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Abstract A central question in routing games has been to establish conditions for
the uniqueness of the equilibrium, either in terms of network topology or in terms
of costs. This question is well understood in two classes of routing games. The
first is the non-atomic routing introduced by Wardrop on 1952 in the context of
road traffic in which each player (car) is infinitesimally small; a single car has a
negligible impact on the congestion. Each car wishes to minimize its expected delay.
Under arbitrary topology, such games are known to have a convex potential and
thus a unique equilibrium. The second framework is splitable atomic games: there
are finitely many players, each controlling the route of a population of individuals
(let them be cars in road traffic or packets in the communication networks). In this
paper, we study two other frameworks of routing games in which each of several
players has an integer number of connections (which are population of packets) to
route and where there is a constraint that a connection cannot be split. Through a
particular game with a simple three link topology, we identify various novel and
surprising properties of games within these frameworks. We show in particular
that equilibria are non unique even in the potential game setting of Rosenthal with
strictly convex link costs. We further show that non-symmetric equilibria arise in
symmetric networks.
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1 Introduction

A central question in routing games has been to establish conditions for the
uniqueness of the equilibria, either in terms of the network topology or in terms
of the costs. A survey on these issues is given in [1].

The question of uniqueness of equilibria has been studied in two different
frameworks. The first, which we call F1, is the non-atomic routing introduced
by Wardrop on 1952 in the context of road traffic in which each player (car) is
infinitesimally small; a single car has a negligible impact on the congestion. Each
car wishes to minimize its expected delay. Under arbitrary topology, such games
are known to have a convex potential and thus have a unique equilibrium [2]. The
second framework, denoted by F2, is splitable atomic games. There are finitely
many players, each controlling the route of a population of individuals. This type
of games have already been studied in the context of road traffic by Haurie and
Marcotte [3] but have become central in the telecom community to model routing
decisions of Internet Service Providers that can decide how to split the traffic of
their subscribers among various routes so as to minimize network congestion [4].

In this paper we study properties of equilibria in two other frameworks of routing
games which exhibit surprising behavior. The first, which we call F3, known as
congestion games [5], consists of atomic players with non splitable traffic: each
player has to decide on the path to be followed by for its traffic and cannot split the
traffic among various paths. This is a non-splitable framework. We further introduce
a new semi-splitable framework, denoted by F4, in which each of several players
has an integer number of connections to route. It can choose different routes for
different connections but there is a constraint that the traffic of a connection cannot
be split. In the case where each player controls the route of a single connection
and all connections have the same size, this reduces to the congestion game of
Rosenthal [5].

We consider in this paper routing games with additive costs (i.e. the cost of a path
equals to the sum of costs of the links over the path) and the cost of a link is assumed
to be convex increasing in the total flow in the link. The main goal of this paper is
to study a particular symmetric game of this type in a simple topology consisting
of three nodes and three links. We focus both on the uniqueness issue as well as on
other properties of the equilibria.

This game has already been studied within the two frameworks F1-F2 that
we mentioned above. In both frameworks it was shown [6] to have a unique
equilibrium. Our first finding is that in frameworks F3 and F4 there is a multitude
of equilibria. The price of stability is thus different than the price of anarchy and
we compute both. We show the uniqueness of the equilibrium in the limit as the
number of players N grows to infinity extending known results [3] from framework
F2 to the new frameworks. In framework F2 uniqueness is in fact achieved not only
for the limiting games but also for all N large enough. We show that this is not the
case for F3-F4: for any finite N there may be several equilibria. We finally show a
surprising property of F4 that exhibits non symmetric equilibria in our symmetric
network example while under F1, F2 and F3 there are no asymmetric equilibria.
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The structure of the paper is as follows. We first introduce the model and the
notations used in the while study, we then move on to the properties of frameworks
F3 (Sect. 3) and F4 (Sect. 4) before concluding the paper. All proofs of the theorems
and propositions of the paper are available on ArXiv [7].

2 Model and Notations

We shall use throughout the term atomic game to denote situations in which
decisions of a player have an impact on other players’ utility. It is non-atomic when
players are infinitesimally small and are viewed like a fluid of players, such that a
single player has a negligible impact on the utility of other players.

We consider a system of three nodes (A, B and C) with two incoming traffic
sources (respectively from node A and B) and an exit node C. There are a total of N
connections originating from each one of the sources. Each connection can either be
sent directly to node C or rerouted via the remaining node. The system is illustrated
in Fig. 1.

This model has been used to model load balancing issues in computer networks,
see [6] and references therein. Jobs arrive to two computing centers represented by
nodes A and B. A job can be processed locally at the node where it arrives or it may
be forwarded to the other node incurring further communication delay. The costs
of links ŒAC� and ŒBC� represent the processing delays of jobs processed at nodes
A and B respectively. Once processed, the jobs leave the system. A connection
is a collection of jobs with similar characteristics (e.g. belonging to the same
application).

We introduce the following notations:

• A link between two nodes, say A and B, is denoted by ŒAB�. Our considered
system has three links ŒAB�, ŒBC� and ŒAC�.

• A route is simply referred by a sequence of nodes. Hence, the system has
four connections: two originating from node A (route AC and ABC) and two
originating from node B (route BC and BAC).

Further, in the following, nAC, nBC, nABC and nBAC will refer to the number of
connections routed via the different routes while nŒAC�, nŒBC� and nŒAB� will refer

Fig. 1 Physical system
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to the number of connections on each subsequent link. By conservation law, we
have:

nAC C nABC D nBC C nBAC D N and

8
<

:

nŒAC� D nAC C nBAC;

nŒBC� D nABC C nBC;

nŒAB� D nBAC C nABC:

For each route r, we also define the fraction (among N) of flow using it, i.e.
fr D nr=N. The conservation law becomes fAC C fABC D fBC C fBAC D 1.

Finally, the performance measure considered in this work is the cost (delay) of
connections experienced on their route. We consider a simple model in which the
cost is additive (i.e. the cost of a connection on a route is simply taken as the sum
of delays experienced by the connection over the links that constitute this route).
We further assume that the costs on each link are linear with coefficient a=N on link
ŒAB� and coefficient b=N on link ŒAC� and ŒBC�, i.e.

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

CŒAB� D a

N
nŒAB� D a.fBAC C fABC/;

CŒAC� D b

N
nŒAC� D b.fBAC C fAC/;

CŒBC� D b

N
nŒBC� D b.fBC C fABC/:

and then CAB D CŒAB�; CABC D CŒAB� C CŒBC�; CBC D CŒBC� CBAC D CŒAB� C CŒAC�:

We restrict our study to the (pure) Nash equilibria and give the equilibria in terms
of the corresponding flows marked by a star. By conservation law, the equilibria
is uniquely determined by the specification of f �

ABC and f �
BAC (or equivalently n�

ABC
and n�

BAC).
We recall that in this paper, we consider two types of decision models. In the first

(F3), the decision is taken at the connection level (Sect. 3), i.e. each connection
has its own decision maker that seeks to minimize the connection’s cost, and
the connection cannot be split into different routes. In the second (F4), (Sect. 4)
each one of the two source nodes decides on the routing of all the connections
originating there. Each connection of a given source node (either A or B) can be
routed independently but a connection cannot be split into different route. We hence
refer to F4 this semi-splitable framework. Note that the two-approaches (F3 and F4)
coincide when there is only N D 1 connection at each source, which we also detail
later.

3 Atomic Non-Splitable Case and Its Non-Atomic Limit
(F3 Framework)

We consider here the case where each connection belongs to an individual user
acting selfishly. We first show that for fixed parameters, the game may have several
equilibria, all of which are symmetric for any number of players. The number
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of distinct equilibria can be made arbitrary large by an appropriate choice of the
parameters a and b, and for any choice of a and b, there exists N0 such that the
number of equilibria remain constant for all N � N0. We then show properties of
the limiting game obtained as the number of of players increases to infinity.

3.1 Non-Uniqueness of the Equilibrium

Theorem 1 The set of pure Nash equilibria of the game are the points satisfying

n�
BAC D n�

ABC � b

2a
.

Corollary 1 For N � N0 D d b
2a e, there exists exactly b=2a C 1 Nash equilibria in

pure strategies.

3.2 The Potential and Asymptotic Uniqueness

When the number of players N grows to infinity, the limiting game becomes a non-
atomic game with a potential [8]

F1.fABC; fBAC/ D b.fABC � fBAC/2 C a

2
.fABC C fBAC/2 :

Indeed, recall that the potential g is unique up to an additive constant and that it
satisfies

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

@g
@fAC

defD CAC D b.fAC C fBAC/

@g
@fABC

defD CABC D a.fABC C fBAC/ C b.fABC C fBC/

@g
@fBC

defD CBC D b.fBC C fABC/

@g
@fBAC

defD CBAC D a.fABC C fBAC/ C b.fBAC C fAC/:

One can check that the function

g.fAC; fABC; fBC; fBAC/ D a
2
.fABC C fBAC/2 C b

2
..fAC C fBAC/2 C .fBC C fABC/2/

readily satisfies these conditions. Then g can be rewritten as

g.fABC; fBAC/ D a
2
.fABC C fBAC/2 C b

2
.1 C .fABC � fBAC/2/:

As the potential is unique up to an additive constant, we consider F1 D g � b:Id=2.

Proposition 1 The non-atomic game has a unique Nash equilibrium, which is
f �
ABC D f �

BAC D 0.
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To show the uniqueness of the equilibrium in the limiting game, we made use
of the fact that the limiting game has a potential which is convex. Yet, not only the
limiting game has a convex potential, but also the original one, as we conclude from
next theorem, whose proof is a direct application of [5].

Theorem 2 For any finite number of players, the game is a potential game [9] with
the potential function:

F.fABC; fBAC/ D bN.fABC � fBAC/2 C aN

2
.fABC C fBAC/ .fABC C fBAC C 1=N/ :

(1)

Note that unlike the framework of non-atomic games, the fact that the game
has a convex potential does not imply uniqueness. The reason for that is that in
congestion games, the action space over which the potential is minimized is not a
convex set (due to the non-splitable nature) so that it may have several local minima,
each corresponding to another equilibrium, whereas a for a convex function over the
Euclidean space, there is a unique local minimum which is also a global minimum
of the function (and thus an equilibrium of the game).

3.3 Efficiency

Theorem 3 In the non-atomic setting, the only Nash equilibrium is also the social
optimum (i.e. the point minimizing the sum of costs of all players) of the system.

Since the game possesses several equilibria, we can expect the PoA (Price of
Anarchy - the largest ratio between the sum of costs at an equilibrium and the sum of
costs at the social optimum) and PoS (Price of Stability - the smallest corresponding
ratio) to be different.

Theorem 4 The price of stability is 1 and the price of anarchy is 1 C b
2aN2 .

We make the following observations:

(i) In the splitable atomic games studied in [6] the PoA was shown to be
greater than one for sufficiently small number of players (smaller than some
threshold), and was 1 for all large enough number of players (larger than
the same threshold). Here for any number of players, the PoS is 1 and the
PoA is greater than 1.

(ii) The PoA decreases in N and tends to 1 as N tends to infinity, the case of
splitable games.

(iii) We have shown that the PoA is unbounded: for any real value K and any
number of players one can choose the cost parameters a and b so that the
PoA exceeds K. This corresponds to what was observed in splitable games [6]
and contrast with the non-atomic setting of single commodity flows (i.e. when
there is only one source node instead of two), and arbitrary topology networks
where the PoA equals 4/3 [10].
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4 Atomic Semi-Splitable Case and Its Splitable Limit
(F4 Framework)

The game can be expressed as a 2-player matrix game where each player (i.e. each
source node A and B) has N C 1 possible actions, for each of the N C 1 possible
values of fABC and fBAC respectively. The utility for player A is

UA.fABC; fBAC/D fACCAC C fABCCABC

D b � bfABC C bfBAC C .a � 2b/fABCfBAC C .a C 2b/f 2
ABC:

(2)

Similarly, for player B:

UB.fABC; fBAC/D fBCCBC C fBACCBAC

D b � bfBAC C bfABC C .a � 2b/fBACfABC C .a C 2b/f 2
BAC

(3)

Note that

@UA

@fABC
D �b C .a � 2b/fBAC C 2.a C 2b/fABC

and
@UB

@fBAC
D �b C .a � 2b/fABC C 2.a C 2b/fBAC:

Hence
@2UA

@f 2
ABC

D 2.a C 2b/ D @2UB

@f 2
BAC

. Therefore, both uA W fABC 7! UA.fABC; fBAC/

and uB W fBAC 7! UB.fABC; fBAC/ are (strictly) convex functions. This means that
for each action of one player, there would be a unique best response to the second
player if its action space was the interval .0; 1/. Hence, for the limit case (when
N ! 1), the best response is unique. In contrast, for any finite value of N, there
are either 1 or 2 possible best responses which are the discrete optima of functions
uA W fABC 7! UA.fABC; fBAC/ and uB W fBAC 7! UB.fABC; fBAC/. We will however show
that in the finite case, there may be up to 2 � 2 D 4 Nash equilibria while in the
limit case the equilibrium is always unique.

4.1 Efficiency

Note that the total cost of the players is

˙.fABC; fBAC/D UA.fABC; fBAC/ C UB.fABC; fBAC/

D 2b C 2.a � 2b/fABCfBAC C .a C 2b/.f 2
ABC C f 2

BAC/

D 2b C a.fABC C fBAC/2 C 2b.fABC � fBAC/2 � 2b:
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Further, note that ˙ D 2.F1 C b/. Hence ˙ is strictly convex. Also
˙.0; 0/ D 2b. Therefore .0; 0/ is the (unique) social optimum of the system. Yet,
for sufficiently large N (that is, as soon as we add enough flexibility in the players’
strategies), this is not a Nash equilibrium, as stated in the following theorem:

Theorem 5 The point .fABC; fBAC/ D .0; 0/ is a Nash equilibrium if and only if
N � a

b C 2.

Also, we can bound the total cost by:

˙.fABC; fBAC/D 2b C 2.a � 2b/fABCfBAC C .a C 2b/.f 2
ABC C f 2

BAC/

� 2b C .a � 2b/.f 2
ABC C f 2

BAC/ C .a C 2b/.f 2
ABC C f 2

BAC/

� 2b C 2a.f 2
ABC C f 2

BAC/

� 2b C 4a

This bound is attained at ˙.1; 1/ D 2b C 2.a � 2b/ C 2.a C 2b/ D 4a C 2b. Yet,
it is not obtained at the Nash equilibrium for sufficiently large values of N:

Theorem 6 .1; 1/ is a Nash equilibrium if and only if N � 2b C a

3a C b
.

Therefore, for N � max. a
b C 2; 2bCa

3aCb/ the Nash equilibria are neither optimal nor
worse-case strategies of the game.

4.2 Case N D 1

In case of N D 1 (one flow arrives at each source node and there are thus two
players) the two approach coincides: the atomic non-splitable case (F3) is also
a semi-splitable atomic game (F4). fABC and fBAC take values in ff0g; f1gg. From
Eqs. (2) and (3), the matrix game can be written

�
.b ; b/ .2b ; a C 2b/

.a C 2b ; 2b/ .2a C b ; 2a C b/

�

and the potential of Eq. (1) becomes

�
0 a C b

a C b 3a

�

:

Then, assuming that either a or b is non null, we get that .0; 0/ is always a Nash
equilibrium and that .1; 1/ is a Nash equilibrium if and only if 3a � a C b, i.e.
2a < b.

We next consider any integer N and identify another surprising feature of the
equilibrium. We show that depending on the sign of a�2b, non-symmetric equilibria
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arise in our symmetric game. In all frameworks other than the semi-splitable games
there are only symmetric equilibria in this game. We shall show however that in the
limit (as N grows to infinity), the limiting game has a single equilibrium.

4.3 Case a � 2b < 0

In this case, there may be multiple equilibria. Note that due to the shape of UA

and UB the cost matrices of the game are transpose of each other. Therefore in the
following, we shall only give matrix UA. We have the following theorem:

Theorem 7 All Nash equilibria are symmetrical, i.e. f �
ABC D f �

BAC:

The proof is given in the Arxiv version [7], as well as an illustrative example.

4.4 Case a D 2b (with a > 0)

When a D 2b, we shall show that some non-symmetrical equilibria exists.

Theorem 8 If a D 2b, there are exactly either 1 or 4 Nash equilibria. For any N,
let N D b N

8
c.

• If N mod 8 D 4, there are 4 equilibria .n�
ABC; n�

BAC/, which are .N; N/, .NC1; N/,
.N; N C 1/ and .N C 1; N C 1/.

• Otherwise, there is a unique equilibrium, which is .N; N/ if N mod 8 < 4 or
.N C 1; N C 1/ if N mod 8 > 4.

4.5 Case a � 2b > 0

Theorem 9 If a � 2b > 0, there are exactly either 1, 2 or 3 Nash equilibria.

Let ˛ D a C 2b

3a C 2b
, ˇ D 2a

3a C 2b
and � D b

3a C 2b
.

Define further eN D bN�c and z.N/ D N� � eN. The equilibria are of the form

• Either .eN; eN/, .eN C 1; eN/, .eN; eN C 1/ if N is such that z.N/ D ˛ (mode 3-A in
Fig. 2)

• Or .eN C1; eN C1/, .eN C1; eN/, .eN; eN C1/ if N is such that z.N/ D ˇ (mode 3-B)
• Or .eN; eN C 1/, .eN C 1; eN/ if N is such that ˛ < z.N/ < ˇ (mode 2)
• Or .eN; eN/ if N is such that ˇ < z.N/ < ˛ C 1 (mode 1).

The proof is given in the Arxiv version [7], as well as an illustrative example.
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Mode 3-A Mode 3-B Mode 3-A Mode 3-B

a b a+1 b +1

Mode 2 Mode 2Mode 1

Fig. 2 Different modes according to different values of N

4.6 Limit Case: Perfectly Splitable Sessions

We focus here in the limit case where N ! C1.

Theorem 10 There exists a unique Nash equilibrium and it is such that

f �
BAC D f �

ABC D b

3a C 2b
:

Recall that the optimum sum (social optimum) is given by .0; 0/ and that the
worse case is given by .1; 1/. Hence, regardless of the values of a and b, at the limit
case, we observe that there is a unique Nash equilibrium, that is symmetrical, and is
neither optimal (as opposed to F3), nor the worst case scenario. The price of anarchy
is then:

PoA D PoS D 2b C 2f �2

ABCa

2b
D 1 C ab

.3a C 2b/2
:

5 Conclusions

We revisited in this paper a load balancing problem within a non-cooperative routing
game framework. This model had already received much attention in the past
within some classical frameworks (the Wardrop equilibrium analysis and the atomic
splitable routing game framework). We studied this game under other frameworks
- the non splitable atomic game (known as congestion game) as well as a the semi-
splitable framework. We have identified many surprising features of equilibria in
both frameworks. We showed that unlike the previously studied frameworks, there is
no uniqueness of equilibrium, and non-symmetric equilibria may appear (depending
on the parameters). For each of the frameworks we identified the different equilibria
and provided some of their properties. We also provided an efficiency analysis in
terms of price of anarchy and price of stability. In the future we plan to investigate
more general cost structures and topologies.



Load Balancing Congestion Games 33

References

1. N. Shimkin, “A survey of uniquenes results for selfish routing,” in Proc. of the International
Conference on Network Control and Optimization (NetCoop), L. N. in Computer Science 4465,
Ed., 2007, pp. pp. 33–42.

2. M. Beckmann, C. McGuire, and C. Winsten, Studies in the Economics of Transportation. New
Haven: Yale University Press, 1956.

3. A. Haurie and P. Marcotte, “On the relationship between Nash-Cournot and Wardrop equilib-
ria,” Networks, vol. 15, no. 3, 1985.

4. A. Orda, R. Rom, and N. Shimkin, “Competitive routing in multiuser communication
networks,” IEEE/ACM Trans. Netw., vol. 1, no. 5, pp. 510–521, Oct. 1993.

5. R. W. Rosenthal, “A class of games possessing pure-strategy Nash equilibria,” International
Journal of Game Theory, vol. 2, pp. 65–67, 1973.

6. E. Altman, H. Kameda, , and Y. Hosokawa, “Nash equilibria in load balancing in distributed
computer systems,” International Game Theory Review (IGTR), vol. 4, no. 2, pp. 91–100, June
2002.

7. E. Altman and C. Touati, “Load balancing congestion games and their asymptotic behavior,”
CoRR, vol. abs/1512.09239, 2015. [Online]. Available: http://arxiv.org/abs/1512.09239

8. W. H. Sandholm, “Potential games with continuous player sets,” Journal of Economic Theory,
vol. 97, no. 1, pp. 81–108, 2001.

9. D. Monderer and L. S. Shapley, “Potential games,” Games and economic behavior, vol. 14,
no. 1, pp. 124–143, 1996.

10. T. Roughgarden, Selfish routing and the price of anarchy. MIT Press, 2006.

http://arxiv.org/abs/1512.09239

	Load Balancing Congestion Games and Their Asymptotic Behavior
	1 Introduction
	2 Model and Notations
	3 Atomic Non-Splitable Case and Its Non-Atomic Limit (F3 Framework)
	3.1 Non-Uniqueness of the Equilibrium
	3.2 The Potential and Asymptotic Uniqueness
	3.3 Efficiency

	4 Atomic Semi-Splitable Case and Its Splitable Limit (F4 Framework)
	4.1 Efficiency
	4.2 Case N=1
	4.3 Case a-2b<0
	4.4 Case a=2b (with a>0)
	4.5 Case a-2b>0
	4.6 Limit Case: Perfectly Splitable Sessions

	5 Conclusions
	References


