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Abstract. Unexpected error conditions stem from a variety of under-
lying causes, including resource exhaustion, network failures, hardware
failures, or program errors. As the scale of HPC systems continues to
grow, so does the probability of encountering a condition that causes
a failure; meanwhile, error recovery and run-through failure manage-
ment are becoming mature, and interoperable HPC programming para-
digms are beginning to feature advanced error management. As a result
from these developments, it becomes increasingly desirable to gracefully
handle error conditions in OpenSHMEM. In this paper, we present the
design and rationale behind an extension of the OpenSHMEM API that
can (1) notify user code of unexpected erroneous conditions, (2) per-
mit customized user response to errors without incurring overhead on an
error-free execution path, (3) propagate the occurence of an error condi-
tion to all Processing Elements, and (4) consistently close the erroneous
epoch in order to resume the application.

1 Introduction

OpenSHMEM [21] is an emerging partitioned global address space (PGAS) spec-
ification that provides interfaces for one-sided and collective communication,
synchronization, and atomic operations. The one-sided communication opera-
tions do not require the active participation of the target process when receiving
or exposing data, freeing the target process to work on other tasks while the data
transfer is ongoing. It also supports some collective communication patterns such
as synchronizations, broadcast, collection, and reduction operations. In addition
OpenSHMEM provides interfaces for a variety of atomic operations including
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both 32-bit and 64-bit operations. Overall, it provides a rich set of interfaces
for implementing parallel scientific applications, and OpenSHMEM implemen-
tations are expected to perform well on modern high performance computing
(HPC) systems. This expectation stems from the design philosophy of OpenSH-
MEM, which focus on providing a lightweight and high performing minimalistic
set of operations, and a close match between the OpenSHMEM semantic and
hardware-supported native operations. This tight integration between the hard-
ware and the programming paradigm is expected to result in close to optimal
latency and bandwidth in synthetic benchmarks, meanwhile preserving simple
and powerful end-user semantics.

Despite this rich feature set, the OpenSHMEM specification has lacked error
management and failure mitigation primitives. However, the complexity of High
Perfomance Computing systems keeps increasing steadily along multiple axes.
On one axis, heterogeneous computing, with accelerators, different instruction
sets, and possibly multiple interoperable programming paradigms are becom-
ing pervasive [13]. This proliferation of software levels within the same appli-
cation increases the probability of hitting unforeseen interactions between the
runtime libraries, leading, in the worse case, to more programming errors from
the more numerous code paths, or to imperfect resource sharing between levels,
hitherto more occurrences of runtime resource exhaustion errors. Along another
axis, HPC is moving further toward massive parallelism, harnessing millions of
processing cores, in commonly tens of thousand of nodes. As the number of com-
ponents comprising HPC systems increases, probabilistic amplification entails
that failures (i.e., a system malfunction) are becoming common events in the
lifecycle of an application. Currently deployed petascale machines experience
approximately one crash failure every 10 h [22], a situation which is expected
to worsen with the introduction of exascale systems in the near future [1,7,14].
Although some faillures may not be immediately visible (especially the so called
silent errors that corrupt the application dataset without interrupting the com-
putation), in many cases, failures (including a large number of memory corrup-
tions) do manifest detectable behavior, either in the form of a process crash, a
network disconnect, or as a memory corruption that can’t be corrected by ECC.

As these failure vectors become more common, most HPC programming
interfaces are being enriched to provide meaningful error reporting and miti-
gation strategies. For example, the Message Passing Interface (MPI) has long
provided error reporting capabilities, and further semantics to tolerate process
failures are under consideration [5]. In this paper we present a set of extensions to
the OpenSHMEM specification that will enable capturing errors resulting from
various unexpected runtime conditions, stabilize the state of the application—
and thereby open the possibility for recovering from the condition, and possi-
bly interoperate with another error managing middleware. Due to its one-sided
nature, and the form in which synchronization are expressed, OpenSHMEM
poses a specific set of constraints for resolving the global state generated by the
occurence of unexpected errors at some PEs, which in turns calls for an origi-
nal approach. The rest of this paper is organized as follows: Sect. 2 presents a
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succint view of the type of failures we address and the general benefits expected
from their handling; Sect. 3 describes the limitations on error reporting scope and
uniformity accross process to preserve latency sensitive operations’ performance;
Sect. 4 presents the OpenSHMEM API to capture errors; Sect. 5 discusses the
need for, and the mean for, the error propagation mechanism; Sect. 6 presents
the construct for stabilizing the post-error situation, and resuming communicat-
ing; Sect. 7 presents related work on fault tolerant communication libraries, and
we conclude in Sect. 8.

2 Background

Error masking and automatic failure recovery are valuable properties in system
designs. Indeed, they relieve end-users from the duress of managing erroneous
cases, and abstract the system as a stable platform. Aside from component hard-
ware technologies, like packet retransmission in network interfaces, and ECC
memory, the main vessel for sustaining the abstraction of a stable platform has
been Coordinated Checkpoint/Restart (CR), either at the application or at the
system level. One of its strong features is that it can be implemented without
the communication library providing a meaningful support for fault tolerance, or
even error reporting. In exchange, the recovery strategy involves a coarse grain
full restart of the application in the previously saved global state. However, mod-
els and analysis [7,14] indicate that the status-quo is not sustainable, and either
CR must drastically improve (for example by deploying in-place checkpoint-
ing [3,19]), or alternative recovery strategies must be considered. The variety
of prospective techniques is wide, and notably includes checkpoint-restart varia-
tions based on uncoordinated rollback recovery [9], replication [14], or algorithm
based fault tolerance—where mathematical properties are leveraged to avoid
checkpoints [12]. A common feature required by most of these advanced failure
recovery strategies is that, unlike historical rollback recovery, the application
continues to operate in-line and in-place, possibly only demanding the replace-
ment of a limited number of processors. Furthermore, considering the general
spectrum of causes that can trigger an error, not all errors are indicative of
a catastrophic, or at least severe enough failure, as to justify a full, expensive
restart of the platform. The first step to enable an alternative management of
errors, or simply to enable scalable checkpointing, is to introduce a mean to
report errors from the application’s communication support environment.

Failures can be classified into four broad categories of increasing severity.
Note that these failure classes do not necessarily map directly to a particular type
of ailment; for example, both a memory corruption and an incorrect program
can result in a crash failure, or, depending on runtime conditions, both may
also produce a silent error, arguably a more severe outcome. In this section we
discuss these failure classes’ details, and how the OpenSHMEM error reporting
system can help their management.

Resource Exhaustion: The first class, which generally is the easiest to circumvent,
represents resource exhaustion errors, and other correctable conditions arising
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from temporary or maleable overload of capacities. In the general OpenSHMEM
philosophy, these errors should generally be handled internally by the library
itself, and never propagate to the end-user. However, in some cases, the auto-
matic, internal circumvention of an error is not possible. A program that tries
to allocate a large amount of symmetric memory is a simple example. On some
architectures, the memory that can be exposed for direct one-sided operations is
smaller than the general memory capacity. Should a program require more than
the available capacity, a potential corrective action could be to move the least
used dataset from a symmetric memory segment to some non-registered mem-
ory. However, the OpenSHMEM implementation does not hold enough informa-
tion about the intent of the application to safely undergo such an action: other
Processing Elements (PEs, which is the name for an OpenSHMEM process) may
initiate one-sided operations targeting these segments, and it would be unsafe
to displace them. As a consequence, an implementation may be forced to report
that the symmetric memory is exhausted, and delegate remediation actions to
the user’s program. These actions could range from operating with a smaller
dataset when the algorithm is amenable to such an outcome, or moving some
least used symmetric memory to non-symmetric memory explicitly, or contin-
uing with an alternative interoperable communication library to complete the
program successfully, albeit with reduced performance.

Crash Failures: The second class captures simple crash failures. A crash failure
is characterized by the fact that some PEs stop being responsive definitively,
that is, they no longer emit messages. Aside from obvious power supply failures,
multiple vectors (including failures of network cables, bit-flips that raise signals,
etc.) can ultimately manifest as a PE exhibiting a crash failure. Crash failure
detection in distributed systems is a well studied domain [10], with practical solu-
tions [6], outside the scope of the present work. One may note, however, that in a
distributed system, surveillance of every process by every process can generate a
significant amount of noise, which in turn cause a significant performance degra-
dation [20]. Meanwhile, performing periodic failure resilient consensus to agree
upon a set of failed processes is expensive. As a consequence, in practice, failures
are detected opportunistically, and a PE may know, at any instant, of only a
subset of the full set of failed PEs (as could be observed from an omniscient
observer). A desired property with respect to an OpenSHMEM implementation
is that it should be free of deadlocks, even when some PE fails, which means
that OpenSHMEM operations trigger an appropriate error when PE failures are
detected.

Network Failures: The third class is network failures and intermittent failures.
These failures manifest when network links and processors are slow, when link fail-
ures result in partial disconnection of the network (that is, a PE may appear non-
responsive to some neighbors, but responsive to others), or when network mes-
sages are lost. Traditionally, message losses and retransmission are easily man-
aged internally by the HPC communication library, and are seldom reported to
the end-user. Partial disconnect of the network is a very difficult condition to
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correct or even diagnose (for a particular PE, it may appear as if some other alive
PE has been the victim of a crash failure). Possible resolutions involve routing
around the problematic links, or promoting the link failure to a crash failure of the
non-reachable processes. Even when the OpenSHMEM library resolves a link fail-
ure internally with rerouting, the potential for a severe reduction in performance
motivates reporting an error to the application, to interrupt the normal execution
flow and inform the user about the condition. Given supplementary introspection
capabilities of the network topology, a maleable application may choose to adjust
its communication pattern to match the new network capacity, or abort orderly
if it is not maleable or when the performance loss is deemed too severe.

Corruption Failures: The last class of failures are referred to as byzantine fail-
ures. In this class of failures, affected processes may behave erratically, including
malicious and intentionally disruptive behavior [18]. Although this class is gener-
ally intractable in asynchronous distributed systems, given reasonable assump-
tions about the type of erratic behavior, for example limited to dataset (not
program) corruption [15], a variety of detection and mitigation strategies can
be deployed. Beyond the protection provided by ECC memory, the detection of
a silent error, and often the correction strategies are highly algorithm and/or
dataset dependent [4,11] and cannot be detected or managed by the OpenSH-
MEM library. However, it may be desirable for an application detecting such an
erroneous condition to receive support from the OpenSHMEM library in order
to trigger a “recovery action” with other PEs.

3 Scope and Locality of Error Reporting

3.1 Local Versus Global Error Reporting

First, as we have discussed above, many of the failure classes that are the root
cause for reporting errors are local to a PE, or are detected locally by some PE.
Meanwhile other PEs have no chance to even observe the erroneous behavior.
In a limited number of cases, e.g., for some resource exhaustion errors, the PE
triggering the error may be able to correct the error independently. There is
therefore no strong case for alerting other PEs of the condition, as it will soon
be corrected without their involvement, or knowledge. In many cases, however,
some failures have to be reported at multiple, potentially all, PEs. In the case of
a collective synchronization operation, for example, when a crash failure happens
at a PE before it enters the operation, other PEs cannot possibly synchronize,
and will have to report an error. The one-sided nature of many OpenSHMEM
operations can also force reporting a failure at multiple PEs, without a direct
mapping between the failed PE and which PEs have to report the error. Con-
sider the case described in the left of Fig. 1, where P1 issues a shmem wait oper-
ation. This operation blocks until the remote updates performed from remote
PEs toggle a conditional statement on the value. The origin PE (or PEs) that
perform the remote updates are not specified by the operation. Consequently, if
a process crash failure happens, the communication library cannot infer if one
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Fig. 1. Scope and uniformity semantics for error reporting. On the left, errors are
reported locally, only for operations that are at risk of blocking indefinitely. On
the right, a failure results in non-uniform errors: some PEs complete the broad-
cast, unaware that other PEs have triggered an error during the same collective
communication.

of the failed PEs (here P0) was supposed to perform the needed update, or if
another PE (for example P2) is soon going to post the update. In order to avoid
leaving the target PE blocking in the posted shmem wait operation indefinitely,
the OpenSHMEM library has to report an error, ending that operation. However,
other PEs may be able to satisfy all their blocking operations independently,
and an error may be delayed until an operation would block. An advantage of
this approach is that PEs that do not need to block (the second shmem wait at
P3, for which the update has already happened) can spare the cost of checking
for errors in the performance critical, non-erroneous execution path, unless an
operation effectively blocks.

The general semantic is that error reporting is local, mandated to happen
only at PEs whose completion of a blocking operation is rendered impossible
by a failure (possibly multiple PEs, if they had issued a collective operations or
shmem wait operations), and is by default not propagated. However, we observe a
dichotomy in use-cases. Some errors, for example resource exhaustion and some
soft failures, can be easily corrected locally, and the local reporting permits
maximal performance in that case. Some errors demand a collective correction
action, and the proposed OpenSHMEM interface needs the capability to report
errors both locally or globally. We will further discuss how global reporting can
be triggered in Sect. 5.

3.2 Non-uniform Error Reporting

Conserving a strongly consistent global state, even after an error has been
reported, is a very natural desire for application programmers. In a distrib-
uted system, providing such a strong semantic is unfortunately rife with multi-
ple caveats. Even considering that some errors may trigger on a global scope,
at all PEs, performance considerations still discourage providing uniform error
reporting.
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First, let’s further define what it means for an error to be uniformly reported.
An error is uniformly reported when all PEs get the notification of the error at
the same time, that is, if a PE observes an error at a particular point in the
program life, it can infer when a similar error has been triggered at target or
origin PEs according to the Lamport causal ordering of communication opera-
tions in the program [17]. In collective and two-sided operations, there is a clear
semantic linkage between the matching operations that form a line where one
can easily define what uniform reporting means. In one-sided communication,
such a clear operation based causality line is absent from the source code at
the target, but one can still define a semantic line between the operation that
failed at the origin, and the failure for the specified behavior to manifest at the
target (i.e., an origin performs an shmem add, but the value is not updated at
the target due to a failure of some sort).

Second, let’s observe the performance implications of uniform reporting on
OpenSHMEM operations. Consider, for example, the case of reporting errors
during a shmem bcast, as illustrated on the right of Fig. 1. When the opera-
tion completes at a non-root PE, the shmem bcast specification states that the
destination array contains the broadcast values. However, it does not give any
information about the state of the completion of the broadcast at other PEs
(it actually explicitly forewarns that reusing the Psync argument in another
call may require a separate, explicit synchronization). In essence, the cost of
the broadcast operation does not include the cost of synchronizing. In many
implementations, a broadcast will leverage the relaxed semantic to optimize the
operation with a tree topology. In such an implementation, the broadcast is
complete at PEs high in the tree (that is, closest to the root) long before the
broadcast completes at leaf PEs. Without further modification, this can result
in potentially non-uniform triggering of errors, with some PEs reporting that
the operation succeeded while other PEs report that it failed. With the added
requirement that any error reported at a leaf PE must be consistently observed
as an error reported at all other PEs, the overall cost of the broadcast then
increases. The operation becomes semantically equivalent to an all-to-all opera-
tion (where each process contributes with the error code value), whose minimal
cost is that of an AllReduce. That cost is present even when there is no error
to report. Furthermore, if a PE fails during a synchronizing operation (that
is, after it started contributing to the collective call), the failed PE could have
passed its contribution to only a subset of its neighbors (in the topology used
internally by the library). If the remaining PEs have to report uniformly that
the operation has failed, the synchronization has to operate between non-failed
PEs to agree, in a fault tolerant fashion, what the operation should report at
all PEs. In practice, a fault tolerant synchronization (an agreement on a single
value) can be twice as expensive as an AllReduce [16].

Similar to the case of collective operations, a strong mandate for report-
ing errors at the origin for any violation of the semantic at the target requires
synchronizing all one-sided operations. The difference between the shmem fadd
and shmem add operations is a prime exhibit of the cost of this implicit
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synchronization with the target. The former returns the result of the operation
at the origin, while the later does not, henceforth sparing the semantic synchro-
nization with the target. These two operations have been separated, because the
addition of this synchronization semantic has a salient impact on injection rate
and latency performance of one-sided operations.

For these reasons, uniform error reporting is not required from OpenSHMEM
operations. Instead, users are provided with additional interface to resynchronize
PEs after an error has been reported. We will see in Sect. 6 how additional
OpenSHMEM interfaces can help users in creating error handling epochs that
ensure a clear discrimination between errors arising before and after the epoch
starts.

4 Error Reporting Interface

In this section, we present the interface that embraces the principles exposed
above, with some discussion about alternative software engineering designs that
have been considered but rejected.

Error Handlers. Most OpenSHMEM operations may report errors. Errors can
originate from invalid arguments being passed to OpenSHMEM operations, or
from unexpected runtime conditions such as a processor or a network link failure,
resource exhaustion, etc. Errors are reported by the invocation of the error han-
dler associated with the error code (Fig. 2 presents a list of error handler manage-
ment functions). The default error handler is set to shmem errhandler gexit,
a predefined error handler that calls shmem global exit, thereby ending the
entire application. This behavior is consistent with expectations of non error-
managing OpenSHMEM applications. A program that manages errors should
set an appropriate error handler, using the shmem errhandler set function, for
each error code it can handle (or for all errors when using the special error code
SHMEM ERR ALL). The error handler can be set with a predefined error handler
(see Table 1 for the full list), or with an user provided function that receives the
error code as input. Setting an error handler is a local operation, and each PE
may set a different error handler for the same error code.

1 typedef void (∗ shmem errhandler cb fn ) ( int errcode , void∗ user params ) ;
2
3 void shmem errhandler set (
4 int errcode , /∗ IN : the managed error type ∗/
5 shmem errhandler cb fn errh , /∗ IN : the error handl ing funct ion ∗/
6 void∗ user params ) ; /∗ IN : an user parameter to the ca l l b a ck ∗/
7
8 void shmem errhandler get (
9 int errcode , /∗ IN : the managed error type ∗/

10 shmem errhandler cb fn errh , /∗ OUT: the current l y s e t error handler ∗/
11 void∗ user params ) ; /∗ OUT: the current l y s e t user parameter ∗/

Fig. 2. C Interfaces to manage error handlers in OpenSHMEM.
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Table 1. List of predefined error handlers in OpenSHMEM.

shmem errhandler gexit The error handler calls shmem global exit with the error
code as parameter, which effectively terminates the
application. This is the default error handler

shmem errhandler break The error handler breaks from blocking OpenSHMEM
operations at the PE. It has no effect at other PEs

shmem errhandler gbreak The error handler breaks from blocking OpenSHMEM
operations at all PEs

Rationale: During the design phase of the interface, alternative approaches where
considered. Using return codes from OpenSHMEM functions would require to
add a non-void return from most of the API functions. However, some operations,
like shmem fadd, already return a semantically important value from the function
(the value of the target variable at the remote PE), which would have rendered
that API change non-backward compatible. Another alternative, the use of a
global shmem errno value, was also considered. But this approach would entail
difficulties for thread-safe operations in multithreaded programs. In addition, a
programming style where the user has to check errors after all OpenSHMEM
library calls was deemed to impose a high productivity tax on users, and for all
these reasons, a reactive approach based on error handling callbacks has been
preferred.

When an Error Handler Triggers. Implementations are encouraged to
report the occurence of failures by triggering the local error handler function,
with an appropriate error code, and strive not to leave any PE blocking in an
operation disrupted by a failure. However, depending on the severity of the fail-
ure, it may not always be possible to do so (for example, in the case of a byzan-
tine failure). Passing invalid arguments to OpenSHMEM operations generally
results in undefined behavior; however, a debugging version of an OpenSHMEM
implementation may check for invalid arguments and report errors.

When a user-provided error handler function returns, it has the same effect
as if it had called shmem errhandler break as its last statement, that is, it
interrupts ongoing OpenSHMEM communication blocking calls at the local PE.
After an error handler has been triggered, OpenSHMEM communication oper-
ations do not block, and possibly do not respect their specification. That is, a
synchronizing operation may return before synchronizing, or the data objects
could be partially or incorrectly updated. Implicit non-blocking operations orig-
inating at the PE are also interrupted. It should also be noted that, due to the
one-sided nature of OpenSHMEM operations, when an error is reported at an
origin PE, incorrect behavior may also be observed at the target PEs with-
out that PE reporting an error. It is possible to force an error to be reported
at all PEs by calling the predefined error handler shmem errhandler gbreak,
described in Sect. 5.
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After an error has been reported, communicating with the OpenSHMEM
library may not be possible. However, the memory allocated for symmetric data
objects remains available at the local PE, giving the application a chance to ver-
ify the correctness of the data, take checkpoints before exiting, or continue using
a resilient communication library. Operations that restore the communication
capability of the OpenSHMEM library are described in Sect. 6.

Stacking of Error Handlers. The user may call an error handler at any time,
as a normal C function (including the predefined error handlers). In particular,
a user defined error handler function can call another error handler function. In
order to call the currently set error handler, a user can obtain the error handler
and its parameter with shmem errhandler get, and can then call that error
handler directly, or set the error handler with its own, and chain the call from
within the replacement error handler. Similar interfaces are provided for Fortran,
with the addition of an interface to call an error handler function.

Thread Safety. Although OpenSHMEM does not have complete definitions
regarding thread safe operations at this point, we envision the following behavior
with regard to error handler invocation in multithreaded programs. The error
handler would be invoked once per PE. After the error handler would have
been invoked, operation blocking at any thread of the PE would break. The
apparent ordering of concurrent operations and error handler invocation would
be implementation dependent.

5 Error Propagation

After an error has been reported to a particular PE, that PE may choose, or be
constrained to stop performing operations and updates from the error free exe-
cution path. If the communication pattern is complex, the occurrence of failures
can deeply disturb the application and, with only local error reporting, could
prevent an effective recovery from being implemented. Consider the example in
Fig. 3: as long as no failure occurs, the processes are following a communication
pattern called plan A. PE P0 does a shmem put on a value at P1. P1 is blocking
in a shmem wait until that update from P0 is made, then combines the result of
the updated value with a local state, and broadcast that value to all other PEs,
except for P0.

Let’s observe the effect of introducing a crash failure in plan A, and consider
that P0 has failed. As only P1 blocks in an operation that could originate at P0,
other processes do not have to detect this condition, and only P1 is guaranteed
to have the failure of P0 reported, as it issued a shmem wait operation. The
situation at P1 now raises a dilemma: P1..N wait on the contribution of P1 to the
shmem bcast. As all processes participating in the broadcast are alive (P1 being
a non-failed process), the operation may block until the matching shmem bcast
is posted at P1. However, P1 knows that P0 has failed, and that the application
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1 i f (0==rank ) {
2 shmem int p(&cond , 1 , 1 ) ;
3 cond++;
4 } else {
5 i f (1==rank ) shmem int wa i t unt i l (&cond , comp++);
6 shmem broadcast32(&comp , &comp , 1 , 1 , 1 , 0 , npes −1, psync ) ;
7 /∗ ( dest , src , count , root , PEstart , PEstride , PEsize , psync ) ∗/
8 }

Fig. 3. The transitive communication pattern plan A, from the source code, must be
interrupted before the PEs can switch to the recovery communication pattern plan B.
By calling the shmem errhandler gbreak error handler, P1 ensures that all possibly
unmatched operations in plan A, which could provoke deadlocks, are interrupted.

should branch into its recovery procedure plan B ; if P0 were to switch abruptly
to plan B, it would cease matching the broadcast P1..N posted, following plan A.
At this point, P1 needs an effective way of interrupting operations that it does
not intend to match anymore, otherwise, the application would reach a deadlock.

The proposed solution to resolve this scenario is that, before switching to
plan B, the user code in P1 sets the error handler to shmem errhandler gbreak,
or explicitly calls shmem errhandler gbreak from within the user supplied error
handler. The invocation of the predefined shmem errhandler gbreak error han-
dler at any PE forces the invocation of the locally set error handler, with the
same error code, at all PEs. As a consequence, communication operations do
not block anymore and the OpenSHMEM library returns control to the user at
all PEs, thereby solving potential transitive dependence deadlocks.

Implementation Challenges: An implementation has to be able to process the
reception of a shmem errhandler gbreak notification. Some implementations
use an asynchronous state machine to manage communication calls, and in
these implementations, receiving the notification and interrupting ongoing oper-
ations is relatively simple. For implementation that employ blocking transport
calls, different options are available. The implementation may employ a service
thread to poll for shmem errhandler gbreak notifications and externally can-
cel blocking transport calls, or it may employ timeouts to interrupt blocking
transport calls when their duration is excessive, and poll for notification only in
this case. Ideally, polling for notification should be a low priority task, and the
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specification permits delaying error notification after any latency and injection
rate critical operations have completed.

As this operation aims at managing error cases, it has to itself tolerate
the failures it reports. As such, this operation is not interrupted by normal
errors. In particular, in an OpenSHMEM implementation that can tolerate crash
failures, it has to perform a reliable broadcast to all surviving PEs. Fortu-
nately, efficient implementations of a similar operation in fault-tolerant MPI
exist (MPI Comm revoke), and have been demonstrated to be scalable [8].

6 Post-error Stabilization

At this point, the proposed interfaces have permitted reporting errors for locally
observed failures, propagating these errors to all PEs in order to interrupt the
code flow and regroup in a recovery procedure, but these interfaces have not
permitted resuming OpenSHMEM communication after an error handler has
been invoked.

One of the difficult points in resuming communication is determining that
all PEs are aware of the same set of erroneous conditions. As described in
Sect. 3.2, some errors may have been reported only at some PEs. Even when
these PEs have triggered a global propagation with shmem errhandler gbreak,
the notification of these propagated errors have communication delays, and
may be observed at different causal times at different PEs. In order to sta-
bilize the state of the application, the user needs to have an operation that
(1) drains pending error notifications and ensures that the propagation of
shmem errhandler gbreak notifications have completed, and (2) restores the
communication capabilities between a globally agreed upon set of PEs that
report a good health state.

The shmem error barrier all provides these two capabilities in Open-
SHMEM. It is a collective operation that provides a fault tolerant barrier
between all non-failed PEs, which quiets all communications, and enforces that
shmem errhandler gbreak propagation have completed. If, at a PE, the invo-
cation of the shmem errhandler gbreak error handler precedes the call to the
shmem error barrier all, then, the local error handler is invoked at all PEs
before the call completes. The error handler may be invoked from within the
shmem error barrier all without interrupting the operation, and it is the
users’ responsibility to ensure that the error handler does not call recursively
shmem error barrier all. The shmem error barrier all operation completes
in the presence of the failure types the OpenSHMEM implementation can tol-
erate, that is, the operation will block until an agreement is made that all the
necessary error handlers have been invoked, and that the status of failed PEs
has been agreed upon.

When the shmem error barrier all operation completes, the status of PEs
can be queried with the new local operation shmem error query, which, for the
same PE argument, returns the same error status at all querying PEs. If a PE
continues to be in a failed state, a query of its status returns the error code
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representing the type of failure preventing the PE from continued participation
in OpenSHMEM, or the special status 0 when the PE is capable of resuming
communication with OpenSHMEM. Note that the status of a process changes
only when shmem error barrier all is called. A PE may query its own status,
which may report that it cannot use OpenSHMEM anymore. In this case, the
PE may initiate an orderly termination for itself, take checkpoints, or resort
to an alternate communication library (such as MPI) to continue the parallel
application.

Communications targeting a PE in error status trigger an error at the origin.
Collective operations are collective over the subset of PEs that do not have an
error status. PE ranks, the size of the pSync array, and offsets in data buffers
remain unchanged. The content of the source and destination buffers that would
have been sent or received from a PE in error status is unused.

7 Related Work

Fault tolerance and error reporting in communication middleware has a long
history. The UNIX Socket interface is notably resilient to many failure types,
and has the ability to report errors to endpoints on a socket. One of the main
differences, which simplifies greatly the problem, is that sockets are bidirectional
connected streams between two participants. In HPC communication libraries,
managing an error not only means that the two endpoints of a failed stream
are informed, but that mechanisms are in place to unblock all processes of the
application that may risk blocking in multipartite communication operations,
and globally establish a recoverable application state. Also, performance con-
sideration are more stringent, as zero-copy and one-sided operations leave little
opportunity to hide the cost of failure detection activities.

MPI faces many of the same distributed system challenges as OpenSHMEM,
and has long provided the capacity of reporting errors. Efforts to define in the
standard a recoverable state after MPI errors is however fairly recent, consider-
ing mostly crash-failures [5]. In two-sided MPI operations the participants to the
operation are usually well specified (receives from named sources, etc.), which
has permitted the fault tolerance specification to strictly scope which communi-
cation operations are interrupted when an error is reported. As a consequence,
resilience extension in MPI are very operation centric and provide only explicit
error reporting propagation. In contrast, the OpenSHMEM interface observes
that many 1-sided operations do not specify clearly the origin, henceforth Open-
SHMEM provides both explicit and implicit error propagation.

GASPI [23] is another PGAS communication library which features error
management capabilities. Unlike in OpenSHMEM, all operations in GASPI have
a timeout, after which they stop blocking (even when the operation has not com-
pleted). GASPI then provides explicit failure detection and observation routines
to detect crash failures. In contrast, this fine grain handling is internal to the
OpenSHMEM library, which returns from blocking operations only when the
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implementation has observed that a failure (not necessarily limited to a crash-
failure) may result in the operation blocking indefinitely, therefore simplifying
the error management code.

Global View Resilience (GVR) [24] is a PGAS programming model that
provides resilience to failures (bit flips, crash, etc.) with a resilient storage of
multiple versions of the dataset. Distributed array can be streamed concurrently,
and independently to the resilient storage, which keeps an history of multiple
versions. Callbacks permit reconstructing damaged dataset when applicable. The
extensions proposed in OpenSHMEM are orthogonal to the advanced abstraction
of checkpointing proposed in GVR, which may benefit from resilience capabilities
in OpenSHMEM to accelerate its own communications.

8 Conclusions and Future Work

In this work, we explore the addition of error semantics to the OpenSHMEM
specification, and how one can leverage these constructs to recover from unex-
pected runtime errors and resource failures. The proposed interface is carefully
crafted to preserve performance, avoiding the pitfalls of uniform or global error
reporting. Instead, end-users are provided with the means to express their pref-
erence regarding the scope of reporting (global or local), and can restore the
consistency of the application’s global state after an error has been reported, by
employing an easy to understand error barrier construct.

Overall, the designs makes OpenSHMEM capable of managing many failure
vectors and resource exhaustion conditions by deferring the ultimate recovery
action to the end-user, which can then try to stabilize the application and resume
OpenSHMEM operations, or may fallback to an alternative interoperable com-
munication interface to complete the application in a degraded mode.

At this point, the interface does not support spawning replacement PEs
in stead of PEs in an unrecoverable state (wether they have encountered a
hardware or crash failure, or a non-crash failure has rendered the state of the
software stack unsafe to recover from). Many applications are not malleable, and
require a fixed number of PEs. Thus, future works should explore extensions to
this interface that permit replacing the failed processes, or, as an alternative,
cooperate with an external mechanism (such as PMIx [2], or a fault tolerant
MPI [5], etc.) to spawn the needed replacement PEs.
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