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Abstract. Sandia OpenSHMEM (SOS) is an implementation of the
OpenSHMEM specification that has been designed to provide portability,
scalability, and performance on high-speed RDMA fabrics. Libfabric is
the implementation of the newly proposed Open Fabrics Interfaces (OFI)
that was designed to provide a tight semantic match between HPC pro-
gramming models and various underlying fabric services.

In this paper, we present the design and evaluation of the SOS OFI
transport on Aries, a contemporary, high-performance RDMA intercon-
nect. The implementation of Libfabric on Aries uses uGNI as the lowest-
level software interface to the interconnect. uGNI is a generic interface
that can support both message passing and one-sided programming mod-
els. We compare the performance of our work with that of the Cray
SHMEM library and demonstrate that our implementation provides per-
formance and scalability comparable to that of a highly tuned, pro-
duction SHMEM library. Additionally, the Libfabric message injection
feature enabled SOS to achieve a performance improvement over Cray
SHMEM for small messages in bandwidth and random access bench-
marks.

1 Introduction

Current trends in high performance computing (HPC) system architecture pose
new challenges and introduce new requirements for the system fabric. Dramatic
increases in the number of cores and threads per node requires a host-fabric
interface (HFI) that can process communication on behalf of many threads effi-
ciently. At the same time, these throughput-oriented cores present new challenges
to communication processing on the host processor [4]. Further, increases in the
overall system scale in combination with a flattening trend in the amount of
memory available per thread places additional stress on scalability requirements.
In response to these challenges, a variety of novel solutions [11,13] and interfaces
are being explored [5,9,14,27].

In addition to new techniques at the system fabric layer, the communica-
tion middleware and underlying communication software stack must also be
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adapted to leverage and expose new functionality. The OpenFabrics Alliance
recently introduced the OpenFabrics Interfaces (OFI) framework as a new, open-
source software ecosystem designed to enable efficient usage of evolving high-
performance fabrics [14]. OFI’s libfabric component provides a communication
interface that is designed for scalability, flexibility, and extensibility. In particu-
lar, typical scalability challenges, such as endpoint addressing, connection man-
agement, message processing, and memory registration are encapsulated within
libfabric, allowing them to be optimized using fabric- and system-specific capabil-
ities.

The OpenSHMEM specification is a recent initiative directed toward stan-
dardizing and extending the SHMEM� parallel programming model for future
systems. OpenSHMEM defines a partitioned global address space (PGAS) data
access library that can be used to establish one-sided access to read, write, and
atomically update remote data. OpenSHMEM applications commonly require
high throughput and the ability to perform remote data accesses asynchronously,
thereby placing significant demands on the underlying system fabric.

In this work, we document our experiences with the development of an Open-
SHMEM software stack using OFI on a contemporary HPC interconnect. We
present an open source implementation of the OpenSHMEM 1.3 specification
that targets the OFI libfabric interface and describe how libfabric can be used
to improve the efficiency of OpenSHMEM middleware. We further describe the
implementation of libfabric for the Cray R© XC40TM system with the Aries inter-
connect that utilizes the uGNI [8] API. We evaluate the performance of our
software stack using several communication and application benchmarks. The
results indicate that the performance of the open-source SHMEM and libfabric
is comparable to the highly tuned, production Cray SHMEM library. In addi-
tion, we show that the libfabric message injection feature enabled a performance
improvement over Cray SHMEM for small messages in bandwidth and random
access benchmarks.

Our paper starts with a description of the relevant background information
and related work in Sect. 2. Next, we describe the design of our OpenSHMEM
implementation and underlying OFI implementation for the Aries interconnect
in Sects. 3 and 4, respectively. We present an experimental evaluation in Sect. 5
and conclude with Sect. 6.

2 Background and Related Work

Our work describes and analyzes the implementation of the OpenSHMEM spec-
ification using a modern fabric interface. In this section, we provide an overview
of these topics and some of the most closely related works.

2.1 Fabric Interfaces

A variety of low-level communication APIs have been used in HPC for high
performance networking, including the OpenFabrics Alliance (OFA) Verbs API,
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PAMI [19], Portals [2], and uGNI [8]. Often, such low-level APIs are customized
to leverage specific system architectures. Recently, the industry has trended
toward exchanging system-specific APIs for open, portable fabric interfaces that
provide a low-level interface to fabric services while minimizing ties to specific
architectures. This approach promises to provide better portability for com-
munication middleware, such as OpenSHMEM, while maximizing the exposure
of application-level communication semantics to the fabric to enable aggressive
optimization.

OpenFabrics Interfaces. The OpenFabrics Alliance (OFA) provides open-
source software for high-performance networking applications that demand low
latency and high bandwidth. Historically, the only fabric interface offered by
the OFA was the Verbs API as defined in the InfiniBand� specification. As the
InfiniBand specification was originally envisioned as a generic system I/O inter-
connect, there are semantic differences between Verbs and the requirements of
PGAS libraries and languages. These semantic mismatches require unnecessary
adaptations in PGAS implementations, such as OpenSHMEM, resulting in sig-
nificant software overhead [21].

The OFA has created a working group, called the OpenFabrics Interfaces
Working Group (OFIWG), that aims to define a fabric interface that has a tight
semantic map to various applications classes that use it, including PGAS pro-
gramming models. Members of the PGAS community provided input into the
design of the new fabric interfaces to help improve the mapping of PGAS fea-
tures onto fabric interface features. The fabric library created from this effort is
called libfabric. It consists of two logically distinct components: A set of fabric
providers that implement the communication interfaces for a particular fabric
hardware, and a general purpose framework that provides a plugin-like capability
for providers. In the rest of the paper, we use the term uGNI provider to imply
the specific implementation of libfabric interfaces for the Aries interconnect. Lib-
fabric is freely available from Github [20], and is distributed via the OpenFabrics
Enterprise Distribution (OFED) as well as popular Linux distributions.

Other Fabric APIs. The Portals interface [2] allows the user to describe
actions that are performed on remote memory segments – possibly gated by
message matching requirements – providing close alignment between HPC com-
munication libraries and the underlying software or hardware implementation
of the Portals layer. A variety of PGAS runtimes have been ported to use Por-
tals, including OpenSHMEM [3]. The current Portals 4 specification [2] adds a
lightweight non-matching interface to boost PGAS messaging rates. Addition-
ally, it introduces logical rank-based addressing to simplify code paths, eliminate
cache misses, and improve memory scaling. Members of the Portals community
also participate in the effort to craft the OFI interface, resulting in adoption of
multiple concepts from the Portals API.

OpenUCX [27], is another fabric framework that is being developed by as
a collaboration outside the OpenFabrics umbrella. It aims to provide semantics
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that target data centric and HPC programming models. UCCS [26] is a pre-
decessor to OpenUCX and a detailed study of OpenSHMEM performance on
UCCS was recently conducted [28]. Additionally a study of UCCS over uGNI on
Gemini was evaluated in [16]. The authors of these studies observed similar per-
formance results as we present; however, because of differences in the hardware
and software environments, our results cannot be directly compared.

2.2 OpenSHMEM

OpenSHMEM [23] is a parallel programming model that defines a Single-
Program, Multiple-Data (SPMD) execution model and an accompanying par-
titioned global address space (PGAS) communication library. OpenSHMEM
allows the programmer to expose regions of memory for remote access using
one-sided read, write, and atomic access routines.

Recently, the OpenSHMEM specification was introduced in an effort to stan-
dardize and extend the SHMEM� communication library. SHMEM has been in
use for over two decades, with implementations from most major HPC vendors,
however the lack of an open specification has resulted in variations across imple-
mentations and has limited the ability of the user community to extend the
programming model.

A reference implementation of the OpenSHMEM specification is available
as open source [22] and is compatible with a wide range of system fabrics
through the low-level GASNet API [6]. The OpenMPI communication middle-
ware also recently added support for OpenSHMEM [12], called OSHMEM. OSH-
MEM leverages the MPI runtime and MPI collective implementations to pro-
vide a lightweight implementation. Mellanox� Scalable SHMEM is a proprietary
implementation that is available as a part of the HPC-X toolkit distributed by
Mellanox. It is designed to work on Mellanox InfiniBand fabrics. Similarly, the
MVAPICH2-X [17,18] SHMEM distribution is a closed source implementation
that targets only Mellanox fabrics.

In this work, we utilize the open source Sandia OpenSHMEM (SOS)
library [25], which is based on the earlier Portals SHMEM library [3]. SOS
extends Portals SHMEM with support for the new OpenSHMEM 1.3 specifi-
cation, as well as adding support for the OpenFabrics Interface libfabric com-
munication layer [21]. While existing libfabric support was recently added, sup-
plementary work has refined the mapping of OpenSHMEM to OFI, yielding
additional portability and performance benefits. Furthermore, the codebase con-
tinues to evolve alongside the OpenSHMEM community as a sandbox and proof-
of-concept for the latest OpenSHMEM proposals.

3 Design of OpenSHMEM for OFI

As shown in Fig. 1, Sandia OpenSHMEM (SOS) defines internal network data
transport and shared memory layers. The SOS transport layer was designed to
reduce the number of functions that must be implemented for each fabric, while
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Fig. 1. Sandia OpenSHMEM library design, showing libfabric inlining to eliminate
software overheads.

exposing core OpenSHMEM communication semantics so that the transport
can optimize for scalability and performance. SOS provides support for both
Portals 4 and OFI. This work focuses primarily on the OFI transport layer and
extending it to support a broad range of libfabric capabilities and efficiently
utilize the Aries system interconnect through the libfabric uGNI provider.

The SOS-OFI transport layer requires provider support for remote memory
access (RMA) and remote atomics capabilities. The libfabric RMA and atomic
APIs were designed to provide a direct mapping of performance sensitive PGAS
operations to libfabric routines, with the intention of facilitating close alignment
with fabrics that provide support for remote direct memory access (RDMA) and
atomic capabilities. Libfabric further supports a direct build, shown in Fig. 1
where the implementation of the libfabric API routines are inlined into the mid-
dleware, enabling cross-call compiler optimizations and eliminating function call
overheads. Sandia OpenSHMEM (SOS) also supports aggressive inlining within
the implementation, which is used to reduce the middleware stack overheads to
a single function call. In combination, these optimizations have been shown to
significantly improve software overheads, and by extension small message latency
and throughput [21].

3.1 Launch, Wire-Up, and Memory Registration

Careful setup and resource management is crucial for achieving scalability and
reducing overheads. SOS supports the PMI-1 and PMI-2 process management
interfaces (PMIs) [1], and we have added support for the Cray process manager.
For stand-alone builds, SOS includes a built-in PMI-1 option that can be used
to attach to any PMI-1 compliant job launcher.

Mapping of OpenSHMEM PE numbers to network addresses is typically
facilitated through a scalable libfabric address vector (AV); however, for porta-
bility reasons, SOS supports both the map and table AV modes. The map mode
provides the broadest compatibility; however, it requires the middleware to main-
tain a table that maps PE numbers to fabric interface (FI) addresses obtained
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Table 1. Memory registration and remote addressing models supported by the SOS
OFI transport and resulting overheads.

Remote virtual addressing Remote offset addressing

Scalable MR Offset calculation

Basic MR Key tables Key tables, base address table,
offset calculation

through the PMI exchange. When a communication operation is performed,
the target PE number must be first converted to the corresponding FI address
using this table. The AV table mode provides better scalability and performance
opportunities by allowing the PE number to be used directly in communication
operations and performing address resolution within the provider. For networks
that require a translation table, the provider is able to map the table in a shared
segment, improving the memory scalability. Further, the AV table mode provides
a mechanism to take advantage of networks that offload or regularize address
resolution. We use AV table in our study since it is supported by OFI-uGNI.

In libfabric, remote memory access (RMA) operations require both a pro-
tection key and a destination address. Libfabric provides two different models
for exposing memory regions for remote access, referred to as scalable and basic
memory registration (MR), that establish different key and destination address
semantics. We have implemented support for both modes in SOS, and we further
take advantage of systems that can support mapping the symmetric heap and
data segments at the same base addresses across all PEs, referred to as remote
virtual addressing. The combination of these two features results in the matrix
shown in Table 1. In the scalable MR mode with remote virtual addressing, SOS
exposes the full address space of the PE for efficient remote access. In all other
modes, the heap and data segments are exposed separately.

Basic memory registration is the most portable model and allows the provider
to determine the memory protection key, and requires the application to pro-
vide destination virtual address for the RDMA operation. This results in SOS
exchanging protection keys and maintaining a key table as the key may be
different on different PEs. Protection keys are required by some networks to
enable access to remote memory. Additionally, basic memory registration sup-
port requires the SOS middleware to maintain tables containing the symmet-
ric heap and data segment base addresses of all PEs. When performing an
RMA operation, a local offset calculation is performed to convert the symmetric
address passed to the OpenSHMEM routine into an offset relative to the sym-
metric heap or data segment base. This is then added to the target PE’s base
address before performing the libfabric communication operation.

In contrast, scalable memory registration allows the user to select the protec-
tion key, eliminating the key table overheads. Addressing in the scalable memory
registration model is performed relative to the beginning of the memory segment
exposed at the target PE. In the remote virtual addressing model, the full address
space is exposed and the symmetric address passed to the OpenSHMEM routine
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can be directly used by libfabric. When remote virtual addressing is not avail-
able, the symmetric address is converted into an offset relative to the local base
address and this offset is passed directly to the libfabric communication routine.
Thus, scalable memory registration eliminates both the key and base address
tables.

In this paper, we use the Basic memory registration path due to current
uGNI provider limitations. In the future, we may explore adding the scalable
memory registration feature to the provider in order to expose more optimal
code paths in OpenSHMEM.

3.2 One-Sided Communication Operations

OpenSHMEM one-sided put operations are mapped to the libfabric write API
and different strategies are used depending on the message size. OpenSH-
MEM defines both blocking and nonblocking put operations; blocking opera-
tions return after local completion, whereas nonblocking operations provide no
completion guarantee. For messages below the injection threshold of the fabric,
the fi inject write routine is called; in all other cases, the fi write routine is called.
The inject-write routine provides immediate local completion and the provider
is responsible for any buffering needed to ensure reliable message delivery. For
blocking put operations whose message size is greater than the injection thresh-
old and less than the user-selectable SMA BOUNCE SIZE parameter, the user’s
data is copied to a temporary bounce buffer and the operation provides immedi-
ate local completion. As shown in Sect. 5, we have observed that bounce buffering
can provide significant performance improvements for applications that rely on
blocking put operations; however, this optimization can be disabled when not
needed to reduce the memory footprint of SOS. Finally, larger messages are
issued directly using the fi write operation and are fragmented according to the
maximum transmission unit (MTU) of the fabric.

The OpenSHMEM atomic operations are divided into three categories, non-
fetching, fetching, and comparison atomics. Currently, all OpenSHMEM atomic
operations are blocking. The non-fetching atomics perform a remote update
without returning a result and are implemented using the fi inject atomic and
fi atomic routines using the same strategy as described for blocking put oper-
ations. While all OpenSHMEM atomic routines are scalar and map to inject-
atomics, SOS does implement vector atomics in the transport layer that is only
utilized by the OpenSHMEM collectives API. The fetching atomic and compari-
son atomic operations are implemented using fi fetch atomic and fi compare atomic

operations. However, since these blocking operations return the prior contents
of the destination buffer, they cannot return until the operation has completed
and neither message injection nor bounce buffering is used.

Finally, the OpenSHMEM get operations are implemented directly using the
libfabric fi read routine. The runtime must wait for blocking get operations to
complete before returning. In the nonblocking case, the routine returns immedi-
ately and the application completes the get operation with a subsequent call to
the shmem quiet routine.
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As shown in Fig. 1, SOS supports shared memory through XPMEM and
Linux cross-memory attach (CMA). When enabled, shared memory is used to
improve the performance of put and get operations. Atomic operations are always
performed through the transport layer in order to ensure atomicity.

3.3 Ordering and Remote Completion Operations

All communication operations in libfabric are nonblocking; completion of issued
operations is established using either event counters or completion queues. When
they are created, the programmer selects which events will be captured by a
particular event counter or completion queue. Event counters and completion
queues are then bound to a fabric endpoint. Thus, for a given operation, the
type of completion that will be generated is determined by the fabric endpoint
on which the operation was issued and the type of event that the operation
generates. In SOS we mainly use counters for completion, but a queue is used
for bounce buffering and error handling.

Completion queues provide a full event structure for each completed oper-
ation, with detailed information including a “context” value that was supplied
when the original operation was performed. The context is typically used to
forward a reference to a middleware object (e.g. a request object) from the com-
munication operation to the full event. In SOS, full events are used only when
a put or non-fetching atomic operation utilizes a temporary bounce buffer. In
this case, a pointer to the bounce buffer is included as the context and is used
when processing the remote completion event to return the bounce buffer to a
free pool. The number of operations issued using a bounce buffer is tracked by
a variable within the SOS runtime and is used to wait for pending operations to
complete when performing an OpenSHMEM fence or quiet operation.

Full completion events incur an overhead to allocate space in the event queue
and populate the event with the information from the operation that completed.
In contrast, event counters capture no information regarding specific operations
that have completed. Instead, the counter is simply incremented upon completion
of the operation, resulting in lower overhead than a full event. SOS establishes
two counters for tracking completion of read and write operations separately.
Operations that do not return a result, including puts and non-fetching atomics
are accounted for using the write counter (with the exception of operations
using a bounce buffer; those are tracked separately using a completion queue).
All other operations are accounted for using the read counter. Within the SOS
middleware, two variables are used as counters to track the number of operations
of each kind that have been issued.

Separate read and write counters are used to optimize blocking communication
operations. Blocking put and non-fetching atomic operations that are buffered
using either the inject or bounce buffer method return immediately. Large block-
ing put operations must wait for completion before returning. Similarly, block-
ing fetching operations of any size must wait for completion prior to returning.
By using separate counters for these classes of operations, we allow operations
to overtake each other. This can provide significant benefit in cases where small
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fetching operations are combined with large puts. It is possible to use additional
counters to optimize blocking operations based on the operation type and size (e.g.
to separate fetching and comparison atomics from gets). We plan to investigate
the impact of such refinements during future performance tuning.

The OpenSHMEM quiet operation must wait for remote completion of all
pending blocking and nonblocking operations, whereas the fence operations must
only ensure ordering of remote updates. Currently, SOS waits for completion of
all pending communication in both quiet and fence operations. In the future, we
plan to leverage the separation of read and write counters to optimize these oper-
ations. In this model, the quiet operation waits for completion of both remote
writes and reads, whereas the fence operation waits only for completion of remote
writes.

3.4 Notification API

The OpenSHMEM wait API allows the programmer to wait for an update to a
location in symmetric memory. When shared memory optimizations are not used,
all updates arrive through the network and the wait implementation can block on
a network event rather than polling the target memory location. When supported
by the OFI provider, the SOS OFI transport binds an event counter to one or
more regions of exposed memory that is incremented whenever a remote update
occurs. In this mode, the implementation of the OpenSHMEM wait operation
blocks on a communication event, allowing the provider to optimize resource
utilization.

4 Libfabric for the Aries Network

The libfabric provider, shown as the bottom-most layer in Fig. 1, is responsible
for mapping the libfabric APIs to the underlying system. In this section we give
an overview of the implementation of the libfabric API utilized by SOS. We refer
readers to previous work for further details on the implementation [7,24].

The provider implementation for the Aries interconnect utilizes the Generic
Network Interface (uGNI) library [8], a low-level interface that exposes the capa-
bilities of the Aries NIC. The uGNI provider utilizes the Aries NIC’s fast memory
access (FMA) hardware for small messages, as well as the bulk transfer engine
(BTE) for offloading large message transfers. FMA descriptors are used to initi-
ate remote loads, stores and atomic operations. FMA descriptors are bound to
local Aries hardware-provided completion queues (hCQ) to enable notifications
for the completion of remote memory access.

4.1 Addressing and Memory Registration

The uGNI provider supports both the OFI map and table address vector (AV)
modes. For both modes, the address entry is represented by the uGNI device
address and an identifier for utilizing the hardware protection, in combination
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with information about the endpoint and RDMA credentials. AV map mode uses
a hash table to store address entries, whereas AV table mode uses a growable
vector of address entries.

The uGNI provider supports the OFI basic memory registration (MR) mode,
including a configurable memory registration cache. Memory regions are regis-
tered with uGNI via a call to uGNI MemRegister, which returns a handle that is
encoded in the key for the memory region. The memory registrations are stored
in a red-black tree for fast access in cases where an existing registration satis-
fies the requested memory region. To further reduce the number of registrations
with uGNI, all registrations are rounded up to the nearest page size. Addition-
ally, adjacent memory regions are coalesced into a single, larger entry to further
reduce the number of registrations. The memory registration cache also supports
lazy deregistration when a memory region is closed. Lazy deregistration holds
on to the uGNI memory handle until a configurable limit is reached, after which
memory regions are deregistered via a call to uGNI MemDeregister.

4.2 Issuing and Completing Communication Operations

The OFI RMA operations (fi write and fi read) with data size less than 8 KB
in size are sent using Aries FMA functionality as a control message payload.
Larger transfers are handled using the Aries BTE. The switch-over point can be
adjusted using a GNI provider specific fi open ops method on a fi domain object.

The Aries FMA hardware is also used to provide fast atomic operations.
Currently, the uGNI provider only supports libfabric atomic operations that
are implemented directly by the Aries hardware. This includes 32- and 64-
bit versions of min, max, sum, bitwise OR, bitwise AND, bitwise XOR, read,
write, compare-and-swap and masked compare-and-swap. In addition, the uGNI
provider exposes the Aries AND-and-XOR atomic operation.

The uGNI provider checks for Aries completion events from all active hCQs
upon most calls into the libfabric library as well as from an independent progress
thread, if automatic progress is requested. Callback functions are used to gen-
erate a corresponding libfabric completion event, which is placed on the appro-
priate completion queue (represented by a singly-linked, double-ended list). The
Aries hardware does not directly support completion counters. Completion coun-
ters are implemented similarly to completion queues; the callback simply incre-
ments the appropriate counter value.

5 Evaluation

We compare the performance of SOS using the OFI transport and uGNI provider
with the performance of Cray’s SHMEM implementation for the Aries network.
Experiments were conducted on the NERSC “Cori” system, which is a Cray R©

XC40TM with 1,630 compute nodes. Compute nodes are comprised of two Intel R©

XeonTM “Haswell” processors (E5-2698 v3) with 32 cores total (16 cores/socket)
with hyperthreading disabled, and with 128 GB of memory per node.
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The system was running Cray� Linux Environment (CLE) version 5.2up04
and Slurm� version 15.0.8.11. Libfabric (master@3dddae68) was used for the
experiments. Libfabric was built using gcc version 5.2.0 with optimization
level -O2. No special configuration options were used. Sandia OpenSHMEM
(master@a3662791) was configured to use the uGNI provider, but otherwise no
special optimizations were used. Cray MPT� 7.3.1 was used for the Cray SHMEM
results.

We note that Cray SHMEM is built on top of DMAPP [8], rather than uGNI.
DMAPP� is a communication API optimized to support the small (e.g. 8-byte)
transfers typical of high-performance PGAS compilers. As a consequence of this,
DMAPP relies on a different hardware mechanism in the Aries NIC for man-
aging PCI-e downstream posted write credits (a deadlock avoidance mechanism
(DLA)) than uGNI. In contrast, uGNI is optimized for larger transfers more
typical of message passing applications including MPI and Lustre’s LNET, as
well for allowing efficient sharing of DLA resources and FMA descriptors among
processes. Note the DLA mechanism was not present in older Cray R© XETM sys-
tems, thus making comparison of results presented here with apparently similar
results from Cray R© XETM not particularly meaningful.

We conduct our evaluation using the SOS communication microbenchmark
suite that is included in the SOS distribution, the scalable integer sort (ISX)
benchmark [15], and the HPCC random access benchmark [10]. For communica-
tion microbenchmarks requiring just two nodes, measurements were taken using
nodes connected to the same Aries router.

5.1 Latency Results Using SOS Microbenchmarks

The SOS put latency microbenchmark uses two processes, where one of the
processes performs a loop of shmem putmem() and shmem quiet() operations.
Figure 2a shows results for this test. The figure compares the PUT latency
of Cray SHMEM with SOS with and without bounce buffering. Excluding the
effects of buffering, the latency of SOS is about 150 nsecs more than that attained
using Cray SHMEM. Trace data of the 8-byte put latency runs, in addition to
comparison of comparable tests written directly to DMAPP and uGNI, indi-
cate the major contributions to extra overhead for SOS can be attributed to the
additional overhead within the uGNI library required to manage DLA credits
and support sharing of hardware resources (FMA descriptors) between different
processes.

The SOS buffering between 128 and 2048 bytes results in significantly higher
overhead for SOS put operations compared to Cray SHMEM. As will be shown
below for the streaming benchmark, the bounce buffers can sometimes lead to
improved results for SOS.

The SOS get latency also uses two processes, where one of the processes
performs a loop of shmem getmem() operations. Figure 2b compares the results
obtained using Cray SHMEM and SOS. Results for Cray SHMEM using an
Aries BTE threshold at 8192 bytes are also shown. For small get operations
between 4 and 64 bytes, SOS again shows an additional 150 nsecs compared to
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Fig. 2. Latency measurements for Sandia OpenSHMEM and Cray SHMEM.

Cray SHMEM. This overhead gradually decreases until the point where the
respective implementations switch to using the Aries BTE - 4096 bytes for Cray
SHMEM and 8192 bytes for SOS. Overall, SOS shows comparable performance
with Cray SHMEM in terms of latency, with small overheads attributed to dif-
ferences between DMAPP and uGNI on Aries.

5.2 Bandwidth Results Using SOS Microbenchmarks

The SOS bi-directional write bandwidth microbenchmark is performed on two
processes, where both processes repeatedly perform a stream of shmem putmem()

operations within a fixed window size before performing a shmem quiet() to ensure
remote completion. Figure 3b shows the throughput results between nodes. For
small message sizes, SOS utilizes the libfabric inject feature to accelerate the
small message pathway through the uGNI provider. After reaching the inject
threshold of 64 bytes, SOS switches to bounce buffering until 2 KB in order to
immediately achieve local completion without stalling outgoing transactions. We
find these two features give noticeable improvement, achieving an average of 61%
relative performance improvement compared to Cray SHMEM. At 4 KB the BTE
engine is utilized by both SOS and Cray SHMEM. This transition levels out the
results; SOS keeps pace with Cray SHMEM with a 2% average relative deviation.

The SOS uni-directional read bandwidth microbenchmark is performed on
two processes, where one process repeatedly reads from the remote process
through a shmem getmem() operation. In this case remote completion is implied
upon return. Figure 3a shows that Cray SHMEM and SOS have comparable
results. For get results SOS was tuned to exercise the BTE engine at 2 KB
which enables a temporary performance gain over Cray SHMEM’s default 4 KB
BTE switch. Overall SOS shows competitive performance numbers that are on
average within 5% relative to Cray SHMEM’s performance.
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Fig. 3. Bandwidth measurements for Sandia OpenSHMEM and Cray SHMEM.

5.3 Random Access Benchmark (GUPs)

The Random Access Benchmark (GUPs) is intended to assess the ability of
an interconnect and its associated network software stack to efficiently handle
many small, concurrent load/store accesses to a data table distributed across
multiple nodes in a systems. The modified version of the HPCC RandomAc-
cess benchmark employs various aggregation algorithms, all of which encounter
scalability challenges. Instead, a version of the benchmark was written based on
the serial and OpenMP variants. In this version, each PE executes a series of
shmem longlong g/shmem longlong p operations to load an element from the table,
XOR the element with a locally generated value, then write the updated element
back in to the table. The number of updates per PE scales as the size of the
table. The global table size scales linearly as the number of PEs in the job.

The benchmark was run using a local table size of 32 MB, with each PE execut-
ing 16 million updates. Verification of the update run was accomplished by rerun-
ning the algorithm, but using shmem set lock/shmem clear lock on an array nPES
in size to implement a critical region around the update procedure. A run is con-
sidered successful if 1% or fewer elements are found to be inconsistent. Figure 4
presents the global update rate (giga-updates/sec) when using Cray SHMEM and
SOS. For this experiment, SOS was enhanced to allow for backing the symmetric
heap with large pages. Rather than calling mmap with MAP ANON and a NULL
file descriptor, a file was created on one of the node-local CLE large page file sys-
tems, and subsequently mapped in to the process address space using mmap. For
GUPs style memory access patterns, the Aries I/O MMU works best with large
pages. The Xeon 2 MB native large page size was used to back the SOS symmetric
heap in these tests. Note Cray SHMEM backs the symmetric heap with large pages
by default. For jobs using 32 PEs or fewer, the Aries network is not involved as
all get/put operations are handled via XPMEM cross mappings. Above 32 PEs,
the Aries network is used for a portion of the remote memory updates. As the
job size grows, a greater proportion of the updates target off-node memory and
hence exercise the Aries network. SOS performance compares favorably to the
Cray SHMEM implementation, particularly when using large pages. The combi-
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Fig. 4. Giga-updates per second (GUPs) for the RA benchmark on SOS and Cray
SHMEM.

nation of the use of the libfabric fi inject writedata function in the implementation
of shmem longlong p and the use of large pages for the symmetric heap, helps SOS
to realize a higher update rate than Cray SHMEM at the larger job sizes.

5.4 Scalable Integer Sort Benchmark (ISx)

ISx [15] is a scalable integer sort benchmark using a bucket-sort algorithm. The
core communication pattern is an all-to-all exchange of locally sorted keys. The
all-to-all exchange is implemented using shmem int put to deliver the sorted keys
to the target PE. The offset into the target array (allocated from the symmetric
heap), is determined using a shmem longlong fadd. A final shmem barrier all
call is invoked to ensure all data has been exchanged. The benchmark allows for
both strong and weak scaling. With weak scaling, the number of keys per PE is
fixed. For these experiments, ISx was built both with Cray SHMEM and SOS.
Except for specifying dynamic linking, no special compiler or linker options were
used.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 16  64  256  1024

A
ll-

to
-a

ll 
tim

e 
pe

r 
P

E
 (

se
c)

Number of PEs

Cray SHMEM/DMAPP
SOS/OFI/uGNI

 0

 1

 2

 3

 4

 5

 8  16  32  64  128  256  512  1024

A
ll-

to
-a

ll 
tim

e 
pe

r 
P

E
 (

se
c)

Number of PEs

Cray SHMEM/DMAPP
SOS/OFI/uGNI

Fig. 5. Performance of ISx using Sandia OpenSHMEM and Cray SHMEM.
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Figure 5a presents the time spent in the all-to-all exchange in the case of
strong scaling, sorting a total of 227 keys. Except for the 8 PE run, the time spent
in the all-to-all exchange pattern is the same whether using Sandia SHMEM or
Cray SHMEM. Figures 5b shows the time spent in the all-to-all exchange pattern
for the weak scaling case. For weak scaling, the time in the all-to-all operation
is essentially the same, with SOS showing a small performance improvement.

6 Conclusions and Future Work

Sandia OpenSHMEM (SOS) is the first PGAS middleware to demonstrate the
new OpenFabrics Interface communication API on a modern HPC system. Sig-
nificant effort was invested in both SOS and the uGNI provider to broaden
the set of supported performance and portability features, including support for
additional memory registration and addressing modes. Overall we found OFI
to be closely aligned with the requirements of OpenSHMEM, yielding efficient
mappings between the OpenSHMEM middleware and the lower-layer libfabric
interfaces.

We evaluated the performance of our implementation on a Cray R© XC40TM

system and demonstrated comparable latency and scalability to the production
Cray SHMEM library. SOS with OFI achieved comparable or better bandwidth
and random access (GUPs) performance than Cray SHMEM. For small mes-
sages, the OFI inject functionality used by SOS resulted in an improvement
of up to 61% in bi-directional bandwidth. In addition, the SOS bounce buffer-
ing optimization enabled further improvements in the small-to-medium message
regimes. We hope to further improve upon these results with additional perfor-
mance and scalability tuning.

The OpenSHMEM community is actively working to extend the OpenSH-
MEM model with new tools that will allow users to leverage future extreme scale
systems. We hope that the new, open source platform that we have presented
will provide a useful environment for evaluating and developing new extensions
to the OpenSHMEM parallel programming model.
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