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Preface

This volume in the Static and Dynamic Game Theory: Foundations and Applica-
tions series is a collection of the papers of the NetGCoop 2016 conference. The
event took place in the magnificent old city of Avignon, France, November 23–25,
2016, and was hosted by the University of Avignon.

Network control and optimization have been of increasing importance in many
networking application domains, such as mobile and fixed access networks, com-
puter networks, social networks, transportation networks, and more recently elec-
tricity grids and biological networks.

Both conceptual and algorithmic tools are needed for efficient and robust
control operation, for performance optimization, and for better understanding the
relationships between entities that may be cooperative or act selfishly, in uncertain
and possibly adversarial environments.

The goal of this international conference is to bring together researchers from
different areas with theoretical expertise in game theory, control, and optimization
and with applications in the domains listed above.

During the conference, three keynote talks were given by well-known
researchers: Jean Bernard Laserre (the moment-LP and moment-SOS approaches
in polynomial optimization and some other applications), Patrice Marcotte (bilevel
optimization: the good and the less good, illustrated through four applications), and
Sergiu Hart (smooth calibration, leaky forecasts, finite recall, and Nash dynamics).
There were also 21 paper presentations, 12 issued from regular submitted papers
and 9 were invited. Both groups passed a review process.

The success of the conference was largely due to the chairs and TPC members,
and we thank them heartily. We would also like to thank our sponsors: Orange,
LINCS, PGMO (FMJH EdF), UAPV, GDR 2932 (Théorie des jeux: Modélisation
Mathématique et Applications), and the University of Trento. We also thank the
Springer team, Benjamin Levitt and Christopher Tominich, for their confidence,
help, and kindness.

v



vi Preface

Finally, we thank the contributors for submitting high-quality papers that made
this event a success, the presenters, and the participants in the conference. We hope
the conference was pleasant for all of them.

Gif-sur-Yvette, France Samson Lasaulce
Avignon cedex 9, France Tania Jimenez
Tel Aviv, Israel Eilon Solan
November, 2016
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Finite Improvement Property in a Stochastic
Game Arising in Competition over Popularity
in Social Networks

Eitan Altman, Atulya Jain, and Yezekael Hayel

Abstract This paper is a follow-up of (Eitan Altman, Dynamic Games and
Applications, Springer Verlag, Vol. 3, No. 2 (2013) 313–323). It considers the
same stochastic game that describes competition through advertisement over the
popularity of their content. We show that the equilibrium may or may not be unique,
depending on the system’s parameters. We further identify structural properties
of the equilibria. In particular, we show that a finite improvement property holds
on the best response pure policies which implies the existence of pure equilibria.
We further show that all pure equilibria are fully ordered in the performance they
provide to the players and we propose a procedure to obtain the best equilibrium.

Keywords Social networks • Stochastic games • Non-uniqueness of equilibria •
Finite improvement property (FIP)

1 Introduction

In [1], the author studied a stochastic game model for competition over popularity
in social networks. He considers a fixed number of sources of contents competing
over a finite number, M, of destinations. The competition is due to the fact that
a destination that gets a content from a source is assumed not to be interested
anymore in receiving further content anymore. The main results in [1] are (1) a set of
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2 E. Altman et al.

coupled dynamic programming is formulated so that for each state, a solution (fixed
point) in the set of mixed actions for the dynamic programming defines a stationary
randomized equilibrium policy. (2) If the utilities that are linear in the state then
the state in this stochastic game can be aggregated and is simply the number of
destinations m that have received a content from some source, no matter which.
(3) Moreover, under this condition, the cost to go in the dynamic programming
becomes independent of the actions of the players. The latter only influences the
immediate utility of the players. (4) Hence the solution is obtained by solving M
independent matrix games. (5) The equilibrium is shown to be of a threshold type if
the utility is linear in the actions. (6) Similar results are then obtained for the case
in which the players have no state information.

This paper is a follow-up of [1]. It includes several extensions of the model. We
show that the equilibrium is not unique, which was not noticed in [1]. We further
show the existence of an equilibrium in pure policies. We make use of a property
established already in [1] showing that the stochastic game can be decomposed into
a finite number of matrix games each determining the stationary equilibria policy
of the players in a different state in the original game. We provide an example in
which for some state, this gives rise to a coordination matrix game and thus has
two pure equilibria and a mixed one. We show that there is a total order on all pure
policies according to their performance. In particular, we show that there exists a
pure equilibrium which dominates all other equilibria and we provide an iterative
procedure to compute it within a finite number of steps. This is shown to imply the
Finite Improvement Property (FIP).

The structure of the paper is as follows. We begin with a quick definition of the
problem and an overview of the stochastic game formulation from [1] in the first
two subsections of Sect. 2. In Sect. 2.3 we provide some first observation on the
structure of the equilibria. Using this, we identify in Sect. 3 the non-uniqueness
of the equilibria in a two player symmetric game example. The iterative method
for computing the best equilibrium is described in Sect. 4. It also provides some
structural results on the equilibria. The paper ends with a concluding section.

2 Stochastic Game Model and Statement of the Problem

We begin by recalling the stochastic game model from [1]. There are N competing
contents. There are M potential common destinations. We assume that a destination
wishes to acquire one of these contents and will purchase the one at the first
possible opportunity. We assume that once the destination has a content then it is
not interested in other content.

We assume that opportunities for purchasing a content i arrive at destination m
according to a Poisson process with parameter �i starting at time t D 0. Hence if at
time t D 0 destination m wishes to purchase the content i, it will have to wait for
some exponentially distributed time with parameter �i.

The value of �i may differ from one content to another. The difference is partly
due to the fact that different contents may have different popularity.



Competition over Popularity in Social Networks 3

We assume that the owner of a content n can accelerate the propagation speed of
the propagation of the content by accelerating �i e.g. through some advertisement
effort which increases the popularity of the content.

2.1 Markov Game Formulation

We next present the mathematical formulation of this Markov game after uni-
formization and after aggregating the state space. The uniformization allows us
to obtain the discrete time game from the original continuous time game by
considering a Markov game embedded at the jumps of some Poisson process whose
rate is given by � D M

P
i �iai. Details are given in [1].

• State Space. We consider a finite state space X D f0; 1; : : : ; Mg. We say that the
system is in state m if the total number of destinations that have already some
content (no matter which is its origin) equals m.

• Action Space. The set Ai of actions available to the owner of content type i
contains the two actions a and a. a 2 Ai is the amount of acceleration of �i. We
assume a D 1 and a > 1. Let A be the product action space of Ai, i D 1; : : :N.

• Transition probabilities.

Pxaz D
(

.M � x/
PN

iD1 ai�i

�
for z D x C 1; x 2 X n fMg

1 � .M � x/
PN

iD1 ai�i

�
for z D x; x 2 X

(1)

• Policies. A pure stationary policy for player i is a map from X to Ai. Let �.Ai/ be
the set of probability measures over Ai. A mixed stationary policy is a map from
X to �.Ai/. Choose some horizon T. A Markov policy for player i is a measurable
function wi that assigns for each t 2 Œ0; T� and each state x a mixed action wi

t.x/.
For a given initial state x and a given Markov policy w, there exists a unique
probability measure Pw

x which defines the state and action random processes
X.t/; A.t/. Multi-policies are defined as vectors of policies, one for each player.

• The immediate utility. The utility for player i is the difference between the
dissemination utility and the advertisement cost (disutility). The total accumu-
lated (over time) dissemination utility for player i till time t is given by the total
expected number of contents originating from source i at the various destinations
till time t. Hence the instantaneous dissemination utility for player i at time t if
the state is x and an action a is taken by the players is given by

xi.x; a/ WD .M � x/ai�i

�

The advertisement cost for player i at time n if it uses a is some increasing
function ci.a/ of a.

• Utility of player i: Player i wishes to maximize its total expected utility till
absorption at state M. The process is thus an absorbing MDP [2, Chap 7].
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2.2 Computing the Equilibrium

The problem has a Nash equilibrium within stationary policies [1]. Fix some
stationary policy u. Let X.t/ D PN

iD1 Xi.t/. Define for m D 0; : : : ; M � 1 the total
expected reward from the moment that X.t/ D m till it reaches m C 1 by Um

i .u/. We
note that the time until X.t/ jumps from m to m C 1 is an exponentially distributed
random variable with parameter

�m.a/ D .M � m/

NX

jD1

aj�j

The probability that the transition to j C 1 occurred due to player i is given by

pi D ai�i
PN

jD1 aj�j

Hence

Um
i .a/ D ci.ai/

�m
C pi.a/ D ci.ai/ C .M � m/ai�i

.M � m/
PN

jD1 aj�j

(2)

Theorem 1 ( [1]) Consider the case of linear dissemination utility. Denote by
u�.m/ an equilibrium multi-strategy in the mth matrix game, m D 0; : : : ; M � 1,
in which the utility of player i is given by Um

i .a/. Then the mixed stationary policy
for which each player i chooses an action a with probability u�.ajm/ at state m is
an equilibrium for the original problem.

The stochastic game can thus be reduced to solving a number of matrix games,
as the state transitions do not depend on the actions of the players; the states have a
fixed trajectory: x0; x0 C 1; : : : ; M, and at M the chain is absorbed. This remarkably
simple structure was obtained in [1] after applying a state aggregation. The latter
is only valid when the dissemination utilities for each player i are linear in the non-
aggregate state xi.

Assume next that for some i, ci.ai/ D �i.ai � 1/ for some constants �i. Define
�i.m/ D ��i C .M � m/�i and �m

i .a/ D �i.m/
P

j6Di �jaj � �i�i. Then [1]

Um
i .a/ D 1

�i.M � m/

 

��i.m/ � �m
i .a/

PN
jD1 �jaj

!

(3)
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2.3 Structure of Equilibria

Note that Um
i .a/ has the form

Um
i .a/ D r � �m

i .a/

s C �iai

where r; s and �m
i are functions that do not depend on ai. It is thus the sign of �m

i
that determines whether ai or ai maximises Um

i .a/ for a given action sequence of the
other players.

Combining the expression for Um
i with Theorem 1, we obtain the following

characterization of a best response to a�i. Let a (a respectively) denote the vectors
whose ith entries are ai (ai, respectively) for all i.

Corollary 1 (i) If for some m and a�i, �m
i .a/ > 0 then the action of player i that

maximizes Um
i .a/ is ai. If �m

i .a/ < 0 then the action of player i that maximizes
Um

i .a/ is ai. In case of equality then any mixed or pure action maximizes Um
i .a/.

(ii) In particular, if for some m, �m
i .a/ > 0 for all i then a is a pure equilibrium in

the matrix game Um
i .a/. And if for some m, �m

i .a/ < 0 for all i then a is a pure
equilibrium in the matrix game Um

i .a/.

3 Example of Non-Uniqueness of the Equilibrium

In this section we consider the special case of 2 players symmetric game and show
the existence of multiple equilibria. We thus assume �1 D �2 D �, �1 D �2 D � ,
a1 D a2 D a and a1 D a2 D a. We then have

�m
1 D .�� C .M � m/�/.�a2/ � ��

The parameters are chosen such that the following conditions hold :

Case I: � <
�.1Ca/

.M�m/a ) .�� C .M � m/�/�a � �� < 0

for all a. Hence by Corollary 1, a is the unique best response to any a. The cost
of advertisement is too high and irrespective of what the other player does, it is
always optimal for a player not to advertise. In this case there exists a single pure
equilibrium a.

Case II: � >
�.1Ca/

.M�m/a ) .�� C .M � m/�/�a � �� < 0

for all a. Hence by Corollary 1, a is the unique best response to any a. The cost
of advertisement is low and the best response of the player is always to advertise.
There exists only one pure equilibrium a.

Case III: �.1Ca/

.M�m/a < � <
�.1Ca/

.M�m/a

) .�� C .M � m/�/.�a/ � �� < 0 while .�� C .M � m/�/.�a/ � �� > 0

This is a matching game: a player prefers not to advertise if the other one
does not advertise But if the other player advertises then the best response is
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0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

( p∗, q∗)

(1,1)

(0,0)

p →

q
→

Fig. 1 Best response function

also to advertise and to compete with the other player. The increased chance of
obtaining the destinations makes up for the cost of advertisement. There are two
pure equilibria: a and a and also a mixed one.

Let p and q denote the probability of player 1 and player 2 choosing action a
respectively. Then the mixed Nash equilibrium corresponds to p D p� and q D q�
while the pure equilibria correspond to p D 0; q D 0 and p D 1; q D 1 respectively
(Fig. 1).

Also the utility at pure equilibrium .a; a/ dominates the utility at the pure
equilibrium .a; a/ as �m

i < 0 for .a; a/ while �m
i > 0 for .a; a/.In the later section

we will see that all the pure Nash equilibria are ordered.
Thus, in general any n player game can have multiple Nash equilibrium. In the

next section we describe a method to get a particular pure Nash equilibrium which
we will later see is the best pure Nash equilibrium.

4 Iterative Method

In this section we describe a procedure to get a pure Nash equilibrium for every state
m. We then show how two equilibria can differ from each other and the existence of
ordering between the multiple Nash equilibria. For that we fix a state m and divide
the players into 3 classes:

Class 1: Set of players for which �i.m/ >
�i�iP

j¤i �jaj
and �m

i > 0 irrespective of

the action of other players
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Class 2: Set of players for which �i.m/ <
�i�iP

j¤i �jaj
and �m

i < 0 irrespective of

the action of other players
Class 3: Set of players for which �i�iP

j¤i �jaj
< �i.m/ <

�i�iP
j¤i �jaj

. The optimal action

depends on the action of the other players as well.

Iterative Method

Step 1: Assign action a to players belonging to class 2 and 3 while action a to
players of class 1.

Step 2: Now, for all players in Class 3, calculate �m
i .a/ using the current action

sequence a. For players which have �m
i .a/ > 0 assign them the new action a and

place them in Class 1.
Step 3: Repeat Step 2 for the remaining set of players in Class 3 using the updated

strategy, till we reach an equilibrium when no player in Class 3 has �m
i .a/ > 0.

Note that (for m fixed) when a player i shifts to class 1, its action increases to a as
�m

i .a/ > 0. But then �m
k .a/ increases for all k 6D i. Hence through the iteration, �m

i
is non-decreasing. As the number of players are finite and as �m

i is non-decreasing
as the iteration moves forward, there is no need for the player to revert back to a.
Thus, the equilibrium is bound to be reached. Now, every player with �m

i .a/ > 0

has action a while every player with �m
i .a/ < 0 has action a. Thus, no players has

any reason to deviate from their current actions. Thus, we have reached a pure Nash
equilibrium.

(Note: The way we have defined the iteration implies that the final action
sequence will be unique.)

The game has the Finite Improvement Property (FIP) and thus has a generalized
ordinal potential [3]. This property ensures that there always exists a pure Nash
equilibrium.

Proposition All the pure Nash equilibria in the game are ordered.

Proof We assume there exist two Nash equilibria wherein neither is dominated by
the other and then show that such an assumption leads to contradiction. To show
this assume that the payoff for a player i at equilibrium is greater in one equilibrium
(NE1) while the payoff for another player j is greater in the other (NE2).

Let us consider two equilibria u1 and u2. Without loss of generality we
may assume that they can be written as following (by renumbering the
players). We have action vectors u1 D .a1; ::; an; b1; ::bK ; c1 : : : ; cL/ and
u2 D .a1::; an; b01; : : : ; b0K ; c01; ::; c0L/ respectively. The actions ai are same in both
equilibria, while the action sequence differ in the following way: bk D a and cl D a
while b0k D a and c0l D a for all k and l. We will show that there cannot exist two
such equilibria.

Consider two players i and j. For NE1 we have bi D a and cj D a which means
that �m

i .u1/ < 0 and �m
j .u1/ > 0 respectively. While for the second equilibrium

NE2 we have b0i D a and c0j D a which gives us �m
i .u2/ > 0 and �m

j .u2/ < 0 .
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) �m
j .u1/ � �m

j .u2/ > 0 (4)

)
KX

kD1

�k.a � a/ C
X

l¤j

�l.a � a/ > 0 (5)

Similarly,

) �m
i .u2/ � �m

i .u1/ > 0 (6)

)
X

k¤i

�k.a � a/ C
LX

lD1

�l.a � a/ > 0 (7)

Adding Eqs. (5) and (7) we get

�i.a � a/ C �j.a � a/ > 0 (8)

This leads to contradiction and our assumption that such an equilibrium exists is
false.

So, there cannot exist two equilibria in which the action of two players differ
in the following way: in NE1 ai D a, aj D a while in NE2 ai D a, aj D a. So,
any two Nash equilibria will be of the form NE1 D .a1; ::an; b1; ::bk/ and NE2 D
.a1; ::an; b01; ::b0k/ where the action sequence ai are same in both cases while bi D a
and b0i D a.

We now show NE1 dominates NE2.

1. For players with action bi it is obvious as �m
i in (2) changes sign from positive

to negative and the utility increases.
2. Now, for the players with same action (ai) in both cases. The Numerator of the

utility function (2) is a positive quantity.

The player can either have action a or a at a pure Nash equilibrium. In the first
case the numerator of (2) is .M�m/�i while in the second case a� D a which means
�m

i D ��i C .M � m/�i > 0

and so is the numerator. Now, the denominator is smaller in NE1 (more players
with action ai) than NE2 which leads to an overall higher utility.

This concludes the proof.
We now claim that the Nash equilibrium obtained from the iterative process

above gives the maximum payoff and has no further refinement and that the optimal
equilibrium strategy is threshold.

Proposition The pure equilibrium obtained from the iterative method is the best
equilibrium.

Proof Assume that there exists a refinement to the equilibrium from the proof
above, i.e., there exists a Nash equilibrium where number of players with action
a are greater than the number of players in the equilibrium generated by the iterative
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process. But if that were the case, then there would be a step during the iteration
when this particular action sequence existed because we started with the base case
of maximum number of players with action a . But if that action sequence were a
Nash equilibrium then the iteration would stop.

So far we stated properties of equilibrium policy at a fixed state m. Next we study
the dependence of the dominating equilibrium in m.

Proposition The equilibrium strategy for player i at the best pure equilibrium is a
threshold strategy.

Proof Assume for a particular m� the Nash action sequence is .a1; ::; an/ and that
the a� D ai, i.e, �m

i D .��i C .M � m�/�i/
P

j¤i �jaj � �i�i > 0.

Then for m < m�, denote the optimal action sequence as .b1; b2; : : : ; bn/,
We have bi � ai 8i D 1 W N.
! �m

i > �m�

i > 0.
So, 8m such that m < m� we have a�i D ai

Using similar arguments if for some m0, a�i D ai then 8m > m0 we have a�i D ai

Now, we present the closed form expression of the threshold for player i in terms
of the parameters �i; �i and a.

At threshold �m�

i .a/ D 0

) .��i C .M � m�.i//�i/
P

j¤i �jaj � �i�i D 0

) ��i C .M � m�.i//�i D �i�iP
j¤i �jaj

) m�.i/ D M � �i
�i

� �iP
j¤i �jaj

The threshold obtained might not always be an integer and in those cases, the
least integer greater than m� acts as the threshold.In the figure below we show how
the threshold m� changes with the action profile a�i of the other players.

In the special case where we have many players we can assume �i�iP
j¤i �jaj

! 0.

and the expression reduces to
) m�.i/ D M � �i

�i
(Note- Here the threshold only depends on the characteristics of player i which

are known at the beginning of the game.)
For all m values greater than this threshold �m

i < 0 and a�i D a while for all m
values lesser than threshold we have �m

i > 0 and a�i D a (Fig. 2).

5 Concluding Comments

We have identified in this paper new structural properties of equilibria in stochastic
games arising in competition over popularity in on-line social networks. Our starting
point was the game described in [1]. We have discovered that there may be
several pure equilibria and that when it is the case, then they are ordered in their
performance. We have identified a procedure to obtain the equilibrium which is best
for all players. We further showed the existence of a finite improvement property of
the best response sequence and related this to the existence of a potential.
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N = 10

1 2 3 4 5
22

23

24

25

Action Profile

m
∗

N = 25

1 2 3 4 5
22

23

24

25

Action Profile
m

∗

a b

Fig. 2 Threshold m� versus action profile in a N player symmetric game (M D 50;
�

�
D 25;

a=1; a D 5) . (a) N D 10. (b) N D 25

Although the competition model may seem to be restrictive, we show below
that our model can describe more involved competition scenario. More precisely,
we show how to handle competition models in which a destination does not limit
itself to receive only a single content. Consider the case in which there is a
Bernoulli trial with parameter q.i/ that determines whether or not a destination
that receives a content from i will still be interested to receive the next content.
Instead of waiting an exponentially distributed time with parameter �i, a destination
would wait an exponentially distributed time with parameter �.i/q.i/ (since the sum
of a geometrically distributed number of i.i.d. exponentially distributed random
variables is also exponentially distributed). We can thus handle this extension by
simply using the initial model but with a scaled parameter of the exponential inter-
opportunity times.

Acknowledgements The work of the second author was partly supported by IFCAM (Indo-
French Centre for Applied Math).
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Abstract The global Internet has enabled a massive access of internauts to content.
At the same time it allowed individuals to use the Internet in order to distribute
content. This introduced new types of competition between content over popularity,
visibility, influence, reputation and user attention. The rules of these competitions
are new with respect to those of traditional media, and they are determined by the
way resources are allocated through network protocols (such as page rank in search
engines and recommendation systems that are widely spread in social networks).
In this paper we first present in the introduction an overview of some central
competition issues both in the Internet as well as in other types of networks. We then
describe the model of when to send content in order to maximize the exposure of
the content. In the two last sections we finally describe research on two bio-inspired
tools that have been used to study various competition aspects.
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1 Introduction

Many games that arise in the Internet are not specific to this network. For example
the competition for visibility due to limited display space (the computer screen)
already appeared under the term shelf-space allocation, see e.g. [26]). Competitive
routing in large networks have been studied by road traffic engineers see e.g. [29]
which summarizes around one thousand reference. Yet in both examples there are
some features that are particular to the Internet. Indeed, (1) advertisement in the
internet brings many new features such as targeted advertisement: the social network
owner has a huge amount of data on the preferences of his customers and he can
thus send the advertisement to those who are more likely to be interested by it.
(2) competitive routing in the Internet is different than rout selection in road traffic
since in the former, routing decisions are taken by Internet Service Providers (ISPs)
whereas in the latter, each driver takes his own routing decision. Moreover, while
ISPs can split their traffic among various paths, a driver takes non-splitable discrete
(path selection) decisions. In this survey we focus on those applications of dynamic
games in which features of the internet and of social networks play an important
role.

The Internet has introduced new types of competition between content over
popularity, visibility, influence, reputation and user attention. Cardon writes in [11]
“Whereas journalists filter the information based on human judgement before pub-
lishing it, research engines (as well as google news) filter a-posteriori information
already published based on human judgement of all the internauts who publish in
the WEB. In the numerical world, this is called collective intelligence or crowd
wisdom”. This is done through algorithms such as page rank which assign authority
to a given information in a recursive way, according to the authority assigned to
those who reference it. This way of classifying authority of information (of sites,
blogs, news, videos, scientific publications) has triggered a whole business of Search
Engine Optimization in which companies offer clients to increase their page rank by
creating many new hyperlinks to reference their sites. One can view the page rank as
a measure of popularity. When searching for information through keywords, google
proposes a list of items displayed according to the decreasing order of their page
rank. Thus information published on the WEB competes over visibility through a
competition over popularity and more popular information is more accessible.

Cardon distinguishes between search engine classification of authority and that
of social networks. In twitter, facebook and youtube the source of authority is not in
who cites a content but rather in the number of “views” it has, number of “likes”, of
comments and of “shares” (“retweets” in twitter). Recommendation systems play a
crucial role in (1) the visibility of posts in social networks (2) creating communities
by proposing to establish direct links to other members of the network (friendship
link in facebook, subscriber link in youtube and follower link in twitter), (3) building
communities by suggesting users to subscribes to groups or to like fan pages. In
youtube the recommendations are given in the form of a list of videos that are
recommended for watching. The recommendation algorithms could thus have an
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impact on the composition of the Internet communities and on their evolution. In
particular it could determine whether the communities are close or whether there is
diversity and dialogue between various tendencies. In [10, p. 92] the author says
that Internet algorithms that structure political communities over the WEB have a
tendency to create closed groups among people with similar ideas which does not
promote diversity.

Internet algorithms can also influence on whether there emerge many small
communities or a smaller number of larger ones. In [10, p. 92], the author mentions
that many observers are worried about the possibility of having political discussions
taking place in many small communities; he calls it a “balkanization” phenomenon.
This is just one of the many network formation games that can be observed in the
Internet.

2 Timing Game in Social Networks: When to Post Content

We present below an overview of a game of timing between a random number of
content creators, who compete for position and exposure time over the timeline of a
social network. The full detailed analysis and related work can be found in [31].

Model Description Users (or players) can post their items during a given time
interval Œ0; T�. The timeline consists of K � 1 positions, where position 1 is the
most effective, and last position K the least effective. The position of the posted
items on the timeline is dynamically determined according to their order of arrival:
a newly arrived item is placed at the top position, while existing items are pushed
one position lower (from 1 to 2, 2 to 3 etc.). The item at position K (if any) is ejected
and dropped the timeline.

For t 2 Œ0; T� and k D 1; : : : ; K, let uk.t/ denote the expected utility rate (per unit
time) for a displayed item at time t in position k. The total expected utility over the
entire life cycle of an item is therefore

U.T1; : : : ;TK/ D
KX

kD1

Z

t2Tk

uk.t/dt ;

where Tk is the time interval on which the Item was displayed at position k. We
assume that the functions uk.t/ are decomposed as

uk.t/ D rku.t/; t 2 Œ0; T�; k D 1; : : : ; K;

where

• The exposure function u.t/, which is common to all positions, captures the
temporal dependence of the utility, due to variation in the exposure of the entire
timeline.
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• The constants .rk; k D 1; : : : ; K/ are the relative utility parameters, which
capture the relative effectiveness of the different positions in the timeline. That
is, the relative utilities are positive, and are decreasing in the timeline position k.
It will be convenient for our analysis to define rk D 0 for k � K C 1.

The following assumptions are imposed throughout the paper.

Assumption 2.1

(i) The exposure function u W Œ0; T� ! R is continuous and strictly positive, namely
u.t/ > 0 for t 2 Œ0; T�. Let umin > 0 and umax denote the extremal values of u.

(ii) The relative utility parameters .rk/ are decreasing in the timeline position.
Specifically,

r1 > r2 � r3 � � � � rK > 0:

The game formulation involves several players, who compete for a place in the
timeline and wish to maximize their individual utilities. Each player i chooses the
submission time ti of his own item. As mentioned, upon submission, the item is
placed in the top position, but goes down in rank as further items are posted. Clearly,
the utility of each player depends on his or her own choice of submission time (ti), as
well as the submission times of the other player. We therefore consider the problem
as a non-cooperative game, and analyze the Nash equilibrium of this game.

To complete the game description, we specify some additional properties.

1. The number of players who participate in a given instance of the game is a
random variable, denoted D0. We refer to D0 as the objective demand.

2. The belief of each participating player regarding the number of other players in
the game is another random variable, denoted D. We refer to D as the subjective
demand. Clearly, if D0 is deterministic then D D D0 � 1. The general relation
between D and D0 is discussed in [31]. Let pD D .pD.n/; n � 0/ denote the
distribution of D. We assume that E.D/ < 1, and further, to avoid triviality, that
rDC1 < r1 with positive probability.1

3. A player cannot observe the submission times of others before choosing his own
submission time; in particular, the players do not observe the timeline status
before their arrival. (As we shall see, the latter assumption can be relaxed when
D follows a Poisson distribution.)

4. The submission time ti of player i can be chosen randomly, according to a
probability distribution on Œ0; T� with cumulative distribution function Fi.t/; t 2
Œ0; T�. The corresponding density function, when it exists, will be denoted by
fi.t/. We refer to Fi as the (mixed) strategy of player i.

We shall be interested in the Nash equilibrium point (NEP) of this game.
Specifically, we consider the symmetric NEP in which the strategies of all players

1Otherwise, all DC 1 players can arrive at t D 0 and remain in positions with maximal relative
utility r1 all the way up to T.
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are identical, namely Fi � F all players. The restriction to symmetric strategies,
besides its analytical tractability, seems natural in the present scenario where players
are essentially anonymous. We proceed to calculate the players’ utilities for the
symmetric case.

Expected Utility Consider a certain player i who posts his item at time t. Suppose
that each of the other D players uses an identical strategy F. We proceed to calculate
the expected utility U.tI F/ of the player in that case.

Suppose first that F has no point mass at t, so that with probability 1 there are no
simultaneous arrivals at t. Let N.t;s� denote the number of arrivals (by other players)
during the time interval .t; s�, for t < s � T. Since i arrives at t, his position in the
timeline at time s will be k C 1 if N.t;s� D k, for 0 � k � K � 1, and he would have
left the timeline if N.t;s� � K. It follows that

U.tI F/ D EF.

Z T

t

K�1X

kD0

rkC11fN.t;s�Dkgu.s/ds/

D
Z T

t

K�1X

kD0

rkC1IPF.N.t;s� D k/u.s/ds : (1)

To compute the probability IPF.N.t;s� D k/, recall that the number of participating
players other than i is a random variable D. The probability that each of these players
submits his item on .s; t� is F.s/ � F.t/. Therefore, conditioned on D D n, N.t;s�

follows a Binomial distribution Bin.n; p/ with success probability p D F.s/ � F.t/.
Denoting

Bk;n.p/ D
 

n

k

!

pk.1 � p/n�k ; 0 � k � n (2)

(and setting Bk;n � 0 for k > n), we obtain

IPF.N.t;s� D k/ D
X

n�k

pD.n/IPF.N.t;s� D kjD D n/

D
X

n�k

pD.n/Bk;n.F.s/ � F.t// : (3)

Substituting (3) in (1) gives

U.tI F/ D
Z T

t

K�1X

kD0

rkC1

X

n�k

pD.n/Bk;n.F.s/ � F.t//u.s/ds : (4)

We mention some special cases of this expression.
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Single Position Timeline When B D 1, noting that B0;n.p/ D .1 � p/n we obtain

U.tI F/ D r1

Z T

t

X

n�0

pD.n/.1 � F.s/ C F.t//nu.s/ds :

Deterministic Demand Suppose D is a deterministic positive integer (which
corresponds to a game with D0 D D C 1 players). In that case

IPF.N.t;s� D k/ D Bk;D.F.s/ � F.t// ;

and

U.tI F/ D
Z T

t

K�1X

kD0

rkC1Bk;D.F.s/ � F.t//u.s/ds :

Poisson Demand Suppose D � Pois.�/, a Poisson random variable (RV) with
parameter � > 0, namely pD.n/ D �ne��=nŠ for n � 0. Since a Bernoulli dilution
of a Poisson RV remains Poisson, it follows that N.t;s� is a Poisson RV with parameter
�.F.s/ � F.t//, and

IPF.N.t;s� D k/ D 1

kŠ
�k.F.s/ � F.t//ke��.F.s/�F.t// :

This expression can be directly substituted in Eq. (1).
Simultaneous arrivals: If F has a point mass at t, then there is a positive proba-

bility of simultaneous arrivals of several players at that time. In that case we assume
that their order of arrival (and subsequent positioning on the timeline) is determined
uniformly at random. The utility U.tI F/ needs to be modified accordingly. We need
not bother here with writing the straightforward but cumbersome expression, as we
argue below that in equilibrium F does not possess point masses.

Nash Equilibrium A symmetric Nash equilibrium point (NEP) is represented by a
strategy F, which is a probability distribution on Œ0; T�, such that F is a best response
for each player when all others use the same strategy F. More formally, for any pair
of strategies G and F, let

NU.GI F/ D Et�G.U.tI F// D
Z

t
U.tI F/dG.t/

denote the expected utility of a player for using strategy G when all others follow
F. Then F represents a symmetric NEP if

F 2 argmax
G

NU.GI F/ ;

where the maximum is taken over all probability distributions on Œ0; T�. We shall
refer to a symmetric equilibrium strategy F as an equilibrium profile.
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An equivalent definition of the symmetric NEP, that is more useful for the
analysis, requires U.tI F/ to be minimized on a set of times t of F-probability 1.
That is:

There exists a constant u� and a set A 	 Œ0; T�, such that
R

A dF.t/ D 1, and

U.tI F/ D u� for t 2 A; (5)

U.tI F/ � u� for t 62 A : (6)

The equivalence of the two definitions is readily verified. We refer to the constant
u� D u�F as the equilibrium utility corresponding to an equilibrium profile F.

Equilibrium Analysis For an arrival profile F and t 2 Œ0; T�, denote

g.t; F/ D
K�1X

kD0

.rkC1 �rkC2/
X

n�k

.nC1/pD.nC1/

Z T

t
Bk;n.F.s/�F.t//u.s/ds : (7)

Let F0.t/ denote the time derivative of F at t. Recall that the support of a probability
measure 	 is the smallest closed set of 	-probability 1. For brevity, we denote
by supp.F/ the support of the probability measure 	F induced by a distribution
function F. Finally, recall that U.tI F/ is the expected utility which is specified in (4).

Theorem 1 (Existence and Characterization) An equilibrium profile F D .F.t/;
t 2 Œ0; T�/ exists. Any equilibrium profile satisfies the following properties.

(i) F is a continuous function, and there exists a number L 2 .0; T/ such that
supp.F/ D Œ0; L�. Specifically, F.0/ D 0, F.L/ D 1, and F.t/ is strictly
increasing in t 2 Œ0; L�.

(ii) Consequently, a continuous probability distribution function F on Œ0; T� is an
equilibrium profile if, and only if, there exists a number L 2 .0; T/ such that
F.0/ D 0, F.L/ D 1, and U.tI F/ D uL for t 2 Œ0; L� and some constant
uL > 0.

(iii) Equivalently, a continuous probability distribution function F on Œ0; T� is an
equilibrium profile if, and only if, there exists a number L 2 .0; T/ such that:
F.0/ D 0, F.L/ D 1, and the derivative F0.t/ exists for t 2 .0; L/ and satisfies
the equality

F0.t/ D r1u.t/

g.t; F/
; t 2 .0; L/ ; (8)

where g.t; F/ is defined in (7).
(iv) For an equilibrium profile F with support Œ0; L�, the equilibrium utility u�F is

given by u�F D r1

R T
L u.s/ds.

Assumption 2.2 The relative utility parameters satisfy the following convexity
condition: rk � 1

2
.rk�1CrkC1/ ; k D 2; : : : ; K (recall that rKC1 D 0 by definition).

Theorem 2 (Uniqueness) Suppose Assumption 2.2 holds, then the equilibrium
profile F is unique.
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3 Stochastic Evolutionary Games

We describe in this section and in the next one some novel bio-inspired tools
in dynamic games that have been developed and used recently in networking
applications and in which we expect there to be further research both in the
fundamentals as well as in the applications.

Evolutionary games are considered as dynamic since they describe through
differential equations the evolution of the strategies in some repeated games when
the system is away from equilibrium. In many applications that we encountered in
networking there is a need, however, for a fully dynamic system in the sense of not
only the action evolution but also of a state evolution, a state that may be attached to
each agent. An example is power control in cellular networks in which the chosen
power may depend on the channel state (which is a function of the weather, the
distance to the base station and other factors). In some cases this state may have
controlled transitions, so that the choice of action (when interacting with other
players) impacts not only the immediate fitness of the agents but also the agents’
state. For example, the choice of transmission power of a cellular network may be
depend on the state of its battery, and when the battery is depleted, a saving mode
code be activated in which power is used much more carefully. We next describe two
frameworks that model evolution in presence of controlled states of the agents.

In [2, 3] one such game model called Markov Decision Evolutionary Game
(MDEG) is introduced where indeed each player has an internal state. The fitness
received in a local interaction with another player depends then not only on the
actions chosen but also on the internal states of the players. Moreover, the internal
states of individuals that interact change with probabilities that depend on both the
actions and the internal states of the individuals. Finally, an individual’s objective
is not to maximize its fitness (as is the case with standard EVGs) but rather
to maximize its sum of expected fitness during its lifetime, or its time-average
fitness. We have been able so far to use this model in several problems in wireless
communications and computed the equilibrium.

A second approach for adding states and randomness in their controlled evolution
is known as Sequential Anonymous Games (SAG). This class of games introduced
in [18] has a structure similar to MDEG. The difference is that in MDEGs,
strategies interact through pairwise interactions between players, whereas in SAGs,
the interactions involve a cumulative effect of an infinite class of players. As in
MDEGs, each player has its own Markov chain whose transition probabilities
depend on the state and action of that player as well as the global state and the policy
used by other players. The discounted cost has been studied already in [18] for
characterizing the equilibrium, whereas the expected time average fitness has only
been studied recently [35]. This reference as well as [4] include some networking
applications.
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4 Epidemic Games for Cyber-Security and Content Diffusion

Computer viruses have been reported to cause damage of 17 billion US$ on 2000.
Already in 1998, the relation between computer viruses and epidemiology are
suggested [27]. Since then, viruses and tools to fight them have become more
sophisticated. Today cyber security is not only defensive and are used as warfare,
see [19].

In the biology literature, there has been almost no research using game models
in epidemics. We found no references to games in epidemics before 2000. Some
isolated research on the topic has appeared in recent years [5–8]. These papers use
simple game theoretical tools to model some decisions related to fighting against
viruses (namely vaccination decisions and decisions concerning observations of
epidemics). [30] is a recent paper using a differential population game for solving
an epidemic game arising in the biological context.

Optimal control theory has been used within the classical epidemic models so as
to (1) identify the worst possible computer-viruses attacks in a given network (2) to
fight viruses whose behavior is described by classical epidemic models. In [20], the
authors combine (1) and (2) within a single differential game formulation and obtain
the structure of the saddle-point policies in the meanfield regime. These results are
also novel with respect to epidemiology (and not only computer viruses).

For game theory applied to other aspects of security issues in networks we refer
to the survey [25].

A big boost to games in epidemics was given thanks to work by the group
of P. Van Mieghem [23, 24] which provides both bounds on the dynamics of
SIS epidemic models as well as meanfield approximations on their metastable
regime. It was mainly followed in the physics community who are interested
in phase transitions and in meanfield dynamics. The complexity of the solution
is significantly reduced in the meanfield regime (in which the number of agents
grows to infinity) due to the property that the infection probability of any two nodes
becomes independent in that regime. The accuracy of the mean field approach is
studied in [24]. While in the physics community, this type of approach in studying
epidemics is relatively recent, the use of the meanfield approximation is well
known in other communities. Indeed, already [21, 22, 32] establish conditions for
convergence to a meanfield regime, and Mandelbaum and Pats apply it to epidemics
in [22, Sec. 10].

Game models (static ones) based on the above SIS epidemic theory appear
already in 2009 [28] and later at [16]. In these game each node is a player. Recently,
Nash and Stackelberg epidemic adversarial games have been introduced in [36]
where one player controls the epidemic rate and the other controls the curing rate.
Both in static as well as in dynamic games based on meanfield limits, one has to
be aware that the fact that a meanfield approach is a good approximation for a non-
controlled system or for a fixed control does not imply that the equilibrium of a
meanfield game is a good approximation for a game with a large finite population
of players. Conditions for the latter to hold can be found in [14, 15, 17]. A Counter
example is presented in [13].
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The majority of recent works on epidemic games is based on formulating
static games based on steady state (or metastable) performance measures of fixed
stationary policies used in Markov dynamic setting, see e.g. [1] that considers
games in online dating platforms, or [34] that considers network formation games in
which the utilities includes a term representing the metastable infection probability.
Some examples of fully dynamic cybersecurity epidemic games are [20] (already
mentioned) as well as [9].

Epidemics and their control have also been used to model diffusion of content
in social networks. Already the evolutionary biologist Richard Dawkins shows that
the evolution of phenomena such as fashion, musical melodies and other cultural
phenomena (for which he coined the term “meme”) follows similar rules as the
Darwinian evolution of species in nature, see [12] p 192. Dawkins later adapted
this characterization to Internet Memes as well [33], which includes hits and videos
that compete for popularity and visibility over the Internet. Epidemic models can
thus be introduced to games in which a virus represents some content.

Acknowledgements The work of the second author was partly supported by IFCAM (Indo-
French Centre for Applied Math).

References

1. Eitan Altman, Francesco De Pellegrini, Huijuan Wang, “Activation Games in Online Dating
Platforms”, IEEE ICCW, Jun 2015, London, United Kingdom. pp.1593–1599

2. E. Altman and Y Hayel, “Stochastic Evolutionary Games”, Proc. of the 13th Symposium on
Dynamic Games and Applications, Wroclaw, Poland, 30th June-3rd July, 2008.

3. E. Altman, Y. Hayel, H. Tembine and R. El-Azouzi, “Markov Decision Evolutionary Games
with Expected Average Fitness”, Evolutionary Ecology Research, 11 (4):677–689, 2009

4. Eitan Altman, Piotr Wiecek, “Applications of Stationary Anonymous Sequential Games to
Multiple Access Control in Wireless Communications”, International Workshop on Wireless
Networks: Communication, Cooperation and Competition, May 2014, Hammamet, Tunisia.
pp.575–578, 2014.

5. J. Aspnes, K. L. Chang, and A. Yampolskiy. “Inoculation strategies for victims of viruses and
the sum-of-squares partition problem”. J. Comput. Syst. Sci., 72(6):1077=1093, 2006.

6. J Aspnes, N Rustagi, and Saia. “Worm versus alert: Who wins in a battle for control of a large-
scale network?”, volume 4878 of Lecture Notes in Computer Science, Springer, 443–456. Dec
2007.

7. C T Bauch. “Imitation dynamics predict vaccinating behavior”. Proc. of The Royal Society,
2005.

8. C. T. Bauch and D. J. D. Earn. Vaccination and the theory of games. Proceedings of the National
Academy of Science, 101:13391–13394, September 2004.

9. Alain Bensoussan, Murat Kantarcioglu and SingRu(Celine) Hoe, “A Game-Theoretical
Approach for Finding Optimal Strategies in a Botnet Defense Model”, T. Alpcan, L. Buttyan,
and J. Baras (Eds.): GameSec 2010, LNCS 6442, pp. 135–148, 2010.

10. Dominque Cardon, The digital democracy (in French), Seuil, 2010
11. Dominique Cardon, What do Algorithms Dream of (in French), Seuil 2015
12. R. Dawkins, The Selfish Gene, Oxford University Press, 1989.



Dynamic Games in Social Networks 21

13. Josu Doncel, Nicolas Gast, Bruno Gaujal, “Are mean-field games the limits of finite stochastic
games?” The 18th Workshop on MAthematical performance Modeling and Analysis, Jun
2016, Nice, France. Performance evaluation review (PER), 2016. Available in HAL repository,
https://www.archives-ouvertes.fr/hal-01321020/

14. Josu Doncel, Nicolas Gast, Bruno Gaujal, “Mean-Field Games with Explicit Interactions”,
2016, Available in HAL repository at https://hal.inria.fr/hal-01277098.

15. Josu Doncel, Nicolas Gast, Bruno Gaujal, “A mean-field game with explicit interactions for
epidemic models”, Proceedings of the 11th Atelier of Performance Evaluation, Toulouse,
115–17 March, 2016.

16. Y. Hayel, S. Trajanovski, E. Altman, H. Wang, and P. V. Mieghem, “Complete game-theoretic
characterization of sis epidemics protection strategies,” in Proc. 53rd IEEE Conference on
Decision and Control (CDC), 2014.

17. Hamidou Tembine, Jean-Yves Le Boudec, Rachid El-Azouzi, Eitan Altman, “Mean field
asymptotics of Markov decision evolutionary games and teams”, GameNets’ 2009.

18. B. Jovanovic and R.W. Rosenthal, “Anonymous Sequential Games”, J Math Economics 17:
77–87,1988.

19. M. B. Kelley, “The Stuxnet attack on Iran’s nuclear plant was ‘far more danger-
ous’ than previously thought,” Online: http://www.businessinsider.com/stuxnet-was-far-more-
dangerousthan-previous-thought-2013-11, accessed: June, 2014.

20. M.H.R. Khouzani, S. Sarkar and E. Altman, “Saddle-Point Strategies in Malware Attack”,
IEEE Journal on Selected Areas in Communications, Vol. 30, No. 1, January 2012.

21. T. G. Kurtz. Approximation of population processes, volume 36. SIAM, 1981.
22. Avi Mandelbaum and Gennady Pats, “State-dependent stochastic networks. Part I: Approxi-

mations and applications with continuous diffusion limis,” The Annals of Applied Probability,
8(2), 569–646, 1998

23. P. Van Mieghem, J. Omic, and R. Kooij, “Virus spread in networks,” IEEE/ACM Transactions
on Networking, vol. 17, no. 1, pp. 1–14, 2009.

24. Van Mieghem, P. and R. van de Bovenkamp, 2015, “Accuracy criterion for the mean-field
approximation in SIS epidemics on networks”, Physical Review E, Vol. 91, No. 3.

25. M.H. Manshaei, Q. Zhu, T. Alpcan, T. Basar, and J.-P. Hubaux. “Game theory meets network
security and privacy”. ACM Computing Survey, 45(3):25:1–25:39, June 2013.

26. Guiomar Martín-Herrän and Sihem Taboubi, “Incentive Strategies for Shelf-Space Allocation
in Duopolies”, in Dynamic Games: Theory and Applications, A. Haurie and G. Zaccour (edrs),
Springer, pp 231–253, 2005.

27. W. Murrey, “The application of epidemiology to computer viruses”. Comp. Security
7:139–150, 1988.

28. J. Omic, A. Orda, and P. V. Mieghem, “Protecting against network infections: A game theoretic
perspective,” in Proceedings of INFOCOM, 2009, pp. 1485–1493.

29. M. Patriksson, The traffic assignment problem: models and methods, VSP, 1991.
30. Timothy C. Reluga, “Equilibria of an Epidemic Game with Piecewise Linear Social Distancing

Cost”, Bulletin of Mathematical Biology, October 2013, Volume 75, Issue 10, pp 1961–1984.
31. Eitan Altman, Nahum Shimkin, “The Ordered Timeline Game: Strategic Posting Times Over

a Temporally Ordered Shared Medium”, Dynamic Games and Applications, Springer Verlag,
2015, pp.1–25.

32. Adam Shwartz and Alan Weiss, Large Deviations for Performance Analysis, Chapman and
Hall, 1995.

33. O. Solon, “Richard Dawkins on the internet’s hijacking of the word ‘meme”’. Wired UK. July
9, 2013.

34. Stojan Trajanovski, Fernando Antonio Kuipers, Yezekael Hayel, Eitan Altman, Piet Van
Mieghem, “Designing virus-resistant networks: a game-formation approach”, CDC, Dec 2015,
Osaka, Japan.

https://www.archives-ouvertes.fr/hal-01321020/
https://hal.inria.fr/hal-01277098
http://www.businessinsider.com/stuxnet-was-far-more-dangerousthan- previous-thought-2013-11
http://www.businessinsider.com/stuxnet-was-far-more-dangerousthan- previous-thought-2013-11


22 E. Altman et al.

35. Piotr Wiecek, Eitan Altman, “Stationary Anonymous Sequential Games with Undiscounted
Rewards”, Journal of Optimization Theory and Applications, Springer Verlag, 2015, 166 (2),
pp.1–25.

36. Z. Xu, A. Khanafer, and T. Basar. Competition over epidemic networks: Nash and Stackelberg
games. Proc. 2015 American Control Conference (ACC 2015), Chicago, IL, July 1–3, 2015,
pp. 2063–2068.



Load Balancing Congestion Games
and Their Asymptotic Behavior

Eitan Altman and Corinne Touati

Abstract A central question in routing games has been to establish conditions for
the uniqueness of the equilibrium, either in terms of network topology or in terms
of costs. This question is well understood in two classes of routing games. The
first is the non-atomic routing introduced by Wardrop on 1952 in the context of
road traffic in which each player (car) is infinitesimally small; a single car has a
negligible impact on the congestion. Each car wishes to minimize its expected delay.
Under arbitrary topology, such games are known to have a convex potential and
thus a unique equilibrium. The second framework is splitable atomic games: there
are finitely many players, each controlling the route of a population of individuals
(let them be cars in road traffic or packets in the communication networks). In this
paper, we study two other frameworks of routing games in which each of several
players has an integer number of connections (which are population of packets) to
route and where there is a constraint that a connection cannot be split. Through a
particular game with a simple three link topology, we identify various novel and
surprising properties of games within these frameworks. We show in particular
that equilibria are non unique even in the potential game setting of Rosenthal with
strictly convex link costs. We further show that non-symmetric equilibria arise in
symmetric networks.
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1 Introduction

A central question in routing games has been to establish conditions for the
uniqueness of the equilibria, either in terms of the network topology or in terms
of the costs. A survey on these issues is given in [1].

The question of uniqueness of equilibria has been studied in two different
frameworks. The first, which we call F1, is the non-atomic routing introduced
by Wardrop on 1952 in the context of road traffic in which each player (car) is
infinitesimally small; a single car has a negligible impact on the congestion. Each
car wishes to minimize its expected delay. Under arbitrary topology, such games
are known to have a convex potential and thus have a unique equilibrium [2]. The
second framework, denoted by F2, is splitable atomic games. There are finitely
many players, each controlling the route of a population of individuals. This type
of games have already been studied in the context of road traffic by Haurie and
Marcotte [3] but have become central in the telecom community to model routing
decisions of Internet Service Providers that can decide how to split the traffic of
their subscribers among various routes so as to minimize network congestion [4].

In this paper we study properties of equilibria in two other frameworks of routing
games which exhibit surprising behavior. The first, which we call F3, known as
congestion games [5], consists of atomic players with non splitable traffic: each
player has to decide on the path to be followed by for its traffic and cannot split the
traffic among various paths. This is a non-splitable framework. We further introduce
a new semi-splitable framework, denoted by F4, in which each of several players
has an integer number of connections to route. It can choose different routes for
different connections but there is a constraint that the traffic of a connection cannot
be split. In the case where each player controls the route of a single connection
and all connections have the same size, this reduces to the congestion game of
Rosenthal [5].

We consider in this paper routing games with additive costs (i.e. the cost of a path
equals to the sum of costs of the links over the path) and the cost of a link is assumed
to be convex increasing in the total flow in the link. The main goal of this paper is
to study a particular symmetric game of this type in a simple topology consisting
of three nodes and three links. We focus both on the uniqueness issue as well as on
other properties of the equilibria.

This game has already been studied within the two frameworks F1-F2 that
we mentioned above. In both frameworks it was shown [6] to have a unique
equilibrium. Our first finding is that in frameworks F3 and F4 there is a multitude
of equilibria. The price of stability is thus different than the price of anarchy and
we compute both. We show the uniqueness of the equilibrium in the limit as the
number of players N grows to infinity extending known results [3] from framework
F2 to the new frameworks. In framework F2 uniqueness is in fact achieved not only
for the limiting games but also for all N large enough. We show that this is not the
case for F3-F4: for any finite N there may be several equilibria. We finally show a
surprising property of F4 that exhibits non symmetric equilibria in our symmetric
network example while under F1, F2 and F3 there are no asymmetric equilibria.
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The structure of the paper is as follows. We first introduce the model and the
notations used in the while study, we then move on to the properties of frameworks
F3 (Sect. 3) and F4 (Sect. 4) before concluding the paper. All proofs of the theorems
and propositions of the paper are available on ArXiv [7].

2 Model and Notations

We shall use throughout the term atomic game to denote situations in which
decisions of a player have an impact on other players’ utility. It is non-atomic when
players are infinitesimally small and are viewed like a fluid of players, such that a
single player has a negligible impact on the utility of other players.

We consider a system of three nodes (A, B and C) with two incoming traffic
sources (respectively from node A and B) and an exit node C. There are a total of N
connections originating from each one of the sources. Each connection can either be
sent directly to node C or rerouted via the remaining node. The system is illustrated
in Fig. 1.

This model has been used to model load balancing issues in computer networks,
see [6] and references therein. Jobs arrive to two computing centers represented by
nodes A and B. A job can be processed locally at the node where it arrives or it may
be forwarded to the other node incurring further communication delay. The costs
of links ŒAC� and ŒBC� represent the processing delays of jobs processed at nodes
A and B respectively. Once processed, the jobs leave the system. A connection
is a collection of jobs with similar characteristics (e.g. belonging to the same
application).

We introduce the following notations:

• A link between two nodes, say A and B, is denoted by ŒAB�. Our considered
system has three links ŒAB�, ŒBC� and ŒAC�.

• A route is simply referred by a sequence of nodes. Hence, the system has
four connections: two originating from node A (route AC and ABC) and two
originating from node B (route BC and BAC).

Further, in the following, nAC, nBC, nABC and nBAC will refer to the number of
connections routed via the different routes while nŒAC�, nŒBC� and nŒAB� will refer

Fig. 1 Physical system

N N

C

A B
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to the number of connections on each subsequent link. By conservation law, we
have:

nAC C nABC D nBC C nBAC D N and

8
<

:

nŒAC� D nAC C nBAC;

nŒBC� D nABC C nBC;

nŒAB� D nBAC C nABC:

For each route r, we also define the fraction (among N) of flow using it, i.e.
fr D nr=N. The conservation law becomes fAC C fABC D fBC C fBAC D 1.

Finally, the performance measure considered in this work is the cost (delay) of
connections experienced on their route. We consider a simple model in which the
cost is additive (i.e. the cost of a connection on a route is simply taken as the sum
of delays experienced by the connection over the links that constitute this route).
We further assume that the costs on each link are linear with coefficient a=N on link
ŒAB� and coefficient b=N on link ŒAC� and ŒBC�, i.e.

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

CŒAB� D a

N
nŒAB� D a.fBAC C fABC/;

CŒAC� D b

N
nŒAC� D b.fBAC C fAC/;

CŒBC� D b

N
nŒBC� D b.fBC C fABC/:

and then CAB D CŒAB�; CABC D CŒAB� C CŒBC�; CBC D CŒBC� CBAC D CŒAB� C CŒAC�:

We restrict our study to the (pure) Nash equilibria and give the equilibria in terms
of the corresponding flows marked by a star. By conservation law, the equilibria
is uniquely determined by the specification of f �ABC and f �BAC (or equivalently n�ABC
and n�BAC).

We recall that in this paper, we consider two types of decision models. In the first
(F3), the decision is taken at the connection level (Sect. 3), i.e. each connection
has its own decision maker that seeks to minimize the connection’s cost, and
the connection cannot be split into different routes. In the second (F4), (Sect. 4)
each one of the two source nodes decides on the routing of all the connections
originating there. Each connection of a given source node (either A or B) can be
routed independently but a connection cannot be split into different route. We hence
refer to F4 this semi-splitable framework. Note that the two-approaches (F3 and F4)
coincide when there is only N D 1 connection at each source, which we also detail
later.

3 Atomic Non-Splitable Case and Its Non-Atomic Limit
(F3 Framework)

We consider here the case where each connection belongs to an individual user
acting selfishly. We first show that for fixed parameters, the game may have several
equilibria, all of which are symmetric for any number of players. The number
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of distinct equilibria can be made arbitrary large by an appropriate choice of the
parameters a and b, and for any choice of a and b, there exists N0 such that the
number of equilibria remain constant for all N � N0. We then show properties of
the limiting game obtained as the number of of players increases to infinity.

3.1 Non-Uniqueness of the Equilibrium

Theorem 1 The set of pure Nash equilibria of the game are the points satisfying

n�BAC D n�ABC � b

2a
.

Corollary 1 For N � N0 D d b
2a e, there exists exactly b=2a C 1 Nash equilibria in

pure strategies.

3.2 The Potential and Asymptotic Uniqueness

When the number of players N grows to infinity, the limiting game becomes a non-
atomic game with a potential [8]

F1.fABC; fBAC/ D b.fABC � fBAC/2 C a

2
.fABC C fBAC/2 :

Indeed, recall that the potential g is unique up to an additive constant and that it
satisfies

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

@g
@fAC

defD CAC D b.fAC C fBAC/

@g
@fABC

defD CABC D a.fABC C fBAC/ C b.fABC C fBC/

@g
@fBC

defD CBC D b.fBC C fABC/

@g
@fBAC

defD CBAC D a.fABC C fBAC/ C b.fBAC C fAC/:

One can check that the function

g.fAC; fABC; fBC; fBAC/ D a
2
.fABC C fBAC/2 C b

2
..fAC C fBAC/2 C .fBC C fABC/2/

readily satisfies these conditions. Then g can be rewritten as

g.fABC; fBAC/ D a
2
.fABC C fBAC/2 C b

2
.1 C .fABC � fBAC/2/:

As the potential is unique up to an additive constant, we consider F1 D g � b:Id=2.

Proposition 1 The non-atomic game has a unique Nash equilibrium, which is
f �ABC D f �BAC D 0.
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To show the uniqueness of the equilibrium in the limiting game, we made use
of the fact that the limiting game has a potential which is convex. Yet, not only the
limiting game has a convex potential, but also the original one, as we conclude from
next theorem, whose proof is a direct application of [5].

Theorem 2 For any finite number of players, the game is a potential game [9] with
the potential function:

F.fABC; fBAC/ D bN.fABC � fBAC/2 C aN

2
.fABC C fBAC/ .fABC C fBAC C 1=N/ :

(1)

Note that unlike the framework of non-atomic games, the fact that the game
has a convex potential does not imply uniqueness. The reason for that is that in
congestion games, the action space over which the potential is minimized is not a
convex set (due to the non-splitable nature) so that it may have several local minima,
each corresponding to another equilibrium, whereas a for a convex function over the
Euclidean space, there is a unique local minimum which is also a global minimum
of the function (and thus an equilibrium of the game).

3.3 Efficiency

Theorem 3 In the non-atomic setting, the only Nash equilibrium is also the social
optimum (i.e. the point minimizing the sum of costs of all players) of the system.

Since the game possesses several equilibria, we can expect the PoA (Price of
Anarchy - the largest ratio between the sum of costs at an equilibrium and the sum of
costs at the social optimum) and PoS (Price of Stability - the smallest corresponding
ratio) to be different.

Theorem 4 The price of stability is 1 and the price of anarchy is 1 C b
2aN2 .

We make the following observations:

(i) In the splitable atomic games studied in [6] the PoA was shown to be
greater than one for sufficiently small number of players (smaller than some
threshold), and was 1 for all large enough number of players (larger than
the same threshold). Here for any number of players, the PoS is 1 and the
PoA is greater than 1.

(ii) The PoA decreases in N and tends to 1 as N tends to infinity, the case of
splitable games.

(iii) We have shown that the PoA is unbounded: for any real value K and any
number of players one can choose the cost parameters a and b so that the
PoA exceeds K. This corresponds to what was observed in splitable games [6]
and contrast with the non-atomic setting of single commodity flows (i.e. when
there is only one source node instead of two), and arbitrary topology networks
where the PoA equals 4/3 [10].
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4 Atomic Semi-Splitable Case and Its Splitable Limit
(F4 Framework)

The game can be expressed as a 2-player matrix game where each player (i.e. each
source node A and B) has N C 1 possible actions, for each of the N C 1 possible
values of fABC and fBAC respectively. The utility for player A is

UA.fABC; fBAC/D fACCAC C fABCCABC

D b � bfABC C bfBAC C .a � 2b/fABCfBAC C .a C 2b/f 2
ABC:

(2)

Similarly, for player B:

UB.fABC; fBAC/D fBCCBC C fBACCBAC

D b � bfBAC C bfABC C .a � 2b/fBACfABC C .a C 2b/f 2
BAC

(3)

Note that

@UA

@fABC
D �b C .a � 2b/fBAC C 2.a C 2b/fABC

and
@UB

@fBAC
D �b C .a � 2b/fABC C 2.a C 2b/fBAC:

Hence
@2UA

@f 2
ABC

D 2.a C 2b/ D @2UB

@f 2
BAC

. Therefore, both uA W fABC 7! UA.fABC; fBAC/

and uB W fBAC 7! UB.fABC; fBAC/ are (strictly) convex functions. This means that
for each action of one player, there would be a unique best response to the second
player if its action space was the interval .0; 1/. Hence, for the limit case (when
N ! 1), the best response is unique. In contrast, for any finite value of N, there
are either 1 or 2 possible best responses which are the discrete optima of functions
uA W fABC 7! UA.fABC; fBAC/ and uB W fBAC 7! UB.fABC; fBAC/. We will however show
that in the finite case, there may be up to 2 
 2 D 4 Nash equilibria while in the
limit case the equilibrium is always unique.

4.1 Efficiency

Note that the total cost of the players is

˙.fABC; fBAC/D UA.fABC; fBAC/ C UB.fABC; fBAC/

D 2b C 2.a � 2b/fABCfBAC C .a C 2b/.f 2
ABC C f 2

BAC/

D 2b C a.fABC C fBAC/2 C 2b.fABC � fBAC/2 � 2b:



30 E. Altman and C. Touati

Further, note that ˙ D 2.F1 C b/. Hence ˙ is strictly convex. Also
˙.0; 0/ D 2b. Therefore .0; 0/ is the (unique) social optimum of the system. Yet,
for sufficiently large N (that is, as soon as we add enough flexibility in the players’
strategies), this is not a Nash equilibrium, as stated in the following theorem:

Theorem 5 The point .fABC; fBAC/ D .0; 0/ is a Nash equilibrium if and only if
N � a

b C 2.

Also, we can bound the total cost by:

˙.fABC; fBAC/D 2b C 2.a � 2b/fABCfBAC C .a C 2b/.f 2
ABC C f 2

BAC/

� 2b C .a � 2b/.f 2
ABC C f 2

BAC/ C .a C 2b/.f 2
ABC C f 2

BAC/

� 2b C 2a.f 2
ABC C f 2

BAC/

� 2b C 4a

This bound is attained at ˙.1; 1/ D 2b C 2.a � 2b/ C 2.a C 2b/ D 4a C 2b. Yet,
it is not obtained at the Nash equilibrium for sufficiently large values of N:

Theorem 6 .1; 1/ is a Nash equilibrium if and only if N � 2b C a

3a C b
.

Therefore, for N � max. a
b C 2; 2bCa

3aCb/ the Nash equilibria are neither optimal nor
worse-case strategies of the game.

4.2 Case N D 1

In case of N D 1 (one flow arrives at each source node and there are thus two
players) the two approach coincides: the atomic non-splitable case (F3) is also
a semi-splitable atomic game (F4). fABC and fBAC take values in ff0g; f1gg. From
Eqs. (2) and (3), the matrix game can be written

�
.b ; b/ .2b ; a C 2b/

.a C 2b ; 2b/ .2a C b ; 2a C b/

�

and the potential of Eq. (1) becomes

�
0 a C b

a C b 3a

�

:

Then, assuming that either a or b is non null, we get that .0; 0/ is always a Nash
equilibrium and that .1; 1/ is a Nash equilibrium if and only if 3a � a C b, i.e.
2a < b.

We next consider any integer N and identify another surprising feature of the
equilibrium. We show that depending on the sign of a�2b, non-symmetric equilibria
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arise in our symmetric game. In all frameworks other than the semi-splitable games
there are only symmetric equilibria in this game. We shall show however that in the
limit (as N grows to infinity), the limiting game has a single equilibrium.

4.3 Case a � 2b < 0

In this case, there may be multiple equilibria. Note that due to the shape of UA

and UB the cost matrices of the game are transpose of each other. Therefore in the
following, we shall only give matrix UA. We have the following theorem:

Theorem 7 All Nash equilibria are symmetrical, i.e. f �ABC D f �BAC:

The proof is given in the Arxiv version [7], as well as an illustrative example.

4.4 Case a D 2b (with a > 0)

When a D 2b, we shall show that some non-symmetrical equilibria exists.

Theorem 8 If a D 2b, there are exactly either 1 or 4 Nash equilibria. For any N,
let N D b N

8
c.

• If N mod 8 D 4, there are 4 equilibria .n�ABC; n�BAC/, which are .N; N/, .NC1; N/,
.N; N C 1/ and .N C 1; N C 1/.

• Otherwise, there is a unique equilibrium, which is .N; N/ if N mod 8 < 4 or
.N C 1; N C 1/ if N mod 8 > 4.

4.5 Case a � 2b > 0

Theorem 9 If a � 2b > 0, there are exactly either 1, 2 or 3 Nash equilibria.

Let ˛ D a C 2b

3a C 2b
, ˇ D 2a

3a C 2b
and � D b

3a C 2b
.

Define further eN D bN�c and z.N/ D N� �eN. The equilibria are of the form

• Either .eN;eN/, .eN C 1;eN/, .eN;eN C 1/ if N is such that z.N/ D ˛ (mode 3-A in
Fig. 2)

• Or .eN C1;eN C1/, .eN C1;eN/, .eN;eN C1/ if N is such that z.N/ D ˇ (mode 3-B)
• Or .eN;eN C 1/, .eN C 1;eN/ if N is such that ˛ < z.N/ < ˇ (mode 2)
• Or .eN;eN/ if N is such that ˇ < z.N/ < ˛ C 1 (mode 1).

The proof is given in the Arxiv version [7], as well as an illustrative example.
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Mode 3-A Mode 3-B Mode 3-A Mode 3-B

a b a +1 b +1

Mode 2 Mode 2Mode 1

Fig. 2 Different modes according to different values of N

4.6 Limit Case: Perfectly Splitable Sessions

We focus here in the limit case where N ! C1.

Theorem 10 There exists a unique Nash equilibrium and it is such that

f �BAC D f �ABC D b

3a C 2b
:

Recall that the optimum sum (social optimum) is given by .0; 0/ and that the
worse case is given by .1; 1/. Hence, regardless of the values of a and b, at the limit
case, we observe that there is a unique Nash equilibrium, that is symmetrical, and is
neither optimal (as opposed to F3), nor the worst case scenario. The price of anarchy
is then:

PoA D PoS D 2b C 2f �2

ABCa

2b
D 1 C ab

.3a C 2b/2
:

5 Conclusions

We revisited in this paper a load balancing problem within a non-cooperative routing
game framework. This model had already received much attention in the past
within some classical frameworks (the Wardrop equilibrium analysis and the atomic
splitable routing game framework). We studied this game under other frameworks
- the non splitable atomic game (known as congestion game) as well as a the semi-
splitable framework. We have identified many surprising features of equilibria in
both frameworks. We showed that unlike the previously studied frameworks, there is
no uniqueness of equilibrium, and non-symmetric equilibria may appear (depending
on the parameters). For each of the frameworks we identified the different equilibria
and provided some of their properties. We also provided an efficiency analysis in
terms of price of anarchy and price of stability. In the future we plan to investigate
more general cost structures and topologies.
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Go-Index: Applying Supply Networks Principles
as Internet Robustness Metrics

Ivana Bachmann, Fernando Morales, Alonso Silva,
and Javier Bustos-Jimenez

Abstract Whether as telecommunications or power systems, networks are very
important in everyday life. Maintaining these networks properly functional and
connected, even under attacks or failures, is of special concern. This topic has
been previously studied with a whole network robustness perspective. With this
perspective, whenever a node is removed the network behaviour is measured, and
given a strategy all the nodes in the network are removed one by one. Then the
final measure corresponds to the average of the measured behaviours after each
node removal. Here, we propose two alternatives to well-known studies about the
robustness of the backbone Internet: to use a supply network model and metrics
for its representation (we called it the Go-Index) and to use robustness metrics that
can be calculated as disconnections appear. Our research question is: if a smart
adversary has a limited number of strikes to attack the Internet, how much will the
damage be after each one in terms of network disconnection? Our findings suggest
that in order to design robust networks it might be better to have a complete view of
the robustness evolution of the network, from both the infrastructure and the user’s
perspective.

Keywords Complex networks • Robustness metrics • Internet backbone

1 Introduction

Transportation, electrical and telecommunication networks, to name a few, have
become fundamental for the proper functioning of the modern world. For that reason
it has become of extreme importance that these systems remain operative. However
these systems are prone to failure due to malfunctions, catastrophes or attacks.
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All these structures can be studied through complex networks by representing the
components of the structure by nodes and interactions among the components by
edges.

Since their correct functioning requires that the network is properly connected, it
is of great importance to study their ability to resist failures (either unintentional or
targeted attacks). This ability is called robustness.

In this work, we focus on the scenario of targeted attacks by an adversary. We
notice that this scenario corresponds to an upper bound on the damage of any type
of failures.

We consider that an “adversary” should plan a greedy strategy aiming to
maximize the damage with minimum number of strikes. Thus, in this article we
discuss the performance of attacks based on the edge betweenness centrality metric
[2] over the Internet Backbone (the network formed by Internet exchange points,
IXP), and its correlation with what users perceive from such networks if they want
to receive content from the major content provider (Google), with a metric called
Go-Index. This measure contains different supply network measures whose provider
is Google. Just like economy uses the price of the Big Mac as a way of measuring
purchasing power parity for its wide availability, here we measure the ability of the
nodes to remain connected with Google for the same reason.

The idea to consider an IXP-based network as “the Internet backbone” is not
new; It has previously been used as part of the “internet core” to study the inter-
AS traffic patterns and an evolution of provider peering strategies [13], to optimize
the content delivery from Google via direct paths [6] and the Internet Backbone
Market [4]. The novelty of our study lies in the use of the IXP network as a model
for “backbone Internet”, which can give us a good approximation of the Internet’s
physical structure. As far as the authors knowledge, this is the first time that the
robustness of the IXP network is studied.

The article is organized as follows, next section presents related work, followed
by the methodology for building the IXP network, the attacking strategy using
betweenness centrality and Go-Index (Sects. 4 and 5). Conclusions are presented
in Sect. 6.

2 Related Work

To study the robustness of a network, its evolution against failure must be analyzed.
On real–world situations, networks may confront random failures as well as targeted
attacks. For the latter, two main categories of attacking strategies have been defined:
simultaneous and sequential attacks [10]. Simultaneous attacks choose a set of nodes
and remove them all at once while sequential attacks choose a node to remove and
given the impact of this removal it chooses another node, proceeding iteratively.

Targeted attacks have been thoroughly studied to analyze network robust-
ness. Holme et al. tested node degree and betweenness centrality strategies using
simultaneous and sequential attacks. The stability of scale-free networks under
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degree-based attacks was studied on [24]. Experimental results are shown in [11]
who also consider sequential and simultaneous attacks as well as centrality measure
strategies. To get closer to a real world strategy scenario on [9, 23] studied the
resilience of scale-free networks to a variety of attacks with different amounts of
information available to the attacker about the network.

On [3] the impact of the effectiveness of the attack under observation error was
studied. More recently [22] studied sequential multi-strategy attacks using multiples
robustness measures including the Unique Robustness Measure (R-index) [18].

The attacking strategies have been analyzed through the lens of an attacker, an
adversary whose objective is to perform the most damage possible to the network.
However the case of an adversary with a limited amount of strikes remain to be
tested. Here this case is analyzed and an option to measure the robustness of a
network in these circumstances is presented.

On [8] was found that targeted attack can be more effective when they are
directed to bottlenecks rather than hubs. On [1] authors present partial values of
R-index while nodes are disconnected, showing the importance of a well chosen
robustness metric for performing the attacks.

The idea of planning a “network attack” using centrality measures has captured
the attention of researchers and practitioners nowadays. For instance, Sterbenz
et al. [20] used betweenness-centrality for planning a network attack, calculating
that value for all nodes, ordering nodes from highest to lowest, and then attacking
(discarding) those nodes in that order. They have shown that disconnecting only
two of the top ranked nodes, their packet-delivery ratio is reduced to 60%, which
corresponds to 20% more damage than other attacks such as random links or nodes
disconnections, tracked by link-centrality and by node degrees.

In the study of resilience after edge removing, Rosenkratz et al. [17] study
backup communication paths for network services defining that a network is
“k-edge-failure-resilient if no matter which subset of k or fewer edges fails, each
resulting subnetwork is self-sufficient” given that “the edge resilience of a network
is the largest integer k such that the network is k-edge-failure-resilient”.

For a better understanding of network attacks and strategies, see [10, 15, 16, 21].

3 Building the Internet Backbone Graph

Internet peering is the contract between two autonomous systems (AS) that agree
to exchange traffic and traffic routes through a physical link. In [7] authors present
that “The core of the Internet is a multi-tier hierarchy of Transit Providers (TPs).
About 10–20 tier-1 TPs, present in many geographical regions, are connected
with a clique of peering links. Regional (tier-2) ISPs are customers of tier-1 TPs.
Residential and small business access (tier-3) providers are typically customers of
tier-2 TPs”. Therefore, it is natural to think that the peering network is a coarse
grained approximation of the Internet itself. Thus, we used it to model Internet for
studying its robustness.
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Fig. 1 Peering graph

From peeringdb.com we collected the autonomous systems (AS) from every
Internet Exchange Point (IXP) and defined them as graph nodes. Therefore, an
AS could belong to different IXPs and an IXP could have multiple ASs. Then, we
connected the nodes if they fulfill at least one of the following rules: physically
linked ASs that exchange traffic, ASs belonging to the same IXP, ASs belonging to
the same facility.

Figure 1 shows the resulting Graph, which has 522 nodes and 14; 294 edges
(orange edges are public peering, blue are private peering, and green are direct
network connection). The resultant network has a well connected core network with
some isolated nodes at the edges. In Fig. 2 we present a degree distribution of nodes
for our IXP Graph.

4 Studying the Robustness of the Internet Backbone

Betweenness centrality is a metric that determines the importance of an edge
by looking at the shortest paths between all of the pairs of remaining nodes.
Betweenness has been studied as a resilience metric for the routing layer [19]
and also as a robustness metric for complex networks [11] and for internet
autonomous systems networks[14] among others. Betweenness centrality has been
widely studied and standardized as a comparison base for robustness metrics, thus
in this study it will be used for performance comparison.

If we plan a network attack by disconnecting edges with a given strategy,
it is widely accepted to compare it against the use of betweenness centrality

peeringdb.com
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Fig. 2 Degree distribution of IXP autonomous systems

metric, because the latter reflects the importance of an edge in the network [11].
These attack strategies are compared by means of the Unique Robustness Measure
(R-index) [18], defined as:

R D 1

N

NX

QD1

s.Q/; (1)

where N is the number of nodes in the network and s.Q/ is the fraction of nodes in
the largest connected component after disconnecting edges using a given strategy.
Therefore, the higher the R-index, the better in terms of robustness.

Instead of just comparing the robustness, after the removal of all of the edges,
we would like to study the behavior of the attacks after only a few strikes. To do so,
we define a variant of the R-index which takes into account only the first n strikes of
an attack. Thus, for a simultaneous attack (where the nodes are ranked by a metric
only once at the beginning), the Rn-index is defined as:

Rn D 1

n

nX

QD1

s.Q/: (2)

That is, the area under the curve produced by the largest connected component ratio
(compared to the whole network) until n.

For a sequential attack, the order of node disconnection is recomputed after each
disconnection. Similar to the R-index, notice that the lower the Rn-index, the more
effective the attack, since that gives us a higher reduction of robustness.

Results are shown in Fig. 3. We tested sequential attacks: At each strike, the
next edge to disconnect was the one with the highest betweenness value. The figure
shows the behavior of the Rn-index in our IXP Graph. The strategy proves to be very
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Fig. 3 % of the largest component size compared to the original network. In the plot, R20%-index
is marked in cyan

effective in attacks, disconnecting half of the network removing only 20% of the
edges, more than 30% of the nodes after removing 10% of edges, and 10% of nodes
after 1% of edges.

5 The Go-Index: If You Cannot See Google, You Are Not
Connected

Google has been reported as having the 40% of Internet traffic in 2013.1 Thus, given
the Google peering policies2 and knowing the Google policies to interconnect their
datacenters [12], we can also study the Internet as an information supply network,
adapting the metrics presented in [25]:

1. Supply Availability (SAR): The percentage of ASs that have access to Google
from at least one of its ASs.

2. Network Connectivity (NetCON): The number of ASs in the largest functional
sub-network, in which there is a path between any pair of ASs and there exist at
least one of the Google ASs.

3. Best Delivery Efficiency (BDE): The reciprocal of the average of each demand
AS’s shortest supply path length to its nearest Google AS. Values go from 1

(everyone is connected directly with a Google AS) to 0 (there are only Google
ASs in the network).

1See the Forbes article at http://goo.gl/aHdeiN
2See https://peering.google.com/#/options/peering

http://goo.gl/aHdeiN
https://peering.google.com/#/options/peering
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4. Average Delivery Efficiency (ADE): The average inverse supply path length
for all possible {Network AS,Google AS} pairs, adjusted by a weighting factor
for each path (in our study all Google ASs have the same importance). In this
case, values go from 2 (everyone is connected to both Google ASs directly) to 0

(nobody is connected with Google ASs).

Notice that Google delegated some services at ISPs autonomous systems [5],
nevertheless they must eventually connect with Google backbone for updating. We
called the tuple {1,2,3,4} the Go-Index, that is, the supply network measures whose
provider is Google.

Using the same attack strategy from previous section, we calculated the Go-Index
after edge removal (removing the edge with higher betweenness). The results are
presented in Fig. 4a (Supply Availability), Fig. 4b (Network Connectivity), Fig. 4c
(Best Delivery Efficiency), and Fig. 4d (Average Delivery Efficiency).

The first two metrics are very related with the largest connected component ratio,
which in this study include at least one of the two Google ASs, that is, AS15169 and
AS36040 (marked in pink at Fig. 1, the former in the center and the latter in the edge
of the network). Therefore, no new information are provided by those metrics.

The following two metrics are based in “how far is Google from a given
autonomous system”, but BDE considers only the connected component that
includes Google ASs, by itself it has no information about the isolated portion of

Fig. 4 Four parts of Go-Index under a targeted attack . (a) Supply availability ratio. (b) Network
connectivity. (c) Best delivery efficiency. (d) Average delivery efficiency
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the network that cannot reach the Google ASs, therefore BDE improves when large
subnets are disconnected from the core network that contains the Google ASs.

Note that for a user inside that core network the main content provider always
exists and there are no indications that the network is falling apart (or losing half of
its members, as produced by eliminating 20% of its edges), this can be appreciated
through BDE. Nevertheless, the big picture is different: after having only the 5%
of the network disconnected one of Google ASs is isolated, showing that from this
point the supply network is only maintained by AS15169. The perception error is
corrected when ADE is used because it includes all nodes in its calculus.

Then, the Go-Index accomplish its objectives, reflecting both infrastructure
(SARCNetCONCADE) and user perception (BDE+ADE), for Internet robustness
studies.

6 Conclusions and Future Work

In this paper we have presented how robust the Internet backbone (the peering AS
network) would be if an adversary can choose wisely which physical link he will
cut (or if a very unlucky accident happens). Following the recommendations, the
chosen one would be the edge with highest betweenness centrality value.

Using this strategy the adversary is capable of disconnecting half of the network
by removing only 20% of the edges, more than 30% of the nodes after removing
10% of the edges, and 10% of nodes after 1% of the edges as we have seen with the
values of Rn index in Sect. 4.

Furthermore, we consider the Internet as a supply network, where Google is the
main Internet content provider and propose to study the Internet backbone with
the Go-Index. If only Best Delivery Efficiency is considered, the network can be
declared robust because a user located inside the core network is always connected
with a Google AS and will not perceive that the network is being disconnected. The
Go-index will correct that perception since it also contains the Average Delivery
Efficiency which includes all nodes in its calculus.

As future work we plan to take into account the link capacities into our analysis
and to apply similar studies to other Internet infrastructures, such as country-based
fiber interconnection, submarine Internet cables, etc. Also, we plan to improve the
metrics for robustness reflecting both the infrastructure part, such as Rn index, and
the user perception, such as Best Delivery Efficiency/Average Delivery Efficiency.
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Decentralized K-User Gaussian Multiple Access
Channels

Selma Belhadj Amor and Samir M. Perlaza

Abstract In this paper, the fundamental limits of decentralized information trans-
mission in the K-user Gaussian multiple access channel (G-MAC), with K > 2, are
fully characterized. Two scenarios are considered. First, a game in which only the
transmitters are players is studied. In this game, the transmitters autonomously and
independently tune their own transmit configurations seeking to maximize their own
transmission rates, R1; : : : ; RK , respectively. On the other hand, the receiver adopts
a fixed receive configuration that is known a priori to the transmitters. The main
result consists of the full characterization of the set of rate tuples .R1; : : : ; RK/ that
are achievable and stable in the G-MAC when stability is considered in the sense
of the 	-Nash equilibrium (NE), with 	 > 0 arbitrarily small. Second, a sequential
game in which the two categories of players (the transmitters and the receiver) play
in a given order is presented. For this sequential game, the main result consists of
the full characterization of the set of rate tuples .R1; : : : ; RK/ that are stable in the
sense of an 	-sequential equilibrium, with 	 > 0 arbitrarily small.

Keywords Multiple access channel • Gaussian • Capacity • Decentralized •
Nash equilibrium • Sequential equilibrium

1 Problem Formulation

1.1 K-User Centralized Gaussian Multiple Access Channel

Consider the K-user memoryless Gaussian multiple access channel (G-MAC) with
K > 2 users. Let n 2 N be the blocklength. At each time t 2 f1; : : : ; ng and for
any i 2 f1; : : : ; Kg, let Xi;t denote the real input symbol sent by transmitter i. The
receiver observes the real channel output Yt D PK

iD1 hiXi;t C Zt, where hi, for all
i 2 f1; : : : ; Kg, is a constant nonnegative real channel coefficient. The noise terms Zt

are independent and identically distributed (i.i.d.) realizations of a zero-mean unit-
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variance real Gaussian random variable. Let Ri denote the information transmission
rate at transmitter i, for all i 2 f1; : : : ; Kg. The goal of the communication
is to convey the message index Mi, uniformly distributed over the set Mi ,
f1; : : : ; b2nRicg, from transmitter i, with i 2 f1; : : : ; Kg to the common receiver. The
message indices .M1; : : : ; MK/ are independent of each other and of the noise terms
Z1; : : : ; Zn. At each time t, the t-th symbol of transmitter i, for all i 2 f1; : : : ; Kg,
depends solely on its message index Mi, i.e., Xi;t D f .n/

i;t .Mi/; t 2 f1; : : : ; ng,

for some encoding functions f .n/
i;t WMi ! R. The receiver produces an estimate

. OM.n/
1 ; : : : ; OM.n/

K / D ˚.n/.Y1; : : : ; Yn/ of the message-tuple .M1; : : : ; MK/ via a
decoding function ˚.n/WRn ! M1 
 � � � 
MK , and the average probability of error
is given by

P.n/
error.R1; : : : ; RK/ , Pr

˚
. OM.n/

1 ; : : : ; OM.n/
K / ¤ .M1; : : : ; MK/

�
: (1)

The symbols Xi;1; : : : ; Xi;n satisfy an expected average input power constraint

1

n

nX

tD1

E
�
X2

i;t

�
6 Pi;max; i 2 f1; : : : ; Kg; (2)

where the expectation is over the message indices and where Pi;max denotes the
maximum average power of transmitter i in energy units per channel use. This
channel is fully described by the signal to noise ratios (SNRs): SNRi, with i 2
f1; : : : ; Kg, which are defined as: SNRi , jhij2Pi;max.

1.2 Achievable Rates and Capacity Region

The K-tuple .R1; : : : ; RK/ 2 RKC is said to be achievable if there exists a sequence

of encoding and decoding functions
˚ff .n/

1;t gn
tD1; : : : ; ff .n/

K;t gn
tD1; ˚.n/

�1
nD1

such that the
average error probability tends to zero as the blocklength n tends to infinity. That is,

lim sup
n!1

P.n/
error.R1; : : : ; RK/ D 0: (3)

The closure of the union of all achievable rate tuples is called the capacity region
and is denoted by C .SNR1; : : : ; SNRK/. From [5, 14], it follows that

C .SNR1; : : : ; SNRK/ D
�

.R1; : : : ; RK/ 2 RKC W
X

j2U
Rj 6 1

2
log2

�
1 C

X

j2U
SNRj

	
; 8U � f1; : : : ; Kg




: (4)

Note that C .SNR1; : : : ; SNRK/ is a K-dimension polyhedron with KŠ corner points.
Each corner point corresponds to a decoding order among the users.
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1.3 K-User Decentralized Gaussian Multiple Access Channel

In a decentralized K-user G-MAC, the aim of transmitter i, for all i 2 f1; : : : ; Kg,
is to autonomously choose its transmit configuration si in order to maximize its
information rate Ri. The transmit configuration si can be described in terms of the
information rates Ri, the block-length n, the channel input alphabetXi, the encoding
functions ff .n/

1;t gn
tD1; : : : ; ff .n/

K;t gn
tD1, etc. The receiver autonomously chooses a receive

configuration s0 in view of maximizing the sum-rate. Let PK denote the set of
all permutations (all possible decoding orders) over the set f1; : : : ; Kg. For any

 2 PK , the considered decoding order 
.1/; 
.2/; : : : ; 
.K/ is such that user 
.1/

is decoded first, user 
.2/ is decoded second, etc. The receive configuration can be
described in terms of the decoding function ˚.n/, which in this paper is restricted
to single-user decoding (SUD), successive interference cancelation (SIC.
/) with
a given order 
 2 PK , or any time-sharing (TS) combination of the previous
schemes. However, the choice of the transmit configuration of each transmitter
depends on the choice of the other transmitters as well as the decoding scheme at
the receiver. The input signal of one transmitter is interference to the others. Thus,
the rate achieved by transmitter i depends on all transmit configurations s1; : : : ; sK

as well as the configuration of the receiver s0. The utility function of transmitter i,
for all i 2 f1; : : : ; Kg, is ui W A0 
 � � � 
 AK ! RC and it is defined as its own rate,

ui.s0; : : : ; sK/ D
(

Ri.s0; : : : ; sK/; if P.n/
error.R1; : : : ; RK/ < �

0; otherwise,
(5)

where � > 0 is an arbitrarily small number and Ri.s0; : : : ; sK/ denotes a transmission
rate achievable with the configurations .s0; : : : ; sK/. Often, the information rate
Ri.s0; : : : ; sK/ is written as Ri for simplicity. However, every nonnegative achievable
information rate is associated with a particular transmit-receive configuration
.s0; : : : ; sK/ that achieves it. It is worth noting that there might exist several transmit-
receive configurations that achieve the same tuple .R1; : : : ; RK/ and distinction
between the different transmit-receive configurations is made only when needed.
The utility function of the receiver is u0 W A0 
 � � � 
 AK ! RC and it is defined as
the sum-rate,

u0.s0; : : : ; sK/ D
( PK

iD1 Ri.s0; : : : ; sK/; if P.n/
error.R1; : : : ; RK/ < �

0; otherwise.
(6)

In the absence of a central controller which dictates the transmit/receive con-
figurations to the various network components, only stable rate tuples are possible
operating points of the network. Within this context, stability is considered in the
sense that none of the components is able to increase its utility by unilaterally
changing its own transmit/receive configuration. From this perspective, in the
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capacity region C .SNR1; : : : ; SNRK/, any rate tuple .R1; : : : ; RK/ for which

Ri <
1

2
log2

�

1 C SNRi

1 CPK
jD1Ij¤i SNRj

�

; (7)

at least for one i 2 f1; : : : ; Kg, is not stable. This is true when the receiver is
constrained to choose among the decoding strategies mentioned above (SUD, SIC,
or TS) because the considered transmitter can always increase its rate and achieve

Ri D 1

2
log2

�

1 C SNRi

1 CPK
jD1Ij¤i SNRj

�

� ı; (8)

with ı > 0 arbitrarily small. The remaining achievable rate tuples .R1; : : : ; RK/ 2
C .SNR1; : : : ; SNRK/ which satisfy

Ri > 1

2
log2

�

1 C SNRi

1 CPK
jD1Ij¤i SNRj

�

; 8i 2 f1; : : : ; Kg; (9)

can be stable or not, depending on the actions of the receiver.
In the following, two games are considered. First, a game in which only the

transmitters are players is studied in Sect. 2. For this game, the set of stable rate
tuples is fully characterized when stability is considered in the sense of 	-Nash
equilibrium [10], with 	 > 0 arbitrarily small. Second, a sequential game in which
the two categories of players (the transmitters and the receiver) play in a given order.
For this sequential game, the set of stable rate tuples in the sense of the 	-sequential
equilibrium, with 	 > 0 arbitrarily small, is derived in Sect. 3.

2 Game I: Only the Transmitters Are Players

Under the assumption that the receiver adopts a fixed receive configuration Qs0 that is
known a priori to all terminals, the competitive interaction of the K transmitters in
the decentralized G-MAC can be modeled by the following game in normal form:

G1 D .K ; fAkgk2K ; fukgk2K / : (10)

The set K D f1; : : : ; Kg is the set of players, i.e., the transmitters. For all i 2 K ,
the set Ai is the set of actions of player i. An action si 2 Ai of player i is basically
its transmit configuration as described above. The utility function of transmitter i,
for all i 2 f1; : : : ; Kg, is ui defined in (5). Note that since the receiver is not a player,
its action Qs0 is kept fixed, but it remains being an argument of the utility function.

A formal definition of an 	-NE is provided below.
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Definition 1 (	-NE [10]). In the game G1, under the fixed receive configuration
Qs0, an action profile .Qs0; s�1 ; : : : ; s�K/ is an 	-NE if for all i 2 K and for all si 2 Ai,
it holds that

ui.Qs0; s�1 ; : : : ; s�i�1; si; s�iC1; : : : ; s�K/ 6 ui.Qs0; s�1 ; : : : ; s�i�1; s�i ; s�iC1; : : : ; s�K/ C 	: (11)

Under the fixed receive configuration Qs0, from Definition 1, it becomes clear that
if .Qs0; s�1 ; : : : ; s�K/ is an 	-NE, then none of the transmitters can increase its own
rate by more than 	 bits per channel use by unilaterally changing its own transmit
configuration while keeping the average error probability arbitrarily close to zero.
Thus, at a given 	-NE, every transmitter achieves a utility that is 	-close to its
maximum achievable rate given the transmit configuration of the other transmitters.
Note that if 	 D 0, then the definition of NE is obtained [9].

Remark 1. Note that the definition of the utilities in (5) and (6) is parametrized
by the choice of the error probability threshold �. Within this context, considering
NE instead of 	-NE with an arbitrary slack 	 > 0 would require the difficult task
of deriving a coding scheme that achieves the optimal rate with exactly � error
probability. The slack 	 > 0, which can be made arbitrarily small, allows to remove
this difficulty [3] and [12]. Note also that there is a slight abuse of notation in the
equalities defining the utilities and it is assumed that the blocklength is sufficiently
high to neglect the asymptotically small slack due to the fixed blocklength.

The following investigates the rate region that can be achieved at an 	-NE. This set
of rate tuples is known as the 	-NE region.

Definition 2 (	-NE Region). Let 	 > 0 be arbitrarily small. An achievable rate
tuple .R1; : : : ; RK/ 2 C .SNR1; : : : ; SNRK/ is said to be in the 	-NE region of the
game G1 under the fixed receive configuration Qs0, if there exists an action profile
.Qs0; s�1 ; : : : ; s�K/ 2 A0 
 A1 
 � � � 
 AK that is an 	-NE and the following holds:

ui.Qs0; s�1 ; : : : ; s�K/ D Ri; 8i 2 f1; : : : ; Kg: (12)

The following section studies the 	-NE region of the game G1, with 	 > 0

arbitrarily small, for several decoding strategies adopted by the receiver.

2.1 �-NE Region with Single User Decoding (SUD)

The 	-NE region of the game G1 when the receiver uses SUD, denoted by
NSUD.SNR1; : : : ; SNRK/, is described by the following theorem.

Theorem 1 (	-NE Region with SUD). Let 	 > 0 be arbitrarily small. Then, the
set NSUD.SNR1; : : : ; SNRK/ of 	-NEs of the gameG1 contains only the nonnegative
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rate tuple .R1; : : : ; RK/ that satisfies

Ri D 1

2
log2

�

1 C SNRi

1 CPK
jD1Ij¤i SNRj

�

; 8i 2 f1; : : : ; Kg: (13)

Proof. The proof of Theorem 1 is provided in [1]. �

2.2 �-NE Region with Successive Interference
Cancelation (SIC)

The 	-NE region of the game G1 when the receiver uses SIC.
/ with a fixed
decoding order 
 2 PK , denoted by NSIC.
/.SNR1; : : : ; SNRK/, is described by
the following theorem.

Theorem 2 (	-NE Region of the GameG1 with SIC.
/). Let 	 > 0 be arbitrarily
small and let 
 2 PK be a fixed decoding order. Then, the set NSIC.
/.SNR1; : : : ;

SNRK/ contains only the nonnegative rate tuple .R1; : : : ; RK/ satisfying:

R
.i/ D 1

2
log2

�

1 C SNR
.i/

1 CPK
jDiC1 SNR
.j/

�

; 8i 2 f1; : : : ; Kg: (14)

Proof. The proof of Theorem 2 is provided in [1]. �
Remark 2. Note that for every decoding order 
 2 PK , the region contains a
unique rate tuple. When considering SIC at the receiver under any decoding order,
the 	-NE region NSIC.SNR1; : : : ; SNRK/ contains KŠ rate tuples and is given by

NSIC.SNR1; : : : ; SNRK/ D
[


2PK

NSIC.
/.SNR1; : : : ; SNRK/: (15)

2.3 �-NE Region with Time-Sharing (TS)

Let N .SNR1; : : : ; SNRK/ denote the 	-NE region of the game G1 when the receiver
might use any time-sharing between the previous decoding techniques. This region
is described by the following theorem.

Theorem 3 (	-NE Region of the Game G1). Let 	 > 0 be arbitrarily small. Then,
the set N .SNR1; : : : ; SNRK/ equals the convex hull of

NSUD.SNR1; : : : ; SNRK/ [
� [


2PK

NSIC.
/.SNR1; : : : ; SNRK/
�
: (16)
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Proof. The proof is based on Theorem 1, Theorem 2, and a time-sharing argument.
The details are omitted. �

If the receiver performs any time-sharing combination between any of the
considered decoding strategies, then the transmitters can use the same time-sharing
combination between their corresponding 	-NE strategies to achieve any point
inside N .SNR1; : : : ; SNRK/. Note that every time-sharing strategy of the receiver
induces a unique rate tuple inside N .SNR1; : : : ; SNRK/. However, several time-
sharing schemes might achieve the same rate tuple.

3 Game II: A Sequential Game

In this section, the decentralized information transmission in the K-user G-MAC is
modeled as a sequential game in which there are two groups of players: one group,
the leaders, in which all players play simultaneously before the players of the other
group, the followers. The followers, simultaneously play after the leaders under the
assumption that the actions of the leaders are perfectly known by all the followers.
Let fK21;K22g be a partition of K [f0g, such that K21 is the set of leaders and K22

is the set of followers. The competition between the different users (the transmitters
and the receiver) in the G-MAC can be modeled as follows:

G2 D .K [ f0g; fK21;K22g; fAkgk2K ; fukgk2K / : (17)

Backward induction is used in order to characterize a sequential equilibrium of
this game. First, the leaders simultaneously play knowing that the followers will
simultaneously play their best responses. Instead of seeking an exactly optimal
solution, each player allows a tolerance 	 > 0 and seeks a strategy that is 	-close to
the optimal reward. The set of these 	-close optimal strategies of player k is given
by its best 	-response set defined as follows:

Definition 3 (Set of Best 	-Response of Player k). The set of best 	-responses of
a given player k 2 f0; 1; : : : ; Kg is

BR.	/
k .s�k/ D ˚

sk 2 Ak W uk.sk; s�k/ > max
Qsk2Ak

uk.Qsk; s�k/ � 	
�
: (18)

Definition 4 (	-Sequential Equilibrium (	-SE)). Let 	 > 0 be arbitrarily small.
In the game G2, an action profile .s�

0; : : : ; s�
K/ is an 	-SE if it satisfies:

1. 8i 2 K21, s�
i 2 BR.	/

i

�
s�

K21nfig
	

with

BR.	/
i

�
s�

K21nfig
	

,
n
si 2 Ai W ui.si; s�

K21nfig; sK22 / > max
Qsi2Ai

ui.Qsi; s�

K21nfig; QsK22 / � 	
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subject to sK22 2 BR.	/

K22

�
si; s�

K21nfig
	

and QsK22 2 BR.	/

K22

�Qsi; s�

K21nfig
	o

;

with BR.	/

K22

�
si; s�

K21nfig
	

,
Y

j2K22

BR.	/
j

�
sK22nfjg; si; s�

K21nfig
	
:

2. 8j 2 K22; s�
j 2 BR.	/

j

�
s�

K22nfjg; s�

K21

	
:

Note that when 	 D 0 and when for all the action profile sK21 2 AK21 of the leaders,
the set BR.0/

K22
.sK21 / is unitary, the definition of a Stackelberg equilibrium [13] is

obtained. Note also that the 	-SE in Definition 4 can be seen as a generalization of
the sequential Stackelberg equilibrium in [4] for two-person games and it results in a
two-stage 	-NE. A first 	-NE is established among the leaders under the assumption
that the followers are playing their 	-best responses and second 	-NE is observed
among the followers under the assumption that the actions played by the leaders are
perfectly known by the followers.

Definition 5 (	-Sequential Equilibrium Region). An achievable rate tuple .R1; : : : ;

RK/ is said to be in the 	-SE region of the game G2, if there exists an action profile
.s�

0; : : : ; s�
K/ 2 A0 
 � � � 
 AK that is an 	-SE and such that

ui.s
�
0; : : : ; s�

K/ D Ri; 8i 2 f1; : : : ; Kg; (19)

u0.s
�
0; : : : ; s�

K/ D
KX

iD1

Ri: (20)

3.1 �-Sequential Equilibrium Region with the Receiver
as Leader

Consider the game in which the receiver chooses first a receive configuration (is the
leader) and the transmitters adapt their transmit configurations to the choice of the
decoding rule in order to maximize their utilities (are the followers), i.e., K21 D f0g
and K22 D f1; : : : ; Kg. Let SR.SNR1; : : : ; SNRK/ denote the 	-SE region of the
game G2 when the receiver is the leader and is described by the following theorem.

Theorem 4 (	-SE Region of the Game G2 with the Receiver as Leader). The set
SR.SNR1; : : : ; SNRK/ contains all nonnegative rate tuples .R1; : : : ; RK/ satisfying

KX

iD1

Ri D 1

2
log2

�

1 C
KX

iD1

SNRi

�

: (21)

Proof. The proof of Theorem 4 is provided in [1]. �
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3.2 �-Sequential Equilibrium Region with Transmitter
i as Leader

Consider the game in which transmitter i, for a given i 2 f1; : : : ; Kg, chooses first
its transmit configuration and the receiver and the remaining transmitters follow,
i.e., K21 D fig and K22 D f0; : : : ; Kg n fig. Let 	 > 0 be arbitrarily small and let
Si.SNR1; : : : ; SNRK/ denote the 	-SE region of the game G2 when the transmitter
i is the leader. This region is described by the following theorem.

Theorem 5 (	-SE Region of the Game G2 with Transmitter i as Leader). The
set Si.SNR1; : : : ; SNRK/ contains all tuples .R1; : : : ; RK/ 2 R

KC satisfying

Ri D 1

2
log2 .1 C SNRi/ ; (22)

KX

jD1Ij¤i

Rj D 1

2
log2

�

1 C
KX

jD1

SNRj

�

� 1

2
log2 .1 C SNRi/ : (23)

Proof. The proof of Theorem 5 is provided in [1]. �

4 Example and Observations

In the two-user G-MAC, the regions described in Theorems 1–5 are illustrated in
Fig. 1, with the capacity region plotted as a reference.

Existence of �-NE and �-SE For any nonnegative SNR1; : : : ; SNRK , the
existence of an 	-NE and an 	-SE, with 	 arbitrarily small, is always
guaranteed as the regions in Theorems 1–5 are nonempty. Note in particular that
NSUD.SNR1; : : : ; SNRK/ ¤ ; and NSIC.
/.SNR1; : : : ; SNRK/ ¤ ; for any

 2 PK . Thus, N .SNR1; : : : ; SNRK/ ¤ ;, which ensures the existence of at
least one action profile .Qs0; s�1 ; : : : ; s�K/ that is an 	-NE, under any fixed receive
strategy Qs0.

Cardinality of �-NE and �-SE In both games G1 and G2, the unicity of a given
	-NE or 	-SE is not ensured even in the case in which the cardinality of the
equilibrium region is one. This is mainly due to the fact that a given rate tuple can
be achieved by various transmit and receive configurations. When the set of actions
is more restricted, i.e., power control, then the unicity is ensured [8].

Optimality In G1, depending on the choice of the receiver, the 	-NE rate tuples are
not necessarily Pareto-optimal. On the other hand, in G2, the 	-SE rate tuples are
Pareto-optimal. This suggests that, under the assumption that the players are able to
properly choose the operating equilibrium action profiles for instance via learning
algorithms, there is no loss of performance in the decentralized G-MAC case with
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R1 [bits/ch.use]

R2 [bits/ch.use]

R1 [bits/ch.use]

R2 [bits/ch.use]

1
2

log2(1 + SNR2)

1
2

log2(1 + SNR1)
1
2

log2(1 +
SNR1

1 + SNR2
)

1
2

log2(1 +
SNR2

1 + SNR1
)

SR(SNR1, SNR2)

C(SNR1, SNR2)

S1(SNR1, SNR2)

NSUD(SNR1, SNR2)

NSIC(π1)(SNR1, SNR2)

NSIC(π2)(SNR1, SNR2)

S2(SNR1, SNR2)

Fig. 1 	-NE and 	-SE regions, with 	 > 0 arbitrarily small, for the games G1 and G2 in the
two-user G-MAC. Here 
i refers to the decoding order in which transmitter i is decoded first, 8i 2
f1; 2g. The 	-NE regions in Theorems 1–3 are plotted in red and the 	-SE regions in Theorems 4–5
are plotted in green

respect to the fully centralized case. Furthermore, in G2, the utility of the leader is
always maximized, and thus it is always better to move first. Note that the definition
of the sequential games in this paper allows for a non-unitary set of leaders. Even
though the analysis here is restricted only to the game with unitary sets of leaders,
the above statement continues to hold for non-unitary sets of leaders.

Potential Games The definition of the utilities of the transmitters and the receiver
in (5) and (6), respectively, does not impose any restriction on the action sets, which
can be complex objects. From this perspective, it is hard to cast the games presented
here as potential games. If the actions of the players are restricted for instance to
power allocation policies, the results on power allocation games in [2, 6–8, 11] can
be seen as special cases of the results presented in this paper.

References

1. S. Belhadj Amor and S. M. Perlaza, “Decentralized K-User Gaussian Multiple Access
Channels,” INRIA, Lyon, France, Tech. Rep. RR-8949, Aug. 2016.

2. E. V. Belmega, S. Lasaulce, and M. Debbah, “Power allocation games for MIMO multiple
access channels with coordination,” IEEE Transactions on Wireless Communications, vol. 8,
no. 6, pp. 3182–3192, Jun. 2009.

3. R. Berry and D. Tse, “Shannon meets Nash on the interference channel,” IEEE Transactions
on Information Theory, vol. 57, no. 5, May 2011.

4. M. Breton, A. Alj, and A. Haurie, “Sequential Stackelberg equilibria in two-person games,”
Journal of Optimization Theory and Applications, vol. 59, no. 1, Oct. 1988.

5. T. M. Cover, Some Advances in Broadcast Channels. Academic Press, 1975, vol. 4, ch. 4.



Decentralized K-User Gaussian Multiple Access Channels 55

6. G. He, M. Debbah, and E. Altman, “A Bayesian game-theoretic approach for distributed
resource allocation in fading multiple access channels,” EURASIP Journal on Wireless
Communications and Networking, pp. 1–12, Jan. 2010.

7. L. Lai and H. El Gamal, “The water-filling game in fading multiple-access channels,” IEEE
Transactions on Information Theory, vol. 54, no. 5, pp. 2110–2122, May 2008.

8. P. Mertikopoulos, E. V. Belmega, A. L. Moustakas, and S. Lasaulce, “Distributed learning
policies for power allocation in multiple access channels,” IEEE Journal on Selected Areas in
Communications, vol. 30, no. 1, pp. 96–106, Jan. 2012.

9. J. F. Nash, “Equilibrium points in n-person games,” Proc. of the National Academy of Sciences,
vol. 36, pp. 48–49, Jan. 1950.

10. N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani, Algorithmic game theory. Cambridge,
New York, Melbourne: Cambridge University Press, 2007.

11. S. M. Perlaza, S. Lasaulce, and M. Debbah, “Equilibria of channel selection games in parallel
multiple access channels,” EURASIP Journal on Wireless Communications and Networking,
vol. 15, pp.n1–23, Dec. 2013.

12. S. M. Perlaza, R. Tandon, H. V. Poor, and Z. Han, “Perfect output feedback in the two-user
decentralized interference channel,” IEEE Transactions on Information Theory, vol. 61, no. 10,
pp. 5441–5462, Oct. 2015.

13. V. H. Stackelberg, Marketform und Gleichgewicht. Oxford University Press, 1934.
14. A. D. Wyner, “Recent results in the Shannon theory,” IEEE Transactions on Information

Theory, vol. 20, no. 1, pp. 2–10, Jan. 1974.



Correlated Equilibria in Wireless Power Control
Games

Sara Berri, Vineeth Varma, Samson Lasaulce, and Mohammed Said Radjef

Abstract In this paper, we consider the problem of wireless power control in an
interference channel where transmitters aim to maximize their own benefit. When
the individual payoff or utility function is derived from the transmission efficiency
and the spent power, previous works typically study the Nash equilibrium of the
resulting power control game. We propose to introduce concepts of correlated and
communication equilibria from game theory to find efficient solutions (compared
to the Nash equilibrium) for this problem. Communication and correlated equilibria
are analyzed for the power control game, and we provide algorithms that can achieve
these equilibria. Simulation results demonstrate that the correlation is beneficial
under some settings, and the players achieve better payoffs.
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1 Introduction

In this work, the notion of correlated equilibrium, which is a generalization of the
Nash equilibrium, is applied in the context of power control in wireless networks
to determine efficient cooperative strategies. Power control in wireless networks
has been studied using game theory in literature [5, 11] by characterizing the Nash
equilibrium. However, as the Nash equilibrium is often inefficient, introducing the
concept of correlated equilibrium will improve the players utility.

Several works apply the concept of correlated equilibrium to the wireless
communications paradigm, we will now present some of the relevant papers. The
papers [12, 13] look at peer-to-peer (P2P) networks, where the behavior of greedy
users can degrade the network performance. Here, the authors introduce correlated
equilibrium to improve the player utilities. The paper [14] study the energy
efficiency in ad hoc networks, and propose a cooperative behavior control scheme
to determine cooperative strategies, and help non-cooperative players to coordinate
their strategies using the correlated equilibrium. An efficient broadcasting strategy
in wireless ad hoc networks is proposed in [6], modeling the interaction among
nodes as a game, the action set comprises two actions, to forward or drop the
received message from the source. To achieve the correlated equilibrium, linear
programming, and a distributed learning algorithm based on the regret matching
procedure [7] are used.

The main objective of this paper is to propose another equilibrium concept
(i.e., correlated equilibrium) in the context of wireless power control games, which
allows players to obtain a larger equilibrium set and more efficient points in the
presence of a correlation device. Assuming that we can add a correlation device to
the game, is it possible to create a mechanism such that the equilibrium payoff set
of the obtained game includes payoffs that are not in the initial set (game without
correlation mechanism)? We provide answers to this question in this paper.

The key contributions and novelty of our paper are as follows:

1. Introduce the concepts of correlated and communication equilibrium to power
control in wireless networks.

2. Provide an algorithm to achieve a correlated equilibrium via regret matching.
3. Provide an algorithm to obtain the Pareto-optimal correlated equilibria via linear

programming.
4. An extensive numerical study comparing the efficiency of the proposed corre-

lated equilibrium with the standard Nash equilibrium.

2 System Model

We consider a system comprised of K � 2 pairs of interfering transmitters
and receivers, where the transmitters want to communicate with their respective
receivers. The channel gain of the link between Transmitter i 2 f1; : : : ; Kg and
Receiver j 2 f1; : : : ; Kg is denoted by gij 2 G (here gij are the real valued channel
gains), where G D fg1; : : : ; gNg represents the alphabet of the possible channel
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gains. The transmitter i transmits at discrete power level pi 2 Pi D fp1
i ; : : : ; pM

i g,
with p1

i D Pmin
i and pM

i D Pmax
i . Note that G ;Pi 	 R�0 8i.

We denote by ' a communication efficiency function which measures the packet
success rate as a function of the signal to interference and noise ratio (SINR). It is an
increasing function and lie in Œ0; 1�, and is identical for all the users. Let Ai denote
a finite discrete set of actions that can be taken by player i. In a power control game,
this action corresponds to the wireless signal power used by the transmitter i. The
SINR at receiver i 2 K writes as:

SINRi D aigii


2 CP
j¤i ajgji

: (1)

where ai 2 A is the power of the transmitter i and 
2 is the noise power.
Using these notations, the power control game denoted by G , is defined in its

normal form as follows.

Definition 2.1 A power control game is a triplet:

G D fK ; fAigi2K ; fuigi2K gI (2)

where:

1. K D f1; : : : ; Kg is the set of players.
2. Ai D fa1

i ; : : : ; aM
i g, is the corresponding power level set of the player

i 2 f1; : : : ; Kg; with am sorted such that am < amC1m D 1; M, a1
i D Pmin

i
and aM

i D Pmax
i , are respectively the minimum and maximum transmitting power

of player i, M � 1.
3. u1; : : : ; uK are the utility functions of the K players for a combination of choices

a D .a1; : : : ; aK/ D .ai; a�i/, where a�i D .a1; : : : ; ai�1; aiC1; : : : ; aK/ denotes
the power levels of all other players except player i. For each player i, the
utility function ui depends on the success of its transmission, which is a function
of all players’ actions through a, and on the energy spent in transmission ai.
Mathematically, the players’ utilities are defined by the following formula (3):

ui.a1; : : : ; aK/ D '.SINRi/ � ˛ai; (3)

The parameter ˛ > 0, is introduced to weigh the energy cost.

Note that this kind of payoff, different from the traditional energy efficiency (the
ratio of the data rate to the power) has been studied in literature [1], and is relevant
when the payoff corresponds to the profit (in terms of money) for each step. In
the following section, we introduce the problem of correlated equilibrium from the
power control game, where an observer is added to help the players to correlate their
actions.
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3 Problem Formulation

In the proposed game (2), the users are modeled as rational players, which means
they are expected to choose actions from the possible choices to maximize their
utilities. An important concept to characterize the outcome of the game is the Nash
equilibrium, which states that every player will select an action which maximizes
its utility given the actions of every other player. It corresponds to an action profile
from which no player has interest in changing unilaterally its action. However, it is
well known that the Nash equilibrium does not always lead to the best performance
for players [5, 11].

Therefore, other concepts to reach such a more efficient equilibrium need to
be investigated. In this paper, we will study the concepts of correlated equilib-
rium and communication equilibrium, introduced by Aumann [2], and Forges [3],
respectively. These concepts allow players to use an external mediator which
provides each of them information about the action to be played in the game.
Such a coordination scheme between players may sustain some equilibrium payoffs
that are not achievable by an equilibrium without it (Nash equilibrium). The
same conclusions hold for the sub-game perfect correlated equilibrium in repeated
games, [10]. Moreover, the correlated equilibrium is simpler to compute than the
Nash equilibrium [4]. In the following sub-section, we define the extended game,
including an outside observer, and the correlated equilibrium concept.

3.1 Power Control Games Using a Correlated Device

The concept of correlated equilibrium is developed by considering an extended
game that includes an outside observer (mediator), which provides each user with a
private recommendation regarding which action to perform. The recommendations
are chosen according to a probability distribution over the set of action profiles.
This probability distribution is called a correlated equilibrium, if the action profile
in which all players follow the observer’s recommendations is a Nash equilibrium
of the extended game.

Definition 3.1 Define p as a joint probability distribution on the action profile set
A D Q

i2K Ai. The distribution p is a correlated equilibrium if and only if for
every player i 2 K :

X

a
�i2A�i

p.ai; a�i/ui.ai; a�i/ �
X

a
�i2A�i

p.ai; a�i/ui.a
0
i; a�i/; 8ai; a0i 2 Ai: (4)

Inequality (4) means that for each user i, choosing power level a0i while it received
recommendation to choose the power ai, does not provide a higher expected utility.
Thus, it is in the best interest for the users to follow the recommended action. The
set of correlated equilibria is nonempty, closed and convex in every finite game [7],
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and it can include distributions that are not in the convex hull of the Nash equilibria
distributions. Indeed, Nash equilibrium is a special case of correlated equilibria,
where p.ai; a�i/ corresponds to the product of each individual probability. Thus, the
set of Nash equilibrium points is a subset of the set of the correlated equilibrium
points.

The correlated equilibrium considers the ability of users to coordinate actions,
and computes the optimality by the joint distribution, so it provides a better solution
compared with the non-cooperative Nash equilibrium, where each user acts in
isolation. Further, the correlation can provide important insights, when we face
the problem of equilibrium selection in games admitting multiple equilibria, which
could be the case of the proposed game in some setups.

Now, if the problem is to add a mediator to the game and enable players to
coordinate their actions, but also assume that the mediator receives information from
the players and afterwards gives them recommendations, we could construct another
kind of mechanism, that makes the information coming from players as inputs, and
uses them to find the suitable outputs that correspond to the recommendations. In
this scenario, the mechanism is also created such that the players have no interest
to deviate from the recommendations, which is the communication equilibrium
concept. This information exchange could bring performance improvement with
respect to the case where players coordinate their actions without reporting any
information to the mediator. In the following Sect. 3.2, we present how we could
apply this concept to the power control game (2).

3.2 Communication Equilibrium in Power Control Games

Here, we assume that the mediator collects information from the players before
making them recommendations. In the studied power control game, we assume the
players have type sets represented by Ti D f.g1

ii; : : : ; g1
Ki/; : : : ; .gN

ii ; : : : ; gN
Ki/g. In

the case of a wireless channel, the channel gains are randomly chosen following
a certain (known) probability distribution. Therefore, the ‘type’ for each player is
chosen randomly according to the given probability distribution over each player’s
type set. Each player i sends information about his type, i.e., ti 2 Ti to the
mediator (the player might lie if it brings some gain). Thus, a communication
device consists of a system p of probability distributions p D p.:jt/t2T DQi2K Ti

over A D Q
i2K Ai. The interpretation is that every player i 2 K reports its

type ti D .gii; gji/8j¤i to the mediator, which privately recommends ai according to
p D p.:jt/. The system p defines a communication equilibrium if none of the players
can gain by unilaterally lying on its type or by deviating from the recommended
action.
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Definition 3.2 The system p defines a communication equilibrium if:

X

t
�i2T

�i

q.t
�ijti/

X

a2A

p.ajt/ui.t; a/ �

X

t
�i 2T

�i

q.t
�ijti/

X

a2A

p.ajt0i ; t
�i/ui.t; a0

i ; a
�i/8i 2 K ; 8ti; t0i 2 Ti; 8a0

i 2 Ai:

(5)

where q.t�ijti/ D q.t/P
ti2Ti

q.ti;t�i/
, is the subjective probability assigned to the event

t�i, that is the actual profile of the other players’ types, if ti is the type of i.
The definition 3.2 implies that player i does not get a higher expected utility if it
lies about its true type ti and reports t0i , or if it plays another action a0i instead of
recommended action ai. In the following section, we propose some techniques to
achieve correlated and communication equilibria.

4 Implementation of Communication and Correlated
Equilibria

The sets of correlated equilibria and communication equilibria are the subsets
defined by the intersection of the half-spaces given by the inequalities (4) and (5),
respectively. In this section, we investigate methods to obtain correlated and
communication equilibria.

4.1 Linear Programming Method

In this paper, among the multiple correlated equilibria, we consider those which
provide the highest social welfare. Thus, the problem boils down to computing a
correlated equilibrium which maximizes the sum of the players’ expected utilities.
In order to characterize these equilibria, we propose to use a linear programming
method in which the optimization problem of the power control game can be
formulated as follows:

max cTx
Aix � 0 8i 2 K
PMK

jD1 xj D 1I
0 � xj � 1 8j D f1; : : : ; MKg

(6)

Where xT D .p.a1
1; : : : ; a1

K/; : : : ; p.aM
1 ; : : : ; aM

K //; cT D .
P

i2K ui.a1
1; : : :, a1

K/; : : : ;P
i2K ui.aM

1 ; : : : ; aM
K //.
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Ai D

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

.ui.a1
i ; a1�i/ � ui.a2

i ; a1�i// : : : .ui.a1
i ; aM�i/ � ui.a2

i ; aM�i//
:::

:::
:::

.ui.a1
i ; a1�i/ � ui.aM

i ; a1�i// : : : .ui.a1
i ; aM�i/ � ui.aM

i ; aM�i//

0 : : : 0

0 : : : 0
:::

:::
:::

0 : : : 0
:::

:::
:::

0 : : : 0
:::

:::
:::

0 : : :

0 : : : 0
:::

:::
:::

0 : : : 0

.ui.a2
i ; a1�i/ � ui.a1

i ; a1�i// : : : .ui.a2
i ; aM�i/ � ui.a1

i ; aM�i//

.ui.a2
i ; a1�i/ � ui.a3

i ; a1�i// : : : .ui.a2
i ; aM�i/ � ui.a3

i ; aM�i//
:::

:::
:::

.ui.a2
i ; a1�1/ � ui.aM

i ; a1�i// : : : .ui.a2
i ; aM�1/ � ui.aM

i ; aM�i//
:::

:::
:::

0 : : : 0
:::

:::
:::

0 : : : 0

0 : : : 0
:::

:::
:::

0 : : : 0

0 : : : 0

0 : : : 0
:::

:::
:::

0 : : : 0
:::

:::
:::

.ui.aM
i ; a1�i/ � ui.a1

i ; a1�i// : : : .ui.aM
i ; aM�i/ � ui.a1

i ; aM�i//
:::

:::
:::

.ui.aM
i ; a1�i/ � ui.aM�1

i ; a1�i// : : : .ui.aM
i ; aM�i/ � ui.aM

i ; aM�1�i //

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

:

(7)
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p.ai; a�i/ is the probability that the action profile .ai; a�i/ is chosen. Thus, a
distribution x� is said to be optimal correlated equilibrium if it is solution of the
linear program (6).

Algorithm 1: Algorithm leading to the optimal correlated equilibrium in power
control game

1: In the beginning, the mediator chooses a power profile .ai; a
�i/ 2 A according to p�, that

is obtained solving the described linear program (6) using an appropriate method,
p� D x� .

2: The mediator informs each user i of the power to choose ai.

In the same manner, we can characterize the optimal communication equilibrium.
The solution could be obtained by solving the following optimization problem:

max
X

a2A t2T
q.t/p.ajt/

X

i2K
ui.t; a/: (8)

subject to constraint (5)

X

t
�i2T

�i

q.t
�ijti/

X

a2A

p.ajt/ui.t; a/ �

X

t
�i 2T

�i

q.t
�ijti/

X

a2A

p.ajt0i ; t
�i/ui.t; a0

i ; a
�i/8i 2 N ; 8ti; t0i 2 Ti; 8a0

i 2 Ai:

(9)
and for all t 2 T .

X

a2A
p.ajt/ D 1: (10)

p.ajt/ � 0: (11)

In the following we summarize the different steps to reach the optimal commu-
nication equilibrium.

However, with the linear programming method, the computation complexity
grows exponentially with the number of users and actions since an increase in the
number of users and actions, results an increase in the number of constraints. There
exists a distributed learning approach, i.e., regret matching [7] to achieve a corre-
lated equilibrium. However, regret matching does not ensure Pareto optimality of the
given correlated equilibrium as it converges to an arbitrary correlated equilibrium,
whereas the linear program as defined in (6) gives a correlated equilibrium that
maximizes the social welfare. In the following, we present the distributed learning
approach.
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Algorithm 2: Algorithm leading to the optimal communication equilibrium in
power control game

1: The mediator simulates the sequence of reports that the users could send, that correspond
to channel gain profiles, and the power profiles that could be received by the users given a
channel gain profile.

2: Using a method to solve the linear program constituted by the objective function (8) and
the constraints (9)–(11), to find the optimal probability distributions p.:jt/ for all type
profile t.

3: For each player i, the Nature randomly chooses type, that corresponds to the channel gain
profile .gii; : : : ; gKi/, according to a given probability distribution over the type set Ti.

4: Each player i reports its type, ti, to the mediator.
5: The mediator performs lotteries according to the received type profile, and sends private

recommendations to the players, that correspond to the transmitting powers.

4.2 Regret Matching Procedure

A game procedure is proposed in [7], called ‘regret-matching’. In which the players
measure the regret for not choosing other actions in the past, and change their current
action with probabilities that are proportional to these measures. Thus, the game is
played with probability distribution over the action set. The details of the regret-
matching algorithm [7] are shown in the Algorithm 3.

Algorithm 3: Regret matching algorithm for power control game
1: For any two distinct power levels a0

i ¤ ai 2 Ai calculate the average regret of user i at time
t for not choosing a0

i as:

Rt
i.ai; a0

i/ D max f1
t

X

��t

Œui.a
0

i ; a�
�i/� ui.a

�
i /�; 0g: (12)

2: Let ai 2 Ai, the last power chosen by user i, at
i D ai. Then the probability distribution over

the power levels for the next period, is defined as

(
ptC1

i .a0

i / D 1
�

Rt
i.ai; a0

i /; 8a0

i ¤ aiI
ptC1

i .ai/ D 1�Pa0

i 2Aia
0

i ¤ai
ptC1

i .a0

i /;

where � is an enough large constant.
3: For every t, the empirical distribution of the power profile a is:

pt.a/ D 1

t
jf� � t W a� D agj: (13)

where jf� � t W a� D agj is the number of times the power profile a has been chosen in the
periods before t.
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It is shown in [7] that if the players implement Algorithm 3, the empirical
distribution (13) converges to an arbitrary correlated equilibrium of the game if
it is not unique. The obtained correlated equilibrium by applying this procedure
is not always Pareto-optimal (but the procedure can achieve the PO equilibrium).
However, the one provided by the linear programming method is Pareto-optimal.

5 Numerical Results and Analysis

In this section, we present numerical results. The simulation setup is as follows.
The number of Transmitter and Receiver pairs is equal to 2, K D f1; 2g. Set of
possible powers, that is the action set Ai, 8i 2 K : M D 25, Pmin

i .dB/ D �20,
Pmax

i .dB/ D C20. The presented results correspond to the expected values over
different values of .g11; g12; g22; g21/ that lie in a discrete set Gi D fg1

i ; : : : ; gN
i g,

with g1
i D gmin

i , gN
i D gmax

i , 8 2 iK : N D 10, gmin
i D 0:01, gmax

i D 3, the
channel gain increment equals 3�0:01

10
. The means of the channel gains are given by:

.Ng11; Ng12; Ng22; Ng21/ D .1; 1; 1; 1/. The communication efficiency function is: '.x/ D

.1 � e�x/L, L being the number of symbols per packet (see e.g., [5, 9, 11]). In most
of the simulations provided we take L D 100. The aforementioned parameters are
assumed, otherwise they are explicitly mentioned in figures.

Figure 1 compares the payoffs attained by the regular Nash equilibrium and
the correlated equilibrium with the region of all possible payoffs (in a centralized
setting). We observe that the correlated equilibrium can improve the utility of both
players when compared to the Nash. We are limited to the two action case, but this
is a very relevant case as seen from literature [8]. Figure 2a plots the utility of the
correlated equilibrium and the communication equilibrium for higher action sets,
but we plot to a maximum of four actions due to complexity issues in evaluating the
communication equilibrium. Figure 2b compares the solution of regret matching
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Fig. 1 Sets of: possible payoffs, correlated equilibrium payoffs and Nash equilibrium payoffs for
two settings of parameters. (a) Payoffs of a two player power control game. Setting 1. (b) Payoffs
of a two player power control game. Setting 2



Correlated Equilibria in Wireless Power Control Games 67

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

0

0.05

0.1

0.15

0.2

0.25

0.3

⎜Ai ⎜

E
xp

ec
te

d 
su

m
−

ut
ili

ty

Optimal communication equilibrium
Optimal correlated equilibrium
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Fig. 2 Equilibrium payoffs for larger action sets. (a) Expected sum-utility of correlated and
communication equilibria against different number of actions jAij. Larger action sets are not plotted
due to complexity issues. (b) Sets of correlated equilibrium payoffs and Nash equilibrium payoffs.
The correlated equilibrium provided by regret matching is also indicated

with that of correlated equilibrium when the action sets are of size 25. Figure 2b
demonstrates that although the regret matching algorithm is computationally fast,
the solutions are not Pareto-optimal.

6 Conclusion

The goal of this paper is to make some progress in terms of knowing how
communication and correlated equilibria can be used to achieve good tradeoffs
between distributedness (in terms of observation and decision-wise) and global
efficiency in power control problems, and more specifically when the utility is
taken to be the goodput minus the transmit cost. Interestingly, our simulation results
show encouraging results. However, an important challenge is left open, which is to
know how to reach an efficient correlated equilibrium with a regret-matching-type
learning algorithm.
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An Energy-Efficiency Game in Relay-Assisted
D2D Networks with Malicious Devices

Anil Kumar Chorppath, Alessio Zappone, Eduard A. Jorsweick,
and Tansu Alpcan

Abstract We analyze the coexistence of selfish and malicious devices in a relay
assisted Device-to-Device (D2D) network by using a non-cooperative game-
theoretic framework. We consider that in the D2D network, the energy-aware
individual devices maximize their fractional energy efficiency objectives. The
malicious devices due to their different utility function compared to the regular
devices, affect the energy efficiency of the regular devices through interference.
We show the existence of a unique Nash Equilibrium (NE) in the defined energy
efficiency game. We also numerically evaluate the effect of malicious devices on
the energy efficiency of the regular devices.

Keywords Device-to-device (D2D) network • Energy efficiency • Fractional
programming • Jamming • Non-cooperative games

1 Introduction

In the design of the networks, normally the devices are assumed to follow the design
rules but act in a selfish fashion. In fact some of the devices can be malicious
and they affect the performance of other devices, especially when the network is
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decentralized. The presence of malicious devices such as jammers creates additional
interference, affecting the energy efficiency of a wireless network [10]. We consider
a relay assisted Device-to-Device (D2D) network and this work is motivated from
the observation that, in addition to posing a threat to the MAC layer security of the
wireless networks [2], the malicious devices reduce the energy efficiency of the
devices in the network. Basically, the malicious devices create interference in the
network to drain the battery of the other devices. We analyze, how the co-existence
of malicious devices with regular devices [4] affect the energy efficiency of the
regular devices.

The direct communication in D2D networks, without the use of the infrastructure
increases the resource reuse factor, reduces the load on the cellular network and
improves the energy efficiency of the whole network [12]. D2D communication
has found new applications like public safety networks when cellular infrastructure
is not available [6]. In D2D networks, the power constraints are stringent and energy
efficiency of individual devices is an important problem. Moreover, the distributed
solutions are necessary and game theory is a good tool when the individual devices
are strategic [1]. The D2D networks can be modeled as Interference Channel (IC)
with specific constraints and we extend the results in [2] which is for Multiple
Access Channel (MAC) to the IC case. For this, first we propose a different utility
function for the malicious users compared to the regular users by considering energy
efficiency objectives, in the spirit of [2] which did not consider energy-efficient
based utility functions.

In [15], a fractional programming framework is used to model the energy
efficiency problems and both centralized and distributed solutions are given. Com-
petitive and distributed solutions are proposed using non-cooperative game theory,
with fractional energy efficiency utility functions. The competitive interaction of
devices in a D2D network can be modeled well with a non-cooperative power
control game due to the decentralized nature of the network. In [14], for a general
interference channel with only regular users, energy-aware distributed power control
algorithms are proposed based on non-cooperative game theory. In this paper, we
analyze the competitive and distributed uplink power control game, for a D2D
network with both regular and malicious devices.

2 Related Work

After the seminal work on energy efficiency in wireless networks using game theory
which is carried out in [8] , there has been much interest in the area. Recently, a
tradeoff of energy and spectral efficiency in D2D networks is explored in [16] and
a distributed resource allocation algorithm is proposed. In [15], a framework for
analyzing energy efficiency problems in interference limited networks is proposed
based on fractional programming. Short range communication between the devices
has been proposed as a way to enhance the cellular network throughput [5].
Recently, D2D communication has found an increased interest in the standardization
of the future wireless systems [7]. A secure message delivery protocol for multihop
D2D networks based on game theory is proposed in [9]. The attacker injects
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malicious messages into the devices to maximize the damage to the network. The
tutorial [11] gives a good survey of the challenges and some previous works on
D2D networks using game theory.

3 Network Model

We consider a relay-assisted D2D network with N transmitter-receiver pairs acti-
vated simultaneously with transmitting powers fpigN

iD1 and an Amplify/Forward
(AF) relay in between. We consider that direct links between the device pairs are
too weak and consider reception at the devices only from the relay. hi is the complex
channel gain between the transmitter device i and the relay and gi is the complex
channel gain between relay and receiver device i. The relay performs simple
Amplify/Forward and let a be the signal amplification factor at the relay. We assume
there are NI cellular users with interfering powers fpI;jgNI

jD1. Let SI;i D PNI
jD1 ˛j;ipI;j

is the sum interference from the cellular users to the device i, where ˛j;i is the square
of the channel gain between the cellular user j and device i.

For the device pair i, the SINR at its receiver device i is given as

�i.p/ D ˛ipi

�ipi C a2
P

k¤i ˇk;ipk C zi
: (1)

where ˛i D a2jgij2jhij2, �i D 
2jhij2, ˇk;i D jhkj2.
2 C a2jgij2/, zi D 
2.a2jgij2 C

2/ C SI;i and 
2 is the noise variance. This model is formally equivalent to an
interference channel. Every receiver in the transmitter-receiver pair can measure its
received SINR �i and channel gains and feedback to the respective transmitter. It is
worth to note that �i is a strictly concave function of pi and this property will be
used extensively in the rest of the paper.

The non-cooperative game in normal form G .N ;P;E / is described by the set
of players i 2 N , where N is a finite set N D f1; 2; : : : ; Ng. We assume tat the
strategy space is a compact and convex set denoted by P D Œ0; pmax

1 � 
 Œ0; pmax
2 � 


� � � 
 Œ0; pmax
N �. The utility function is the set

E D fe1.p1; p�1/; e2.p2; p�2/; : : : ; eN.pN ; p�N/g;

where p�i D Œp1; � � � ; pi�1; piC1; � � � ; pN � denotes the transmit power of all the other
users except user i. The users play the best response dynamic (BRD) to reach the
NE power allocation.

Definition 1 The strategy profile of transmit power pNE is said to be the NE power
allocation for G .N ;P;E / if and only if no unilateral deviation in strategy by any
single player is profitable for that player, i.e., 8i; i 2 f1; : : : ; Ng;

ei.p
NE
i ; pNE�i / � ei.pi; pNE�i /; 0 < pi � pmax

i : (2)

At the NE power allocation, no user can improve its own utility by changing its
power level individually given the choices of others.
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Fig. 1 A D2D Network with
two devices and a relay.
Device 2 is a Jammer

Rx1

A/F Relay

Tx2

Tx1 Rx2
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g2

The network model is given in Fig. 1 for two device pairs. The Device 2 is
Jammer and it creates higher interference for Device 1 for transmission to the relay
and from relay to the transmitter 1. The model for the device behavior is given next.

3.1 Device Model

The private type determines the utility function of each user and is independent of
each other. We define �i to denote the degree of maliciousness [4] of devices in the
system, where

– Malicious devices, �i > 0,
– Selfish devices, �i D 0.

The private type �i of each user i is a continuous value in RC, which denotes the
extent of its behavior. For example, if user i’s private type �i is large, then it is an
extreme malicious user. From the game theoretic point of view, the devices have
incentives to hide their private types.

The devices are assumed to be aggressive towards reducing their energy con-
sumption as much as possible while interested in the satisfaction of their own rate.
This behavior of a user is captured in the fractional EE objective of a user.

3.2 Fractional EE Utility Functions

The EE objective of a user in the uplink [15] is given by,

ei.�i.p// D ri.�i.p//

�ipi C Pc;i
(3)
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where ri.�i.p// is the achievable rate, pi is the user transmit power, Pc;i is the circuit
power consumption during transmission which is a constant, �i D 1

	
, with 	 the

efficiency of the transmit power amplifier. This function gives the energy efficiency
in bits/Joule.

Now we modify the utility function for malicious user for the fractional EE as
in [4].

Definition 2 For the malicious user, the fractional EE utility function is defined as

ei;M.�i.p// D ri.�i.p// C �im.pi/

�ipi C Pc;i
; 8i; (4)

where m.pi/ is any strictly increasing function of pi.

This utility function captures the fact that the Jammer is also battery constrained
but it wants to create interference to the other regular devices by transmitting at
higher power. The trade-off between the two contradicting goals of a jammer is
captured by the parameter �i. Let us consider the linear malicious term where
m.pi/ D cipi.

ei;M.�i.p// D ri.�i.p// C �icipi

�ipi C Pc;i
; 8i: (5)

Note that in contrary to the regular EE utility function given in Eq. (3) the malicious
user EE utility function in (5) does not go to zero when pi tends to infinity.

lim
pi!1

ei;M.�i.p// D �ici

�i
; 8i: (6)

Remark 1 (Without Self Utility) The malicious user may not care about his self
utility in many settings and would like to just impart maximum damage to the set of
regular devices. This behavior can be modeled when there is only the second term
in the numerator of Eq. (4), i.e.,

ei;M.�i.p// D �im.pi/

�ipi C Pc;i
; 8i: (7)

For the linear case in (5), we can see that the BR of the malicious device is always
to use the full power, i.e., pi D pmax.

3.3 Price of Malice

Next we define the parameter PoM for the energy efficiency game.
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Definition 3 (Price of Malice (PoM)) The metric Price of Malice(PoM) of a game
G is defined as:

PoM.G / WD
P

j2S ej. Qp/ �P
j2S ej.pM/

P
j2S ej. Qp/

; (8)

where Qp is the Nash equilibrium when none of the devices are malicious and pM is
the Nash equilibrium in the presence of malicious devices.

We can see that PoM quantifies the effect of malicious users on the average
energy efficiency of the regular devices.

4 Game with Energy-Efficient Utility Functions

In this section, we start with the fractional EE utility functions for the devices [15].
Further on, we consider that the devices play a noncooperative game with the utility
functions subject to power constraints. This game is denoted as Ge.N ;P;E /. With
the utility function in (3), the existence, uniqueness and the convergence of NE is
shown in the Proposition 5.1 and Proposition 5.2 of [15]. The result proves that, if
ri.:/ is increasing and concave then Ge admits a unique NE, which is given by pNE

i D
max.0; min.Npi; pmax

i //, with Npi the solution to the BR problem for all i D 1; � � � ; N,

pi D ri.�i/�i � Pc;i�
0
i .pi/r0i.�i/

�ir0i.�i/�
0
i .pi/

; (9)

where r0i.:/ is the first derivative of the function ri.:/ .

4.1 NE in the Presence of Malicious Devices

In this section, we consider general m.pi/ and compute the NE. First, we explore
the possibilities of the modification term for the malicious user (the second term in
the numerator of Eq. (4)) so that the game still admits a NE. As a special case we
consider m.pi/ D .cipi/

n where n > 1.

Proposition 1 (NE with Malicious Devices) With the utility function given in (4)
the game admits a NE if

r00i .�i/.�
0
i .pi//

2 C � 00i .pi/r
0
i.�i/ C �im

00
i .pi/ < 0; 8i; 0 < pi � pmax

i : (10)

and for m.pi/ D cipn
i , the condition is

r00i .�i/.�
0
i .pi//

2 C � 00i .pi/r
0
i.�i/ C �icin.n � 1/pn�2

i < 0; 8i; 0 < pi � pmax
i : (11)
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Proof For the function ei;M to remain pseudo-concave of pi; 8i, we need to prove
the strict concavity of the numerator in (4). The second order condition for strict
concavity will give condition (10). Note that the first two terms of (10) are negative
because ri.�i/ is increasing and concave and �i.pi/ is strictly concave in pi. If we
substitute m.pi/ D cipn

i in (10) we get (11).

Remark 2 For the quadratic case where n D 2, the condition on ci is given by

ci <
maxpi jr00i .pi/.�

0
i .pi//

2 C � 00i .pi/r0i.�i/j
2�i

; 8i; pi � 0: (12)

Note that if �i is negative but close to zero, then a NE exists even for large value
of ci.

Now we check if the NE is indeed unique.

Proposition 2 (Uniqueness of the NE) The noncooperative gameGM.N ;P;EM/

always admits a unique NE, with the utility functions given in (4) for all the devices,
if ri is increasing, concave and satisfies

.r0i.�i//
2 � r00i .�i/ri.�i/ � r0i.�i/ri.�i/

�i
; 8i; �i � 0; (13)

and m.pi/ satisfies the condition in (10). The Nash equilibrium power allocation of
each user i in the noncooperative game GM, is obtained from the solution of N BR
equations given by,

pi D ri.�i/ C �im.pi/

r0i.�i/�
0
i .pi/ C �im0.pi/

� Pc;i

�i
; 8i: (14)

The NE power is pNE
i D max.0; min.p�i ; pmax

i //, where p�i is the solution to Eq. (14).

Proof The additional malicious term in the numerator of Eq. (4) is a linear term in pi

and the numerator is still increasing and concave. This implies the quasi-concavity
of (4) and since the strategy space is closed and convex, game GM admits at least
one NE. It is well known in game theory that, provided that a NE exists, the NE is
unique and the Best Response Dynamics (BRD) converges to the unique NE, if the
BR is a standard function [13]. Therefore, we prove that the BR from the fractional
utility function given in (4) is a standard function for 0 � �i � 1 [14]. For this, we
first rewrite (1) as

�i.pi/ D ˛ipi

�ipi C wi
; (15)

where wi D P
k¤i ˇk;ipk C zi. The first order condition for BR gives us the result

in (14). This can be rewritten as,

Pc;i

�i
D

ri.
˛ipi

�ipiCwi
/ C �im.pi/

r0i.
˛ipi

�ipiCwi
/� 0i .pi/ C �im0.pi/

� pi; 8i; (16)
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Next we call the RHS of (16) as gi.pi; wi/ and (16) becomes Pc;i
�i

D gi.pi; wi/. From
the first order derivative, we can see that gi.pi; wi/ is an increasing function in pi if
ri.�i/ C �icipi � 0 which is true for 0 � �i � 1. For gi.pi; wi/ to be an decreasing
function of wi, we get the same condition in [14, Proposition 2] which is given
in (13), since the malicious modification term does not depend on wi. By using these
two properties of gi.pi; wi/ we can prove that BR is a standard function as in the
proof of [14, Proposition 2] which is not repeated here due to the space constraints.
One remark is that the BR remains as a standard function since the malicious term
does not depend on the power of other devices and it is an increasing function of the
user’s own power.

Remark 3 The condition in (13) is true for the Shannon rate function ri.�i/ D
W log.1 C �i/.

4.2 NE with Linear Malicious Term

In this section, we provide the NE of the game with the fractional EE utility function
and for malicious devices with the utility function in (5). The malicious user is
assumed to be less aggressive than modeled in Eq. (4). The Nash equilibrium power
allocation of each user i in the noncooperative game GM, is obtained from the
solution of N BR equations given by,

pi D ri.�i/ C �icipi

r0i.�i/�
0
i .pi/ C �ici

� Pc;i

�i
; 8i: (17)

The NE power is pNE
i D max.0; min.p�i ; pmax

i //, where p�i is the solution to Eq. (17).

5 Numerical Analysis

We carry out the numerical analysis for the linear malicious term given in Sect. 4.
A D2D network with 5 device pairs and a relay is considered. The devices have
Shannon utility function Ui.�i/ D W log.1 C �i/ and bandwidth W D 1kHz. The
transmitter in the device pair 1 is taken as a Jammer and c1 D 103. The NE of the
non-cooperative gameGM is obtained from Eq. (14) in Sect. 4. The channel gains has
been randomly distributed in the interval Œ0; 0:1� and 
2 D 0:01. Other parameters
are set as Pc D 10�3 Watts, pmax D 0:01.

The energy efficiency of all the devices at the NE of the non-cooperative game
GM at different values of �1 is given in the Fig. 2. We can see that when the Jammer
is more malicious, the energy-efficiencies of other devices decrease.
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Fig. 2 Energy efficiency of the devices at the NE of the non-cooperative game GM

6 Summary

We have analyzed the effect of malicious devices on the energy efficiency of devices
in a D2D network. With a general concave malicious term, the existence and
the uniqueness of the NE of the energy efficiency game is proved. The effect of
the malicious devices on the energy efficiency of other regular devices is shown
numerically, for the case of linear malicious term.

Ongoing work is to characterize the pareto boundary with the malicious utility
functions. First, the task is to ensures that pareto boundary solutions can be globally
obtained with polynomial complexity for any given parameter Nu by means of
Dinkelbach’s algorithm [15], provided the malicious term m.�/ is concave. In turn,
this allows the characterization of the system energy-efficient Pareto-boundary with
affordable complexity. An interesting future work is to use pricing as a method to
discourage selfish and malicious tendency of the devices as in [3].
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Minimally Intrusive Server Policies
for Background Data Transfers

Costas Courcoubetis, Antonis Dimakis, and Michalis Kanakakis

Abstract We consider the problem of designing access control protocols for servers
distributing background data, such as software and database updates, so that they
cause the least possible disruption to flows carrying delay-sensitive data. Using
a Markov decision process formulation we obtain the optimal policy analytically,
which is not easy to implement in practice. A mean-field argument is employed
to show that another policy, which is easier to implement and is based on water-
filling, converges to the optimal as the number of bottleneck links increases. Using
simulations we compare the performance of this policy with the standard case where
no control is exercised by the server.

Keywords Access protocol • Data transfer • Mean-field • Markov decision
process

1 Introduction

In this paper we look at the problem of designing data transmission policies at the
server side for data which are not delay-sensitive, such as software and database
updates, backup and content replication, content cache prefetches, all commonly
referred to as background. These policies are important as they usually involve the
transfer of big volumes of data which can potentially cause increased download
delays to delay-sensitive data such as web traffic, video and audio streaming
over TCP when they share the same network resources. This problem has been
recognized in [2–5], and end-to-end congestion control mechanisms were proposed
which offer explicit or implicit throughput guarantees to background data, while at
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the same time attempt to have a minimal impact on the download delay on delay-
sensitive data. All this cited work critically depends on the assumption of a single
bottleneck link. As servers are associated with multiple clients and the server-side
access network is rarely the bottleneck, such mechanisms are not useful in this
context because multiple bottlenecks may exist.

In this paper we start from the Markov decision problem for a single link in [2]
but we narrow the set of policies by imposing additional constraints on action space
which exclude policies which are not practical to implement on the basis of link
congestion information alone. In Theorem 1 we analytically derive the optimal
policy which still rests on a single bottleneck link assumption. However the structure
of this optimal policy can be approximated by a suboptimal policy—the Water-
Filling Algorithm (WFA) introduced in Sect. 3—which is easy to implement when
multiple bottlenecks exist. In Theorem 2, using a mean-field argument, we show that
the approximation becomes tight as the number of bottlenecks increase to infinity. In
fact when the link and traffic characteristics are homogeneous, Theorem 2 implies
that WFA is optimal in the limit (Corollary 1). WFA essentially limits the maximum
number of data transfers and prioritizes faster transmissions. Interestingly, this is
just what a BitTorrent seeder does (e.g., see [1]), and so our analysis reveals
the conditions under which it behaves optimally and in what sense. In Sect. 4 we
develop a prototype implementation of WFA in the ns2 simulator, and compare its
performance to the standard case where no control is exercised by the server. Our
findings indicate that WFA can result to significant (20% to 30%) reductions in the
average download delay of delay-sensitive flows.

2 Optimal Policy for a Single Bottleneck

Consider a server which wants to send background data with long-term average
rate b. The server uses a link with capacity C shared also by a constant number
k of persistent TCP flows, and a dynamically arriving stream of delay-sensitive
TCP flows. The latter concern transfers of files with independent and exponentially
distributed file sizes, of mean ��1, and arrive at the link according to a Poisson
process with rate � arrivals per unit time. Define the offered load of delay-sensitive
flows as % D �=.�C/. All TCP flows (whether persistent or not) are assumed to
receive an equal bandwidth share, xn, when the number of delay-sensitive flows in
the system is n. The server influences xn by picking the number an of TCP flows
to use at state n, through the formula xn D C=.n C k C an/. Since any value
of xn can be achieved for some choice of an when the latter is permitted to be
nonintegral, we consider .xn; n � 0/ to be the decision variables. The number n
of short flows evolves according to a Markov chain with state space f0; 1; 2; : : :g
and transition rates:

n !
(

n C 1 ; with rate � ; n � 0 ;

n � 1 ; with rate �nxn ; n � 1 :
(1)
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Notice that n is not known directly by the server but may be inferred indirectly
through congestion indicators, such as packet losses or packet delay. This is easy
to do if these indicators are monotonic functions of n, but it becomes highly
nontrivial if they are not. For example, whenever xn < xnC1; xnC2 D xn, one cannot
differentiate between states n; n C 2 on the basis of congestion indicators alone
unless past information is kept. We would like to avoid such complex policies and
for this reason we require that xn is decreasing in n.

Now let .
n; n D 0; 1; : : :/ be the stationary distribution of the Markov chain
when it does exist. The average download delay of the delay-sensitive flows isP1

nD0 n
n=�, by Little’s law, and the problem we solve is the following:

min
1X

nD0

n
n (2)

such that: .
n; n � 0/ is the stationary distribution of (1) (3)

xn � C

k C n
; n D 0; 1; : : : (4)

b C
1X

nD0

kxn
n D C.1 � %/ (5)

xn � xnC1 ; n D 0; 1; : : : (6)

over xn; 
n � 0; n D 0; 1; : : : (7)

Equation (4) is due to the link capacity constraint and the fact that all TCP flows get
equal bandwidth shares, and (5) requires the sum of the rate offered by background
data and the throughput of persistent TCP flows to equal the long-term capacity
not used by delay-sensitive flows, i.e., the throughput obtained by background data
matches the offered load.

The first main result concerns the structure of the optimal policy:

Theorem 1 (Structure of the Optimal Policy). The optimal policy .xn; n � 0/

satisfies

xn D
(

xn�1 ; if n � n� ;
C

kCn if n > n�
; n D 1; 2; : : : (8)

for some finite nonnegative integer n�.

Proof. A straightforward modification to Lemma 2 in [2] implies that under the
identification

N
n D xn
n
k

C.1 � %/ � b
; ynC1 D N
n

N
nC1

; n D 0; 1; : : : ; (9)
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the problem (2)–(7) is equivalent to the problem (21) in [2] with the additional
constraint ynC1=.n C1/ � yn=n for all n D 1; 2; : : :, over the variables ynC1; N
n; n �
0. We will show that the optimal solution satisfies

yn D
(

n
%.kCn�1/

n � m
nyn�1

n�1
1 � n < m

; (10)

for some m � 1. Assume for the moment that this is true. Then (10) is equivalent
to (8) by the identification (9) and n� D m � 1. Thus it suffices to show (10) to
conclude the proof. Observe that the second eq. in (9) and the fact that . N
n/ is a
probability distribution imply that . N
n; n � 0/ can be interpreted as the stationary
distribution of a birth-death chain with unit birth rate and death rate yn in state
n � 1. Now suppose ymC1 < .m C 1/=.%.k C m// and ym > mym�1=.m � 1/

for some m � 1. Then there exist some other set of death rates .y0n; n � 1/ with
ymC1 < y0mC1 � .m C 1/=.%.k C m//, ym > y0m � mym�1=.m � 1/, y0n D yn for all
n … fm; m C 1g, for which the corresponding stationary distribution . N
 0n; n � 0/ of
the birth-death chain continues to satisfy the target throughput constraint (19) in [2].

Lemma 1. . N
n; n � 0/ dominates . N
 0n; n � 0/ in the convex stochastic order.

Proof. First note that sgn. N
n � N
 0n/ D sgn. N
0 � N
 00/1 for all n < m since yn D y0n in
that range. Similarly sgn. N
n � N
 0n/ D sgn. N
mC1 � N
 0mC1/ for all n > m is true. Now

sgn. N
m � N
 0m/ D sgn. N
m�1y�1
m � N
 0m�1y0m

�1
/ � sgn. N
m�1 � N
 0m�1/, since y0m � ym

which follows from the fact that . N
n/ and . N
 0n/ have the same mean (cf. Eq. (19)
in [2]) and y0mC1 � ymC1. In turn this implies sgn. N
m � N
 0m/ � sgn. N
mC1 � N
 0mC1/.
Thus, N
n � N
 0n can change sign at most twice as n goes from 0 to 1. It is easy to see
that the distributions . N
n/ and . N
 0n/ are not stochastically ordered so Theorem 1.A.12
in [6] implies that N
n � N
 0n cannot change sign only once. Thus there are exactly
two sign changes and so by Theorem 3.A.57, . N
n/ dominates . N
 0n/ in the convex
stochastic order. ut

The Lemma implies
P

n n2 N
 0n <
P

n n2 N
n and so .yn; n � 1/ is not optimal which
contradicts our assumption. Therefore it must be that no such rates .y0n; n � 1/ as
above exist, i.e., the optimal policy satisfies ynC1 D .n C 1/=.%.k C n// or yn=n D
ynC1=.n C 1/ for all n � 1. Notice that if yn D n=.%.k C n � 1// then .n C 1/yn=n D
.nC1/=.%.kCn�1// > .nC1/=.%.kCn// � ynC1, and so ynC1 D .nC1/=.%.kCn//

must be true. This proves (10). ut
Still, this algorithm is difficult to implement in the case where multiple bottle-

necks between the servers and its clients exist. A straightforward implementation,
where an independent version of the optimal policy (8) runs on each bottleneck
link, requires the clients to be classified according to the bottleneck links they share.
Since the identification of bottlenecks is nontrivial and approximate, we do not

1sgn.x/ D 1 is the sign function: it takes the values -1,0,1 if x < 0, x D 0, or x > 0 respectively.
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pursue this approach in favour of a simpler one. In the next section we consider
an algorithm that does not need to know about bottleneck links. It is not optimal,
but its performance approximates the optimal as the number of clients and their
bottleneck links increase.

3 A Water-Filling Algorithm

In this section we consider a model of a system with multiple parallel bottleneck
links and present a “Water-Filling Algorithm” (WFA) which does not explicitly keep
track of links.

3.1 Multiple Bottleneck Model

Consider L parallel links indexed by l D 1; : : : ; L, where link l has capacity Cl,
it is used by kl persistent (non-background) TCP flows and an arriving stream of
delay-sensitive flows of a finite size under the same distributional assumptions used
in Sect. 2. The arrival rate, average size and load is �l; 1=�l and %l respectively.
The amount of background traffic on this link is bl which we do not assume to be
known to the server. Let nl be the number of delay-sensitive flows on link l, and
n D .nl; l D 1; : : : ; L/. The bandwidth share of each TCP flow on link l is

xl
n D Cl

nl C kl C al
n

; (11)

where al
n is the number of background TCP connections the controller allows (on

link l) when in state n.
Obviously, the problem of minimizing the average download delay is decom-

posable into a set of L independent minimization problems, one for each link.
Thus the optimal xl

n is given by (8) using the parameters of the l-th link. Instead,
we are going to consider the following policy: for any positive a > 0, the xl

n
are chosen according to the optimum solution to the problem max

P
l Cl log xl

n
such that (11) and

P
l al

n � a over al
n � 0; l D 1; : : : ; L. Since at the optimumP

l al
n D a holds, the algorithm operates such that in each state a total number a of

background connections is assigned to the links such that
P

l Cl log xl
n is maximized.

As time passes and the state evolves, the a connections are continuously reassigned
on different links. By considering the KKT conditions it is readily shown that
the optimum solution is characterized by the property that there exists a value of
throughput x.a/ for which

P
l al

n D a and the following holds:

If al > 0 then xl
n D x.a/ I if

Cl

nl C kl
< x.a/ then al D 0 : (12)
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This characterization implies that the optimum solution .al
n; l D 1; : : : ; L/ can be

found by a so-called “water-filling” algorithm: start pouring a volume a of water in
L tanks of infinite height, unit length and width Cl for the l-th tank. Also, let the
bottom of the l-th tank be located at a height .nl C kl/=Cl above ground. If tank l
holds al

n volume of water then the water surface is located at height .nl Ckl Cal
n/=Cl

above ground. If we assume that tanks have no walls and water can freely circulate
between them, the tanks with smaller heights start to fill first. When the pouring
of water stops the “water level” will be located at some height, say 1=x.a/, above
ground for any tank with al

n > 0. For empty tanks, their depth raises above water
level, i.e., .nl C kl/=Cl > 1=x.a/ if al

n D 0. Thus the throughput x.a/ corresponds to
the inverse of the water level. In the context of a data server, the same water-filling
effect can be achieved by the following conceptual continuous reshuffling of TCP
connections:

1. Let al
n be the initial allocation of TCP connections to link l, which may not be

optimal.
2. Start shutting down infinitesimally small fractions � of connections from links of

smaller throughput (which corresponds to a higher water level), i.e., decrease al
n

by �, and start using them in any link l0 with higher throughput xl0
n > xl

n, i.e., by
increasing al0

n by �.
3. Repeat the previous step.

The only equilibrium of this procedure is characterized by (12), for if there existed
links l; l0 with al

n; al0
n > 0 and xl

n ¤ xl0
n then TCP connections will “move” from the

link of the higher throughput to that with the lower one.

3.2 Asymptotic Optimality of the Water-Filling Algorithm

We consider a mean-field limit as the number of links increases. Assume that for
each R � 1 we construct a replica of the set of L links defined in Sect. 3 such that
there are R links with capacity Cl, accepting independent arrivals of delay-sensitive
flows with parameters �l; �l; %l for each l D 1; : : : ; L. Thus each link is indexed by l
and the replica index r D 1; : : : ; R. Let nr;R

l .t/ be the number of delay-sensitive flows
on the link of type l in the r-th replica. Also define NR

r .t/ D .nr;R
l .t/; l D 1; : : : ; L/ 2

N
L, the state of links of the r-th replica, and NR.t/ D .NR

r .t/; r D 1; : : : ; R/ 2 N
RL

the system state at time t. Under WFA, NR.t/ is a Markov chain and we will consider
the empirical distribution defined by

f R.t/.A/ D 1

R

RX

rD1

ıA
�
NR

r .t/
	

; (13)

for any A 	 N
L, where ıA is the unit mass at A.
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The RL links are coupled through the bandwidth sharing resulting from WFA
for a total number Ra of connections, where a > 0 is a constant. Thus as the
number of replicas increase, the average number of background connections per link
is constant. As we are not interested in the mean-field convergence proof itself, we
will assume that the processes converge in a certain strong sense and then proceed
to show that their limit satisfies (8).

Theorem 2. If f R.t/
d! f a.s. as t; R ! 1, where f is a nonrandom probability

measure on N
L then the proportion of type l links that are in state n is given by the

stationary distribution under the single link optimal policy (8) applied to link type l.
In other words, as R ! 1 WFA operates each link of type l according to the

optimal policy corresponding to l for some threshold n�, which does not need to
coincide with the single link optimal.

Proof. The key is that the link states are coupled only through the water level, which
in turn depends on NR.t/ only through the distribution f R.t/. Let x.Ra; Rf R.t// be
the inverse of the water level at time t, i.e., the level of TCP throughput attained
by links with nonzero background flows. We write this as a function of Ra, the
total number of background TCP connections allocated by WFA, as well as Rf R.t/
which corresponds to the count of replicas in each replica state at time t. First notice
that x.�; �/ is homogenous, i.e., x.MRa; MRf R.t// D x.Ra; Rf R.t// for any integer
M � 1, so x.Ra; Rf R/ D x.a; f R/ where we have used the obvious extension for
fractional M. Now let f l;R

i .t/ be the proportion of type l links that are in state i, i.e.,
f l;R
i .t/ D f R.t/.Al

i/ for Al
i D N

l�1 
 fig 
 N
L�l. Then,

d

dt
Ef l;R

i .t/ D �lEf l;R
i�1.t/ C �l.i C 1/E




f l;R
iC1.t/ min

�
Cl

i C 1 C kl
; x.Ra; Rf R.t//

��

� E

�

f l;R
i .t/




�l C �li min

�
Cl

i C kl
; x.Ra; Rf R.t//

��


Taking limits in t; R and using the homogeneity and continuity of x.�; �/ yields

0 D �lf
l
i�1 C �l.i C 1/f l

iC1 min

�
Cl

i C 1 C kl
; x.a; f /

�

� f l
i




�l C �li min

�
Cl

i C kl
; x.a; f /

��

; (14)

for each i D 0; 1; 2; : : :, where f l
i D f .Al

i/; f l�1 D 0.
Notice that this is just the global balance equations characterizing the stationary

distribution of the chain (8) for a n� corresponding to the inverse water level x.a; f /,
i.e., x.a; f / D Cl=.n� C kl/. ut

In certain cases, WFA not only shares the same structure with the optimal policy
but the two coincide.
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Corollary 1. If the links are homogenous, i.e., L D 1 then WFA coincides with (8)
for a such that WFA obtains throughput b1, i.e., the same throughput as (8).

Proof. Theorem 2 guarantees that WFA and (8) have the same structure but
not necessarily the same threshold. Since they obtain the same throughput, their
thresholds must coincide as the throughput in (8) depends monotonically on n�. ut

4 Water-Filling Algorithm Implementation

In this section we consider a prototype implementation of WFA in the ns2 simulator
and compare its performance with the case where no control is exercised by
the server, i.e., every background file transmission request is served by one TCP
connection as soon as the request arrives.

As in the ideal WFA, the implementation utilizes at most a number a of TCP
connections at any given time. This number is slowly adapted in order to match
throughput with offered demand. Although the ideal WFA is able to know exactly
the TCP flow throughput over any link l, this is not possible here. Neither the number
of links is known. The idea is to use the previous transmissions to estimate the
throughput of upcoming transmissions to the same client. Thus each background
file is send over multiple transmissions of 1 MB chunks. Each chunk is transmitted
over one TCP connection which terminates after chunk’s completion. The maximum
number of simultaneous TCP connections used for chunk transmissions is controlled
by the parameter a. Thus no more than a chunks are transmitted simultaneously
and these chunks may belong to different files. For each file we keep track of its
pending chunks as well as the throughput obtained by its last transmitted or currently
transmitting chunks. Each time a chunk completes, the next transmitted chunk is the
one which belongs to the file with the highest throughput. In this way, more TCP
connections are allocated on links (actually files) offering higher TCP bandwidth
share. Thus a throughput balancing effect across TCP flows on different links arises,
similar to ideal WFA.

We next compare the performance of this WFA implementation against the case
of a server which does not exercise any control to its flows. In order to separately
evaluate the effect of limiting the number of connections to a and the prioritization
of links with higher throughput in WFA, we also compare with a First-Come-
First-Served (FCFS) policy. This policy limits the number of connections as WFA
does, but it does not do any prioritization; all files are served in a FCFS basis. We
consider the case of 2, 4, and 8 parallel identical links of capacity Cl D 10 Mbps,
where each is traversed by a single (nonbackground) persistent TCP flow, i.e.,
kl D 1 and a delay-sensitive stream of flows with �l D 1=4:8 arrivals/s and average
size 1=�l D 3 MB. One background file transmission request arrives every 24 s
uniformly distributed across links and according to a Poisson process, where the
file size is exponentially distributed with mean 12 MB. In Fig. 1 we depict the
average number of delay-sensitive flows in the system versus the average number
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Fig. 1 Average number of
delay-sensitive flows versus
the average number of
background flows in the
system. The implementation
of WFA brings significant
delay reductions compared to
‘no control’
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of background flows. The points in the curves for WFA, FCFS were obtained for
different selections of the parameter a. WFA reduces the delay of delay-sensitive
flows relative to ‘no control’ from 21% to 31% depending on the case. Since FCFS
lies almost in the middle between WFA and ‘no control’, with respect to delay, we
see that half of the delay reductions were due to limiting the number of simultaneous
TCP connections (i.e., the a parameter) and the rest were due to prioritizing links
with higher throughput. The increase of links from 2 to 8 brings a 2–8% delay drop
under WFA, depending on the case.

5 Conclusions

In this paper we have shown that a simple background data transfer policy such
as limiting the maximum number of active TCP flows transferring data to clients,
and prioritizing faster flows yields significant download delay reductions to delay-
sensitive TCP flows, compared to exercising no control on client flows. In theory
(suggested by Theorem 2) more elaborate data transfer policies in large servers
do not bring any significant additional reductions, unless nonstationary policies
exploiting past information are used.
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Bounded Generalized Kelly Mechanism for
Multi-Tenant Caching in Mobile Edge Clouds

Francesco De Pellegrini, Antonio Massaro, Leonardo Goratti,
and Rachid El-Azouzi

Abstract Mobile edge computing represents a promising paradigm for 5G
telecommunication operators. Among various services that can be provided by
this technology, cloud edge caching is receiving increasing attention by network
providers. By using cloud technology, in particular, the memory space of mobile
edge network devices can be provisioned to OTT content providers over specific
areas. They can use cache space in order to serve their customers with improved
quality of service figures. We study a competitive scheme where contents are
dynamically stored in the edge memory deployed by the network provider. OTT
content providers are subject to Kelly mechanism with generalized cost and with
bounded strategy set. After proving the uniqueness of the Nash equilibrium of such
scheme, a simple bisection algorithm for its calculation is provided. Numerical
results characterize the Nash equilibrium.

Keywords Mobile edge computing • 5G networks • Edge caching • Bounded
Kelly mechanism • Nash equilibrium

1 Introduction

Currently, ever increasing amount of traffic is generated by mobile devices and large
fraction of such traffic is ascribed to over-the-top (OTT) content providers such as,
e.g., YouTube. Aggregated figures summed up to nearly 30 Exabytes [1] of mobile
traffic at the end of 2014. Capacity shortage has thus become a threat for network
operators. The deployment of small cell (SC) base stations has been proposed in
literature in order to increase capacity provision. SCs are low power secondary base
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stations with limited coverage, to which user equipments (UEs) in radio range can
associate to. They thus increase spatial reuse and are hence expected to provide
substantial network capacity improvements.

However, management costs at the network operators’ side may increase due
to the larger number of network units to be deployed and controlled. To this
respect, mobile edge computing [2] technology will ease services and resources
management over 5G networks, since a network operators’ edge-clouds will be able
to cover a tagged metropolitan area or a village. Mobile Edge caching, in particular,
configures as a basic mobile edge caching service to be offered to OTTs in 5G
networks. The primary goal of edge caching is to improve quality of experience by
circumventing the limited backhaul connection of SCs [3]. Moreover, by using SVC
technologies, e.g., MPEG-DASH [4], it is possible to perform bitrate adaptation to
radio link conditions thus further improving the quality of experience of OTTs’
customers.

Contents can be directly replicated on lightweight server facilities attached to
SCs and located at the mobile network edge. Recently, edge caching has become
an important optimization problem [5–11]. Finally, using edge cloud technology,
caching servers connected to a few SCs will be aggregated into local edge cache
units. Those SCs will permit to access a seamless unique caching space for the
same local area. Edge caching services can be offered to multiple OTTs at the same
time.

In this paper we apply a generalized Kelly mechanism to the problem of sharing
the edge cloud cache. Under a multi-tenant caching scheme, the available memory is
assigned to OTT content providers who compete for time-limited cache utilization.
Also, we assume that part of the caching memory may also be used due to legacy
traffic requirements of the network provider.

The proposed model for cloud edge caching accounts for popularity and avail-
ability of contents, as well as spatial density of SCs to which UEs associate to.

In our competitive scheme, OTT content providers purchase cloud edge caching
service from a mobile operator. Under a spatial Poisson distribution of SCs, we
model the competition among content providers using a Kelly mechanism with
general costs and bounded bidding space. We hence show that the game admits
a unique Nash equilibrium, which can be determined by a demand-based bisection
search.

2 System Model

The mobile network operator serves C content providers. Content providers serve
customers by leveraging on the mobile operator’s network. We assume that M
classes of contents are available to each content provider based on their popularity.
Also, demand rate gi

c represents the number of contents of class i which are to be
served to customers of provider c in the unit of time.
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Cache memory is aggregated through several local edge servers connected
through a metro area network and managed through the cloud edge service. N is the
available memory on each local edge cloud unit and N0 the total cache space across
the whole deployment. Each content is assumed to occupy same unitary memory
space, i.e., a slot.

We further assume that the number of contents Ni
c for each class i D 1; : : : ; M is

larger than the available memory space. Contents are erased from the cache at rate
1=	, where 	 denotes the average life time of a cached content.

Content provider c will purchase edge caching service by the network provider.
Hence, she will issue bc slot requests per day 0 � bc � Bc, for some Bc > 0.
Also, the network operator will reserve some caching slots for her own purposes at
some rate ı which we assume a constant in the rest of the discussion. The network
operator reserves space for xc contents of content provider c according to

x0c D bc � 	 xc; (1)

while the full memory occupation will be ruled by

x0 D b � 	 x; (2)

where we let b WD P
c bc C ı the global slot reservation requests per day. If we

assume x.0/ D 0, the resulting governing dynamics is

x.t/ D N0 � max

�
b

	

�
1 � e�	t

	
; 1




In the rest of the paper, we assume that the network provider aims at fully using the
total cache memory by ensuring that b � ı. Hence, at time tN D � 1

	
log.1 � 	N

b /,
the cache will be full, i.e., x.tN/ D N0. This will grant for t � tN to each content
provider the proportional share of the caching space

xc.t/ D N0

bc

bc C b�c C ı
; (3)

We assume content requests are uniform across the network provider’s network.
Thus, the same share will be occupied by CP c in each local edge cache unit.

Each CP caches her customer’s requests using a weighted round robin scheme,
where class i will receive weight ti

c, and we denote tc D .t1c ; : : : ; tM
c / the vector of

weights, where
P

ti
c D 1. If the total cache space is saturated, contents of the same

content provider may be overwritten. However, a compatibility condition requires
that the number of daily cached contents does not exceed the memory space, i.e.,P

c Bc � N0, which we shall assume throughout the paper.
Finally, xi

c denotes the edge cloud amount of memory occupied by contents of
the i-th class:

x0ic D ti
cbc � ıxi

c (4)
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Then, the fraction of local edge cache memory occupied by contents of class i
from content provider c is

xi
c D ti

cbc
P

v2C bv C ı
N (5)

A tagged content of class i of content provider c is found in each local cloud edge

with probability Pi
c D minf xi

c
Ni

c
; 1g. In the rest of the paper, we will assume that

N < Ni
c for the sake of simplicity.

We assume that fetching a non cached content from the content operator
infrastructure through the backhaul has unitary delay cost. Conversely, delay is
negligible if the user associates to a SC which is part of local edge cloud and a
cached copy of the content is present. However, such a SC must be within the UE
radio range r > 0. SCs are distributed according to a spatial Poisson point process
with average intensity � [9]. By a thinning argument we let � � Pi

c the intensity
associated with the distribution of content i of c 2 C within the edge cloud. Hence,
given a tagged UE, the probability not to find a content of class i picked at random
is e�
r2�Pi

c .
Thus, if a tagged UE requests a content of class i from content provider c, the

missed cache probability depends on the content caching rate chosen by c, i.e., bc.
Finally, the missed cache rate

Ui
c.bc; b�c/ D e�
r2�Pi

c D e
�
r2� N

Ni
c

ticbc
bCı ;

is the rate at which customers of content provider c do not find a content of class
i in the edge cache. Summing over all the contents classes, and weighting each
probability by demand rate gi

c we define the expected missed cache rate, i.e., the
actual cost function for content provider c

Uc.bc; b�c/ D
X

i

Ui
c.bc; b�c/ D

X

i

gi
c e��i

ctic
bc

bCı (6)

where b�c WD P
v 6Dc bv accounts for the fact that other content providers share the

same cache space. The parameter �i
c WD 
r2� N

Ni
c

has the meaning of availability of
contents of class i per square meter.

3 Game Model

Each content provider pays a cost �c.bc/ for reserving caching slots at a given rate
bc. Such cost, in turn, is decided by the network operator. The optimal caching rate
bc is settled by content providers accordingly. Content provider c plays strategy bc,
where 0 � bc � Bc.
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The network provider proposes the cost to content providers: they decide the
caching rate depending on their contents, and their opponents’ strategies. We define
a game where each CP c minimizes the cost Uc.bc; b�c/ C �c.bc/. Hence, the best
response of c solves

min
bc

Uc.bc; b�c/ C �c.bc/ (7)

0 � bc � Bc

where �c.�/ is increasing and convex.
Here b�c D P

v 6Dc b�v. Also, opponents’ strategy profile writes b�c D
.b1; : : : ; bc�1; bcC1; : : : ; bC/.

The meaning of (7) is that of purchasing a caching rate, e.g., caching slots per
day, at a cost �c.bc/, from the network provider.

By letting Vc.xc/ WD P
i gi

c e��i
cticxc , once we denoted xc WD bc

bCı
, it is immediate

to verify that Vc is a convex, strictly decreasing and continuously differentiable
function. Hence, the scheme is a generalized Kelly mechanism [12].

The Kelly mechanism prescribes the proportional allocation of a shared resource
and the ratio is proportional to the players’ bids. In our case, the cache space is the
resource and the bids are the required caching rates.

Also, given the constraints on the caching rate c 2 C, 0 � bc � Bc, the set
of strategies is a convex compact subset of R

C, so that the existence of a Nash
equilibrium is guaranteed by the result of Rosen [13].
Best response: By differentiating (7), and invoking the convexity of the utility, we
can derive the best response b�c D b�c .u�c/ of each player by imposing the conditions
on the marginal utility, i.e., the increment of the utility derivative for bc D 0. Indeed,
we can write

V 0c
� bc

b C ı

� b�c C ı

.b C ı/2
C �0c.bc/ D 0 (8)

from which it is immediate

Lemma 1 (Best Response). Given opponents’ strategy profile b��c, let �0.b�c/ WD
� V0

c.0/

b
�cCı

. There exists a unique best response in the form:

i. b�c D 0 if and only if �0c.0/ > �0.b�c/

ii. b�c > 0 if and only if �0c.0/ < �0.b�c/

iii. b�c D B if and only if

�0c.Bc/ � �B
c .b�c/ WD �

Bc � V 0c
�

Bc
BcCb

�cCı

�

.Bc C b�c C ı/2

We can obtain explicit expressions from (6): �0.b�c/ D
PM

iD1 �i
cticgi

c
b

�cCı
and

�B
c .b�c/ D

X

i

.gi
c�

i
cti

c/.b�c C ı/

Bc C b�c C ı
e��i

ctic
Bc

BcCb
�cCı
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From the best response we can obtain two trivial Nash equilibria: the null one
b D 0 and the saturated one b D B D .B1; : : : ; BC/.

Proposition 1 (Trivial Nash Equilibrium).

i. b D 0 is the unique Nash equilibrium iff �0c.0/ > �0.0/ for all c 2 C
ii. b D B is the unique Nash equilibrium iff �0c.0/ � �B

c .
P

v 6Dc Bv/ for all c 2 C

Note that in customary formulations [12, 14], 0 is not a Nash equilibrium. Here, it
may be the Nash equilibrium of the system since ı > 0.

3.1 Nash Equilibrium

The generalized Kelly mechanism has a unique Nash equilibrium [12]. Even
when the strategy set is bounded, the caching game proposed has a unique Nash
equilibrium. This is true for the trivial equilibria in Proposition 1. The idea for the
proof extends the argument in [15]. There, the existence is proved in the case of
Bc D C1, for all c 2 C, and accounts for the case ı > 0.

In our case, given the bounded strategy, we do not require assumptions on the
demand function in 0. Nevertheless, some care is required in order to prove the
uniqueness for non-interior type of Nash equilibria. Uniqueness for the case when
Bc D C1 for some c 2 C follows immediately.

Theorem 1. Let Vc convex monotone and both Vc and the �cs twice continuously
differentiable: the Kelly mechanism with bounded strategy sets Œ0; Bc� has a unique
Nash equilibrium.

Proof. Existence of a Nash equilibrium is given by Rosen’s result on concave games
[13]. From Proposition 1, we need to prove the statement for b� 6D 0 and b� 6D B.
We define p WD P

bc C ı and demand function xc.p/ W Œı; 1/ ! R where xc.p/

is determined by the unique best response of player c for a given value of p. In
particular, the unique minimizer x?

c .p/ 2 Œı; C1/ of (8) can be derived from

V 0c.xc/.1 � xc/ D �p�0c.pxc/ (9)

The existence of function x?
c .p/ derives from the implicit function theorem, which

requires continuous differentiability of V 0 and the �cs. Uniqueness derives from the
convexity of V . Now, by expressing the best response via demand xc

xc.p/ D

8
ˆ̂
<

ˆ̂
:

0 if x?
c � 0

x?
c .p/ if 0 < p � x?

c < B
B
p if p � x?

c � B

(10)
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We can define C0.p/ D fc 2 Cjx?
c .p/ � 0g. Also, the set C 0.p/ D fc 2 Cjp �

x?
c .p/ � Bg is unique for every value of p 2 Œ0; C � B/. From (9), in the region

where p � x?
c .p/ � B, the xcs are strictly decreasing in p; this is showed in [15] by

expressing (8) as a function of x0c due to the convexity of �c.
Now, we observe that the actual best responses of players in a Nash equilibrium

need to satisfy the condition

CX

cD1

xc.p/ D 1 � ı

p
(11)

Because we assumed b� 6D 0, it holds 0 <
PC

cD1 xc.ı/. Also, ı � p � C � B
since we assumed b� 6D B: hence, there always exists a strictly decreasing xc.p/

for p 2 Œ0; C � B� and so it is the sum appearing in the left-hand term. But, for the
right hand term is increasing, if a non identically zero or non identically saturated
solution x� exists, it must correspond to a unique value of p, which we denote p�.

Finally, the Nash equilibrium b� is derived by the bijection b D �.p�/, where

i. �c.p�/ D 0 for c 2 C0.p�/;
ii. �c.p�/ D B for c 2 CB.p�/;

iii. the �c.p�/s for c 2 C 0.p�/ D C n .C0.p�/ [ CB.p�// with the bijection induced
from the full rank compatible linear system

b�c .1 � x�c / C
X

v2C0.p�/

b�v x�v D �ıx�c � jC 0.p�/jB2

p
; c 2 C 0.p�/

which concludes the proof.

3.2 Calculation of the Nash Equilibrium

The above proof suggests an algorithm for the calculation of the Nash equilibrium as
reported in Fig. 1. NBKG (Generalized Bounded Kelly Nash) uses a simple bisection
search for the optimal demand value p�.

The search is operated on the total demand interval Œ0;
P

Bc C ı�, and the
algorithm performs a preliminary check for the null Nash equilibrium (line 1). The
usage of bisection is suggested by the fact that (11) provides negative values for
p > p� and positive values for values p < p�. At each step it solves in the xcs the
set of the best responses (9) for a given value of p.

Because of convexity, the solutions of the system of equations (9) can also
be calculated using a simple bisection algorithm. Hence, we can characterize the
computational complexity of the algorithm under the assumption that we impose a
precision parameter � > 0 both for the search of the optimal total demand p� and
the calculation of the best response.
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Fig. 1 NBKG: algorithm computing the Nash equilibrium for the game

Proposition 1. The time complexity of NBKG is O.��2 log2.
P

Bc C ı/ log2.1 C
�c maxc Bc//

Proof. The number of iterations of the bisection search in the main WHILE loop
(lines 1 to 10) is O.��1.

P
Bc C ı//. The fact follows from elementary properties

of bisection search [16][Ch. 4, pp. 145]. Moreover, at each iteration the calculation
of the best response appearing at line (2) requires to compute x?

c .pmid/ as in (9). The
latter operation can be done at a cost O.��2.1 C �c maxc Bc/.

3.3 Interior Nash with Linear Costs

Let us consider a linear cost �c.bc/ D �cbc. When the Nash equilibrium is an
interior one, i.e., b�c < B for all c 2 C, a simple extension a result of Hajek [12]
determines the Nash equilibrium as the solution x� of the optimization problem

8
ˆ̂
<

ˆ̂
:

Minimize
P

c2CbVc.xc/

subject to xc � 0
P

xc �
P

BcP
BcCı

(12)

wherebVc.xc/ D 1

�c

�

Vc.xc/.1 � xc/ C
Z xc

0

Vc.z/dz

�

.
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The upper constraint follows immediately from
P

xc C ıP
bcCı

� 1. The equiv-
alence with the proposed optimization problem is seen by writing the Lagrangian

L.x; �; �/ D
X

c2C
bVc.xc/ �

X

c2C
�cxc � �.1 �

P
Bc

P
Bc C ı

C
X

c2C
xc/

and apply the KKT conditions. Indeed, first order optimality requires

@L

@xc
D V 0c.xc/

�c
.1 � xc/ � �c � � D 0

Transversality condition �cxc D 0 brings

V 0c.xc/

�c
.1 � xc/ D � if xc > 0

V 0c.0/

�c
.1/ < � if xc D 0 (13)

Hence, assume that b� is a Nash equilibrium: all the components x�c such that 0 �
b�c < B verify (13) by letting � D P

b�c C ı because of Lemma 1, which proves the
equivalence. The explicit form of the Nash equilibrium for the problem described
in (12) is easily derived from (6) and omitted here for the sake of space.

4 Numerical Results

Figure 2 reports on the numerical description of the Nash equilibria in various cases.
We have considered first the effect of the upper bound Bc in Fig. 2a. As seen there,
before a critical value (Bc D B D 10), the Nash equilibrium is the saturated one and
all players equally share the total cache memory. We observe that the share of the
total memory in the first part of the graph increases: this is due to the fact that as B is
initially small with respect to the parameter ı. In turn, ı represents by construction
a small fraction of the cache memory available to content providers for their own
operations: as B becomes bigger with respect to ı, the portion of the cache that can
be used by the players increases. In particular, at first, player 2 settles on the optimal
best response when the others play B. Finally, for B � 15 the Nash settles onto the
value corresponding to the one when the strategy set is unbounded.

Next, we have considered the case of a two players game as depicted in Fig. 2b
and c. Both players have two contents classes. For the sake of notation it is
convenient to express the two players’ strategies as tc D .tc; 1 � tc/, c D 1; 2.
In particular, in Fig. 2b the ratio of the cache occupied at the Nash equilibrium is
plotted against the possible content allocations chosen by the two players. In Fig. 2c
the total utility function at Nash equilibrium is plotted against the content allocations
chosen by the two players. The graph suggests that the two players could further
enhance their own utility by optimizing allocations, i.e., acting on parameters ti

c.



98 F. De Pellegrini et al.

1.84

1.82

1.8T
ot

al
 U

til
ity

1.78

1

0.5
0 0

0.5
1

1.86

0.4
player1
player2
player3

0.38

0.36

0.34

0.32

0.3

0.28

X
c

0.26

0.24

0.22

0.2
0 5 10

B
15 20

0.8

0.79

0.78

0.77

0.76

0.75

x 1
+

x 2
0.12

0.1

0.08

0.06

0.04

0.02

0

to
ta

l c
os

t

0 10 20 30 40
0
10
20
30
40

price2
price1

1

0.5
0 0

1
0.5

t2

t2

t1

t1

a)

c) d)

b)

Fig. 2 (a) Cache occupation for two CPs for two content classes (b) corresponding total utility (c)
Nash equilibrium for increasing BD Bi, i D 1; 2; 3 (d) network operator’s revenue (linear cost) in
the two players case as a function of �1 and �2

Finally, Fig. 2d reports on the revenue of the network operator in the case of two
players. We consider the cost in the form �cb˛

c , where ˛ D 1:1. By changing the
parameters �c, c D 1; 2, we have explored the total revenue of the network operator.
From the image it is not clear if a global maximum exists. Actually, in the linear
cost case, it is actually possible to show that even for equal prices, a unique price
able to maximize the revenue of the network provider does not always exist. In turn
this suggests that the network provider may have slack in order to search for optimal
prices satisfying other metrics, e.g., guaranteeing largest possible caching rates to
the content providers.

5 Conclusions and Discussion

Edge caching in the radio access network represents a convenient technology for
5G network providers. Cache space of the edge network can be provisioned to
OTT content providers requesting cache space in order to serve their customers with
improved quality of experience. We study a competitive scheme where contents are
dynamically stored in the edge memory deployed by the network provider. We have
proposed a generalized Kelly mechanism to model the cache utilization on the edge
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cloud. While doing so, we have proved the uniqueness of the Nash equilibrium of
the Kelly mechanism on a bounded strategy set and provided an algorithm for its
calculation.

The numerical results in Fig. 2b and c suggest a variant of the proposed scheme.
A CP might optimize her utility by (a) bidding first for her best response, and then
(b) optimize the allocation among her own content classes. If this optimization is
operated iteratively, this would result in successive rounds of optimization. The
convergence properties of such process are part of future work.
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References

1. Ericsson Mobility Report: On the Pulse of the Networked Society. White Paper, Ericsson, June
2014.

2. MEC ETSI Industry Specification Group, “ETSI DGS/MEC-IEG004: Mobile-Edge Comput-
ing (MEC) – Service Scenarios,” Available online:http://www.etsi.org/technologies-clusters/
technologies/mobile-edge-computing.

3. X. Wang, M. Chen, T. Taleb, A. Ksentini, and V. Leung. Cache in the air: exploiting content
caching and delivery techniques for 5G systems. IEEE Comm. Mag., 52(2):131–139, Feb.
2014.

4. ISO/IEC. Dynamic adaptive streaming over HTTP (DASH). 2012.
5. G. S. Paschos, E. Bastug, I. Land, G. Caire, and M. Debbah. Wireless caching: Technical

misconceptions and business barriers. CoRR, abs/1602.00173, 2016.
6. M. Ji, G. Caire, and A. F. Molisch. Fundamental limits of distributed caching in D2D wireless

networks. In Proc. of IEEE ITW, pages 1–5. IEEE, 2013.
7. F. Pantisano, M. Bennis, W. Saad, and M. Debbah. Cache-aware user association in backhaul-

constrained small cell networks. In Proc. of IEEE WiOPT, pages 37–42, May 2014.
8. B. N. Bharath, K. G. Nagananda, and H. V. Poor. A learning-based approach to caching in

heterogenous small cell networks. CoRR, abs/1508.03517, 2015.
9. H. J. Kang and C. G. Kang. Mobile device-to-device (D2D) content delivery networking: A

design and optimization framework. Journal of Comm. and Networks, 16(5):568–577, Oct
2014.

10. A. Sengupta, S. Amuru, R. Tandon, R. Buehrer, and T. Clancy. Learning distributed caching
strategies in small cell networks. In Proc. of IEEE ISWCS, pages 917–921, Aug. 2014.

11. J. Hachem, N. Karamchandani, and S. Diggavi. Multi-level coded caching. In Proc. of IEEE
INFOCOM, pages 756–764, Hong-Kong, RPC, April 26th–June 1st 2015.

12. R. Johari. Efficiency Loss in Market Mechanisms for Resource Allocation. PhD thesis, Dept.
of Electrical Engineering and Computer Science, Cambridge, MA, USA, 2004. AAI0807106.

13. J. B. Rosen. Existence and uniqueness of equilibrium points for concave N-person games.
Econometrica, 33(3), July 1965.

14. A. Reiffers-Masson, Y. Hayel, and E. Altman. Game theory approach for modeling competition
over visibility on social networks. In Proc. of IEEE COMSNETS, pages 1–6, Jan. 2014.

15. R. Maheswaran and T. Basar. Efficient signal proportional allocation (espa) mechanisms:
Decentralized social welfare maximization for divisible resources. IEEE J.Sel. A. Commun.,
24(5):1000–1009, Sept. 2006.

16. S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, New York,
USA, 2004.

http://www.etsi.org/technologies-clusters/technologies/mobile-edge-computing
http://www.etsi.org/technologies-clusters/technologies/mobile-edge-computing


Power Control and Bargaining for Cellular
Operator Revenue Increase Under Licensed
Spectrum Sharing

Vaggelis G. Douros, Stavros Toumpis, and George C. Polyzos

Abstract Due to the constant need for ever-increasing spectrum efficiency, licensed
spectrum sharing approaches, where no exclusive rights are given to any single oper-
ator, have recently attracted significant attention. Under this setting, the operators,
though still selfish, have motivation to cooperate so as to provide high Quality-
of-Service to their respective customers. In this context, we present an approach
based on a simple charging model where many operators may coexist efficiently
by combining traditional power control with bargaining, using “take it or leave
it” offers. We derive conditions for a successful bargain. For the special case of
two operators, we show that, through our scheme, each operator always achieves a
payoff that is higher than the Nash Equilibrium payoff. We also show analytically
when our scheme maximizes the social welfare, i.e., the sum of payoffs. We then
compare its performance through simulations with a scheme that maximizes the
social welfare and a scheme that applies linear power pricing.

Keywords Bargaining • Game theory • Power control • Co-primary shared
access

1 Introduction and Motivation

The number of mobile devices and the volume of mobile data traffic are growing
rapidly and, consequently, new communications paradigms have arisen to meet
this demand. The operators actively look for opportunities to gain more licensed
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spectrum; however, licensing new spectrum to cellular operators through auctions
[12] is no longer straightforward due to the scarcity of available spectrum and the
time-consuming procedure of clearing such spectrum from its legacy usage [2].

In December 2012, the Federal Communications Commission (FCC), the respon-
sible regulatory body in the USA, published a ground-breaking proposition [1]:
It identified the 3.5 GHz band that was currently used by the U.S. Navy radar
operations (but characterized by light usage) as a shared-access band. In other
words, the operators could jointly use this band, without having exclusive access.
This idea, recently termed licensed spectrum sharing constitutes a complementary
way to optimize spectrum usage other than the traditional approaches of either
licensing spectrum or making it freely available. Licensed spectrum sharing is
expected to be a key concept of 5G networks [9].

However, a great challenge to the widespread adoption of the licensed spectrum
sharing paradigm is how the operators should interact with each other to satisfy their
non-aligned interests [14]. In this work, we model this setup as a non-cooperative
game among the wireless operators who aim at maximizing their revenues by using
a simple charging scheme based on the Quality-of-Service (QoS) they offer [6].

Our contributions are the following: For the general case of N operators
competing for downlink spectrum access, each one with one Base Station (BS)
that transmits to one Mobile Node (MN), we propose a joint power control and
bargaining scheme and discuss under which conditions it leads to operating points
with higher payoffs for all operators than the traditional non-cooperating approach
that leads to a Nash Equilibrium (NE). Furthermore, for the special case with 2
operators: (i) We show that this scheme will always lead to more preferable points
than the NE for both operators. (ii) We prove that, through our scheme, the operating
point that maximizes the social welfare (sum of payoffs) can always be reached.
(iii) We compare its performance with a scheme based on linear pricing of the power,
showing through simulations that we achieve better payoffs for most scenarios.

Note that the problem of finding a more efficient point than the NE has already
been studied in the broader context of wireless networks. One direction is to
consider a coalitional game [7]: Players that form the coalition act as a single entity,
receive a common payoff, and then split it in a fair way using, e.g., the notion of the
Shapley value. Then, the coalition is stable iff all players receive at least as much
payoff as they would have received if they were on their own [7]. In our work, we do
not assume coalitions among the operators, as this reflects reality more accurately.

Another direction is the application of the Nash Bargaining Solution (NBS) with
a disagreement point, which is typically the NE [7]. In [13], Leshem and Zehavi
compute the NBS in the context of the interference channel when there are two
players and show through simulations that it significantly outperforms the NE. In
[4], the authors apply power control in the uplink using the utility function that has
been proposed in [15]. They find the NBS where all players achieve equal Signal-
to-Interference plus Noise Ratio (SINR) and discuss how the powers of the MNs
can be driven to this operating point, which is the socially optimal solution. In our
work, we assume that the operators are not willing to reveal their utility functions
(i.e., their powers and all their associated gains), elements that are necessary for the
computation of the NBS.
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Finally, pricing of the transmission power has been used as a way to find a more
efficient NE. In [3], Alpcan et al. use as a utility function the throughput minus
a linear function of the power. They show that, when the number of players N is
lower than L � 1, where L is the spread factor of the system, then the game admits a
unique NE and their scheme converges to it. We will compare our approach with
this scheme, showing that we can derive better results in terms of both payoff
per operator and sum of payoffs. Moreover, another qualitative advantage of our
approach is that it can be used for any spread factor L � 1.

In [8], pricing of the transmission power is used as a way to maximize the sum
of payoffs. The authors show that the utility function we are using in this work
belongs to a family of utility functions named Type II utilities. They then prove, by
using properties of supermodular games, that their approach maximizes the social
welfare when the number of players N=2. Our scheme achieves the maximum sum
of payoffs as well, provided that the maximum possible power reduction is asked for
in the bargaining phase. The advantage of our approach is that the required level of
cooperation is lower. Indeed, with our scheme, a node i should only know the exact
level of the interference that it receives from node j to decide upon the level of its
offer. This information (which, for the case of 2 operators, can be easily computed
by the uplink) is also needed in [8]. Moreover, in [8], each node should also
know the pricing profile of the other node (i.e., how much that node charges for
the interference it receives) in order to update its transmission power. In the general
case with N operators, with our scheme, node i still only needs to know the same
information as with the case of 2 operators. On the other hand, in [8], the level
of the information increases significantly: node i should know the exact level of
interference experienced by all other N-1 nodes, as well as their pricing profiles.

2 System Model

We consider N operators sharing a channel of bandwidth B at a common physical
area. We focus on the downlink, as the traffic in this direction is typically heavier;
however, our approach can be applied to the uplink as well. As Fig. 1 shows, oper-
ator i owns one Base Station (BS), BSi, and serves one Mobile Node (MN), MNi.
We consider only one MN per operator, assuming that each operator still has its own

Fig. 1 Each operator i owns
one Base Station, BSi, and
serves one Mobile Node,
MNi. We denote the path gain
between BSi and MNj as Gij

BS1 BS2 BSN

MN1 MN2 MNN

G1N

G12

G21 G2N
GNN

GN2

GN1
G11 G22

...

...
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Table 1 Game formulation Set of players Set of nodes N D f1; 2; : : : ; Ng
Strategy of player i Pi 2 fPmin; : : : ; Pmaxg
Utility function for player i Ui=ciTi

exclusive band, where it serves the rest of its MNs. Note that our approach is also
directly applicable to the case of multiple BS/MN pairs per operator provided that
there is network planning so that BSs of the same operator do not interfere with
each other. Dealing with co-interference (i.e., interference from BSs of the same
operator) in the shared spectrum band is left as future work.

Each operator i controls the power Pi of BSi and charges MNi proportionally to
the throughput that it receives. Similarly to [3], the throughput of MNi is defined as

Ti D B log.1 C SIRi/; where SIRi D LGiiPi

NP

j¤i

GjiPj

is the Signal-to-Interference Ratio and Gji 2 .0; 1/ is the path gain between BSj

and MNi; since we assume an interference-dominated environment, we ignore the
thermal noise power.

In Table 1, we model this setup as a non-cooperative game with the players being
the N operators. The strategy of each player i is the transmission power Pi; the
payoff that it receives is Ui D ciTi, where ci is a positive constant. We assume that
MNi is interested in downloading files, meaning that it is willing to pay more for
a better download rate. For simplicity and ease of exposition, we assume that each
MN has neither a minimum nor a maximum data rate requirement.

Each player aims at maximizing its payoff. It is easy to check that this game has
a unique Nash Equilibrium (NE), at which all BSs transmit at Pmax [11].

3 Analysis

Let U�i be the NE payoff for player i and U0i be its payoff at another operating point.
We propose that the operators, though still selfish, decide to cooperate by applying a
joint power control and bargaining scheme, in particular by using part of the revenue
accumulated from the services they have offered to their associated MN in the past.
In this case, one operator, say OP1, makes a “take it or leave it” offer to another one,
say OP2, of the form: “I offer you e1;2 units if you reduce your power by a factor of
M”. Defining how OP2 is chosen is not critical, and goes beyond the scope of this
work: A simple idea is that OP1 chooses randomly OP2. Clearly, for the bargain to
be mutually beneficial, the following two conditions must hold:
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U01 � e1;2 � U�1 , c1B log

0

B
B
B
@

1 C L
G11Pmax

NP

j¤1;2

Gj1Pmax C G21
Pmax

M

1

C
C
C
A

� e1;2

� c1B log

0

B
B
B
@

1 C L
G11Pmax

NP

j¤1

Gj1Pmax

1

C
C
C
A

: (1)

U02 C e1;2 � U�2 , c2B log

0

B
B
B
@

1 C L
G22

Pmax
M

NP

j¤2

Gj2Pmax

1

C
C
C
A

C e1;2

� c2B log

0

B
B
B
@

1 C L
G22Pmax

NP

j¤2

Gj2Pmax

1

C
C
C
A

: (2)

From (1) and (2), when the corresponding equalities hold, we can compute the
maximum offer, e1;max, that OP1 is willing to make as well as the minimum offer,
e2;min, that OP2 is willing to accept.

If e1;max � e2;min, then OP1 can find an offer that OP2 will accept. If a successful
negotiation takes place, then BS1 transmits at Pmax and BS2 transmits at Pmax

M . In this
case, each operator that does not take part in the negotiation increases its payoff as
well. This is due to the fact that the throughput of their associated MN is increasing,
as they receive less interference from BS2. Otherwise, no successful bargaining can
take place, and all nodes continue to transmit at Pmax, as this is the NE operating
point.

An operator is interested in knowing: (i) Given a power reduction M, can it make
a successful offer? (ii) If so, which is the minimum offer that it should make (clearly,
this one will maximize its payoff)?

To answer these questions, note that if the operator knew all the path gains and
other parameters, then it could easily compute whether it could make an offer or
not and, if so, which would be the optimal offer. However, in the general case,
the operator cannot “guess” whether it can make an offer or not for a requested
power reduction. What it can do is to start by offering its maximum offer to the
other operator. All quantities for the computation of e1;max from (1) and (2) can be
computed by OP1. If the offer is rejected, then it has no motivation to make another
offer for this requested power reduction, and it should choose a different operator
to negotiate with. Otherwise, in next rounds of negotiations, it can reduce a bit its
offer, to see if it can further improve its payoff.
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4 Analysis for N D 2 Operators

We now investigate under which circumstances a successful bargain may arise, for
the special case where there are N D 2 operators, denoted by OP1 and OP2, with
a common charging parameter c1=c2=c. This case provides intuition about what
happens in the general case. Furthermore, since in many markets there are indeed
only 2 operators, it also is of practical interest.

Theorem 1 Let q , G11

G21
and r , G22

G12
be the ratios of the path gain coefficient of

the associated BS to the path gain coefficient of the interfering BS.

1. If M � maxf1; r
q g, then e1;max � e2;min.

2. If M � maxf1;
q
r g, then e2;max � e1;min.

Proof We sketch the proof focusing on case 1 (case 2 is treated similarly). Starting
from (1) and (2), the inequality e1;max � e2;min becomes:

M2 �
�

1 C r

q

�

M C r

q
� 0 , .M � 1/

�

M � r

q

�

� 0:

This holds for M � maxf1; r
q g.

Note that as M expresses how many times the power will be reduced, it is by
definition greater than 1. Therefore, if r � q, then, for any requested reduction of
the power from OP1, there will be an interval [e2;min, e1;max] where an offer will be
accepted. If r > q, then this interval exists for M > r

q , therefore for some power
reductions an offer will never be accepted.

A direct conclusion from Theorem 1 is presented in Proposition 1.

Proposition 1 For any requested power reduction M: if r < q then OP1 can make a
successful offer; if r > q, then OP2 can make a successful offer; if r D q, then both
operators can make a successful offer.

In other words, through this joint power control and bargaining scheme, operators
can always end up at a point that is more preferable for both of them than the NE
Pmax transmission.

We now state Theorem 2 that specifies the socially optimal operating point, i.e.,
the one that maximizes the revenue sum.

Theorem 2 The maximum sum of revenues of the operators corresponds to one
of the following operating points: A1=.P1; P2/=.Pmax; Pmin/ or A2=.P1; P2/=.Pmin;

Pmax/.

Proof Let V D P1

P2
. We look for the global maximum of the function

f .V/ D cB log.1 C qLV/ C cB log
�
1 C L

r

V

�
;
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where V 2
h
Vmin , Pmin

Pmax
; Vmax , Pmax

Pmin

i
and q, r, are defined in Theorem 1. Taking

the first derivative of f and setting it equal to zero, we show that:

1. When Vmin <
q

r
q , t, f is strictly decreasing in ŒVmin; t� and strictly increasing

in Œt; Vmax�. Therefore, its global maximum is either at Vmin, i.e., at A2, or at Vmax,
i.e., at A1.

2. When Vmin � t, f is strictly increasing in ŒVmin; Vmax�, having its global maximum
at Vmax.

3. When Vmax � t, f is strictly decreasing in ŒVmin; Vmax�, having its global maximum
at Vmin.

We now state Theorem 3, which clarifies when our bargaining scheme can lead to
the socially optimal operating point.

Theorem 3 Let A1 (resp. A2) be the point that maximizes the social welfare of the
system. Then, if OP1 (resp. OP2) applies the bargaining scheme with M D Pmax

Pmin
, it

will reach A1 (resp. A2).

Proof Let A1 be the global maximum of the function f , defined in Theorem 2. By
definition:

f .A1/ � f .A2/ , log.1 C qLVmax/ C log

�

1 C Lr

Vmax

�

�

log

�

1 C Lq

Vmax

�

C log.1 C LrVmax/:

After some algebra, the above inequality becomes .q � r/V2
max � q � r, which holds

if and only if q � r, since Vmax > 1. From Proposition 1, when q � r, OP1 can make
a successful offer that leads to A1. The proof for OP2 is omitted.

5 Performance Evaluation

We illustrate our bargaining scheme for N=2 operators. Each operator asks for
the maximum possible power reduction M=32 [16]. We present two variations:
BargainingA, where OP1 makes successive offers starting from a e1;max offer and
progressively reducing its offer each time by 15% and BargainingB (similarly, but
OP2 makes offers). We compare them with the NE, the NE that arises after the
application of pricing [3] with a linear pricing factor z (denoted as Pricing), as well
as with a scheme that maximizes the sum of revenues (denoted as MaxSum) [8]. The
notation Schemei refers to the payoff of OPi with this scheme (e.g., BargainingA1);
Scheme refers to the sum of payoffs.

In Fig. 2a, we present the operating points that arise after the application of
BargainingA (the parameters for this particular topology are shown in the legend).
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Fig. 2 Revenue under NE, Pricing, BargainingA, BargainingB, and MaxSum. G11=0.5, G21=0.2,
G12 D 0:05, G22 D 0:2, L D 4, B D 2, c D 1, z D 1:5. The topology is shown in Fig. 2d.
(a) BargainingA: Revenue evolution when OP1 makes offers. (b) BargainingB: Revenue evolution
when OP2 makes offers. (c) Sum of revenues. (d) Topology

At each point, the revenues of both operators are larger than the NE revenues.
At the first three points, they are larger than the Pricing scheme as well. Similar
trends appear in Fig. 2b, with BargainingB. In Fig. 2c, we show that both schemes
outperform both NE and Pricing. Actually, BargainingB also maximizes the social
welfare.

Figure 3a shows the evolution of the sum of revenues for 16 scenarios. As
specified by Theorem 3, in all scenarios, MaxBargaining=max{BargainingA, Bar-
gainingB} achieves the maximum sum of revenues. Moreover, in 12 scenarios,
MaxBargaining strictly outperforms Pricing. In the other 4 scenarios, Pricing
coincides with MaxBargaining. In Fig. 3b, we study 124000 scenarios with the
path gains Gij covering a vast number of combinations. Simulations verify that
in all cases MaxBargaining coincides with the MaxSum. Moreover, the sum of
revenues with MaxBargaining strictly outperforms Pricing in 80% to 95% of
the scenarios for small spread factors (L � 64) and 100% of scenarios for
large spread factors. Furthermore, in the majority of scenarios (70% to 85%),
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Fig. 3 Sum of revenues under NE, Pricing, BargainingA, BargainingB, and MaxSum. B=2, c=1.
(a) G11 D 0:2, G21 D 0:05, G12 & G22 2 f0:05; 0:2; 0:5; 0:95g, L=4, z=1.5. (b) Sum of revenues
as a function of L. (c) Gij 2 f0:01; 0:06; 0:11; : : : ; 0:96g, z=1.5. (d) Sum of revenues as a function
of z. Gij 2 f0:01; 0:06; 0:11; : : : ; 0:96g, L=4

even MinBargaining=min{BargainingA, BargainingB} strictly outperforms Pricing.
Note that we depict the payoffs for Pricing for the best pricing factor z=1.5, as
determined by an experimental study-see Fig. 3c. The sum of payoffs for Pricing is
lower with other z factors.

6 Conclusions

The goal of this work was to study the emerging concept of licensed spectrum
sharing, where no exclusive rights are given to any single operator, under the prism
of game theory. Assuming that the operators charge their customers based on the
throughput that they offer to them, we define a non-cooperative game that has a
unique Nash Equilibrium, where all operators transmit at Pmax. Our work starts with
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the observation that the operators, though still selfish, have motivation to cooperate
to end up at more efficient operating points that increase their revenues. We
develop an incentives-based mechanism that enables this cooperation, by combining
traditional power control with bargaining, using “take it or leave it” offers. Then, we
show that, even in the general case, where N operators share the same portion of the
licensed spectrum, there are conditions that guarantee that a more efficient operating
point may arise. We then deepen our results for the special case of two operators.
(i) We show that for any level of requested power reduction, at least one of the
two operators can make an offer than can be accepted and leads to a more efficient
operating point than the NE. (ii) We derive a set of bargaining strategies that lead
to the operating point that maximizes the social welfare of the system, demanding
less exchange of messages than the state-of-the art. (iii) We show that our scheme
outperforms the standard idea of linear pricing of the transmission power as a way
of finding more efficient operating points in terms of both revenues per operator and
sum of revenues.

Our conclusions are aligned with previous works (e.g., see [10]) that argue
that spectrum sharing among the wireless operators has the potential to improve
significantly the network efficiency. Concerning the future directions, it would be
interesting to compare our scheme with the outcome of a spectrum sharing game
where the operators do not play simultaneously, but hierarchically [5]. Moreover, a
natural extension would be to simulate scenarios with N > 2 operators that apply
our bargaining mechanism; we could evaluate our mechanism in terms of social
welfare, examining whether a theorem similar to Theorem 3 can be proved for
N operators. Finally, it is interesting to examine the more realistic case where a
customer has made an agreement with his operator that he will not be charged when
his throughput is lower than some minimum value.
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An Incentive Mechanism for Agents Playing
Competitive Aggregative Games

Sergio Grammatico

Abstract We propose an incentive mechanism for steering the strategies of nonco-
operative heterogeneous agents, each with strongly convex cost function depending
on the average among the agents’ strategies, and all sharing a convex constraint,
toward a competitive aggregative equilibrium. We consider a coordinator agent
having access to the average among the agents’ strategies and broadcasting incentive
signals that affect the decentralized optimal responses of the agents. Our mechanism
ensures, based on the Picard–Banach fixed point iteration, global convergence to an
equilibrium.

Keywords Aggregative games • Incentive mechanisms • Coordination • Fixed-
point theorem

1 Introduction

The problem to coordinate a set of competitive agents arises in several applications
such as demand response in competitive markets [20], congestion control for net-
works with shared resources [1], demand side management in smart grids [25, 31]
via flexible loads [12, 13, 21, 22, 26]. In such setups the agents are noncooperative,
self-interested, yet coupled together, and have local decision authority that if left
uncontrolled can lead to undesired aggregate behavior. Consequently, the objective
is to design an incentive mechanism for steering the strategies of the agents towards
a desired equilibrium.

Remarkably, in all the mentioned applications the utility of each agent is affected
by an aggregate effect of all the agents, not by agent-specific one-to-one effects,
thus aggregative games [6, 18] can be used to analyze the interactions between
each individual agent and the entire population. In the limit of infinite population
size, aggregative game setups have been considered as mean field games among
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players with quadratic cost functions and unconstrained vector decision variable.
Differently from the classic aggregative and mean field games, in this paper we
consider generalized aggregative games for a large set of agents with general convex
functions, constrained vector decision variable [14, 15], and in addition with convex
shared (i.e., coupling) constraints.

Games among agents with shared constraints [29] have been extensively studied
in operations research [7, 8] and in control theory [19, 28, 33] in relation with
variational inequalities and Lagrangian duality. Assessing the convergence of the
repeated play among the noncooperative agents towards an equilibrium is one
main technical challenge. Best response dynamics and fictitious play with inertia,
e.g. projected gradient dynamics, have been studied both in discrete [24, 32]
and continuous time setups [5, 16]. Indeed, fictitious play with inertia has been
introduced to overcome the non-convergence issue of the best response dynamics
[16]. The common feature of these methods is that the agents implement sufficiently
small steps, each along the direction of optimality for their local problem. Thus,
the noncooperative agents must cooperatively agree on the sequence of step sizes,
and in addition to exchange truthful information, e.g. with neighboring players, to
update their local descent directions, which goes against the noncooperative nature
of the agents. Several distributed algorithms have been proposed for computing the
game equilibria, see [17, 27, 33, 34] and the references therein.

Unlike the existing distributed approaches, in this paper we consider aggregative
games among noncooperative agents that do not exchange information, nor agree
on variables affecting their local behavior, with the other competing agents. As
in [14, 23], we consider the presence of a central agent that coordinates the
decentralized optimal responses of the competitive agents, via the broadcast of
incentive signals common to all agents. Specifically, we design a mechanism
computing incentives that linearly affect the cost functions of all the agents, based
only on the average among their decentralized optimal responses. It follows that
the resulting information structure is semi decentralized. For large population size,
we wish to control the decentralized optimal responses of the agents towards a
competitive aggregative equilibrium, that is, a set of agent strategies that are feasible
for both the local and the shared constraints, and individually optimal for each agent,
given the strategies of all other agents and some penalty signal associated with the
shared constraint. Our main technical contribution is to conceive a multi-variable
mapping whose unique fixed point generates, via the agents’ decentralized optimal
responses, the desired equilibrium, and consequently to design of an incentive
mechanism with global convergence guarantee for steering the agents’ decentralized
optimal responses toward such equilibrium. For establishing global convergence
with the given information structure, we exploit tools from variational and convex
analysis [30], and fixed point operator theory. We extend the state of the art where
the cost functions are assumed to be strongly convex quadratic [9, 14, 15], and/or
there is no coupling constraint [10]. A more general setup is analysed in [11].
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1.1 Basic Notation and Definitions

We borrow the basic mathematical notation from [11]. Given S � R
n, A 2 R

n�n and
b 2 R

n, AS C b denotes the set fAx C b 2 R
n j x 2 Sg. HQ, with Q 2 S

n�0, denotes

the Hilbert space R
n with induced norm kxkQ WD p

x>Qx; we refer to the Hilbert

space HI if not specified otherwise. f W Rn ! R is `-strongly convex, ` 2 R>0, if
f .�/ � 1

2
` k�k2 is convex. Id W Rn ! R

n denotes the identity map. f W Rn ! R
n

is `-
Lipschitz continuous relative to HQ, where ` 2 R>0, if kf .x/ � f .y/kQ � ` kx � ykQ
for all x; y 2 dom.f /; f is a contraction (nonexpansive) mapping in HQ if it is
`-Lipschitz relative to HQ with ` 2 Œ0; 1/ (` 2 Œ0; 1�). Given f W R

n ! R,
@f W dom.f / � R

n denotes its subdifferential set-valued mapping [30], defined
as @f .x/ WD fv 2 R

n j f .z/ � f .x/ C v>.z � x/ for all z 2 dom.f /g. A mapping
f W R

n ! R
n

is (strictly) monotone in HQ if .f .x/ � f .y//> Q .x � y/ � 0 .> 0/

for all x ¤ y 2 dom.f /; it is `-strongly monotone, where ` 2 R>0, HQ if
.f .x/ � f .y//> Q .x � y/ � ` kx � yk2

Q for all x; y 2 R
n; it is firmly nonexpansive

(hence monotone and nonexpansive) if .f .x/ � f .y//> P.x � y/ � kf .x/ � f .y/k2

for all x; y 2 dom.f / [14, Lemma 5]; it is ˇ-cocoercive (hence monotone), where
ˇ 2 R>0, if ˇ f .�/ is firmly nonexpansive.

2 The Competitive Aggregative Game

We consider a large set of N competitive agents (i.e., players), where each agent
i 2 NŒ1; N� has decision variable (i.e., strategy vector) xi 2 X i 	 R

n, and all share
the constraint

1
N

PN
iD1 xi 2 S; (1)

for some set S � 1
N

PN
iD1 X i 	 R

n. We assume that each agent i 2 NŒ1; N�

aims at minimizing its local cost function, which depends on the average among
the strategies of all other agents, that is, at computing

xi 2 arg min
y2X i

Ji
�

y; 1
N

�
y CPN

j¤i xj
��

C p>y; (2)

for some Ji W Rn 
 R
n ! R, where p 2 R

n represents the penalty associated with
the coupling constraint in (1). Note that xi in (2) is a best response of agent i to the
strategies of the other agents, given the penalty vector p.

To ensure existence of a game equilibrium [29, Sections I–III], and that the
agents’ optimal responses, defined later in Sect. 3, are single-valued and continuous,
we assume compactness, convexity and Slater’s qualification of the constraints, and
strong convexity of the cost functions, with linear dependence on the global coupling
variable.
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Standing Assumption 1 (Compactness, Convexity, Regularity) The sets fX igN
iD1

and S � 1
N

PN
iD1 X i are compact and convex subsets of Rn, and satisfy the Slater’s

constraint qualification. There exists a compact set X 	 R
n such that [N

iD1X i � X
for all N 2 N. �

Standing Assumption 2 (Strongly Convex Cost Functions) For all i 2 NŒ1; N�,
the cost function Ji W Rn 
 R

n ! R in (2) is defined as

Ji.y; 
/ WD f i.y/ C .C
/>y; (3)

for some f i W Rn ! R continuous and `-strongly convex on dom.f i/ � X i, ` 2 R>0,
and C 2 S

n�0. �

Remark 1 The condition C � 0 in Standing Assumption 2 implies that the game
in (1)–(2) is a (generalized) convex game [29, Sections I, II]. �

The goal is to steer the strategies of the agents toward a competitive aggregative
equilibrium, that is, a set of strategies and penalty vector such that: the coupling
constraint in (1) is satisfied, and each agent’s strategy is optimal given the
penalty vector and the strategies of all other agents, see [20, Definition 1] for a
definition of competitive equilibrium with linear coupling constraints. Existence of
an equilibrium can be shown via standard arguments for generalized convex games
[7, 29], see [9, Proposition 1].

Definition 1 (Competitive Aggregative Equilibrium) A pair
�
.Nxi/N

iD1; Np	 is a
competitive aggregative "-equilibrium, " 2 R�0, for the game in (2) with shared
constraint in (1) if 1

N

PN
iD1 Nxi 2 S, for all i 2 NŒ1; N�, Nxi 2 X i and

Ji
�

Nxi; 1
N

PN
jD1 Nxj

�
C Np>Nxi � infy2X i Ji

�
y; 1

N

�
y CPN

j¤i Nxj
��

C Np>y C ": (4)

It is a competitive aggregative equilibrium for the game in (2) with shared
constraint in (1) if in addition (4) holds with " D 0. �

3 Fixed Points of the Aggregation Mapping

In this paper we do not assume that an agent i can exchange information on the
strategies of all other (competing) agents, which makes the computation of an
equilibrium challenging, especially for large number of players. Instead, we assume
that each individual agent responds optimally to incentive signals .
; �/ 2 R

n 
 R
n

that enter as second argument of the cost functions in (3) and as penalty vector,
respectively. More formally, for all i 2 NŒ1; N�, we define the agent’s optimal
response mapping xi? W Rn 
 R

n ! X i as

xi?.
; �/ WD arg min
y2X i

Ji.y; 
/ C �>y D arg min
y2X i

f i.y/ C .C 
 C �/>y (5)
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and the aggregation mapping A W Rn 
 R
n ! 1

N

PN
iD1 X i as

A.
; �/ WD 1
N

PN
iD1 xi?.
; �/: (6)

Next we discuss a mean-field-type approximation of the game equilibrium. If
N
 D A

� N
; N�	 for some N� 2 R
n, and we introduce the shorthand notation Nxi WD

xi?. N
; N�/, then N
 D 1
N

PN
iD1 Nxi is the second argument of Ji in the left-hand side

of (4), and an O.1=N/ approximation of the second argument of Ji in the right-
hand side of (4). Existence of such a fixed point with respect to the first argument
follows from [9, Proposition 2]. Let us formalize that a pair

�
.Nxi/N

iD1;
N�	 is in fact a

competitive aggregative "-equilibrium.

Theorem 1 If . N
; N�/ 2 .S 
 R
n/ is such that N
 D A

� N
; N�	 as defined in (6), then
the pair

�
.xi?. N
; N�//N

iD1;
N�	, with xi? as in (5) for all i 2 NŒ1; N�, is a competitive

aggregative "N-equilibrium for the game in (2) with shared constraint in (1), where
limN!1 "N D 0. �

Proof Trivial extension to [9, Theorem 1], see [11]. �

Theorem 1 implies that, in the limit of infinite number of players, a competitive
aggregative equilibrium is generated by the agents’ optimal responses to any pair
. N
; N�/ such that N
 is a fixed point of A

��; N�	 in S.

4 Incentive Mechanism as Picard–Banach Iteration

According to Theorem 1, for large population size the coordinator agent can steer
the agents’ optimal responses, e.g. via iterative updates of their two arguments, to
a set of strategies whose average is a fixed point of the aggregation mapping (with
respect to the first argument) within the shared constraint set. Informally speaking,
the objective is to find a pair of arguments . N
; N�/ such that N
 D A. N
; N�/ D x0, for
some x0 2 S. With this in mind, in this section we translate the problem into that of
finding a fixed point of an appropriate multivariable mapping via semi-decentralized
iterations.

Among all possible design choices, let us define the mapping x0? W Rn 
R
n ! S

that the coordinator agent can use as

x0?.
; �/ WD arg min
y2S

1
2
y>y C .K.
 � �//>y: (7)

It will be shown in Sect. 5 that this specific choice allows us to prove the main global
convergence result. Therefore, a pair

� N
; N�	 2 R
n 
 R

n satisfies N
 D A
� N
; N�	 D

x0?. N
; N�/ 2 S if and only if
� N
 I N�� 2 R

2n is a zero of the mapping � W R2n ! R
2n

defined as
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�

�




�

��

WD




 � A.
; K�/


 � 2A.
; K�/ C x0?.
; �/

�

D



I 0

I 0

� 




�

�

�



A.
; K�/

2A.
; K�/ � x0?.
; �/

�

DW .M C � /

�




�

��

(8)

where K � 0, and we defined M 2 R
2n�2n and � W R2n ! R

2n as

M WD �
I 0
I 0

�
; � .Œ 


� �/ WD �
h A.
;K�/

2A.
;K�/�x0?.
;�/

i
: (9)

In the following lemma we show the one-to-one connection between a zero of �

in (8) and a fixed point of the mapping T W R2n ! R
2n defined as

T .Œ 

� �/ WD .I C � M/�1 .Œ 


� � � � � .Œ 

� �// (10)

Lemma 1 Let I C �M be invertible for � 2 R>0 and M as in (9). A vector z 2 R
2n

is a zero of � in (8), i.e., 0 D � .z/, if and only if it is a fixed point of T in (10), i.e.,
z D T .z/. �

Proof We have that z D T .z/ D .I C �M/�1 .z � �� .z// if and only if
.I C �M/ z D z � �� .z/, that is equivalent to �.z/ D Mz C � .z/ D 0. �

For computing a fixed point of T in (10) we propose the Picard–Banach iteration
(with small enough � > 0), that is the incentive mechanism (t 2 N):

h

.tC1/

�.tC1/

i
WD T

�h

.t/

�.t/

i�
: (11)

5 Global Convergence via Semi-Decentralized Iterations

The mapping T in (10) is the composition of the linear map .I C �M/�1 and the
nonlinear one .Id � � � /. In this section we show that, by choosing the matrix K � 0

in (5) appropriately, both mappings are firmly nonexpansive [14, Definition 4],
hence strongly nonexpansive [3, Definition 4.1], as well as their composition
[3, Fact 4.2]. It then follows that the Picard–Banach iteration [14, Equation 15]
ensures global convergence [3, Fact 4.3 (iii)] to a fixed point. The space where
these properties are shown to hold is HP with

P WD �
CC2K �K�K K

� � 0: (12)

Lemma 2 The linear mapping .I C �M/�1 is firmly nonexpansive in HP, with P as
in (12). �
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Proof The linear mapping �M in (9) is monotone in HP as [14, Lemma 3]

�
I 0
I 0

�> � CC2K �K�K K

�C �
CC2K �K�K K

� �
I 0
I 0

�
< 0:

Therefore, .I C �M/�1 is firmly nonexpansive [2, Proposition 23.7 (ii)]. �

Theorem 2 Let K 2 S
n�0 in (8). The mapping �� .�/ from (9) is firmly nonexpansive

in HP, with P in (12), for all � � ˇ WD `=.6 kPk/ > 0. �

Proof It follows from [2, Theorem 16.2] that, for all i 2 NŒ1; N�, we have

xi?.
; K�/ D .@f i/�1 .Œ�C; �K� Œ 

� �/ ; (13)

and analogously x0?.
; �/ D .@f 0/�1 .Œ�K; K� Œ 

� �/, where f 0.y/ WD 1

2
y>y C ıS.y/.

Now, for all i 2 NŒ1; N�, let us define the mapping � i W R2n ! R
2n as

� i.Œ
 I ��/ WD �



xi?.
; K�/

2xi?.
; K�/ � x0?.
; �/

�

D �



I 0

2I �I

� 

.@f i/�1 0

0 .@f 0/�1

��
�C �K
�K K

� 




�

�� (14)

so that � .�/ D 1
N

PN
iD1 � i.�/. The mapping diag

�
@f i; @f 0

	
is � -strongly monotone

with � WD minf`; 1g [30, Exercise 12.59], thus the mapping diag
�
.@f i/�1; .@f 0/�1

	

in (14) is � -cocoercive and .1=�/-Lipschitz continuous due to [4, p. 1021,
Equation (18)], [30, Proposition 12.54] and [2, Proposition 20.23]. In the rest of
the proof we exploit the following lemma.

Lemma 3 Let M W R
m ! R

m be a � -cocoercive mapping, � 2 R>0, and
A; B 2 R

m�m be invertible matrices. If A�>B 2 S
m�0, then the mapping AM .B �/ is

	-cocoercive in HA�>B with 	 WD �=.kAk2
�
�A�>B

�
�/. �

Proof It follows the same arguments in [2, Proof of Proposition 4.5]. �

Next we apply Lemma 3 to � i.�/ in (14), with A WD � � I 0
2I �I

�
, B WD � �C �K�K K

�
,

and obtain P WD A�>B D � � I 0
2I �I

��> � �C �K�K K

� D �
CC2K �K�K K

�
. Since C; K � 0,

we have that B is invertible and A�>B � 0. By Lemma 3, this implies that, for all
i 2 NŒ1; N�, � i.�/ is ˇ-cocoercive in HA�>B, where A�>B D P and `=.kAk2 kPk/ D
`=..3 C 2

p
2/ kPk/ � `=.6 kPk/ DW ˇ. Therefore, � .�/ D 1

N

PN
iD1 � i.�/ is ˇ-

cocoercive as well [2, Example 4.31], that is, �� is firmly nonexpansive for all
0 < � � ˇ. �

Theorem 3 Let � 2 .0; ˇ/ in (11), with ˇ as in Theorem 2. The sequence�

.t/; �.t/

	1
tD0

defined in (11) converges, for any initial condition, to a fixed point
of T in (10), with A as in (6) and xi? as in (5) for all i 2 NŒ1; N�. �
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Proof It follows from Lemma 2 and Theorem 2 that T is the composition of two
firmly nonexpansive mappings. Global convergence then follows from [3, Fact 4.2
(ii), Fact 4.3 (iii)]. �

Corollary 1 Under the conditions in Theorems 2, 3, the sequence

�
.xi?.
.t/; K�.t///

N
iD1; K�.t/

	1
tD0

defined from (5), (11) converges, for any initial condition, to a competitive
aggregative "N-equilibrium of the game in (2) with shared constraint in (1), with
limN!1 "N D 0. �

Proof It follows from Theorems 1–3. �

6 Conclusion, Application and Outlook

We have designed an incentive mechanism for steering the strategies of a large
number of competitive agents, with strongly convex cost functions coupled together
via the average population state, convex local and coupling constraints, towards a
competitive aggregative equilibrium. The main feature of the proposed mechanism
is that the coordinator agent decides on the step sizes and on the stopping criterion,
while the self-interested agents do not have to exchange information with each other,
nor agree on the step sizes, nor on the stopping criterion.

The competitive aggregative game setup in (1)–(2) is applicable to demand side
management for large populations of noncooperative presumers in the smart grid,
such as plug-in electric vehicles with transmission line constraints. We refer to
[11, 12] for numerical experiments.

Future research avenues include the weakening of Standing Assumption 2, the
extension to dynamic mechanisms, the study of the convergence rate, and the
application to transactive control for smart grids.
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Multi-Games for LTE and WiFi Coexistence
over Unlicensed Channels

Kenza Hamidouche, Walid Saad, and Mérouane Debbah

Abstract In this paper, a novel framework for optimizing the coexistence between
LTE and WiFi over unlicensed bands, is proposed. The problem is modeled
using the framework of multi-game theory in which the WiFi users (WUs) are
considered as leaders and the small base stations (SBSs) as followers. This multi-
game framework encompasses two games of different types. In this regard, the
competition between the WUs to access the unlicensed channels is formulated as
a one-sided matching game while the power allocation problem of the SBSs is
formulated as a noncooperative game. In this multi-game, the SBSs anticipate the
channel allocation on the WiFi network and adapt their strategies accordingly while
the WUs predict the power allocation of the SBSs. For the latter, the existence of
a unique Debreu equilibrium is proved while for the matching game the existence
of core stable outcome is shown and a decentralized algorithm that converges to the
stable outcome is proposed.
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1 Introduction

One promising approach to overcome the scarcity of the radio spectrum is to enable
tomorrow’s small cell networks (SCNs) to exploit simultaneously their licensed
cellular bands along with the unlicensed, WiFi bands [1–5].

Although offloading part of the LTE traffic to the unlicensed bands can consid-
erably increase the performance of cellular networks, the disparity of the medium
access protocols that are used by the WiFi users (WUs) and LTE-U SBSs, rises new
challenges. In fact, the access to the spectrum in WiFi is based on carrier sense
multiple access with collision avoidance (CSMA/CA) while LTE uses orthogonal
frequency division multiple access (OFDMA). In many countries, there are no
imposed regulations and the operators need to develop new scheduling mechanisms
known as LTE-U to extend the LTE into the unlicensed channels.

In this regard, many works have proposed and analyzed new mechanisms for
the deployment of LTE-U over unlicensed channels. The work in [6] formulated
the unlicensed spectrum allocation problem with uplink-downlink decoupling as a
noncooperative game in which the SBSs are the players that select the unlicensed
channels over which they serve their users. The authors in [7] formulated the
unlicensed spectrum allocation problem as a student-project matching problem with
externalities.The work in [8] proposed a distributed traffic offloading scheme for
LTE-U scenarios with a single base station. In [9], the authors proposed hyper-
access points (HAP) in which the functions of both an LTE-U SBS and a Wi-Fi
access point (AP) are combined in the same HAP. The work in [10] proposed a
cooperative optimization framework that allows the WUs and SBSs to coordinate
dynamically via power control and time devision channel.

Despite being interesting, in all of these existing works, the WUs are either
assumed to transmit on fixed channels or the allocation of the unlicensed channels
to the WUs is determined without accounting for the existing SBSs.

The main contribution of this paper is to propose a new unlicensed spectrum
allocation approach that accounts for the impact of the SBSs’ transmit power and
the assigned channels to each of the WUs, on one another. We formulate a multi-
game [5] with two different types of games in which the WUs are considered
as leaders and the dual-mode SBSs are the followers. On the followers side, the
power allocation problem at the SBSs on the unlicensed channels is formulated as
a noncooperative game. On the other hand, we formulate the channels allocation
problem as a one-sided matching game with externalities [11], in which the WUs
predict the transmit power of the SBSs and autonomously select the channel over
which they serve their traffic. We prove that there exists a unique Debreu equilibrium
(DE) for the power allocation problem. Moreover, we propose a new distributed
matching algorithm for the assignment of the WUs to the unlicensed channels and
prove that the proposed algorithm converges to a unique stable matching that is in
the core.
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2 System Model

Consider a wireless network composed of a set N of N users served by a set S
of S LTE-U small base stations (SBSs) and a set W of W WiFi users (WUs). The
SBSs and WUs can transmit their content over a set C of C unlicensed channels.
Here, each of the channels can be allocated to multiple WUs at a given time but
only one WU can transmit based on the LBT scheduling scheme. These same bands
when available, are allocated to the SBSs allowing them to aggregate LTE and LTE-
Unlicensed (LTE-U) to improve the quality-of-service (QoS) of the served users.

The SBSs only serve the downlink traffic over unlicensed channels while in
the WiFi network, both downlink and uplink transmissions can occur. The set of
W WUs is denoted by W . The achievable throughput by a WiFi user w in the
network depends on the number of active WUs and SBSs that transmit over the same
unlicensed channel c 2 C, which we denote Rw.Wc; Sc/, where Wc is the number of
active WUs on channel c and Sc is the number of SBSs that transmit over channel
c with a positive transmit power. The fraction of time each WU w uses a channel c,
also known as the channel busy time, is given by [12]:

twc.Wc; Sc/ D lwc

Rw.Wc; Sc/
C �wc; (1)

where lw is the size of transmitted file by the WU w and �wc is the channel access
overhead and the protocol overhead which depends on the type of the file. The WiFi
network throughput R.Wc; Sc/ is given by:

Rw.Wc; Sc/ D Ps
w

NL
Ps

wTs C PcTc C P
 T

; (2)

where Ps
w D �w

QWcCSc
i¤w .1 � �i/ is the probability of a successful transmission

which corresponds to the probability of having only one transmission over the
channel and �w is the probability of transmission by a given WU w. NL is the average
size of a packet file, Ts is the average time that is required to transmit a packet of size
NL, P
 D QWc

iD1 .1 � �i/ is the probability of the channel being idle, T
 is the duration
of the idle period, Pc is the probability of collision, and Tc is the average time spent
in the collision. The WUs detect collisions based on the power or interference they
sense on the unlicensed channels. In fact, if the sensed interference from all other
WUs and SBSs over a channel c exceeds a given threshold Ith, the WUs consider the
channel as busy and back-off. For the SBSs, the achievable physical throughput by
a user j that is served by SBS i is given by:

Ric D !c log
�
1 C picjhicj2


2 C P

l2Sni
plcjhlcj2 C P

j2W
˛jcpjcjhjcj2

�
; (3)
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where pic is the transmit power of SBS/WU i over channel c, jhicj is the channel gain
of SBS/WU i over channel c, and !c is the bandwidth of band c. ˛jc is a boolean that
is related to the CSMA/CA transmission mode indicating that WU j is transmitting
on channel c when ˛jc D 1, and ˛jc D 0 otherwise.

3 Game Formulation and Analysis

To ensure a harmonious coexistence between the SBSs and the WUs, we formulate
a multi-game which is a new game-theoretic framework that we introduced in [5].
A multi-game is a hierarchical game in which multiple interconnected sub-games
are formulated. Different from classical Stackelberg games, the games can be of
different types and the sets of players are not necessarily disjoint. In our context, the
WUs are regarded as leaders in the formulated multi-game, that have the priority
in using the unlicensed spectrum. On the other hand, the SBSs are considered as
followers that adapt their traffic on unlicensed spectrum based on the leaders’ traffic
load.

3.1 Followers’ Game

We define pmin
i D Œpmin

i1 ; : : : ; pmin
iC � as the vector of minimum transmit powers over all

channels that are required by an SBS i to meet the delay constraint, given the power
allocation of other SBSs over the same unlicensed channels. The goal of each SBS
is to minimize its transmit power over the unlicensed channels while accounting for
the served WUs over the same channels. More formally, this problem can be defined
as follows:

pic D arg min
fpicg

CX

cD1

pic.p�i/ (4a)

s.t. Ric D wc log.1 C �.pic; p�ic// � lic
Tmax � twc

;

X

c

pic � pmax
i ;

pic � pmax
c ;

where p�i is the power allocation of all other SBSs except SBS i over all the channels
c 2 C, lic is the amount of traffic that SBS i wants to transmit over the unlicensed
channel c, pmax

c is the maximum transmit power that is allowed over the unlicensed
channel c, and twc is the fraction of time the WUs require to transmit their packets
successfully over the selected unlicensed channel c. Ric is the mean achievable rate
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of the LTE users served by SBS i over the unlicensed channel c as defined in (3) and
can be rewritten as:

Ric D !c log
�
1 C picjhicj2

L C P

l2Sni
plcjhlcj2

�
; (5)

where the noise plus interference term from the WUs L D 
2 C P

j2W
˛jcpjcjhjcj2,

can be seen as a constant, which is independent of the power allocation of the
SBSs.The power allocation problem (4a) is equivalent to the following problem:

pic D arg min
fpicg

X

c

pic (6a)

s.t. wc log.1 C �.pic; p�ic// D lic
Tmax � twc

;

X

c

pic � pmax
i ;

pic � pmax
c ;

where equality holds for the rate requirements in the first constraint in (6).
This problem can be formulated as a noncooperative game:

G.tw/ D fS; fPigi2S ; fvi.pi; p�i/gi2Sg; (7)

where the set of SBSs S corresponds to the set of players, vi.pi; p�i/ is the cost
function per SBS and given by:

vi.pi; p�i/ D
X

c2C
pic; (8)

and Pi is the strategy set of SBS i given by:

Pi.p�i/ D
n
pic 2 RC W

X

c2C
pic � pmax

i ; pic � pmax
c ;

li
wc log.1 C �.pi; p�i//

� Tmax � tw; 8c 2 C
o
: (9)

Here, the cost function vi.pi; p�i/ of an SBS i corresponds to the transmitted power
as defined by the objective function (6). Due to the dependence between the strategy
set Pi.p�i/ of a given player i on other players’ strategies p�i, a suitable solution for
this game G will be the so-called Debreu equilibrium also known as the generalized
Nash equilibrium [13], which can be defined as follows:



128 K. Hamidouche et. al.

Definition 1 A strategy profile p� is a Debreu equilibrium (DE) of the game G.tw/

if, for all the SBSs i 2 S, we have p�i 2 Pi.p�i/ with

vi.p�i ; p��i/ � vi.pi; p��i/; (10)

for all pi 2 P.p��i/.

When all the SBSs except SBS i select their transmit power strategies p�i, the
best choice of SBS i consists in a selected strategy from the best-response strategies
set B.p�i/ which is given by:

Bi.p�i/ D arg min
pi2Pi.p�i/

vi.pi; p�i/: (11)

Thus, the DEs can be derived by solving the fixed point problem (11) for all the
S SBSs. The resulting set of DEs might be empty or it may contain many DEs.
Therefore, to analyze the hierarchical game, we first need to establish the existence
and uniqueness of a DE in the formulated generalized noncooperative game. The
time constraint bound in this case:

wc log.1 C �.pic; p�ic// D lic
Tmax � twc

: (12)

Thus, the minimum required transmission power of an SBS i to serve its requests
without exceeding the time limit is given by:

p*
ic D min fpmax

ic ; pDE
ic g; (13)

where,

pDE
ic D arg min

pic2RC

vi.pic; p�i/: (14)

The following proposition provides the closed-form solution of the optimal power
allocation and shows that this DE is unique.

Proposition 1 The DE power allocation for SBS i over channel c to its served LTE
users is given by:

pDE
ic D L

jhicj2 � 1 � 2�˛ic

PS
jD1 2�˛jc � S C 1

: (15)

Given the single SBS power constraint pmax
i and the power constraint on each unli-

censed channel c, the rate requirement is only feasible if the following conditions
are met.
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Proposition 2 The DE power allocation pic is feasible under the power constraints
if and only if,

X

c

L

jhicj2 � 1 � 2�˛ic

PS
jD1 2�˛jc � S C 1

� pmax
i ; (16)

and,

max
1�j�S

�
L.1 � 2�˛jc/

pmax
c jhicj2

�

C S � 1 <

SX

jD1

2�˛jc < S: (17)

Given the existence and the uniqueness of the DE for the power allocation game on
the unlicensed channels, the goal of the WUs is to choose the unlicensed channels
over which they serve their traffic. Next, we formulate and solve this problem as the
high-level, leaders game.

3.2 Leaders’ Game

Given the power allocation at the SBSs on each channel, the WUs have to choose
the channels over which they transmit their traffic. This WUs-channels allocation
problem can be formulated as a house allocation problem with existing tenants [11].
The house allocation problem with existing tenants is one-sided matching that is
composed of a set of houses and a number of agents that want to rent a house while
some of the houses are already occupied and their tenants may choose to participate
or not in the assignment process. Similarly, some agents may already have a house
while others do not. In our context, the WUs are the agents and the unlicensed
channels correspond to the houses. The unlicensed allocation game can be defined
as a tupleP D .S; C[fc0g; f�wcg8w2W ;c2C; f
wgw2W ; �/ with each element defined
as follows:

• The set W of WUs represents the set of players.
• The set A D C [ fc0g of unlicensed channels is the set of actions that can be

selected by each of the WUs, where c0 corresponds to the case in which none of
the unlicensed channels in chosen by the considered WU.

• vwc is the utility of WU w when serving its traffic over unlicensed channel c.
• 
w is the preference relation of the WUs. The preference relation 
w is transitive

and complete. We use c 
w c0 to denote that WU w prefers to serve its content
over channel c than serving it over channel c0 for c ¤ c0.

• � is the result of the actions selected by all the WUs.

The house allocation problem is a one-sided matching in which only the WUs
have preferences over the channels while the unlicensed channels do not participate
in the game by taking strategic decisions. This characteristic captures the fact that



130 K. Hamidouche et. al.

unlicensed spectrum is free and can be accessed by any user and thus, there does
not exist any entity that can act on behalf of the unlicensed bands. The outcome of
the house allocation problem with existing tenants can be defined as follows.

Definition 2 A matching between the WUs and unlicensed bands problem � is a
mapping from the set W [ C into the set W [ C such that for every w 2 W and
c 2 C: i) ��1.w/ is contained in C and �.c/ is contained in W , ii) j��1.w/j � 1 for
all w 2 W , iii) j�.c/j � qc for all c 2 C, iv) c 2 ��1.w/ if and only if w 2 �.c/,
where qc is the maximum number of WUs that can be served over channel c.

The value of qc is not predefined at the channels and depends on the amount of
LTE traffic that each WU decides to serve over that channel as well as the amount
of traffic that each WU decides to serve over the unlicensed channels. Definition 2
states that a WU w can only select one unlicensed band ��1.w/ while an unlicensed
band c can serve multiple WUs �.c/, depending on its capacity and the WiFi traffic
load. Before setting the assignment of the WUs to the unlicensed channels, each
WU needs to specify its preferences over the unlicensed channels based on its
utility function. The externalities in the formulated matching problem appear in the
throughput of a given WU that depends on the assigned users to each channel.

The goal of each WU w is to serve its content within the time duration Tmax. The
utility of a WU w when transmitting over channel c is given by:

vwc.c; pc; �.c// D Tmax � Otic.pc/ � twc.�.c/; Sc/; (18)

where pc D Œp1c; : : : ; pSc� is the transmit power of all the SBSs over channel c, and
twc.�.c/; Sc/ is given in (1). Assuming all the SBSs transmit at the same time, Otic is
the maximal duration during which the SBSs transmit and is given by:

Otic.pc/ D arg max
t0ic

ft0ic D li
wc log.1 C �c.pc//

; 8i 2 Scg; (19)

where Sc is the set of SBSs that decide to transmit over the unlicensed channel c
and t0ic is the fraction of time during which an SBS i uses channel c.

From (18), we can see that the utility of a WU w not only depends on the set of
WUs �.c/ that are assigned to channel c, but also on the interference generated
by other SBSs transmitting over the same channel. Based on the defined utility
function, each WU can define its preference relation 
w over the set of channels
C, such that for any two channels c, c0 2 C with c ¤ c0, and two matchings
�; �0 2 W 
 C, s 2 �.c/; w 2 �0.c0/:

.�; c/ 
w .�0; c0/ , vwc.a�w; �; Sc/ < vwc0.a�w; �0; Sc/; (20)

To solve the matching problem, we are interested in finding a desirable matching
outcome that is Pareto optimal and in the core that can be defined as follows.
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Definition 3 A matching � is Pareto optimal if there does not exist another
matching �0 under which, at least one of the WUs can improve it utility while none
of the WUs will degrade their utility under matching �0 compared to matching �.

Definition 4 A matching � is in the core of the one-sided matching .W ; C; 
,
fuwcg8w2W ;c2C[c0/, if there is no coalition of WUs, W 0 � W , and a matching �0
such that: i) �0�1.W/ 2 fc0g8i2W 0 for all s 2 W 0, ii) ��1.w/ �w �0�1.w/ for all
w 2 W 0, iii) ��1.w/ 
w �0�1.w/ for some w 2 W 0.

In the formulated problem, the channels can serve multiple WUs while in the
original house allocation problem only one agent can be assigned to a given house.
Thus, the existing algorithms do not account for the externalities that appear in the
utility function (18) of the WUs as it depends on the WUs that are assigned to each
of the channels. Moreover, the existing top trading cycle algorithm [11] for solving
such problems is centralized and cannot be applied for the assignment of WUs to
the unlicensed channels in which the algorithms should be decentralized due to the
large number of access points. Next, we propose a new decentralized algorithm to
solve the formulated one-sided matching game with externalities.

3.2.1 Proposed Algorithm

In the proposed algorithm, we solve the conflict between the WUs that want to
access the same channel, by ranking the WUs randomly. Following the defined
order, if a WU is not associated to its most preferred unlicensed channel that allows
it to strictly increase its current utility, the WU w0 sends a request to one of the WUs
that is assigned to its most preferred channel called w1. Upon receiving a request, if
WU w1 is not matched to its most preferred unlicensed channel, it sends a request
to a WU w2 that is assigned to its most preferred channel. It also includes a list that
contains the WU w1 from which it received a request and WU w0 that has sent a
request to WU w1, thus, including all the WUs that lead to the initial requesting
WU. At the end of the requests process, each WU checks the existence of a cycle
in the received list from its requesting WUs. Once all the WUs emit their requests,
the WUs that have initiated the requests procedure, check if a cycle is detected in
the list they receive. If so, the WU with the highest order accepts the requests of its
preceding WU in the list and transmit the list by removing itself from it. Each WU
in the cycle does the same thing until the last WU of the list. Then, all the WUs that
belong to a cycle leave the matching game and the WUs update their preferences
list based on the remaining WUs. The assignment process is then repeated among
the remaining WUs and their associated channels.

Theorem 1 The WUs-channels assignment that results from the proposed algo-
rithm lies in the core.
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Theorem 2 The outcome of the proposed matching algorithm is the unique match-
ing in the core.

Theorem 3 The proposed algorithm is Pareto efficient.

4 Conclusions

In this paper, we have addressed the problem of coexistence over unlicensed bands.
In particular, we have formulated a multi-game in which the WUs are considered
as leaders that have priority when accessing the unlicensed bands, and the SBSs
as followers. In the leaders game, the WUs select the unlicensed channel using
which they transmit their content while anticipating the SBSs’ possible reactions.
In the followers game, the SBSs follow the leaders decisions and respond to it by
determining their transmit power over each of the channels.
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Energy-Efficient User Association in Broadcast
Transmission

Cengis Hasan and Mahesh K. Marina

Abstract This paper addresses the user association problem in a multi-cell broad-
cast transmission. We seek minimal total energy consumption by considering both
transmission power and operational power cost. We propose a novel distributed
solution based on network utility games and using so-called Markovian approxi-
mation we design the distributed base station (BS) selection algorithm. Extensive
simulation results are provided and highlight the relative performance of the
algorithm.

Keywords Energy efficiency • Broadcast • Potential game • Markov approxima-
tion

1 Introduction

Broadcast scenarios have been widely studied for video or audio broadcasting. It is
intended to be used for some content, such as streaming transmission of a sport or
cultural event, but broadcasting may also be of interest to transmit some signalling
such as a beacon for time synchronization or for power control purposes.

We consider broadcasting under a green-aware objective aiming at reducing
the energy consumption which is an important issue in wireless environments
[1]. Broadcasting may bring a strong improvement in wireless channels since a
common resource (in frequency and/or time) may be used for all destinations. The
transmission cost for a base station (BS) to reach all nodes in a multicast group is
assumed to be proportional to the power needed to reach the worst mobile among the
group, where the worst refers to the mobile receiving the weaker signal which relies
on its distance and on additional shadowing effects. We thus consider the situation
where there is one common information that every mobile m 2 M is interested to
receive, and which can be obtained from any one of n 2 N BSs. The objective is
then to achieve a user association which minimizes the total energy consumption.
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Moreover, model setting consists of BSs that are devoted to broadcast transmission
as well as non-devoted BSs that can be utilized for different purposes and these BSs
are always switched on. We take into account interference of non-devoted BSs and
target a transmission rate under total interference from non-devoted BSs. Thus, we
calculate required transmission power from devoted BSs to the users in order to
achieve targeted transmission rate.

The evolution of wireless networks toward smaller cells offering theoretically
higher capacity could in turn lead to an unacceptable increase of the energy expen-
diture of wireless systems. When decreasing the cell size, the energy consumed
for data transmission becomes lower compared to the operational power costs
(e.g. power amplifiers, cooler, etc.) of a typical BS. Switching off a BS may
then bring significant improvements in energy efficiency. Therefore, we take into
account the switching on/off operation in the problem formulation. The overarching
problem studied in the sequel is then finding energy-efficient broadcast transmission
techniques to reduce spurious energy using distributed schemes. The literature
mostly concentrates on the geometric aspects of the user association problem where
basically, the coverage area of a BS is assumed to be a disc which issues from
omnidirectional antenna pattern. However, the effect of shadowing, special designed
antenna patterns as well as the operational power costs may impact the BS-user
associations. In this paper, we take into account these effects by introducing a energy
matrix containing all BS-mobile pairing energy costs. We moreover study the case
where a BS may be in ON, SLEEP and SETUP modes.

We formulate the problem as a binary integer program. As it is known, such a
problem is NP-hard. Besides, the large scale nature of the wireless network further
requires to solve it in a decentralized manner. Thus, game theory appears as a natural
tool to cope with both features: distributed decision and NP-hardness. We address
this problem by considering the mobiles as players being able to make strategic
decisions and the BSs as the strategy identifiers. We define the utility function of
a mobile as a sum of sub-utilities of all possible BSs that can serve corresponding
mobile. We prove that the modeled game is a potential game [8]. Subsequently, we
introduce a new algorithm based on Markovian approximation, called distributed
BS selection algorithm. We refer to [2–7] for further reading as related literature to
our work.

2 System Model

We consider that a set of mobiles denoted by M D f1; : : : ; mg are subscribed to
receive a common information from a set of BSs denoted by N D f1; : : : ; ng. We
shall call as devoted BSs the BSs and they do not interfere each other and are fully
synchronized when broadcasting the common information to the mobiles. Devoted
BSs can be considered as logically separated entities which utilize the same resource
blocks that are allocated for broadcast transmission. On the other hand, there exists
the BSs which operate for different purposes such as unicast transmission, etc. and
these BSs may cause interference to devoted BSs. Those BSs are called as non-
devoted BSs. We represent by Ij the total interference that BS j 2 N receives from
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non-devoted BSs. Moreover, henceforth, when we mention about a BS, it is always
a devoted BS. We assume that

• any BS j can be in ON, SLEEP, or SETUP mode1;
• if mobile i is assigned to BS j, then traffic transmission power is denoted by Pij

• any BS j spends Pj
0 operational power which captures the cost of power

amplifiers, cooler, etc.;
• power consumption model is given by �Pij C Pj

0 where � is the slope of traffic-
dependent transmission power

• if BS j is in SLEEP mode, it spends Pj
sleep power; and if it is activated to ON

mode, then setup time �setup is needed and during this time it spends Pj
setup power;

• if BS j is in ON mode and not assigned to any mobile then, it shall be switched
off and set to SLEEP mode during the slot only if indicator parameter zj 2 f0; 1g
is equal to one2;

3 Optimization Problem

We aim to minimize total energy expenditure during a time slot � . The required
transmission power depends on the mobile having worst signal level from the BS.
At this power level, all mobiles are guaranteed to receive a sufficient power. For
example, if BS j is assigned to mobiles within set S 	 M then, the total energy
expenditure of BS j according to its mode during the time slot is given by

8
<

:

�
�
� maxi2S Pij C Pj

0

�
; BS j is in ON

�setupPj
setup C .� � �setup/

�
� maxi2S Pij C Pj

0

�
; BS j is in SLEEP

(1)

where �setup < � . If BS j is in SLEEP mode and is not assigned to any mobile then,
its energy expenditure during the time slot is given by �Pj

sleep.
Channel coefficient gij represents the shadowing which follows a log-normal

distribution and its value does not change during a time slot but, it might change
slot by slot. The transmission rate Rij when BS j is assigned to mobile i is given
by Rij D log.1 C Pijd�˛

ij gij=.Ij C N0// bps=Hz where dij is the distance between the
mobile i and BS j, ˛ is path loss exponent, and N0 is the white noise spectral density.
For every mobile, we target a transmission rate denoted by R� and thus, we calculate
the power needed for that rate, i.e.

Pij D .2R� � 1/
Ij C N0

d�˛
ij gij

: (2)

1In SETUP mode, the BS is in transition from SLEEP to ON.
2We consider the case where a devoted BS may be used for both unicast and broadcast transmission
and indicator variable shows whether it can be switched off at all or not.
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We assume Pij 2 Œ0; 1/. If Pij > Pmax, then Pij D 1 where Pmax denotes an upper
bound in transmission power, for instance, in WiFi, it is 100 mW.

We denote by

eij D
8
<

:

�
�
�Pij C Pj

0

�
; BS j is in ON

�setupPj
setup C .� � �setup/

�
�Pij C Pj

0

�
; BS j is in SLEEP

(3)

the energy expenditure for assigning BS j to mobile i. Note that when BS j is
assigned to a set S 	 M mobiles, we can calculate the total energy expenditure of
BS j as maxi2S eij which is equivalent to Eq. (1). Moreover, we represent by energy
matrix E D .eij/ 2 <m�n the energy expenditure of BS-mobile pairs.

Combinatorial Formulation Let us define binary variable xij 2 f0; 1g, 8i 2
M; 8j 2 N: xij D 1, if mobile i is served by BS j and xij D 0, otherwise. Since we
assume that if a BS is not assigned to any mobile, it might be set to SLEEP mode
or not according to its indicator parameter. Thus, we only need to know relative
difference of energy expenditure of ON and SLEEP mode in the following way:
Neij D eij � �zjP

j
sleep. Then, minimal total energy can be calculated by

min
x

 
X

i2M

X

j2N

Neijxij C �
X

j2N

Pj
sleep

ˇ
ˇ
ˇ
ˇ
ˇ
C
!

D min
x

 
X

i2M

X

j2N

Neijxij

ˇ
ˇ
ˇ
ˇ
ˇ
C
!

C �
X

j2N

zjP
j
sleep

(4)

where C denotes the “constraints” and shall be defined in the sequel. We represent
relative energy matrix by NE. Note that the optimization only is needed to be carried
out in relative energy part of the formulation in Eq. (4). Consider the following
relative energy matrix:

NE D
2

4
2 3

1 6

5 4

3

5 : (5)

Simply, the binary integer program for finding minimal relative energy consumption
of the considered example can be given by

min
x

˚
2x11.1 � x31/ C 1x21.1 � x31/.1 � x11/ C 5x31 C 3x12.1 � x22/.1 � x32/ C 6x22C

4x32.1 � x22/
�

subject to x11 C x12 � 1; x21 C x22 � 1; x31 C x32 � 1; (6)

where note that 2x11.1 � x31/ means that if x11 D 1 and x31 D 0, the solution adds
2 to the total relative energy cost; that is also valid for the remaining cases. The
inequality constraints in Eq. (6) refer to that any mobile has to be assigned to at least
one BS. In terms of pure coverage considerations, the optimal solution may feature
some mobiles to be covered by several BSs, no matter to which BS the mobile
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eventually associates with. We represent by Wi;j a new set having the following
meaning: choose row i 2 P and column j 2 P, then find the row indices in column j
of which values are higher than pij. Linearization conditions of the product of several
binary variables is given as following: if y D Q

j2S xj, then
P

j2S xj �y � jSj�1 and
�Pj2S xj CjSjy � 0. Using this result, 8j 2 N and 8i 2 M, yij D xij

Q
k2Wi;j.1�xkj/

requires xij �P
k2Wi;j xkj � yij � 0 and �xij CP

k2Wi;j xkj C .jWi;j C 1j/yij � jWi;jj.
Let us now denote Si;j D MnWi;j which is the set of mobiles having less and equal

relative energy cost than Neij in relative energy matrix, e.g. in matrix NE, we can find
that S1;1 D M n W1;1 D .1; 2/, S2;1 D M n W2;1 D .2/, S3;1 D M n W3;1 D .1; 2; 3/,
etc. The inequality constraints in Eq. (6) now allows a particular mobile to be in any
group. Thus, the minimal total relative energy can be found by

.P/ min
y

X

j2N

X

i2M

Neijyij subject to
X

j2N

X

i2M

yijWi2Sk;j � 1; 8k 2 M: (7)

4 Decentralized Solution

We seek a decentralized solution of the problem utilizing a game model. We
consider that mobiles are decision makers–players and BSs are the strategies. We
represent the game by a triple G D hM; Nm; .�i/i2Mi where M is the set of players,
N is the set of strategies and �i W Nm ! < is the utility function of player i 2 M.
Due to physical or other circumstances, a particular mobile cannot see every BS
in N. Thus, we represent by Ni the set of BSs that mobile i can choose. So, we
have that

S
i2M Ni D N. Each player i 2 M chooses exactly one element from Ni.

The choices of players are represented by 
 D f
1; 
2 : : : ; 
mg � Nm which is
called the strategy profile (
i shows the strategy chosen by player i). We can create
a connectivity graph of mobiles where an edge of the graph shows two neighbour
mobiles which can receive broadcast transmission from at least one common BS.
We say that mobile i and i0 are neighbours if Ni \ Ni0 ¤ ;. Thus, the neighbours of
mobile i is defined as Mi D fk 2 M W Ni \ Nk ¤ ;g.

Utility We choose the utility of a player under a strategy profile to be the total
relative energy of all BSs that it can select, i.e.

8i 2 M W �i.
i; 
�i/ D �
X

j2Ni

max
k2S


j

Nekj (8)

where S

j is the set of mobiles choosing BS j when the strategy profile is 
 and 
�i

represents the strategies chosen by the neighbours of player i.

Equilibrium Analysis The Nash equilibrium is defined as following: strategy
profile 
N D f
N

1 ; : : : ; 
N
n g is a Nash equilibrium if there is no any mobile that

can improve its utility by unilaterally changing its BS, i.e.
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N
i D arg max


i2Ni

�i.
i; 
�i/; 8i 2 M: (9)

The partitioning of mobiles which corresponds to Nash equilibrium is given by 8j 2
N, SN

j D ˚
k 2 M W 
N

k D j
�

:

Lemma 1 The game G is a potential game with potential function ˆ:

ˆ.
/ D �
X

j2N

max
k2S


j

Nekj (10)

of which maxima is a Nash equilibrium, i.e. 
N D max
 ˆ.
/.

Proof Let us assume that mobile i switches from BS a to b. The utility
before switching is given by �i.a; 
�i/ D � maxk2S


a
Nekj � maxk2S


b
Nekj �P

j2Ninfa;bgmaxk2S

j

Nekj and after switching we have S

a ! S


a n i and
S


b ! S

b [ i. So, the utility becomes �i.b; 
�i/ D � maxk2S


a ni Nekj �
maxk2S


b[i Nekj � P
j2Ninfa;bgmaxk2S


j
Nekj. Thus, the utility shift of mobile i

due to the switching is given by �i.a; 
�i/ � �i.b; 
�i/ D � maxk2S

a

Nekj �
maxk2S


b
Nekj C maxk2S


a ni Nekj C maxk2S

b[i Nekj. Similarly, potential function is

calculated as following before and after switching, respectively ˆ.a; 
�i/ D
� maxk2S


a
Nekj � maxk2S


b
Nekj �Pj2Nnfa;bgmaxk2S


j
Nekj, ˆ.b; 
�i/ D � maxk2S


a ni Nekj �
maxk2S


b[i Nekj � P
j2Nnfa;bgmaxk2S


j
Nekj, and, we have ˆ.a; 
�i/ � ˆ.b; 
�i/ D

� maxk2S

a

Nekj �maxk2S

b

Nekj Cmaxk2S

a ni Nekj Cmaxk2S


b[i Nekj D �i.a; 
�i/��i.b; 
�i/.
Thus, we prove that the considered game is a potential game.

Any local or global maximum of ˆ corresponds to a Nash equilibrium. We denote
by 
� D f
�1 ; 
�2 ; : : : ; 
�mg the strategy profile which gives the global maximum of
ˆ. Thus, 
� gives also the optimal solution of problem .P/ in Eq. (7).

5 Distributed Algorithm for BS Selection

The maxima of potential function can be found as following: max
2† ˆ.
/ where
† , 
i2M
i is the collection of all possible strategy profiles. Note that such a
framework involves a combinatorial optimization carried out in a discrete solution
space †. Such a problem, as is known, is very challenging to solve when the number
of mobiles is high since the solution space becomes too large. We can write the
problem in the following way:

max
p

X


2†

p
 ˆ.
/ s. t.
X


2†

p
 D 1; p
 � 0; 8
 2 † (11)

where p
 is the probability of adopting strategy profile 
 . The optimal solution of
this problem is clearly to choose with probability one the optimal strategy profile.
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Closed form solution of this formulation is well-known (for proof look at [9]) and
is given by

p�
 D exp.Bˆ.
//
P


 02† exp .Bˆ .
 0//
; 8
 2 †: (12)

where B is a parameter that controls the approximation ratio. Theoretically, the
optimal solution of this problem is found when B ! 1 . We can design an
algorithm where asynchronous strategy selection by the mobiles form a Markov
chain. By time-sharing among different strategy profiles 
 according to p�
 we
solve the main problem in Eq. (11), approximately. Let us denote by T
;
 0 the
transition rate between two states 
 and 
 0, and we use it to construct a time-
reversible Markov chain. We entail that direct transitions between two strategy
configurations are feasible only if they differ by one and only one mobiles’ BS
selection. Thus, the strategy profiles that can be transited directly from 
 is given
by �
 WD f N
 2 † W jf N
 [ 
g n f N
 \ 
gj D 2g, 8
 2 † which means that only one
mobile changes its BS in a particular time. We need to design T
;
 0 in such a way that
(i) resulting Markov chain is irreducible, i.e. any two strategy profiles are reachable
from each other, and (ii) the detailed balance equation is satisfied: 8
 2 † and

 ¤ 
 0, p�
T
;
 0 D p�
 0

T
 0 ;
 , i.e.,

exp.Bˆ.
//T
;
 0 D exp.Bˆ.
 0//T
 0;
 (13)

Designing Transition Rate Let each mobile generate a random timer according
to an exponential distribution (the time interval between two actions follows an
exponential distribution) with a rate ti, 8i 2 N. We also assume that each mobile i
chooses randomly a BS 
 0i following a uniform distribution, and

• if �i.

0
i ; 
�i/ � �i.
i; 
�i/ then, mobile i stays in BS 
 0i with probability 1;

• if �i.

0
i ; 
�i/ < �i.
i; 
�i/ then, mobile i stays in BS 
 0i with probability

exp.B.�i.

0
i ; 
�i/ � �i.
i; 
�i///

Thus, the transition probability from strategy profile .
i; 
�i/ to .
 0i ; 
�i/ can be
given by

P
;
 0 D 1

jNij
�

1; if �i.

0
i ; 
�i/ � �i.
i; 
�i/

exp.B.�i.

0
i ; 
�i/ � �i.
i; 
�i///; if �i.


0
i ; 
�i/ < �i.
i; 
�i/:

(14)

Moreover, transition rate becomes T
;
 0 D
�

tiP
;
 0 ; if 
 0i 2 �


0; otherwise:
. Markov chain with

transition rate T
;
 0 is time-reversible. A proof can be found in [10].

Algorithm We utilize the results obtained in previous section. The algorithm is
fully distributed and mobiles randomly select their BSs in parallel. We also consider
that random BS selection is repeated for a number of iterations nI . Such a method
enables the algorithm to converge to Nash equilibrium when the number of iterations
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is large enough. Fundamentally, we consider that BSs share related information such
as energy matrix and indicator variables through their control channels. Besides, one
mobile can listen to a control channel and learn the mobiles that have already chosen
corresponding BS. In the initialization stage, each BS shares its indicator variable
and each mobile selects randomly a BS. In every random BS selection, every mobile
i needs to know the sets S


j , 8j 2 Ni. For having this information, we assume that
every mobile i listens to the control channels of BSs in Ni. So, it calculates the value
of exp.B.�i.


0
i ; 
�i/ � �i.
i; 
�i///. We assume that a mobile listen sequentially the

control channels, and thus, obtain needed information.

Algorithm 4: Distributed BS Selection
Initialization:
each mobile selects randomly a BS.
Association:
while iteration � nI do

for each mobile i in parallel do
generate a timer value with mean nI=ti

count down until the timer expires
select randomly a BS 
 0

i 2 Ci

compute �i.

0

i ; 

�i/

if �i.

0

i ; 

�i/ < �i.
i; 


�i/ then
stay in BS 
 0

i with probability exp.B.�i.

0

i ; 

�i/� �i.
i; 


�i///

else
stay in BS 
 0

i with probability 1
end if

end for
iteration D iterationC 1

end while

6 Simulation Results

Heterogeneous Network Deployment For small BSs, the wireless network model
consists of BSs arranged according to an homogeneous Poisson point process with
intensity �sb ŒBSs=m2� in the Euclidean plane. For macro BSs, we use the classical
honeycomb model to represent a well structured network made of large cells with
intensity �mb. Also, we consider an independent collection of mobile users, located
according to some independent homogeneous Poisson point process with intensity
�m Œmobiles=m2�. The expected value of a homogeneous Poisson point process is
given by �A, where A 	 <2 denotes some area.

We assume .2R� � 1/.I C N0/ D �80 dBm for every non-devoted BS, which is
the typical maximum received signal power of a wireless network as well as we set
arbitrarily Pij D 1 if Pij � 20 dBm and we set the path loss exponent ˛ D 3 and
� D 4. We also assume equal operational power cost for all small BSs, P0 D 12 W,
equal setup power Psetup D P0, Psleep D 15

100
P0, � D 120 seconds, �setup D 10
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seconds, no operation power costs of macro BSs in calculations since the macro
BSs are not switched off in a real scenario, and every BS can be switched off when
it is not associated with a mobile, i.e. zj D 1, 8j 2 N.

We compare distributed BS selection algorithm with optimal solution described
in Sect. 3, and the conventional assignment method in which the mobile selects the
BS transmitting with the lowest power. For all simulations, we assume the area to
be A D 1225 km2.

Characteristic Values of Proposed Algorithm The performance of the proposed
distributed algorithm is actually determined mainly by B and the number of
iterations. In Fig. 1, we depict the change of average total energy with respect to
increasing values of B assuming that �m D 10�8 Œmobiles=m2�, �sb D 3:08 

10�7 ŒBSs=m2�, number of iterations nI D 1000. For assumed parameters, it does
not need high values in order to converge to an optimal solution which means that
in the figure, for B D 10�2, the algorithm converges to threshold value which is
nearly equal to 2:15. However, for sake of ensuring an optimal solution, in the other
figures depicted below, we set B D 104.

In Fig. 2, we depict the convergence of average total energy with respect to
increasing number of iterations. Time complexity of the algorithm depends heavily
on the number of iterations. The assumptions are same as in Fig. 1. We can observe
from the figure that after 20 iterations, average total energy converges to around
2.15 W.

Performance Results We compare the proposed algorithm with optimal solution
and conventional assignment. We assume that B D 104 and nI D 100. In Fig. 3,
we plot the change of average total energy with respect to intensity of mobiles. As
can be seen from the figure, intensity of small BSs is also changed and depicted in
three sub-figures. From the figures, it is obvious that when the intensity of mobiles
and small BSs increase then, average total energy increases. Note that conventional
assignment is not efficient compared to optimal solution.

Fig. 1 Change of the average
total energy with respect to
control parameter B
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Fig. 2 Change of the average
total energy with respect to
number of iterations nI

Fig. 3 Change of the average total energy with respect to intensity of mobiles �m for increasing
intensity of small BSs �sb
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On the other hand, proposed algorithm performs well and produce near-optimal
results. However, it tends to perform better in lower intensity of mobiles.

7 Conclusion

We addressed the user association problem in the context of energy optimization
of broadcast transmission. We introduced a novel decentralized solution based on
network utility maximization games. We proved that the game is a potential game.
For finding the equilibrium in the game, we utilized Markovian approximation. We
developed a complete decentralized algorithm called as distributed BS selection
algorithm. The results exhibited that proposed algorithm achieves very good energy
performance compared to the conventional assignment and optimal solution.
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Spectrum Shared p-Cycle Design in Elastic
Optical Networks with/without Spectrum
Conversion Capabilities

Min Ju, Fen Zhou, Shilin Xiao, and Juan-Manuel Torres-Moreno

Abstract This paper studies spectrum allocation of Spectrum Shared pre-configured
Cycle (SS-p-cycle) design in Elastic Optical Networks (EONs) with and without
spectrum conversion capabilities. SS-p-Cycle design enhances spectrum sharing
among multiple p-cycles that have common link(s). We develop Integer Linear
Programming (ILP) models to minimize both spare capacity and the maximum
number of spectrum usage for each of the two spectrum conversion cases.
Simulation results indicate that the SS-p-cycle design requires the same maximum
number of spectrum usage in the two cases while SS-p-cycle with spectrum
conversion earns higher spectrum efficiency. Moreover, compared with traditional
spectrum no-shared p-cycle design, SS-p-cycle design acquires more efficient
spectrum allocation in both cases.

Keywords Spectrum sharing • p-cycle • Elastic optical networks • Spectrum
conversion

1 Introduction

Elastic Optical Networks (EONs) support diverse services and the rapid growth of
traffic with immense flexibility and scalability in spectrum allocation [1]. Network
survivability for EONs is of critical importance as a huge number of services
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Fig. 1 The concept of a
p-cycle

Protection path
Working path

a b

d ce
P-cycle

can be interrupted by the network failures (e.g., fiber cut) [2]. We assume EONs
support contiguous Frequency Slots (FS’) with spectral width 12:5 GHz to protect
the traffic, thus spectrum allocation efficiency becomes one main metric to evaluate
the protection performance. Moreover, without spectrum conversion in EONs, each
optical channel is subject to spectrum continuity constraint, i.e., the optical channel
must use the same set of spectrally contiguous FS’ in all the traversed fiber links.
However, this constraint can be relaxed with the spectrum conversion in Optical
cross-Connects (OXCs) [3], which will improve the spectrum efficiency in EONs.

Among several protection schemes for optical networks, Pre-configured Cycle
(p-Cycle) protection scheme has fast switching speed and provides efficient protec-
tion capacity [4]. As shown in Fig. 1, for on-cycle link (e.g., a-b), p-cycle provides
one protection path (e.g., a-e-d-c-b) while for straddling link (e.g., a-d), it provides
two protection paths (e.g., a-e-d and a-b-c-d). This feature enables p-cycle to yield
high capacity efficiency. In addition, the spare capacity is reserved in advance, thus
only the two ending nodes do real switching operation. The FS’ assigned to the
p-cycles are subject to the spectrum contiguousness constraint that the FS’ should
be spectrally neighboring except the required guard band. Moreover, FS’ allocation
needs to consider spectrum conflict on the fiber links among p-cycles. In traditional
p-cycle design, to avoid spectrum conflict, different FS’ need to be assigned to p-
cycles that have common link(s). However, S. Zhang et al. observed that p-cycles
that have one common link still can share the same wavelength resource, which
could greatly improves the spare capacity efficiency as much as 30% over the
conventional no-shared p-cycle design [5]. However, the potential of spare capacity
sharing can be enhanced to p-cycles that have multiple common link(s), because the
spectrum conflict only has influence on the links along protection paths not all the
on-cycle links among p-cycles.

In this paper, Spectrum Shared p-Cycle (SS-p-cycle) design for EONs is studied
with/without spectrum conversion capabilities. SS-p-cycle allows to assign the
same FS’ for multiple p-Cycles that have common link(s). Two Integer Linear
Programming (ILP) models are developed to study spectrum allocation of SS-p-
cycle with/without spectrum conversion cases. We conduct simulations compared
with conventional no-shared p-cycle design. The rest of this paper is organized
as follows. Section 2 discuss the related work. Section 3 describes the problem.
Section 4 presents the ILP model. The simulation results are presented in Sect. 5.
Finally, Sect. 6 summarizes the paper.
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2 Related Work

In the literature, several spectrum allocation methods for p-cycle design in EONs
have been proposed [6–9, 11]. The authors in [6] investigated dynamic p-cycle
protection in EONs with spectrum planning related to Protected Working Capacity
Envelope (PWCE) p-cycle design and Hamiltonian cycle. They further studied
Failure-Independent Path protection (FIPP) p-cycles taking into account routing,
modulation formats and spectrum allocation in [7]. In [8], an ILP model for
p-cycle design in EONs was developed to minimize total spectrum usage with load
balancing in the working paths. An optimal design for p-cycle in EONs was studied
with/without spectrum conversion in [9]. The anthers in [11] investigated the power
efficient directed p-cycle design for asymmetric traffic in EONs.

In all the spectrum allocation methods above, different FS’ are allocated for
p-cycles that have common link(s). However, this spectrum conflict constraint
will lead to spectrum wasting as these p-cycles still have the potential to share
spare capacity as studied by S. Zhang et al. in Wavelength-Division Multiplexing
(WDM) optical networks [5, 10]. They proposed shared p-cycles that can share the
same wavelength resource if they only have one common link, and they observed
that shared p-cycles can achieve better spare capacity efficiency as much as 30%
over the conventional no-shared p-cycle design. Nevertheless, their shared p-cycles
were only valid under wavelength conversion capabilities due to the absence of
wavelength continuity. Moreover, the proposed shared p-cycles can not be applied
into EONs since the challenging spectrum allocation is not considered.

Moreover, the spectrum sharing for p-cycles can be enhanced to p-cycles that
have multiple common link(s). More specifically, p-cycles can share the same
spectrum resources if their protection paths do not have common link under any
single link failure. However, it is more challenging to explore the possible common
link(s) on protection paths instead of only the on-cycle links among p-cycles,
especially in EONs without spectrum conversion.

3 Problem Statement

We present the SS-p-cycle design for EONs protection with/without spectrum
conversion capabilities. We model the EON as a graph G.V; E/, where V and E
represent the sets of nodes and undirected fiber links in G, respectively. B is the
available FS’ (320) on each fiber link. For each link in E, le indicates the traffic in
terms of FS’ amount delivered by link e.

In most of p-cycle designs, a candidate cycle set I is generated in advance
based on network topology, then final p-cycles are chosen from set I by allocating
spare capacity on on-cycle links. Efficient FS’ allocation for p-cycles needs to
take into account both spare capacity and maximum FS’ usage. The main
difference of p-cycle design with/without spectrum conversion is that the spectrum
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Fig. 2 (a) Traffic amount on each link. (b) Protection capacity provided by p-cycles for each
link. FS’ allocation in (c) conventional no-shared p-cycles, (d) SS-p-cycles without spectrum
conversion, and (e) SS-p-cycles with spectrum conversion

continuity constraint must be satisfied in EONs without spectrum conversion. More
specifically, in each p-cycle, the same FS’ should be assigned to each on-cycle
link so that the protection path uses the same FS’ along the traversing links.
However, the spectrum continuity constraint can be neglected in p-cycle with
spectrum conversion capabilities, which provides more flexible cycle selection and
FS’ allocation possibilities.

Conventional p-cycle design does not allow p-cycles to share the same FS’ if
they have common link(s). However, due to the property of p-cycle protection, only
partial on-cycle links are combined as protection paths in one specific p-cycle. Thus,
the spectrum conflict between p-cycles only occurs when their protection paths
against one single link failure have common link(s). This inspires the potential to
enhance spectrum sharing among p-cycles that have common link(s). The SS-p-
cycle design is proposed in this study, which enables to allocate the same FS’ to
the p-cycles that have common link(s). Note that, they are different from the shared
p-cycles proposed in [5, 10], in which the same wavelength resource can be shared
by p-cycles that have at most one common link, however, the SS-p-cycles allow
more potential spectrum sharing even if p-cycles have multiple common links.

Figure 2 shows an example of SS-p-cycle design with/without spectrum con-
version compared with conventional no-shared p-cycle design. Figure 2a shows
the working FS’. Three p-cycles I, II and III are designed to provide the specific
protection capacity, as shown in Fig. 2b. Notice that p-cycle does not need to protect
every on-cycle link or straddling link, for instance on link 3–7 with one working FS,
only p-cycle III is required to protect it via path 3-4-5-7-3 with one FS protection
capacity, even though p-cycle II also has the ability to protect it. The same case
happens to link 7–5 which is only protected by p-cycle II with two FS’ protection
capacity. This poverty allows p-cycle II and III to share the same FS’ since there is
no common link on their protection paths under any single link failure. However,
in conventional p-cycle design, p-cycles II and III can not share the same FS’ as
they have common links 3–7 and 7–5. Figure 2c indicates the spectrum allocation
in conventional p-cycle, the maximum index of occupied FS’ is 6 and the spare
capacity is 23. Nevertheless, in SS-p-cycles, the maximum index of occupied FS’
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is only 3 and the spare capacity is reduced to 19 in Fig. 2d owing to the spectrum
sharing. Moreover, more flexible spectrum allocation can be obtained if we consider
the spectrum conversion capabilities in EONs. As shown in Fig. 2e, the on-cycle
links in one p-cycle can use different FS’, i.e., p-cycles II and III. It means that
these p-cycles only need to reserve a sufficient number of contiguous FS’ on on-
cycle links, regardless the range of the assigned FS’. SS-p-cycles with spectrum
conversion does not outperform p-cycles without spectrum conversion due to the
size limit in this small topology, but the spectrum usage can be reduced among
more SS-p-cycles in a bigger topology, which we will study later.

4 ILP Formulation

We develop two ILP models for SS-p-cycles, namely SS-PC and SS-PC’ for the
model with/without spectrum conversion, respectively. The notation is shown as
follows. For the sake of readability, we use 8i, 8v and 8e to denote 8i 2 I, 8v 2 V
and 8e 2 E, respectively.

Notations:

• I: The candidate p-cycle set, Ii indicates i-th p-cycle in I.
• xi

e: Equals 1 if link e is used as on-cycle links by Ii, and 0 otherwise.
• zi

e: Equals 1 if on-cycle link e can be protected by cycle Ii , 2 if straddling link
e can be protected by cycle Ii, and 0 otherwise.

• yi
v: Equals 1 if node v is crossed by Ii, and 0 otherwise.

• le: Working traffic in terms of FS’ on link e.

Variables in SS-PC:

• ıi 2 f0; 1g: Equals 1 if cycle Ii is selected.
• qi

e 2 f0; 1g: Equals 1 if cycle Ii is selected to protect link e, 0 otherwise.
• si 2 Œ0; B�: The starting index of occupied FS’ in Ii.
• oij 2 f0; 1g: Equals 1 if the starting index of occupied FS’ in Ii is smaller than

that in Ij, and 0 otherwise.
• ni 2 Œ0; B�: The number of occupied FS’ of Ii.
• 
 i

e 2 Œ0; B�: The number of FS’ provided by Ii to protect link e.
• smin

e 2 Œ0; B�: The minimum index of occupied FS’ on link e.
• smax

e 2 Œ0; B�: The maximum index of occupied FS’ on link e.

Variables in SS-PC’:

• 
 i
e 2 Œ0; B�: The number of FS’ provided by Ii to protect link e.

• nee0 2 Œ0; B�: The number of FS’ provided by link e to protect link e0.
• ne 2 Œ0; B� : The number of FS’ provided by link e.
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4.1 ILP for SS-PC

Objective:

min ˛ �
X

e2E

.smax
e � smin

e / C ˇ � tb .SS � PC/ (1)

Constraints:

qi
e � zi

e; 8i; 8e (2)

ıi � qi
e; 8i; 8e (3)

ıi �
X

e2E

qi
e; 8i (4)

ni � ıi; 8i (5)


 i
e � qi

e � ni; 8i; 8e (6)
X

i2I


 i
e � zi

e � le; 8e (7)

xi
e0

C xj
e0

C qi
e C qj

e � 3 � cij; 8i; j; i ¤ j; 8e; e0; e ¤ e0 (8)

oij C oji D 1; 8i; j; i ¤ j (9)

si C ni C 1 � sj � B � .2 � oij � cij/; 8i; j; i ¤ j (10)

si C ni � tb; 8i (11)

si C ni � ıi � B; 8i (12)

smax
e � xi

e � .si C ni/; 8i; 8e (13)

smin
e � xi

e � si C .1 � ıi/ � B; 8i; 8e (14)

The objective is to minimize the sum of the margin in terms of occupied FS’ on
each link and maximum index of occupied FS’ for the whole SS-PCs. ˛ and ˇ are
adjustable parameters for weighting two metrics. Note that the spare capacity can
be optimized indirectly by minimizing the first objective.

Constraint (2) indicates the ability of p-cycle Ii to protect link e. Constraints (3)
and (4) ensure that p-cycle Ii is selected if there exists at least one link that needs
to be protected by Ii. Constraints (5)–(7) ensure that the spare capacity provided by
all the p-cycles is sufficient to protect 100% single link failure. Constraints (8)–
(10) allocate FS’ for p-cycles. Specifically, the variable cij in constraint (8)
determines whether p-cycles have spectrum conflict by checking the possible
common link(s) (link e0) on their protection paths for each link failure (link e). Con-
straint (10) ensures that one FS guard band is reserved if two p-cycles have spectrum
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conflict while for these p-cycles do not have spectrum conflict, the same FS’ can
be shared. Constraint (11) restricts the ending index of occupied FS’ for each
p-cycle. Constraint (12) is helpful for reducing the feasible solution region for fast
solution. Constraints (13)–(14) determine the maximum index and minimum index
of occupied FS’ on each link. In order to ensure linearity, constraint (6) is rewritten
as follows.

H)
(


 i
e � ni; 8i; 8e


 i
e � qi

e � B; 8i; 8e
(15)

4.2 ILP for SS-PC’

Objective:

min ˛ �
X

e2E

ne C ˇ � tb .SS � PC0/ (16)

Constraints:


 i
e � zi

e � B; 8i; 8e (17)
X

i2I


 i
e � zi

e � le; 8e (18)

nee0 D
X

i2I


 i
e0

� xi
e; 8e; e0; e ¤ e0 (19)

ne � nee0; 8e; e0; e ¤ e0 (20)

ne � tb; 8e (21)

The objective is to minimize the total occupied spare capacity and the maximum
index of occupied FS’ in the whole network. ˛ and ˇ are adjustable parameters for
weighting these two metrics.

Constraint (17) indicates the ability of spare capacity in p-cycle to protect link
e in terms of the number of FS’. Constraint (18) ensures that the spare capacity
provided by all the p-cycles is sufficient to protect against 100% single link failure.
Constraint (19) indicates the spare capacity in terms of FS’ reserved on link e to
protect link e0. Constraint (19) determiners the spare capacity needed to be reserved
on link e under all the potential link failure. Constraint (21) restricts the maximum
FS’ reserved in the whole network, which is minimized in the objective function.
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Table 1 Computational complexities ILP models with/without spectrum conver-
sion

Models
Computational complexities

No. of variables No. of constraints

SS-PC jIj2 C 3jIj C 2jIjjEj C 2jEj jIj2jEj2 C 2jIj2 C 5jIjjEj C 4jIj C jEj
SS-PC’ jEj2 C jIjjEj C jEj jEj2 C jIjjEj C jEj

4.3 Computational Complexities

We summaries the computational complexities of the ILP models for SS-PC and
SS-PC’ in terms of the number of variables and constraints in Table 1.

5 Performance Evaluation

We use CPLEX 12.06 to solve the proposed SS-PC and SS-PC’ models with a
3.5 GHz CPU and 8 GBytes RAM. Traffic demands between each pair of nodes
are randomly generated following a uniform distribution between a and X in
units of FS’, and the traffic on each link is obtained by Dijkstra’s shortest-path
routing. COST239 (11 nodes and 26 links), and US Backbone (28 nodes and 45
links) networks are used as test beds. We generate candidate 118 and 87 cycles in
COST239 and US Backbone, respectively. The no-shared p-cycle design for EONs
in [9] is used as a benchmark, namely PC and PC’ for different spectrum conversion
cases. The weighting ˛ and ˇ are set both 1 in objective functions for all SS-PC,
SS-PC’,PC and PC’. Note that we enable several p-cycles in PC to protect one
working link for a fair comparison. The following two metrics are used to evaluate
the performance:

• Maximum index of FS’: It indicates the size of the occupied spectrum resource
for the whole p-cycles.

• Spectrum Efficiency: It is defined as the ratio of the total working capacity to the
total spare capacity in the network.

Figure 3 show spectrum allocation of p-cycles in COST239. We can see that
the maximum index of FS’ in proposed SS-p-cycles is much smaller than the
convectional no-shared p-cycles, and it is the same for SS-PC and SS-PC’. The
reduction of maximum index of FS’ in SS-p-cycles is about 50% and 44%
with/without spectrum conversion, respectively. For spectrum efficiency, SS-PC’
earns the largest, PC and PC’ obtain the smallest, and SS-PC lies in between. We
also see that there are almost constant spectrum efficiency for all the four cases.
More importantly, for a relatively higher working FS’ (X=96, 112), the PC method
could not obtain a solution even in the case with spectrum conversion. However,
SS-p-cycles still can protect the higher working traffic. This is because the FS’
allocation is much more efficient in SS-p-cycles with spectrum sharing.
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Fig. 3 FS’ allocation in COST239 topology in SS-p-cycles and conventional no-shared p-cycles
with/without spectrum conversion. (a) Maximum index of FS’. (b) Spectrum efficiency
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Fig. 4 FS’ allocation in US Backbone topology in SS-p-cycles and conventional no-shared
p-cycles with/without spectrum conversion. (a) Maximum index of FS’. (b) Spectrum efficiency

Figure 4 show spectrum allocation in US Backbone. We still can observe the
SS-p-cycles require less amount of maximum index of FS’ and earn higher spectrum
efficiency than no-shared p-cycles. Specifically, the reduction of maximum index of
FS’ in SS-PC is about 29% than in PC. Again, the PC method could not obtain a
solution for a relatively higher working FS’ (X=7). However, it is a little different
from the results in Fig. 3 as the PC’ requires the same amount of maximum index of
FS’ as SS-PC and SS-PC’. This is because the bigger topology gives conventional
PC design more possibilities to earn better spectrum allocation. Nevertheless, the
spectrum efficiency in conventional PC design is still less than the proposed SS-
p-cycles. We also see that spectrum conversion does not improve the spectrum
efficiency in PC.
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We can see that SS-p-cycles requires the same maximum number of spectrum
usage in the two cases while SS-p-cycle with spectrum conversion earns higher
spectrum efficiency. Moreover, SS-p-cycles obtain better spectrum allocation than
the conventional no-shared p-cycle. We also observe that the spectrum conversion
does help p-cycle design to acquire better spectrum utilization, but it shows different
impacts on maximum index of FS’ and spectrum efficiency under different p-cycle
design method and different network nodal degrees. Moreover, even SS-p-cycles
without spectrum conversion can obtain comparable or better spectrum allocation
than conventional no-shared p-cycles with spectrum conversion.

6 Conclusion

We have studied spectrum allocation for SS-p-cycles in EONs with/without spec-
trum conversion capabilities. SS-p-cycles enhance spectrum sharing among p-cycles
that have multiple common links. The results indicate that SS-p-cycles significantly
improve spectrum efficiency compared with conventional no-shared p-cycles in
terms of maximum index of FS’ and spectrum efficiency.
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Learning Equilibria of a Stochastic Game
on Gaussian Interference Channels with
Incomplete Information

A. Krishna Chaitanya, Utpal Mukherji, and Vinod Sharma

Abstract We consider a wireless communication system in which N transmitter-
receiver pairs want to communicate with each other. Each transmitter transmits data
using a power that depends on the channel gain to its receiver. If a receiver can
successfully receive the message, it sends an acknowledgement (ACK), else it sends
a negative ACK (NACK). Each user aims to maximize its probability of successful
transmission. We formulate this problem as a stochastic game and propose a fully
distributed learning algorithm to find a correlated equilibrium (CE); and we use a
no regret algorithm to find a coarse correlated equilibrium (CCE). We compare the
sum rate obtained at the CE, CCE, and a Pareto point, and also via some other well
known recent algorithms.

Keywords Fading interference channel • Power allocation game • Incomplete
information game • Correlated equilibrium • Learning • Regret matching.

1 Introduction

We consider a single wireless channel which is being shared by multiple transmitter-
receiver pairs. It is modeled as an interference channel. Its power allocation has been
studied in [1–3].

In general, in a wireless communication system, a user may not have knowledge
about the other users’ channel states and their power policies. In such a setup, one
needs distributed algorithms which each user can use to realise optimal policies that
require less information about the other users. Online learning algorithms are such a
class of algorithms [4]. Some of these algorithms, for example, fictitious play [6],
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are partially distributed algorithms that require some knowledge about other users’
strategies to find an equilibrium of the system. On the other hand, there exist fully
distributed learning algorithms [4] which do not need any information about the
other users’ strategies or payoffs to find an equilibrium.

In [5], a learning algorithm using regret matching is proposed to find a correlated
equilibrium (CE) in a finite game. Unlike fully distributed algorithms, this no-regret
algorithm requires the knowledge of actions chosen by the other users from each
play of the game. The same authors present a fully distributed learning algorithm in
[7] that leads to a CE when the players are not aware of the functional form of their
utility functions.

Fully distributed algorithms to find a Nash equilibrium (NE) are developed
in [8–11]. The algorithms in [8, 9] are based on trial and error. Using these
algorithms users approach strategies that play a pure strategy Nash equilibrium for
a high portion of time. For potential and dominance solvable games, reinforcement
learning algorithms in [10, 11] converge to a NE.

We consider a power allocation game on a wireless interference channel. It is
neither a potential game nor dominance solvable. Even existence of a pure strategy
NE is not guaranteed. Therefore, we can not use the algorithms in [10, 11] to obtain
an equilibrium point. Thus we propose a variation of the regret matching algorithm
to find a CE of the proposed game on the wireless communication system without
knowing the strategies chosen by other users. The algorithm proposed in this paper
is fully distributed.

1.1 Outline

In this paper we have summarized our work as follows:

• We propose a fully distributed regret-matching algorithm [5] that finds a cor-
related equilibrium (CE) of the interference channel. The usual regret matching
algorithm is a partially distributed algorithm which requires knowledge of the
strategies of the other users. We propose a modification of that algorithm to
convert it into a fully distributed algorithm. We also compare the sum rate at
the CE obtained by our algorithm with that obtained from the algorithm in [7]
and we note that our algorithm converges faster than the algorithm in [7].

• We use a fully distributed no-regret dynamics to compute a coarse correlated
equilibrium (CCE) of our power allocation game. In general, every CE is a CCE
but the converse may not be true.

This paper is organized as follows. In Sect. 2, we describe the system model. We
propose and analyse a learning algorithm to find a CE in Sect. 3 and a CCE in
Sect. 4. We use the multiplicative weight algorithm to find a CCE of our game in
Sect. 4. In Sect. 5, we compare the sum of utilities of all the users at a CE and at
a Pareto point, and also with other algorithms for a numerical example. Section 6
concludes the paper.
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2 System Model

We consider a wireless channel being shared by N independent transmitter-receiver
pairs. Transmission from each transmitter causes interference at other receivers.
The transmitted signal from every transmitter undergoes fading. The fading gain
experienced by the intended signal at a receiver from its corresponding transmitter is
called the direct link channel gain. Similarly, the fading gains experienced by other
unintended signals at a receiver are called the cross link channel gains. We model
this scenario as a Gaussian interference channel with fading, where each receiver
perceives the transmitted signal with additive white Gaussian noise.

Let H.i/
d D fh.i/

1 ; : : : ; h.i/
ni g be the direct link channel gain alphabet and H.i/

c D
fg.i/

1 ; : : : ; g.i/
si g be the cross link channel gain alphabet of user i 2 f1; : : : ; Ng. Let the

random variable Hij.t/ denote the channel gain from transmitter j to receiver i in time

slot t, which is assumed to be a constant during the slot. Observe that Hii.t/ 2 H.i/
d ,

and Hij.t/ 2 H.i/
c for j ¤ i. We denote a realization of Hij.t/ by hij.t/. We assume

that for a fixed i; j 2 f1; 2; : : : ; Ng; the random variables Hij.t/; t D 1; 2; : : : , are
independent and identically distributed. We also assume that Hij.t/ are statistically
independent for any i; j 2 f1; 2; : : : ; Ng, and t D 1; 2; : : : .

We assume that transmitter i knows Hii.t/ at the start of slot t but not Hij.t/,
j ¤ i; in fact it does not know the distribution of Hij.t/ also. We also assume that

transmitter i has finite power levels p.i/
1 ; : : : ; p.i/

mi to transmit in a slot. This is a typical
wireless scenario. For example if a receiver sends a ACK/NACK (positive/negative
acknowledgement) to its transmitter and it is a time duplex channel, then the
transmitter can estimate its direct link channel gain but will not know the cross link
channel gains; nor will it know the transmit powers used by the other transmitters.

User i transmits ri bits in every channel use at a power level which depends
on the direct link channel gain. If receiver i successfully receives the message
sent in that slot, it sends an ACK to its transmitter, else the receiver sends back
a NACK at the end of the slot. We assume that ACK messages are small and sent
at a low rate, so that these are received with negligible probability of error and
transmission overhead. For a Gaussian channel, the probability of error is a function
of the received signal to interference plus noise ratio (SINR) and the modulation and
coding used. For a given coding and modulation, we can fix a minimum SINR such
that the probability of error is negligible above this SINR. To be specific we assume
that, if in time slot t user i transmits ri bits at a power level p.i/

li
; li 2 f1; 2; : : : ; mig

and Hij.t/ D hij.t/, then transmitter i receives an ACK from its corresponding
receiver if and only if

ri � log
�
1 C jhii.t/j2p.i/

li

1 CP
j¤i jhij.t/j2p.j/

lj

�
; or

X

j¤i

jhij.t/j2p.j/
lj

� jhii.t/j2p.i/
li

2ri � 1
� 1;

i.e., the interference �
.i/

t experienced by user i at time t is at most equal to a
threshold �

.i/
t , and the transmitter receives a NACK otherwise.
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We consider stationary policies, i.e., the power used by user i in slot t depends
only on the channel gain Hii.t/ but not directly on time t. Thus, we define the feasible
action space of user i by

A.i/ D
n
P.i/ D .P.i/

1 ; : : : ; P.i/
ni

/jP.i/
l 2 fp.i/

1 ; : : : ; p.i/
m g;

niX

lD1


.i/.l/P.i/
l � Pi

)

; (1)

where 
.i/ is the probability distribution of Hii.t/. We note that user i has an average
power constraint Pi for each feasible action. As the set of power levels of each user
is finite, the number of elements in A.i/ is also finite. Let the cardinality of A.i/

be Li. We enumerate the elements of A.i/ as f1; 2; : : : ; Lig. Under the action k.i/,
when the direct link channel gain is h, user i uses power k.i/.h/; h 2 H.i/

d . We denote
A D A.1/ 
 � � � 
 A.N/, k D .k.1/; : : : ; k.N//. A.�i/ D A.1/ 
 � � � 
 A.i�1/ 
 A.iC1/ 

� � � 
 A.N/ and k.�i/ 2 A.�i/. Let k.i/

t indicate the action of user i at time t. Also,
kt D .k.i/

t ; i D 1; : : : ; N/. A strategy �i of user i is a probability distribution on A.i/,
and a pure strategy is a degenerate probability distribution where a certain action is
chosen with probability one.

In a given time slot t, each user chooses an action that maximizes its probability
of successful transmission. To model this as a game, we denote the reward of user i
for a given action profile .k.i/; k.�i// in time slot t with direct link channel gain hii.t/,
as w.i/

t .k.i/I hii.t//, defined by

w.i/
t .k.i/I hii.t// D

(
1; if �

.i/
t � �

.i/
t .k.i/I hii.t//;

0; else:
(2)

This reward of user i is random. The asymptotically stationary utility of user i
(probability of successful transmission) for action profile .k.i/; k.�i// can be written
as the stationary mean of this random process (sampled at the action profile) with
respect to the distribution of the channel gains.

u.i/.k.i/; k.�i// D E

h
w.i/

t .k.i/I Hij/
i

; (3)

3 Learning Algorithm to Find a Correlated Equilibrium

To find a CE of a stage game, a regret matching algorithm is proposed in [5]. We
propose a variation of this algorithm to compute CE of our power allocation game.

In [5], regret for user i is defined in terms of utility u.i/ and it is assumed that
the functional form of utility u.i/ is known to user i. In this paper, we assume that
user i is not aware of the functional form of u.i/, but knows w.i/

t .k.i/
t I hii.t// for each

t at the end of slot t. We define regret in terms of w.i/
t .k.i/

t I Hii.t//; this definition is
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equivalent to the definition of regret in [5]. We write w.i/
t .k.i/; Ok.i/I Hii.t// to denote

the reward of user i when playing Ok.i/ instead of k.i/
t D k.i/ at time t. We use the

difference Xt.Ok.i// D w.i/
t .k.i/; Ok.i/I Hii.t// � w.i/

t .k.i/
t I Hii.t// to define regret.

Thus the regret-matching based learning algorithm in [5] can be described as
follows. The regret

RT.k.i/; Ok.i// D max

(

0;
1

T

TX

tD1

At.k
.i/; Ok.i//

)

; (4)

where

At.k
.i/; Ok.i// D

(
Xt.Ok.i//; if k.i/

t D k.i/;

0; else;
(5)

w.i/
t .k.i/; Ok.i/I Hii.t// D

(
1; if �

.i/
t � �.i/.Ok.i/I Hii.t//;

0; else:
(6)

Each user i chooses an action Ok.i/ according to the distribution

�
.i/
TC1.

Ok.i// D
(

1
�

RT.k.i/; Ok.i//; for Ok.i/ ¤ k.i/;

1 �P
l¤k.i/

1
�

RT.k.i/; l/; if Ok.i/ D k.i/;
(7)

for a sufficiently large � independently across users.
It is shown in [5] that following the above procedure, the empirical frequencies

of action profiles converge to the set of correlated equilibria.
To implement this algorithm each user i needs to know not only its own action

and direct link gain, but also other users’ actions and their direct and cross link
channel gains (to compute �

.i/
t ), which it does not know.

We therefore modify this algorithm. The learning algorithm we propose is fully
distributed in the sense that every user updates its strategy based on its own actions
and rewards, independent of the other users’ strategies and rewards.

Each transmitter estimates regret by estimating the instantaneous reward based
on the feedback it has received. The estimated reward is a function of the action Ok.i/,
with respect to which we want to find the regret for not using Ok.i/ instead of k.i/.

If k.i/
t is the action that is actually chosen by user i at a time t and hii.t/ is the direct

link channel gain at that time, then the actual interference �
.i/

t experienced by its
receiver is less than the threshold �.i/.k.i/

t I hii.t// if and only if the communication
is successful. In our scheme, each user i is optimistic in estimating the rewards
for using Ok.i/ instead of k.i/. To define the estimated reward, we use the following
notation. For each k.i/ 2 A.i/ and hii 2 H.i/

d ,
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S.i/
L .t/ D fOk.i/ 2 A.i/ W �.i/.k.i/I hii.t// < �.i/.Ok.i/I hii.t//g;

S.i/
G .t/ D fOk.i/ 2 A.i/ W �.i/.k.i/I hii.t// > �.i/.Ok.i/I hii.t//g;

S.i/
E .t/ D fOk.i/ 2 A.i/ W �.i/.k.i/I hii.t// D �.i/.Ok.i/I hii.t/g:

User i finds the (estimated) instantaneous reward Qw.i/
t .k.i/; Ok.i/I hii.t// that could have

been if user i had used action Ok.i/ instead of k.i/ at time t, as

Qw.i/
t .k.i/; Ok.i/I hii.t// D

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

1; if w.i/
t .k.i/I hii.t// D 1; Ok.i/ 2 S.i/

L .t/ [ S.i/
E .t/

1; if w.i/
t .k.i/I hii.t// D 0; Ok.i/ 2 S.i/

L .t/;

1; if w.i/
t .k.i/I hii.t// D 1; Ok.i/ 2 S.i/

G .t/;

0; if w.i/
t .k.i/I hii.t// D 0; Ok.i/ 2 S.i/

G .t/ [ S.i/
E .t/:

(8)
We define

QXt.Ok.i// D Qw.i/
t .k.i/; Ok.i/I hii.t// � w.i/

t .k.i/I hii.t//: (9)

For every pair of actions k.i/ and Ok.i/, after T slots, QAt.k.i/; Ok.i// is obtained by
replacing Xt.Ok.i// in (5) with QXt.Ok.i//. And the estimated regret QRT.k.i/; Ok.i// is defined
as in (4) but by replacing At.k.i/; Ok.i// with QAt.k.i/; Ok.i//. If k.i/

T D k.i/, i.e., k.i/ is the
action chosen by user i at time instant T, then an action Ok.i/ 2 A.i/ in time slot T C 1

is chosen with probability computed from (7), after replacing the actual regret with
estimated regret.

We define the empirical frequencies of action profiles chosen upto time T as

fT.s/ D 1

T
j ft � T W kt D sg j; s 2 A: (10)

It is shown in [5] that the empirical frequencies of action profiles converge to the
set of correlated �-equilibria if and only if the actual regrets RT.k.i/; Ok.i// converge
to zero as T ! 1.

Proposition 1 Let fktg; t D 1; 2; : : : be a sequence of action profiles chosen
by the users. For each user i and every k.i/; Ok.i/ 2 A.i/ with k.i/ ¤ Ok.i/, if
lim

T!1
QRT.k.i/; Ok.i// D 0; then lim

T!1RT.k.i/; Ok.i// D 0:

For a proof of Proposition 1, we refer to a full version of this paper [13].
In [12], the regret-matching algorithm of [5] has been extended so that one

can use a function of the regret in the original procedure instead of regret, where the
function satisfies certain conditions. We cannot use that result here, as our estimation
does not satisfy the conditions on the function. But we can generalize the result
in [5].
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Following the proof of the main theorem in [5], we can show that for all distinct
k.i/ and Ok.i/, the estimated regrets QRT.k.i/; Ok.i// converge to zero as T approaches
infinity. Therefore by Proposition 1, we have that the empirical frequencies fT
converge to the set of correlated ��equilibria for any � > 0.

In the proof of the main theorem of [5], history up to time T is defined as
the actions chosen by all users at time instances t D 1; : : : ; T. To prove that the
estimated regret converges to zero following the regret-matching algorithm, for each
user we need to redefine the history up to time T as the actions chosen by the user
along with its direct link gains and rewards at time instants t D 1; : : : ; T. With this
definition of history, the entire proof of the main theorem in [5] carries over, and
we conclude that the estimated regrets converge to zero.

4 Learning Coarse Correlated Equilibrium

In this section, we compute a coarse correlated equilibrium (CCE), is a generaliza-
tion of correlated equilibrium. We use the multiplicative weight (MW) algorithm
[14, 15] to compute a CCE of our power allocation game. It does not require
estimation of regret as needed in Sect. 3. Also, it has been observed that the price
of anarchy (POA) of a CCE is no worse than that of a CE in a large class of games
[16]. However, it is also known that for some other classes of games, e.g., congestion
games, the POA of CCE/CE can be larger compared to POA of NE.

Unlike in Sect. 3, we do not need to evaluate the estimated reward as the
MW algorithm does not explicitly depend on regret. However, the MW algorithm
guarantees that a suitably defined external regret converges to zero. Hence we can
apply the MW algorithm to our problem to find a CCE ( [13]).

5 A Numerical Example

In this section we consider an example with three transmitter-receiver pairs in
the communication system. We consider an asymmetric scenario, with H.i/

d D
f0:2; 0:6; 1g and H.i/

c D f0:1; 0:3; 0:5g for users i D 1; 2; 3. The direct link
gains from H.i/

d occur with equal probability for each user i, but the cross link
gains occur with a different probability distribution for each user. For user 1,
the distribution is f0:5; 0:3; 0:2g, for user 2 it is f0:4; 0:5; 0:1g, and for user 3 it
is f0:25; 0:5; 0:25g. Users 1; 2; and 3 transmit at rates 0:5; 0:75; and 0:9 bits per
channel use respectively. Each user can choose a power level from 0 to 50 in
steps of 5 including the boundaries. In order to compute CE, we have chosen
� D 20000. The sum rate at CE, CCE, Pareto, and Nash bargaining points
(distributed algorithms for which have been obtained by us in [13]) are compared in
Fig. 1. We also compare the sum rate at the CE obtained by using the RL algorithm
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Fig. 1 Sum rates at CE, CCE, Pareto and Nash bargaining points for the example

in [7]. In this example, we observe that our algorithm converges faster than the
reinforcement learning (RL) algorithm: at SNR of 15dB, our algorithm converges in
about 250; 000 iterations, whereas the algorithm in [7] converges in about 770; 000

iterations for � D 0:0001. For the same value of �, MW algorithm requires 325; 000

iterations to converge to a CCE. We also plot the sum rate at a stochastically stable
point of the trial and error (TE) algorithm in [8].

The sum rate at the Nash bargaining solution is very close to that at the Pareto
point. We observe that the sum of the rates of all the users is higher at the Pareto
optimal point than at a CE. We observe an improvement of 22.7% at SNR 10dB and
an improvement of 17.5% at SNR of 15dB.

6 Conclusions

A power allocation problem on interference channels is modeled as a stochastic
game and fully distributed learning algorithm is proposed to find a correlated
equilibrium (CE). We compare the sum of rates of all the users at the CE, CCE,
Pareto, and Nash bargaining points. We also compare our algorithms with two other
learning algorithms from [7, 8]. The CE obtained by our algorithm performs as
well as the CE obtained via the algorithm in [7], but our algorithm converges much
faster.
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Potential Game Approach to Virus Attacks
in Network with General Topology

François-Xavier Legenvre, Yezekael Hayel, and Eitan Altman

Abstract SIS epidemic non-zero sum games have been recently used to analyse
virus protection in networks. A potential game approach was proposed for solving
the game for the case of a fully connected network. In this paper we manage to
extend this result to an arbitrary topology by showing that the general topology
game has an ordinal potential game. We apply this result to study numerically some
examples.

Keywords Potential game • Virus security

1 Introduction

Computer viruses have been reported to cause damage of 17 billion US$ in 2000.
Already in 1998, the relation between computer viruses and epidemiology are
suggested [9]. Since then, viruses and tools to fight them have become more
sophisticated. Nowadays cyber security is not only defensive and are used as warfare
also, see [5].

In the biology literature, no references to games in epidemics are published
before 2000. Some research works on the topic have appeared only recently
[1–3]. A natural modeling of how to fight viruses is through the use of zero-sum
games [6]. A big boost to epidemics modelling followed the work of P. Van
Mieghem and coauthors in several papers [7, 11]. In these papers, the authors
provide bounds on the dynamics of SIS epidemic models as well as meanfield
approximations on their metastable regime.
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Game models (static ones) based on the above SIS models appear already in
2009 [10] and later at [4]. In these models the virus is not assumed to be strategic
as the authors focus on the study of non-cooperative strategic network nodes. Each
of these nodes is faced with the problem of whether or not to purchase a vaccination
(or anti-virus). In this paper, we revisit the model of [4] and extend it in two ways:
we consider a general topology (where as [4] considers a fully connected network),
and we allow for arbitrary node dependent infection and healing rates.

In [4] the authors solve the game and establish existence of pure equilibria by
showing that it is equivalent to a congestion game (in the sense of Rosenthal) which
is known to be a potential game and for which explicit expressions of the potential
exist. The fact that the network is fully connected is used in order to ensure that the
cost of a defense action by a node only depends on how many other nodes use the
same action, which is one of the assumptions in the congestion game formalism.

In this paper, we manage to show that the virus protection game between the
nodes of the network has a ordinal potential for an arbitrary topology and therefore
a pure equilibrium exists. We note that this result is not a direct application or
Rosenthal’s congestion game as the infection quasi stable probability of a node,
say i, depends in a complex way on the network topology and not just through
the number of other nodes that take the same action as i. We finally introduce an
algorithm to solve the game and apply it to some examples.

2 Model

We set a graph called N .N/ with N the number of nodes representing our network.
There exists an adjacency matrix A, representing by the coefficients Ai;j, which is
worth 1 if there exists a link between the node i and the node j. As aforementioned,
each node is singular, which means that all nodes have different recovery and
infection rates providing us a general framework for epidemics. Several epidemic
dynamics are proposed in the literature but the Susceptible-Infected-Susceptible
(SIS model) is one of the most studied and can be described as follows. An infected
node i contaminates each of his healthy neighbor with rate ˇi, and the remaining
time for which the node i is infected follows an exponential process with rate ıi.
After being recovered from the infection, each healthy node becomes susceptible
again, and can be again infected. Considering an SIS epidemics over a graph, there
exists a limiting spreading factor rate, denoted by the critical epidemic threshold,
below which the infection vanishes exponentially fast in time, and above which
the critical threshold the network stays infected. Each individual j decides to be
protected (i.e. 
j D 0) or not (
j D 1). Therefore, we consider action-dependent SIS
dynamics because the infection rate of node i depends on his action 
i, that is the
infection rate of node i is given by ˇ

j

j .

With the aforementioned network structure and epidemic dynamics, the dynam-
ics of the probability Vi.t/ for node i to be infected by the virus at time t, can be
approximated, thanks to the NIMFA equation [12], as follows:

dVi.t/

dt
D �ıiVi.t/ C .1 � Vi.t//

0

@
NX

jD1

Ai;jˇ
j

j

Vj.t/

1

A : (1)
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The different recovery and infection rates describe the heterogeneity of individu-
als in their usage of communication networks; and therefore their different impacts
on the security level and virus spreading into this system.

The SIS epidemic process has always had one stable stationary regime, the zero
solution. But, in addition, under certain circumstances on ıi and ˇi, there exists
another stationary regime called a metastable state in our SIS epidemic process
described in the paper [12].

We focus on the stationary metastable regime, for which lim
t!1

dVi.t/
dt D 0, we can

simplify the NIMFA equation, with the new notation lim
t!1Vi.t/ D V1i . The new

expression of the NIMFA equation is as follows:

0 D ıiV
1
i .
/ C .1 � V1i .
//

0

@
NX

jD1

ˇj

j

Ai;jV
1
j .
/

1

A (2)

where 
 represents the decision vector of the nodes. As we want to find an individual
strategy of protection, we can classify the nodes. So, considering equation .2/,
we have the following relation between the component of the infection vector
probability:

V1i .
/ D 1 � 1

1 CPN
jD1 Ai;j

ˇ
j

j

ıi
V1j .
/

: (3)

Considering this infection probability, we define the payoff function where

 D .
1; : : : ; 
i; : : : ; 
N/ is the action chosen by i player:

Ci.
/ D
(

Gi if 
i D 0;

HiV1i .
/ otherwise when 
i D 1;

with Gi is the anti-virus price for player i and Hi is the cost for recovery for player i.

3 Existence of Nash Equilibrium and Algorithm

Definition 1 (Potential Game [8]) P is called a generalized ordinal potential
function if and only if 8i 2 f1; : : : ; Ng:

Ci.

1
i ; 
1�i/ � Ci.


0
i ; 
0�i/ > 0 implies P.
1

i ; 
1�i/ � P.
0
i ; 
0�i/ > 0: (4)

In our game, the common strategy set is a binary set composed of only two actions
(A D f0; 1g).
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Proposition 1 The game has the finite improvement property and an ordinal
potential

P W f0; 1gN �! R

.
1; : : : ; 
N/ 7�!
NX

jD1

 

Gj.1 � 
j/ C Hj


jX

lD0

Vj.l; 
�j/

!

:

where 
j is the action of player j. This function is a potential for our game.

We conclude the following [8]:

Proposition 2 There exists a pure Nash Equilibrium for our game.

In next section, we describe an algorithm to compute the pure Nash equilibrium.

3.1 Algorithm

We are not able to determine explicitly the Nash equilibrium strategy, more
precisely, the number of players that decide to invest at equilibrium. Then, we
determine an algorithm in order to compute it.

Algorithm 5: Probability V1, ne

Require: A; ı; ˇ; V0; G; H; n; tol
Ensure: mD size.V0/ , ne D n, V D V0

for i D 1 W m do
for k D 0 W 1 do

ne.i; 1/ D k
B D diag. 1

ı
/ � A � diag.ˇ.k; j// � diag.ne/

W.i; k/ D 1� 1
1CB.1;W/�V

end for
for j D 0 W 1 do

P.i; 2; j/D G.i/ � .1� ne.i//C H.i/ �Pj
lD0.W.i; l//, p D min.P.i; 1; W//

V.i; 2/ D W.i; p/, ne.i; 1/D p
end for

end for
t D 2

while norm.V.W; t/ � v.W; t� 1/ > tol do
V.W; tC 1/ D V.W; t/
for i D 1 W m do

for k D 0 W 1 do
ne.i; 1/ D k
B D diag. 1

ı
/ � A � diag.ˇ.k; j// � diag.ne/

W.i; k/ D 1� 1
1CB.1;W/�V.W;tC1/

end for
for j D 0 W 1 do

P.i; tC 1; j/D G.i/ � .1� ne.i//C H.i/ �Pj
lD0.W.i; l//, p D min.P.i; 1; W//

V.i; tC 1/ D W.i; p/, ne.i; 1/ D p
end for

end for
t D tC 1

end while
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This algorithm is based on the two following features:

• (i) A process of best response functions,
• (ii) A research of a fixed point solution.

In order to prove the convergence of the algorithm, we are going to use the
following theorem for the best-response part of the algorithm.

Theorem 1 In a finite potential game, from any arbitrary initial outcome, the best
response dynamics converge to a pure Nash Equilibrium.

Then, to prove the existence of a fixed point non-zero, we are refereing to the
Theorem 1 and the Lemma 2 in the paper [7]. We illustrate the performance of our
algorithm in the section through simulations.

4 Numerical Illustrations

We run our algorithm on a specific network topology depicted on Fig. 1. In this
topology, the graph is heterogeneous as nodes have different degrees. We define
different scenarios depending on specific parameters of the model. For the first
scenario, called the fully immunization game, we assume that when a node invests,
its infection rate ˇ is equal to 0, which could be viewed as an exclusion of the node
from the network of infection.

Fig. 1 Incomplete graph 11 nodes
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4.1 Fully Immunization Game

In this part, the infection rate ˇ of a node is equal to zero if this node invests.
This means the node does not participate into the virus spread. In this case, the
convergence to a pure Nash equilibrium is obtained after very few iterations (around
10) and considering the following parameters:

• ı D .0:52; 1:34; 1:59; 1:68; 0:75; 0:64; 0:62; 0:72; 0:69; 0:58; 0:61/

• ˇ D .1:98; 1:25; 1:59; 1:34; 1:69; 1:25; 1:39; 1:67; 1:48; 1:58; 1:63/

• G D .51; 52; 50; 51; 50; 52; 53; 51; 48; 47; 49/

• H D .63; 61; 62; 62; 63; 61; 63; 62; 57; 59; 60/

The Nash equilibrium obtained is given by the strategy vector

Ne D .1; 1; 1; 1; 0; 1; 1; 1; 1; 0; 1/:

We observe, as expected, that node’s degree has a non-negligible influence on the
strategic behavior. In fact, node 5, who has the highest degree in our topology and
can be considered as a central node. Meanwhile, we observe that node 10 also
decides to be protected and its degree is not the highest. By the way, node 10 has a
higher contamination rate ˇ10 D 1:58 compared to node 6 (ˇ6 D 1:25); and at the
same time the recovery rate is lower for node 10 compared to node 6. Therefore, we
conclude that the topology and also the parameter of the virus dynamics influence
the strategic behavior of the nodes and also the dynamical parameters of the virus.

4.2 Healthy Carrier Game

In this second scenario, we assume that the node can be an healthy carrier of the
virus, in the sense that it does not suffer itself from the consequences but can
contaminate healthy neighbors. In this scenario, there are two possible cases. The
first one is that an investment induced that the node is more careless about its action
in the network, and it takes more risk, increasing its contamination rate. The second
hypothesis implies that each protected node still carries the virus. It is aware of the
risk, and it is careful of its action in the network, decreasing the infection rate.

Hence, we do not talk about being infected anymore but being, a contaminated
node is a carrier of the virus. This approach is similar to the Peltzmann theory.
Peltzmann introduces a notion called risk compensation or Peltzmann effect, which
means that people behavior depends on the risk they take. Indeed, when the security
belt was mandatory in the seventies, the number of car accident went up because
people took more risk, thinking they were safe. In our context, we can expect the
same behavior for computer usage. If an individual buys an anti-virus (a software
or an application), and then feel protected, he may have a risky behavior and so its
infection rate could be higher. Then, even if a device is protected, he can carry a virus
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or a malware that may use this device as a relay to propagate to other vulnerable
devices. This point of view can be called the risky game.

In this context, we consider the following parameters of the model:

• ı D .0:52; 1:34; 1:59; 1:68; 0:75; 0:64; 0:62; 0:72; 0:69; 0:58; 0:61/

• ˇa D .1:98; 1:25; 1:59; 1:34; 1:69; 1:25; 1:39; 1:67; 1:48; 1:58; 1:63/

• ˇna D .0:8; 0:5; 0:65; 0:7; 0:8; 0:7; 0:65; 0:8; 0:71; 0:6; 0:67/

where ˇa (resp. ˇna) represents the vector of contamination rates of protected (resp.
not protected) nodes. We observe that for each node, if he decides to protect itself,
its contamination rate is higher. This property models the Peltzmann’s effect. In this
setting, the Nash equilibrium given by our algorithm proposed in previous section is

Ne D .0; 0; 0; 0; 0; 0; 0; 1; 1; 0; 1/:

We observe that the Peltzman’s effect impacts the behavior of the nodes and more
nodes invest in the antivirus. This behavior is in accordance with the risky behavior
induced by Peltzmann’s assumption.

4.3 Sustainable Game

We finally consider a setting in which a node is aware of the risk to boost the
virus spread, and would be careful about its action. With this point of view, the
game is called sustainable game. In this setting, we determine the following system
parameters:

• ı D .0:752; 0:94; 0:59; 0:68; 0:75; 0:94; 0:82; 0:92; 0:99; 0:78; 0:91/

• ˇa D .1:2; 1:25; 1:09; 1:34; 1:69; 1:65; 1:39; 1:67; 1:48; 1:38; 1:63/

• ˇna D .1:85; 1:97; 1:9; 2:4; 2:43; 2:25; 2:12; 2:5; 2:2; 2:23; 2:27/

The Nash Equilibrium vector is

Ne D .0; 0; 0; 0; 0; 0; 0; 1; 1; 0; 0/:

Only nodes 8 and 9 do not protect themselves, which is difficult to justify related
to system parameters and topology. So, depending on the action of a node, its
infection rate depends on the other node’s decision. The different scenarios, which
are modeled by a change of the infection rate depending on the action chosen,
impacts the infection probabilities and the Nash equilibrium of the game. Whereas,
it does not impact the existence of such equilibrium and the convergence of our
algorithm. As aforementioned, the convergence of our algorithm is always valid.
But, in the latter scenarios (healthy carrier and sustainable settings), we do not look
at the risk to be infected, but the risk to carry the virus.
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5 Conclusion

The identification of a potential for the virus protection game allows us to compute
efficiently equilibria for arbitrary network topology and for a heterogeneous SIS
dynamics. We have provided insights for scenarios like the Peltzmann’s effect.
In this case, we have shown the impact of the topology as well as the dynamics
parameters on the outcome/equilibrium of the protection game.

Many perspectives can be considered following this work. We can plan to
introduce stochasticity into the model and in the topology. In fact, realistic complex
networks are stochastic in nature, meaning that links between nodes or relationships
between individuals are generally dynamic and even stochastic. Other interesting
features would be to consider a high level decision maker who can control system
parameters like degrees (for example Facebook allows a maximum number of
friends) or prices/costs. Considering this aspect, we could look for optimal control
with equilibrium behavior of nodes as a constraint. New mathematical models and
frameworks are therefore needed, taking into account this hierarchical structure of
the system.

References

1. James Aspnes, Navin Rustagi, and Jared Saia. Worm versus alert: Who wins in a battle for
control of a large-scale network? In International Conference On Principles Of Distributed
Systems, pages 443–456. Springer, 2007.

2. Chris T Bauch. Imitation dynamics predict vaccinating behaviour. Proceedings of the Royal
Society of London B: Biological Sciences, 272(1573):1669–1675, 2005.

3. Chris T Bauch and David JD Earn. Vaccination and the theory of games. Proceedings of the
National Academy of Sciences of the United States of America, 101(36):13391–13394, 2004.

4. Yezekael Hayel, Stojan Trajanovski, Eitan Altman, Huijuan Wang, and Piet Van Mieghem.
Complete game-theoretic characterization of sis epidemics protection strategies. In 53rd IEEE
Conference on Decision and Control, pages 1179–1184. IEEE, 2014.

5. Michael B Kelley. The stuxnet attack on iran’s nuclear plant was ‘far more dangerous’ than
previously thought. Business Insider, 20, 2013.

6. MHR Khouzani, Saswati Sarkar, and Eitan Altman. Saddle-point strategies in malware attack.
IEEE Journal on Selected Areas in Communications, 30(1):31–43, 2012.

7. Piet Van Mieghem, Jasmina Omic, and Robert Kooij. Virus spread in networks. IEEE/ACM
Transactions on Networking, 17(1):1–14, 2009.

8. Dov Monderer and Lloyd S Shapley. Potential games. Games and economic behavior,
14(1):124–143, 1996.

9. William Hugh Murray. The application of epidemiology to computer viruses. Computers &
Security, 7(2):139–145, 1988.

10. Jasmina Omic, Ariel Orda, and Piet Van Mieghem. Protecting against network infections:
A game theoretic perspective. In INFOCOM. IEEE, 2009.

11. P Van Mieghem and Ruud van de Bovenkamp. Accuracy criterion for the mean-field
approximation in susceptible-infected-susceptible epidemics on networks. Physical Review
E, 91(3):032812, 2015.

12. Piet Van Mieghem and Jasmina Omic. In-homogeneous virus spread in networks. arXiv
preprint arXiv:1306.2588, 2013.



Interference Mitigation via Pricing
in Time-Varying Cognitive Radio Systems

Alexandre Marcastel, E. Veronica Belmega, Panayotis Mertikopoulos,
and Inbar Fijalkow

Abstract Despite the lure of a considerable increase in spectrum usage efficiency,
the practical implementation of cognitive radio (CR) systems is being obstructed
by the need for efficient and reliable protection mechanisms that can safeguard
the quality of service (QoS) requirements of licensed users. This need becomes
particularly apparent in dynamic wireless networks where channel conditions may
vary unpredictably – thus making the task of guaranteeing the primary users (PUs)’
minimum quality of service requirements an even more challenging task. In this
paper, we consider a pricing mechanism that penalizes the secondary users (SUs)
for the interference they inflict on the network’s PUs and then compensates the PUs
accordingly. Drawing on tools from online optimization, we propose an exponential
learning power allocation policy that is provably capable of adapting quickly and
efficiently to the system’s variability, relying only on strictly causal channel state
information (CSI). If the transmission horizon T is known in advance by the SUs,
we prove that the proposed algorithm reaches a “no-regret” state within O.T�1=2/

iterations; otherwise, if the horizon is not known in advance, the algorithm still
reaches a no-regret state within O.T�1=2 log T/ iterations. Moreover, our numerical
results show that the interference created by the SUs can be mitigated effectively by
properly tuning the parameters of the pricing mechanism.
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1 Introduction

Cognitive radio (CR) has been identified as one of the most promising solutions to
face the enormous challenges of future and emerging communication networks in
terms of capacity, quality of experience, and spectrum efficiency [1]. The proposal
to achieve this is to introduce a two-tier hierarchy, based on spectrum licensing: on
the one hand, primary users (PUs) have leased part of the spectrum and must be
sheltered from harmful interference; on the other hand, the network’s secondary
users (SUs) are allowed to free-ride on the licensed part of the spectrum, provided
that they comply with the PUs’ minimum quality of service (QoS) requirements.

This opportunistic spectrum access paradigm gives rise to several major con-
cerns. First, the PUs have no incentive to accept a spectrum lease that leaves
them open to free-riding – even under protection against harmful interference. For
instance, one of the most widespread ways to guarantee the PUs’ contractual QoS
guarantees is to impose a so-called interference temperature (IT) constraint [2]
at the SUs transmission level, i.e. to require that the total interference caused to
the licensed user in a given frequency band remain always below a given, fixed
tolerance. However, ensuring that the SUs respect a rigid constraint at all times
is a highly nontrivial task – e.g. because of channel estimation errors, imperfect
SUs coordination (or total lack thereof), malicious SU behavior, etc. Second, the
inherent temporal variability of multi-user wireless networks – caused by the
users’ unpredictable behavior coupled with the random dynamics of the wireless
environment – poses a major challenge in protecting the PUs against harmful
interference.

To tackle these concerns, we propose a pricing mechanism [3] to a) incentivize
and reward the network’s PUs for allowing SUs to co-exist in the same part of the
spectrum; and b) act as an effective interference mitigator, keeping the interference
created by the SUs at tolerable levels. More precisely, we posit that the system
manager imposes a monetary cost for every IT constraint violation caused by the
SUs as an increasing function of the violation. These sanctions are then used to
reimburse the PUs whose quality of service requirements were violated.

Pricing mechanisms of this type have already been considered as efficient
means of managing the interference in static multi-user networks [4–6]; the
major difference here lies in the temporal variability of the wireless networks
which introduces a vastly different (temporal) dimension in the analysis of said
mechanisms. To account for these difficulties, we take an approach based on online
optimization which provides a suitable framework for studying dynamically varying
systems [7]. Building upon these tools, we propose an adaptive exponential learning
policy [8], which relies only on strictly causal channel state information.

Our first theoretical result is that if a SU knows his transmission horizon T,
he can match the performance of the best fixed a posteriori power allocation
policy within O.T�1=2/. In other words, even though the proposed power allocation
policy only requires strictly causal knowledge of past information, it matches
asymptotically the performance of the best fixed policy that can be achieved with
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non-causal knowledge of the system’s evolution. This result remains true even if the
transmission horizon T is not known and the algorithm is used with a variable step-
size parameter; in that case however, the algorithm’s regret (the gap between our
algorithm and the best fixed policy) grows slightly to O.T�1=2 log T/. These results
are then validated by our numerical simulations which show that the network’s SUs
reach a no-regret state within a few tens of iterations in realistic wireless conditions.

2 System Model and Problem Formulation

We consider a cognitive radio (CR) network composed of M licensed primary users
(PUs) and K unlicensed secondary users (SUs), transmitting simultaneously to a
common access point (AP) over a shared frequency band of width W. Every PU
m 2 f1; : : : ; Mg is assumed to lease a block of Sm orthogonal channels and transmits
only over the leased part of the spectrum; by contrast, the network’s SUs are
assumed to free-ride over all available subcarriers. As a result, the Shannon rate
of k-th user is given by the standard expression

Rk.pI t/ D
SX

sD1

log

 

1 C pksgks


2
ks CP

j¤k pjsgjs C pPU
s gPU

s

!

; (1)

where gks D jhksj2 is the (time-varying) channel gain between the k-th SU and the
AP, 
2

ks D EŒw�
kswks� is the variance of the noise, pks is the transmit power of the k-th

SU over the s-th subcarrier, and p D .pks/k;s is the power profile of all SUs.
In a power-constrained setting, the total power Pk D P

s2S pks of the k-th SU is
de facto limited by the maximum transmit power NPk of the user’s wireless device.
As a result, the feasible set of the k-th SU is defined as:

Pk D fpk 2 R
S W pks � 0 and

PS
sD1 pks � NPkg: (2)

In a CR context, the network operator must also shelter the PUs’ contractual QoS
guarantees from harmful interference by the SUs. This requirement often takes the
form of a maximal interference threshold per sub-carrier [2], i.e.

KX

kD1

pksgks � Is 8s (3)

where Is denotes the maximal interference tolerated by the PU who has leased
subcarrier s. This requirement depends on the powers of all SUs in an aggregate
way; however, given that the SUs do not coordinate with one another (and also to
induce fairness among the SUs), we assume here that the network operator also
imposes a user-specific maximal interference requirement of the form
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pksgks � Ps; 8s; 8k; (4)

thus providing an additional safety net to the PUs’ transmissions.
Of course, both (3) and (4) represent a time-varying requirement from the SUs’

viewpoint because the channel gains gks may vary unpredictably over time. In
particular, given the lack of coordination between SUs and the fact that they do
not have perfect channel state information before the transmission, it is impossible
to ensure that these constraints will be met for all time. In turn, this raises a major
concern for CR paradigm as the PUs have no incentive to pay for spectrum access
rights that can be compromised at any given time.

To overcome this, instead of treating (3) and (4) as physical constraints at the SU
level, we posit that the network operator charges a monetary cost to the SUs for any
violation of the PUs’ requirements, as a function of the severity of the violation;
this cost is then reimbursed (at least partially) to the PUs whose QoS requirement
was violated. More concretely, this pricing mechanism can be expressed by a cost
function of the form

Ck.pI t/ D
SX

sD1

C

 
KX

kD1

pksgks � Is

!

C
SX

sD1

C .pksgks � Ps/ ; (5)

where C.�/ is a non-decreasing, Lipschitz continuous and convex pricing function.
For instance, a standard example of such a pricing function is the piecewise linear
penalty

C.x/ D
(

�x if x � 0;

0 otherwise;
(6)

where � is the price per dBm of violation.
Putting all this together, the SUs’ utility can be expressed as:

Uk.pkI t/ D Rk.pI t/ � Ck.pI t/; (7)

i.e. as the trade-off between the SU’s achieved throughput and the cost paid to
achieve it. Thus, given the system’s evolution over time, we obtain the online
optimization problem:

maximize Uk.pkI t/

subject to pk 2 Pk

(P)

Given that the objective of each SU depends explicitly on time (via the channel gains
gks.t/), our goal will be to determine a dynamic power allocation policy pk.t/ that
remains as close as possible to the (evolving) solution of (P). However, due to the
temporal variability of the channel gains g, the power p�k .t/ that solves (P) at every
given time t cannot be calculated ahead of time with strictly causal information.
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On account of that, we will focus on the fixed power allocation policy that is
optimal on average and in hindsight, i.e. the solution of the time-averaged problem:

p�k 2 arg max
pk2Pk

TX

tD0

Uk.pkI t/; (8)

where Pk is the feasible set of the user k defined in (2). As before, the mean optimal
solution p�k can only be calculated offline (i.e. it requires knowing the evolution of
the system over the entire transmit horizon), and is only used as a benchmark for a
dynamic power allocation policy pk.t/ that relies only on strictly causal information.
To make this comparison precise, we define a user’s (cumulative) regret [7, 9] as:

Regk.T/ D
TX

tD1

Uk.p�I t/ � Uk.pkI t/ (9)

In words, the user’s regret over the transmission horizon T measures the
cumulative performance gap between the dynamic power strategy pk.t/ and the
average optimum profile p�k . In particular, if Regk.T/ grows linearly with T, the
user is not able to track changes in the system sufficiently fast. Accordingly, we will
say that a power control policy pk.t/ leads to no regret if

lim sup
T!1

Regk.T/=T � 0 for all k; (10)

irrespectively of how the system evolves over time. If this is the case, it means
that there is no fixed power profile yielding a higher utility in the long run; put
differently, (10) provides an asymptotic guarantee that ensures that p.t/ is at least as
good as the mean optimal solution. We will further explore this property in Sect. 4.

3 Exponential Learning

To devise an online policy pk.t/ that leads to no-regret, our starting point will be
as follows: First, each user’s policy tracks the direction of gradient (or subgradient)
ascent of their utility, without taking into account the problem’ constraints as defined
in (2). Subsequently, this “aggregated gradient” is mapped back to the feasible
region via a suitably chosen exponential map, and the process repeats.

To be more precise, this procedure can be described by the recursion

yk.t C 1/ D yk.t/ C ı.t/vk.t/;

pks.t C 1/ D NP exp .yks.t C 1//

1 CPS
s0D1 exp .yks0.t C 1//

;
(DXL)



182 A. Marcastel et al.

Algorithm 6: Discrete-time exponential learning.

1 Parameter:;
2 step-size ı.t/ > 0.
3 Initialization:;
4 yk  0; t 0.

5 Repeat
6 t tC 1;

7 allocate powers:;

8 pks  NP exp.yks/

1C

PS
s0D1 exp.yks0 /

;

9 get gradient data vk  @pk Uk.pkI t/;
10 update scores:;
11 yk  yk C ı.t/ vk ;

12 until termination criterion is reached.

where vk.t/ D @kk Uk.pI t/ denotes the gradient of the k-th user’s utility function and
ı.t/ is a non-decreasing step-size parameter (for an algorithmic implementation, see
Algorithm 6 above).

Our goal in what follows will be to examine the no-regret properties of the online
power allocation policy (DXL). To do so, let V denote an upper bound for vk, i.e.

kvkk2 � V2
k : (11)

With all this at hand, our first result concerns the case where the transmission
horizon is known in advance (for instance, as in a timed call), and (DXL) is
employed with a constant, optimized step-size ı� (the proof is omitted due to space
limitations):

Theorem 1 Assume that (DXL) is run for a given time horizon T with the optimized
step-size ı�k D V�1

k

p
log.1 C S/=T. Then, it enjoys the regret bound

Regk.T/ � 2Vk NP
p

T log.1 C S/: (12)

Consequently, the users’ average regret Regk.T/=T vanishes as O.T�1=2/,
i.e. (DXL) leads to no regret.

The above result is contingent on the SUs knowing the transmission horizon T
in advance. If this is not the case, it is more advantageous to consider a strictly
decreasing step-size so as to reduce the algorithm’s jitter in fluctuations of unknown
length. We illustrate this in Theorem 2 below (again, we omit the proof due to space
limitations):

Theorem 2 Assume that (DXL) is run for an unknown time horizon T with the
variable step size ı.t/ D at�1=2 for some a > 0. Then, it enjoys the regret bound:
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Regk.T/ . NP
�

log.1 C S/

a
C aV2

k

�

T1=2 C a NPV2
k T1=2 log T: (13)

Consequently, the users’ average regret Regk.T/=T vanishes as O.T�1=2 log T/,
i.e. (DXL) leads to no regret.

This implies that, in both cases (known vs. unknown horizon), the rate of regret
minimization depends on the system parameters. We further remark that the users’
average regret vanishes faster if the transmission horizon T is known in advance, but
the level of this disparity (log T) is fairly moderate. This disparity can be overcome
completely by means of a more complicated step-size policy known as a “doubling
trick” [7] but, for simplicity, we do not present this approach here.

4 Numerical Results

To validate our theoretical results we have performed extensive numerical simula-
tions of which we exhibit a representative sample below.

We focus on an uplink cellular network with a fixed AP. Specifically, we consider
a wireless system operating over a 10 MHz band centered around the carrier
frequency fc D 2 GHz. The total bandwidth is divided in 64 sub-carriers. We
consider 1 PU and 9 SUs randomly positioned inside a square cell of side 2 km,
following a Poisson Point Process. The maximum interference temperature in each
sub-carrier in (3) is fixed at Is D �90 dBm for all s and the constraint per sub-
carrier (4) is limited at Ps D �110 dBm for all s and the variance of the noise is set
at: 
2 D �120 dBm. We also assume that the SUs’ have a maximum transmit power
of NP D 30 dBm. The channels between the wireless users and the AP are generated
according to the realistic COST-HATA model for a suburban macro-cellular network
[10] with fast and shadow-fading attributes as in [11]. Each SU is assumed to be
mobile with a speed chosen arbitrarily between 10 and 130 km=h.

In Fig. 1, we plot the cost function defined in (5) and the overall power
consumption as function of the time by SU. To reduce graphical clutter, we only
illustrate this data for three representative SUs at various distances from the AP.
Specifically, the initial distance from the AP of each of the three focal users is
d4 D 600:1 m for SU 4, d5 D 943:8 m for SU 5, and d9 D 979:4 m for SU 9;
respectively, the SUs’ speeds are v4 D 50 km=h, v5 D 10 km=h, and v9 D 90km=h.
If interfering channel gains are low, as the 9th SU, the users can transmit at
maximum power ( i.e. at NP D 30 dBm) without creating harmful interference to the
PUs. At the opposite, when the channel gains become high, the induced interference
also increases. As a result, the SUs transmitting at high powers are penalized via the
cost function and decrease their transmit powers as a result.

In Fig. 2, we plot the evolution of the opportunistic users’ average regret as a
function of time. We see that each SU’s regret quickly drops to zero at a rate which
depends on the user’s individual channels, on the choice of the step parameter ˛
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Fig. 1 Evolution of the cost function and overall power for SUs 4, 5 and 9 as function of time.
When the channel gains are low (e.g SU 9) the interferences created by the SUs are also small and
their cost function is null, i.e they meet acpPU’ requirement. In contrast, when the interference
created by a SU exceeds the requirements (because of strong channel gains for example) the SU
is immediately penalized by imposing a suitable cost which results in a decrease of the transmit
power at the next iterations (see SUs 4 and 5)
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Fig. 2 Evolution of the SUs average regret as function of time. We see that the SUs’ online power
allocation policy quickly leads to zero average regret; specifically, (DXL) matches the optimal
fixed transmit profile in hindsight within a few tens of iterations

and on the penalty parameter � – cf. Eq. (6). As a result, the online power allocation
policy we propose matches the best fixed transmit profile within a few number of
iterations, despite the channels’ significant variability over time for the same SUs.

Finally, in Fig. 3, we plot the fraction of time at which the PU’s interference
constraints are violated. To be precise, we plot the fraction of iterations at which at
least one SU creates interference aboves the maximum tolerated levels. As expected,
higher � values leads to fewer constraint violations. Therefore, the exponential
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Fig. 3 Fraction of time at which the PU’s interference constraint are violated. The higher is � the
higher is the penalty applied to the SUs in case of QoS requirement violations. This results in less
interferences violations from the SUs. Thus, the operator can control the interference by tuning �

and can efficiently protect the PU

learning policy (DXL) with the cost function defined in (5) and (6) allows the
operator to efficiently use the total bandwidth by allowing SUs to transmit while
protecting the PUs and that despite the unpredictability of the system’s variation
over time.

5 Conclusions and Perspectives

We have investigated a dynamic multi-user CR system in which multiple oppor-
tunistic users are allowed to co-exist with the PUs. In order to control the
interference created by the SUs, the system owner implements a pricing mechanism
which also serves a second purpose, i.e. as a reward incentive for the PUs to accept
an open spectrum license. In this context, we propose an exponential learning
algorithm that allows the SUs to adapt their power allocation policies to the dynamic
changes in the environment in an optimal way regarding the tradeoff between their
achievable rate and the cost for the harmful interference they inflict. Our simulations
show that by tuning the parameters of the cost function, the system owner can
efficiently control the interference created by the SUs—and, hence, protect the
PUs’s transmissions—despite the dynamic and arbitrary variations of the system.
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Opinion Manipulation in Social Networks

Alonso Silva

Abstract In this work, we are interested in finding the most efficient use of a
budget to promote an opinion by paying agents within a group to supplant their
true opinions. We model opinions as continuous scalars ranging from 0 to 1 with
1 (0) representing extremely positive (negative) opinion. We focus on asymmetric
confidence between agents. The iterative update of an agent corresponds to the best
response to other agents’ actions. The resulting confidence matrix can be seen as
an equivalent Markov chain. We provide simple and efficient algorithms to solve
this problem and we show through an example how to solve the stated problem in
practice.

Keywords Opinion dynamics • Multiagent systems • Influence • Dynamical
systems

1 Introduction

The process of interpersonal influence that affects agents’ opinions is an important
foundation of their socialization and identity. This process can produce shared
understandings and agreements that define the culture of the group. The question
that we are trying to answer here is how hard or costly it can be for an external
entity to change the largest proportion of opinions of a group by supplanting the
true opinions of some agents within the group.

Starting from an initial distribution of continuous opinions in a network of
interacting agents and agents behaving according to the best-response dynamics, our
objective is to efficiently supplant the opinions of some agents to drive the largest
proportion of opinions towards a target set of values. In particular, we are interested
in maximizing the expected number of agents with an opinion of at least a certain
threshold value.
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Related Work A coordination game is played between the agents in which
adopting a common strategy has a lower cost. When the confidence matrix is a row-
stochastic matrix, it can be seen as an equivalent Markov chain. When the Markov
chain is irreducible and aperiodic, [3] gives sufficient conditions for convergence
to a consensus. There is a growing literature on social learning using a Bayesian
perspective (see e.g. [1]). Our model belongs to the non-Bayesian framework,
which keeps the computations tractable. [10] studies binary 0-1 opinion dynamics.
Here, we study the continuous opinion dynamics where the opinion belongs to a
bounded interval. Our work is mostly related to [7] in the case of no stubborn
agents. However, in [7] the interactions between agents are symmetric and the cost
for each agent of differing with its interacting agents is the same. Our work is also
related to consensus problems [6] in which the question of interest is whether beliefs
(some scalar numbers) held by different agents will converge to a common value.

Our Contributions We study opinion dynamics in the directed graph instead of
the undirected graph. In our opinion, this scenario is more realistic since when an
agent influences another agent it doesn’t mean that the latter influences the former.
This directed graph will be edge-weighted since we consider different costs for an
agent of differing with each of its interacting agents. Agents iteratively update their
opinions based on their best-response dynamics which are given by a linear dynamic
system. The confidence matrix describing the opinion dynamics can be seen as an
equivalent Markov chain and by decomposing the states of this equivalent Markov
chain between transient and recurrent states, we show that in the case we have only
recurrent states the problem can be reduced to a knapsack problem which can be
approximated through an FPTAS scheme. In the presence of transient states, the
problem can be reduced to a Mixed Integer Linear Programming problem which
in general is NP-hard but for which there are efficient implementations. We show
through an example how to solve this problem in practice.

Organization of the Work The work is organized as follows. In Sect. 2, we
provide the definitions and introduce the model. In Sect. 3, we provide the main
results of our work. In Sect. 4, we give an example to explain how the problem can
be solved in practice. We conclude our work in Sect. 5.

2 Model and Definitions

Consider a group of n agents, denoted by V D f1; : : : ; ng. For simplicity, we
consider that each agent’s opinion can be represented over the interval Œ0; 1�. For
example, they could represent people’s opinions about the current government with
an opinion 1 corresponding to perfect satisfaction with the current government and
0 representing an extremely negative view towards the current government. In this
work, we consider a synchronous version of the problem where time is slotted and
each agent’s opinion will be given by xi.t/ 2 Œ0; 1� for t D 1; 2; : : : We have a
budget B � 0 and we want to efficiently use this budget to pay some agents to
favor either a positive (closest to 1) or negative (closest to 0) opinion over the
group of agents. Without loss of generality (w.l.o.g.), we consider that we are
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promoting opinions closest to 1. In the previous example, it would correspond to
promote positive opinions towards the current government. We want to supplant the
opinions of some agents in order to change the opinion of the largest proportion
of the population. We consider a threshold opinion given by x� that we would like
that the largest proportion of the population at least has. In the previous example, it
could be the threshold to have an approving or at least neutral opinion of the current
government (x� D 1=2) or the threshold to actually register and go to vote in the
next election which we could consider to be much higher than 1=2 (e.g. x� D 3=5).
Agents who have an opinion greater or equal to the threshold are called supporters. If
every agent is a supporter, i.e. it has an opinion greater or equal than x�, the problem
is trivial since even without spending any budget we have succeeded in achieving
our goal. The problem gets interesting when there are agents who have opinions
smaller than x�. The focus of the present work is on the asymptotic opinions of the
agents. In other words, we would like to maximize jfi 2 V W xi.C1/ � x�gj; where
j�j denotes the set’s cardinality.

We assume that there will be a cost (which will depend on the agent) for changing
the agent’s opinion. In the present work, we consider that the payments have to be
done at only one time t0 and without loss of generality we consider that t0 D 0. To
differentiate between the true opinion and the expressed (after payment) opinion, we
denote the true opinion by Oxi and the expressed opinion by xi. We assume that the
nonnegative payment we need to give to agent i to change its true opinion from Oxi.0/

to the expressed opinion xi.0/ is given by

pi D ci.xi.0/ � Oxi.0//: (1)

The budget constraint is given by
P

i2V pi � B.
Our objective is to solve the following problem:

Maximize jfi 2 V W xi.C1/ � x�gj;
subject to

X

i2V
pi � B and pi � 0; 8i 2 V ;

(P1)

where part of the problem is to discover the dependence between the asymptotic
opinions of the agents fxi.C1/ W i 2 Vg and the payments fpi W i 2 Vg.

We consider a weighted directed graph of the n agents, denoted by G D .V ; E ; w/,
where each vertex corresponds to an agent and each edge is an ordered pair of
vertices .i; j/ 2 E � V 
 V which indicates that agent i takes into account, or
considers relevant, the opinion of agent j. We notice that this isn’t necessarily a
symmetric relationship, for this reason we consider a directed graph.

In the following, we focus on one of the agents and discuss how this agent may
change its opinion when it is informed of the (expressed) opinions of other agents.

We assume each agent i 2 V has an individual cost function of the form
Ji.xi.t/;Ni/ D 1

2

P
j2Ni

wij.xi.t/ � xj.t//2 where Ni WD fj 2 V W .i; j/ 2 Eg is
the neighborhood of i 2 V and we assume that the weights wij are nonnegative for
all i; j 2 N and not all zeros for each i 2 V . The objective for each agent is to
minimize its individual cost function.
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The above formulation defines a coordination game with continuous payoffs [7]
because any vector x D .x1; : : : ; xn/ with x1 D x2 D : : : D xn is a Nash
equilibrium. We consider that at each time step, every agent observes the opinion
of its neighbors and updates its opinion based on these observations in order to
minimize its individual cost function.

It is easy to check that for every agent i 2 V , its best-response strategy is given
by xi.t C 1/ D 1

Wi

P
j2Ni

wijxj.t/ where Wi D P
j2Ni

wij. We notice that this extends
the work of Ghaderi and Srikant [7] in the case of no stubborn agents, where they
consider an undirected graph and the cost of differing to be the same across all
neighbors (wij D 1 for all i; j).

Define the confidence matrix A D ŒAij� where Aij D
(

wijP
j2Ni

wij
if .i; j/ 2 E ;

0 otherwise.
Therefore, in matrix form, the best response dynamics are given by

x.t C 1/ D Ax.t/; (2)

where x.t/ D .x1.t/; x2.t/; : : : ; xn.t// is the vector of opinions at time t.
We notice that A is a row-stochastic matrix since every element Aij is nonnegative

and the sum of the elements in any given row is 1. The entry Aij can be interpreted as
the weight (or confidence) that agent i 2 V gives to the opinion of agent j 2 V . In the
following, we make the assumption that each agent has a little bit of self-confidence.

Assumption [Self-confidence]: We say that the dynamical system (2) has self-
confidence if the diagonal of A is strictly positive. For every agent i 2 V , Aii > 0 or
equivalently wii > 0.

It is assumed that the agents of the group continue to make the revisions given
by (2) indefinitely or until x.t C 1/ D x.t/ for some t such that further revision
doesn’t actually change their opinions.

Since A is a row-stochastic matrix, it can be seen as a one-step transition proba-
bility matrix of a Markov chain with n states and stationary transition probabilities.
Therefore the theory of Markov chains can be applied.

We can decompose the states of the equivalent Markov chain into two
classes: transient and recurrent states. This decomposition can be accomplished
in O.max.jV j; jE j// see [4]. In the following, F represents the class of nT transient
states. We can further decompose the class of recurrent states into E1; E2; : : : ; Em

for some m � n, corresponding to the ergodic classes of the recurrent states (see
e.g. [5], p. 179). The states of the equivalent Markov chain are aperiodic (under the
self-confidence assumption). We denote by Ek the sub-matrix of A representing
the subgraph Ek of the ergodic class k, composed by nk states. Obviously,
n1 C n2 C : : : C nm C nT D n.
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3 Results

3.1 Dynamical Systems Without Transient States

We focus on one of the subgraphs described by sub-matrix Ek. For a subset S � V
we denote by 1S the 0=1 vector, whose i-the entry is 1 iff i 2 S and .�/0 denotes
the transpose operator. Let’s denote by 
.k/ the normalized (i.e. 10Ek


.k/ D 1) left
eigenvector of Ek associated with eigenvalue 1. It is well-known (see e.g. [5], p. 182)
that the equilibrium for the ergodic class under dynamics (2) is unique and that the
agents of the ergodic class k will reach a consensus (all opinions are eventually
the same) where xi.C1/ D P

j2Ek



.k/
j xj.0/ for all i 2 Ek. Therefore 


.k/
j can be

interpreted as the influence of agent j within its ergodic class k.
From Eq. (1), we have that xi.0/ D Oxi.0/ C pi

ci
. If we focus on ergodic class k,

the problem of what is the minimum budget to make the consensus opinion of the
ergodic class to be higher than a threshold x� becomes

Minimize Pk WD
X

i2Ek

pi subject to
X

i2Ek



.k/
i

�

Oxi.0/ C pi

ci

�

� x�;

0 �
�

Oxi.0/ C pi

ci

�

� 1 and pi � 0; 8i 2 Ek:

(P2)

Reordering the states (which can be done through any efficient sorting procedure

in O.jV j logjV j/ see e.g. [2]), we can assume w.l.o.g. that 

.k/
1

c1
� 


.k/
2

c2
� : : : � 


.k/
nk

cnk
,

and denoting the critical item of ergodic class k as

s D min

8
<

:
j 2 Ek W

jX

iD1



.k/
i C

nkX

iDjC1



.k/
i Oxi.0/ � x�

9
=

;
;

we have the following theorem:

Theorem 1 The optimal solution Np D .Np1; Np2: : : : ; Npnk / is given by

Npj D
�

cj.1 � Oxj.0// for j D 1; : : : ; s � 1;

0 for j D s C 1; : : : ; nk;

Nps D cs



.k/
s

0

@x� �
s�1X

jD1



.k/
j �

nkX

jDs



.k/
j Oxj.0/

1

A :

Proof Any optimal solution p D .p1; p2; : : : ; pnk / must be maximal in the sense that
P

i2Ek



.k/
i

�
Oxi.0/ C pi

ci

�
D x�. Assume w.l.o.g. that



.k/
j

cj
>



.k/

jC1

cjC1
for all j 2 Ek and

let p� be the optimal solution of (P2). Suppose, by absurdity, that for some ` < s,
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p�̀ < c`.1 C Ox`.0//, then we must have p�q > Npq for at least one item q � s. Given
a sufficiently small " > 0, we could increase the value of p�̀ by " and decrease

the value of p�q by "



.k/

`

c`

cq



.k/
q

, thus diminishing the value of the objective function by

"

�



.k/
`

c`

cq



.k/
q

� 1

�

> 0 which is a contradiction. Similarly, we can prove that p�̀ > 0

for ` > s is impossible. Hence Nps D cs



.k/
s

�
x� �Ps�1

jD1 

.k/
j �Pnk

jDs 

.k/
j Oxj.0/

�
for

maximality. �

From Theorem 1, the optimal value NPk D P
i2Ek

Npi of (P2) is given by

NPk D
s�1X

jD1

cj.1 � Oxj.0// C cs



.k/
s

0

@x� �
s�1X

jD1



.k/
j �

nkX

jDs



.k/
j Oxj.0/

1

A : (3)

Therefore, for each ergodic class k we have the payment NPk, given by Eq. (3), we
need to make to obtain nk agents having an opinion greater or equal than x�. More
importantly, these payments f NPk W 1 � k � mg are independent between them in the
sense that each payment affects only the ergodic class where the payment was made.

In other words, the problem (P1) is equivalent to determining fzkg where

zk D
�

1 if class kis selected
0 otherwise

(4)

in order to

Maximize
mX

kD1

zknk subject to
mX

kD1

zk NPk � B and zk 2 f0; 1g: (P2’)

This is the classic 0-1 knapsack problem, and thus we can use the well-known
linear time FPTAS1 algorithm of Knapsack [8] to obtain a FPTAS to problem (P1).

3.2 Dynamical Systems with Transient States

For the recurrent states, the previous analysis still holds. For the transient states,
we need to use different properties of Markov chains. From subsection (3.1),
we know that the equilibrium for each ergodic class under dynamics (2) is
unique and that agents within each ergodic class will reach a consensus where

1 An FPTAS, short for Fully Polynomial Time Approximation Scheme, is an algorithm that for any
" approximates the optimal solution up to an error .1C "/ in time poly.n="/.
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xi.C1/ D P
j2Ek



.k/
j xj.0/ for all i 2 Ek. We denote Ok D P

j2Ek



.k/
j xj.0/ the

consensus opinion of ergodic class k. We know that the system will remain among
the transient states through only a finite number of transitions, with probability 1

(see e.g. [5], p. 180). Moreover, we have the following theorem:

Theorem 2 The equilibrium for a transient state i 2 F under dynamics (2) is
unique and given by

xi.1/ D
mX

kD1

h.k/
i Ok;

where h.k/
i denotes the hitting probability of the recurrent ergodic class Ek starting

from i 2 V .

Proof We first recall the definition of hitting probabilities. Let .Xn/n�0 be a Markov
chain with transition matrix A. The first hitting time of a subset E � V is the random
variable �E.w/ D inffn � 0 W Xn.w/ 2 Eg, where we agree that the infimum of the
empty set is C1. The hitting probability starting from i that .Xn/n�0 ever hits E is
given by

hE
i D Pi.�

E < C1/: (5)

In order to simplify the notation, we denote the hitting probability of ergodic class
k as h.k/

i WD hEk
i . Under the self-confidence assumption, if j 2 Ek we have that (see

e.g. [5], p. 180)

lim
`!C1A`

ij D �i.Ek/

.k/
j where �i.Ek/ D lim

n!C1
X

j2Ek

An
ij: (6)

Considering the equivalent Markov chain, we have that

�i.Ek/ D lim
n!C1

X

j2Ek

Pi.Xn.w/ 2 j/ D lim
n!C1Pi.Xn.w/ 2 Ek/: (7)

We have that the following equality of sets

fw W Xn.w/ 2 Ekg D fw W �Ek .w/ � ng: (8)

Therefore

�i.Ek/ D lim
n!C1Pi.Xn.w/ 2 Ek/ D lim

n!C1Pi.�
Ek .w/ � n/

D Pi.�
Ek .w/ < 1/ D h.k/

i
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where the first equality is coming from Eq. (7), the second equality from Eq. (8),
and the last equation from Eq. (5). Replacing in Eq. (6), if j 2 Ek

lim
`!C1A`

ij D h.k/
i 


.k/
j :

Therefore

xi.C1/ D lim
`!C1 xi.` C 1/ D lim

`!C1
X

j2V
A`

ijxj.0/

D lim
`!C1

X

j2F
A`

ijxj.0/ C lim
`!C1

mX

kD1

X

j2Ek

A`
ijxj.0/

D
mX

kD1

X

j2Ek

lim
`!C1A`

ijxj.0/ D
mX

kD1

h.k/
i

X

j2Ek



.k/
j xj.0/ D

mX

kD1

h.k/
i Ok:

Moreover, it is indeed an equilibrium since the best response for i 2 V is

X

j2Ni

Aijxj.C1/ D
X

j2Ni

Aij

mX

kD1

h.k/
j Ok D

mX

kD1

Ok

X

j2Ni

Aijh
.k/
j D

mX

kD1

h.k/
i Ok:

�

The hitting probabilities for each ergodic class can be calculated from simple
linear equations (see [9], p. 13):

h.k/
i D 1 for i 2 Ek;

h.k/
i D P

j2V Aijh
.k/
j for i … Ek:

(9)

The hitting probabilities of ergodic class k starting from state i 2 Ej are given by

h.k/
i D

�
1 if j D k
0 otherwise

. The hitting probabilities of ergodic class k starting from state

i 2 F are calculated from Eq. (9). Therefore, problem (P1) becomes

Maximize
X

i2V
I

2

4

0

@
mX

kD1

h.k/
i

X

i2Ek



.k/
i

�

Oxi.0/ C pi

ci

�
1

A � x�
3

5

where I.s/ D
�

1 if s � 0;

0 otherwise;

subject to the budget constraint
X

i2V
pi � B and pi � 0; 8i 2 V :

(P3)
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Defining

L WD min
i2V

0

@
mX

kD1

h.k/
i

X

i2Ek



.k/
i Oxi.0/

1

A ;

the problem (P3) is equivalent to the following formulation:

Maximize
X

i2V
zi

subject to �
�Pm

kD1 h.k/
i

P
i2Ek



.k/
i

�
Oxi.0/ C pi

ci

��
� x�

L � x�
C 1 � zi;

X

i2V
pi � B; 0 �

�

Oxi.0/ C pi

ci

�

� 1 and zi 2 f0; 1g; pi � 0 8i 2 V :

(P3’)
Indeed,

I

" 
mX

kD1

h.k/
i Ok

!

� x�
#

D 0 ,
 

mX

kD1

h.k/
i Ok

!

� x� < 0

, �
�Pm

kD1 h.k/
i Ok

�
� x�

L � x�
< 0;

From (P3’),

�
�Pm

kD1 h.k/
i Ok

�
� x�

L � x�
C 1 � zi;

implies that zi < 1 and zi 2 f0; 1g implies that zi D 0.
Similarly,

I

" 
mX

kD1

h.k/
i Ok

!

� x�
#

D 1 ,
 

mX

kD1

h.k/
i Ok

!

� x� � 0

, �
�Pm

kD1 h.k/
i Ok

�
� x�

L � x�
C 1 � 1;

From (P3’),

�
�Pm

kD1 h.k/
i Ok

�
� x�

L � x�
C 1 � zi;

implies that zi � 1 but since we are maximizing the objective function we have that
zi D 1.
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The system of equations (P3’) is a mixed integer programming problem which
is NP-hard, however many software (see e.g. AMPL, R) can solve them quite
efficiently. In the illustrative example, we use the programming language R.

4 Illustrative Example

Consider as inputs: the confidence matrix given by the coefficients in Fig. 1, where
the self-loops were not added but their coefficients can be computed since the
outgoing edges sum to 1; the initial opinions of the agents Ox D .0:5; 0:3; 0:4,
0:1; 0:6; 0:7; 0:3; 0:1; 0:8; 0:1; 0:2; 0:4/; the cost (in dollars) to change their opinions
by C0:1 given by c D .100; 80; 120; 60; 20; 100; 80; 120; 60; 20; 90; 70/; the target
opinion x� D 1=2 and a budget (in dollars). Our objective is to determine the most
efficient use of the budget to maximize the number of agents who have an opinion
of at least x� (supporters).

Solution We can decompose the system in transient states F D fd; e; f ; g; hg,
ergodic class E1 D fa; b; cg and ergodic class E2 D fi; j; k; lg.

The matrix E1 is given by the coefficients in Fig. 2a. The stationary distribu-

tion 
.1/ D
�



.1/
a ; 


.1/
b ; 


.1/
c

�0
for ergodic class E1 is the solution of the equations

.
.1//0E1 D .
.1//0 and 

.1/
a C 


.1/
b C 


.1/
c D 1. Therefore 
.1/ D . 20

47
; 15

47
; 12

47
/0. The

matrix E2 is given by the coefficients in Fig. 2. Similarly, the stationary distribution

for ergodic class E2 is 
.2/ D
�



.2/
i ; 


.2/
j ; 


.2/
k ; 


.2/
l

�0 D �
5
39

; 20
39

; 10
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; 4
39
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Fig. 3 Number of supporters vs budget

From Eq. (9), the hitting probabilities h.1/ D
�

h.1/
a ; h.1/

b ; : : : ; h.1/
l

�
to class E1 are

given by the equations h.1/
a D h.1/

b D h.1/
c D 1, h.1/

i D h.1/
j D h.1/

k D h.1/
l D 0,

3
5
h.1/

d D 2
5

C 1
5
h.1/

f , 2
5
h.1/

e D 1
5

C 1
5
h.1/

g , 1
2
h.1/

f D 3
10

h.1/
d C 1

5
h.1/

e , 2
5
h.1/

g D 1
5
h.1/

e ,
4
5
h.1/

h D 1
5
h.1/

f C 1
5
h.1/

g : Therefore h.1/ D �
1; 1; 1; 17

18
; 2

3
; 5

6
; 1

3
; 7

24
; 0; 0; 0; 0

	
.

Since there are only two recurrent classes, the hitting probabilities to class E2 are

given by h.2/ D
�

h.2/
a ; h.2/

b ; : : : ; h.2/
l

�
D �

0; 0; 0; 1
18

; 1
3
; 1

6
; 2

3
; 17

24
; 1; 1; 1; 1

	
.

Replacing the previous quantities and solving the Mixed Integer Linear Program-
ming problem (P3’) in R, we obtain Fig. 3 plotting the number of supporters with
respect to the budget. In the optimum there are only two agents who receive pay-
ments: agent a and agent j. The other agents receive zero. The optimal payments are

Budget pa pj Number of supporters Supporters

99 99 4 fi; j; k; lg
114 114 5 fh; i; j; k; lg
117 117 6 fg; h; i; j; k; lg
169 169 7 fe; g; h; i; j; k; lg
293 113 180 8 fe; f ; g; h; i; j; k; lg
309 210 99 12 fa; b; c; d; e; f ; g; h; i; j; k; lg
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5 Conclusions

We have studied continuous opinion dynamics with asymmetric confidence. The
confidence matrix can be seen as a Markov chain and by decomposing the states
between transient and recurrent states, we proved that in the case we have only
recurrent states the problem can be reduced to a knapsack problem, and in the
presence of transient states, the problem can be reduced to a Mixed-Integer Linear
Programming problem. We gave an illustrative example on how to solve this
problem.
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Optimal Security Policy for Protection Against
Heterogeneous Malware

Vladislav Taynitskiy, Elena Gubar, and Quanyan Zhu

Abstract Malware is a malicious software which aims to disrupt computer opera-
tions, gather sensitive information, and gain access to private computer systems. It
can induce various sorts of damage, including economic costs, the leakage of private
information, and instability of physical systems, etc. The distribution of antivirus
patches in a network enables the control of the proliferation of malicious software
and decreases possible losses. Multiple types of malware can coexist in a network.
Hence it is important to protect a computer network from several heterogeneous
malware, which can propagate in the network at the same time. In this study, we
model the propagation of two types of malware using a modified two-virus epidemic
model. We formulate an optimal control problem that seeks to minimize the total
system cost that includes the economic value of security risks and resources required
by countermeasures. We introduce an impulse control problem to provide efficient
control of the epidemic model compared with its continuous control counterpart.
Numerical experiments are used to corroborate the results.

Keywords SIR model • Information security • Epidemic process • Optimal
control • Impulse control

1 Introduction

Information spreading in computer and wireless networks have become faster, and a
greater number of people use their network access to retrieve financial information
and to manage their banking accounts to purchase goods online. At the same time,
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the wide applications of networks generate an increasing amount of security threats.
It will be able to disrupt computer functionalities, collect sensitive, confidential
information, and gain illegal access to private computer networks at a much larger
scale. The malware attack may lead to direct and indirect losses such as the cost of
repairing software and hardware and the recovery of compromised servers.

The self-propagation and replication of computer viruses are similar to those of
biological viruses [5, 6]. Once a virus invades the host cell, it copies itself, infects
the host and leaves it. Host cells are not always damaged by the action of the virus.
In a similar fashion, a computer virus generates new copies of itself, inject itself
into the code of other programs, the system memory, and distributes its copies into
a variety of communication channels. Such virus behavior can be captured by an
epidemic process which is described by a system of nonlinear differential equations
in classical Susceptible-Infected-Recovered (SIR) model.

Our work is related to previous studies in this area, including [2, 3, 13]. We
suppose that the network can be attacked by a heterogeneous source of malware
which captures the fact of coexistence of different types of exploits and vulnerability
of the existing computing systems. Our contribution to modeling, control, and
analysis of heterogeneous malware spreading is multi-fold. In current paper, first,
we model the dynamics of propagation of the malware in the network in case if both
types coexist in one host node. Second, we formulate an optimal control problem
and show the structure of the optimal strategies, which provides the minimum of
the aggregated system costs depends on the properties of value functions. Third,
we depart from the traditional continuous monitoring and control paradigm of
epidemics and investigate the impulse control problems where control can be only
applied at a finite number of times. Early, in [12], authors have analyzed that
according to a surviving probability different homogeneous groups of viruses can
preserve for a long period and provoke new attacks. Many examples of several waves
of spreading the identical malicious software in the computer and wireless networks
are well-known. As the examples of repeated virus epidemics, it can be considered
the attacks of Code Red, Code Red II and Conficker between 2001 and 2013 which
caused the damages of more than 200,000 of computers worldwide [8]. Due to
these reasons, it is possible to use a series of impulse control actions which can
be applied in certain time moments or adhere to the time interval. This technique
leads to eradication of infection at relatively low costs as well as the standard
methods of protection of networks. Based on the continuous model we presented
a complex model which include the system of differential equation to describe the
behavior of viruses and discrete system of impulses. As in previous research we
consider a multi-virus case and we derived the conditions for the eradication of
epidemics of malware for different cases of protection policies and compare costs
and effectiveness of impulse actions and standard method of resistance.

The paper is organized as follows. Section 2 presents the mathematical model
of epidemics and formulates the optimal control problem. Section 3, using Pontrya-
gin’s maximum principle, defines the structure optimal control policies and proof
main results. Section 4 formulate the mathematical model of epidemics in which we
apply antivirus in impulse form. Numerical examples will be presented in Sect. 5.
The paper is concluded in Sect. 6.
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2 Mathematical Model

In this section, we present a formulation of modified Susceptible-Infected-
Recovered (SIR) model for the network of N nodes, where two types of malicious
software spread at different speeds. According to the intensity and manner
of propagation of malicious software, this process resembles the spreading of
biological virus, and the classical SIR model needs to be adapted to describe the
epidemics of viruses in computer networks. Normally, as SIR model indicates,
all nodes in the network are divided into three groups: Susceptible .S/, Infected
.I/ and Recovered .R/ [2]. Susceptible is a group of nodes which do not contact
with infected nodes, but may be invaded by any forms of malicious software. The
Infected nodes have already been attacked by the malware and the Recovered is a
group of restored nodes.

Since two types of malware circulate in the network, the infected population
consists of several sub-population: a sub-population of nodes infected by the first
form of malware V1, the sub-population infected by the second form V2, and the
sub-population of nodes that are infected by both viruses. We model the epidemic
process as a system of nonlinear differential equations, where nS, nV1 , nV2 , nV12 , nR

correspond to the number of susceptible, infected and recovered nodes, respectively.
The total number of nodes in the network during the entire process remains constant
and equal to N, nS C nV1 C nV2 C nV12 C nR D N.

Let S.t/ D nS.t/
N , I1.t/ D nV1 .t/

N , I2.t/ D nV2 .t/
N , I12 D nV12 .t/

N , R.t/ D nR.t/
N as

a fraction of the Susceptible, the Infected by virus V1, V2, both viruses together,
and the Recovered nodes, respectively. At the beginning of the epidemic, at time
t D 0, the majority of the nodes belong to the Susceptible group, and a small fraction
of nodes is infected by different types of malware. Hence initial states are 0 <

S.0/ D S0; 0 < I1.0/ D I0
1 ; 0 < I2.0/ D I0

2 ; 0 < I12.0/ D I0
12; R.0/ D R0 D

1 � S0 � I0
1 � I0

2 � I0
12:

A susceptible node becomes infected whenever it is attacked by a replica of
malicious software, which is spread by the infected nodes. Variables ˇ1 and ˇ2

are at the rates of propagation of V1 and V2, respectively. We also suppose that, if
the node is infected by the malware V1, then with rate "ˇ2 it can be infected by the
second malware V2, and vice versa, if the node is infected with virus V2, then with
rate "ˇ1, it can be infected by V1, where variable " 2 Œ0; 1� is a rate that a node
infected by virus V1 will be infected by virus V2. If a susceptible node contacts with
a node infected by both viruses V1 and V2, then with rate ˇi it may be infected by
only one form of malware Vi, i D 1; 2.

Usually, a majority of nodes are protected by regular antivirus software which is
effective against known viruses. Then, we can interpret a self-recovery rate 
1 for
virus V1 or 
2 for virus V2, which shows the rate that an infected node from sub-
populations I1, I2 or I12 recovers by using permanent antivirus software, hence these
nodes return to subgroup Susceptible again. However, periodically, the epidemics of
new computer viruses appear, and the regular antivirus software is often inefficient
against the new or unknown type of malicious software. In this case, special patches
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can be applied to protect the network. We define u1.t/; u2.t/; u3.t/ as the fractions
of subgroups I1, I2, I12 protected by special antivirus patches.

dS

dt
D �ˇ1S.I1 C I12/ � ˇ2S.I2 C I12/ C 
1I1 C 
2I2I

dI1

dt
D ˇ1S.I1 C I12/ � "ˇ2I1.I2 C I12/ � 
1I1 C 
2I12 � .1 � "ˇ2/u1I1I

dI2

dt
D ˇ2S.I2 C I12/ � "ˇ1I2.I1 C I12/ � 
2I2 C 
1I12 � .1 � "ˇ1/u2I2I

dI12

dt
D "ˇ1I2.I1 C I12/ C "ˇ2I1.I2 C I12/ � .
1 C 
2/I12 � u3I12I

dR

dt
D .1 � "ˇ2/u1I1 C .1 � "ˇ1/u2I2 C u3I12:

(1)

Objective Function The objective functional of the system is designed to minimize
the aggregated costs in the time interval Œ0; T�. At any given t, the overall system
costs include treatment costs f1.I1.t//, f2.I2.t//, f3.I12.t// and protection costs
h1.u1.t//, h2.u2.t//, h3.u3.t//. The treatment costs are inflicted by the necessity of
repairing of the infected nodes; protection costs are generated by the consumption
of resources for the application of antivirus patches. Functions fi.t/ are assumed to
be non-decreasing and twice-differentiable, such as fi.0/ D 0, fi.Ii/ > 0 for Ii > 0

i D 1; 2; 3. Functions hi.ui.t// are increasing and twice differentiable in ui.t/ such
that hi.0/ D 0, hi.ui/ > 0, when ui > 0, u 2 Œ0; 1�, i D 1; 2; 3. Function g.R/

is non-decreasing and differentiable function and g.0/ D 0 presents benefits of the
system. The aggregated system costs are defined by the following functional:

J.u1; u2; u3/ D
Z T

0

3X

iD1

.fi.Ii.t// C hi.ui.t/// � g.R/dt; (2)

and the optimal control problem is to minimize the functional in the time interval
Œ0; T�, i.e., min

u1;u2;u3

J.u1; u2; u3/: In this work, we focus on the open-loop type of

control laws. Hence, we use Pontryagin’s maximum principle to characterize the
optimal control in next section. This framework can be extended to the case on n
viruses.

3 Structure of Optimal Control

We use Pontryagin’s maximum principle [2, 10] to find the optimal control
u D .u1; u2; u3/ which yields the minimum solution to the functional (2)
for the problem described above. We construct the adjoint system with state
�S; �I1 ; �I2 ; �I1;2 ; �R as follows:
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d�S

dt
D ˇ1.�S � �I1 /.I1 C I12/ C ˇ2.�S � �I2 /.I2 C I12/I

d�I1

dt
D f 01 C ˇ1S.�S � �I1 / C 
1.�I1 � �S/ C u1.1 � "ˇ2/.�I1 � �R/

"ˇ1I2.�I2 � �I12 / C "ˇ2.I2 C I12/.�I1 � �I12 /I
d�I2

dt
D f 02 C ˇ2S.�S � �I2 / C 
2.�I2 � �S/ C u2.1 � "ˇ1/.�I2 � �R/C

"ˇ2I1.�I1 � �I12 / C "ˇ1.I1 C I12/.�I2 � �I12 /I

(3)

d�I12

dt
D f 03 C "ˇ2I1.�I1 � �I12 / C "ˇ1I2.�I2 � �I12 / C 
2.�I12 � �I1 /C

ˇ1S.�S � �I1 / C ˇ2S.�S � �I2 / C 
1.�I12 � �I2 / C u3.�I12 � �R/I
d�R

dt
D �g0.R/;

(4)

together with the condition R.t/ D 1 � S.t/ � I1.t/ � I2.t/ � I12.t/, and the
transversality condition: �S.T/ D �I1 .T/ D �I2 .T/ D �I12 .T/ D �R.T/ D 0:

As Pontryagin’s maximum principle states, there exist continuous and piecewise
continuously differentiable co-state functions �i that at every point t 2 Œ0I T�, where
u1, u2 and u3 are continuous, satisfy (4) and transversality conditions. In addition,
we have �.t/ D .�S.t/; �I1 .t/; �I2 .t/; �I12 .t/; �R.t//; and

.u1; u2; u3/ 2 arg max
u1;u2;u3

H.�; S; I1; I2; I12; R; u1; u2; u3/: (5)

Here, u1; u2; u3 are feasible controls.

Proposition 1 1) If hi is strictly convex function then exists a time moments t0; t1 2
Œ0; T�, 0 � t0 � t1 � T such that

ui.t/ D
8
<

:

1 ; on 0 < t � t0I
is continually decreasing function; on t0 < t � t1I
0 ; on t1 � t � TI

(6)

2) If hi is concave function then exists a time moment t 2 Œ0; T� such that

ui.t/ D
�

1; for 0 < t < tI
0; for t < t < T:

(7)

The proof of the proposition follows the same technique as used in [2, 7].
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4 Impulse Control Problem

In this section, we present as a discussion and describe a controlled epidemic model
where the network of N nodes is protected from the propagation of malicious
software using a series of impulse application of antivirus patches. The analysis
of the behavior of computer viruses in [12] has shown that a small fraction of
the infected nodes might be survived on the Internet and can cause new waves
of epidemics. As in previous research [7, 11], we consider a multi-virus case
in which two forms of malicious software spread in the network at different
speeds. Additionally, we assume that an epidemic process in the network occurs
periodically. Hence, the iterative epidemic process can be formulated as a combined
multi-virus model with a series of impulses which suppress the increasing trend
of the infected nodes [4, 14]. We use model (1) to present an impulse control
problem for episodic attacks of the viruses and obtain the impulse controls to
eradicate malware epidemics for different cases. Below, we formulate a model with
the application of a series of impulse control strategies to restrain the spreading of
viruses. We suppose that these impulses occur at time �1; : : : ; �ki , where ki describes
number of activation of impulse controls, index i indicates the type of malware. We
also assume that on the time intervals .�j�1; �j� system (1) define the behavior of
malware in the network. Below we present a system of equations which describes
state of the system just after time moments �j at �Cj , j D 1; : : : ; ki,

S.�Cj / D S.�j/;

I1.�
C
j / D I1.�j/ � q1.�j/I1.�j/;

I2.�
C
j / D I2.�j/ � q2.�j/I2.�j/;

I12.�
C
j / D I12.�j/ � q3.�j/I3.�j/;

R.�Cj / D R.�j/ C q1.�j/I1.�j/ C q2.�j/I2.�j/ C q3.�j/I12.�j/:

(8)

We define qi.�/, i D 1; 2; 3 as a control parameter which corresponds to the
discrete time application of special antivirus patches at time moments �1; : : : ; �ki ,
i D 1; 2; 3. At each time moment, qi is a fraction of treated nodes. Here q1 D
.q1

1; : : : ; qk1

1 /, q2 D .q1
2; : : : ; qk2

2 /, q3 D .q1
3; : : : ; qk3

3 / are the components of control
vectors correspond to the set of time moments �1; : : : ; �ki , cji

1 2 Œ0; uji
1 �, cj

2 2 Œ0; uji
2 �,

cj
3 2 Œ0; uji

3 �, where uji
1 , uji

2 , uji
3 are maximum values of control. Functions qi D

kiP

jD1

cj
iı.t � �j/, i D 1; 2; 3 where ı.t � �j/ is Dirac function, ci is the value of impulse

[1] cause discontinuous jumps in the state of the systems.
The objective function of the combined system (8) is constructed to evaluate the

aggregated costs on the time interval Œ0; T� including the costs of control impulses.
The aggregated costs for continuous system (1) are defined as follows: at any given
t ¤ �j; p D 1; : : : ; ki, the overall system costs include infected costs f1.I1.t//,
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f2.I2.t//, f3.I12.t//. Functions fi are non-decreasing and twice-differentiable, such
that fi.0/ D 0, fi.Ii.t// > 0 for Ii.t/ > 0 for t 2 .�p�1; �j�, for all i, i D 1; 2; 3.
For system (8), we define the infected costs as functions hi.q

j
i.�
C
j //, p D 1; : : : ; ki,

where hi.q
j
i.�
C
j // > 0, qj

i.�
C
j / > 0 for i D 1; 2; 3 which are generated by the

consumption of the resources for the application of antivirus or stationary security
patches. Infected costs consist of damages caused by viruses. The aggregated system
costs are defined by the functional:

J.q1; q2; q3/ D
TZ

0

3X

iD1

fi.Ii.t//dt C
k1X

jD1

h1.q1.�Cj // C
k2X

jD1

h2.q2.�Cj // C
k3X

jD1

h3.q3.�Cj //:

(9)

4.1 Structure of the Control

In this section, we present a structure of impulse control application of treatment
patches which is based on the concept of the basic reproduction number and we use
it to define a rule for the activation of control impulses. In very similar case we focus
on functions Ii.t/ which are monotonically increasing for all i, PIi.t/ > 0 and show
that, to protect the network from the epidemic outbreaks that occur periodically,
we have to keep functions Ii.t/ below certain critical values Icrit

i . Hence the control
impulses turn on when conditions Ii.t/ � Icrit

i ; i D 1; 2; 3 are satisfied.
Another way to apply impulse treatment is the usage of critical lines generated by

the envelope curves Li.t/ (index i corresponds to the enumeration of viruses) [1].
We construct an envelope taking into account the concept of basic reproduction
number which is defined as the expected number of new infections from one
infected individual in a fully susceptible population through the entire duration of
the infectious period [1]. This metric is significant, and it helps to determine whether
or not an infectious disease can spread through a population. The reproduction
number is defined as the expected number of secondary infections that one infected
person would produce through the entire duration of the infectious period [9]. The
reproduction numbers for virus V1, V2 and both viruses simultaneously are defined
respectively as

R01 D ˇ1 C 
2


1 C "ˇ2

; R02 D ˇ2 C 
1


2 C "ˇ1

; R03 D ."ˇ1 C "ˇ2/


1 C 
2

: (10)

Then, we define the envelop curves on the interval Œ0; T� as L1.t/ D R01S.t/; L2.t/ D
R02S.t/; L3.t/ D R03S.t/: According to system (1) and from the definition of
envelops Lj.t/, we have:

I1.t/ <
ˇ1 C 
2


1 C "ˇ2

S.t/; I2.t/ <
ˇ2 C 
1


2 C "ˇ1

S.t/; I12.t/ <
."ˇ1 C "ˇ2/


1 C 
2

S.t/: (11)
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Conditions (11) allow us to keep the number of the infected below critical value
and, moreover, they guarantee a decrease in the infected populations of the nodes in
the network.

Then, we define the series of time moments �j; p D 1; : : : ; ki, at which the series
of control impulses are activated according to following conditions:

qi.�j/ D
�

0; Ii.t/ < Li.t/;
uj

i; Ii.t/ � Li.t/; i D 1; 2; 3:
(12)

Here, uj
i 2 Œ0; 1�; i D 1; 2; 3, j D 1; : : : ; ki is defined as the maximal value of

applied control impulses. Values Li.t/ can be replaced by Icrit
i in conditions (12).

5 Numerical Simulations

In this section, we present numerical examples to corroborate the obtained theoret-
ical results. We depict the optimal antivirus policies for continuous and impulse
controls with different system parameters. We use the following parameters for
initial states and transition rates: S0 D 0:45, I0

1 D 0:2, I0
2 D 0:3, I0

12 D 0:05,
R0 D 0. The infected rates for viruses V1 and V2 are equal to ˇ1 D 0:35, ˇ2 D 0:4,
respectively. The recovery rates are 
1 D 0:001, 
2 D 0:002. The interinfection rate
is " D 0:5.

We let fi.Ii/ D aiIi, where a1 D 5, a2 D 6, a12 D 10. Treatment costs functions
in the continuous control problem are taken as hi.ui/ D ziu2

i , where z1 D 0:35,
z2 D 0:4, z12 D 0:5 and for impulse control case, the costs functions are
hi D ziciIi.�i/, where z1 D 10, z2 D 15, z12 D 18, c1 D 0:4, c2 D 0:45, c12 D 0:5.

For the uncontrolled case, we have that the proportion of the infected with V1

reaches its maximum Imax
1 D 0:2411 at t D 3, and the proportion of the infected

with V2 reaches its maximum Imax
2 D 0:4084 at t D 3:9. The maximum value of the

fraction of nodes simultaneously infected by V1 and V2 is Imax
12 D 0:8137 at t D 15.

We choose the following example to illustrate the influence of system parameters
of SIR model in the case of the concave costs functions. Considering the same
initial data for S0, I0

1 , I0
2 , I0

12, R0, in Fig. 1, we manipulate with the infection rate
ˇi and �. Figure 2 shows the differences between aggregated system costs in the
controlled and uncontrolled case. To illustrate the special properties of impulse
treatment strategies, we examine examples of SIR system which models the process
of propagation of malicious software. The impulse treatment is effective if we
succeed to keep the number of the susceptible below a critical value which is
generated by the envelope curves Li.t/ (index i corresponds to the enumeration
of viruses) or certain critical values [1]. The evolution of the system under the
application of impulses is presented in Fig. 3.
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Fig. 1 Structure of
continuous control with
different values of ˇi and "

Fig. 2 Aggregate system
costs for SIR model with
continuous control.
Uncontrolled case: J D 716,
controlled case: J D 55

We obtain that during the time period Œ0; T� the fractions of the infected nodes
reach the next maximum values: Imax

1 D 0:2461 at t D 2:8, Imax
2 D 0:4172 at

t D 3:5, Imax
12 D 0:3342 at t D 14 (Fig. 3). Figure 4 demonstrates the response of

system (8) to the conditions (12) and Fig. 5 shows the aggregated system costs.

6 Conclusion

We have developed an epidemic model to capture the coexistence of heterogeneous
malware and the exposure of computer systems to multiple vulnerabilities. We have
formulated an optimal control problem to study the tradeoffs between security risks
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Fig. 3 Evolution of the
system under impulse control

Fig. 4 Evolution of the
system under impulse control
with application of treatments
patches periodically. Curves
L1, L2, L3 correspond to
envelops which define critical
values

and the control investment. By using Pontryagin’s maximum principle, we have
obtained different control policies and their structures to minimize the aggregated
cost. In addition, we have employed impulse control methods to study the control of
epidemics at a finite number of times. We have used numerical experiments to show
the evolution of the system and the impact of parameters and the initial data on the
control and system behaviors. As future work, we would extend this framework to
scale-free networks, and incorporate the degree of the nodes into the optimal control
framework.
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Fig. 5 SIR model with
impulse control. Aggregate
system costs: J D 933 in
uncontrolled case, J D 154 in
controlled case
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An Experimental Comparison of Routing
and Spectrum Assignment Algorithms
in Elastic Optical Networks

Haitao Wu, Fen Zhou, Zuqing Zhu, and Yaojun Chen

Abstract Routing and Spectrum Assignment (RSA) is the fundamental problem in
Elastic Optical Networks (EONs), which is an NP-complete problem. In this paper,
we compare the performances of two typical RSA algorithms namely Spectrum-
First and Route-First, and put forward a connection between the performances
and the request distributions. The numerical results demonstrated that even though
the Spectrum-First RSA algorithm outperforms significantly the Route-First RSA
algorithm under concentrated distribution, the latter performs pretty better under
uniform distribution, which is however somewhat different from that demonstrated
in the literature.
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1 Introduction

Recently, communication traffics of internet rapidly raised up both in quantity and
quality of the requests [1]. Due to its flexibility and efficiency of the utilization of
spectrum resource, Elastic Optical Networks (EONs) are considered to be the most
promising communication network architecture in next decade [9]. In an EON, the
underlying network topology G.V; E/ consists of the communication nodes set V ,
the optical fiber links set E connecting these nodes and a set of spectrum slots lying
in each fiber link e 2 E. Generally, we consider the problem of provisioning a set
of communication requests, each of which is composed of a source node s 2 V and
one (or several) destination node(s) d 2 V (or D 	 V) for unicast (or multicast)
with an amount of spectrum slots for satisfying the bandwidth requirements. The
underlying Routing and Spectrum Assignment (RSA) problem [4] is how to arrange
the routes and assign corresponding spectrum slots to it, which should be contiguous
in the spectrum domain. In practice, massive communication requests occur at one
underlying network and the spectrum slots assigned to any two requests, whose
routes share common fiber links, should not be overlap in the spectrum domain due
to the restriction of optical layer. Because the spectrum resource is critical in EONs,
RSA becomes the fundamental problem of EONs, which has been proved to be an
NP-complete problem [5].

Obviously, the RSA algorithm directly determines the performance of EONs.
A scale of heuristic algorithms of RSA were studied in literature (e.g., [1, 2, 6, 7]).
From the points of view of routes and spectrum slots, these algorithms can be
classified into two categories:

• Route-First RSA: In this kind of RSA, an algorithm separates the RSA problem
into two phases: routing phase and spectrum assignment phase. In the first phase,
the algorithm regularly applies Dijkstra’s algorithm (or some approximation
algorithm for finding Steiner tree) in the underlying network to route the unicast
(or multicast) requests. Then, the spectrum assignment phase is accomplished
by leveraging some graph coloring or first-fit algorithm under some orders of
the communication requests (for instance the number of destination nodes for
multicast requests, or the size of the requested bandwidth). Besides, the routing
may be determined by some protocols or high-level specifications in optical
networks [8].

The Route-First RSA algorithms always adopt the shortest path at routing
phase, which reduces the number of fiber links used. Thus, we call the algorithms
route-first. Additionally, the route of each communication request is fixed or
already known before the spectrum assignment phase, which means the globally
information of the route intersections is clear. Though that, the Route-First
RSA algorithms can utilize some efficient coloring or assignment algorithms to
optimize the spectrum resources.

• Spectrum-First RSA: In this pattern of RSA, the algorithms will first sort the
requests in a certain order, for example in the descending order of bandwidth.
Then, according to the order, the algorithms select the first-fit spectrum slots,
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whose maximum slot index in the spectrum domain is minimum and the light
path consisting of these slots connects the source node to the destination node(s)
in the underlying network, which may not be shortest path any more. Afterward,
the algorithms assign the corresponding spectrum slots and route the requests,
which incorporates the routing and spectrum assignment simultaneously.

The Spectrum-First RSA always gives priority to optimize the spectrum slot
index and takes the current state of underlying network into account when
arranging the next requirement, which makes less spectrum fragmentation to
consolidate the spectrum utilization in EONs.

However, the two above categories of algorithms obviously have distinct draw-
backs. For the Route-First RSA, the optimization at the spectrum assignment phase
has a close connection with graph coloring, which is extremely difficult. Thus,
although they reduce the total usage of fiber links and own the globally intersection
information, the spectrum assignment will cause fragmentation in the spectrum
domain, which makes the final result not ideal. For the Spectrum-First RSA, the
final result depends on the pre-defined order of requests deeply and the routing
path for one requirement may be much longer than the shortest path, which may
occupy too many fiber links that cloud be utilized by other requests. The theoretical
comparison of the two types of RSA algorithms is extremely complicated, and few
works involve in this topic in literature even with the numerical simulations.

In this paper, we proposed an experimental comparison of the two typical RSA
algorithms under different request distributions. Our numerical results demonstrated
that no category can always dominate the other and each category is able to show
its own advantage under a certain distribution, which is new compared to the
literature. As this comparison is complicated, we just consider the off-line unicast
communication requests in this paper and assume the spectrum resources are enough
to serve all the requests (i.e., no blocking). The numerical results showed that there
is a closed relationship between the distribution probability and the performance,
which inspires more theoretical analyses along with this connection.

In the next section, we will introduce the network architecture and fundamental
RSA problem in EONs.

2 The Architecture of EONs

Generally, we use a directed graph G.V; E/ to represent an underlying topology
of EON, where V and E denote the sets of nodes and fiber links respectively. Via
Optical Orthogonal Frequency Division Multiplexing (O-OFDM) technology [3],
a bunch of narrow-band (12.5 GHz or less) Frequency Slots (FS, i.e., the spectrum
slots as mentioned above) lie in each directed fiber link as shown in Fig. 1.

Due to the finer granularity and well anti-interference, EONs can greatly improve
the utilization of spectrum resources compared to the traditional wavelength division
multiplexing (WDM) [10]. The bandwidth required by one communication request
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Fig. 1 FS and guard bands in one fiber link of EONs

may correspond to a number of FS’ and these FS’ assigned to the communication
requests should be contiguity in the spectrum domain. The two FS’ sets assigned to
the two communication requests whose routes share some common links must be
separated in the spectrum domain by guard bands (i.e., a number of FS’ as shown in
Fig. 1) to mitigate the mutual interference. Next, we present the following notations
and formally give out the above constraints:

Necessary Notations

• G.V; E/: The underlying EON, where V is the set of nodes, and E is the set of
the direct edges link fibers.

• N
C: The set of positive natural numbers representing the FS index set in the

spectrum domain lying in each link e 2 E.
• R: The set of communication requests in G.V; E/.
• Ri.si; di/: Ri 2 R represents the i-th communication request,where si; di 2 V is

the source node and destination node respectively.
• Rw

i : The integer weight signifies the number of contiguous FS (bandwidth
requirement) required by request Ri.

• Pi: The set of all the possible directed light paths from si to di in G.V; E/.
• Pi: Pi 2 Pi is the directed light path assigned to Ri.
• Wi: Wi 	 N

C is the set of contiguous FS assigned to Ri.
• Rb

i : Rb
i 2 N

C is the beginning index of Wi.
• Ra

i : Ra
i 2 N

C is the ending index of Wi.
• CG: CG 2 N

C is the guard band consisting of constant number of FS.

The RSA problem is subject to the following constraints:

• Bandwidth Requirement constraint. The number of FS’ assigned to each
request should satisfy the bandwidth requirement, i.e., the cardinality of Wi

assigned to a Ri must be equal to its weight:

jWij D Rw
i ; 8Ri 2 R (1)

• Spectrum Contiguity constraint. The FS’ assigned to one request Ri must be
contiguous in N

C. Then, Wi can be expressed as fRb
i ; Rb

i C 1; : : : ; Ra
i � 1; Ra

i g.
This is a physical layer constraint for all-optical communications in EONs.

• Spectrum Continuity constraint. The FS’ assigned to Ri in each link e on the
light path Pi should be consistent, i.e., Wi must be express as the same set in each
e 2 Pi.
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• Guard Band constraint. To mitigate mutual interference, when Pi \Pj ¤ ;, the
distance of Wi and Wj in the spectrum domain should not be less than CG:

The goal of RSA is to select appropriate Pi and Wi for each Ri to satisfy the
four constraints above and optimize the objective function (2), i.e., minimize the
maximum FS’ index assigned.

Objective Function

min max
s2.[Wi/

s .RSA/ (2)

3 Two Typical RSA Algorithms in EONs

In this section, we will introduce the details of two typical RSA algorithms, which
represent the two categories of RSA algorithms respectively, and use them as our
benchmark algorithms.

3.1 Route-First RSA

The authors of [1] first studied the RSA problem in EONs and given a shortest path
with maximum spectrum reuse (SPSR) algorithm to minimize the maximum FS’
index used in an EON, which is a typical algorithm of Route-First RSA algorithms
and showed to be near-optimal. The main idea of SPSR is as following: given a set of
requests R, each Ri 2 R is routed by the shortest path denoted by Pi. Thus, together
with its bandwidth weight Rw

i , each Ri can be expressed as a pair < Pi; Rw
i >.

Intuitively, the more the FS’ reuse can be achieved, the more we can reduce the
maximum FS’ index. Hence, the authors of [1] proposed the SPSR algorithm which
combines the shortest path routing with the maximum reuse spectrum allocation
(MRSA) algorithm shown in Algorithm 7.

Algorithm 7: Maximum Reuse Spectrum Allocation (MRSA)

1 Sort the requests Ri 2 R in the descending order of the Rw
i ;

2 while There exist request which is not assigned FS do
3 J ;;
4 Take the request with maximum bandwidth (say Rw

j );
5 Accommodate Ra

i using the first available FS;
6 J J [ Pi;
7 for all the remaining requests do
8 if Pi is disjoint with all paths in J then
9 Accommodate < Pi; Rw

i > using the first available contiguous FS;
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3.2 Spectrum-First RSA

The authors of [2] incorporated a layered approach to design an integrated
RSA algorithm in EONs. The simulation results in [2] demonstrated that the
approaches achieved efficient network planning in terms of spectrum utilization. For
an underlying network G.V; E/, the authors construct auxiliary graphs as follows:
They assume that there are F FS’s (F is big enough) on each link and define a
spectrum-usage bit-mask beŒ1 : : : F� for each link e 2 E, and beŒj� D 1, if the jth FS
on link e is taken, otherwise, beŒj� D 0. Given a request R with bandwidth Rw, the
kth layered graph Gk.Vk; Ek/ is constructed by setting the vertex set Vk D V and
Ek D fe W PkCRw�1

jDk beŒj� D 0; e 2 Eg.
In other words, for a request R, the link e 2 E belongs to Ek if and only if

those contiguous FS’ index from kth to .k C Rw � 1/th are not assigned before R.
Algorithm 8 gives the integrated RSA algorithm with layered approach.

As mentioned above, in practice, numerous communication requests simultane-
ously occur at one underlying network. Algorithm 9 shows how to incorporate the
integrated RSA algorithms for the network planning. The previous work [2] has
demonstrated that the Spectrum-First RSA always achieved more efficient spectrum
utilization compared to Route-First RSA algorithms.

4 Performances Comparison Under Different Distributions

In this section, we conduct several performance comparisons of the two benchmark
algorithms presented before. Based on the simulations circumstance of [1, 2], our
underlying networks are all cycle topological structures. We assume the bandwidth

Algorithm 8: Integrated RSA Algorithm with the Layered Approach
Input : The underlying network G.V; E/, a request R.s; d; Rw/, the maximum number of

FS’s on each link F, and the spectrum-usage bit-masks fbe; e 2 Eg
Output: Light-path P and assigned FS’ set W for R

1 P ;;
2 W  ;;
3 for k=1 to F � Rw C 1 do
4 insert all v 2 V in Gk.Vk ; Ek/ as vk;
5 for all links e 2 E do
6 if sum.beŒk : : : .kC Rw � 1/�/ D 0 then
7 insert e in Gk.Vk ; Ek/ as ek;

8 if sk can reach dk then
9 apply Dijkstra algorithm in Gk.Vk ; Ek/ for P D sk ! dk;

10 W  fFSk ; : : : ; FSkCRw
�1g;

11 break;

12 return P and W;
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Algorithm 9: Spectrum-First RSA
Input : The underlying network G.V; E/, the requests set R D fRi.si; di; Rw

i /g, and the
spectrum-usage bit-masks fbe; e 2 Eg

Output: RSA solution of R with Light-path Pi and assigned FS’ set Wi for Ri, 8i
1 initialize fbe; e 2 Eg;
2 sort requests in R in descending order of Rw

i ;
3 for all Ri 2 R do
4 apply Algorithm 8 to Ri and G.V; E/;
5 get Pi and Wi for Ri;
6 update fbe; e 2 Eg;

required by each request, Rw
i , is uniformly distributed within {1,2,. . . ,10}. The guard

band CG are set as 1,2,3 under different simulations.
Our main comparisons are focused on how the request distributions can impact

the final performances of the two typical algorithms. Two distributions are consid-
ered in our comparisons: uniform distribution and concentrated distribution. Given
a underlying network G.V; E/ of cycle topology of order n, (i.e., G.V; E/ is a
n-cycle), assuming its vertices are labeled along with clockwise Œ1; 2; : : : ; n; 1�, the
definitions of uniform distribution and concentrated distribution are as following:

• Uniform Distribution: For each request R.s; d/, the source node s and destina-
tion node d are uniformly selected from Œ1; 2; : : : ; n�

• Concentrated Distribution: For each request R.s; d/, the source node s and
destination node d are uniformly selected from Œ1; 2; : : : ; b.n=2/c�, i.e., both of s
and d are concentrated on half of the cycle.

All simulations were run on a computer with 3.2 GHz Intel(R) Core(TM)
i5-4690S CPU and 8 GBytes RAM.

4.1 Comparisons in Uniform Distribution

We conducted our simulations on cycles of order 19 and 59 with setting CG D
1; 2; 3 and jRj D 1000; 2000; 3000; 4000; 5000 respectively. The numerical results
are shown in Figs. 2, 3, and 4.

The above figures showed that under uniform distribution, Route-First RSA
performs pretty well and is always able to save at least 6.89% spectrum compared
to the Spectrum-First. The average spectrum saving of Route-First RSA over
Spectrum-First under different guard band sizes for 19-cycle and 59-cycle are
displayed in Table 1. It is shown that the spectrum savings increases as the size
of guard band grows and can be more than 10%. This observation is different from
the numerical results demonstrated in [2], which is mainly due to the choice of the
request distributions. Thus, we will next try the concentrated distribution.
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Fig. 2 Guard band CG D 1. (a) 19-cycle. (b) 59-cycle
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Fig. 3 Guard Band CG D 2. (a) 19-cycle. (b) 59-cycle

4.2 Comparisons in Concentrated Distribution

Similar to above, we also conducted our simulations on cycles of order 19 and 59
with setting CG D 1; 2; 3 and jRj D 1000; 2000; 3000; 4000; 5000 respectively.
The numerical results are shown in Figs. 5, 6, and 7.

The above figures showed that under concentrated distribution, the Spectrum-
First RSA always outperforms the Route-First RSA when the number of requests is
growing, which agrees well with the results demonstrated in [2]. In this case, the
Spectrum savings of the Spectrum-First over the Route-First RSA under different
guard band sizes for 19-cycle and 59-cycle is up to 57.98%, which is displayed in
Table 2.
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Fig. 4 Guard band CG D 3. (a) 19-cycle. (b) 59-cycle

Table 1 Spectrum saving of
Route-First over
Spectrum-First (uniform
distribution)

CG=1 CG=2 CG=3

19-cycle 6.89% 7.86% 9:2%

59-cycle 7.10% 9.54% 10:32%

1000 2000 3000 4000 5000
0

2,000

4,000

6,000

8,000

10,000

The number of requests

M
ax

im
um

F
S’

In
de

x

Route-First
Spectrum-First

1000 2000 3000 4000 5000
0

2,000

4,000

6,000

8,000

10,000

12,000

The number of requests

M
ax

im
um

F
S’

In
de

x

Route-First
Spectrum-First

a b

Fig. 5 Guard band CG D 1. (a) 19-cycle. (b) 59-cycle

5 Conclusion

In this paper, we gave an experimental comparison between two typical routing
and spectrum assignment algorithms. The numerical results demonstrated that even
though the Spectrum-First RSA algorithm outperforms significantly the Route-First
RSA algorithm under concentrated request distribution, the latter performs pretty
better under uniform request distribution, which is however somewhat different from
that demonstrated in the literature. These results are consistent with our preliminary
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Fig. 6 Guard band CG D 2. (a) 19-cycle. (b) 59-cycle
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Fig. 7 Guard band CG D 3. (a) 19-cycle. (b) 59-cycle

Table 2 Spectrum saving of
Spectrum-First over
Route-First (concentrated
distribution)

CG=1 CG=2 CG=3

19-cycle 51.98% 57.98% 56.42%

59-cycle 45.26 56.10% 55.01%

theoretical results, which inspires us to analyze in depth this phenomenon by
theoretical proof in the future work.

References

1. Y. Wang, X. Cao and Y. Pan, “A study of the routing and spectrum allocation in spectrum-
sliced Elastic Optical Path networks,” INFOCOM, 2011 Proceedings IEEE, Shanghai, 2011,
pp. 1503–1511. doi: 10.1109/INFCOM.2011.5934939



An Experimental Comparison of Routing and Spectrum Assignment. . . 221

2. Xiahe Liu, L. Gong and Z. Zhu, “Design integrated RSA for multicast in elastic optical
networks with a layered approach,” 2013 IEEE Global Communications Conference (GLOBE-
COM), Atlanta, GA, 2013, pp. 2346–2351. doi: 10.1109/GLOCOM.2013.6831424

3. M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone and S. Matsuoka, “Spectrum-efficient
and scalable elastic optical path network: architecture, benefits, and enabling technologies,”
in IEEE Commun. Mag., vol. 47, no. 11, pp. 66–73, Nov. (2009). doi:10.1109/MCOM.2009.
5307468

4. X. Wan, N. Hua and X. Zheng, “Dynamic routing and spectrum assignment in spectrum-
flexible transparent optical networks,” in IEEE/OSA Journal of Optical Communications and
Networking, vol. 4, no. 8, pp. 603–613, Aug. 2012. doi: 10.1364/JOCN.4.000603

5. S. Shirazipourazad, C. Zhou, Z. Derakhshandeh and A. Sen, “On routing and spectrum
allocation in spectrum-sliced optical networks,” INFOCOM, 2013 Proceedings IEEE, Turin,
2013, pp. 385–389. doi: 10.1109/INFCOM.2013.6566800

6. L. Gong, X. Zhou, X. Liu, W. Zhao, W. Lu and Z. Zhu, “Efficient resource allocation for
all-optical multicasting over spectrum-sliced elastic optical networks,” in IEEE/OSA Journal
of Optical Communications and Networking, vol. 5, no. 8, pp. 836–847, Aug. 2013. doi:
10.1364/JOCN.5.000836

7. K. Christodoulopoulos, I. Tomkos and E. A. Varvarigos, “Routing and Spectrum Allocation
in OFDM-Based Optical Networks with Elastic Bandwidth Allocation,” Global Telecom-
munications Conference (GLOBECOM 2010), 2010 IEEE, Miami, FL, 2010, pp. 1–6. doi:
10.1109/GLOCOM.2010.5684008

8. M. Andrews and L. Zhang, “Wavelength Assignment in Optical Networks with Fixed Fiber
Capacity,” Automata, Languages and Programming,Volume 3142 of the series Lecture Notes
in Computer Science pp 134–145

9. Q. Wang and L. K. Chen, “Performance Analysis of Multicast Traffic over Spectrum Elastic
Optical Networks,” in Optical Fiber Communication Conference, OSA Technical Digest
(Optical Society of America, 2012), paper OTh3B.7.

10. B. Kozicki, Hidehiko Takara, Toshihide Yoshimatsu, Kazushige Yonenaga and M. Jinno,
“Filtering characteristics of highly-spectrum efficient spectrum-sliced elastic optical path
(SLICE) network,” Optical Fiber Communication - incudes post deadline papers, 2009. OFC
2009. Conference on, San Diego, CA, 2009, pp. 1–3. doi: 10.1364/NFOEC.2009.JWA43

doi: 10.1109/MCOM.2009.5307468
doi: 10.1109/MCOM.2009.5307468


Robust Power Modulation for Channel State
Information Exchange

Chao Zhang, Vineeth Varma, and Samson Lasaulce

Abstract This contribution is on the framework of a wireless network with
multiple interfering transmitter-receiver pairs. We study the case where there is
no direct communication channel between the multiple transmitters and the system
is completely distributed (in terms of information available and decision making).
Exchanging local channel state information (CSI) among the transmitters is one
solution to the problem of improving the efficiency of the network. We introduce
a novel power modulation scheme that facilitates reliable exchange of local CSI
through the signal power strength assuming feedback of received signal strength
indicator from each receiver to its transmitter. Numerical results demonstrate the
value of our approach.

Keywords Distributed power control • Interference channel • Iterative water-
filling algorithm • Global channel state information • Power domain channel
estimation

1 Introduction

This contribution is in the framework of an interference network, i.e., a wireless
network with multiple transmitter-receiver pair that cause interference with each
other. Typically, these transmitting and receiving devices are distributed in decision
making and possibly also in terms of the information available. One of the major
challenges in such networks is designing algorithms or procedures for controlling
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the transmit power levels of the wireless signals in order to improve the data
rate (or other relevant performance metrics). The iterative water-filling algorithm
(IWFA) [1–3] is a state-of-the art technique which relies only on locally available
information, the individual signal-to-interference plus noise ratio (SINR), and has a
low computational complexity. On the other hand, one drawback of IWFA and many
other similar distributed and learning algorithms (see e.g., [4–6]) is that convergence
is not always ensured [3] and the result is typically globally inefficient.

To exploit the available feedback signal efficiently, a novel technique is given
by [7]. In [7], instead of using local observations (namely, the SINR feedback
realizations or received signal strength indicator (RSSI) realizations) to allow the
transmitters to converge to a Nash point, one can use them to acquire global
channel state information (CSI). To obtain global CSI, the key idea in [7] is
to exploit the transmit power levels as information symbols and the interference
as a communication mean or channel for the transmitters. However, the power
modulation scheme proposed in [7] results in non-negligible decoding errors.
A novel technique is proposed in this paper which allows to improve the decoding
efficiency, i.e., to estimate the symbol coded in the transmitted power of interfering
users more precisely. Furthermore, it is interesting to note that the mapping method
in [7] is only a special case of the novel technique in this paper.

The chief contributions and novelty of this work are as follows:

I We introduce the novel idea of power modulation by considering the property
of the RSSI measurements and the decoding rule. This allows the transmitter to
estimate the transmitted power of interfering transmitters more easily.
I If local CSI is perfectly known by each user, the conditions to completely
reconstruct the transmitted power of the interfering transmitters are given.
I The proposed technique accounts for noise in the RSSI measurements (the
corresponding modeling is provided in Sec. II), while IWFA-like algorithms
typically assume noiseless measurements (with a few exceptions [3, 8, 9]).
I We also provide numerical simulations that justify the proposed scheme.

2 System Model

We consider a wireless network with K � 2 pairs of interfering transmitters and
receivers (each pair will be referred to as a user). The technique is described for the
case of two users and for a single band for ease of exposition, but an extension of
this to a larger number of users or bands is possible as explained in [7].

We denote the channel gain of the link between Transmitter i 2 f1; : : : ; Kg and
Receiver j 2 f1; : : : ; Kg by gij 2 R�0 (this is the fading in signal power domain and
not in the amplitude domain). We use a K 
 K channel matrix G whose entries are
given by the channel gains gij. Each channel gain, and therefore the channel matrix
itself, is assumed to obey a classical block-fading variation law, i.e., the channels
are assumed to be constant over a certain frame, where a frame comprises TI C
TII C TIII consecutive time-slots where Tm 2 N, m 2 fI; II; IIIg, corresponds to
the number of time-slots of Phase m of the proposed procedure described in [7].
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The first phase (with duration of TI) is reserved for estimating the local channels, i.e.
each user i will estimate gji for all j. A technique to estimate this with RSSI feedback
is described in [7], but the focus of this contribution is to improve the second phase,
which corresponds to the time in which each user broadcasts information of his local
channel gains to all the other users via his transmit power level. 1

Transmitter i, i 2 f1; : : : ; Kg, can control its power from time-slot to time-slot
and the corresponding power level at time slot t is denoted by pi.t/ 2 Œ0; Pmax�, with
Pmax being the maximum transmit power. p.t/ D .p1.t/; : : : ; pK.t//T represents the
K�dimensional column vector formed by the transmit power levels, T standing for
the transpose operator.

We assume the existence of a feedback mechanism which provides each trans-
mitter, a noisy version of the signal power received at its intended receiver for each
time-slot. The signal strength observed by Receiver i at time-slot t is expressed as

!i.t/ D giipi.t/ C 
2 C
X

j¤i

gjipj.t/ (1)

where 
2 is the noise variance. Receiver i measures the received signal (RS) power
!i.t/ (for each time slot) and quantizes it using N bits (the RS power quantizer
is denoted by QRS). The Receiver i then sends the quantized RS power b!i.t/ as
feedback to Transmitter i via a noisy feedback channel. Quantization yields b! i.t/ 2
W, for all i 2 f1; : : : ; Kg, where W D fw1; w2; : : : ; wMg such that 0 � w1 < w2 <

� � � < wM and M D 2N .
The feedback channel is represented by a discrete memoryless channel (DMC)

whose conditional probability is represented by � . The distorted and noisy version2

of !i.t/, which is available at Transmitter i, is denoted by e! i.t/ 2 W; the quantity
e!i.t/ will be referred to as the received signal strength indicator (RSSI). Thus, the
probability that Transmitter i decodes the symbol w` if Receiver i sent the quantized
RS power wk equals � .w`jwk/.

Each user i has its own individual utility ui which is a function of the global
channel matrix and all the transmit powers. Therefore, main objective of each user is
to maximize its individual utility u.pI G/ (for example, the data rate) by controlling
its signal power pi. However due to the distributed nature of the system, user i does
not have access to G and therefore can not necessarily make the optimal decision. In
[7], the authors propose a novel method of exchanging local CSI resulting in each
user acquiring G. We detail our contribution to this method in the following section.

1Note that “normal” or standard communication between the transmitter and receiver of every user
occurs at every phase independent of what is done in Phase I and II.
2Note that, for the sake of clarity and ease of exposition,we assume the RS power quantizer and
DMC to be independent of the user index, but the proposed approach also holds in the general case.
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3 Exchanging Local CSI via Power Modulation

In this contribution, we focus on improvements to Phase II of the scheme proposed
in [7], specifically with regards to power modulation. The technique in [7] is to
exploit the transmit power levels as information symbols and exploit the observed
interference (which is observed through the RSSI or SINR feedback) for inter-
transmitter communication. The corresponding implicit communication channel is
exploited to acquire global CSI knowledge namely, the matrix G and therefore to
perform operations such as the maximization of u.pI G/.

The process of achieving the desired power control vector is divided into
three phases . In Phase I, a sequence of power levels which is known to all
the transmitters is transmitted (similar to a training sequence in classical channel
estimation but in the power domain), and Transmitter i estimates its own channel
gains (i.e., g1i; g2i; : : : ; gKi) by exploiting the noisy RSSI feedback; we refer to the
corresponding channel gains as local CSI. In Phase II, each transmitter informs
the other transmitters about its local CSI by using power modulation. By decoding
the modulated power, each transmitter can estimate the channel gains of the other
users and thus, at the end of Phase II each transmitter has its own estimate of the
global CSI G; the situation where transmitters have a non-homogeneous or different
knowledge of global CSI is referred to as a distributed CSI scenario in [10]. In
Phase III, each transmitter can then exploit global CSI to maximize (possibly in a
sub-optimal manner) the network utility of interest.

The key idea of this paper is to modify the basic power modulation method to
enhance the estimation quality. Firstly, we introduce the power level decoding rule
and the basic power modulation method proposed in [7].

3.1 Basic Power Modulation Scheme

As described before, only 2 users are active at any given time-slot in Phase II
for our study. To inform the other transmitters about its knowledge of local CSI,
Transmitter i maps the K labels of NII bits produced by the quantizer QII

i to a
sequence of power levels .pi.TI C 1/; pi.TI C 2/; : : : ; pi.TI C TII//. As described
in [7], Phase II comprises TII D 2 time-slots, K D 2 users, and that the users only
exploit L D 2 power levels during Phase II say P D fPmin; Pmaxg. Further assume
1�bit quantizers, which means that the quantizers QII

ji produce binary labels. For
simplicity, we assume the same quantizer Q is used for all the four channel gains
g11, g12, g21, and g22: if gij 2 Œ0; �� then the quantizer output is denoted by gmin;
if gij 2 .�; C1/ then the quantizer output is denoted by gmax. Therefore a simple
mapping scheme for Transmitter 1 (whose objective is to inform Transmitter 2 about
.g11; g21/) is to choose p1.TI C 1/ D Pmin if Q.g11/ D gmin and p1.TI C 1/ D Pmax

otherwise; and p1.TIC2/ D Pmin if Q.g21/ D gmin and p1.TIC2/ D Pmax otherwise.
Therefore, depending on the p.d.f. of gij, the value of �, the performance criterion
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under consideration, a proper mapping can chosen. For example, to minimize the
energy consumed at the transmitter, using the minimum transmit power level Pmin

as much as possible is preferable; thus if Pr.Q.g11/ D gmin/ � Pr.Q.g11/ D gmax/,
the power level Pmin will be associated with the minimum quantized channel gain
that is Q.g11/ D gmin.

At every time-slot t 2 fTI C 1; : : : ; TI C TIIg, the power levels of the interfering
transmitter are estimated by Transmitter i as follows

ep�i
.t/ 2 arg min

p
�i
2PK�1

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

X

j¤i

pjegji � .e! i.t/ � pi.t/egii � 
2/

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

(2)

where p�i
D .p1; ::; pi�1; piC1; ::; pK/. As for every j,egji is known at Transmitter i,

the above minimization operation can be performed. When the number of users
is higher, each transmitter needs to estimate K � 1 power levels with only one
observation equation, which typically induces a non-negligible degradation in terms
of symbol error rate. In this situation, Phase II can be performed by scheduling the
activity of all the users, such that only 2 users are active at any given time-slot in
Phase II. Once all pairs of users have exchanged information on their channel states,
Phase II is concluded.

3.2 An Adaptive Modulation Scheme with Local CSI
Perfectly Known

Without loss of generality, we consider the case with K=2. For consistency,
we assume 1-bit quantizer of gji, which means that the quantizer QII

ji produces
binary labels. For transmitter i, the objective is to estimate the power emitted by
another transmitter i0 with i0 ¤ i. With the proposed decoding method in the
previous section, it can be seen that the decoding error is mainly brought by the
consequence that with different power levels emitted, the same quantized symbols
(RSSI feedback) will be achieved under some extreme conditions, such as gji is
very close to 0. To avoid the occurrence that the RSSI feedbacks lie in the same
quantization intervals with different transmitted power, we propose a novel power
modulation scheme here. For simplicity, we analyze the received signal of receiver
1 to introduce our novel technique. Assume Phase II comprises TII D 2 time-slots,
where p1.TI C 1/ depends on g11 and p1.TI C 2/ depends on g21. The basic idea
here, by denoting j 2 f1; 2g, is to transmit with power p1.TI C j/ which is larger than
Pmax=2 if Q.gj1/ D gmax, otherwise the power emitted by transmitter 1 p1.TI C j/
should be less than Pmax=2, . The most important point is to choose the power
p1.TI C j/ such that !1.TI C j/ D g11p1.TI C j/ C g21p2.TI C j/ C 
2 lie in different
quantization intervals with p2.TI Cj/ � Pmax=2 and p2.TI Cj/ < Pmax=2. Intuitively,
it can be easily found that if g11p1.TI C j/ C 1

2

 g21Pmax C 
2 exactly equals to

a quantization interval bound, the point mentioned above can be perfectly fulfilled.
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Denoting the quantization interval bounds of RSSI quantizer by ft1; t2; : : : ; t2MC1g
(where ! 2 Œtm; tmC1/ is quantized as wm), the power p1.TI C j/ can be selected as
follows:

p1.TI C j/ D
8
<

:

min
�

1
2
Pmax C 1

g11

�
ta � 1

2
g21Pmax � 1

2
g11Pmax � 
2

	
; Pmax

�
if Q.gj1/ D gmax

min
�

1
g11

.tb � 1
2
g21Pmax � 
2/; 1

2
Pmax

�
else (3)

where the index a fulfills ta�1 � 1
2
g21Pmax C 1

2
g11Pmax C 
2 < ta and the index b

fulfills tb�1 � 1
2
g21Pmax C 
2 < tb.

Proposition 1. Assume the local CSI is perfectly known by each user and the effect
of the largest quantization interval is ignored, if the two conditions below are always
satisfied:

.i/ 1
2
Pmax C 1

g11

�
ta � 1

2
g21Pmax � 1

2
g11Pmax � 
2

	 � Pmax (4)

.ii/ 1
g11

.tb � 1
2
g21Pmax � 
2/ < 1

2
Pmax (5)

then transmitter 1 can always reconstruct the power emitted by transmitter 2 without
error, i.e. p2 can be decoded perfectly by transmitter 1.

Proof. If g11p1.TI C j/ C g21
Pmax

2
C 
2 can always achieve the boundary of the

quantization interval, the p2 can be perfectly decoded since 2 possible values of
p2 are belongs to .0; Pmax

2
/ and . Pmax

2
; Pmax/ respectively. The first condition above

indicates that there exists p1.TICj/ 2 . Pmax
2

; Pmax/ such that g11p1.TICj/Cg21
Pmax

2
C


2 equals to a boundary of the quantization interval, and the second condition above
indicates that there exists p1.TI Cj/ 2 .0; Pmax

2
/ such that g11p1.TI Cj/Cg21

Pmax
2

C
2

equals to a boundary of the quantization interval.

Considering the 2 conditions above, it can be observed that the conditions are
difficult to be fulfilled if the channel gain g11 is too small. Even it is known that
g11 follows the exponential distribution in our scenario, it is reasonable to set a
minimum value gmin for the channel gain since it is usually met in practical scenario.

Proposition 2. Assume the local CSI is perfectly known by each user and the effect
of the largest quantization interval is ignored, if each realization of the channel
gain g11 is larger than gmin D 2�

Pmax
where the longest length of the quantization

interval(except the interval .t2N ; t2NC1/) is denoted as � D max
i2f1;:::;2N�1g

.tiC1 � ti/,

then transmitter 1 can always reconstruct the power emitted by transmitter 2 without
error. Specially, if the RSSI is uniform quantized with step d, then the minimum value
can be expressed as gmin D 2d

Pmax
.

Proof. Omitted.
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3.3 An Adapted Modulation Scheme with Noisy Local CSI

However, the scheme detailed in the previous section is not robust to noisy local
CSI. Since the local CSI can not be perfectly acquired (gij is not perfectly known to
the transmitters), it would be difficult to calculate the p1.TI C j/ such that

g11p1.TI C j/ C 1

2
g21Pmax C 
2 D ta0 (6)

where a0 2 f2; : : : ; 2Ng. Using the same rule in Sect. 3.2, with noisy (estimated)eg11

andeg21, the p1.TI C j/ can be only obtained by:

eg11p1.TI C j/ C 1

2
eg21Pmax C 
2 D ta0 (7)

Therefore, it can not be guaranteed that the real RSSI when the other transmitter
uses Pmax=2 exactly equals to the interval bound due to the noise in the local CSI. To
compromise for this, we propose a heuristic technique to improve the decoding rate
by combining the schemes used in Sects. 3.1 (which is robust to the noise in local
CSI estimation but has lower decoding success rate even with perfect local CSI) and
Sect. 3.2 (which has a very high decoding success rate with perfect local CSI, but is
not robust to noise). We are able to achieve this by introducing an “offset” x, which
we will describe in this section.

Defineeg11 D g11 C z11 andeg21 D g21 C z21 (the noisy estimate of local CSI
available at the transmitter), (7) can be rewritten as:

g11p1.TI C j/ C 1

2
g21Pmax C 
2 C

�

z11p1.TI C j/ C 1

2
z12Pmax

�

D ta0 (8)

Nevertheless, no matter what is the distribution of the noise, it can be found that
with a probability q that

Pr

�

jz11p1.TI C j/ C 1

2
z12Pmaxj � c

�

� q (9)

where c is a constant related to the probability q and the noisy local CSI. Combine
(8) (9), it can be concluded Pr.A/ � q where the event A is defined as

ta0 � c � g11p1.TI C j/ C 1

2
g21Pmax C 
2 � ta0 C c (10)

Equivalently, the (10) can be rewritten as:

g11p1..TI C j/ C g21.
1

2
Pmax C c

g21

/ C 
2 � t0a (11)

g11p1..TI C j/ C g21.
1

2
Pmax � c

g21

/ C 
2 � t0a (12)
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Equations (11) and (12) imply that even though the noisy local CSI reduce the
accuracy of the emitted power, the received signal !1.TI C j/ D g11p1.TI C j/ C
g21p2.TI C j/ C 
2 lie in different quantization intervals with probability q0 � q
for p2.TI C j/ � . 1

2
Pmax C c

g21
/ and p2.TI C j/ � . 1

2
Pmax � c

g21
/. To improve the

robustness of the transmission, the offset x (x � 0:5) will be implemented such that
transmitting with power p1.TICj/ which is larger than . 1

2
Cx/Pmax if Q.gj1/ D gmax,

transmitting with power p1.TI C j/ which is less than . 1
2

� x/Pmax if Q.gj1/ D gmin.
Induced by noisy local CSI, the power p1.TI C j/ can be redetermined as follows:

p1.TICj/ D

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

min

�

. 1
2
C x/Pmax C 1

eg11

�
t�a � 1

2
eg21Pmax � . 1

2
C x/eg11Pmax � 
2

	
; Pmax

�

if Q.egj1/ D gmax

min

�
1

eg11

.t�b � 1
2
eg21Pmax � 
2/; . 1

2
� x/Pmax

�

else (13)

where the index a� fulfills ta��1 < 1
2
eg21Pmax C . 1

2
C x/eg11Pmax C 
2 � t�a and

the index b� fulfills tb��1 < 1
2
eg21Pmax C 
2 � t�b . Transmitting with 0 and Pmax is

a special case of the new scheme corresponding to x D 0:5. The optimal x can be
calculated by performing numerical simulations.

Remark 1. In the Sects. 3.2 and 3.3, it is assumed that the error of DMC is
negligible, i.e. b! i D e! i. The approach to reduce the influence of the error induced
by DMC will be studied in future works.

Remark 2 (Extension to the Multi-Band Scenario). As explained in the beginning
of this paper, each band performs in parallel like the single-band case. Since there
are power constraints for each transmitter, the modulated power should satisfyPS

sD1 ps
i .t/ � Pmax.

4 Numerical Analysis

In this section, as a first step, we start with providing simulations which result
from the adapted power modulation when local CSI is perfectly known. To make
a coherent comparison with the simple power modulation in [7], the quality of
decoding will be evaluated by considering the distortion and decoding error. As
a second step, we study the scenario with imperfect local CSI and analyze the
influence of the offset, which is introduced to assure the robustness of the system.

Firstly, we focus on the scenario with perfect CSI. The novel modulation
scheme is designed to reduce the error probability of decode. To estimate the
decoding quality, the decoding success rate (DSR) is introduced, which represent
the probability that the transmitter i correctly reconstruct the transmitted power by
all the other transmitters in all time-slots. For the sake of simplicity, we consider the
K=2, S=1 scenario. The channel gain of direct channel gii follows the exponential
distribution with expectation 1, where the channel gain of cross channel gji (j ¤ i)
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Fig. 1 KD2, SD1, SNRD30dB, � D 0, perfect local CSI, 1 quantization bit for channel gain, we
observe that the adapted modulation scheme brings higher DSR in low and high resolution case

follows the exponential distribution with expectation 0:1, i.e. f .gii/ D exp.�gii/ and
f .gji/ D 10 exp.�10gji/. Furthermore, each channel is assumed to be independent.
We use the uniform quantizer for the RSSI feedback and Maximum entropy
quantizer (see [7]) for the channel gain in this part. In Fig. 1, it can be seen that
the adapted power modulation achieves a much better performance in terms of DSR
with both low and high quantization bits. Moreover, with the adapted modulation
scheme, Fig. 1 shows that the DSR increases when we have more quantization bits,
and it tends to 1 when the number of quantization bit is large.

Secondly, we take into account the noisy local CSI scenario. As described in [7],
the local CSI can be estimated by RSSI feedback with training matrix. To distinguish
the noise level here, we define the high noise level when we use 4 quantization bits
of RSSI estimating the local CSI and the low noise level when we use 8 quantization
bits of RSSI estimating the local CSI. Figure 2 illustrate the offset is useful to reduce
the estimation distortion, which is defined by

Distortion D EŒkG � eGik2�

Also, it can be observed that different noise level has different optimum offset value.
When noise level is low, the optimum offset value is between 0:2 and 0:3, where 0
and Pmax becomes a good solution when noise level is high since less choices can
avoid the decoding error. Meanwhile, as the objective of the adapted modulation
scheme in perfect local CSI scenario, the red curve illustrates our scheme (offset 0)
beats the simple modulation scheme (offset 0:5).
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Fig. 2 KD2, SD1, SNRD30dB, � D 0, noisy local CSI, 8 quantization bits for RSSI, 1
quantization bit for channel gain, different noise level have different optimum offset values

5 Conclusion

In this contribution, we have proposed a novel power modulation scheme that
improves the inter-transmitter communication efficiency of the technique introduced
in [7]. Under the assumption of noiseless feedback of the quantized received signal
strength, our simulations show that a significant improvement in the distortion or
decoding success rate can be achieved both for the case where perfect local CSI and
noisy local CSI is available. A relevant extension to this scheme would be to account
for the noise in feedback (in the DMC).
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