbrella of the Simulation
Interoperability Standards Organization (SISO) by a large community of (dis-
tributed) simulation practitioners, and became an IEEE standard in 2010.
A top-level illustration of this process is provided in Fig. 16. The DSEEP identifies
a sequence of seven basic steps with activities to design, develop, integrate, and test
a distributed simulation environment of disparate simulation models. Each activity
in the DSEEP is further broken down in tasks and work products. The guidance
provided by the DSEEP is generally applicable to standalone simulations as well.

Table 3 (continued)

Vendor URL Standard Binding License

Open
HLA

http://sourceforge.
net/projects/ohla

HLA 1.3
(partial)

Java Open source: Apache
Licence 2.0

IEEE 1516-2000
(partial)

Java

IEEE 1516-2010
(partial)

Java

6 Federated Simulations 129

http://sourceforge.net/projects/ohla
http://sourceforge.net/projects/ohla

A brief summary of each step of the DSEEP is provided below. For more
information the reader is referred to the standard itself.

The DSEEP steps are:

Step 1 Define simulation environment objectives. Define and document a set of
needs that are to be addressed through the development and execution of a
simulation environment and transform these needs into a more detailed list
of specific objectives for that environment. Measures of effectiveness
(MOEs) and measures of performance (MOPs) are important factors in
defining the simulation environment objectives. MOEs and MOPs will be
reflected in the simulation models, the data that is exchanged through the
FOM and the data that should be captured for analysis. Step 1 will typi-
cally also consider the constraints that apply to the simulation design and
execution, for example simulation systems that must be included or used
for certain aspects of the problem, schedules, costs, etc.

Step 2 Perform conceptual analysis. Develop an appropriate representation of the
real-world domain that applies to the defined problem space and develop
the appropriate scenario. It is also in this step that the objectives for the
simulation environment are transformed into a set of simulation environ-
ment requirements that will be used for simulation environment design,
development, testing, execution, and evaluation.
One important output of this step is a conceptual model. The conceptual
model describes amongst others the relevant entities within the domain of
interest, describes the static and dynamic relationships between entities,
and describes the behavioral and transformational (algorithmic) aspects of
each entity. The role of the conceptual model is illustrated in Fig. 17. The
conceptual model defines the “abstraction level” or “simplification” of the
real world that is appropriate for the problem at hand.
Another important output of this step is a scenario. The scenario includes
the types and numbers of major entities that must be represented within the
simulation environment, a functional description of the capabilities,
behavior, and relationships between these major entities over time, and a
specification of relevant environmental conditions (such as urban terrain
versus natural area, type of terrain, day/night, climate, etc.) that impact or
are impacted by entities in the simulation environment. Initial conditions

Fig. 16 DSEEP seven step process

130 W. Huiskamp and T. van den Berg

(e.g., geographical positions for physical objects), termination conditions,
and specific geographic regions should also be provided.
A third important output of this step is the requirements for the simulation
environment. This includes requirements for properties and behaviors that
the simulation environment must represent, requirements for fidelity, as
well as more technical requirements.

Step 3 Design simulation environment. Produce the design of the simulation
environment that will be implemented in Step 4. This involves identifying
member applications that will assume some defined role in the simulation
environment (in HLA these are called federates) that are suitable for reuse,
creating new member applications if required, allocating the required
functionality to the member application representatives.
This step may include trade-off analysis to select the most appropriate
member applications. Important outputs of this step include a list of
member applications, allocated responsibilities, requirements gaps, and the
simulation environment architecture.

Step 4 Develop simulation environment. Define the information that will be
exchanged at runtime during the execution of the simulation environment,
establish interface agreements, modify existing or develop new member
applications (including models) if necessary, and prepare the simulation
environment for integration and test.
Two important outputs of this step are a Simulation Data Exchange Model
(SDEM) and simulation environment agreements. The Simulation Data
Exchange Model describes the data that member applications can exchange
at runtime (for HLA this corresponds to the FOM). Although the SDEM
represents an agreement among member applications as to how runtime
interaction will take place, there are other operating agreements that must be
reached that are not documented in the SDEM. Such agreements are nec-
essary to establish a fully consistent, interoperable, simulation environment.
There are many different types of agreements, for instance, agreements on

Fig. 17 The role of the conceptual model in the Simulation development life-cycle [14]

6 Federated Simulations 131

initialization procedures, synchronization points, save/restore policies,
progression of time, object ownership, attribute update policies, security
procedures, as well as algorithms that must be common across the simula-
tion environment to achieve valid interactions among all member
applications.

Step 5 Integrate and test simulation environment. Integration activities are per-
formed, and testing is conducted to verify that interoperability require-
ments are being met.

Step 6 Execute simulation. The simulation is executed and the output data from
the execution is pre-processed.

Step 7 Analyze data and evaluate results. The output data from the execution is
analyzed and evaluated, and results are reported back to the user/sponsor.

The standard also includes a number of “overlays” for existing distributed
simulation environment architectures such as DIS and HLA.

In the light of the LCIM described in Sect. 2, DSEEP steps 1–4 are of great
importance. In these four steps the objectives, the conceptual model, the simulation
environment design, and the simulation data exchange model and operating
agreements, are developed. These are all important elements in the LCIM.

A more rigorous systems engineering approach to architecture development (and
to achieving a higher level of interoperability) in these four steps is described in [15],
“Simulation environment architecture development using the DoDAF”. This paper
examines the application of US Department of Defense (DoD) Architecture
Framework (DoDAF) and the related systems engineering concepts in simulation
environment architecture development. In this approach the simulation environment
is described using different, but interrelated, architectural viewpoints as shown in
Fig. 18. Each architecture viewpoint defines several kinds of (UML)models (not to be
confused with simulation models) to represent aspects of the system. The Operational
Viewpoint, for example, is used in the Conceptual Analysis step of the DSEEP and
defines model kinds for the description of operational activities and performers,
workflow, information flow, and event traces for operational scenarios (in this case
related to crtitical infrastructures). These models provide an implementation-
independent representation of the systems and processes that the simulation envi-
ronment must model and form one of the inputs to the simulation environment design.

While the DoDAF was not targeted for simulation environment development, the
architectural constructs described by the DoDAF show great promise in terms of
applicability to the simulation domain. By reusing these constructs, users may
leverage a very broad and deep knowledge base of systems engineering experience to
facilitate more capable and robust simulation environments in the future. The approach
in this paper can be used to develop and document the conceptual model in a sys-
tematic way and achieve a higher level of interoperability between simulation models.

To summarize, the DSEEP is intended as a higher-level framework into which
low-level management and systems engineering practices native to user organiza-
tions can and should be integrated. In general, this framework will have to be
tailored to become a practical and beneficial tool for both existing and new

132 W. Huiskamp and T. van den Berg

http://dx.doi.org/10.1007/978-3-319-51043-9_1

simulation developments. The intent of the DSEEP is to specify a set of guidelines
for the development and execution of these environments that stakeholders can
leverage to achieve the needs of their application.

5 Federation Agreements Template

The Federation Engineering Agreements Template (FEAT) is intended to provide a
standardized format for recording simulation environment agreements (see DSEEP
step 4) to increase their usability and reuse. The template is an eXtensible Markup
Language (XML) schema from which compliant XML-based simulation environ-
ment agreement documents can be created. XML was chosen for encoding agree-
ments documents because it is both human and machine-readable and has wide tool
support. Creating the template as an XML schema allows XML-enabled tools to
both validate conformant documents, and edit and exchange agreements documents
without introducing incompatibilities. Many of the artefacts generated in the
DSEEP can be recorded using the FEAT.

The schema has been developed by the SISO and is published at [16]. The top
level schema elements are shown in Fig. 19.

The federation agreements are decomposed into the following eight categories:

1. Metadata—Information about the federation agreements document itself.
2. Design—Agreements about the basic purpose and design of the federation.

Fig. 18 DoDAF viewpoints per DSEEP step

6 Federated Simulations 133

3. Execution—Technical and process agreements affecting execution of the
federation.

4. Management—Systems/software engineering and project management
agreements.

5. Data—Agreements about structure, values, and semantics of data to be
exchanged during federation execution.

Fig. 19 FEAT top level schema elements

134 W. Huiskamp and T. van den Berg

6. Infrastructure—Technical agreements about hardware, software, network pro-
tocols, and processes for implementing the infrastructure to support federation
execution.

7. Modeling—Agreements to be implemented in the member applications that
semantically affect the current execution of the federation.

8. Variances—Exceptions to the federation agreements deemed necessary during
integration and testing.

Each category in the FEAT schema provides numerous elements that describe
information that may be captured for a simulation environment. For example,
Verification, Validation and Accreditation (VV&A) artefacts, Test artefacts,
Security information, Member application data, objectives and requirements,
hardware configurations, etc.

6 Summary

Modeling and Simulation (M&S) has become a critical technology in many
domains. A set of coherent principles and standards are required to fully exploit the
potential of M&S. Interoperability and composability are two challenges when
federating simulation models. The seven Levels of Conceptual Interoperability
(LCIM) between simulation models can be used to determine the level of inter-
operability between simulation models.

Federated simulations offer many advantages with respect to developing, using
and maintaining complex simulation systems. The HLA offers a high quality
standardised approach to federated simulation, supported by documentation, tools
and an active user community. The advantages of open standards are:

• Economy of Scale;
• Comply with legislation;
• Promote Interoperability;
• Promote Common Understanding;
• Introduce Innovations, Transfer Research Results;
• Encourage Competition;
• Facilitate Trade.

The challenges of common standards also need to be addressed:

• Achieving consensus takes time. A user community must be established;
• Not-Invented-Here syndrome needs to be overcome by involving all stakeholders;
• Openness/Vendor Lock-In should be considered when selecting tools and

suppliers;
• Maintenance of standards must be considered to ensure progress and prevent

loss of investment.

Simulation practitioners should use their limited resources to focus on their
domain specific needs (simulation models, simulation data exchange models,

6 Federated Simulations 135

simulation environment agreements, and verification methods) and benefit from
existing tools and knowledge bases. I.e. focus on at least semantic interoperability
between simulation models in a certain problem domain, and leverage existing
standardised simulation middleware for the technical interoperability.

Acknowledgement and Disclaimer This chapter was derived from the FP7 project CIPRNet,
which has received funding from the European Union’s Seventh Framework Programme for
research, technological development and demonstration under grant agreement no. 312450.
The contents of this chapter do not necessarily reflect the official opinion of the European Union.

Responsibility for the information and views expressed herein lies entirely with the author(s).

References

1. Petty M, Weisel E (2003) A composability lexicon (03S-SIW-023). In: SISO simulation
interoperability workshop, Kissimmee, FL

2. Page E, Briggs R, Tufarolo J (2004) Toward a family of maturity models for the simulation
interconnection problem (04S-SIW-145). In: SISO simulation interoperability workshop,
Arlington, VA

3. Tolk A, Muguira J (2003) The levels of conceptual interoperability model (03S-SIW-007). In:
SISO simulation interoperability workshop, Orlando, FL

4. Turnitsa CD (2005) Extending the levels of conceptual interoperability. In: Proceedings IEEE
summer computer simulation conference, IEEE CS Press

5. Wang W, Tolk A, Wang W (2009) The levels of conceptual interoperability model: applying
systems engineering principles to M&S. In: Spring simulation multiconference, San Diego,
CA, USA

6. SISO (2015) Standard for guidance, rationale, and interoperability modalities (GRIM) for the
real-time platform reference federation object model (RPR FOM), Version 2.0
(SISO-STD-001-2015), SISO

7. SISO (2006) Standard for base object model (BOM) template specification
(SISO-STD-003-2006), SISO

8. IEEE (2010) IEEE standard for modeling and simulation (M&S) high level architecture
(HLA)—framework and rules (IEEE 1516-2010), IEEE

9. IEEE (2010) IEEE standard for modeling and simulation (M&S) high level architecture
(HLA)—federate interface specification (IEEE 1516.1-2010), IEEE

10. IEEE (2010) IEEE standard for modeling and simulation (M&S) high level architecture
(HLA)—object model template (IEEE 1516.2-2010), IEEE

11. Möller B (2007) An overview of the HLA evolved modular FOMs (07S-SIW-108). In: SISO
simulation interoperability workshop, Norfolk, VA

12. Run-time infrastructure (simulation) (2016) Wikipedia, 2016. Available: http://en.wikipedia.
org/wiki/Run-time_infrastructure_(simulation). Accessed 2016

13. IEEE (2010) IEEE recommended practice for distributed simulation engineering and
execution process (DSEEP) (IEEE 1730-2010), IEEE

14. Conceptual modeling (CM) for military modeling and simulation (M&S)
(RTO-TR-MSG-058), NATO Science and Technology Organization, 2012

15. Berg T, Lutz R (2015) Simulation environment architecture development using the DoDAF
(15F-SIW-019). In: SISO simulation interoperability workshop, Orlando, FL

16. SISO (2013) SISO federation engineering agreements template (FEAT) programmer’s
reference guide. Available: http://www.sisostds.org/FEATProgrammersReference

136 W. Huiskamp and T. van den Berg

http://en.wikipedia.org/wiki/Run-time_infrastructure_(simulation
http://en.wikipedia.org/wiki/Run-time_infrastructure_(simulation
http://www.sisostds.org/FEATProgrammersReference

Author Biographies

Wim Huiskamp is Chief Scientist Modelling, Simulation and Gaming in the M&S department at
TNO Defence, Security and Safety in the Netherlands. His research areas include system
architecture, distributed real-time simulation and C2-Simulation interoperability problems. Wim
acted as project lead for several national and international simulation (interoperability) projects and
he currently leads the national simulation research program carried out on behalf of the Dutch
MoD. In recent years Wim was the chairman of the NATO Modelling and Simulation Group
(NMSG) and formerly also the chairman of the NMSG M&S Standards Subgroup (MS3). Wim is
the liaison of the NMSG to the Simulation Interoperability Standards Organization (SISO).

Tom van den Berg is a senior scientist in the Modeling, Simulation and Gaming department at
TNO, The Netherlands. He holds an M.Sc. degree in Mathematics and Computing Science from
Delft Technical University and has over 25 years of experience in distributed operating systems,
database systems, and simulation systems. His research area includes simulation systems
engineering, distributed simulation architectures, systems of systems, and concept development
and experimentation.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.
The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

6 Federated Simulations 137

http://creativecommons.org/licenses/by/4.0/

	6 Federated Simulations
	Abstract
	1 Introduction
	2 Distributed Simulation
	2.1 Introduction
	2.2 Levels of Interoperability
	2.3 Approach for Coupling Simulation Models

	3 Overview of the High Level Architecture
	3.1 Introduction
	3.2 Framework and Rules
	3.3 Interface Specification
	3.4 Object Model Template Specification
	3.5 HLA RTI Implementations

	4 Distributed Simulation Environment Development
	5 Federation Agreements Template
	6 Summary
	Acknowledgement and Disclaimer
	References

