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Preface

The OpenSHMEM Workshop is the premier venue for presenting Partitioned Global
Address Space (PGAS) research, particularly as it relates to OpenSHMEM. Open-
SHMEM 2016 was the third event in the OpenSHMEM and Related Technologies
workshop series. The workshop was organized by Oak Ridge National Laboratory and
was held in Baltimore, Maryland, USA, and it was sponsored by ORNL, DoD, Intel,
Mellanox, Cray, and SGI. The workshop was attended by participants from across
academia, industry, and private and federal research organizations.

This year, the workshop focused on the role of OpenSHMEM in heterogeneous and
hybrid environments. The two keynotes of the workshop included Steve Oberlin’s
(NVIDIA CTO) talk on the role of OpenSHMEM in future GPU-based extreme scale
systems, and James Sexton’s (IBM Fellow) talk on the usability of OpenSHMEM in
data-centric architectures. Besides the keynote, the workshop included paper and
vendor sessions as well as the OpenSHMEM committee meeting. The vendor session
included talks from Intel, Cray, Mellanox, Allinea, and Paratools.

The paper session discussed a variety of concepts, including extending the
OpenSHMEM API for future architectures, optimizing OpenSHMEM for current
architectures, and enhancements to OpenSHMEM for the heterogeneous environments.
All papers submitted to the workshop were peer-reviewed by the Technical Program
Committee, which included members from universities, industry, and research labs.
The Technical Program Committee members reviewed the papers with a very short
turnaround time. Despite the short turnaround, each paper was reviewed by more than
three reviewers, and in the end 14 full papers and 3 short papers were selected to be
presented at the workshop.

This proceedings volume is a collection of papers presented at the workshop. The
technical papers provided a variety of ideas for extending the OpenSHMEM specifi-
cation and making it efficient for current and next-generation systems. This included
active messages, non-blocking APIs, fault-tolerance capabilities, exploring imple-
mentation of OpenSHMEM using communication layers such as OFI and UCX, and
implementing OpenSHMEM for heterogeneous architectures. The OpenSHMEM
library is being explored as a high-performing communication layer for PGAS lan-
guages and Big Data frameworks, and those experiences from the developers were
discussed at the OpenSHMEM workshop this year.

The third day of the OpenSHMEM workshop was focused on developing the
OpenSHMEM specification. This year, like the year before, has been a very exciting
year for the OpenSHMEM committee. The committee released OpenSHMEM version
1.3 in February 2016, and also a built a very active community that participates in the
development of the specification. The OpenSHMEM meeting at the workshop is an
annual and only face-to-face OpenSHMEM committee meeting. This was one of the
most important meetings, as a set of rules and procedures were defined to be adopted
by the OpenSHMEM committee. This included operation procedures for the



OpenSHMEM committee and participants, and the formalization of the process of
development and ratification of the specification.

The general and program chairs would like to thank everyone who contributed to the
organization of the workshop. In particular, we would like to thank the authors, Pro-
gram Committee members, reviewers, session chairs, participants, and sponsors. We
are grateful for the excellent support we received from our ORNL administrative staff
and Daniel Pack, who maintained our workshop website.

November 2016 Neena Imam
Manjunath Gorentla Venkata

Swaroop Pophale
Tiffany Mintz
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Integrating Asynchronous Task Parallelism
with OpenSHMEM

Max Grossman(B), Vivek Kumar, Zoran Budimlić, and Vivek Sarkar

Rice University, Houston, USA
jmg3@rice.edu

Abstract. Partitioned Global Address Space (PGAS) programming
models combine shared and distributed memory features, and provide a
foundation for high-productivity parallel programming using lightweight
one-sided communications. The OpenSHMEM programming interface
has recently begun gaining popularity as a lightweight library-based app-
roach for developing PGAS applications, in part through its use of a
symmetric heap to realize more efficient implementations of global point-
ers than in other PGAS systems. However, current approaches to hybrid
inter-node and intra-node parallel programming in OpenSHMEM rely on
the use of multithreaded programming models (e.g., pthreads, OpenMP)
that harness intra-node parallelism but are opaque to the OpenSHMEM
runtime. This OpenSHMEM+X approach can encounter performance
challenges such as bottlenecks on shared resources, long pause times
due to load imbalances, and poor data locality. Furthermore, OpenSH-
MEM+X requires the expertise of hero-level programmers, compared to
the use of just OpenSHMEM. All of these are hard challenges to mitigate
with incremental changes. This situation will worsen as computing nodes
increase their use of accelerators and heterogeneous memories.

In this paper, we introduce the AsyncSHMEM PGAS library which
supports a tighter integration of shared and distributed memory paral-
lelism than past OpenSHMEM implementations. AsyncSHMEM inte-
grates the existing OpenSHMEM reference implementation with a
thread-pool-based, intra-node, work-stealing runtime. It aims to prepare
OpenSHMEM for future generations of HPC systems by enabling the use
of asynchronous computation to hide data transfer latencies, supporting
tight interoperability of OpenSHMEM with task parallel programming,
improving load balance (both of communication and computation), and
enhancing locality. In this paper we present the design of AsyncSH-
MEM, and demonstrate the performance of our initial AsyncSHMEM
implementation by performing a scalability analysis of two benchmarks
on the Titan supercomputer. These early results are promising, and
demonstrate that AsyncSHMEM is more programmable than the Open-
SHMEM+OpenMP model, while delivering comparable performance for
a regular benchmark (ISx) and superior performance for an irregular
benchmark (UTS).

c© Springer International Publishing AG 2016
M. Gorentla Venkata et al. (Eds.): OpenSHMEM 2016, LNCS 10007, pp. 3–17, 2016.
DOI: 10.1007/978-3-319-50995-2 1
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1 Introduction

Computing systems are rapidly moving toward exascale, requiring highly pro-
grammable means of specifying the communication and computation to be car-
ried out by the machine. Because of the complexity of these systems, exist-
ing communication models for High Performance Computing (HPC) often run
into performance and programmability limitations, as they can make it difficult
to identify and exploit opportunities for computation-communication overlap.
Existing communication models also lack tight integration with multi-threaded
programming models, often requiring overly coarse or error-prone synchroniza-
tion between the communication and multi-threaded components of applications.

Distributed memory systems with large amounts of parallelism available
per node are notoriously difficult to program. Prevailing distributed memory
approaches, such as MPI [23], UPC [11], or OpenSHMEM [7], are designed for
scalability and communication. For certain applications they may not be well
suited as a programming model for exploiting intra-node parallelism. On the
other hand, prevailing programming models for exploiting intra-node parallelism,
such as OpenMP [9], Cilk [12], and TBB [21] are not well suited for use in a
distributed memory environment as the parallel programming paradigms used
(tasks or groups of tasks, parallel loops, task synchronization) do not translate
well or easily to a distributed memory environment.

The dominant solution to this problem so far has been to combine the
distributed-memory and shared-memory programming models into “X+Y”, e.g.,
MPI+OpenMP or OpenSHMEM+OpenMP. While such approaches to hybrid
inter-node and intra-node parallel programming are attractive as they require
no changes to either programming model, they also come with several chal-
lenges. First, the programming concepts for inter- and intra-node parallelism
are often incompatible. For example, MPI communication and synchronization
within OpenMP parallel regions may have undefined behavior. This forces some
restrictions on how constructs can be used (for example, forcing all MPI com-
munication to be done outside of the OpenMP parallel regions). Second, the fact
that each runtime is unaware of the other can lead to performance or correct-
ness problems (e.g. overly coarse-grain synchronization or deadlock) when using
them together. Third, in-depth expertise in either distributed memory program-
ming models or shared-memory programming models is rare, and expertise in
both even more so. Fewer and fewer application developers are able to effectively
program these hybrid software systems as they become more complex.

In this paper we propose AsyncSHMEM, a unified programming model that
integrates Habanero tasking concepts [8] with the OpenSHMEM PGAS model.
The Habanero tasking model is especially suited for this kind of implementa-
tion, since its asynchronous nature allows OpenSHMEM communication to be
treated as tasks in a unified runtime system. AsyncSHMEM allows program-
mers to write code that exploits intra-node parallelism using Habanero tasks
and distributed execution/communication using OpenSHMEM. AsyncSHMEM
includes extensions to the OpenSHMEM specification for asynchronous task cre-
ation, extensions for tying together OpenSHMEM communication and Habanero
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tasking, and a runtime implementation that performs unified computation and
communication scheduling of AsyncSHMEM programs.

We have implemented and evaluated two different implementations of the
AsyncSHMEM interface. The first is referred to as the Fork-Join approach and is a
lightweight integration of our task-based, multi-threaded runtime with the Open-
SHMEM runtime with constraints on the programmer similar to those imposed
by an OpenSHMEM+OpenMP approach. The second is referred to as the Offload
approach and offers a tighter integration of the OpenSHMEM and tasking run-
times that permits OpenSHMEM calls to be performed from within parallel tasks.
The runtime ensures that all OpenSHMEM operations are offloaded to a single
runtime thread before calling in to the OpenSHMEM runtime. The Fork-Join
approach offers small overheads but a more complicated programming model and
is more restrictive in the use of the OpenSHMEM tasking API extensions. The
Offload approach ensures that all OpenSHMEM operations are issued from a sin-
gle thread, removing the need for a thread-safe OpenSHMEM implementation.
We note that this communication thread is not dedicated exclusively to OpenSH-
MEM operations, and is also used to execute user-created computational tasks if
needed. The advantage of the Offload approach is that it supports a more flexi-
ble and intuitive programming model than the Fork-Join approach, and can also
support higher degrees of communication-computation overlap.

The main contributions of this paper are as follows:

– The definition of the AsyncSHMEM programming interface, with extensions
to OpenSHMEM to support asynchronous tasking.

– Two runtime implementations for AsyncSHMEM that perform unified com-
putation and communication scheduling of AsyncSHMEM programs.

– A preliminary performance evaluation and comparison of these two implemen-
tations with flat OpenSHMEM and OpenSHMEM+OpenMP models, using
two different applications and scaling them up to 16K cores on the Titan
supercomputer.

The rest of the paper is organized as follows. Section 2 provides background
on the Habanero tasking model that we use as inspiration for the proposed Open-
SHMEM tasking extensions, as well as the OpenSHMEM PGAS programming
model. Section 3 describes our extensions to the OpenSHMEM API specification
and our two implementations of the AsyncSHMEM runtime in detail. Section 4
explains our experimental methodology. Section 5 presents and discusses experi-
mental results comparing the performance of our two AsyncSHMEM implemen-
tations against OpenSHMEM and OpenSHMEM+OpenMP implementations of
two benchmarks, UTS and ISx. This is followed by a discussion of related work
in Sect. 6. Finally, Sect. 7 concludes the paper.

2 Background

In this section we describe the programming concepts and existing implementa-
tions that serve as the foundation for the hybrid AsyncSHMEM model: Habanero
Tasking and OpenSHMEM.
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2.1 Habanero Tasking

The Habanero task-parallel programming model [5] offers an async-finish API
for exploiting intra-node parallelism. The Habanero-C Library (HClib) is a native
library-based implementation of the Habanero programming model that offers C
and C++ APIs. Here we briefly describe relevant features of both the abstract
Habanero programming model and its HClib implementation. More details can
be found in [22].

The Habanero async construct is used to create an asynchronous child task of
the current task executing some user-defined computation. The finish construct
is used to join all child async tasks (including any transitively spawned tasks)
created inside of a logical scope. The forasync construct offers a parallel loop
implementation which can be used to efficiently create many parallel tasks.

The Habanero model also supports defining dependencies between tasks using
standard parallel programming constructs: promises and futures. A promise is
a write-only value container which is initially empty. In the Habanero model, a
promise can be satisfied once by having some value placed inside of it by any task.
Every promise has a future associated with it, which can be used to read the value
stored in the promise. At creation time tasks can be declared to be dependent
on the satisfaction of a promise by registering on its future. This ensures that
a task will not execute until that promise has been satisfied. In Habanero, the
asyncAwait construct launches a task whose execution is predicated on a user-
defined set of futures. User-created tasks can also explicitly block on futures
while executing.

In the Habanero model, a place can be used to specify a hardware node
within a hierarchical, intra-node place tree [24]. The asyncAt construct accepts
a place argument, and creates a task that must be executed at that place.

HClib is a C/C++ library implementation that implements the abstract
Habanero programming model. HClib sits on top of a multi-threaded, work-
stealing, task-based runtime. HClib uses lightweight, runtime-managed stacks
from the Boost Fibers [16] library to support blocking tasks without blocking
the underlying runtime worker threads. Past work has shown HClib to be com-
petitive in performance with industry-standard multi-threaded runtimes for a
variety of workloads [13].

HClib serves as the foundation for the intra-node tasking implementation of
AsyncSHMEM described in this paper.

2.2 OpenSHMEM

SHMEM is a communication library used for Partitioned Global Address Space
(PGAS) [20] style programming. The SHMEM communications library was orig-
inally developed as a proprietary application interface by Cray for their T3D
systems [15]. Since then different vendors have come up with variations of the
SHMEM library implementation to match their individual requirements. These
implementations have over the years diverged because of the lack of a standard
specification. OpenSHMEM [7] is an open source community effort to unify all
SHMEM library development effort.
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3 AsyncSHMEM

In this section we present proposed API extensions to the OpenSHMEM speci-
fication, as well as two runtime implementations of those extensions.

3.1 API Extensions

The existing OpenSHMEM specification focuses on performing communica-
tion to and from processing elements (PEs) in a PGAS communication model.
This work extends the OpenSHMEM specification with APIs for both creat-
ing asynchronously executing tasks as well as declaring dependencies between
communication and computation. In this section, we briefly cover the major API
extensions. Due to space limitations, these descriptions are not intended to be a
comprehensive specification of these new APIs.

In general, the semantics of OpenSHMEM APIs in AsyncSHMEM are the
same as any specification-compliant OpenSHMEM runtime. For collective rou-
tines, we expect that only a single call is made from each PE. The ordering of
OpenSHMEM operations coming from independent tasks must be ensured using
task-level synchronization constructs. For example, if a programmer requires that
a shmem fence call is made between two OpenSHMEM operations occurring in
other tasks, it is their responsibility to ensure that the inter-task dependencies
between those tasks ensure that ordering. The atomicity of atomic OpenSHMEM
operations is guaranteed relative to other PEs as well as relative to all threads.

void shmem task nbi ( void (∗body ) ( void ∗ ) , void ∗ use r data ) ;

shmem task nbi creates an asynchronously executing task defined by the user
function body which is passed user data when launched by the runtime.

void shmem para l l e l f o r nb i ( void (∗body ) ( int , void ∗ ) ,
void ∗ user data , int lower bound , int upper bound ) ;

shmem parallel for nbi provides a one-dimensional parallel loop construct
for AsyncSHMEM programs, where the bounds of the parallel loop are defined
by lower bound and upper bound. Each iteration of the parallel loop executes
body and is passed both its iteration index and user data.

void shmem task scope begin ( ) ;
void shmem task scope end ( ) ;

A pair of shmem task scope begin and shmem task scope end calls are
analogous to a finish scope in the Habanero task parallel programming model.
shmem task scope end blocks until all transitively spawned child tasks since the
last shmem task scope begin have completed.

void shmem task nbi when ( void (∗body ) ( void ∗ ) , void ∗ user data ,
TYPE ∗ ivar , int cmp , TYPE cmp value ) ;

The existing OpenSHMEM Wait APIs allow an OpenSHMEM PE to
block and wait for a value in the symmetric heap to meet some condition.
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The shmem task nbi when API is similar, but rather than blocking makes the
execution of an asynchronous task predicated on a condition. This is similar to
the concept of promises and futures introduced in Sect. 2. This API also allows
remote communication to create local work on a PE.

3.2 Fork-Join Implementation

The Fork-Join approach is an implementation of AsyncSHMEM that supports
most of the proposed extensions from Sect. 3.1. It is open source and available
at https://github.com/openshmem-org/openshmem-async.

This particular implementation of AsyncSHMEM integrates asynchronous
task parallelism without making any changes to the core OpenSHMEM run-
time. Changes are limited to the user-level API’s in OpenSHMEM. The
goal of the Fork-Join implementation was to study the impact of support-
ing basic asynchronous tasking in OpenSHMEM. In this approach, only the
main thread (or process) is allowed to perform OpenSHMEM communica-
tion operations (blocking puts and gets, collectives). The asynchronous child
tasks are not allowed to perform communication. The main thread can cre-
ate child tasks by calling shmem task nbi or shmem parallel for nbi. These
child tasks can further create arbitrarily nested tasks. Synchronization over
these tasks can be achieved either by explicitly creating task synchroniza-
tion scopes by using shmem task scope begin and shmem task scope end, or
implicitly by calling shmem barrier all. The shmem init call starts a top-
level synchronization scope by calling shmem task scope begin internally. Each
shmem barrier all call includes an implicit sequence of shmem task scope end
and shmem task scope begin calls, i.e., it first closes the current synchroniza-
tion scope and then starts a new scope. The call to shmem finalize internally
calls shmem task scope end to close the top-level synchronization scope. The
programmer is allowed to create arbitrarily nested task synchronization scopes
using shmem task scope begin and shmem task scope end. We call this imple-
mentation of AsyncSHMEM a Fork-Join approach because of the implicit task
synchronization scopes integrated inside the call to shmem barrier all, causing
a join at each barrier but allowing the forking of asynchronous tasks between
barriers. A typical usage of this implementation is shown in Fig. 1, which closely
mirrors an OpenSHMEM+OpenMP based hybrid programming model.

AsyncSHMEM Process AsyncSHMEM Process AsyncSHMEM Workers 

No communication calls 

Asynchronous intra-rank  
task scheduling using work-stealing 

Fig. 1. Fork-Join asynchronous task programming model in OpenSHMEM. The intra-
rank asynchronous child tasks cannot make any communication calls.

https://github.com/openshmem-org/openshmem-async
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3.3 Offload Implementation

Similarly to the Fork-Join approach, the Offload approach does not require mod-
ifications to any existing OpenSHMEM implementations but does support a
tighter integration of PGAS and task parallel programming with more flexi-
ble APIs. The Offload implementation is open source and available at https://
github.com/habanero-rice/hclib/tree/resource workers/modules/openshmem.

Similar to [8,17], the Offload implementation ensures all OpenSHMEM oper-
ations are issued by a single worker thread in the multi-threaded, work-stealing
runtime. However, the Offload approach differs in that no worker thread is ded-
icated exclusively to performing communication. Instead, the communication
worker thread is free to execute user-written computation tasks if no communi-
cation work can be found.

To better illustrate the Offload approach, we will walk through the execution
of a shmem int put operation in the Offload approach’s runtime:

1. An arbitrary task in a given PE calls the OpenSHMEM shmem int put API
as usual, but using the AsyncSHMEM library. Under the covers, this call
results in the creation of a task that wraps a call to the shmem int put API
of an OpenSHMEM implementation. That task is placed on the work-stealing
deque of the communication worker. No threads are allowed to steal commu-
nication tasks from the communication worker.

2. Because shmem int put is a blocking operation, the stack of the currently
executing task is saved as a continuation and its execution is predicated on
the completion of the created shmem int put task. The worker thread that
performed this OpenSHMEM operation is then able to continue executing
useful work even while the shmem int put operation is incomplete.

3. At some point in the future, the communication worker thread discovers an
OpenSHMEM operation has been placed in its work-stealing deque, picks
it up, and performs the actual shmem int put operation using an available
OpenSHMEM implementation. If the communication worker thread has no
communication to perform, it behaves just as any other worker thread in the
runtime system by executing user-written computation tasks.

4. Once this communication task has completed on the communication worker
thread, the continuation task’s dependency is satisfied and it is made eligible
for execution again.

Unlike the Fork-Join approach, this approach places no limitations on where
OpenSHMEM calls can be made. This flexibility comes at the cost of increased
runtime complexity. For example, OpenSHMEM locks must be handled care-
fully. If two independent tasks on the same node are locking the same OpenSH-
MEM lock, naive offload of lock operations can easily lead to deadlock scenarios.
Instead, lock operations targeting the same lock object are chained using futures
to ensure only a single task in each node tries to enter the lock at a time.

https://github.com/habanero-rice/hclib/tree/resource_workers/modules/openshmem
https://github.com/habanero-rice/hclib/tree/resource_workers/modules/openshmem
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4 Experimental Methodology

Before detailing our experimental results with AsyncSHMEM, we first explain
our experimental methodology in this section.

4.1 Benchmarks

We have used the following two benchmarks for evaluation of AsyncSHMEM:
(a) Integer Sorting (ISx) [14], and (b) Unbalanced Tree Search (UTS) [19].

ISx: ISx is a scalable integer sorting benchmark that was inspired by the
NAS Parallel Benchmark integer sort. It uses a parallel bucket sorting algo-
rithm. The reference implementation of ISx uses OpenSHMEM only. To ensure
a fair comparison, we also implement an OpenSHMEM+OpenMP version of
ISx as part of this work. The OpenSHMEM+OpenMP and AsyncSHMEM ver-
sions of ISx are identical and simply replace OpenMP loop parallelism with
shmem parallel for nbi. Our experiments use the weak scaling version of ISx.
In the OpenSHMEM version, the total number of sorting keys per rank is 225,
whereas in both multi-threaded versions it is N× 225, where N is the total num-
ber of threads per rank. Hence, across all versions of ISx, the total number of
keys per node is 229.

UTS: The UTS benchmark performs the parallel traversal of a randomly gen-
erated unbalanced tree. The reference UTS implementation only includes Open-
SHMEM parallelism, so as part of this work we implement an AsyncSHMEM
version, an OpenSHMEM+OpenMP version, and an OpenSHMEM+OpenMP
Tasks version. The OpenSHMEM+OpenMP Tasks and AsyncSHMEM versions
are nearly identical in structure, using tasking APIs to cleanly express the recur-
sive, irregular parallelism of UTS. The OpenSHMEM+OpenMP implementation
is a heavily hand-optimized SPMD implementation, for which the development
time was much greater than any other version.

4.2 Experimental Infrastructure and Measurements

We performed all experiments on the Titan supercomputer at the Oak Ridge
National Laboratory. This is a Cray XK7 system with each node containing an
AMD Opteron 6274 CPU. There are two sockets per node (8 cores per socket)
and an NVIDIA Tesla K20X GPU. For ISx, we use the OpenSHMEM-only ver-
sion of ISx as our baseline, with one PE per core. For UTS, we use the OpenSH-
MEM+OpenMP version of UTS as our baseline, with one PE per node and 16
threads per PE. In both AsyncSHMEM and OpenMP versions we allocate one
rank per socket with 8 threads per rank for ISx and one rank per node with 16
threads for UTS. We do not make use of the GPUs in these experiments, though
our proposed changes do not affect the ability of OpenSHMEM to use GPU accel-
erators. Prior studies have found that on Cray supercomputers a communication
heavy job can vary in performance across different job launches due to node allo-
cation policies and other communication intensive jobs running in the neighbor-
hood [4]. To ensure fair comparison across different versions of benchmark, we run
each version as a part of a single job launch on a given set of nodes.
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5 Results

5.1 ISx

In this section we perform weak scaling experiments (details in Sect. 4) of all four
versions of ISx. The results of this experiment are shown in Fig. 2. Figure 2(a)
shows the total execution time (computation and communication) at each node
count. Figure 2(b) shows the time spent in ISx’s single all-to-all key exchange
communication call.

 0

 5

 10

 15

 20

32 64 128 256 512 1024

T
ot

al
 e

xe
cu

tio
n 

tim
e 

(s
)

Total nodes on Titan (16 cores per node)
Flat OpenSHMEM
OpenSHMEM+OpenMP

AsyncSHMEM (Fork-Join)
AsyncSHMEM (Offload)

(a) Total execution time

 0

 5

 10

 15

 20

32 64 128 256 512 1024

T
ot

al
 e

xe
cu

tio
n 

tim
e 

(s
)

Total nodes on Titan (16 cores per node)
Flat OpenSHMEM
OpenSHMEM+OpenMP

AsyncSHMEM (Fork-Join)
AsyncSHMEM (Offload)

(b) Time spent in all-to-all key exchange

Fig. 2. Weak scaling of ISx with total number of keys per node remaining constant in
each version
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From Fig. 2, we can see that at large node counts (512 and 1024), the multi-
threaded versions of ISx (AsyncSHMEM and OpenMP) are relatively faster than
the reference flat OpenSHMEM version. However, at smaller node counts (32 and
64 nodes in particular), the reference OpenSHMEM version shows better per-
formance than the threaded versions. These variations are due to NUMA effects
as well as the time spend in all-to-all communication. ISx is a memory inten-
sive application. Both threaded versions running with 8 threads per rank (one
rank per socket) use 8× more memory per rank than the single threaded refer-
ence version that uses 8 ranks per socket. Titan nodes have NUMA architecture.
We used local allocation policy that favors memory allocations on the NUMA
domain the rank is executing. This is more beneficial for the single threaded
reference version, while in the threaded version the threads running on different
NUMA domain will contend for the same memory locations. Due to the relatively
fast key exchange time at 32 and 64 nodes (Fig. 2(b)), memory access advantage
of the reference OpenSHMEM version outweights the communication reduction
of the threaded versions. With the increase in number of nodes, OpenSHMEM
version of ISx has a much higher number of ranks participating in the all-to-
all communication than the AsyncSHMEM and OpenMP versions, resulting in
large communication cost.

5.2 UTS

Relative to ISx, UTS is a more irregular application which further stresses
the intra-node load balancing and inter-node communication-computation over-
lap of AsyncSHMEM. For these experiments, we investigate the strong scaling
of UTS on the provided T1XXL dataset to demonstrate the improvement in
computation-communication overlap achievable using AsyncSHMEM. We only
run these experiments using the Offload runtime as our approach to UTS requires
communication occurring inside of parallel regions.

Figure 3 plots the overall performance of UTS using OpenSHMEM+
OpenMP, OpenSHMEM+OpenMP Tasks, and AsyncSHMEM.

Our optimized OpenSHMEM+OpenMP implementation performs similarly
to AsyncSHMEM, though shows worse scalability beyond 128 nodes. We also
note that it took significantly more development effort to build an efficient ver-
sion of UTS using SPMD-style OpenSHMEM+OpenMP.

Because of the lack of integration between OpenSHMEM and OpenMP, the
OpenSHMEM+OpenMP Tasks implementation also performs slowly as coarse-
grain synchronization is required to join all tasks before performing distributed
load balancing using OpenSHMEM.

As part of our UTS implementation, we explored using more complex tech-
niques for distributed load balancing, as this is one of the primary bottlenecks
for UTS performance. In particular, we experimented with using the proposed
shmem task nbi when extension to allow PEs to alert other PEs when work
was available to be stolen in the hope that load balancing could occur in the
background rather than in bulk-synchronous fashion. The challenge with this
approach appears to lie in designing a shmem task nbi when implementation
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Fig. 3. Strong scaling of UTS on the T1XXL dataset.

that balances low latency between a symmetric variable being modified and the
dependent task being launched with overheads from checking symmetric vari-
able values. In our initial implementation of this API, we were unable to find an
appropriate balance between these two and so UTS implementations that took
advantage of more novel APIs were not able to out-perform or out-scale more
conventional implementations.

6 Related Work

6.1 Combining Distributed Programming Models with Task-Parallel
Programming

The Partitioned Global Address Space (PGAS) programming model [25] strikes
a balance between shared and distributed memory models. It combines the ease
of programming with a global address space with performance improvements
from locality awareness. PGAS languages include Co-Array Fortran [18], Tita-
nium [26], UPC [11], X10 [10] and Chapel [6]. These languages rely on compiler
transformations to convert user code to native code. Some of these languages,
such as Titanium, X10 and Chapel, use code transformations to provide dynamic
tasking capabilities using a work-stealing scheduler for load balancing of the
dynamically spawned asynchronous tasks.

Another related piece of work is HCMPI [8], a language-based implementa-
tion which combines MPI communication with Habanero tasking using a dedi-
cated communication worker (similar to the Offload approach).

Language-based approaches to hybrid multi-node, multi-threaded program-
ming have some inherent disadvantages relative to library-based techniques.
Users have to first learn a new language, which often does not have mature
debugging or performance analysis tools. Language-based approaches are also



14 M. Grossman et al.

associated with significant development and maintenance costs. To avoid these
shortcomings HabaneroUPC++ [17] introduced a compiler-free PGAS library
that supports integration of intra-node and inter-node parallelism. It uses the
UPC++ [27] library to provide PGAS communication and function shipping,
and the C++ interface of the HClib library to provide intra-rank task schedul-
ing. HabaneroUPC++ uses C++11 lambda-based user interfaces for launching
asynchronous tasks.

6.2 Thread-Safe OpenSHMEM Proposals

Recently, the OpenSHMEM Threading Committee has been exploring exten-
sions to the OpenSHMEM specification to support its use in multi-threaded
environments on multi-core systems. Discussions in the OpenSHMEM Threading
Committee have focused on three approaches to adding the concept of thread-
safety to the OpenSHMEM specification. While AsyncSHMEM is not a thread-
safe extension to OpenSHMEM per se, it has the same high-level goal as these
thread-safety proposals: improving the usability and performance of OpenSH-
MEM programs on multi-core platforms.

One proposal would make the entire OpenSHMEM runtime thread-safe by
ensuring any code blocks that share resources are mutually exclusive. While
this proposal is powerful in its simplicity and would have minimal impact on the
existing OpenSHMEM APIs, the overheads from full thread-safety could quickly
become a performance bottleneck for future multi-threaded OpenSHMEM appli-
cations. This proposal is summarized in Issue #218 on the OpenSHMEM Red-
mine [2]. Today, this proposal is orthogonal to the work on AsyncSHMEM.
Because AsyncSHMEM serializes all OpenSHMEM communication through a
single thread, any concurrent data structures within the OpenSHMEM imple-
mentation itself would only add unnecessary overhead. However, if in the future
we were to explore multiple communication worker threads in the Offload app-
roach then this thread-safety proposal would be one way to enable that work.

The second proposal would introduce the concept of thread registration to
OpenSHMEM, in which any thread that wishes to make OpenSHMEM calls
would have to register itself with the OpenSHMEM runtime. The runtime would
be responsible for managing any thread-private or shared resources among reg-
istered threads. This proposal would also have minimal impact on the exist-
ing OpenSHMEM APIs, simply requiring that programmers remember to regis-
ter threads before making any OpenSHMEM calls. Explicit thread registration
would enable better handling of multi-threaded programs by the OpenSHMEM
runtime, likely leading to improved performance than the simple thread-safety
proposal. This proposal was put forward by Cray, and is summarized in [3]. Sim-
ilar to the first simple thread safety proposal, this thread registration proposal is
orthogonal to AsyncSHMEM until we consider multiple communication worker
threads in the Offload approach.

The third proposal focuses on adding the idea of an OpenSHMEM context to
the OpenSHMEM specification. A context would encapsulate all of the resources
necessary to issue OpenSHMEM operations, and it would be the programmer’s
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responsibility to ensure only a single thread operates on a context at a time.
However, different threads could use different contexts to issue OpenSHMEM
operations in parallel. This proposal would be the most disruptive to the exist-
ing OpenSHMEM specification and requires the most programmer effort, but
could also benefit both multi- and single-threaded OpenSHMEM applications
by enabling the creation of multiple independent communication streams. This
proposal was made by Intel, and is summarized in [1]. Unlike the previous two
proposals, OpenSHMEM contexts could be useful in conjuction with Async-
SHMEM. Contexts would enable AsyncSHMEM to keep multiple streams of
communication in-flight at once as long as no ordering constraints (e.g. via
shmem fence) prevented that.

The main way in which AsyncSHMEM differentiates itself is by being a
complete extension to the OpenSHMEM specification, adding the concept of
intra-node parallelism to OpenSHMEM’s existing inter-node parallelism. This
integration enables a better performing runtime implementation as well as the
exploration of other novel APIs, such as shmem task nbi when. However, the
three thread-safety proposals above are more general in that they enable combin-
ing OpenSHMEM with any multi-threading programming model (e.g. OpenMP,
pthreads, Cilk).

7 Conclusion

In this paper we present work on integrating task-parallel, multi-threaded
programming models with the OpenSHMEM PGAS communication model.
We present extensions to the OpenSHMEM specification to enable the cre-
ation of asynchronous, intra-node tasks and to allow local computation to be
dependent on remote communication. We describe and implement two differ-
ent approaches to implementing these extensions: the Fork-Join and Offload
approaches. The Fork-Join approach is simple, but is similar to existing Open-
SHMEM+X approaches in its limitations on the use of computation and com-
munication APIs together. The Offload approach requires more complex runtime
support, but offers more flexibility in how tasks and communication can be used
together.

Our experimental evaluation shows that AsyncSHMEM performs similarly
to existing OpenSHMEM+X approaches for regular applications and outper-
forms them for more irregular workloads. In our experience, the flexibility of the
Offload approach also dramatically improves application programmability and
maintainability.

There are many future directions for this work. We plan to focus development
efforts on the Offload implementation, as the programmability and flexibility
benefits it offers make it a better candidate for exploring more novel task-based
extensions to the OpenSHMEM specification. We will perform more in-depth
analysis of the performance characteristics of the ISx, UTS, and other bench-
marks running on the Offload implementation. This investigation will focus on
both quantifying overheads introduced by our implementation as well as pin-
pointing benefits.
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Abstract. The OpenSHMEM Library Specification has evolved consid-
erably since version 1.0. Recently, non-blocking implicit Remote Memory
Access (RMA) operations were introduced in OpenSHMEM 1.3. These
provide a way to achieve better overlap between communication and
computation. However, the implicit non-blocking operations do not pro-
vide a separate handle to track and complete the individual RMA opera-
tions. They are guaranteed to be completed after either a shmem quiet(),
shmem barrier() or a shmem barrier all() is called. These are global com-
pletion and synchronization operations. Though this semantic is expected
to achieve a higher message rate for the applications, the drawback is
that it does not allow fine-grained control over the completion of RMA
operations.

In this paper, first, we introduce non-blocking RMA operations with
requests, where each operation has an explicit request to track and com-
plete the operation. Second, we introduce interfaces to merge multiple
requests into a single request handle. The merged request tracks multiple
user-selected RMA operations, which provides the flexibility of tracking
related communication operations with one request handle. Lastly, we
explore the implications in terms of performance, productivity, usability
and the possibility of defining different patterns of communication via
merging of requests. Our experimental results show that a well designed
and implemented OpenSHMEM stack can hide the overhead of allocating
and managing the requests. The latency of RMA operations with requests
is similar to blocking and implicit non-blocking RMA operations. We test
our implementation with the Scalable Synthetic Compact Applications
(SSCA #1) benchmark and observe that using RMA operations with
requests and merging of these requests outperform the implementation
using blocking RMA operations and implicit non-blocking operations by
49% and 74% respectively.
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1 Introduction

OpenSHMEM 1.3 [1] introduced implicit non-blocking puts and gets to the exist-
ing library Application Programming Interface (API). The semantics of these
operations allow to post the operation, and later wait for its completion. This
has advantages over previous blocking semantics as overlap between the commu-
nication and other operations can be achieved. These operations are considered
complete only after a remote memory update is guaranteed through the use
of a shmem quiet, shmem barrier or a shmem barrier all. Since shmem quiet,
shmem barrier, and shmem barrier all are global completion operations i.e.,
shmem quiet completes all outstanding memory update operations by a par-
ticular Processing Element (PE) and shmem barrier completes all outstanding
memory update operations on all PEs (and synchronizes them), it can have a
significant performance impact on applications that only require finer grained
completion.

This paper proposes the introduction of non-blocking data transfer calls with
explicit requests, the ability to use single request for multiple operations, and
interfaces to merge multiple requests. Explicit requests provide the capability
of tracking individual data transfer operations. The option to group related
RMA operations together into a single request handle provides flexibility to the
programmer and can improve the application performance.

As we often see in scientific code, a series of updates are made during the com-
putation phase and are written during the communication phase. Most updates
need to happen together to enable the next set of computations. Such updates
can be merged together to enable easy checking for the user. This has many
performance as well as productivity implications. This approach may greatly
simplify how users write their code, replacing multiple request handles by a sin-
gle request handle. The performance advantage comes from the fact that testing
completion of a single handle is much more cost efficient than either check-
ing individual handles or executing mass memory updates via quiet or barrier
that will only return after all pending local and remote memory updates are
processed.

In Sect. 2, we first motivate the scenarios where these interfaces are useful.
In Sect. 3, we provide details of the interfaces introduced. In Sect. 4, we discuss
the details of our implementation. In Sect. 5 we modify the application kernels
and benchmarks to demonstrate the usability, productivity, and performance
advantages of the interfaces. We discuss the results of Sect. 5 in depth in Sect. 6.
Related work in this context is covered in Sect. 7 and our next steps are discussed
in Sect. 8.

2 Motivation

The traditional OpenSHMEM programming model is based on the foundation
of maximum computation-communication overlap through fast one-sided RMA
operations that do not require the involvement of the destination PE. Implicit
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non-blocking calls were introduced in OpenSHMEM 1.3 [1]. These calls provide
many advantages of non-blocking calls except the ability to track their comple-
tion. Even for 1.3 semantics, completion is guaranteed by either using a quiet
or a barrier. Explicit non-blocking calls overcome this pitfall by providing fine
grained control through individual request handles. The following are the sce-
narios where having merged handles for explicit RMA operations can be both
advantageous and performant.

2.1 Use Case 1: OpenSHMEM Threads

As the OpenSHMEM Specification evolves to incorporate thread safety and
a threading model, it becomes critical to define a synchronization mechanism
within threads of a single PE. Many operations distributed within the threads
may require sequential consistency. Merging handles for communication by a
single thread allows for easy ordering of operations when compared to managing
individual communication calls with explicit handles.

The Cray Threads proposal [4] offers a thread safe threading model
that requires registering of threads after initializing threading support via
shmem thread register at the start of a multithreaded OpenSHMEM program.
Similarly, a shmem thread unregister is required to be called by threads that
have registered via the shmem thread register call when threading support is
no longer required within the OpenSHMEM program. Registering a thread that
may make OpenSHMEM library calls during the lifetime of the program provides
a means to track communication originating from that thread. This threading
model also defines a shmem thread quiet as a means to coordinate activities
between different threads of a single PE. Through our approach, a single handle
can represent a collection of RMA operations made by a thread, thus allowing
concurrency between non-related RMA operations issued by the same or differ-
ent thread belonging to the same PE. We also eliminate the need for introducing,
implementing, and maintaining three library calls which is an added bonus.

Dinan et al. [5] introduce contexts as a way to eliminate interference between
threads by generating independent streams of communication operations that
enable the OpenSHMEM library to map operations generated by threads to
private communication resource sets. Contexts are intended to provide thread
isolation and a greater control over ordering of operations. This can improve com-
munication and computation overlap. The very same effect can be achieved with
greater overlap opportunity by introducing non-blocking explicit RMA opera-
tions and providing the facility of merging related updates to a single request.
The advantage of our approach is that many of the concepts already exist in
other programming models and libraries, thus leading to better acceptance and
use by the OpenSHMEM user community.

2.2 Use Case 2: Defining Patterns

The merging of the requests are particularly useful for communication and com-
putation patterns where it is required to track a group of operations, and also
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require opportunity to overlap the operations with computation. For example in
a stencil computation operation, each phase of communication within a sweep
can be merged into a single request. Since the results are not required till the
next time-step, the communication can progress asynchronously with other com-
munication or computation operations. Also, the user does not need to test for
the completion of all the individual communications.

2.3 Use Case 3: Defining New Collectives

The RMA operations with explicit requests along with merging can provide a
way to define customized one-sided collectives with ability to asynchronously
progress the collectives. For example, currently broadcast in OpenSHMEM is
restricted to updates from a root PE to other PEs defined by a regular (power-
of-two stride) active-set. If a program frequently needs to update an irregular set
of PEs, this might be encapsulated in a single merged-handle. Following the same
logic, other customized non-blocking collectives are also possible. Moreover, this
approach provides a means of providing overlap between collectives that are not
using/updating the same symmetric objects.

3 API and Semantics for RMA Operations with Requests

In this section, first, we introduce the interfaces required for non-blocking RMA
operations with requests. We then look at two possible ways to merge the
requests. One way is to create a single merged request handle (which is a col-
lection of requests), and the other approach is to merge existing requests into a
single request.

3.1 Explicit Non-blocking RMA Operations

The interfaces for the Put operations are in Box 1, and the Get operations are
in Box 2. They are used for transferring data from the origin PE to the target
PE (pe) and form the destination PE to the origin PE respectively. The source
of the data is passed as the source and the target buffer is passed as the target.
The handle to track the Put operation is created by the library and returned
with handle.

shmem TYPE put nbe (TYPE *target, const TYPE *source, size t nelems, int pe,
shmem request handle t **handle);
shmem putSIZE nbe (TYPE *target, const TYPE *source, size t nelems, int pe,
shmem request handle t **handle);

Box 1. Put operations with requests

These operations return after initiating the Put (or Get) operation, but not
necessarily before copying data out of the source variable/array. These semantics
are similar to implicit RMA operations introduced in OpenSHMEM 1.3 [1].
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shmem TYPE get nbe (TYPE *target, const TYPE *source, size t nelems, int pe,
shmem request handle t **handle);
shmem getSIZE nbe (TYPE *target, const TYPE *source, size t nelems, int pe,
shmem request handle t **handle);

Box 2. Get operations with requests

However, the difference is in the completion of operations. The RMA opera-
tions with requests are required to call the Wait (Box 3) function to guarantee
completion, or they can use the Test (Box 3) function to query the status of the
operations.

void shmem wait req( shmem request handle t *handle);
void shmem test req( shmem request handle t *handle);

Box 3. Wait and Test operations for completing and testing the status of
requests, respectively.

3.2 Merging RMA Request Handles

The RMA interfaces that take in requests that represent more than one opera-
tion is shown in Box 4. Using this interface, the user provides a hint to the library
about usage of the data from the operations. It indicates that the user expects to
group a set of RMA operations, which can be synchronized and completed simul-
taneously. The library can optimize by allocating independent network resources
that can be independently synchronized and flushed for completion.

shmem TYPE RMA nbe multiple(TYPE *target, const TYPE *source, size t
nelems, int pe, shmem request handle t **handle);

Box 4. RMA Operation with Merged Request Handles

The interface for merging already existing requests is shown in Box 5. This
interface is useful for tracking and completing already existing groups of RMA
operations. The user has the flexibility to cherry-pick RMA requests that may
be grouped together for maximum overlap. Similar to RMA operations with
requests, these operations are completed using the Wait operation.

shmem merge requests(int num req, shmem request handle t **ReqArray,
shmem request handle t **request );

Box 5. Interface for Merging the Requests
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As merged handles are just a medium to provide a single request for mul-
tiple related RMA operations, they themselves do not impose any restrictions
on the programmer when used alongside other OpenSHMEM API. All explicit
non-blocking calls will complete after a shmem quiet, shmem barrier, or shmem
barrier all is called but the user must call shmem wait req to release the request
handle. This provides for a cleaner usage and better code readability as the
user can easily match RMA operations to their corresponding waits. The use of
shmem fence has no effect on the ordering of explicit non-blocking RMA.

4 Implementation Using UCX

The implementation of explicit and merged non-blocking RMA operations is
done in the OpenSHMEM reference implementation. The reference implemen-
tation can use two different networking libraries. Figure 1 shows an overview of
the dependencies. One is GASNet and the other is Unified Communication X
(UCX) [14].

UCX is a middleware that provides a portable API that targets differ-
ent underlying networking components. By providing a highly performant API
framework, UCX exposes the constructs for implementing various programming
models such as Message Passing Interface (MPI) and Partioned Global Address
Space (PGAS).

UCX is comprised of three major API frameworks. These frameworks can be
used independently of each other. They include UC-Services (UCS) - provides
services and common utilities, UC-Transports (UCT) - provides low level API
for hardware transports, and UC-Protocols (UCP) - provides high level API that
implement different protocols.

COMMS

GASNet

OpenSHMEM API

Atomics RMA Collectives Utils
Symmetric
Memory

Core Components

Fig. 1. Various components in the OpenSHMEM reference implementation
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UCT abstracts the arduous details of the underlying hardware, thus providing
a low-level API for implementing higher-level protocols. The API provides the
necessary functionality for communication context management, device specific
memory allocation and management, interfaces for various types of messages,
remote memory access (RMA), Atomic Memory Operations (AMO), active mes-
sages, and collectives. The API is driven by the interconnect manufacturers.

UCP is layered over UCT and provides an abstraction of higher-level pro-
tocols. These can be used by programming models such as MPI and PGAS.
UCP initializes the UCX library, allows for message fragmentation, and pro-
vides multi-rail communication.

To implement explicit RMA operations and merged requests, the UCX net-
working layer is used. While the OpenSHMEM reference implementation is set-
ting up the symmetric heap and manages PEs, the RMA operations map directly
to UCP functions. Therefore the explicit non-blocking operations are imple-
mented in UCP with a small wrapper in OpenSHMEM.

5 Evaluation

5.1 Experimental TestBed

5.1.1 System
We run our experiments on a 16 node SGI cluster with Mellanox ConnectX-4
VPI adapter card, EDR IB (100 Gb/s) and 100 GbE, a single-port QSFP, and
PCIe3.0× 16. Each node comprises of two NUMA nodes with two sockets each
and 10 cores per socket. Each of 40 CPUs is an Intel Xeon E5-2660 v3 operating
at 2.6 GHz.

5.1.2 Application Kernels and Benchmarks
For evaluation, we use micro-benchmarks and application kernels. The details of
the application kernel is provided in Sect. 5.3. Here we present the experimental
results and discuss them in detail in Sect. 6.

For evaluating the latency, bandwidth, and message rate, we modify bench-
marks from OSU [15]. The modifications include changing the shmem interfaces
to use non-blocking implicit and explicit RMA operations.

We modify the latency benchmark to mimic a ping-pong exchange. The ping-
pong benchmark first sends the data from origin PE to remote PE. The remote
PE waits for data using shmem wait on the last byte of the data, then sends a
response to the origin PE. Though this approach may not reflect the arrival of
the complete message for networks that do not guarantee in-order delivery, for
Mellanox’s InfiniBand network with Reliable Connection (RC) transport proto-
col, in-order delivery is guaranteed.



Evaluating OpenSHMEM Explicit Remote Memory Access Operations 25

5.2 Performance Evaluation of RMA Operations with Requests
and Merged Requests Using Micro-Benchmarks

5.2.1 Latency of Get Operations
In this experiment, the performance of shmem getmem, shmem getmem nbi,
and shmem getmem nbe operations is compared. The origin PE issues the
Get operation, and waits for completion. In case of shmem getmem, the data
is updated when the call returns. In the case of shmem getmem nbi, and
shmem getmem nbe, it waits for shmem quiet and shmem wait req to complete
respectively. Figure 2 shows that the latency of all Get operations are similar.

To understand the performance impact of global completion (shmem quiet
and shmem barrier) used for completing implicit operations, we modify the Get
benchmark to issue multiple Get operations. The origin PE issues Get operations
to multiple PEs, and waits for completion only on one PE. From Fig. 3 we observe
that the performance of RMA operations with requests outperform (as expected)
both implicit non-blocking RMA operations and blocking RMA operations.

5.2.2 Ping-Pong Latency
Figures 4 and 5 compare the round trip time for shmem put, shmem put nbi, and
shmem put nbe for small and large messages respectively. The origin PE sends a
ping using shmem put, shmem put nbi, or shmem put nbe, and the destination
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PE and then waits on a corresponding pong using shmem int wait until. On
receiving the ping, the destination PE responds with a pong through a Put . The
target PE waits on the last byte of the message.
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Fig. 5. Roundtrip latency using put-based ping-pong benchmark for large messages

For our experiments we use Mellanox’s InfiniBand HCA as network and use
RC protocol for data transfer, which guarantees in-order delivery of messages.
For this setup, polling on the last byte of data to learn the completion is a
reasonable approach, although it might be inaccurate for networks and memory
architectures that do not guarantee in-order delivery of messages. For comple-
tion, the shmem put and shmem put nbi calls require a shmem quiet, while
shmem put nbe requires a shmem wait req on the request.

From the graphs, one can observe that there are some performance dif-
ferences. For a one byte message, the round trip latencies of shmem put,
shmem put nbi, and shmem put nbe are 1.58 µsec, 1.54 µsec, and 1.52
µsec respectively. For 4 MB message, the latencies are 753.29 µsec, 704.54 µsec,
and 685.65 µsec respectively. The performance difference in case of small message
is negligible.

5.2.3 Message Rate Evaluation
To understand the impact on message rate, we measure the message rate
achievable using various Put interfaces. Figure 6 shows the message rate of
shmem put nbe, shmem put nbi and shmem put. For this experiment, we modify
and use the message rate benchmark in OSU benchmark suite [15]. To measure
the message rate of shmem put, the benchmark issues a series of Put opera-
tions in a loop and single quite operation at the end of the loop. Similarly, the
modified benchmark for implicit Put issues a series of shmem put nbi operations
and single quite operation to measure the message rate of implicit non-blocking
operations. For the non-blocking Put with requests, the benchmark issues a
shmem put nbe and complete it with shmem wait nb (Box 3) operation. So, it
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Fig. 6. Comparing the message rates of shmem putmem, shmem putmem nbi and
shmem putmem nbe

issues one shmem wait nbe operation per shmem put nbe. In the Fig. 6, we can
observe that the message rate of RMA operations with requests is similar to
blocking and implicit non-blocking Put operations.

5.3 Performance Evaluation with Scalable Synthetic Compact
Applications (SSCA) #1 Kernel

SSCA #1 Description: The benchmark is an implementation of the Smith-
Waterman local sequence alignment algorithm [2]. For our experiments, we use
the OpenSHMEM version ported by Baker et al. [3]. This benchmark focuses on
sequence alignment algorithms in computational biology. It stresses integer and
character operations, and requires no floating point operations.

Listing 1.1. SSCA#1 Kernal 1 original source-code
1 get_data () {
2 previous_match = get(A, i-1, j-1);
3 main_codon = get(main_codon_seq ,i);
4 match_codon = get(match_codon_seq ,j);
5 gap_main = get(E,i-1,j);
6 gap_match = get(F,i,j-1);
7 }

9 put_data () {
10 put(A,i,j,new_score);
11 put(E,i,j,max(new_gap_score ,extend_main_gap);
12 put(F,i,j,max(new_gap_score ,extend_match_gap);
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13 }

15 local_align(main_codon_seq , match_codon_seq){
16 /* A is the score Matrix */
17 A[len(main_codon)][len(match_codon)];
18 /* E is the main gap matrix */
19 E[len(main_codon)][len(match_codon)];
20 /* F is the match gap matrix */
21 F[len(main_codon)][len(match_codon)];
22 /* outer loop */
23 for(outer =0; outer < 2 * length(main_codon_seq)){
24 barrier_all ();
25 start = compute_local_start_index(outer);
26 end = compute_local_end_index(outer);
27 /* inner loop */
28 for(inner = start; inner < end){
29 i = compute_main_index(outer , inner);
30 j = compute_match_index(outer , inner);

32 /* blocking gets */
33 get_data ();

35 new_match = sim(main ,codon);
36 new_score = max(new_match , gap_main , gap_match , 0);
37 if(is_score_good(new_score)){
38 add_new_pair(new_score , i, j);
39 }
40 new_gap_score = new_match - new_gap_penalty;
41 extend_main_gap = gap_main - extend_gap_penalty;
42 extend_match_gap = gap_match - extend_gap_penalty;

44 put_data ();
45 }
46 }
47 }

Our work focuses on improving kernel 1 of the SSCA1 benchmark using the
proposed semantics for explicit requests in OpenSHMEM as described in Sect. 3.
Listing 1.1 shows the source code for Kernel 1. The main kernel is comprised of
two loops. The outer loop computes the bounds for the inner loop, and the inner
loop computes the scores and gaps for the current iteration. At the end of each
iteration the score and gap values are updated. These values are not needed until
the algorithm enters the next iteration of the outer loop.

From the message characteristics perspective, the inner loop issues Get and
Put operations. The Get operations are completed before the start of next itera-
tion, and the Put operations can be completed to after all iterations of the inner
loop are completed.

The first experiment looks at improving the performance by replacing the Put
operations to update the score and gap values at the end of the inner loop with
non-blocking operations. Since the algorithm employs a barrier at the beginning
of the outer loop, and the barrier completes all outstanding operations, implicit
non-blocking operations are used (see Listing 1.3).

For the second set of experiments, we improve the benchmark by using
explicit non-blocking operations for the prefetch operations in the inner
loop. This removes the requirement to issue a shmem quiet call, but uses a
shmem wait req call on outstanding operation instead (see Listing 1.4).
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Listing 1.2. SSCA1 with prefetching (ssca1-prefetch)
1 get_data () {
2 nb_previous_match = get_nb(A, nb_i -1, nb_j -1);
3 nb_main_codon = get_nb(main_codon_seq , nb_i);
4 nb_match_codon = get_nb(match_codon_seq , nb_j);
5 nb_gap_main = get_nb(E, nb_i -1, nb_j);
6 nb_gap_match = get_nb(F, nb_i , nb_j -1);
7 }

14 wait_for_previous_gets() {
15 shmem_quiet ();
16 }

18 local_align(main_codon_seq , match_codon_seq){

...

32 /* prestage non -blocking operations */
33 get_data ()

35 /* inner loop */
36 for(inner = start; inner < end){
37 i = compute_main_index(outer , inner);
38 j = compute_match_index(outer , inner);

40 nb_i = compute_next_main_index(outer , inner);
41 nb_j = compute_next_match_index(outer , inner);

43 wait_for_previous_gets();
44 previous_match = nb_previous_match;
45 main_codon = nb_main_codon;
46 match_codon = nb_match_codon;
47 gap_main = nb_gap_main;
48 gap_match = nb_gap_match;

...
64 }

The last experiment uses the interfaces in Box 5 to merge the requests.
Instead of keeping track of multiple outstanding operations, operations that are
dependent use a merged request (see Listing 1.5). Thus improving the usabil-
ity and simplifying the program. Furthermore, there are fewer calls into the
OpenSHMEM library, since there are fewer requests to wait for. Additionally an
OpenSHMEM library implementation could employ optimizations to improve
the performance by completing the requests in batches.

Performance: Figure 7 shows the results of running the benchmark on 16 nodes
and with an increasing number of processes per node. The various implementa-
tions used in the experiment are as follows: SSCA1 is the original implementation
[3]. The prefetch is the original implementation with prefetch enabled, and with
implicit Get operations. The prefetch-nbi is a modification to implementation to
use implicit non-blocking RMA operations. The prefetch-explicit is a modified
version using RMA operations with requests, and prefetch-merged is a modified
version using RMA operations with one request for multiple Put operations.
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Listing 1.3. SSCA1 with non-blocking puts (ssca1-nbi)
9 put_data () {

10 put_nbi(A,i,j,new_score);
11 put_nbi(E,i,j,max(new_gap_score , extend_main_gap);
12 put_nbi(F,i,j,max(new_gap_score , extend_match_gap);
13 }

Listing 1.4. SSCA1 with explicit non-blocking operations (ssca1-explicit)
1 get_data () {
2 nb_previous_match = get_nbe(A, nb_i -1, nb_j -1, req1);
3 nb_main_codon = get_nbe(main_codon_seq , nb_i , req2);
4 nb_match_codon = get_nbe(match_codon_seq , nb_j , req3);
5 nb_gap_main = get_nbe(E, nb_i -1, nb_j , req4);
6 nb_gap_match = get_nbe(F, nb_i , nb_j -1, req5);
7 }

wait_for_previous_gets() {
14 shmem_wait_req(req1);
15 shmem_wait_req(req2);
16 shmem_wait_req(req3);
17 shmem_wait_req(req4);
18 shmem_wait_req(req5);
19 }
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From Fig. 7, we observe the performance of the implementation using RMA
operations with requests and merging of requests outperforms the original imple-
mentation and implementation with implicit RMA operations. For 16 nodes
with one PE per node, the RMA operations with explicit requests outperforms
the original implementation by 72% and the version with prefetch enabled by
31%. Similarly, for 128 PEs (16 nodes with 8ppn) it outperforms the original
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Listing 1.5. SSCA1 with explicit non-blocking operations and merged requests (ssca1-
merged)
1 get_data () {
2 nb_previous_match = get_nbe(A, nb_i -1, nb_j -1, req);
3 nb_main_codon = get_nbe(main_codon_seq , nb_i , req);
4 nb_match_codon = get_nbe(match_codon_seq , nb_j , req);
5 nb_gap_main = get_nbe(E, nb_i -1, nb_j , req);
6 nb_gap_match = get_nbe(F, nb_i , nb_j -1, req);
7 }

wait_for_previous_gets() {
14 shmem_wait_req(req);
15 }

implementation by 49% and the prefetching version 74% (Note, that for 128
PEs the original version is outperforming the prefetching version).

6 Discussion

In this paper we introduce RMA operations with explicit requests. Since each
operation can be tracked with an explicit request, an OpenSHMEM user can have
a fine grained control over these operations. The consequence of this semantic is
the overhead of creating and managing explicit requests for each of these opera-
tions. Our hypothesis is that with sound design and implementation, these costs
can be hidden, and the impact can be mitigated. Also, from our experience in
implementing network layers, we believe that for many networks it is required
to manage some network descriptor at the network driver level, so exposing
this to the user adds only negligible overhead. To demonstrate this, we imple-
mented these interfaces and systematically evaluated the performance impact
with micro-benchmarks and application kernels.

Our results demonstrate that a well designed and implemented OpenSH-
MEM stack can hide performance overhead of allocating and managing explicit
handles. From Fig. 3, we can observe the performance advantages of using RMA
operations with explicit requests for some communication patterns where com-
pletion of operation is not required immediately. From Figs. 4 and 5, we observe
that latency of Get and Put operations with and without handles are similar.
From the Fig. 6, we observe that the impact on the message rate is minimal.

In addition to RMA operations with explicit requests, we introduce the
semantics of merging these requests. This can enhance the productivity and
simplify some of OpenSHMEM programs as seen in modifying the SSCA #1
benchmark kernel in Sect. 5.3. Further, we see that rewriting the kernel using
RMA operations with explicit requests and merging of requests can have per-
formance benefits as seen in Fig. 7. From our investigation, we can attribute the
performance advantages to the local completions used by RMA operations with
explicit requests. In this case, we only flush the endpoints which exchange the
messages. Further, in the case where we merge our requests, we complete the
requests in a batch. On the contrary, in the case of RMA operations with no
handles, all endpoints have to be flushed resulting in a higher overhead.
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7 Related Work

Non-blocking communication is not a new concept. MPI [6] implementations
of non-blocking message passing have been discussed since 2003. In the MPI-1
programming model non-booking operations were realized through MPI Isend,
MPI Irecv, MPI Wait, and MPI Test. The non-blocking communication is
accomplished by the sending process issuing a MPI Isend and immediately
returning to continue executing unrelated work, the receiving process would
simultaneously issue an MPI Irecv and overlap this with other computations till
the requested data was actually required. Completion of a data transfer can be
tested through MPI Test and waited on till completion through MPI Wait.

A number of studies have compared the different non-blocking implementa-
tions of the MPI Standard [11,13,16]. The implementations are largely depen-
dent on the underlying implementation and hardware support. Non-blocking col-
lectives have also been discussed and implemented in MPI-2 [8–10]. Many large
scale scientific applications like simulation of seismic wave propagation [12] and
parallel FDTD algorithm [7] have benefited from non-blocking communication
operations.

8 Future Work

In the near future, we plan to implement an OpenSHMEM library that can safely
invoke OpenSHMEM interfaces from multiple user threads using RMA opera-
tions with explicit requests. Then, we plan to implement and mimic implemen-
tation of the Context proposal [5] using RMA operations with merged requests.
Also, we plan to explore and characterize the application communication charac-
teristics that can take advantage of fine grained control and completion of RMA
operations.
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Abstract. Recent reports on challenges of programming models at
extreme scale suggest a shift from traditional block synchronous exe-
cution models to those that support more asynchronous behavior. The
OpenSHMEM programming model enables HPC programmers to exploit
underlying network capabilities while designing asynchronous communi-
cation patterns. The strength of its communication model is fully realized
when these patterns are characterized with small low-latency data trans-
fers. However, for cases with large data payloads coupled with insufficient
computation overlap, OpenSHMEM programs suffer from underutilized
CPU cycles.

In order to tackle the above challenges, this paper explores the feasibil-
ity of introducing Active Messages in the OpenSHMEM model. Active
Messages is a well established programming paradigm that enables a
process to trigger execution of computation units on remote processes.
Using empirical analyses, we show that this approach of moving compu-
tation closer to data provides a mechanism for OpenSHMEM applica-
tions to avoid the latency costs associated with bulk data transfers. In
addition, this programming pattern helps reduce the need for unwanted
synchronization among processes, thereby exploiting more asynchrony
within an algorithm. As part of this preliminary work, we propose an
API that supports the use of Active Messages within the OpenSHMEM
execution model. We present a microbenchmark-based performance eval-
uation of our prototype implementation. We also compare the execution
of a Traveling-Salesman Problem designed with and without Active Mes-
sages. Our experiments indicate promising benefits at scale.

1 Introduction

In recent years, research surveys that highlight the challenges faced by current
programming models at extreme scale, have indicated a shift from the de facto
SPMD style message passing models. With regards to the need for asynchrony
within programming models, the report on ASCR Programming Challenges for
Exascale Computing [4] states that, “The increased variation on execution speed
of various components, due to error recovery and power management, will require
c© Springer International Publishing AG 2016
M. Gorentla Venkata et al. (Eds.): OpenSHMEM 2016, LNCS 10007, pp. 35–51, 2016.
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codes that are more tolerant to noise, hence, more asynchronous”. In accordance
with this, multiple research efforts are being directed towards adopting program-
ming languages and libraries that support task-based algorithm design.

In this paper, we explore the feasibility of introducing support for Active Mes-
sages to OpenSHMEM1, a one-sided SPMD-based PGAS programming model.
Active messages (AM) provide a means of triggering a user-specified unit of
computation at a different process (or Processing Element or PE). The main
motivation is to enable asynchronous execution of small compute paths and
overlap of communication, with very little synchronization overhead incurred at
the source and the target PE. The user-specified function (called a ‘handler’ )
has access to the user address space at the target PE. Thus, Active Messages
(or AM) let PEs inject computation on remote destinations that host memory
objects that are either remotely inaccessible due to the memory model or too
costly for data movement.

Fig. 1. Execution flow of an active mes-
sage request

The contribution of this work and the
paper layout is as follows: (i) Description
of a point-to-point interaction between a
pair of processes using Active Messages
(Sect. 2) and comparison of the AM han-
dler with a task. (ii) Proposal of an API
that introduces Active Messages within
the OpenSHMEM programming model
(Sect. 3) (iii) A prototype implementation
of AM within the OpenSHMEM reference
implementation over GASNet (iv) Empir-
ical study using synthetic microbench-
marks and a miniapp that evaluates the
performance of the prototype (Sect. 4)
(v) List of different research efforts in the
field of task management in a distributed environment (Sect. 5). (vi) A summary
of the lessons learned and potential future work (Sect. 6).

2 Overview of Active Messages

Figure 1 depicts the flow diagram of two processes communicating using Active
Messages. The progress of the communication between the source process A and
the target process B is described below:

1. Both A and B register the function handlers with the AM library.
2. Source process A sends an AM request to remote process B. This AM request

mainly comprises (1) the identity of B, (2) the identity of the handler to be
executed at B, and (3) optionally, contents of the data buffer to be passed as
input to the handler.

1 OpenSHMEM is a trademark of Silicon Graphics International Corp.
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3. On receiving the AM request, process B chooses to asynchronously execute
the requested function handler. At the start of the execution, it gains access
to any data buffer that was transferred. This function that is executed at
process B is called the ‘request handler’.

4. During the execution of the request handler, process B may optionally choose
to post a reply AM back to A. Similar to the AM sent by A, this reply AM
contains the identity of the handler to be executed at A along with an optional
data payload.

5. At some point in time, on detecting the arrival of the above reply AM, A
executes the handler corresponding to the identity listed in the incoming
message. The handler which is executed as a response to this AM is called
the ‘reply handler’.

2.1 Active Message v/s Tasking Models

Unlike a tasking model where one has to rely on a scheduler to assign resources
for execution, the AM model allows the programmer to explicitly specifying the
destination for the execution. While the computation associated with a task is
expected to return a specific result to a ‘parent’ unit, computation of AM han-
dlers are usually intended to update local data structures. Another notable differ-
ence is that while tasking models allow establishing dependence among multiple
tasks, AM models focus on asynchronous execution of independent handlers.

3 Proposed Extension for Active Messages Support

This section describes the proposed interface of AM handlers and the related AM
management functions2 related to: (1) design of an AM handler, (2) registration
of AM handlers, (3) initiating AMs, (4) the completion of AMs, and (5) handler
safe locking. The set of the proposed interfaces for C is shown in Listing 1.1.

Design of an AM Handler. The actual body of an AM handler is enclosed
within a user-defined function. The purpose of active messages is to enable injec-
tion of code paths that contain a small set of computation that remains indepen-
dent of the progress of other PEs. The design of an AM handler should therefore
adhere to the following set of constraints:

– The handler body should not call other function routines from the Open-
SHMEM library, that have the potential to trigger an inter-PE communica-
tion. This includes point-to-point communication, synchronization constructs,
atomic operations, and other AM related functions (excluding those related
to mutual exclusion).

2 Note: As a norm in the OpenSHMEM community, all the AM related functions in this
paper have been prefixed with ‘shmemx ’ instead of ‘shmem ’ to indicate that they
are proposed extensions to the standard and not part of the current specification.
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– The execution of an AM handler can progress in an OS thread that runs
concurrent to the one servicing the critical path of a PE. It becomes the
responsibility of the programmer to ensure that no race conditions occur when
a data object is made accessible to both an AM handler as well as the execution
path of a PE. If one of the accesses is a write operation, handler-safe locks
can be used to ensure mutual exclusion.

– If a data object is a target of a write operation during the execution of the
handler routine, handler-safe locks should be used to avoid race conditions.

/∗∗ Function Handler S ignature ∗∗/
void user funct ion name (void∗ data bu f f e r , s i z e t

b u f f e r s i z e , int c a l l i n g p e i d , shmemx am token t token )

/∗∗ (De) Reg i s t r a t i on o f Act ive Message hand l e r s ∗∗/
typedef void (∗ shmemx am handler ) (void ∗buf , s i z e t nbytes ,

int req pe , shmemx am token t token )

void shmemx am attach ( int hand le r id , shmemx am handler
hand l e r p t r )

void shmemx am detach ( int hand l e r i d )

/∗∗ I n i t i a t i n g Act ive Messages ∗∗/
void shmemx am request ( int dest , int hand le r id , void∗

source addr , s i z e t nbytes )
void shmemx am reply ( int hand le r id , void∗ source addr ,

s i z e t nbytes , shmemx am token t temp token )

/∗∗ Progress and Completion ∗∗/
void shmemx am quiet ( )
void shmemx am poll ( )

/∗∗ Handler Safe Locking ∗∗/
void shmemx am mutex init ( shmemx am mutex∗ t )
void shmemx am mutex destroy ( shmemx am mutex∗ t )
void shmemx am mutex lock ( shmemx am mutex∗ t )
void shmemx am mutex unlock ( shmemx am mutex∗ t )
int shmemx am mutex trylock ( shmemx am mutex∗ t )

Listing 1.1. Proposed API routines for Active Messages in OpenSHMEM

Registration of AM Handlers. This features the following two collective API
routines:

– shmemx am attach: Enables the calling PE to register the function pointed to
by the function pointer. The user passes a handler-id that is used to map the
handler to the corresponding function. On return from this function, a PE can
use the handler id to launch an AM until its association to the handler function
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is removed using shmemx am detach. It must be noted that the remote PE
itself need not register the handler if it does not intend to execute it during its
lifetime. Since a function being registered can only be used as an AM handler
after it has been registered, some type of synchronization between the two
PEs may be necessary to ensure that the function registration is complete
on the target PE. Different PEs can register the same function with different
handler-ids.

– shmemx am detach: This removes the mapping between a handler-id and the
function mapped to the id. Once detached, it is illegal for any other PE to
reuse the same handler id to launch an AM unless it is explicitly remapped
using shmemx am attach by the current PE.

Initiating Active Messages

– shmemx am request: This function is used to launch an AM on a remote PE
destination. The contents of the user buffer is transferred to the target PE
along with the id of the function. On receiving this request, the target PE
executes the corresponding handler. On return from this request function,
there is no guarantee of the completion of execution of the handler by the
target PE. This asynchrony reduces the overhead at the source PE. To enable
the source PE to reuse the data buffer, it is essential that this function copies
the contents to a temporary buffer internally before returning to the user
address space.

– shmemx am reply: In a two-sided request-reply communication model, this
function is used by the request AM handler to launch a reply AM handler at
the source PE that had issued the AM.

The Completion of Active Messages

– shmemx am quiet: This function enables the calling PE to ensure that the
request handlers of all previously posted Active Messages and their corre-
sponding response handlers (if any) have completed their execution.

– shmemx am poll: This polls the network for any outstanding AM requests.
It must be noted that while this function can be used by a programmer to
wait for a certain event to occur, it is not necessary for an OpenSHMEM
implementation to rely on this function to make progress. An implementa-
tion should be free to exploit interrupt driven mechanisms or asynchronous
notification capabilities of the underlying operating system or the hardware
platform, respectively.

Handler Safe Locking. Since the critical path of the PE and the AM han-
dler may run concurrently, it becomes necessary to ensure mutually exclusive
accesses to shared data structures. For this, we propose a new data type called
shmemx am mutex. It becomes the responsibility of the programmer to ensure
that an object of this data type be visible to both the AM function handler as
well as the main PE thread. An object of this type represents a mutex vari-
able that can be passed to the following functions to avoid overlapping access of
shared memory.
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– shmemx am mutex init: Initializes the mutex variable. Typically, the purpose
is to ensure that the initial state of the variable becomes visible to both the
critical path of the PE as well as the AM handler.

– shmemx am mutex destroy: Ensures that the variable is no longer usable by
the critical path of the PE or the calling thread. This provides an opportunity
for an implementation to clean up memory associated with the variable.

– shmemx am mutex lock: Attempts to acquire the mutex variable exclusively.
If unsuccessful, the calling PE remains blocked until it gains access to the
mutex.

– shmemx am mutex unlock: Releases the ownership of the mutex variable.
– shmemx am mutex trylock: Attempts to acquire the mutex variable exclu-

sively. If unsuccessful, it returns 0 to the callee and its execution continues
with blocking. If successful, it returns a non-zero number.

4 Prototype Evaluation

4.1 Implementation Design

Fig. 2. Incorporation of the proposed active
messages prototype into the OpenSHMEM
reference implementation

The prototype implementation3

was designed as part of the Open-
SHMEM reference implementation
[8] that in turn uses GASNet [5] for
inter-process communication. Our
prototype is built on top of the
existing support of Active Mes-
sages that is offered by GASNet.
The incorporation of the prototype
within the OpenSHMEM reference
implementation is illustrated in
Fig. 2. It must be noted that fine-
tuned implementations of Active
Messages in OpenSHMEM should
take advantage of network hard-
ware capabilities (if any) and the exploration of different design approaches is
out-of-scope of this paper.

4.2 Experimental Setup

The experimental results presented in the following sections were obtained using
a cluster with AMD Opteron processors (model 6174) and Infiniband intercon-
nect (Mellanox MT26418). Each compute node comprises of a total of 48 cores
(4 sockets/node, 12 cores/socket) with approximately 5 MB shared L3 cache and
16 GB main memory. The OS distribution on each compute node is OpenSUSE
Linux (ver. 3.11).
3 The Active Message prototype implementation is available as a fork of the Open-

SHMEM reference implementation and is available as a git repository at https://
github.com/openshmem-org/openshmem-am.

https://github.com/openshmem-org/openshmem-am
https://github.com/openshmem-org/openshmem-am
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Process Layout. The results from the bandwidth and message rate tests,
microbenchmarks were obtained by binding each process (PE) to a specific core
on different compute nodes. The results for the token-ring based tests and the
miniapp (Traveling Salesman Problem) were obtained by launching multiple
number of PEs - 2 through 512 and 256 respectively, each bound to a specific
core across multiple nodes.

(a) Inter-node Unidirectional Bandwidth
(bytes/sec)

(b) Inter-node Bidirectional Bandwidth
(bytes/sec)

(c) Inter-node Unidirectional Message Rate
(msg/sec)

(d) Inter-node Bidirectional Message Rate
(msg/sec)

Fig. 3. Communication line diagrams and performance results for bandwidth and mes-
sage rates

4.3 Performance Study

This section presents a performance analysis of the prototype implementation.
As noted in previous sections, the proposed AM interface enables transfer of data
buffers in addition to the invocation of remote handlers. This section investigates
the feasibility of using Active Messages instead of OpenSHMEM point-to-point
operations to transfer data among PEs. It must be noted that the results pre-
sented as part of this study correspond to the prototype implementation of
Active Messages and is meant to highlight the difference in behavior between
the prototype and one-sided operations. The reader must bear in mind that fine-
tuned implementations of Active Messages can exploit additional features of the
underlying hardware stack to achieve better performance.
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(a) Communication Line Diagram us-
ing Active Messages and standard
OpenSHMEM PUTs

(b) Round Trip Latency (seconds)

Fig. 4. Empirical study of token ring based communication pattern

As part of this study, a microbenchmark test suite was designed to measure
the achievable unidirectional and bidirectional bandwidth and message rate dur-
ing data transfers using both the mechanisms4. The communication patterns
within the microbenchmark suite use multiple PEs that communicate using
either the proposed AM interface (shmemx am request()/shmemx am quiet())
or point-to-point PUT operations (shmem putmem()/shmem quiet()). These
benchmarks evaluate the unidirectional and bidirectional bandwidth and mes-
sage rates. In addition they also measure the round-trip latency of a token-ring
topology.

Bandwidth:
Test Design: The execution time of the communication pattern was monitored
for different payload sizes from 1B through 2 KB. We do not measure transfers
beyond the 2 KB size because we learned that Active Messages are not a good
data transport mechanism for bulk payloads.
Test Results: The unidirectional and bidirectional bandwidth using the pro-
posed AM interface and the standard OpenSHMEM point-to-point PUT oper-
ations are depicted in Fig. 3a and b, respectively. The x-axis corresponds to the
size of the data payload transferred (in log2 scale) across the network. The value
of the achievable bandwidth (in bytes/second) is plotted on the y-axis. From the
figures, we observe that a higher bandwidth is achievable while using point-to-
point PUT operations as compared to using the prototype implementation. This
is not surprising since the AM request mechanism is associated with multiple
cost factors. At the source, the PE is responsible for copying the contents of
the data payload from the user’s address space to a temporary buffer that gets
packed along with additional information necessary for the target PE to respond.
4 The microbenchmark test suite for OpenSHMEM AM is hosted as a git repository

at https://github.com/sidjana/shmem am testsuite.

https://github.com/sidjana/shmem_am_testsuite
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At the destination, the PE is responsible for detecting an incoming AM request,
launching the corresponding AM handler and then notifying the source about
the completion of the handler execution. It can be observed that the impact of
these factors increases with the size of the data payload being transferred. This
leads to an important conclusion that the purpose of using an AM is not to
transfer data payloads, but rather to trigger computation at the same location
as the transferred payload.

Message Rate:
Test Design: The execution time of the pattern was monitored for different
number of messages initiated consecutively with minimal payload (4 bytes).
Test Results: The unidirectional and bidirectional message rate using the pro-
posed AM interface and standard OpenSHMEM point-to-point PUT operations
are depicted in Fig. 3c and d, respectively. The x-axis corresponds to the number
of messages (PUT operations/AM requests) initiated before waiting for comple-
tion (in logscale, base 2)5. The value of the achievable message rate (in mes-
sages/second) is plotted on the y-axis. Similar to the bandwidth tests above,
we observe that there is a negative impact on the message rate of the trans-
fers. There is a significant impact when the number of consecutive AM requests
increases beyond 32. The drop in message rate while using the AM interface is
about 3X in case of unidirectional tests and 5X in case of bidirectional.

Token-Ring Communication Pattern:
Launching an AM is similar to triggering an event on a remote destination.
Therefore, incorporating the support for AM into a programming model enables
applications to be built using communication patterns that rely on sending and
responding to asynchronous events. It enables the design of patterns wherein a
single AM request can be used to propagate a signal across other remote PEs. In
order to ensure high performance, it is essential that implementations invest as
few CPU cycles as possible between detecting an AM request and executing the
AM handler. In order to study the impact on latency of an AM request as it hops
across multiple PEs, two synthetic microbenchmarks were designed to mimic a
token-ring based communication topology. The benchmark was designed such
that the token was propagated using either standard OpenSHMEM point-to-
point synchronization or the proposed AM interface.

Test Design: The line diagrams of these patterns are depicted in Fig. 4a. As
shown, the transfer of the token is achieved by transferring a single integer across
consecutive pairs of PE in the ring topology. In an N-PE system, a PE k sends
a signal (either via an AM or a PUT) to PE ((k+1)%N) which then propagates
the same to the PE ((k+2)%N), and so on. PE (N−1) sends the signal back to
PE-0 thereby completing a single round-trip. The motivation for such a design
is to measure the total round-trip latency for different ring sizes.
Test Results: As part of this study, we study the impact on the time taken to
complete a single round trip as a function of the number of hops (PEs) within the
5 Completion of a PUT operation/AM request is ensured by calling the functions -

shmem quiet()/shmemx am quiet(), respectively.
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ring. In an implementation with minimal software overhead during AM handler
management, the expectation is that the total round-trip time scales almost
linearly with the number of hops. Figure 4b shows the empirical results for this
test. The x-axis represents the number of hops (the number of PEs) in a single
round-trip. The y-axis corresponds to the total time taken for the token initiated
by PE-0 (in the form of an AM request or a PUT) to pass through all the PEs
before returning to PE-0. From the graph we observe that the latency for the
round-trip latency for both the approaches is almost the same. This can be
attributed to the fact that the difference between the latencies of transferring
data payloads using AM and standard PUT is more tangible for large data
payloads. Since this pattern used a single 4-byte integer to represent the token,
the performance is similar.

Summary:
From the bandwidth and message rate plots, we learn that the purpose of using
Active Messages is not to transfer data payloads. To achieve closer-to-metal
bandwidth and message rates for data transfers, the OpenSHMEM program-
mer is better off using traditional point-to-point operations that are currently
provided by the standard. From the token-ring experiment, it can be seen that
Active Messages are better suited for triggering specific events on remote PEs
with the added benefit of providing a means for productivity (due to its coding
style) and no significant loss in performance.

4.4 The Traveling Salesman Problem (TSP)

In order to study the impact of the proposed AM interface, the Traveling Sales-
man Problem (TSP) miniapp was chosen as the target benchmark because the
algorithm can be divided into multiple independent tasks. This gives an oppor-
tunity to exploit asynchronous computation within the algorithm.

Miniapp Versions: The TSP miniapp uses a master-worker communication
pattern. The master PE is responsible for reading an input cost matrix and
for assigning different paths to the worker PEs. The worker PEs in turn are
responsible for either breaking down a path into smaller subpaths, determining
the shortest distance for a given path, or requesting a new path from the master
PE. As part of the experiment, the performance of three different versions of the
miniapp were evaluated. The difference between the three is in the deign of the
master process. Active Messages provide a mechanism to map a function handler
to an identifier. We noted that this is similar to the message-tagging mechanism
provided by MPI. Not surprisingly, the logical flow of the algorithms that used
MPI tag-matching algorithm and the OpenSHMEM with AM was similar. This
is depicted in Fig. 5(a) and (b). The flow of the algorithm used to design the
miniapp using standard OpenSHMEM without any AM interface is illustrated
in Fig. 5(b) and (c). The design details are described below:

(i) With AM Interface/MPI Tag-Matching: In the OpenSHMEM version
that uses the AM interface, the worker PE communicates with the master PE
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Fig. 5. Flow diagram of the master and worker processes for all three versions of the
Traveling Salesman Problem (TSP): (a) Master for both OpenSHMEM with AM and
MPI, (b) Worker for all three versions, (c) Master for OpenSHMEM without AM.

using Active Messages6. Each request contains the id of the function handler
which on detection is triggered by the master PE. Since the handler function is
presented with a pointer to the contents of the message, it is not responsible for
costs associated with memory management. The MPI implementation7 exploits
the availability of message tags to differentiate between different messages sent by
the worker ranks. In this case, the worker rank communicates with the master
by appending MPI messages with tag-ids that correspond to different tasks.
Because of this feature, the design of the master rank is similar to the master
PE that uses the OpenSHMEM AM interface. One of the challenges in designing
the OpenSHMEM version with AM is the need to share multiple data structures
among different AM handlers. To ensure correctness and avoid race conditions,
it becomes essential to use handler-safe locks to ensure exclusive access to these

6 The version of the TSP miniapp using the proposed AM interface is hosted
at https://github.com/sidjana/traveling salesman shmem am/tree/master/shmem
MMPQ.

7 The version of the TSP miniapp using MPI-tagging approach is hosted at http://
www.eecg.toronto.edu/∼amza/ece1747h/homeworks/examples/MPI.

https://github.com/sidjana/traveling_salesman_shmem_am/tree/master/shmem_MMPQ
https://github.com/sidjana/traveling_salesman_shmem_am/tree/master/shmem_MMPQ
http://www.eecg.toronto.edu/~amza/ece1747h/homeworks/examples/MPI
http://www.eecg.toronto.edu/~amza/ece1747h/homeworks/examples/MPI
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Fig. 6. Performance results of a traveling salesman problem written - MPI (in GREEN)
v/s standard OpenSHMEM (in RED) v/s OpenSHMEM with the proposed AM inter-
face (in BLUE). The dashed line connects all the medians of the box-plots that corre-
spond to each of the versions. (Color figure online)

data structures. This in turn leads to a potential rise in lock contention, and
hence performance degradation for small data sets.
(ii) Without AM Interface: In this case, each worker PE remotely updates an
assigned bucket stored on the master PE, using point-to-point communication
operations8. The master PE is in charge of maintaining the remotely accessible

8 The version of the TSP miniapp using standard OpenSHMEM interface is hosted
at https://github.com/sidjana/traveling salesman shmem am/tree/master/shmem
pure.

https://github.com/sidjana/traveling_salesman_shmem_am/tree/master/shmem_pure
https://github.com/sidjana/traveling_salesman_shmem_am/tree/master/shmem_pure
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buckets. Since the communication pattern relies on a single master and multiple
workers, there is a need to assign a different bucket for each worker PE. This
helps avoid network congestion at the master PE due to repeated use of the dis-
tributed locking interfaces or atomic operations provided by OpenSHMEM. The
disadvantage of this approach though is that the master PE has to repeatedly
scan through all the buckets to check for any updates by the PEs. The cost of
this access takes a toll on the performance for large count of buckets/worker
PEs. Here the cost associated with accessing the buckets increases linearly with
the number of worker PEs, this design has the potential for severe performance
degradation at large PE count.

Experiment Methodology. Three different implementations of the TSP were
chosen for the comparative study - two of which were designed using OpenSH-
MEM (as explained above) and the third, using the MPI two-sided model. Three
different problem sizes were chosen (number of cities = 4, 14, 15). The results
are shown in Fig. 6(a), (b), and (c) respectively. Due to the highly irregular and
dynamic nature of this miniapp, the execution time is prone to high variation.
The results are therefore presented as a box plot distribution, where each plot
for a given problem size and PE count corresponds to a distribution of 20 runs
of the miniapp version. The X-axis plots the number of PEs used for execution.
The Y-axis corresponds to the time taken (in seconds) to arrive at the solution
(shortest path).

Empirical Results. The major observations are as follows:

– With a small input data set (Fig. 6a), we see a severe performance degrada-
tion with the MPI version. This can be attributed to the fact that the imple-
mentation heavily relies on the traditional two-sided blocking communication
to transfer data among the master and multiple worker processes. The use
of either the proposed AM interface or the standard non-blocking one-sided
communication both alleviate this penalty.

– With large data sets (Fig. 6b and c), we see that the OpenSHMEM version
that uses the standard interface suffers a significant performance loss when
scaled beyond one node (number of PEs > 32). Since this version maintains a
separate bucket for each worker, the master suffers a slowdown due to the cost
associated with scanning multiple buckets iteratively. This cost is completely
eliminated in case of the AM version where no CPU cycles are invested in
determining the status of worker processes. Instead, the unordered incoming
requests initiated by the worker processes are asynchronously executed at the
master process.

– The plots also show that for large data sets and higher process count, the
performance between the MPI and the OpenSHMEM with AM versions are
close to each other. This is because the MPI implementation relies on tag
matching to detect the task to be executed. Functionally, this is similar to the
underlying AM implementation where the handler functions are invoked by
matching the handler-id embedded within the incoming AM request.
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– There is an interesting behavior by the OpenSHMEM version that uses AM
interfaces for the input data set with 15 cities (Fig. 6c). We see a very high
variation among execution time for small PE count. This high variation can
be attributed to use of handler safe locks among the AM request handlers,
thereby leading to heavy lock contention. This variation reduces for higher
PE count which can be explained by greater overlap of the computation at
the worker with that of the AM handler at the master. Since the MPI version
in synchronous, it does not rely on any locking mechanism thereby avoiding
the high variation in execution time for this data set. The lesson learned here
is that in order to exploit asynchronous execution of AM handlers, the use
of shared data structures, and hence the use of handler-safe locks should be
limited. Despite this, we observe that using Active Messages gives a high per-
formance gain at scale over the version that uses the standard OpenSHMEM
interfaces.

5 Related Work

Active Messages were first introduced by Eicken et al. [11]. The original motiva-
tion was to enable communication/computation overlap and shift the responsi-
bility of tolerating latency from the underlying hardware to the programmers/
compilers. The authors described a programming model called Split-C that
enables remote one-sided communication to be executed using Active Messages.

Multiple low-level communication libraries that support Active Messages
include GASNet [5], UCX [17], LAPI [20], and PAMI [15].

At a higher level in the software stack, the execution model of Active Mes-
sages can be compared to programming models that enable explicit launching of
tasks among processes in a distributed environment. These include ParalleX
[14] (parcels), UPC++ [24] (function shipping), Charm++ [2] (entry meth-
ods), Chapel [12] (begin-at), CAF 2.0 [19] (spawn), and GASPI [3] (passive
communication).

Research efforts have been made to also introduce Active Messages within
MPI [6,10,13,21,23]. Some of these approaches like AM++ [21] and AMMPI [6]
are designed on top of existing MPI libraries. Alternative approaches like Zhao
et al. [23] describe techniques for incorporating Active Messages directly within
the MPI runtime (e.g. by extension the semantics of MPI Accumulate within
MPICH).

Unlike Active Messages that enable inter-process parallelism using explicitly
specified computation units, some programming models offer constructs that
help exploit dynamic parallelism within a process. Programming models like
X10 [9], Titanium [22], Chapel [12], and those based on the Habanero frame-
work (which in turn is based on X10’s finish-async constructs) - Habanero Java
[7], Habanero C [1], Habanero UPC [18], Habanero-C MPI [10], and Habanero-
UPC++ [16], all provide tasking mechanisms that incorporate dynamic load-
balancing strategies by scheduling work across a dedicated pool of workers.
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6 Conclusion and Future Work

This paper explores the feasibility of introducing Active Messages (AM) within
the OpenSHMEM programming model. As part of this work, an API was pro-
posed along with an empirical study of a prototype implementation within the
OpenSHMEM reference implementation.

Synthetic microbenchmarks were used to compare the performance of data
movement using the proposed AM interface and the existing standard OpenSH-
MEM remote write operations. The results show that the primary intent of using
Active Messages should not be to transfer data to remote locations. Instead, the
purpose is to facilitate the transfer of computation to a destination that hosts
the data that needs to be computed upon. Nevertheless, a simple interface has
been proposed that allows a process to attach a user buffer to the Active Message
request. One potential approach to avoid the poor bandwidth costs of append-
ing data payloads to an AM request maybe to instead perform a standard PUT
operation followed by shmem quiet and then the AM request with zero bytes of
payload. This may help applications exploit the RDMA capabilities of underlying
network.

Another noteworthy point in the proposed semantics is the lack of restriction
on the size of the data payload that is appended to an AM request. One possible
modification to this approach could be where the interface provides multiple
variations for different sized data payloads while initiating Active Message. While
this provides greater flexibility to the end user, there is also an increase of burden
on the user to choose the right interface to achieve the expected performance.
Examples of low-level communication libraries that do provide such interfaces
include GASNet [5] (using medium, long, and longasync AM requests) and UCX
[17] (using short, buffered, and zero-copy AM requests).

On comparing the performance of different implementations of a miniapp
(the Traveling Salesman Problem), it was learned that while using Active Mes-
sages, sharing of data structures among different handlers of the same PE should
be avoided, otherwise there is a potential for performance loss due to contention
among handler-safe locks. However, it was observed that despite such a design of
the algorithm, the miniapp was able to achieve significant performance improve-
ment over the version that solely relied on using the standard OpenSHMEM
interfaces.
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Rohan Garg1(B), Jérôme Vienne2, and Gene Cooperman1

1 Northeastern University, Boston, MA 02115, USA
{rohgarg,gene}@ccs.neu.edu

2 Texas Advanced Computing Center,
The University of Texas at Austin, Austin, TX 78758, USA

viennej@tacc.utexas.edu

Abstract. Fault tolerance is an active area of research for OpenSHMEM
programs. In this work, we present the first approach using system-level
transparent checkpointing. This complements an existing approach based
on application-level checkpointing. Application-level checkpointing has
advantages for algorithm-based fault tolerance, while transparent check-
pointing can be invoked by the system at an arbitrary time. Unlike the
earlier application-level work of Hao et al., this system-level approach cre-
ates checkpoint images in stable storage, thus enabling restart at a later
time or even process migration. An experimental evaluation is presented
using NAS NPB benchmarks for OpenSHMEM. In order to support this
work, The design of DMTCP (Distributed MultiThreaded CheckPoint-
ing) was extended to support shared memory regions in the absence of
virtual memory.

Keywords: Checkpointing · Fault tolerance · OpenSHMEM · Process
migration

1 Introduction

Checkpoint-restart is an area of research with a long history Work in this area
has largely been split according to two approaches: system-level checkpointing
and application-level checkpointing. System-level checkpointing typically is also
transparent, in that it can be invoked by an external system service or by the
operating system. Application-level checkpointing can also support transparent
checkpointing by interposing on existing libraries.

This work presents the first system-level checkpointing solution for OpenSH-
MEM [9,18]. The DMTCP (Distributed MultiThreaded CheckPointing) plat-
form [2] is used in this approach. DMTCP directly supports checkpointing of
distributed computations. This contrasts with a previous application-level app-
roach to checkpointing by Hao et al. [15], which relies on interposing on the
OpenSHMEM runtime library itself.
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In principle, an alternative approach would be to use an implementation of
OpenSHMEM on top of MPI, and then invoke system-level checkpointing of
OpenSHMEM through checkpointing of the underlying MPI checkpoint-restart
service. However, this is not feasible, since the current MPI implementations del-
egate to BLCR [10,17] for checkpointing of a single process, and BLCR does not
support the POSIX SysV shared memory objects on which most OpenSHMEM
implementations depend. See Sect. 4 for a fuller discussion.

The barriers to supporting system-level checkpointing for OpenSHEM can be
understood by reviewing the primary features of OpenSHMEM [18]. The Open-
SHMEM standard is motivated by at least three extensions from shared memory
between processes on a single computer to shared memory between computers
on distributed hardware. SysV system calls such as shmget() and semop() must
be extended to distributed hardware. And an RDMA-like technology such as
InfiniBand must be used to efficiently support one-sided communication.

Specifically, the difficulties of supporting OpenSHMEM with a traditional
checkpoint-restart package are three-fold.

1. shared memory objects (e.g., shmget() in SysV) were generalized from POSIX
system calls on one computer to distributed hardware.

2. InfiniBand or a related RDMA technology is required. The OpenSHMEM
standard [18] insists on the importance of one-sided communication: “The
key feature of OpenSHMEM is that data transfer operations are one-sided in
nature.” [18, Sect. 2]. InfiniBand provides this.

3. synchronization primitives are generalized from APIs for inter-thread and
inter-process communication [18, Sects. 8.5 and 8.8].

As mentioned earlier, an MPI-based checkpoint-restart approach relies on
BLCR. Unfortunately, BLCR does not support either of items 1 or 3 above.
Case 2 is supported by the various checkpoint-restart services of different MPI
implementations. But Case 2 is not directly supported by a checkpointing pack-
age itself.

A significant barrier to using the DMTCP checkpointing system was the
inability of DMTCP to support large shared memory regions on systems that lack
virtual memory. Typically, supercomputers do not support virtual memory. An
important contribution of the current work is extending the design of DMTCP
to support large shared memory regions in the absence of virtual memory (see
Sect. 3). Typical OpenSHMEM implementations require this, due to their use of
SysV shared memory objects.

One can also contrast the advantages and disadvantages of the current work
with the prior checkpointing work of Hao et al. [15]. Hao et al. copy the shared
memory region along with privately mapped memory to the RAM of a peer
process during runtime. In doing so, they protect against a single computer
node failure, an important failure mode to be considered in the future exascale
generation. In contrast, the current work saves into stable storage (typically a
Lustre filesystem, on a supercomputer) at checkpoint time. This has the advan-
tage that the current work supports migration of an OpenSHMEM computation
to a new cluster, as well as saving a computation for restart on the same cluster
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at a later time—for example, for long-running jobs on a batch system where the
batch queue limits users to a maximum runtime slot of 24 h.

The current work is based on the reference implementation of OpenSHMEM,
on top of the MVAPICH2 implementation of MPI. Thus, this work also relies
on the ability of DMTCP to directly checkpoint MVAPICH2. (DMTCP treats
MVAPICH2 like any other distributed application, and does not rely on any
MPI-specific information.)

Finally, because DMTCP does not depend on any MPI implementa-
tion, the result of this work opens the way for future support for hybrid
MPI+OpenSHMEM codes. For example, MVAPICH2-X [27] provides advanced
MPI features and a unified high-performance runtime for both MPI and PGAS
programming models on InfiniBand clusters. MVAPICH2-X used all opti-
mized features for communications and memory resources on Infiniband Clus-
ter provided by the MPI library MVAPICH2 [19,26] to improve the perfor-
mance and scalability of communication on PGAS programming models [22,23].
MVAPICH2-X supports multiples PGAS models such as Unified Parallel C and
UPC++ (based on Berkeley UPC 2.20.0), OpenSHMEM (based on the Open-
SHMEM reference implementation 1.0h) and Coarray Fortran (CAF) (based on
Houston CAF implementation 3.0.39).

The rest of this paper is organized as follows. Section 2 briefly reviews the
internals of DMTCP. Section 3 describes the places in which DMTCP needed
to be extended in order to support the features of OpenSHMEM in a user pro-
gram. Section 4 presents the related work. Section 5 presents an experimental
evaluation, which was executed on the Stampede supercomputer at the Texas
Advanced Computing Center (TACC). Section 6 then offers a conclusion and the
plans for future work.

2 Review of Checkpointing

The architecture of DMTCP is described in Fig. 1. A centralized DMTCP coor-
dinator process accepts requests for checkpointing. Upon checkpoint, it sends a
checkpoint message to a checkpoint thread within each user process. The check-
ponit thread “quiesces” the user threads, interrogates the kernel for state (e.g.,
open file descriptors and file offsets), and then copies the memory to a check-
point image file. There is one checkpoint image file for each user process. See [2]
for more details.

The original version of DMTCP supported only TCP-based sockets. Later,
Cao et al. added support for checkpointing InfiniBand without the need to first
disconnect an MPI computation from the network [8].

Two areas of novelty that are not reported elsewhere are the ability of
DMTCP to checkpoint UNIX domain sockets and the ability to use leader elec-
tion in order to checkpoint to correctly restore a single shared copy of a shared
memory region, rather than restoring separate private memory regions on restart
(one memory region for each process, or PE in the context of OpenSHMEM).
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Fig. 1. The distributed architecture of DMTCP

3 Design Modification of DMTCP to Support
OpenSHMEM

The design of DMTCP had to be extended in three areas in order to support
both checkpointing of modern MPI implementations and checkpointing of Open-
SHEM. The three areas are UNIX domain sockets, SysV shared memory objects,
and InfiniBand. The addition of support for InfiniBand is reported elsewhere [8].
This work describes the design of the first two capabilities.

UNIX domain sockets. The original DMTCP design in 2009 [2] was sufficient
to support the MPI implementations at that time. However, those earlier MPI
implementations generally did not use UNIX domain sockets, and could be con-
figured so as to avoid the use of shared memory regions for communication.

The design of support for UNIX domain sockets is similar to the TCP socket
support reported in [2]. UNIX domain sockets allow one to pass a file descriptor
from one process to another within the same Linux host. As with TCP sockets,
one sends a “cookie” (a unique 64-bit value) through the UNIX domain socket.
When the receiver reads it on the UNIX domain socket, it is known that there
is no more data in the network.

SysV shared memory objects. Second, the DMTCP design was extended to sup-
port SysV shared memory objects. The original DMTCP design [2] supported
only BSD-style shared memory regions (using mmap and “MAP SHARED”).
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Recently, support for SysV shared memory objects was added in order to sup-
port more recent MPI implementations.

Unfortunately, the design of SysV shared memory for MPI did not extend to
support OpenSHMEM. OpenSHMEM requires support for large shared memory
regions created by the user’s application. In contrast, MPI directly creates only
small shared memory regions internal to the MPI library itself, as an accelerator
for communication between distinct MPI processes on the same host.

The DMTCP design depends on delegating to a single-process checkpointing
package, under the name of MTCP. Each MTCP instance saves every shared
memory region within that process, and later restore every shared memory region
on restart. It is only at a later stage that DMTCP employs a leader election
strategy to: (i) discard duplicate shared memory regions not owned by the leader;
(ii) embed the leader’s shared memory region within a SysV shared memory
object; and (iii) send the newly created SysV shared memory object from the
leader’s process to all other processes on the same host.

While this approach works in most common cases, it fails when for large
shared-memory areas. During the initial stages of restart, each process has
mapped the shared memory region as a private region. Where virtual memory
is available, this is not a problem. But on a supercomputer such as Stampede
in our case, there is typically no support for virtual memory. This is because
virtual memory normally resides on a hard disk, and supercomputer compute
nodes generally do not have any local disks. Paging to a remote storage node on
a supercomputer would produce an unacceptable performance penalty.

In order to support checkpointing of SysV shared memory regions in the
absence of virtual memory, an alternative strategy was created. Every shared
memory region is created initially as a region of zero pages. In Linux, zero pages
do not require significant resources, and are easily supported even in the absence
of virtual memory.

At checkpoint time, the MTCP component continues to write individual
copies of the shared memory region into the process-specific checkpoint image
file. But at the time of restart, instead of reading back into RAM the data of
the shared memory region, MTCP simply writes the filename of the checkpoint
image file for that process, and the file offset and size of the shared memory
region in question. This information is written only into the first page of shared
memory, and the remaining region remains as zero pages.

Finally, the same leader election strategy can be used for restart as with the
existing SysV shared memory support. But in this case, the leader does not have
the shared memory data resident in RAM. Instead, the leader reads the shared
memory data into RAM. Only at this late stage of restart, and after an appropri-
ate host-wide barrier. All other processes wait while the leader reads the shared
memory data. While this makes restart slower, this is generally acceptable, since
checkpointing is the common operation, and restart is the rare operation.

OpenSHMEM and the hardware cache. One of the weaknesses of the current
approach concerns the OpenSHMEM support for data cache control, i.e., “mech-
anisms to exploit the capabilities of hardware cache”. This is not provided by



System-Level Transparent Checkpointing for OpenSHMEM 57

DMTCP since that requires operating system extensions either to POSIX or to
common Linux systems mechanisms such as the proc filesystem. An alternative
approach that directly supports the abstractions of the OpenSHMEM library,
such as [15], has the potential to use the OpenSHMEM API to save and restore
information about the capabilities of the hardware cache.

4 Related Work

The OpenSHMEM standard is described in [9,18]. Research in the area of
Checkpoint-Restart for OpenSHMEM and other PGAS models is still sparse.
In 2011, Ali et al. [1] proposed an application-specific fault tolerance mecha-
nism. They achieved fault-tolerance using redundant communication and shadow
copies. Hao et al. [15,16] have proposed a more generic approach based on User
Level Fault Mitigation (ULFM) using shadow memory in which the shared mem-
ory regions of peers are backed up by peers. The user code is responsible for
invoking a checkpoint and for restoring correct operation during a restart.

An important distinction between the approach of Hao et al. [15] and the
current work is that Hao et al. copy the shared memory region along with pri-
vately mapped memory to a peer process during runtime. This places added
pressure on the network fabric and on the RAM. (The latter is significant since
supercomputers typically do not support virtual memory.) In the current work,
the shared memory region and privately mapped memory are copied to stable
storage (often a Lustre filesystem on a supercomputer). This places added pres-
sure on the Lustre filesystem at the time of checkpoint. Thus, each strategy has
its separate advantages and problems.

Of course, a second important distinction is that the approach of Hao et al.
directly support User Level Fault Mitigation (ULFM), while the current work
does not directly support such a strategy.

Multiple MPI libraries support SHMEM parallel programming model. Open
MPI [12] supports OpenSHMEM since version 1.7.5. In [14], Hammond et al.
introduced OSHMPI [13], another implementation of SHMEM over MPI taking
advantages of MPI-3 one-sided communication. As DMTCP is doing a transpar-
ent checkpoint restart, all these MPI implementations can be checkpointed and
restarted transparently.

Since some implementations of OpenSHMEM are built on top of MPI, it is
important to also discuss approaches to checkpointing MPI. As described earlier,
such approaches split into an application-specific and system-level approach. For
application-level checkpointing of MPI one notes [6,7]. These packages provide
hooks by which scientific applications on top of MPI can easily build their own
checkpoint-restart routines. Such solutions add complexity at the petascale level,
since they are not transparent to the end programmer.

For system-level checkpointing of OpenSHMEM, it would be tempting to
employ an OpenSHMEM built on top of MPI, and then checkpoint the under-
lying MPI. Unfortunately, all of the checkpoint-restart services of current MPI
implementations are built on top of BLCR [10,17]. BLCR does not support the
SysV IPC objects. In particular, it does not support the POSIX-standard SysV
shared memory (shm) objects [4].
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Many MPI implementations provide a checkpoint-restart service based on
BLCR. At the time of checkpoint, the MPI checkpoint-restart service detaches
from the network, and then invokes BLCR as a single-process checkpointing util-
ity for the individual processes. Among the MPI implementations using BLCR
are OpenMPI [20], LAM/MPI [30], MPICH-V [5], and MVAPICH2 [11].

As stated above, BLCR does not support SysV shared memory objects.
Hence, there is a problem if an OpenSHMEM implementation uses SysV shared
memory objects (which is a common choice on a POSIX platform), and if the
OpenSHMEM implementation is implemented on top of MPI. When a check-
point is requested, the request will be passed to the checkpoint-restart service of
the underlying MPI, which will delegate to BLCR. The BLCR FAQ states that
“Such [SysV ipc] resources are silently ignored at checkpoint time and are not
restored.”

Finally, DMTCP (Distributed MultiThreaded CheckPointing) [2] provides
checkpointing for general distributed computations, independently of MPI.
There have also been at least three other checkpoint-restart systems that are
independent of MPI and still able through Linux kernel modules to check-
point distributed computations [21,24,25,31]. However, none of these latter three
appear to be under active development, and so their details are not discussed
here.

Even though DMTCP operates independently of MPI, the OpenSHMEM ref-
erence implementation being used does depend on MPI. For this reason, DMTCP
is checkpointing both OpenSHMEM and the MVAPICH implementation of MPI
in the experiments.

5 Experimental Evaluation

5.1 Experimental Setup

The experiments have been conducted on TACC’s Stampede supercomputer.
Stampede is currently the # 12 supercomputer on the top500 list [32] (as of
June, 2016). Stampede contains 6400 dual-socket eight-core Sandy-Bridge E5-
2680 server nodes with 32 GB of memory, called “compute nodes”, and 16 quad-
socket eight-core Sandy-Bridge E5-4650 server nodes at 2.7 GHz with 1 TB of
memory, called “large memory nodes”. The nodes are interconnected by Infini-
Band HCAs in FDR mode [33] and the operating system used is CentOS 6.4
with Linux kernel 2.6.32-431.el6. Experiments use the Lustre parallel filesystem
version 2.5.5 on Stampede.

To do this evaluation, we use the Intel compiler version 13.0.2.146 on Stam-
pede with the OpenSHMEM library. See [23] for a comparison of different Open-
SHMEM implementations on Stampede. For the evaluation, we use a port of
the NAS Parallel Benchmarks (NPB) to OpenSHMEM [29]. The NAS Parallel
Benchmarks for MPI are already well-documented and widely used as a bench-
mark [3,28,34]. It consists of a suite of parallel workloads designed to evaluate
performance of various hardware and software components of a parallel comput-
ing system.
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5.2 Scalability

For evaluating performance, we measure the runtime overhead, the checkpoint
overhead, and the restart overhead as we scale up. The NAS BT and SP bench-
marks were used to measure the scalability of DMTCP.

Table 1 shows the number of nodes used and the number of processes per
node for a given number of processes (PE’s). The same configuration was used
for all the experiments.

Table 1. Distribution of processes among nodes

Num of PE’s Num of nodes Processes per node

4 2 2

9 3 3

16 4 4

36 6 6

64 8 8

121 11 11

256 16 16

Figure 2 shows the runtime overhead imposed by DMTCP. The runtime over-
head is less than 1% in all cases. DMTCP’s wrapper functions impose a negligible
runtime overhead and the cost is further amortized over the duration of the run.

For a given number of PE’s, all the runs—with and without DMTCP—were
conducted on the same set of nodes to reduce the variability due to network
topology and traffic.

Fig. 2. Runtime overhead on OpenSHMEM NAS BT benchmark with DMTCP. BT
class A was used for 4, and 9 PE’s. BT class B was used for 16, 36, and 64 PE’s. BT
class C was used for the runs with 121 and higher PE’s.



60 R. Garg et al.

Fig. 3. Checkpoint times for OpenSHMEM NAS BT benchmark with DMTCP. BT
class A was used for 4, and 9 PE’s. BT class B was used for 16, 36, and 64 PE’s. BT
class C was used for the runs with 121 and higher PE’s.

Average checkpoint times for the NAS BT benchmark are shown in Fig. 3.
Five successive checkpoints were taken for a given number of processes on the
same set of nodes.

Figure 4 shows the average checkpoint times for the NAS SP benchmark. Five
successive checkpoints were taken for a given number of processes on the same
set of nodes. The checkpoint times include the cost of synchronizing the state of
distributed processes, including communications with the central checkpointing
coordinator.

For both benchmarks, BT and SP, checkpoint times grow linearly with the
total amount of checkpoint image data (see Figs. 5 and 6). At the largest scale,
256 processes, the total data written to the disk is 2.2 TB, with an effective
bandwidth of 20 GB per second.

In all the cases, the checkpoint times are dominated by the time to write the
checkpoint data to stable storage, and the cost for checkpointing the state of the
application is negligible.

Fig. 4. Checkpoint times for OpenSHMEM NAS SP benchmark with DMTCP. SP
class A was used for 4, and 9 PE’s. SP class B was used for 16, 36, and 64 PE’s. SP
class C was used for the runs with 121 and higher PE’s.
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Fig. 5. Uncompressed checkpoint image sizes for OpenSHMEM NAS BT benchmark
with DMTCP. BT class A was used for 4, and 9 PE’s. BT class B was used for 16, 36,
and 64 PE’s. BT class C was used for the runs with 121 and higher PE’s.

The checkpoint image sizes for a single process for NAS benchmarks BT and
SP are shown in Figs. 5 and 6, respectively.

Note that the checkpoint image size is directly proportional to the number
of processes sharing a computer node. For a given number of total processes, the
number of processes sharing a node is shown in Table 1.

We observe that largest component, 90–97%, in a checkpoint image is an
OpenSHMEM shared-memory region, which is used for intra-node communica-
tion. Each process on a node contributes roughly 0.5 GB to the shared-memory
region. The rest of the checkpoint image contains process’s private memory
regions.

Fig. 6. Uncompressed checkpoint image sizes for OpenSHMEM NAS SP benchmark
with DMTCP. SP class A was used for 4, and 9 PE’s. SP class B was used for 16, 36,
and 64 PE’s. SP class C was used for the runs with 121 and higher PE’s.
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Figures 7 and 8 show the restart times for the NAS BT and SP benchmarks,
respectively, at different scales. The restart times include the cost of synchroniz-
ing the state of distributed processes, including communications with the central
checkpointing coordinator.

At the scale of 16 processes and beyond, the total memory footprint of the
checkpoint images required per node exceeds the available RAM on each node,
32 GB, and hence, it’s not possible to directly map in the data from the check-
point image. On restart, while restoring the memory of a process, DMTCP iden-
tifies the OpenSHMEM shared-memory memory region in its checkpoint image,
reads in rest of the private data in to the memory of the process, and finally maps
in the shared-memory region as MAP SHARED in to the process’s memory.

The restart times are nearly twice as large compared to the checkpoint times.
We speculate this is because while writing the checkpoint images, Lustre buffers

Fig. 7. Restart times for OpenSHMEM NAS BT benchmark with DMTCP. BT class
A was used for 4, and 9 PE’s. BT class B was used for 16, 36, and 64 PE’s. BT class
C was used for the runs with 121 and higher PE’s.

Fig. 8. Restart times for OpenSHMEM NAS SP benchmark with DMTCP. SP class
A was used for 4, and 9 PE’s. SP class B was used for 16, 36, and 64 PE’s. SP class C
was used for the runs with 121 and higher PE’s.
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the checkpoint data. On restart, any buffered data must first be synchronized
to the disk, transferred to each node, and then read in to the memory of each
process.

6 Conclusion and Future Work

A system-level approach to checkpointing OpenSHMEM was presented. This
approach enables one to save the state of a computation to stable storage at
checkpoint time. This contrasts with the previous approach of Hao et al., in
which they save to the RAM of a remote peer computer. The latter approach
supports fault tolerance in the case of a single host failing, and has the potential
for a fast restart, since only one computer node must be restored. In contrast, the
current approach has the capability of saving the state of an entire computation
for restart at a later time on the same cluster, or else for migration to a new
cluster.

The current work saves the state of the shared memory region of each process
to stable storage. In this case (with 16 cores supporting 16 processes (16 PEs),
this can potentially place a large burden on the Lustre filesytem by saving
16 identical copies of the shared memory regions on a single host, when executing
at very large scale. While this was not observed to incur significant performance
penalty at the medium scale of the current experiments, it is intended to employ
a leader election strategy early (at checkpoint time) in a future implementation.
In this way only one copy of each shared memory region will be saved on a single
host. This will significantly reduce the time to write to back-end storage. (Note
that current OpenSHMEM implementations do not appear to replicate shared
memory regions across hots, and so deduplication on a single host is deemed to
be sufficient for good performance.)
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Abstract. Unexpected error conditions stem from a variety of under-
lying causes, including resource exhaustion, network failures, hardware
failures, or program errors. As the scale of HPC systems continues to
grow, so does the probability of encountering a condition that causes
a failure; meanwhile, error recovery and run-through failure manage-
ment are becoming mature, and interoperable HPC programming para-
digms are beginning to feature advanced error management. As a result
from these developments, it becomes increasingly desirable to gracefully
handle error conditions in OpenSHMEM. In this paper, we present the
design and rationale behind an extension of the OpenSHMEM API that
can (1) notify user code of unexpected erroneous conditions, (2) per-
mit customized user response to errors without incurring overhead on an
error-free execution path, (3) propagate the occurence of an error condi-
tion to all Processing Elements, and (4) consistently close the erroneous
epoch in order to resume the application.

1 Introduction

OpenSHMEM [21] is an emerging partitioned global address space (PGAS) spec-
ification that provides interfaces for one-sided and collective communication,
synchronization, and atomic operations. The one-sided communication opera-
tions do not require the active participation of the target process when receiving
or exposing data, freeing the target process to work on other tasks while the data
transfer is ongoing. It also supports some collective communication patterns such
as synchronizations, broadcast, collection, and reduction operations. In addition
OpenSHMEM provides interfaces for a variety of atomic operations including
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both 32-bit and 64-bit operations. Overall, it provides a rich set of interfaces
for implementing parallel scientific applications, and OpenSHMEM implemen-
tations are expected to perform well on modern high performance computing
(HPC) systems. This expectation stems from the design philosophy of OpenSH-
MEM, which focus on providing a lightweight and high performing minimalistic
set of operations, and a close match between the OpenSHMEM semantic and
hardware-supported native operations. This tight integration between the hard-
ware and the programming paradigm is expected to result in close to optimal
latency and bandwidth in synthetic benchmarks, meanwhile preserving simple
and powerful end-user semantics.

Despite this rich feature set, the OpenSHMEM specification has lacked error
management and failure mitigation primitives. However, the complexity of High
Perfomance Computing systems keeps increasing steadily along multiple axes.
On one axis, heterogeneous computing, with accelerators, different instruction
sets, and possibly multiple interoperable programming paradigms are becom-
ing pervasive [13]. This proliferation of software levels within the same appli-
cation increases the probability of hitting unforeseen interactions between the
runtime libraries, leading, in the worse case, to more programming errors from
the more numerous code paths, or to imperfect resource sharing between levels,
hitherto more occurrences of runtime resource exhaustion errors. Along another
axis, HPC is moving further toward massive parallelism, harnessing millions of
processing cores, in commonly tens of thousand of nodes. As the number of com-
ponents comprising HPC systems increases, probabilistic amplification entails
that failures (i.e., a system malfunction) are becoming common events in the
lifecycle of an application. Currently deployed petascale machines experience
approximately one crash failure every 10 h [22], a situation which is expected
to worsen with the introduction of exascale systems in the near future [1,7,14].
Although some faillures may not be immediately visible (especially the so called
silent errors that corrupt the application dataset without interrupting the com-
putation), in many cases, failures (including a large number of memory corrup-
tions) do manifest detectable behavior, either in the form of a process crash, a
network disconnect, or as a memory corruption that can’t be corrected by ECC.

As these failure vectors become more common, most HPC programming
interfaces are being enriched to provide meaningful error reporting and miti-
gation strategies. For example, the Message Passing Interface (MPI) has long
provided error reporting capabilities, and further semantics to tolerate process
failures are under consideration [5]. In this paper we present a set of extensions to
the OpenSHMEM specification that will enable capturing errors resulting from
various unexpected runtime conditions, stabilize the state of the application—
and thereby open the possibility for recovering from the condition, and possi-
bly interoperate with another error managing middleware. Due to its one-sided
nature, and the form in which synchronization are expressed, OpenSHMEM
poses a specific set of constraints for resolving the global state generated by the
occurence of unexpected errors at some PEs, which in turns calls for an origi-
nal approach. The rest of this paper is organized as follows: Sect. 2 presents a
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succint view of the type of failures we address and the general benefits expected
from their handling; Sect. 3 describes the limitations on error reporting scope and
uniformity accross process to preserve latency sensitive operations’ performance;
Sect. 4 presents the OpenSHMEM API to capture errors; Sect. 5 discusses the
need for, and the mean for, the error propagation mechanism; Sect. 6 presents
the construct for stabilizing the post-error situation, and resuming communicat-
ing; Sect. 7 presents related work on fault tolerant communication libraries, and
we conclude in Sect. 8.

2 Background

Error masking and automatic failure recovery are valuable properties in system
designs. Indeed, they relieve end-users from the duress of managing erroneous
cases, and abstract the system as a stable platform. Aside from component hard-
ware technologies, like packet retransmission in network interfaces, and ECC
memory, the main vessel for sustaining the abstraction of a stable platform has
been Coordinated Checkpoint/Restart (CR), either at the application or at the
system level. One of its strong features is that it can be implemented without
the communication library providing a meaningful support for fault tolerance, or
even error reporting. In exchange, the recovery strategy involves a coarse grain
full restart of the application in the previously saved global state. However, mod-
els and analysis [7,14] indicate that the status-quo is not sustainable, and either
CR must drastically improve (for example by deploying in-place checkpoint-
ing [3,19]), or alternative recovery strategies must be considered. The variety
of prospective techniques is wide, and notably includes checkpoint-restart varia-
tions based on uncoordinated rollback recovery [9], replication [14], or algorithm
based fault tolerance—where mathematical properties are leveraged to avoid
checkpoints [12]. A common feature required by most of these advanced failure
recovery strategies is that, unlike historical rollback recovery, the application
continues to operate in-line and in-place, possibly only demanding the replace-
ment of a limited number of processors. Furthermore, considering the general
spectrum of causes that can trigger an error, not all errors are indicative of
a catastrophic, or at least severe enough failure, as to justify a full, expensive
restart of the platform. The first step to enable an alternative management of
errors, or simply to enable scalable checkpointing, is to introduce a mean to
report errors from the application’s communication support environment.

Failures can be classified into four broad categories of increasing severity.
Note that these failure classes do not necessarily map directly to a particular type
of ailment; for example, both a memory corruption and an incorrect program
can result in a crash failure, or, depending on runtime conditions, both may
also produce a silent error, arguably a more severe outcome. In this section we
discuss these failure classes’ details, and how the OpenSHMEM error reporting
system can help their management.

Resource Exhaustion: The first class, which generally is the easiest to circumvent,
represents resource exhaustion errors, and other correctable conditions arising
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from temporary or maleable overload of capacities. In the general OpenSHMEM
philosophy, these errors should generally be handled internally by the library
itself, and never propagate to the end-user. However, in some cases, the auto-
matic, internal circumvention of an error is not possible. A program that tries
to allocate a large amount of symmetric memory is a simple example. On some
architectures, the memory that can be exposed for direct one-sided operations is
smaller than the general memory capacity. Should a program require more than
the available capacity, a potential corrective action could be to move the least
used dataset from a symmetric memory segment to some non-registered mem-
ory. However, the OpenSHMEM implementation does not hold enough informa-
tion about the intent of the application to safely undergo such an action: other
Processing Elements (PEs, which is the name for an OpenSHMEM process) may
initiate one-sided operations targeting these segments, and it would be unsafe
to displace them. As a consequence, an implementation may be forced to report
that the symmetric memory is exhausted, and delegate remediation actions to
the user’s program. These actions could range from operating with a smaller
dataset when the algorithm is amenable to such an outcome, or moving some
least used symmetric memory to non-symmetric memory explicitly, or contin-
uing with an alternative interoperable communication library to complete the
program successfully, albeit with reduced performance.

Crash Failures: The second class captures simple crash failures. A crash failure
is characterized by the fact that some PEs stop being responsive definitively,
that is, they no longer emit messages. Aside from obvious power supply failures,
multiple vectors (including failures of network cables, bit-flips that raise signals,
etc.) can ultimately manifest as a PE exhibiting a crash failure. Crash failure
detection in distributed systems is a well studied domain [10], with practical solu-
tions [6], outside the scope of the present work. One may note, however, that in a
distributed system, surveillance of every process by every process can generate a
significant amount of noise, which in turn cause a significant performance degra-
dation [20]. Meanwhile, performing periodic failure resilient consensus to agree
upon a set of failed processes is expensive. As a consequence, in practice, failures
are detected opportunistically, and a PE may know, at any instant, of only a
subset of the full set of failed PEs (as could be observed from an omniscient
observer). A desired property with respect to an OpenSHMEM implementation
is that it should be free of deadlocks, even when some PE fails, which means
that OpenSHMEM operations trigger an appropriate error when PE failures are
detected.

Network Failures: The third class is network failures and intermittent failures.
These failures manifest when network links and processors are slow, when link fail-
ures result in partial disconnection of the network (that is, a PE may appear non-
responsive to some neighbors, but responsive to others), or when network mes-
sages are lost. Traditionally, message losses and retransmission are easily man-
aged internally by the HPC communication library, and are seldom reported to
the end-user. Partial disconnect of the network is a very difficult condition to
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correct or even diagnose (for a particular PE, it may appear as if some other alive
PE has been the victim of a crash failure). Possible resolutions involve routing
around the problematic links, or promoting the link failure to a crash failure of the
non-reachable processes. Even when the OpenSHMEM library resolves a link fail-
ure internally with rerouting, the potential for a severe reduction in performance
motivates reporting an error to the application, to interrupt the normal execution
flow and inform the user about the condition. Given supplementary introspection
capabilities of the network topology, a maleable application may choose to adjust
its communication pattern to match the new network capacity, or abort orderly
if it is not maleable or when the performance loss is deemed too severe.

Corruption Failures: The last class of failures are referred to as byzantine fail-
ures. In this class of failures, affected processes may behave erratically, including
malicious and intentionally disruptive behavior [18]. Although this class is gener-
ally intractable in asynchronous distributed systems, given reasonable assump-
tions about the type of erratic behavior, for example limited to dataset (not
program) corruption [15], a variety of detection and mitigation strategies can
be deployed. Beyond the protection provided by ECC memory, the detection of
a silent error, and often the correction strategies are highly algorithm and/or
dataset dependent [4,11] and cannot be detected or managed by the OpenSH-
MEM library. However, it may be desirable for an application detecting such an
erroneous condition to receive support from the OpenSHMEM library in order
to trigger a “recovery action” with other PEs.

3 Scope and Locality of Error Reporting

3.1 Local Versus Global Error Reporting

First, as we have discussed above, many of the failure classes that are the root
cause for reporting errors are local to a PE, or are detected locally by some PE.
Meanwhile other PEs have no chance to even observe the erroneous behavior.
In a limited number of cases, e.g., for some resource exhaustion errors, the PE
triggering the error may be able to correct the error independently. There is
therefore no strong case for alerting other PEs of the condition, as it will soon
be corrected without their involvement, or knowledge. In many cases, however,
some failures have to be reported at multiple, potentially all, PEs. In the case of
a collective synchronization operation, for example, when a crash failure happens
at a PE before it enters the operation, other PEs cannot possibly synchronize,
and will have to report an error. The one-sided nature of many OpenSHMEM
operations can also force reporting a failure at multiple PEs, without a direct
mapping between the failed PE and which PEs have to report the error. Con-
sider the case described in the left of Fig. 1, where P1 issues a shmem wait oper-
ation. This operation blocks until the remote updates performed from remote
PEs toggle a conditional statement on the value. The origin PE (or PEs) that
perform the remote updates are not specified by the operation. Consequently, if
a process crash failure happens, the communication library cannot infer if one
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Fig. 1. Scope and uniformity semantics for error reporting. On the left, errors are
reported locally, only for operations that are at risk of blocking indefinitely. On
the right, a failure results in non-uniform errors: some PEs complete the broad-
cast, unaware that other PEs have triggered an error during the same collective
communication.

of the failed PEs (here P0) was supposed to perform the needed update, or if
another PE (for example P2) is soon going to post the update. In order to avoid
leaving the target PE blocking in the posted shmem wait operation indefinitely,
the OpenSHMEM library has to report an error, ending that operation. However,
other PEs may be able to satisfy all their blocking operations independently,
and an error may be delayed until an operation would block. An advantage of
this approach is that PEs that do not need to block (the second shmem wait at
P3, for which the update has already happened) can spare the cost of checking
for errors in the performance critical, non-erroneous execution path, unless an
operation effectively blocks.

The general semantic is that error reporting is local, mandated to happen
only at PEs whose completion of a blocking operation is rendered impossible
by a failure (possibly multiple PEs, if they had issued a collective operations or
shmem wait operations), and is by default not propagated. However, we observe a
dichotomy in use-cases. Some errors, for example resource exhaustion and some
soft failures, can be easily corrected locally, and the local reporting permits
maximal performance in that case. Some errors demand a collective correction
action, and the proposed OpenSHMEM interface needs the capability to report
errors both locally or globally. We will further discuss how global reporting can
be triggered in Sect. 5.

3.2 Non-uniform Error Reporting

Conserving a strongly consistent global state, even after an error has been
reported, is a very natural desire for application programmers. In a distrib-
uted system, providing such a strong semantic is unfortunately rife with multi-
ple caveats. Even considering that some errors may trigger on a global scope,
at all PEs, performance considerations still discourage providing uniform error
reporting.
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First, let’s further define what it means for an error to be uniformly reported.
An error is uniformly reported when all PEs get the notification of the error at
the same time, that is, if a PE observes an error at a particular point in the
program life, it can infer when a similar error has been triggered at target or
origin PEs according to the Lamport causal ordering of communication opera-
tions in the program [17]. In collective and two-sided operations, there is a clear
semantic linkage between the matching operations that form a line where one
can easily define what uniform reporting means. In one-sided communication,
such a clear operation based causality line is absent from the source code at
the target, but one can still define a semantic line between the operation that
failed at the origin, and the failure for the specified behavior to manifest at the
target (i.e., an origin performs an shmem add, but the value is not updated at
the target due to a failure of some sort).

Second, let’s observe the performance implications of uniform reporting on
OpenSHMEM operations. Consider, for example, the case of reporting errors
during a shmem bcast, as illustrated on the right of Fig. 1. When the opera-
tion completes at a non-root PE, the shmem bcast specification states that the
destination array contains the broadcast values. However, it does not give any
information about the state of the completion of the broadcast at other PEs
(it actually explicitly forewarns that reusing the Psync argument in another
call may require a separate, explicit synchronization). In essence, the cost of
the broadcast operation does not include the cost of synchronizing. In many
implementations, a broadcast will leverage the relaxed semantic to optimize the
operation with a tree topology. In such an implementation, the broadcast is
complete at PEs high in the tree (that is, closest to the root) long before the
broadcast completes at leaf PEs. Without further modification, this can result
in potentially non-uniform triggering of errors, with some PEs reporting that
the operation succeeded while other PEs report that it failed. With the added
requirement that any error reported at a leaf PE must be consistently observed
as an error reported at all other PEs, the overall cost of the broadcast then
increases. The operation becomes semantically equivalent to an all-to-all opera-
tion (where each process contributes with the error code value), whose minimal
cost is that of an AllReduce. That cost is present even when there is no error
to report. Furthermore, if a PE fails during a synchronizing operation (that
is, after it started contributing to the collective call), the failed PE could have
passed its contribution to only a subset of its neighbors (in the topology used
internally by the library). If the remaining PEs have to report uniformly that
the operation has failed, the synchronization has to operate between non-failed
PEs to agree, in a fault tolerant fashion, what the operation should report at
all PEs. In practice, a fault tolerant synchronization (an agreement on a single
value) can be twice as expensive as an AllReduce [16].

Similar to the case of collective operations, a strong mandate for report-
ing errors at the origin for any violation of the semantic at the target requires
synchronizing all one-sided operations. The difference between the shmem fadd
and shmem add operations is a prime exhibit of the cost of this implicit
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synchronization with the target. The former returns the result of the operation
at the origin, while the later does not, henceforth sparing the semantic synchro-
nization with the target. These two operations have been separated, because the
addition of this synchronization semantic has a salient impact on injection rate
and latency performance of one-sided operations.

For these reasons, uniform error reporting is not required from OpenSHMEM
operations. Instead, users are provided with additional interface to resynchronize
PEs after an error has been reported. We will see in Sect. 6 how additional
OpenSHMEM interfaces can help users in creating error handling epochs that
ensure a clear discrimination between errors arising before and after the epoch
starts.

4 Error Reporting Interface

In this section, we present the interface that embraces the principles exposed
above, with some discussion about alternative software engineering designs that
have been considered but rejected.

Error Handlers. Most OpenSHMEM operations may report errors. Errors can
originate from invalid arguments being passed to OpenSHMEM operations, or
from unexpected runtime conditions such as a processor or a network link failure,
resource exhaustion, etc. Errors are reported by the invocation of the error han-
dler associated with the error code (Fig. 2 presents a list of error handler manage-
ment functions). The default error handler is set to shmem errhandler gexit,
a predefined error handler that calls shmem global exit, thereby ending the
entire application. This behavior is consistent with expectations of non error-
managing OpenSHMEM applications. A program that manages errors should
set an appropriate error handler, using the shmem errhandler set function, for
each error code it can handle (or for all errors when using the special error code
SHMEM ERR ALL). The error handler can be set with a predefined error handler
(see Table 1 for the full list), or with an user provided function that receives the
error code as input. Setting an error handler is a local operation, and each PE
may set a different error handler for the same error code.

1 typedef void (∗ shmem errhandler cb fn ) ( int errcode , void∗ user params ) ;
2
3 void shmem errhandler set (
4 int errcode , /∗ IN : the managed error type ∗/
5 shmem errhandler cb fn errh , /∗ IN : the error handl ing funct ion ∗/
6 void∗ user params ) ; /∗ IN : an user parameter to the ca l l b a ck ∗/
7
8 void shmem errhandler get (
9 int errcode , /∗ IN : the managed error type ∗/

10 shmem errhandler cb fn errh , /∗ OUT: the current l y s e t error handler ∗/
11 void∗ user params ) ; /∗ OUT: the current l y s e t user parameter ∗/

Fig. 2. C Interfaces to manage error handlers in OpenSHMEM.



74 A. Bouteiller et al.

Table 1. List of predefined error handlers in OpenSHMEM.

shmem errhandler gexit The error handler calls shmem global exit with the error
code as parameter, which effectively terminates the
application. This is the default error handler

shmem errhandler break The error handler breaks from blocking OpenSHMEM
operations at the PE. It has no effect at other PEs

shmem errhandler gbreak The error handler breaks from blocking OpenSHMEM
operations at all PEs

Rationale: During the design phase of the interface, alternative approaches where
considered. Using return codes from OpenSHMEM functions would require to
add a non-void return from most of the API functions. However, some operations,
like shmem fadd, already return a semantically important value from the function
(the value of the target variable at the remote PE), which would have rendered
that API change non-backward compatible. Another alternative, the use of a
global shmem errno value, was also considered. But this approach would entail
difficulties for thread-safe operations in multithreaded programs. In addition, a
programming style where the user has to check errors after all OpenSHMEM
library calls was deemed to impose a high productivity tax on users, and for all
these reasons, a reactive approach based on error handling callbacks has been
preferred.

When an Error Handler Triggers. Implementations are encouraged to
report the occurence of failures by triggering the local error handler function,
with an appropriate error code, and strive not to leave any PE blocking in an
operation disrupted by a failure. However, depending on the severity of the fail-
ure, it may not always be possible to do so (for example, in the case of a byzan-
tine failure). Passing invalid arguments to OpenSHMEM operations generally
results in undefined behavior; however, a debugging version of an OpenSHMEM
implementation may check for invalid arguments and report errors.

When a user-provided error handler function returns, it has the same effect
as if it had called shmem errhandler break as its last statement, that is, it
interrupts ongoing OpenSHMEM communication blocking calls at the local PE.
After an error handler has been triggered, OpenSHMEM communication oper-
ations do not block, and possibly do not respect their specification. That is, a
synchronizing operation may return before synchronizing, or the data objects
could be partially or incorrectly updated. Implicit non-blocking operations orig-
inating at the PE are also interrupted. It should also be noted that, due to the
one-sided nature of OpenSHMEM operations, when an error is reported at an
origin PE, incorrect behavior may also be observed at the target PEs with-
out that PE reporting an error. It is possible to force an error to be reported
at all PEs by calling the predefined error handler shmem errhandler gbreak,
described in Sect. 5.
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After an error has been reported, communicating with the OpenSHMEM
library may not be possible. However, the memory allocated for symmetric data
objects remains available at the local PE, giving the application a chance to ver-
ify the correctness of the data, take checkpoints before exiting, or continue using
a resilient communication library. Operations that restore the communication
capability of the OpenSHMEM library are described in Sect. 6.

Stacking of Error Handlers. The user may call an error handler at any time,
as a normal C function (including the predefined error handlers). In particular,
a user defined error handler function can call another error handler function. In
order to call the currently set error handler, a user can obtain the error handler
and its parameter with shmem errhandler get, and can then call that error
handler directly, or set the error handler with its own, and chain the call from
within the replacement error handler. Similar interfaces are provided for Fortran,
with the addition of an interface to call an error handler function.

Thread Safety. Although OpenSHMEM does not have complete definitions
regarding thread safe operations at this point, we envision the following behavior
with regard to error handler invocation in multithreaded programs. The error
handler would be invoked once per PE. After the error handler would have
been invoked, operation blocking at any thread of the PE would break. The
apparent ordering of concurrent operations and error handler invocation would
be implementation dependent.

5 Error Propagation

After an error has been reported to a particular PE, that PE may choose, or be
constrained to stop performing operations and updates from the error free exe-
cution path. If the communication pattern is complex, the occurrence of failures
can deeply disturb the application and, with only local error reporting, could
prevent an effective recovery from being implemented. Consider the example in
Fig. 3: as long as no failure occurs, the processes are following a communication
pattern called plan A. PE P0 does a shmem put on a value at P1. P1 is blocking
in a shmem wait until that update from P0 is made, then combines the result of
the updated value with a local state, and broadcast that value to all other PEs,
except for P0.

Let’s observe the effect of introducing a crash failure in plan A, and consider
that P0 has failed. As only P1 blocks in an operation that could originate at P0,
other processes do not have to detect this condition, and only P1 is guaranteed
to have the failure of P0 reported, as it issued a shmem wait operation. The
situation at P1 now raises a dilemma: P1..N wait on the contribution of P1 to the
shmem bcast. As all processes participating in the broadcast are alive (P1 being
a non-failed process), the operation may block until the matching shmem bcast
is posted at P1. However, P1 knows that P0 has failed, and that the application
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1 i f (0==rank ) {
2 shmem int p(&cond , 1 , 1 ) ;
3 cond++;
4 } else {
5 i f (1==rank ) shmem int wa i t unt i l (&cond , comp++);
6 shmem broadcast32(&comp , &comp , 1 , 1 , 1 , 0 , npes −1, psync ) ;
7 /∗ ( dest , src , count , root , PEstart , PEstride , PEsize , psync ) ∗/
8 }

Fig. 3. The transitive communication pattern plan A, from the source code, must be
interrupted before the PEs can switch to the recovery communication pattern plan B.
By calling the shmem errhandler gbreak error handler, P1 ensures that all possibly
unmatched operations in plan A, which could provoke deadlocks, are interrupted.

should branch into its recovery procedure plan B ; if P0 were to switch abruptly
to plan B, it would cease matching the broadcast P1..N posted, following plan A.
At this point, P1 needs an effective way of interrupting operations that it does
not intend to match anymore, otherwise, the application would reach a deadlock.

The proposed solution to resolve this scenario is that, before switching to
plan B, the user code in P1 sets the error handler to shmem errhandler gbreak,
or explicitly calls shmem errhandler gbreak from within the user supplied error
handler. The invocation of the predefined shmem errhandler gbreak error han-
dler at any PE forces the invocation of the locally set error handler, with the
same error code, at all PEs. As a consequence, communication operations do
not block anymore and the OpenSHMEM library returns control to the user at
all PEs, thereby solving potential transitive dependence deadlocks.

Implementation Challenges: An implementation has to be able to process the
reception of a shmem errhandler gbreak notification. Some implementations
use an asynchronous state machine to manage communication calls, and in
these implementations, receiving the notification and interrupting ongoing oper-
ations is relatively simple. For implementation that employ blocking transport
calls, different options are available. The implementation may employ a service
thread to poll for shmem errhandler gbreak notifications and externally can-
cel blocking transport calls, or it may employ timeouts to interrupt blocking
transport calls when their duration is excessive, and poll for notification only in
this case. Ideally, polling for notification should be a low priority task, and the
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specification permits delaying error notification after any latency and injection
rate critical operations have completed.

As this operation aims at managing error cases, it has to itself tolerate
the failures it reports. As such, this operation is not interrupted by normal
errors. In particular, in an OpenSHMEM implementation that can tolerate crash
failures, it has to perform a reliable broadcast to all surviving PEs. Fortu-
nately, efficient implementations of a similar operation in fault-tolerant MPI
exist (MPI Comm revoke), and have been demonstrated to be scalable [8].

6 Post-error Stabilization

At this point, the proposed interfaces have permitted reporting errors for locally
observed failures, propagating these errors to all PEs in order to interrupt the
code flow and regroup in a recovery procedure, but these interfaces have not
permitted resuming OpenSHMEM communication after an error handler has
been invoked.

One of the difficult points in resuming communication is determining that
all PEs are aware of the same set of erroneous conditions. As described in
Sect. 3.2, some errors may have been reported only at some PEs. Even when
these PEs have triggered a global propagation with shmem errhandler gbreak,
the notification of these propagated errors have communication delays, and
may be observed at different causal times at different PEs. In order to sta-
bilize the state of the application, the user needs to have an operation that
(1) drains pending error notifications and ensures that the propagation of
shmem errhandler gbreak notifications have completed, and (2) restores the
communication capabilities between a globally agreed upon set of PEs that
report a good health state.

The shmem error barrier all provides these two capabilities in Open-
SHMEM. It is a collective operation that provides a fault tolerant barrier
between all non-failed PEs, which quiets all communications, and enforces that
shmem errhandler gbreak propagation have completed. If, at a PE, the invo-
cation of the shmem errhandler gbreak error handler precedes the call to the
shmem error barrier all, then, the local error handler is invoked at all PEs
before the call completes. The error handler may be invoked from within the
shmem error barrier all without interrupting the operation, and it is the
users’ responsibility to ensure that the error handler does not call recursively
shmem error barrier all. The shmem error barrier all operation completes
in the presence of the failure types the OpenSHMEM implementation can tol-
erate, that is, the operation will block until an agreement is made that all the
necessary error handlers have been invoked, and that the status of failed PEs
has been agreed upon.

When the shmem error barrier all operation completes, the status of PEs
can be queried with the new local operation shmem error query, which, for the
same PE argument, returns the same error status at all querying PEs. If a PE
continues to be in a failed state, a query of its status returns the error code
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representing the type of failure preventing the PE from continued participation
in OpenSHMEM, or the special status 0 when the PE is capable of resuming
communication with OpenSHMEM. Note that the status of a process changes
only when shmem error barrier all is called. A PE may query its own status,
which may report that it cannot use OpenSHMEM anymore. In this case, the
PE may initiate an orderly termination for itself, take checkpoints, or resort
to an alternate communication library (such as MPI) to continue the parallel
application.

Communications targeting a PE in error status trigger an error at the origin.
Collective operations are collective over the subset of PEs that do not have an
error status. PE ranks, the size of the pSync array, and offsets in data buffers
remain unchanged. The content of the source and destination buffers that would
have been sent or received from a PE in error status is unused.

7 Related Work

Fault tolerance and error reporting in communication middleware has a long
history. The UNIX Socket interface is notably resilient to many failure types,
and has the ability to report errors to endpoints on a socket. One of the main
differences, which simplifies greatly the problem, is that sockets are bidirectional
connected streams between two participants. In HPC communication libraries,
managing an error not only means that the two endpoints of a failed stream
are informed, but that mechanisms are in place to unblock all processes of the
application that may risk blocking in multipartite communication operations,
and globally establish a recoverable application state. Also, performance con-
sideration are more stringent, as zero-copy and one-sided operations leave little
opportunity to hide the cost of failure detection activities.

MPI faces many of the same distributed system challenges as OpenSHMEM,
and has long provided the capacity of reporting errors. Efforts to define in the
standard a recoverable state after MPI errors is however fairly recent, consider-
ing mostly crash-failures [5]. In two-sided MPI operations the participants to the
operation are usually well specified (receives from named sources, etc.), which
has permitted the fault tolerance specification to strictly scope which communi-
cation operations are interrupted when an error is reported. As a consequence,
resilience extension in MPI are very operation centric and provide only explicit
error reporting propagation. In contrast, the OpenSHMEM interface observes
that many 1-sided operations do not specify clearly the origin, henceforth Open-
SHMEM provides both explicit and implicit error propagation.

GASPI [23] is another PGAS communication library which features error
management capabilities. Unlike in OpenSHMEM, all operations in GASPI have
a timeout, after which they stop blocking (even when the operation has not com-
pleted). GASPI then provides explicit failure detection and observation routines
to detect crash failures. In contrast, this fine grain handling is internal to the
OpenSHMEM library, which returns from blocking operations only when the
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implementation has observed that a failure (not necessarily limited to a crash-
failure) may result in the operation blocking indefinitely, therefore simplifying
the error management code.

Global View Resilience (GVR) [24] is a PGAS programming model that
provides resilience to failures (bit flips, crash, etc.) with a resilient storage of
multiple versions of the dataset. Distributed array can be streamed concurrently,
and independently to the resilient storage, which keeps an history of multiple
versions. Callbacks permit reconstructing damaged dataset when applicable. The
extensions proposed in OpenSHMEM are orthogonal to the advanced abstraction
of checkpointing proposed in GVR, which may benefit from resilience capabilities
in OpenSHMEM to accelerate its own communications.

8 Conclusions and Future Work

In this work, we explore the addition of error semantics to the OpenSHMEM
specification, and how one can leverage these constructs to recover from unex-
pected runtime errors and resource failures. The proposed interface is carefully
crafted to preserve performance, avoiding the pitfalls of uniform or global error
reporting. Instead, end-users are provided with the means to express their pref-
erence regarding the scope of reporting (global or local), and can restore the
consistency of the application’s global state after an error has been reported, by
employing an easy to understand error barrier construct.

Overall, the designs makes OpenSHMEM capable of managing many failure
vectors and resource exhaustion conditions by deferring the ultimate recovery
action to the end-user, which can then try to stabilize the application and resume
OpenSHMEM operations, or may fallback to an alternative interoperable com-
munication interface to complete the application in a degraded mode.

At this point, the interface does not support spawning replacement PEs
in stead of PEs in an unrecoverable state (wether they have encountered a
hardware or crash failure, or a non-crash failure has rendered the state of the
software stack unsafe to recover from). Many applications are not malleable, and
require a fixed number of PEs. Thus, future works should explore extensions to
this interface that permit replacing the failed processes, or, as an alternative,
cooperate with an external mechanism (such as PMIx [2], or a fault tolerant
MPI [5], etc.) to spawn the needed replacement PEs.
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Abstract. OpenSHMEM is an open standard for PGAS libraries that
provides one-sided communication semantics. Since the standardisation
process was completed in 2012, the OpenSHMEM API has seen a rapid
succession of proposed extensions. Among these extensions is the addi-
tion of teams of processing element (PEs) for greater flexibility in defin-
ing PE subsets for problem decomposition. Adding further to this, spaces
introduced the ability to manage memory exclusive to teams without the
need for global synchronisation. However, one problem still remains that
affects the usability of teams, and that is the need for the user to man-
age memory used internally by the implementation for synchronisation
in collective operations. This paper explores the possibilities for mov-
ing this responsibility from the user to the implementation, as well as
the consequences that may arise as a result. To this end, we describe
three methods of implementation and discuss the implications of their
use compared to traditional user management of synchronisation buffers.

1 Introduction

OpenSHMEM [1] is the de facto standard for SHMEM communication libraries,
which implements the Partitioned Global Address Space (PGAS) model. Each
PE manages a partition of a symmetric memory heap used for symmetric data
object allocations. These allocations can be accessed through a rich set of remote
memory access (RMA) operations including atomic memory operation (AMOs).
In addition, OpenSHMEM defines a set of memory synchronisation and collective
operations for sets of PEs. OpenSHMEM libraries expose an API for the C,
C++, and Fortran programming languages, though the majority of open source
OpenSHMEM applications are developed using C.
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The OpenSHMEM library API follows the PGAS programming model to
support communication, synchronisation and other operations between PEs exe-
cuting C, C++, or Fortran SPMD programs. Other useful operations provided
by the OpenSHMEM library include calls for collective operations (symmet-
ric memory allocation, broadcast, reduction, collection and synchronisation),
atomic memory operations, distributed locks and data transfer ordering primi-
tives (fence and quiet). Most collective calls are collective over a subset of PEs
that are defined by an active set, which is defined by a triplet of parameters
within each collective call.

Historically, there have been two primary elements of a particular communi-
cation operation in OpenSHMEM - the target PE (or multiple PEs in the case
of collectives) and where the memory of interest is located. While these have
been separate components in past iterations of the specification, they have both
suffered from the same kinds of constraints imposed by the emphasis on a global
view. However, while the former issue is resolved by offering ways to work with
well defined subsets of the same operating set, the latter issue demands instead
widening the scope of the current OpenSHMEM memory model to include any
number of additional and disparate memory regions.

Solutions to these problems have been proposed in the form of teams, which
are explicitly defined and reusable objects representing subsets of PEs, and
spaces, which provides the ability to perform memory allocation within particu-
lar teams [2]. However, one issue remains a concern - the memory used internally
by OpenSHMEM in collective operations. This has traditionally been handled by
the user, who is expected to allocate, initialise, and manage the needed memory
in the form of pSync and pWrk arrays. Unfortunately, this can be quite a hassle,
particularly if teams may allow for more complicated formations of PE subsets.
The ability to allocate memory within spaces helps to prevent the headache of
allocating this memory, but it doesn’t eliminate the management burden alto-
gether, and fails to be sufficient to facilitate reuse.

The goal of this paper is to determine ways in which the allocation and
management of this memory may be moved into the implementation. We will
not focus on how exactly to allocate memory only across particular teams, as
that was already explored in [2]. We will also not focus on pWrk, since it is tuned
to each particular collective operation that uses it and thus would need to be
freshly allocated and deallocated each time. However, pSync buffers are generic
enough that it should be unnecessary and excessive to create and destroy them
upon every call, so the real problem we will focus on is how to determine when
a previously created buffer may be reused. We will describe three such solutions
and analyse the potential consequences of their use. Additionally, we will discuss
how these may be impacted or enhanced to support other proposed extensions
in the form of threading support and non-blocking collective operations.

The rest of the paper is organised as follows. Section 2 describes other areas
of work that have similar goals or otherwise may be relevant. Section 3 addresses
some of the concerns or issues encountered when developing solutions to the
problem, and how they affected the ultimate design. Section 4 describes three
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different solutions that could be used to allow the implementation to be respon-
sible for handling synchronisation buffers. Section 5 provides an analysis on
expected performance of these solutions, and Sect. 6 briefly summarises our work
and possible avenues for future work.

2 Related Work

As this paper is largely focused on the internal use of symmetric memory for
synchronisation purposes and when this “shared” memory may be reused, there
are a few notable problems with similar goals. In particular, this is very similar
in nature to the problem of cache coherency. There are two main classes of cache
coherency protocols - snoopy [3] and directory-based [4] protocols. Snoopy cache
coherency strategies rely on sniffing the bus and monitoring memory accesses to
cache lines of interest, while directory-based protocols manage central directories
for storing the state of the cache, which must be remotely queried to determine
the state of a particular cache line.

There are many ways in which this state is defined and managed, generally
consisting of a set of states a cache line may be in, and actions/transitions for
each of those states. A well-known protocol is MESI [5], which stands for the
different states it uses - modified, exclusive, shared, and invalid. If a cache line
is in the modified state, then it is contained in the current core’s cache and is
“dirty,” or contains a different value than that of main memory. If the line is
in exclusive state, then it is contained only in the current core’s cache but is
“clean,” in that its value is the same as that of main memory. If the line is
shared, then it is stored in the current cache and also other caches, but is clean.
Finally, if the line is invalid, then it is unused/not in the current cache. This
protocol is well suited for the snooping strategy.

Another related problem is that of dependence analysis [6]. Dependence
analysis is most often used in compiler theory, where it is useful in determining
when it is safe to reorder statements. There are two main categories of depen-
dencies - control dependencies, which refer to statements that are conditionally
dependent on another statement, and data depdendencies, which occur when
two statements access the same memory location. Data dependencies are fur-
ther broken down into four subtypes based upon whether the location is being
read or written to. Given two statements S1 and S2, where S1 precedes S2, then
S2 has a true dependency on S1 if S1 writes to a location that S2 later reads,
and an antidependency if S1 reads a location that S2 later writes to. Likewise,
S2 has an output dependency on S1 if they both write to the same location, and
an input depdendency if they both read from the same location. How it might
be possible to take advantage of read and write operations with dependencies to
manage synchronisation buffers is explored in Sect. 3.

Finally, this same issue is also a concern in implementing Coarray Fortran
(CAF) [7]. In CAF, the different processes in the system (referred to as images)
may belong to arbitrary teams much like the ones proposed for OpenSHMEM.
All images initially start off in a single team representing the world, and at any
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time new teams may be split off from an existing team. When this happens,
the respective images then disassociate themselves from their current team in
order to join the new one. There are collective operations in CAF as well, which
similarly need memory for synchronisation, but it does not expose this memory
or pass off its management to the user.

3 Design Considerations

If each pSync array (or particular portions of them) is treated like a cache line,
where other PEs can invalidate it by using it in a collective operation, it can
start to be seen how the underlying problem is relevant. Unfortunately, there are
a number of critical assumptions that common cache coherency solutions have
made thus far. One of the chief among them is that all cores are using a single
uniform bus. The issue of cache management in non-uniform memory access
(NUMA) systems further complicates matters by destroying that assumption.
Not only is snooping not a possibility anymore for this reason alone, but the
non-uniform access times make synchronisation substantially more difficult and
costly. Comparing the problem to OpenSHMEM puts the library specification
into the same category as NUMA systems, thus preventing any strategies relying
on the ability to snoop from being useful. There is also enough work on cache
coherence to recognise that there is already enough difficulty scaling coherence
as it is [8,9].

Additionally, the expectation when dealing with cache lines is to avoid as
much as possible any situations where multiple sources are modifying the same
cache line. However, here sharing the same “cache line” is one of the specific
goals, since that is the point that multiple PEs synchronise on (and thus also can
result in one of the worst performance scenarios for caches - excessive thrashing).
For reasons such as these, implementing something akin to cache coherence is
not good enough to meet the needs of OpenSHMEM, as it places even fewer
restrictions on memory use and behaviour. However, the ultimate problem being
addressed is still similar enough in nature to that of cache coherence to be able to
draw wisdom from it. In particular, that this problem can not be automatically
solved without incurring additional cost from potentially multiple sources of
overhead, and that it is likely best to avoid conflicts entirely when possible.

We also are not able to use the same strategy employed by CAF, as it places
far more restrictions on teams and collective operation which result in easier
management of synchronisation memory. In particular, images may only belong
to a single team at any given point (thus there can be no overlap between ongoing
collective operations between different teams), and all collective operations have
an implicit barrier at the end of their execution.

Fortunately, while algorithms taken directly from cache coherence protocols
themselves are insufficient and likely to result in unsatisfactory performance if
adapted, we can alleviate some issues by taking advantage of usage patterns,
assumptions, or other qualities regarding use of synchronisation buffers within
OpenSHMEM. For one, it is neither important nor desirable to maintain a single,
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consistent “main memory” value (nor is there such a location), so concepts like
shared or exclusive values don’t make sense and need not be addressed. Also, the
memory locations in question no longer need to be defined by the code, but can
be selected at run-time - if one synchronisation buffer is not available without
conflicts, then another may be used instead.

If we observe that the greatest difficulty in determining reuse comes from
multiple remote sources being capable of deciding to write to a given location at
any time, we may consider the implications of altering this behaviour such that
any particular buffer may only be written to by a single PE. This simplifies point
to point synchronisation enough that the origin PE can always unambiguously
know what writes are pending completion on which buffers without the need to
query any external sources. All that is necessary in order to free an old buffer up
for reuse at that point is receipt of something equivalent to an acknowledgement
from the target PE, which can be received at any point, in any form, and apply
to any set of buffers.

This makes it simple enough to do some form of run-time dependence analy-
sis without incurring expensive communication costs and creating additional
synchronisation points. However, the goal of finding dependencies in this case is
not to facilitate reordering, but to determine the lifetime of variable instances
and use it for determining when old instances (buffers) must then be safe for
reuse. The focus here is on “satisfying” dependencies on synchronisation buffers,
and doing so without having to rely on further synchronisation initiated by the
user or the implementation. For instance, if writing to a synchronisation buffer
is determined to be dependent on the contents of some user memory, and the
implementation sees that said user memory is later written, then it can know
that the synchronisation buffer must be safe to reuse again (as its dependency
has been “satisfied”).

We tried this strategy out, but there were two main problems. First, since
the user could (and usually does) do whatever they want with memory out-
side of the implementation’s knowledge, it generally was unable to get sufficient
information on run-time data flow to properly exploit any dependencies found
between synchronisation points. Second, there were no communication patterns
found in testing that were unusual enough to conceivably benefit much from
the additional analysis. Thus, satisfied dependencies would ultimately just trace
back to various points of synchronisation.

With these considerations in mind, we focused our designs simply on different
methods of exploiting synchronisation points to free used buffers. These designs
are examined in full in Sect. 4.

4 Design

We present three possible methods for moving management of synchronisation
buffers to the implementation. These all rely in some way upon maintaining
multiple buffers and using a set of locks to determine which buffers are available
for reuse.
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4.1 Additional Synchronisation

This method involves maintaining n buffers for each team of PEs. These buffers
can be internally managed the same way as pSync arrays traditionally have been,
except that each has a lock associated with it managed by the local PE. When
a collective operation on a team is started, the PE finds the first free buffer and
uses it for the operation. After the operation is complete, it then needs to find
the next free buffer to use for barrier synchronisation, effectively ensuring that
no PE leaves the collective operation before they have all completed it. Thus,
upon finishing the barrier, it is known that no prior operation is still using their
respective buffers, so at this point their buffers may all be unlocked.

Without support for threads or non-blocking operations, n = 3 buffers per
team is sufficient for this approach - two for each pair of implementation-added
barriers, and one for the operation performed in between them. Adding thread
support may require up to n = 3t buffers, where t is the number of threads. Fur-
thermore, the locks must then track not just the lock state of a buffer, but also
which thread ID locked it. This ID must be used when unlocking buffers so that
only those used by the active thread may be unlocked. However, since n = 3t
buffers are only needed if all threads are actively participating in collective opera-
tions at a given time, it is not necessary to allocate the maximum number of buffers
all at once, but instead it is possible to dynamically add more as necessary. Since
synchronisation is already being performed internally within each collective, this
approach has the potential to also benefit from “free” allocation in the sense of
not requiring an additional barrier, provided sufficient memory remains.

Further adding support for non-blocking collective operations requires n to
become unbounded, as any number of operations may be started before previous
ones have completed. As such, the pool of available buffers must be handled in
a way that allocates more on demand when the pool is exhausted. The locked
buffers must also be ordered by when their associated collective is waited on, such
that a given synchronisation can only unlock buffers whose respective operations
have already been waited on.

4.2 Unlock on User Barrier

This method is similar to the previous one, maintaining n pSync-style buffers
for each team. However, unlike that method, this does not impose additional
synchronisation operations. Instead, each collective merely obtains the first free
buffer, locks it, and completes the collective before returning. These buffers may
then only be unlocked when the user explicitly performs a barrier across all
members of a given team. In this case, it is not necessary for such a barrier to
exclusively contain only PEs from a particular team - so long as it includes at
least all the PEs from a team, that team’s previously locked buffers may be safely
unlocked. As a result, the number of required buffers becomes dependent on the
number of collective operations that come between any given pair of barriers
in user code. Thus, using this method the pool of buffers must be dynamically
resizeable even without support for threads or non-blocking operations.



88 A. Welch and M.G. Venkata

The only change necessary for adding support for threads would be to simi-
larly associate locks with thread IDs like in the previous method. Non-blocking
operations likewise would work the same as well.

4.3 Pairwise Synchronisation

The final method is no longer based on pSync-style buffers at all, but instead each
PE has n dedicated buffers for each remote PE that needs to write to it. Thus,
if for a particular synchronisation operation, three PEs need to communicate
with PE i, it will have three separate sets of buffers for each such PE. Each time
that a PE needs to synchronise with a target, it uses and locks the first available
buffer for that target, allocating more if none exist. However, the receiver may
not know which buffer a sender chose to use for synchronising, so the sender
must send a unique ID for the collective operation that can be used to match
the receiving end, and the receiver must scan all buffers the sender could use for
the same ID. When a PE locks a buffer, it keeps track of the ID associated with
it, so that when a message is received from a given PE with a particular ID as
previously described, it may unlock buffers for that PE associated with IDs of
past operations. In other words, receipt of a message from a source PE with a
particular operation ID is dependent on that PE having processed all buffers of
past operations from the target PE.

This approach can be extended to support threads by also associating a
thread ID with each operation/buffer, and only unlocking buffers from the same
thread. The only necessary changes to add non-blocking operations are that
buffer unlocking must again occur only when waiting on an operation to com-
plete, and that care must be taken to not unlock buffers used for operations that
have yet to be waited on.

A benefit to this approach is that not all PEs participating in a collective
operation must use the same synchronisation buffers, and that the buffers need
not be exclusively bound to any particular team. This opens up greater potential
for reuse across teams, but may add the additional concern for when to destroy
old memory to prevent unused buffers from never being deallocated. The poten-
tial concern over the lifetime of these buffers is left for future work.

In order to minimise memory use, the focus in implementing this method
is to minimise the number of PEs that need to directly communicate with any
given PE for any given team. Within the scope of particular teams, this becomes
a question of how to handle particular algorithms. To demonstrate this issue,
we will observe its impact on two main patterns for collective communication -
that of tree and recursive doubling algorithms. Figure 1 illustrates how PEs are
connected when using a recursive doubling algorithm. The edges of the graph
represent which PEs actually communicate to which other PEs. Here, it can be
seen that the communication pattern constructed by this algorithm effectively
creates a hypercube. The interesting quality of this is that regardless of any
parametres besides the team, the edges of the graph will always remain the
same, so nothing different needs to be done.
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Fig. 1. Recursive doubling

However, this changes when looking at tree algorithms. If maintaining a
balanced tree as most implementations ordinarily should, this would inevitably
result in the tree’s overal structure remaining the same, but the edges would con-
nect different PEs for every different root. Thus, if making an effort to preserve
these edges, then the tree must be rearranged so as to satisfy that requirement
regardless of which PE is used as the root of the tree. Figure 2(a) shows a typ-
ical tree with PE 0 as the root, and Fig. 2(b) shows how it can be rearranged
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Fig. 2. Preserving edges in a tree algorithm
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to maintain the same edges if PE 1 is made to be the root instead. This is
accomplished by leaving PE 1’s subtree intact, but adding a third child to com-
municate to what was formerly its parent when PE 0 was the root. PE 0’s subtree
is likewise left intact, with the exception of PE 1 being removed due to the par-
ent/child relationship being inverted. If rearranging a tree around root PE n
further down the tree, then the process of changing the former parent into a
child and said parent removing the former child from its subtree continues until
the original root of 0 is reached.

5 Evaluation

Before we can evaluate expected performance characteristics, we must first con-
sider a few critical differences between the design choices presented. In particular,
we must consider differences in how we can measure memory requirements and
potential lifetime of synchronisation buffers. Regarding memory, the first two
strategies described in Sects. 4.1 and 4.2 are designed to operate on traditional
pSync-style buffers. This means that memory use needs to be looked at from
the level of the number of pSync buffers created, as the size of them can vary
between collective operations and implementations. On the other hand, for the
third option described in Sect. 4.3, the unit of memory is effectively a single value
(index) representing an address for synchronising with a specific target from a
specific source. Thus, the memory used for each such buffer may be far less than
what is needed to support a pSync buffer. In the case of an implementation
supporting the recursive doubling algorithm as seen in Fig. 1, each pSync may
need log n indices to support a team of size n. For the purposes of this analysis,
we will be looking at total memory used across the system, so if each PE holds
n buffers, the total memory use is that of n2 buffers.

Similarly regarding the lifetime of buffers, the outlined strategies represent a
rough division of lifetime expectancies. The simplicity of managing traditional
pSync buffers make those approaches best suited for binding buffers strictly to
the lifetime of the team. Due to the potential for run-time inconsistencies, the
pSync of a parent team can not be safely used by any child teams created off
of it. While multiple pSync buffers from child teams spanning across the full
range of the parent could theoretically be used in place of a dedicated buffer
for the parent, the benefits that could be reaped are minimal and not likely to
justify the additional headache of attempting to exploit the possibility. Contrary
to this, the nature of separating buffers from any direct reliance on teams in the
pairwise synchronisation strategy makes it far easier to allow buffers to both live
longer and be reused across different teams.

5.1 Theoretical Analysis

When introducing additional synchronisation or relying on user barriers, the
same performance as can be achieved by the user supplying a buffer can be
expected, with the addition of an extra barrier for synchronising after creation
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of a pSync. The only significant difference is that the implementation may option-
ally choose to allocate and initialise more than one pSync at the same time in an
attempt to save on synchronisation costs. Nonetheless, this still means that the
worst case for communication cost when using tree or recursive doubling algo-
rithms for collectives is O(3 log n) when adding synchronisation or O(2 log n)
when relying on user barriers. Memory, on the other hand, is the same when
using additional synchronisation and remains at O(n log n), while falling back
on user barriers requires O(cn log n), where c is the average distance between
barriers (measured in number of collective calls).

Looking at pairwise synchronisation, performance characteristics are affected
by the underlying algorithms used. For instance, memory and communication
costs required for performing recursive doubling are O(n log n) and O(log n),
respectively. In contrast, tree algorithms are less straightforward, as was detailed
in Sect. 4.3 and Fig. 2. If not preserving edges, the communication cost of
O(log n) is preserved, but at the cost of O(n2) memory use in the worst-case
scenario of all n roots being used. If only one root is ever used, or if preserv-
ing edges, the communication cost becomes O(2 log n), but memory use can not
exceed a flat 3n buffers. Which approach to take may be a decision left to the
implementation or run-time.

However, this is looking only within the context of individual teams. One of
the more interesting aspects of this solution is the ability to recycle old buffers
for future use, including in different teams. To give an indication of how well this
can work, we will look at a particularly “bad” example and see that memory use
still scales linearly. First, we consider that most teams will either be traditionally
strided, or composable of such strided ranges. Then, we take a world of n PEs
and perform collectives over all such possible teams within the world. Figure 3
shows the total number of buffers needed to support all such teams for a world
of size 8 ≤ n ≤ 4096.
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This is obviously a very unrealistic scenario, but it is nonetheless obvious
that it still scales slowly with respect to the size of the world. In contrast,
Fig. 4 shows the number of total team configurations for the same test. With
the other design strategies, each of these teams would need a separate pSync,
and would additionally need to synchronise after team creation as necessary for
each collective operation. It can be seen from the figure that the number of
teams grows much faster than the number of necessary pairwise buffers, making
it more appealing than the pSync-focused alternatives.
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It is worth noting again that while these results are still telling, they are
nonetheless representing an unrealistic scenario - most applications are unlikely
to come close to achieving these results, as they will only be present when creat-
ing all possible teams as previously described. In fact, we were unable to find any
real-world tests whose needs were complex or unusual enough to merit concern,
and any new use cases that may come from the formal introduction of teams are
also unlikely to contain such exhausive use of them so as to exhibit the observed
performance.

5.2 SHOC

Next, we will look at a more realistic scenario, in which this new feature is applied
to a real-world application in the form of the Scalable Heterogeneous Computing
(SHOC) benchmark suite [10]. Specifically, we will be looking at its quality
threshold clustering benchmark. Tests within the SHOC suite are intended to
be useful for comparison of heterogeneous systems containing multiple compute
devices including GPU accelerators. Quality threshold clustering is a partitioning
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algorithm intended to find data clusters of a particular quality, rather than
partitioning the data into k clusters.
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As the search space decreases, the benchmark successively removes processes
from the original set of n processes from the computation until only one remains,
eventually reducing down to a single process. The rate of this reduction can vary
by input parametres, however in the “worst” case scenario, each such reduction
results in the removal of a single PE. When this was tested for memory use
using the pairwise strategy, this was shown to have O(n log n) performance. In
contrast, assuming log n memory use for each pSync buffer, using separate buffers
for each team as the other strategies or a typical application might do results in
O(n2 log n) performance. These results can be seen in Fig. 5. From this, it is clear
that the pairwise strategy provides a more manageable and scalable alternative
as the number of teams increase.

6 Conclusion and Future Work

In this paper we presented three alternatives for removing the burden of man-
aging internal synchronisation memory within OpenSHMEM, and how they can
affect execution. While there is no golden solution for getting around the poten-
tial loss of semantic information by hiding buffer management, it was shown that
it can be done with set degrees of overhead, and scale linearly with respect to
the number of PEs in the system.

For future work, it may be worth investigating whether and how old buffers
should be destroyed when using the pairwise strategy. Additionally, it may be
helpful to look at the utility of adding in some form of tags to collectives, as that
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may help add back some semantic knowledge that could be used to more easily
match up different collective operations. This may especially be relevant in the
case that threading support is introduced to the specification, as it could avoid
the difficulties of trying to match up collectives from threads on different PEs
without the need to enforce global consistency on thread identities. Finally, it
may be worth investigating alternative synchronisation algorithms and whether
some may provide additional opportunities to further reduce the required mem-
ory footprint.
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Abstract. Sandia OpenSHMEM (SOS) is an implementation of the
OpenSHMEM specification that has been designed to provide portability,
scalability, and performance on high-speed RDMA fabrics. Libfabric is
the implementation of the newly proposed Open Fabrics Interfaces (OFI)
that was designed to provide a tight semantic match between HPC pro-
gramming models and various underlying fabric services.

In this paper, we present the design and evaluation of the SOS OFI
transport on Aries, a contemporary, high-performance RDMA intercon-
nect. The implementation of Libfabric on Aries uses uGNI as the lowest-
level software interface to the interconnect. uGNI is a generic interface
that can support both message passing and one-sided programming mod-
els. We compare the performance of our work with that of the Cray
SHMEM library and demonstrate that our implementation provides per-
formance and scalability comparable to that of a highly tuned, pro-
duction SHMEM library. Additionally, the Libfabric message injection
feature enabled SOS to achieve a performance improvement over Cray
SHMEM for small messages in bandwidth and random access bench-
marks.

1 Introduction

Current trends in high performance computing (HPC) system architecture pose
new challenges and introduce new requirements for the system fabric. Dramatic
increases in the number of cores and threads per node requires a host-fabric
interface (HFI) that can process communication on behalf of many threads effi-
ciently. At the same time, these throughput-oriented cores present new challenges
to communication processing on the host processor [4]. Further, increases in the
overall system scale in combination with a flattening trend in the amount of
memory available per thread places additional stress on scalability requirements.
In response to these challenges, a variety of novel solutions [11,13] and interfaces
are being explored [5,9,14,27].

In addition to new techniques at the system fabric layer, the communica-
tion middleware and underlying communication software stack must also be
c© Springer International Publishing AG 2016
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adapted to leverage and expose new functionality. The OpenFabrics Alliance
recently introduced the OpenFabrics Interfaces (OFI) framework as a new, open-
source software ecosystem designed to enable efficient usage of evolving high-
performance fabrics [14]. OFI’s libfabric component provides a communication
interface that is designed for scalability, flexibility, and extensibility. In particu-
lar, typical scalability challenges, such as endpoint addressing, connection man-
agement, message processing, and memory registration are encapsulated within
libfabric, allowing them to be optimized using fabric- and system-specific capabil-
ities.

The OpenSHMEM specification is a recent initiative directed toward stan-
dardizing and extending the SHMEM� parallel programming model for future
systems. OpenSHMEM defines a partitioned global address space (PGAS) data
access library that can be used to establish one-sided access to read, write, and
atomically update remote data. OpenSHMEM applications commonly require
high throughput and the ability to perform remote data accesses asynchronously,
thereby placing significant demands on the underlying system fabric.

In this work, we document our experiences with the development of an Open-
SHMEM software stack using OFI on a contemporary HPC interconnect. We
present an open source implementation of the OpenSHMEM 1.3 specification
that targets the OFI libfabric interface and describe how libfabric can be used
to improve the efficiency of OpenSHMEM middleware. We further describe the
implementation of libfabric for the Cray R© XC40TM system with the Aries inter-
connect that utilizes the uGNI [8] API. We evaluate the performance of our
software stack using several communication and application benchmarks. The
results indicate that the performance of the open-source SHMEM and libfabric
is comparable to the highly tuned, production Cray SHMEM library. In addi-
tion, we show that the libfabric message injection feature enabled a performance
improvement over Cray SHMEM for small messages in bandwidth and random
access benchmarks.

Our paper starts with a description of the relevant background information
and related work in Sect. 2. Next, we describe the design of our OpenSHMEM
implementation and underlying OFI implementation for the Aries interconnect
in Sects. 3 and 4, respectively. We present an experimental evaluation in Sect. 5
and conclude with Sect. 6.

2 Background and Related Work

Our work describes and analyzes the implementation of the OpenSHMEM spec-
ification using a modern fabric interface. In this section, we provide an overview
of these topics and some of the most closely related works.

2.1 Fabric Interfaces

A variety of low-level communication APIs have been used in HPC for high
performance networking, including the OpenFabrics Alliance (OFA) Verbs API,
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PAMI [19], Portals [2], and uGNI [8]. Often, such low-level APIs are customized
to leverage specific system architectures. Recently, the industry has trended
toward exchanging system-specific APIs for open, portable fabric interfaces that
provide a low-level interface to fabric services while minimizing ties to specific
architectures. This approach promises to provide better portability for com-
munication middleware, such as OpenSHMEM, while maximizing the exposure
of application-level communication semantics to the fabric to enable aggressive
optimization.

OpenFabrics Interfaces. The OpenFabrics Alliance (OFA) provides open-
source software for high-performance networking applications that demand low
latency and high bandwidth. Historically, the only fabric interface offered by
the OFA was the Verbs API as defined in the InfiniBand� specification. As the
InfiniBand specification was originally envisioned as a generic system I/O inter-
connect, there are semantic differences between Verbs and the requirements of
PGAS libraries and languages. These semantic mismatches require unnecessary
adaptations in PGAS implementations, such as OpenSHMEM, resulting in sig-
nificant software overhead [21].

The OFA has created a working group, called the OpenFabrics Interfaces
Working Group (OFIWG), that aims to define a fabric interface that has a tight
semantic map to various applications classes that use it, including PGAS pro-
gramming models. Members of the PGAS community provided input into the
design of the new fabric interfaces to help improve the mapping of PGAS fea-
tures onto fabric interface features. The fabric library created from this effort is
called libfabric. It consists of two logically distinct components: A set of fabric
providers that implement the communication interfaces for a particular fabric
hardware, and a general purpose framework that provides a plugin-like capability
for providers. In the rest of the paper, we use the term uGNI provider to imply
the specific implementation of libfabric interfaces for the Aries interconnect. Lib-
fabric is freely available from Github [20], and is distributed via the OpenFabrics
Enterprise Distribution (OFED) as well as popular Linux distributions.

Other Fabric APIs. The Portals interface [2] allows the user to describe
actions that are performed on remote memory segments – possibly gated by
message matching requirements – providing close alignment between HPC com-
munication libraries and the underlying software or hardware implementation
of the Portals layer. A variety of PGAS runtimes have been ported to use Por-
tals, including OpenSHMEM [3]. The current Portals 4 specification [2] adds a
lightweight non-matching interface to boost PGAS messaging rates. Addition-
ally, it introduces logical rank-based addressing to simplify code paths, eliminate
cache misses, and improve memory scaling. Members of the Portals community
also participate in the effort to craft the OFI interface, resulting in adoption of
multiple concepts from the Portals API.

OpenUCX [27], is another fabric framework that is being developed by as
a collaboration outside the OpenFabrics umbrella. It aims to provide semantics
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that target data centric and HPC programming models. UCCS [26] is a pre-
decessor to OpenUCX and a detailed study of OpenSHMEM performance on
UCCS was recently conducted [28]. Additionally a study of UCCS over uGNI on
Gemini was evaluated in [16]. The authors of these studies observed similar per-
formance results as we present; however, because of differences in the hardware
and software environments, our results cannot be directly compared.

2.2 OpenSHMEM

OpenSHMEM [23] is a parallel programming model that defines a Single-
Program, Multiple-Data (SPMD) execution model and an accompanying par-
titioned global address space (PGAS) communication library. OpenSHMEM
allows the programmer to expose regions of memory for remote access using
one-sided read, write, and atomic access routines.

Recently, the OpenSHMEM specification was introduced in an effort to stan-
dardize and extend the SHMEM� communication library. SHMEM has been in
use for over two decades, with implementations from most major HPC vendors,
however the lack of an open specification has resulted in variations across imple-
mentations and has limited the ability of the user community to extend the
programming model.

A reference implementation of the OpenSHMEM specification is available
as open source [22] and is compatible with a wide range of system fabrics
through the low-level GASNet API [6]. The OpenMPI communication middle-
ware also recently added support for OpenSHMEM [12], called OSHMEM. OSH-
MEM leverages the MPI runtime and MPI collective implementations to pro-
vide a lightweight implementation. Mellanox� Scalable SHMEM is a proprietary
implementation that is available as a part of the HPC-X toolkit distributed by
Mellanox. It is designed to work on Mellanox InfiniBand fabrics. Similarly, the
MVAPICH2-X [17,18] SHMEM distribution is a closed source implementation
that targets only Mellanox fabrics.

In this work, we utilize the open source Sandia OpenSHMEM (SOS)
library [25], which is based on the earlier Portals SHMEM library [3]. SOS
extends Portals SHMEM with support for the new OpenSHMEM 1.3 specifi-
cation, as well as adding support for the OpenFabrics Interface libfabric com-
munication layer [21]. While existing libfabric support was recently added, sup-
plementary work has refined the mapping of OpenSHMEM to OFI, yielding
additional portability and performance benefits. Furthermore, the codebase con-
tinues to evolve alongside the OpenSHMEM community as a sandbox and proof-
of-concept for the latest OpenSHMEM proposals.

3 Design of OpenSHMEM for OFI

As shown in Fig. 1, Sandia OpenSHMEM (SOS) defines internal network data
transport and shared memory layers. The SOS transport layer was designed to
reduce the number of functions that must be implemented for each fabric, while
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Fig. 1. Sandia OpenSHMEM library design, showing libfabric inlining to eliminate
software overheads.

exposing core OpenSHMEM communication semantics so that the transport
can optimize for scalability and performance. SOS provides support for both
Portals 4 and OFI. This work focuses primarily on the OFI transport layer and
extending it to support a broad range of libfabric capabilities and efficiently
utilize the Aries system interconnect through the libfabric uGNI provider.

The SOS-OFI transport layer requires provider support for remote memory
access (RMA) and remote atomics capabilities. The libfabric RMA and atomic
APIs were designed to provide a direct mapping of performance sensitive PGAS
operations to libfabric routines, with the intention of facilitating close alignment
with fabrics that provide support for remote direct memory access (RDMA) and
atomic capabilities. Libfabric further supports a direct build, shown in Fig. 1
where the implementation of the libfabric API routines are inlined into the mid-
dleware, enabling cross-call compiler optimizations and eliminating function call
overheads. Sandia OpenSHMEM (SOS) also supports aggressive inlining within
the implementation, which is used to reduce the middleware stack overheads to
a single function call. In combination, these optimizations have been shown to
significantly improve software overheads, and by extension small message latency
and throughput [21].

3.1 Launch, Wire-Up, and Memory Registration

Careful setup and resource management is crucial for achieving scalability and
reducing overheads. SOS supports the PMI-1 and PMI-2 process management
interfaces (PMIs) [1], and we have added support for the Cray process manager.
For stand-alone builds, SOS includes a built-in PMI-1 option that can be used
to attach to any PMI-1 compliant job launcher.

Mapping of OpenSHMEM PE numbers to network addresses is typically
facilitated through a scalable libfabric address vector (AV); however, for porta-
bility reasons, SOS supports both the map and table AV modes. The map mode
provides the broadest compatibility; however, it requires the middleware to main-
tain a table that maps PE numbers to fabric interface (FI) addresses obtained
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Table 1. Memory registration and remote addressing models supported by the SOS
OFI transport and resulting overheads.

Remote virtual addressing Remote offset addressing

Scalable MR Offset calculation

Basic MR Key tables Key tables, base address table,
offset calculation

through the PMI exchange. When a communication operation is performed,
the target PE number must be first converted to the corresponding FI address
using this table. The AV table mode provides better scalability and performance
opportunities by allowing the PE number to be used directly in communication
operations and performing address resolution within the provider. For networks
that require a translation table, the provider is able to map the table in a shared
segment, improving the memory scalability. Further, the AV table mode provides
a mechanism to take advantage of networks that offload or regularize address
resolution. We use AV table in our study since it is supported by OFI-uGNI.

In libfabric, remote memory access (RMA) operations require both a pro-
tection key and a destination address. Libfabric provides two different models
for exposing memory regions for remote access, referred to as scalable and basic
memory registration (MR), that establish different key and destination address
semantics. We have implemented support for both modes in SOS, and we further
take advantage of systems that can support mapping the symmetric heap and
data segments at the same base addresses across all PEs, referred to as remote
virtual addressing. The combination of these two features results in the matrix
shown in Table 1. In the scalable MR mode with remote virtual addressing, SOS
exposes the full address space of the PE for efficient remote access. In all other
modes, the heap and data segments are exposed separately.

Basic memory registration is the most portable model and allows the provider
to determine the memory protection key, and requires the application to pro-
vide destination virtual address for the RDMA operation. This results in SOS
exchanging protection keys and maintaining a key table as the key may be
different on different PEs. Protection keys are required by some networks to
enable access to remote memory. Additionally, basic memory registration sup-
port requires the SOS middleware to maintain tables containing the symmet-
ric heap and data segment base addresses of all PEs. When performing an
RMA operation, a local offset calculation is performed to convert the symmetric
address passed to the OpenSHMEM routine into an offset relative to the sym-
metric heap or data segment base. This is then added to the target PE’s base
address before performing the libfabric communication operation.

In contrast, scalable memory registration allows the user to select the protec-
tion key, eliminating the key table overheads. Addressing in the scalable memory
registration model is performed relative to the beginning of the memory segment
exposed at the target PE. In the remote virtual addressing model, the full address
space is exposed and the symmetric address passed to the OpenSHMEM routine
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can be directly used by libfabric. When remote virtual addressing is not avail-
able, the symmetric address is converted into an offset relative to the local base
address and this offset is passed directly to the libfabric communication routine.
Thus, scalable memory registration eliminates both the key and base address
tables.

In this paper, we use the Basic memory registration path due to current
uGNI provider limitations. In the future, we may explore adding the scalable
memory registration feature to the provider in order to expose more optimal
code paths in OpenSHMEM.

3.2 One-Sided Communication Operations

OpenSHMEM one-sided put operations are mapped to the libfabric write API
and different strategies are used depending on the message size. OpenSH-
MEM defines both blocking and nonblocking put operations; blocking opera-
tions return after local completion, whereas nonblocking operations provide no
completion guarantee. For messages below the injection threshold of the fabric,
the fi inject write routine is called; in all other cases, the fi write routine is called.
The inject-write routine provides immediate local completion and the provider
is responsible for any buffering needed to ensure reliable message delivery. For
blocking put operations whose message size is greater than the injection thresh-
old and less than the user-selectable SMA BOUNCE SIZE parameter, the user’s
data is copied to a temporary bounce buffer and the operation provides immedi-
ate local completion. As shown in Sect. 5, we have observed that bounce buffering
can provide significant performance improvements for applications that rely on
blocking put operations; however, this optimization can be disabled when not
needed to reduce the memory footprint of SOS. Finally, larger messages are
issued directly using the fi write operation and are fragmented according to the
maximum transmission unit (MTU) of the fabric.

The OpenSHMEM atomic operations are divided into three categories, non-
fetching, fetching, and comparison atomics. Currently, all OpenSHMEM atomic
operations are blocking. The non-fetching atomics perform a remote update
without returning a result and are implemented using the fi inject atomic and
fi atomic routines using the same strategy as described for blocking put oper-
ations. While all OpenSHMEM atomic routines are scalar and map to inject-
atomics, SOS does implement vector atomics in the transport layer that is only
utilized by the OpenSHMEM collectives API. The fetching atomic and compari-
son atomic operations are implemented using fi fetch atomic and fi compare atomic

operations. However, since these blocking operations return the prior contents
of the destination buffer, they cannot return until the operation has completed
and neither message injection nor bounce buffering is used.

Finally, the OpenSHMEM get operations are implemented directly using the
libfabric fi read routine. The runtime must wait for blocking get operations to
complete before returning. In the nonblocking case, the routine returns immedi-
ately and the application completes the get operation with a subsequent call to
the shmem quiet routine.
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As shown in Fig. 1, SOS supports shared memory through XPMEM and
Linux cross-memory attach (CMA). When enabled, shared memory is used to
improve the performance of put and get operations. Atomic operations are always
performed through the transport layer in order to ensure atomicity.

3.3 Ordering and Remote Completion Operations

All communication operations in libfabric are nonblocking; completion of issued
operations is established using either event counters or completion queues. When
they are created, the programmer selects which events will be captured by a
particular event counter or completion queue. Event counters and completion
queues are then bound to a fabric endpoint. Thus, for a given operation, the
type of completion that will be generated is determined by the fabric endpoint
on which the operation was issued and the type of event that the operation
generates. In SOS we mainly use counters for completion, but a queue is used
for bounce buffering and error handling.

Completion queues provide a full event structure for each completed oper-
ation, with detailed information including a “context” value that was supplied
when the original operation was performed. The context is typically used to
forward a reference to a middleware object (e.g. a request object) from the com-
munication operation to the full event. In SOS, full events are used only when
a put or non-fetching atomic operation utilizes a temporary bounce buffer. In
this case, a pointer to the bounce buffer is included as the context and is used
when processing the remote completion event to return the bounce buffer to a
free pool. The number of operations issued using a bounce buffer is tracked by
a variable within the SOS runtime and is used to wait for pending operations to
complete when performing an OpenSHMEM fence or quiet operation.

Full completion events incur an overhead to allocate space in the event queue
and populate the event with the information from the operation that completed.
In contrast, event counters capture no information regarding specific operations
that have completed. Instead, the counter is simply incremented upon completion
of the operation, resulting in lower overhead than a full event. SOS establishes
two counters for tracking completion of read and write operations separately.
Operations that do not return a result, including puts and non-fetching atomics
are accounted for using the write counter (with the exception of operations
using a bounce buffer; those are tracked separately using a completion queue).
All other operations are accounted for using the read counter. Within the SOS
middleware, two variables are used as counters to track the number of operations
of each kind that have been issued.

Separate read and write counters are used to optimize blocking communication
operations. Blocking put and non-fetching atomic operations that are buffered
using either the inject or bounce buffer method return immediately. Large block-
ing put operations must wait for completion before returning. Similarly, block-
ing fetching operations of any size must wait for completion prior to returning.
By using separate counters for these classes of operations, we allow operations
to overtake each other. This can provide significant benefit in cases where small
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fetching operations are combined with large puts. It is possible to use additional
counters to optimize blocking operations based on the operation type and size (e.g.
to separate fetching and comparison atomics from gets). We plan to investigate
the impact of such refinements during future performance tuning.

The OpenSHMEM quiet operation must wait for remote completion of all
pending blocking and nonblocking operations, whereas the fence operations must
only ensure ordering of remote updates. Currently, SOS waits for completion of
all pending communication in both quiet and fence operations. In the future, we
plan to leverage the separation of read and write counters to optimize these oper-
ations. In this model, the quiet operation waits for completion of both remote
writes and reads, whereas the fence operation waits only for completion of remote
writes.

3.4 Notification API

The OpenSHMEM wait API allows the programmer to wait for an update to a
location in symmetric memory. When shared memory optimizations are not used,
all updates arrive through the network and the wait implementation can block on
a network event rather than polling the target memory location. When supported
by the OFI provider, the SOS OFI transport binds an event counter to one or
more regions of exposed memory that is incremented whenever a remote update
occurs. In this mode, the implementation of the OpenSHMEM wait operation
blocks on a communication event, allowing the provider to optimize resource
utilization.

4 Libfabric for the Aries Network

The libfabric provider, shown as the bottom-most layer in Fig. 1, is responsible
for mapping the libfabric APIs to the underlying system. In this section we give
an overview of the implementation of the libfabric API utilized by SOS. We refer
readers to previous work for further details on the implementation [7,24].

The provider implementation for the Aries interconnect utilizes the Generic
Network Interface (uGNI) library [8], a low-level interface that exposes the capa-
bilities of the Aries NIC. The uGNI provider utilizes the Aries NIC’s fast memory
access (FMA) hardware for small messages, as well as the bulk transfer engine
(BTE) for offloading large message transfers. FMA descriptors are used to initi-
ate remote loads, stores and atomic operations. FMA descriptors are bound to
local Aries hardware-provided completion queues (hCQ) to enable notifications
for the completion of remote memory access.

4.1 Addressing and Memory Registration

The uGNI provider supports both the OFI map and table address vector (AV)
modes. For both modes, the address entry is represented by the uGNI device
address and an identifier for utilizing the hardware protection, in combination
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with information about the endpoint and RDMA credentials. AV map mode uses
a hash table to store address entries, whereas AV table mode uses a growable
vector of address entries.

The uGNI provider supports the OFI basic memory registration (MR) mode,
including a configurable memory registration cache. Memory regions are regis-
tered with uGNI via a call to uGNI MemRegister, which returns a handle that is
encoded in the key for the memory region. The memory registrations are stored
in a red-black tree for fast access in cases where an existing registration satis-
fies the requested memory region. To further reduce the number of registrations
with uGNI, all registrations are rounded up to the nearest page size. Addition-
ally, adjacent memory regions are coalesced into a single, larger entry to further
reduce the number of registrations. The memory registration cache also supports
lazy deregistration when a memory region is closed. Lazy deregistration holds
on to the uGNI memory handle until a configurable limit is reached, after which
memory regions are deregistered via a call to uGNI MemDeregister.

4.2 Issuing and Completing Communication Operations

The OFI RMA operations (fi write and fi read) with data size less than 8 KB
in size are sent using Aries FMA functionality as a control message payload.
Larger transfers are handled using the Aries BTE. The switch-over point can be
adjusted using a GNI provider specific fi open ops method on a fi domain object.

The Aries FMA hardware is also used to provide fast atomic operations.
Currently, the uGNI provider only supports libfabric atomic operations that
are implemented directly by the Aries hardware. This includes 32- and 64-
bit versions of min, max, sum, bitwise OR, bitwise AND, bitwise XOR, read,
write, compare-and-swap and masked compare-and-swap. In addition, the uGNI
provider exposes the Aries AND-and-XOR atomic operation.

The uGNI provider checks for Aries completion events from all active hCQs
upon most calls into the libfabric library as well as from an independent progress
thread, if automatic progress is requested. Callback functions are used to gen-
erate a corresponding libfabric completion event, which is placed on the appro-
priate completion queue (represented by a singly-linked, double-ended list). The
Aries hardware does not directly support completion counters. Completion coun-
ters are implemented similarly to completion queues; the callback simply incre-
ments the appropriate counter value.

5 Evaluation

We compare the performance of SOS using the OFI transport and uGNI provider
with the performance of Cray’s SHMEM implementation for the Aries network.
Experiments were conducted on the NERSC “Cori” system, which is a Cray R©

XC40TM with 1,630 compute nodes. Compute nodes are comprised of two Intel R©

XeonTM “Haswell” processors (E5-2698 v3) with 32 cores total (16 cores/socket)
with hyperthreading disabled, and with 128 GB of memory per node.
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The system was running Cray� Linux Environment (CLE) version 5.2up04
and Slurm� version 15.0.8.11. Libfabric (master@3dddae68) was used for the
experiments. Libfabric was built using gcc version 5.2.0 with optimization
level -O2. No special configuration options were used. Sandia OpenSHMEM
(master@a3662791) was configured to use the uGNI provider, but otherwise no
special optimizations were used. Cray MPT� 7.3.1 was used for the Cray SHMEM
results.

We note that Cray SHMEM is built on top of DMAPP [8], rather than uGNI.
DMAPP� is a communication API optimized to support the small (e.g. 8-byte)
transfers typical of high-performance PGAS compilers. As a consequence of this,
DMAPP relies on a different hardware mechanism in the Aries NIC for man-
aging PCI-e downstream posted write credits (a deadlock avoidance mechanism
(DLA)) than uGNI. In contrast, uGNI is optimized for larger transfers more
typical of message passing applications including MPI and Lustre’s LNET, as
well for allowing efficient sharing of DLA resources and FMA descriptors among
processes. Note the DLA mechanism was not present in older Cray R© XETM sys-
tems, thus making comparison of results presented here with apparently similar
results from Cray R© XETM not particularly meaningful.

We conduct our evaluation using the SOS communication microbenchmark
suite that is included in the SOS distribution, the scalable integer sort (ISX)
benchmark [15], and the HPCC random access benchmark [10]. For communica-
tion microbenchmarks requiring just two nodes, measurements were taken using
nodes connected to the same Aries router.

5.1 Latency Results Using SOS Microbenchmarks

The SOS put latency microbenchmark uses two processes, where one of the
processes performs a loop of shmem putmem() and shmem quiet() operations.
Figure 2a shows results for this test. The figure compares the PUT latency
of Cray SHMEM with SOS with and without bounce buffering. Excluding the
effects of buffering, the latency of SOS is about 150 nsecs more than that attained
using Cray SHMEM. Trace data of the 8-byte put latency runs, in addition to
comparison of comparable tests written directly to DMAPP and uGNI, indi-
cate the major contributions to extra overhead for SOS can be attributed to the
additional overhead within the uGNI library required to manage DLA credits
and support sharing of hardware resources (FMA descriptors) between different
processes.

The SOS buffering between 128 and 2048 bytes results in significantly higher
overhead for SOS put operations compared to Cray SHMEM. As will be shown
below for the streaming benchmark, the bounce buffers can sometimes lead to
improved results for SOS.

The SOS get latency also uses two processes, where one of the processes
performs a loop of shmem getmem() operations. Figure 2b compares the results
obtained using Cray SHMEM and SOS. Results for Cray SHMEM using an
Aries BTE threshold at 8192 bytes are also shown. For small get operations
between 4 and 64 bytes, SOS again shows an additional 150 nsecs compared to
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Fig. 2. Latency measurements for Sandia OpenSHMEM and Cray SHMEM.

Cray SHMEM. This overhead gradually decreases until the point where the
respective implementations switch to using the Aries BTE - 4096 bytes for Cray
SHMEM and 8192 bytes for SOS. Overall, SOS shows comparable performance
with Cray SHMEM in terms of latency, with small overheads attributed to dif-
ferences between DMAPP and uGNI on Aries.

5.2 Bandwidth Results Using SOS Microbenchmarks

The SOS bi-directional write bandwidth microbenchmark is performed on two
processes, where both processes repeatedly perform a stream of shmem putmem()

operations within a fixed window size before performing a shmem quiet() to ensure
remote completion. Figure 3b shows the throughput results between nodes. For
small message sizes, SOS utilizes the libfabric inject feature to accelerate the
small message pathway through the uGNI provider. After reaching the inject
threshold of 64 bytes, SOS switches to bounce buffering until 2 KB in order to
immediately achieve local completion without stalling outgoing transactions. We
find these two features give noticeable improvement, achieving an average of 61%
relative performance improvement compared to Cray SHMEM. At 4 KB the BTE
engine is utilized by both SOS and Cray SHMEM. This transition levels out the
results; SOS keeps pace with Cray SHMEM with a 2% average relative deviation.

The SOS uni-directional read bandwidth microbenchmark is performed on
two processes, where one process repeatedly reads from the remote process
through a shmem getmem() operation. In this case remote completion is implied
upon return. Figure 3a shows that Cray SHMEM and SOS have comparable
results. For get results SOS was tuned to exercise the BTE engine at 2 KB
which enables a temporary performance gain over Cray SHMEM’s default 4 KB
BTE switch. Overall SOS shows competitive performance numbers that are on
average within 5% relative to Cray SHMEM’s performance.
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Fig. 3. Bandwidth measurements for Sandia OpenSHMEM and Cray SHMEM.

5.3 Random Access Benchmark (GUPs)

The Random Access Benchmark (GUPs) is intended to assess the ability of
an interconnect and its associated network software stack to efficiently handle
many small, concurrent load/store accesses to a data table distributed across
multiple nodes in a systems. The modified version of the HPCC RandomAc-
cess benchmark employs various aggregation algorithms, all of which encounter
scalability challenges. Instead, a version of the benchmark was written based on
the serial and OpenMP variants. In this version, each PE executes a series of
shmem longlong g/shmem longlong p operations to load an element from the table,
XOR the element with a locally generated value, then write the updated element
back in to the table. The number of updates per PE scales as the size of the
table. The global table size scales linearly as the number of PEs in the job.

The benchmark was run using a local table size of 32 MB, with each PE execut-
ing 16 million updates. Verification of the update run was accomplished by rerun-
ning the algorithm, but using shmem set lock/shmem clear lock on an array nPES
in size to implement a critical region around the update procedure. A run is con-
sidered successful if 1% or fewer elements are found to be inconsistent. Figure 4
presents the global update rate (giga-updates/sec) when using Cray SHMEM and
SOS. For this experiment, SOS was enhanced to allow for backing the symmetric
heap with large pages. Rather than calling mmap with MAP ANON and a NULL
file descriptor, a file was created on one of the node-local CLE large page file sys-
tems, and subsequently mapped in to the process address space using mmap. For
GUPs style memory access patterns, the Aries I/O MMU works best with large
pages. The Xeon 2 MB native large page size was used to back the SOS symmetric
heap in these tests. Note Cray SHMEM backs the symmetric heap with large pages
by default. For jobs using 32 PEs or fewer, the Aries network is not involved as
all get/put operations are handled via XPMEM cross mappings. Above 32 PEs,
the Aries network is used for a portion of the remote memory updates. As the
job size grows, a greater proportion of the updates target off-node memory and
hence exercise the Aries network. SOS performance compares favorably to the
Cray SHMEM implementation, particularly when using large pages. The combi-
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Fig. 4. Giga-updates per second (GUPs) for the RA benchmark on SOS and Cray
SHMEM.

nation of the use of the libfabric fi inject writedata function in the implementation
of shmem longlong p and the use of large pages for the symmetric heap, helps SOS
to realize a higher update rate than Cray SHMEM at the larger job sizes.

5.4 Scalable Integer Sort Benchmark (ISx)

ISx [15] is a scalable integer sort benchmark using a bucket-sort algorithm. The
core communication pattern is an all-to-all exchange of locally sorted keys. The
all-to-all exchange is implemented using shmem int put to deliver the sorted keys
to the target PE. The offset into the target array (allocated from the symmetric
heap), is determined using a shmem longlong fadd. A final shmem barrier all
call is invoked to ensure all data has been exchanged. The benchmark allows for
both strong and weak scaling. With weak scaling, the number of keys per PE is
fixed. For these experiments, ISx was built both with Cray SHMEM and SOS.
Except for specifying dynamic linking, no special compiler or linker options were
used.
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Figure 5a presents the time spent in the all-to-all exchange in the case of
strong scaling, sorting a total of 227 keys. Except for the 8 PE run, the time spent
in the all-to-all exchange pattern is the same whether using Sandia SHMEM or
Cray SHMEM. Figures 5b shows the time spent in the all-to-all exchange pattern
for the weak scaling case. For weak scaling, the time in the all-to-all operation
is essentially the same, with SOS showing a small performance improvement.

6 Conclusions and Future Work

Sandia OpenSHMEM (SOS) is the first PGAS middleware to demonstrate the
new OpenFabrics Interface communication API on a modern HPC system. Sig-
nificant effort was invested in both SOS and the uGNI provider to broaden
the set of supported performance and portability features, including support for
additional memory registration and addressing modes. Overall we found OFI
to be closely aligned with the requirements of OpenSHMEM, yielding efficient
mappings between the OpenSHMEM middleware and the lower-layer libfabric
interfaces.

We evaluated the performance of our implementation on a Cray R© XC40TM

system and demonstrated comparable latency and scalability to the production
Cray SHMEM library. SOS with OFI achieved comparable or better bandwidth
and random access (GUPs) performance than Cray SHMEM. For small mes-
sages, the OFI inject functionality used by SOS resulted in an improvement
of up to 61% in bi-directional bandwidth. In addition, the SOS bounce buffer-
ing optimization enabled further improvements in the small-to-medium message
regimes. We hope to further improve upon these results with additional perfor-
mance and scalability tuning.

The OpenSHMEM community is actively working to extend the OpenSH-
MEM model with new tools that will allow users to leverage future extreme scale
systems. We hope that the new, open source platform that we have presented
will provide a useful environment for evaluating and developing new extensions
to the OpenSHMEM parallel programming model.
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Abstract. The OpenSHMEM reference implementation was developed
towards the goal of developing an open source and high-performing
OpenSHMEM implementation. To achieve portability and performance
across various networks, the OpenSHMEM reference implementation
uses GASNet and UCCS for network operations. Recently, new network
layers have emerged with the promise of providing high-performance,
scalability, and portability for HPC applications. In this paper, we imple-
ment the OpenSHMEM reference implementation to use the UCX frame-
work for network operations. Then, we evaluate its performance and scal-
ability on Cray XK systems to understand UCX’s suitability for develop-
ing the OpenSHMEM programming model. Further, we develop a bench-
mark called SHOMS for evaluating the OpenSHMEM implementation.
Our experimental results show that OpenSHMEM-UCX outperforms the
vendor supplied OpenSHMEM implementation in most cases on the Cray
XK system by up to 40% with respect to message rate and up to 70%
for the execution of application kernels.
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1 Introduction

OpenSHMEM is a Partitioned Global Address Space (PGAS) programming
library interface. The specification has evolved from version 1.0, which has
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created an open specification of SHMEM, to version 1.3, which provides very
useful functionality for modern architectures. As the specification has evolved,
so has the availability of implementations. Multiple proprietary implementa-
tions have always been available from vendors such as SGI and Cray. Besides
the open source implementation of OpenSHMEM from Oak Ridge National Lab-
oratory (ORNL) and the University of Houston (UH), only recently has there
been the availability of other open source implementations through the efforts
of the Open-MPI community [1], the Portals community [2], the Ohio State
University (OSU) with MVAPICH-X [3], and Mellanox [4]. Though historically
the open source implementations have not been high-performant, they are work-
ing towards providing high-performance and high-scalability [5–7] by leverag-
ing high-performing network layers such as Unified Communication X (UCX),
Universal Common Communication Substrate (UCCS), Libfabrics, as well as
network capability layers such as Portals.

The OpenSHMEM reference implementation is a simple and essential layer
over a PGAS compatible network layer to provide an open source implementa-
tion of OpenSHMEM . The simplicity of the layer has resulted in keeping the
performance overhead low while achieving portability with the aid of network
layers. Previously, it was implemented utilizing GASNet and UCCS to achieve
portability and performance over a wide variety of network such as Cray’s Gem-
ini and Aries, InfiniBand, Ethernet and Shared Memory transports. In this
paper, we port the reference implementation to use UCX, which has shown the
promise of providing high-performance and high-scalability for parallel program-
ming models.

The reason for choosing UCX is the fact that it was developed in a close col-
laboration between the OpenSHMEM community and hardware vendors. UCX
is a framework of network APIs and protocol implementations for implement-
ing parallel programming models such as OpenSHMEM , Message Passing Inter-
face (MPI), and task-based models. It provides two levels of APIs, the low-level
transport API called UC-Transports (UCT) and high-level protocol API called
UC-Protocols (UCP). The UCT layer provides a set of interfaces for transferring
data efficiently over multiple high-performance networks including InfiniBand,
Gemini , Aries, and various types of shared memory. It is designed to provide
low-overhead and portable interfaces over the native network drivers and hard-
ware abstraction layers. The UCP layer provides messaging layer functionality
and protocols such as eager, rendezvous protocols, tag matching, and support for
multi-rail network, which is required to support parallel programming models.
This two-level design suits well for function rich and portability driven models
such as MPI and high-performance driven programming models such as Open-
SHMEM .

In the rest of the paper, we provide details of the design and implementa-
tion of the OpenSHMEM reference implementation using UCX. Particularly, we
focus our implementation on the uGNI conduit, which provides data transport
functionality over Cray’s network interface Gemini and Aries. In Sect. 4, we pro-
vide details of UCX relevant for implementing PGAS programming models; in
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Sect. 6, we provide details of uGNI Transport Layer (TL); in Sect. 8, we provide
an evaluation of the implementation using Titan at ORNL as a testbed.

2 Related Work

Since the 1.0 API specification of OpenSHMEM , there have been numerous
open source implementations of the OpenSHMEM specification up to the 1.3
release [1–4,8]. With respect to these implementations, there has been a pri-
mary motivation of providing the community with OpenSHMEM implemen-
tations including those with both portable and high-performance conduits for
networking operations.

The first open source implementation of the OpenSHMEM specification was
the OpenSHMEM reference implementation completed by both ORNL and the
UH. This implementation utilized the GASNet conduit and provided both per-
formance and portability. Shamis et al. [5] later updated the reference implemen-
tation to support UCCS as a conduit to provide a high-performance conduit for
the OpenSHMEM programming model. Hammond et al. [8] explored the utiliza-
tion of the one-sided operations in MPI-3 as a conduit for OpenSHMEM with
the intent of leveraging MPI implementations to provide high-performance and
portability. The Portals interface was another conduit explored by the imple-
mentation of OpenSHMEM by Sandia National Laboratory [2]. Open-MPI also
provides an implementation of OpenSHMEM bundled with their MPI implemen-
tation [1]. Additionally, the OSU and Mellanox both provide an implementation
of OpenSHMEM in the MVAPICH-X [3] implementation and in HPC-X [4],
respectively. In addition to the open source implementations, there are also many
proprietary implementations of SHMEM including those by SGI, Cray, and HP,
which are specific to the systems deployed by those companies.

This work focuses on implementing the OpenSHMEM reference implemen-
tation to utilize the UCX networking framework. Unlike other conduits for the
reference implementation, UCX is a collaboration between both the OpenSH-
MEM community and hardware vendors allowing for both portability and high
performance.

3 OpenSHMEM Reference Implementation

The OpenSHMEM reference implementation is an open source implementation
of the OpenSHMEM specification. The main components of the implementation
are Atomics, Remote Memory Access (RMA), Collectives, Symmetric Memory,
and Utils components. The central component responsible for all data transfer
is the COMMS layer.

The COMMS layer separates network-agnostic and network-specific code
bases for all of the communication driven operations including puts, gets, and
atomics. Operations that require no communication are implemented outside of
the communication layer. This can be seen in Fig. 1. This separation allows the
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reference implementation to leverage many PGAS friendly network layers. Cur-
rently, the reference implementation can take advantage of GASNet, UCCS, and
UCX.

COMMS

GASNet

OpenSHMEM API

Atomics RMA Collectives Utils
Symmetric
Memory

Core Components

Fig. 1. Various components in the OpenSHMEM reference implementation

The COMMS layer is a thin layer that implements the functionality to bridge
the gap between OpenSHMEM requirements and the functionality provided by
UCX’s UCP. For example, shmem get blocks until the completion of the oper-
ation since the UCX operations are non-blocking. Similarly, other RMA and
Atomic operations map directly to UCP interfaces. In this implementation, we
specifically use the UCP interfaces rather than the UCT interfaces. However,
It should be noted that one could also only leverage the UCT interfaces for
implementing OpenSHMEM .

The initialization of UCX with OpenSHMEM involves several steps. Initially,
the Run Time Environment (RTE) is initialized and used to bring up the ini-
tial state of the individual Processing Element (PE). This is done so each PE
has some base state including an index, or PE number, groups, and heap size.
Anchormen interfaces with UCX through the UCP layer. This includes the ini-
tialization of the UCX library and the creation of a UCP worker thread, which
is a unit UCX uses to make progress in communication requests.

After each PE has a worker, all PEs within the job exchange their data to
obtain each PE’s worker’s address for later communication. After the addresses
are determined, endpoints are created. Finally, the atomics handlers and collec-
tives are initialized and ready for use. After initialization, UCP is interfaced by
OpenSHMEM for the underlying networking capabilities.
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4 UCX Design

UCX is a network API framework focused on providing a portable and high
performance library over the underlying networking components. This is impor-
tant as many current machines are equipped with proprietary interconnects each
with their own interfaces. The differences between interfaces is costly as a signif-
icant amount time must be used to port a piece of software from one interface to
another. This includes the transitioning of middleware used to implement various
programming models such as MPI and PGAS. By providing the API framework,
UCX exposes the necessary software constructs for many thread driven high
performance communications, communication within hierarchical heterogeneous
memories, and hybrid programming models.

UCX is composed of three major API frameworks, which are independent and
can be used individually. These frameworks include UC-Services (UCS), UCT,
and UCP and can be seen in Fig. 2. In this paper, we will detail both UCT and
UCP as these frameworks are relevant to this work. Further information on UCS
can be found in [9].

UCT is an abstraction of the underlying hardware providing a low-level
API allowing users to implement higher-level protocols on top of the API. The
API provided to the user is driven by the drivers provided by the interconnect
manufacturers. Additionally, the UCT API provides the necessary functionality
for communication context management, device specific memory allocation and
management, and interfaces for various types of messages.

UCP provides an abstraction of higher-level protocols that may be used by
common programming models such as MPI or PGAS. This is possible by lever-
aging the transports provided by UCT and selecting the correct transport for
the desired communication. Additionally, UCP will initialize the library, allow
for message fragmentation, and provide multi-rail communication. The API also
provides interfaces for various operations including initialization, RMA, Atomic
Memory Operations (AMO), active messages, and collectives.

Fig. 2. The UCX architecture [9]
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5 UCX Core Components

In order to provide the scalability needs present in modern and future extreme-
scale systems, it is imperative the networking library presented by UCX provides
the basic mechanisms to support these needs. This is accomplished through the
use of workers, interfaces, and arbiters. The use of these mechanisms allow for
an ease of scalability within the networking paths of execution.

5.1 Workers

Applications are abstracted on top of UCX through the use of application con-
texts. These contexts allow for a conceptual separation between multiple jobs
as well as provide an isolation of communication resources such that there is no
interference between jobs. For application contexts, a significant amount of the
abstraction of applications is provided by workers.

Workers are an abstraction of multiple components including the processes or
threads executing within a parallel job, the communication resources necessary to
complete a parallel job, and the progress made by the communication resources
to complete the requests of the application. This abstraction is useful as the
architectures of current and future systems suggest a shift towards workloads
that consist primarily of threads, which may or may not be communicating
threads across node boundaries.

Workers exist across multiple layers of UCX having a presence in both UCT
and UCP. In both layers, the conceptual duties are similar with the primary
functionality within UCT consisting of ensuring the progress of communica-
tion, while in UCP the functionality includes the abstraction of communication
resources. With the worker’s responsibility in UCP focused on the abstraction
of communication resources, this implies that workers are able to communicate
with other each other.

Communication between workers is possible after the workers become
addressable. To become addressable, the worker must be coupled with an
endpoint, which provides the addressing mechanisms and attributes. After-
wards, communication may commence between processes and threads locally
and remotely. To ensure the ability to perform both synchronous and asynchro-
nous communication in an independent manner with the ability to complete
communications efficiently, a progress engine is used, which keeps track of out-
standing requests and completes them.

5.2 Interfaces

While workers abstract computational elements such as processes and threads
as well as the communication resources, the elements abstracted have certain
capabilities and components that may be exposed to the applications making use
of UCX. This is accomplished through the use of interfaces, which abstract the
physical device while exposing features of the device for usage by the application.
Examples of the exposed elements include short and buffered copy capabilities,
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send and receive queues, keys for use with infiniband, device overhead, latency,
and bandwidth as well as other features. By exposing a set of features to the user
while abstracting the individual characteristics of the device, the user can make
informed decisions about the communication between PEs without concern of
future changes should the underlying network device change.

5.3 Arbiter

In order to maintain scalability and perform a fair distribution of requests, an
arbiter is used within the interface to a device. The arbiter mediates the requests
attempting to be fair with respect to request dispatches. This allows for requests
to be dispatched when prior requests have yet to complete.

6 Design and Implementation of uGNI TL

The uGNI TL provides interfaces and implementations to transfer data over
Cray’s Gemini and Aries networks. To support PGAS and MPI programming
models, it provides interfaces for Remote Direct Memory Access (RDMA) and
Send/Recv type message transfers as well as atomic operations. The OpenSH-
MEM layer along with the UCP layer chooses the appropriate interfaces and
implements the missing semantics to satisfy the programming model semantic
requirements. The rest of the section describes the initialization of the uGNI TL
and various protocols for data transfers and atomic operations.

6.1 Initialization and Connection Setup

The UCP layer in co-ordination with the UCT layer initialize the uGNI proto-
cols. The UCP layer provides two different wire-up mechanisms to serve different
network semantics. In our experience, these two mechanisms are enough to serve
various protocols of InfiniBand , Gemini , Aries, and Shared Memory.

– For networks that requires only the interface information for wire-up such
as uGNI ’s Fast Memory Access (FMA) and Block Transfer Engine (BTE)
interfaces and InfiniBand ’s datagram protocols, the UCP layer uses the out-
of-band mechanisms to exchange the interface information. In our experiments
for Cray systems, the uGNI TL uses Cray’s Process Manager Interface (PMI)
to exchange the interface information.

– For networks that require endpoint information in addition to interface infor-
mation, it provides mechanisms to exchange the endpoint information using
other protocols on the network. This is achieved in two stages. In the first
stage, it sets up a datagram connection between different PEs or MPI Ranks
using uGNI ’s endpoint datagrams for Cray systems. Then it uses this con-
nection for exchanging endpoint connection information. Though it is not
scalable, this approach is required for using some protocols such as uGNI ’s
Short message (SMSG) interfaces.
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To alleviate some of the scalability impact of this approach, we exchange
the endpoint information only on-demand. For the OpenSHMEM reference
implementation, we do not exercise this code path. This is because the Open-
SHMEM operations are one-sided and can efficiently be mapped onto the
FMA and BTE interfaces and do not require use of the SMSG protocol. For a
MPI implementation, only connections that actively exchange data are wired
up using this approach.

6.2 Short Data Transfers

The functions uct ugni ep put short and uct ugni ep put bcopy are the interfaces
for small and medium data transfers. They use uGNI ’s FMA interface, which is
optimized for RDMA small data transfers as it copies the data from the source
buffer to library buffers. The function uct ugni ep put short returns after posting
the FMA operation, and completion is learnt as required by the upper layer. For
example, if this interface is used for implementing the shmem put operation
of the OpenSHMEM programming model, the OpenSHMEM layer will wait for
global completion event by progressing the worker and flushing the endpoint. On
the other hand, if this interface is used for shmem put nbi, the OpenSHMEM
layer will return as soon as the operation is posted and waits for completion
during the shmem quiet or shmem barrier calls. Thus, the interfaces along with
the abstraction of endpoints, workers, and interfaces enable implementing various
semantics.

6.3 Large Data Transfers

The function uct ugni ep put zcopy implements the interface for large data
transfers. It uses uGNI ’s BTE interface, GNI PostRdma(), with post type
GNI POST RDMA PUT or GNI POST RDMA GET. The interface is opti-
mized for RDMA large data transfers as it copies data from the source buffers
to the network using DMA engines without CPU intervention. The interface has
semantics similar to the short data transfer interfaces.

The mapping onto uGNI ’s interface is straightforward when the data is 4-
byte aligned and the data length is a multiple of 4-bytes. However, because
of BTE’s Get interface’s constraints on the message length and alignment, a
protocol was developed for unaligned messages. For example, when the data
length is not a multiple of 4-bytes, we pad the data and transfer the data using
the appropriate protocols as shown in Fig. 3.

6.4 Active Messages

The interface uct ugni smsg ep am short provides an implementation of the active
message semantics, particularly useful to implement MPI Send and MPI Recv
interfaces. The implementation leverages uGNI ’s GNI SmsgSendWTag() for data
transfer. After the posting of the message using this interface, it maintains the list
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Fig. 3. The various steps in transferring the unaligned data using BTE Get interfaces

of posted messages and eventually frees the descriptors and consumes the comple-
tions. It uses this interface only for small data transfers because of the performance
advantages and resources consumed by the SMSG interfaces.

6.5 Atomic Operations

The uGNI TL provides complete support for atomics in the OpenSHMEM pro-
gramming model including 32-bit and 64-bit atomic operations. Aside from swap,
the 64-bit atomic operations are supported using the native atomic operation
interfaces provided by uGNI . Additionally, 32-bit atomic operations and 64-bit
swap operations are emulated using the cswap operation.

A swap operation can be emulated using fetch and cswap operations. The
swap operation is emulated in two steps, which are similar to the implementation
in UCCS [5]. First, the original value in the remote address is fetched. Then,
the cswap operation is used to swap in the new value using the fetched value
as the condition operand. If the cswap operation fails because the value in the
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remote address changed, then the emulation operation loops to fetch the new
value and attempt the cswap operation again. This can cause higher latencies
than a native swap operation but will result in the correct behavior. All of the
32-bit operations can be similarly emulated. In all operations, the remote value
is fetched, cast into a 32-bit integer, operated on, then replaced with cswap.

7 Experiments

This work focuses on the development of a reference implementation of OpenSH-
MEM on top of the UCX networking framework. This involves a considerable
amount of work at the network level in order to properly design and implement
such a work. Thus, the evaluation of this work will focus on measuring the nec-
essary communication paths encountered by an OpenSHMEM application. The
experimental evaluation includes the execution of multiple micro-benchmarks
including a synthetic ping-pong benchmark, the OpenSHMEM Put message
rate benchmark from the Ohio State University (OSU) benchmark suite [10],
the SHOMS benchmark, and the HPCS Scalable Synthetic Compact Applica-
tions (SSCA) 1 benchmark from [11]. In order to validate the work, the results of
these experiments will be compared against the Cray SHMEM implementation,
which is a proprietary implementation specific to the underlying network.

The ping-pong benchmark allows us to measure the latency overhead of the
communication between PEs. This is accomplished by having a PE sending a
token to another PE, which will then return the token. With respect to Open-
SHMEM , this is done by putting data from an originator to a recipient and then
the recipient returning the data.

The OSU benchmark suite allows us to determine the performance of the
networking layer as an increasing amount of PEs are added to the application.
The Put benchmark measures the message rate of the Put operation between
pairs of PEs. Thus, the message rate from a particular node can be measured
by increasing the amount of PEs on two nodes. We do this in order to stress
the networking layer on a particular node obtaining a reasonable performance
measurement.

The SHOMS benchmark, as described in Sect. 8, performs a benchmark on
the functionality described in the OpenSHMEM specifications. Making use of
this test allows us to obtain a complete view of UCX’s performance with respect
to OpenSHMEM . The primary factors we are concerned with are Put and Get
performance in terms of latency as well as bandwidth.

The HPCS SSCA 1 benchmark makes use of the Smith-Waterman algo-
rithm, which determines the similarity between two large sequences. For the
HPCS SSCA 1 benchmark, the sequences being compared are DNA/RNA pro-
tein sequences, which is a common use case in Bioinformatics. This allows us to
observe the execution of a real world application. The implementation used for
this experiment is the same as found in [11].

The experimental setup included an allocation on the Titan machine at
ORNL. Titan contains 18,688 physical compute nodes each composed of 16
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compute cores and 32 GB of RAM, which is a total of 299,008 cores and 598 TB
of memory. Each node is connected via a Gemini interconnect.

8 Evaluation

The validation of this work was completed by making use of multiple
benchmarks. The synthetic ping-pong benchmark, OSU, and SHOMS micro-
benchmarks were used to evaluate the performance of basic OpenSHMEM rou-
tines. Then we used the OpenSHMEM version of the HPCS SSCA 1 benchmark
to evaluate the overall quality of the implementation in the context of a real-life
computational kernel.

The results of these benchmarks will be detailed and analyzed in this section.

8.1 Short Message Latency

To measure the short message latency, we implemented a simple ping-pong
benchmark. Each execution of the benchmark was completed with 1 PE across
two nodes. A Put operation of varying size is done between each PE, where the
remote PE is waiting for the message. When the message is received, the receiver
will write a message back to the originating PE. The results of the experiment
can be seen in Fig. 4.
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Fig. 4. Ping pong results. Lower is better.

The performance of Cray SHMEM is a slightly better than the OpenSHMEM-
UCX implementation. The round-trip latency of OpenSHMEM-UCX and Cray
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SHMEM is 1.84µs and 1.51µs respectively. We believe the performance differ-
ence is due to the difference in the completion semantics of both implementa-
tions. The advantages of our approach can be seen in the message rate.

8.2 Message Rate

We use the micro benchmark suite from OSU [10] for measuring the message
rate. Each execution of the benchmark was completed on two nodes with an
increasing amount of PEs being placed on each node beginning with 1 PE per
node and ending with 16 PEs per node. Each PE was paired with another PE on
the neighboring node. The message rate was measured with the use of repeated
Put operations over time. The results of the experiment can be seen in Fig. 5.
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Fig. 5. The OSU Put message rate micro-benchmark results. Higher is better.

The results showed a considerable difference between OpenSHMEM-UCX
and Cray’s implementation with an increasing amount of PEs per node. Both
implementations appear to scale reasonably well, however, the UCX implemen-
tation consistently maintains a higher performance with respect to messages
being sent per second. As the number of PEs per node increases from one to 16,
the difference between both approaches is between roughly 59% and 24% with
respect to message rate. Due to the proprietary nature of Cray OpenSHMEM
implementation, it is challenging to identify the exact reason for such substantial
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performance differences. Nevertheless, it is worth pointing out that one of the
core differences between the two implementations is the underlying communica-
tion driver. Cray’s OpenSHMEM implementation is based on the DMAPP driver
while UCX leverages a more generic uGNI driver. In addition, the UCX design
was focused on the optimization of the communication path for high-injection
rates, which is one of the core requirements emerging from OpenSHMEM appli-
cations (Fig. 6).

1000

10000

100000

1× 106

1× 107

4B 128B 4KB 128KB

(l
o
g
)
m
ic
ro

S
ec
o
n
d
s

UCX put
Cray put
UCX get
Cray get

(a) Latency evaluation, lower is better.

1

10

100

1000

10000

4B 128B 4KB 128KB

(l
o
g
)
B
y
te
s/
se
co
n
d
s

UCX put
Cray put
UCX get
Cray get

(b) Bandwidth evaluation, higher is better.

Fig. 6. The SHOMS benchmark results with 4096 PEs.

8.3 The SHOMS Benchmark

SHOMS is a microbenchmark for evaluating the performance of an OpenSH-
MEM implementation. The design goal was to have a simple benchmark capable
of testing the performance of all of the functions of the latest OpenSHMEM
specification. It is designed to iterate over each function with multiple mes-
sages lengths. It will produce the minimum, maximum, and average overhead
for issuing a message with each function. It will also calculate the bandwidth for
functions where this is appropriate.

SHOMS is also designed to be highly modular and configurable. Extending
SHOMS is simplistic and allows the addition of new functions with minimal
effort. This reduces the effort for testing new experimental features.

The SHOMS benchmark showed interesting results when compared to the
ping-pong benchmark. In the ping-pong benchmark, a chunk of data at an
increasing size was put from a single sender node to a receiver and then the
receiver sent the data back. In SHOMS, for this experiment there is one sender
node and 4095 receivers. Each receiver gets a certain number of bytes, from
4 bytes to 1 MB. The sender is simply performing a sequence of multiple Open-
SHMEM Put operations to each node and a quiet operation on the receiver
without a reply. Thus, there are differences in the results.

The Put latency and Get latency for UCX when compared to Cray’s imple-
mentation showed a 76% and 33% improvement in performance. However, Cray
showed higher bandwidth than UCX with UCX performing within 17% and 6%
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of Cray for Put and Get bandwidth respectively. This evaluation highlights the
differences of underlying implementations.

8.4 Evaluation Using HPCS SSCA 1

HPCS SSCA1 is an implementation of Smith-Waterman local sequence align-
ment algorithm [12]. The communication characteristics of the benchmark
stresses the important characteristics of many OpenSHMEM applications. The
crux of the communication in the benchmark is within two loops - an outer and
inner loop. The inner loop in each iteration issues many Get operations and few
Put operations. Both the Get and Put operations are used to transfer small data.
The algorithm requires only the Get operations complete in each iteration, and
Put operations do not block the progress of the inner loop. It needs to be com-
pleted by the start of next outer loop. As a consequence of this characteristic,
the benchmark is sensitive to small message latency and message rate.

For this benchmark, the application was run on a varying amount of PEs,
which were spread across multiple nodes with a range from 4 to 256 nodes
with eight PEs per node. In this experiment, the time taken to complete the
experiment was measured, where lower times are better. The results of this
experiment can be seen in Fig. 7. The benchmark was also executed at a larger
scale with 16K nodes. The results of the 16K nodes are in Fig. 8.

Smith-Waterman runtime

100

1000

8402420121565223

(l
o
g
)
S
ec
o
n
d
s

Number of PEs

UCX
Cray

Fig. 7. The time to completion of the Smith-Waterman algorithm from the HPCS
SSCA 1 benchmark. Lower times are better.
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Fig. 8. The Smith-Waterman algorithm from the HPCS SSCA 1 benchmark with
16,448 PEs. Lower times are better.

The results of the benchmark show a significant increase in performance when
UCX is used rather than the Cray implementation. These differences range from
roughly 20% with 2048 PEs to 43% with 1024 PEs. Lower amounts of PEs
result in less than a 10% difference between UCX and the Cray implementation.
Additionally, the scaling of both UCX and Cray are similar for PE counts lower
than 512, with each increasing allocation reducing the time taken to completion
by nearly half. At 1024 and 2048 PEs, the reduction in time to completion lessens
and becomes marginal at those scales for both UCX and Cray. At 16K nodes the
differences become even more dramatic. With a 70% difference in performance.

8.5 Analysis

The above evaluation highlights some of the core differences between the
two implementations. The OpenSHMEM implementation using UCX leverages
Cray’s uGNI driver, while the OpenSHMEM implementation by Cray is based
on the DMAPP driver. In addition, the UCX implementation was driven by the
optimization of the communication path for Put and Get operations. Specif-
ically, the UCX uGNI transport leverages FMA communication semantics for
short messages. This enables in-place completion of Put operations as those are
buffered and transferred by the underlying uGNI layer. As a result, the UCX
injection rate for Put operations as well as the latency of the Get operation
is substantially better than Cray SHMEM. This leads to the acceleration of
HPCS SSCA1 benchmark, which leverages small Put and Get operations for
data exchanges.
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9 Conclusion

To understand the suitability of UCX as a communication layer for imple-
menting OpenSHMEM, in this paper, we provide a prototype implementation,
OpenSHMEM-UCX, and evaluate its performance characteristics on a Cray XK
system. Towards this end, we implement a uGNI TL that provides protocols
for RMA operations, active messages, and atomic operations. Then, we port
the OpenSHMEM reference implementation to use UCX, which involves imple-
menting OpenSHMEM interfaces using UCP interfaces. Our experimental results
demonstrate the benefits of using UCX as a communication layer for OpenSH-
MEM. The prototype OpenSHMEM-UCX outperformed the matured vendor
provided OpenSHMEM implementation, particularly it demonstrated a higher
message rate and better application performance. However, we also identified
some performance bottlenecks in OpenSHMEM-UCX leading to slightly worse
bandwidth. This we expect can be improved by introducing a caching of the
memory registrations that is used to optimize large message transfers.
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Abstract. Memcached is a popular key-value memory store for big
data applications. Its performance is directly related to the underly-
ing run-time systems including the communication protocols. OpenSH-
MEM is a strong run-time system that supports data access to both local
and remote memory through a simple shared-memory addressing model.
In view of the communication compatibilities between Memcached and
OpenSHMEM, we propose to integrate the programmability and porta-
bility of OpenSHMEM for supporting Memcached on a wide variety of
HPC systems. In this paper, we present the design and implementa-
tion of SHMemCache, an OpenSHMEM-based communication conduit
for Memcached, which can expand the deployment scope of Memcached
to various leadership facilities with OpenSHMEM run-time.
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1 Introduction

One grand challenge nowadays is a deluge of digital data, so called Big Data.
Many organizations are deploying different MapReduce implementations such
as Hadoop [1], Spark [26], and Memcached [3] to meet their needs of analyzing
enormous datasets. Among the aforementioned software systems that process
and analyze the explosion of big data, Memcached particularly plays a critical
role as a key-value memory store for distributed user applications. Its perfor-
mance and scalability is directly related to the underlying run-time systems
including the communication protocols and the storage stack. Global Address
Space (GAS) or Partitioned Global Address Space (PGAS) models have been
very popular for large-scale computing because of their capabilities of supporting
data access to both local and remote memory through a simple shared-memory
addressing model. OpenSHMEM has evolved into a strong run-time system that
supports PGAS semantics.

In the meantime, the capability of High Performance Computing (HPC) sys-
tems is growing rapidly. While the IT industry is embracing this modern rush for
gold from data, HPC system providers need to evolve their systems to meet the
c© Springer International Publishing AG 2016
M. Gorentla Venkata et al. (Eds.): OpenSHMEM 2016, LNCS 10007, pp. 131–145, 2016.
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demands of data analytics applications while continuing to support existing HPC
applications and customers.This is particularly important for the users and admin-
istrators at the leadership computing facilitieswhohave been relying on traditional
HPC (High-Performance Computing) systems for their scientific applications.

In this project, we have examined the compatibilities of communication inter-
faces between Memcached and OpenSHMEM. Accordingly, we propose to inte-
grate the programmability and portability of OpenSHMEM for supporting Mem-
cached on a wide variety of HPC systems. Such integration is particularly attrac-
tive because of the common use of memory-style addressing model in OpenSH-
MEM and Memcached. It can lend a great portability for Memcached to be
deployed on various leadership facilities with OpenSHMEM run-time. As an ini-
tial attempt to demonstrate the feasibility, we have designed an OpenSHMEM-
based communication conduit for Memcached, which we refer to as SHMem-
Cache. Through an extensive code examination and architecture analysis in col-
laboration with researchers from Oak Ridge National Lab, we have implemented
an prototype of SHMemCache and evaluated its performance using a variety of
benchmarks.

The paper is organized as follows. First we introduce the background of this
research in Sect. 2 and the design of SHMemCache in Sect. 3. Next we elaborate
the implementation details of SHMemCache in Sect. 4. The performance evalua-
tion of SHMemCache is provided in Sect. 5. Finally, we provide a review of other
related works in Sect. 6 and conclude our paper in Sect. 7.

2 Background

2.1 Memcached

Memcached is a popular open-source, distributed caching system. It has been
designed to address the web server’s caching demand. In the Memcached archi-
tecture, there are two key components: a server that stores key/value pairs and a
client that can query and populate the key/value pairs. The clients can interact
with multiple Memcached servers to perform a SET operation, i.e. storing the key
value tuples or GET operation, i.e. retrieving the value associated with the key.
Memcached uses a two stage hashing procedure for unbiased data disposition.
In the first step, it hashes the value of the key to decide on which server to store
the tuple. In the second step, the key is further hashed to the server’s local hash
table which stores the address of the key value pair. Memcached uses TCP/IP
to send and receive the data. LibMemcached, on the other hand, is a powerful
Memcached client library that can support both synchronous and asynchronous
transport, tunable hashing and many other features. It includes memslap, a
widely-used Memcached benchmark that can generate key/value pairs, evaluate
SET/GET performance and provide configurable benchmark settings.

2.2 OpenSHMEM

Partitioned Global Address Space (PGAS) models provide an abstraction of
global shared memory. In this model, each Processing Element (PE) has a local
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memory space and a shared memory space. This model facilitates the program-
ming of applications that have irregular communication patterns. OpenSHMEM
is a standardized library that realizes the PGAS model. Each PE has sym-
metric memory and local memory. The symmetric memory contains symmetric
variables, which exist with the same name, type and relative address across all
PEs. OpenSHMEM library routines use one-sided communication paradigm for
transferring data from one PE to the symmetric memory of other PE. OpenSH-
MEM’s put operation returns as soon as the data has been copied out from the
local memory of the sending PE. The data delivery to the symmetric memory of
receiving PE is ensured by point to point communication operations or collective
synchronization routines.

3 SHMemCache: Enabling Memcached on OpenSHMEM

This section introduces the design of SHMemCache. We will describe the overall
structure, key components, and our design choices for SHMemCache.

3.1 Overview of SHMemCache Design

First of all, SHMemCache has a communication backbone that utilizes the
communication and programming routines of OpenSHMEM. The communica-
tion backbone consists of many OpenSHMEM delegators. Each OpenSHMEM
processing element (PE) constitute as a delegator and it resides on one of the
participating nodes running SHMemCache. Each of those delegators acts like a
proxy for network communication, running alongside with one or more SHMem-
Cache server and client. It is dedicated to handle all the communication between
SHMemCache servers and clients. The delegators can use one-sided point-to-
point communication primitives, e.g., shmem putmem() in the OpenSHMEM
library to communicate with each other. Note that, we do not use the OpenSH-
MEM primitives to directly operate the key/value pairs in Memcached because
that requires a complete re-design of cache management, transaction protocols,
etc., which actually deserves another paper. However, we will show that the
design of SHMemCache can achieve optimal performance for Memcached opera-
tions even with the delegators dedicated for communication. In addition, based
on the existing design of Memcached server and client, we have proposed and
implemented the design of our SHMemCache server and client. SHMemCache
client uses transaction-like memory operations instead of setting up socket con-
nections between the server and client. Since the OpenSHMEM delegators have
initialized the communication channels between all participating hosts, the costly
connection setup is completely avoided in SHMemCache client and server. The
SHMemCache server uses a master-slave architecture that takes the incoming
Memcached operations and process them in a multi-threaded fashion.

The aforementioned structure of SHMemCache is depicted in Fig. 1. The right
hand side of the figure shows four OpenSHMEM PEs running on four different
computer nodes. In addition, two servers and four clients are also collocated on
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Fig. 1. Overview of structure. It shows an example that consist of 4 nodes, each of
which runs with an OpenSHMEM PE and some SHMemCache server/client.

those nodes. The server or client can communicate with each other through the
delegators that are present on the same node. The delegators can communicate
with each other in the OpenSHMEM environment, which forms the communica-
tion backbone of SHMemCache. The left hand side of the figure shows the data
structure used on Node #1. There are two different types of memory regions
being used for message passing: shared memory and symmetric memory. For
each server or client, there is a shared memory region that is shared between
itself and the delegator. This shared memory region consists of two segments: a
seg in that is responsible for receiving messages from server/client and another
seg out partition that is responsible for receiving messages from the delegator. In
addition, every delegator has a symmetric memory region which is also divided
into multiple pools. This symmetric memory region is only used for receiving
data from other PEs. Hence, if there are N PEs in a SHMemCache system, the
symmetric memory region on each node will have N pools, each of which receiv-
ing message from a specific PE. Such design ensures that, for both symmetric
and shared memory communications there are two dedicated memory buffers for
any pair of PE-to-PE or PE-to-server/client. Thus, no complex write-write race
control is required while the memory use is efficient.

Figure 2 demonstrates the operation process flow in SHMemCache. As the
communication backbone of SHMemCache, the delegators need to be initialized
before any server or client comes in. Thus, it needs to be implemented as a
long-running daemon and its resource needs to be recycled properly. Symmetric
memory is initialized during initialization of the delegators. Then, SHMemCache
server or client can be launched without strict ordering. The collocated client
and server will synchronize with each other before they start processing the
operations. After being launched, server or client will make inquiry about the
shared memory allocation via pipe. The delegator will assign the identifier of
available shared memory region and both sides will then initialize the shared
memory region. After its initialization, the client generates an operation item
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Fig. 2. The flow of a Memcached get operation between a client and a server. The
boxes show basic steps during the process. Arrows show the message passing. The blue
barriers show the means of communication. (Color figure online)

(i.e., op item), which is the name we use to denote an operation instance in
SHMemCache, e.g., SET or GET. The request op item that the client generates
will be transmitted through the delegators and processed by the server. The
response op item will be transferred to the client through those same delegators
following the same procedure.

3.2 OpenSHMEM Delegator

The OpenSHMEM delegator is the central communication component of
SHMemCache. As mentioned previously, it is solely responsible for the network
communication, ensuring the networking to be transparent to the server and the
client. Moreover, it will orchestrate the transferring of op items between the
server and the client, which requires careful consideration for data synchroniza-
tion, since we are using a global shared memory pool for the passing of op items.
We also have a Symmetric Ring Buffer that can accommodate multiple concur-
rent op item operations for their data transfers. Last but not least, we divided
the processing of operations in the delegator into several stages and formulate
a pipeline for overlapping of processing in different stages. In the rest of the
section, we will first introduce the op item, then we will describe the aforemen-
tioned techniques in detail.

op item. Each op item represents an instance of the SHMemCache operation.
It illustrates the memory-like semantics for communication in SHMemCache,
which differs sharply from the connected-oriented communication in existing
Memcached. An op item is created by the client using a certain size of contigu-
ous memory space. It consists of properly aligned different fields which contains
all the needed information about the operation, e.g., command type, server name,
key/value lengths and values. By using the same data structure, the server, client
and delegator can seamlessly exchange and utilize op items across the SHMem-
Cache framework. This eliminates the need of complex message concatenation



136 H. Fu et al.

or separation which is required by conventional string or binary message pass-
ing. However, one negative factor of a pre-defined op item structure is that it
has a maximum capacity for key/value space. In SHMemCache, we solve this
issue by dispatching multiple op items for oversized messages. The identifier and
key/value length fields are used to indicate if the op item is for a whole or a part
of a message. The oversized messages will be reconstructed when all its member
op items are received.

Transparent Networking for Server/Client. In SHMemCache, clients and
servers are relieved of managing the network communication. Although still need
to indicate the destination node of an op item, they do not participate in the
actual network transferring. They only need to place an op item to the cor-
responding shared memory segment that is shared between the delegator and
itself. On the other hand, when receiving an op item, it only needs to fetch from
another shared memory segment when the item becomes available. Thus, the
delegator is responsible to translate the destination node’s host name to a PE
id, which can be used for OpenSHMEM communication primitives. The dele-
gator does so by referring to a mapping table that maps all participating host
names to the corresponding PE ids. The table is created by an OpenSHMEM
routine shmem broadcast(), which broadcasts a PE’s host name and PE id to
every other PEs.

Enforcing the transparent networking for the server and client not only
reduces the amount of work imposed on the server and client, it also greatly
increases the concurrency of the SHMemCache execution. For connection-based
operation, the client needs to maintain a connection with the server for every
operation, which is often handled by a separate thread. However, in SHMem-
Cache, servers and clients can both send out or receive in many requests via mem-
ory operations with only one single thread. Although this certainly increases the
amount of work imposed on the delegators, with the OpenSHMEM one-sided
communication capabilities, we can conveniently pipeline the communications
between delegators for optimal network performance. To this end, we have also
designed a Symmetric Ring Buffer for the communication between delegators,
which will be discussed later.

Shared Memory Pool. Between the delegator and server/client, all the
op items pass through shared memory. Since only one delegator is available on
every node but multiple clients or even servers can be launched on the same node,
we need to gracefully handle the concurrency of read/write of many op items
from different servers and clients. In SHMemCache, we have a shared mem-
ory pool that contains multiple shared memory regions of uniform size. When
a server/client is launched, it will communicate with the delegator through a
reserved pipe for any available regions that it can use. The identifier of the
memory region is then passed to the server/client by the delegator. The initial-
ization of the shared memory pool happens at the startup phase of the delegator
so it would not affect the performance of the client. The only cost it incurs during
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the execution of an op item is the searching and assigning of available region,
both of which require negligible time. The delegator will recycle the region when
the client exits.

Therefore, each server/client can use a dedicated shared memory region with-
out worrying about race condition with other server/client. However, we still
need to take care of data synchronization for one single server/client. For exam-
ple, a client can send out many request op items in a short amount of time and
can also receive multiple response op items at the same time. Thus, to better
ensure the synchronization of sending and receiving, we divide each shared mem-
ory region into two segments, each handling either reading from the delegator
or writing to the delegator, namely seg out and seg in based on the direction
of data movement in the SHMemCache structure (Fig. 1). Then, we use a flag
in the segment to indicate if it is empty, ready, or been-fetched. Additionally,
since we use two threads in the delegator for either reading from client/server
or writing to them, two dedicated segments can provide better overlapping of
processing in the two threads.

Symmetric Ring Buffer. The OpenSHMEM one-sided communication can
greatly benefit the concurrency of execution if designed properly. In SHMem-
Cache, we use a symmetric ring buffer to accommodate transferring of multiple
concurrent op items. The structure of the ring buffer is illustrated in Fig. 3. A
ring buffer consists of a number of symmetric memory chunks. Each chunk can
be used to send an op item. Every delegator owns a number of symmetric ring
buffers that equals to the number of PEs in the system. The ith buffer will be
receiving data from PE i. For example, PE 1 will be sending data to Pool[1] of
all other nodes. In addition, Pool[1] on PE 1 is not wasted but can be used for
broadcasting. The delegator also keeps the head and tail chunk numbers of its
corresponding receiving ring buffer of every other delegator. Moreover, to satu-
rate the sending latency, the delegator collects a group of op items of a window
size and sends them all at once. When a client-side delegator wants to send a
group of op items, it claims the equal amount of chunks starting from the head
chunk in the ring buffer of the server-side delegator. The server-side delegator, on
the other hand, keeps fetching from the tail chunk in its ring buffer and after that

Fig. 3. Symmetric ring buffer.
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op item has been processed in the server, it sends the response op item to its
corresponding receiving buffer on the client-side delegator. Once the client-side
delegator gets the response, it will move the tail forward. Therefore, in SHMem-
Cache, each pair of delegators has two dedicated buffers for communication, each
handling the communication from one direction between the two delegators. By
doing so, we only need to synchronize the read-write race between the two dele-
gators, i.e., reading incorrect item while it is being written. We do not have to
worry about more complex write-write race between two or more delegators, i.e.,
updating the same item at the same time. In fact, the same idea is applied to
the shared memory region as well.

Operation Stages and Pipelined Processing. One of the key challenges
in ensuring high parallelism of data transfers based on OpenSHMEM put/get
memory semantics is the operation pipelining, i.e. dividing the processing of an
operation into stages and formulating a pipeline for the stages. Based on the
processing flow of an operation shown in Fig. 2, we divide an operation into a
number of different stages as shown in Fig. 4: request from the client, notify to
the delegator, forward by the delegator, receive by another delegator, transfer
to the server, listen of the request in the server and process of the request in
the server. Note that the processing stages for a server response to a client are
arranged in a similar manner but in reverse direction. Hence, not all stages are
shown in the figure. Each stage is handled by one or more threads so they can
be well pipelined with each other.

For every client or server that is launched on the same node with a delegator,
there are two threads being spawned in the delegator. One request thread is
responsible for getting and forwarding the request op item and another response
thread is responsible for getting and forwarding the response op item. Each
thread will copy the op items in only one direction. For example, a request
thread for a client only copies the op item from the client to the symmetric ring
buffer, but a request thread for a server only copies the op item from the ring
buffer to the server. After the completeness of the copying, the thread will start
fetching the next item when it becomes available.

Fig. 4. The pipelining of operation stages.
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3.3 Server and Client

Compared to the delegator, the SHMemCache server and client are developed
by mostly maintaining the design of an existing Memcached client and server.
However, a number of implementation work is still needed, which will be dis-
cussed in Sect. 4. For our SHMemCache client, we have implemented two basic
Memcached primitives, i.e., SET and GET. Both SET and GET will leverage the
shared memory region to pass the corresponding op item to the delegator. We
make sure that the new implementations are compliant the with existing Mem-
cached applications by adding pluggable modules to memslap, which is a popular
Memcached benchmark being used in many prior studies [12–14,19].

Fig. 5. SHMemCache server structure.

We have also developed the SHMemCache server by modifying the Mem-
cached server. The existing Memcached server design uses heavy-weight con-
nection setup and complex event switch for every operation. In contrast, our
communication does not enforce any connection setup or event switches on the
server. The server structure is shown in Fig. 5, SHMemCache server has a listener
thread and a number of worker thread (currently four). The listener thread mon-
itors the seg out of the assigned shared memory region for incoming op item.
When there is one, it pushes the data into the operation queue owned by one of
the worker threads. The worker thread to use is chosen in a round-robin manner.
After it have processed the op item, the response message is incorporated in an
op item and then written to seg in of the shared memory region. We make
sure that our modification is modularized and pluggable. The old interfaces of
the Memcached server are intact from our modification. Thus, both connection
or transaction protocols are supported at the same time in SHMemCache. The
underlying key/value stores are shared by both protocols.
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4 Implementation

Based on the design described in Sect. 3, we have built a proof-of-concept proto-
type of SHMemCache. We use the latest versions of OpenSHMEM, Memcached
and libMemcached to implement our prototype. Specifically, we use the Open-
SHMEM implementation in OpenMPI v1.10.3 [4], Memcached v1.4.25 [3] and
libMemcached 1.0.18 [2]. We will also present a few details for the challenges we
faced during the implementing and tuning of SHMemCache.

For SHMemCache server, we still leverage the caching system of the existing
Memcached but implement our own communication interface, thread manage-
ment, etc. The code changes are modularized and pluggable according to user’s
wish. None of the existing Memcached interfaces have been altered so other
clients who use conventional TCP/IP for communication may still function cor-
rectly with SHMemCache. For SHMemCache client, we leverage the hashing
functions of the libMemcached but also implement our own communication inter-
face, multi-thread functions, etc. We have also implemented more tunable para-
meters, e.g., the value size, the execution number of GET (libMemcached only
supports SET), etc. SHMemCache client currently only supports SET and GET
operations. But in principle, other operations can be conveniently made avail-
able given our interfaces. For example, ADD and INCR are just two variants of the
SET operation that will be implemented with slight changes to SET.

We have also provided a number of tunable parameters for performance opti-
mizations of the delegators. For example, we manage to minimize the number of
data movement in the delegator. As mentioned, two threads will handle either
incoming operation or outgoing operation in the delegator for a client or server.
Thus, each thread in the delegator will only copy the message once.

5 Evaluation

5.1 Experimental Environment

Experimental Testbed. Our experiments are conducted on a cluster of 21
server nodes. Each machine is equipped with dual-socket, 10 Intel Xeon(R) cores
and 64 GB memory. All nodes are connected through an FDR InfiniBand inter-
connect. The software versions have been introduced in Sect. 4. Unless otherwise
specified, on each machine we run only one Memcached client or Memcached
server.

Benchmarks. We use memslap to generate test workload that consists of either
SET or GET operations. We also use memslap to provide varying factors for eval-
uation (data size, execution count, etc.).

Metrics. In this paper, we focus on evaluating the operation latency of SHMem-
Cache. For baseline comparison, we use the unmodified Memcached server and
libMemcached client of the same versions that we used for implementing our
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SHMemCache server and client. We first test the average latency of the SET and
GET operations against the baseline Memcached. Then, we dissect the latency of
SET and GET using dummy components. For each set of experiment, we run it one
hundred thousand times and report the average result. Throughout this section,
we use SMC to denote the results of SHMemCache and MCD to denote the
baseline Memcached.

5.2 Operation Latency

Firstly, we test the latency of SET and GET operations generated by memslap. In
this experiment, we use only one client to generate requests and one server
to process the requests. We vary the message size, i.e., size of the value in
the key/value pairs in the experiment. The results are shown in Fig. 6. Both
SHMemCache’s SET and GET latency are much lower than the baseline Mem-
cached’s SET and GET for all data sizes. In specific, SHMemCache achieves less
than 10 ms of latency of both SET and GET for small messages (e.g., less than
1 KB), and less than 30 ms of latency for large message such as 16 KB. These
latency results of SHMemCache are comparable to other RDMA-based distrib-
uted key/value stores as reported in [9,13,17]. Moreover, SHMemCache’s per-
formance also shows less variation and more predictability than the baseline
Memcached.

Fig. 6. Results of operation latency.

5.3 Latency Dissection

We have further studied the SHMemCache operation latency by dissecting the
time spent in each component. We accomplish this by creating some dummy
components in SHMemCache, i.e., dummy client-side delegator (dum-cli-del),
dummy server-side delegator (dum-serv-del) or dummy server (dum-serv). A
dummy component will response to a request op item as soon as it receives
the op item without forwarding the op item further. For example, a dummy
server-side delegator will immediately reply with a response when it receives
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an request op item but not forward the op item to the server. We make sure
that such response op item has the same size as in the no-dummy case so the
difference in performance does not result from different size of message pass-
ing. The results are shown in Fig. 7. As seen from the figure, for both SET and
GET, the latency of dum-cli-del is extremely small, which shows that local data
transfer via shared memory is really fast. Then, the difference between dum-cli-
del and dum-serv-del is the network transferring of the op item, which has the
largest portion of the latency. Moreover, the difference between dum-serv-del and
dum-serv is the time spent on processing in server-side delegator and also data
transferring via local shared memory. This part also takes only a small portion
of time. Finally, the difference between dum-serv and no-dum is the time spent
on server processing, which takes longer for SET than GET because the former
involves memory allocation and copying while the latter only requires memory
reads. The results show that our implementation adds negligible overheads to
the irreducible time costs such as the network transferring and server processing.

Fig. 7. The time dissection of the latency.

5.4 Discussion

During the test, we also find that the size of message affects the performance. In
our early implementation, every message incorporates a fixed size of header fields
(id, lengths, flag, key, etc.) plus a value field of varying size. Setting the value field
to as low as 4 B does not give better performance than setting it to 4 KB. How-
ever, when setting it to 16 KB or larger, the performance will degrade drastically.
This is because OpenSHMEM will temporarily buffer the data when sending to
other nodes. Moreover, it is not possible to dynamically adjust the message size
because many system variables such as the shared memory region size depends
on the message size. Adjustment of that may cause difficulty in orchestrating
different components of SHMemCache. Thus, in the current implementation, we
fix the size of message to 4 K. For bigger size of operations we will divide it into
multiple messages and send out sequentially. We also make sure that only the
valid part of a message is copied everytime a message is being transferred across
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memory or network. For example, if value size is 4 B, we only copies the size of
header fields plus 4 B. This has limited effect to the OpenSHMEM communica-
tion, but can reduce time for memory copying.

6 Related Works

Leveraging high performance capabilities in HPC domain for big data analytics
frameworks are becoming increasingly popular among both the HPC and big
data communities in recent years. To name a few, Jose et al. [13] presented an
Memcached design on high-speed interconnects. They implemented a commu-
nication library called Unified Communication Runtime (UCR) that provided
interfaces for the Remote Direct Memory Access (RDMA) on the high-speed
interconnects. Similarly, Mitchell et al. [17] also exploited RDMA capability for
fast key/value store such as Memcached. However, they proposed an idea that
was for the client to directly access in-memory key/value stores without involv-
ing the server at all, thus completely bypassing any CPU overhead. Moreover,
Appavoo et al. [7] took an early effort on leveraging one-sided RDMA reads for
Memcached and running Memcached with high-speed interconnects on super-
computers. Wang et al. presented a design of RDMA-aware cache management
for distributed key/value store in [22] and a complete design of RDMA-driven
distributed middleware [23] for accelerating big data analytics frameworks, e.g.,
Hadoop, Spark and G2 Sensemaking.

On the other hand, exploiting the distributed in-memory key/value stores
for designing a fast PGAS-like distributed computing programming model also
attracted much attention. Aguilera et al. [5] described a distributed program-
ming paradigm that is built with a linear addressing space, which provided ease
for programmers to write parallel programs without handling the complexities of
message passing themselves. Similarly, Dragojevic et al. [9] presented an mem-
ory distributed computing platform that utilizes the memory of all machines
to form a PGAS for storing data and facilitating transactions. In addition, it
uses RDMA-enabled ACID transactions for better performance and consistency.
Greenberg et al. [11] gave a brief introduction to MDHIM, a middleware that
could integrate some of the popular HPC programming models such as MPI with
other popular data analytics tools such as Cassandra. By conveniently leverag-
ing the high-speed capability of InfiniBand interconnect, it had shown to greatly
improve the performance of Cassandra.

More generally, there were a lot of efforts for fast distributed memory transac-
tion [8,18,20,21,24]. Particularly, Wei et al. [24] improved distributed in-memory
transaction system by leveraging strong consistency between RDMA and HTM
and offloading concurrency control with HTM. There were also abundant stud-
ies for the architectural or algorithmic optimization of Memcached or other
key/value stores [6,10,15,16,25]. For example, Fan et al. [10] did not touch
upon the communication venues but instead improved Memcached’s hashing
algorithm and had shown dramatic performance advantages.
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7 Conclusion

In this paper, we have examined the compatibilities of communication inter-
faces between Memcached and OpenSHMEM. Accordingly, we have designed
and implemented a software framework that integrates the programmability and
portability of OpenSHMEM with the power of Memcached for supporting big
data applications. SHMemCache can be leveraged to help deploy Memcached on
various leadership facilities with OpenSHMEM run-time. We have also leveraged
a set of test benchmarks to validate our design and evaluate the performance
of SHMemCache. Our experimental results show that SHMemCache achieves
low latency and adds negligible overheads to network trasferring and operation
processing.
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Abstract. This paper reports the implementation and performance
evaluation of the OpenSHMEM 1.3 specification for the Adapteva
Epiphany architecture within the Parallella single-board computer. The
Epiphany architecture exhibits massive many-core scalability with a
physically compact 2D array of RISC CPU cores and a fast network-on-
chip (NoC). While fully capable of MPMD execution, the physical topol-
ogy and memory-mapped capabilities of the core and network translate
well to Partitioned Global Address Space (PGAS) programming models
and SPMD execution with SHMEM.

Keywords: OpenSHMEM · Network-on-chip (NoC) · Single-board
computer · Performance evaluation

1 Introduction and Motivation

The OpenSHMEM communications library is designed for computer platforms
using Partitioned Global Address Space (PGAS) programming models [1]. His-
torically, these were large Cray supercomputers, but now the OpenSHMEM
interface may also be used on commodity clusters. The Adapteva Epiphany
architecture represents a divergence in computer architectures typically used
with OpenSHMEM and is just one of many emerging parallel architectures that
present a challenge in identifying effective programming models to exploit them.
While some researchers may be considering how the OpenSHMEM API may
interact with coprocessors, the work presented here leverages the API for device-
level operation. In some aspects, the Epiphany architecture resembles a sym-
metric multiprocessing (SMP) multi-core processor with a shared off-chip global
memory pool. However, each core can directly address the private address space
of neighboring cores across an on-chip 2D mesh network. Thus, the architec-
ture also has the characteristics of a PGAS platform. Previous proof-of-concepts
demonstrated that message passing protocols could achieve good application
performance on the Epiphany architecture [2,3]. However, it was unclear if the
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OpenSHMEM 1.3 standard could be fully implemented within the platform lim-
itations and achieve high performance using a standard programming model
without resorting to non-standard software extensions.

Existing open source OpenSHMEM implementations are inadequate within
the constraints of the Epiphany architecture, so a new C language implementa-
tion named ARL OpenSHMEM for Epiphany was developed from scratch. The
design emphasizes a reduced memory footprint, high performance, and simplic-
ity, which are often competing goals. This paper discusses the Epiphany architec-
ture in Sect. 2.1, the OpenSHMEM implementation and performance evaluation
in Sect. 3, and a discussion of future work and potential standard extensions for
embedded architectures in Sect. 4.

2 Background

The 16-core Epiphany-III coprocessor is included within the $99 ARM-based
single-board computer and perhaps represents the low-cost end of programmable
hardware suitable for SHMEM research and education. Many universities, stu-
dents, and researchers have purchased the platform with over 10,000 sales to
date. Despite this, programming the platform and achieving high performance
or efficiency remain challenging for many users. Like GPUs, the Xeon Phi, and
other coprocessors, typical applications comprise host code and device code.
Only a minimal set of communication primitives exist within the non-standard
Epiphany Hardware Utility Library (eLib) for multi-core barriers, locks, and
data transfers [4]. The barrier and data transfer routines are not optimized for
low latency. Other primitives within eLib use unconventional 2D row and col-
umn indexing, which cannot easily address arbitrary numbers of working cores or
disabled cores. More complicated collectives, such as those in the OpenSHMEM
specification, are left as an exercise for the application developer.

Although not discussed in detail in this paper, the CO-PRocessing Threads
(COPRTHR) 2.0 SDK [5] further simplifies the execution model to the point
where the host code is significantly simplified, supplemental, and even not
required depending on the use case [6]. There are essentially two modes of possi-
ble execution. The first mode requires host code with explicit Epiphany coproces-
sor offload routines. The second mode uses a host-executable coprocessor pro-
gram with the conventional main routine provided. The program automatically
performs the coprocessor offload without host code. Combined with the work
presented in this paper, the COPRTHR 2.0 SDK enables many OpenSHMEM
applications to execute on the Epiphany coprocessor without any source code
changes. Execution occurs as if the Epiphany coprocessor is the main processor
driving computation. COPRTHR 1.6 was used to present the Threaded MPI
model for Epiphany [2] as well as a number of applications [7,8].

2.1 Epiphany Architecture

Many modern computer architectures address the “memory wall problem” by
including increasingly complex cache hierarchies and core complexity, wider
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memory buses, memory stacking, and complex packaging to maintain the SMP
hardware and software architecture. The Epiphany architecture unwinds decades
of these types of changes – it is a cache-less, 2D array of RISC cores with a fast
network-on-chip (NoC) that can an be simply described as a “cluster on a chip”.
Each core within the Epiphany-III architecture contains 32 KB of SRAM which
is shared between instructions and local data. The Epiphany architecture can
scale to one megabyte of SRAM per core, but there is a linear design trade-
off between the number of cores and available memory for a fixed die space.
The core local memory is memory-mapped, and each core may directly access
the local memory of any core within the mesh network. Each core has shared
memory access to off-chip global DRAM, although this access is significantly
slower than local memory or non-uniform memory access (NUMA) to neighbor-
ing core memory. The highest performance and most energy-efficient applications
leverage inter-core communication and on-chip data reuse. Like many high per-
formance computing (HPC) clusters, the inter-core communication is generally
explicit in order to achieve highest performance. The architecture is also scal-
able by tiling multiple chips without additional “glue logic”. The tight coupling
between the core logic and the on-chip mesh network enables very low-latency
operation of OpenSHMEM routines. An architectural overview appears in Fig. 1.
Unlike most application programming interfaces for communication, there is no
additional software layer to handle networking for hardware abstraction. As we
will discuss in further detail, the OpenSHMEM implementation for Epiphany
performs network operations directly.

Mesh Node

RISC CPU

DMA 
Engine

32 KB Local Memory

Network 
Interface

Router

Timers
64-Word Register File

Sequencer

Interrupt Handler

Arithme c Logic Unit

Floa ng Point Unit

Fig. 1. The 16-core Epiphany-III architecture is a 2D array of RISC CPU cores. It
contains a 64-word register file, sequencer, interrupt handler, integer and floating point
units, timers, and DMA engines for the fast network-on-chip
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3 Implementation and Performance Evaluation

Due to the tight memory constraints of the Epiphany memory and availability
of specialized hardware features, the OpenSHMEM reference implementation
built on GASNet was not suitable for deployment on the Epiphany cores. As
a credit to the OpenSHMEM specification and the Adapteva Epiphany archi-
tecture documentation, the full OpenSHMEM 1.3 implementation was written
and optimized over a period of a few weeks. The entire library, including the
optional extensions described in detail later, is approximately 1800 lines of code
and does not require additional software. The software directly targets the under-
lying hardware features and was designed to be extremely lightweight in order
to compile to small binaries expected with embedded architectures.

Linear scaling algorithms were avoided, and many of the collective routines
use dissemination or recursive doubling algorithms, optimized for low-latency
on the Epiphany network. The remote memory access routines, shmem TYPE put
and shmem TYPE get, use hand-tuned memory-mapped load and store primitives
with a hardware loop feature specific to the Epiphany architecture. The non-
blocking remote memory access routines use the dual-channel Direct Memory
Access (DMA) engine on each processor network node. The distributed lock-
ing and atomic routines leverage an atomic TESTSET instruction that performs
an atomic “test-if-not-zero” and conditional write. An optional hardware bar-
rier implementation was also developed for a specialized shmem barrier all
for extremely low-latency global barriers. An optional inter-processor interrupt
and corresponding interrupt service routine (ISR) enable faster shmem TYPE get
operations by interrupting the remote core to use the optimized shmem TYPE put.

Many of the OpenSHMEM routines have some component that is hardware
accelerated on the Epiphany architecture such as zero-overhead hardware loops
for copying data, memory-mapped loads and stores, the TESTSET instruction
for remote locks and atomics, a wait on AND (WAND) instruction for a low-
latency shmem barrier all. The MULTICAST experimental feature would enable
energy-efficient, low-latency broadcasts but is presently unused. The point-to-
point synchronization routines are among the simplest to implement and do
not have a section dedicated to discussion. Generally, they spin-wait on local
values until they meet the criteria defined by the routine. The memory ordering
routines need only verify that both DMA engines have an idle status by spin-
waiting on the relevant special register. There are no intermediate data copies
in this implementation.

The performance evaluation of the Epiphany OpenSHMEM implementation
began with the OpenSHMEM micro-benchmark codes. The timing code had to
be modified because the gettimeofday routine is only accurate to a microsecond,
and many of the operations operate in the sub-microsecond regime.

Many of the communication routines in the performance evaluation include
the parameters α and β−1 in the figure subtitle along with their standard devi-
ations. These two parameters are from the “α-β model” for communication
in HPC. They neatly summarize the communication time (Tc) to include the
latency (α) and marginal cost (β) to transfer a message (of size L) in Eq. 1. The
β−1 parameter is the peak effective core bandwidth for the routine.
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Tc = α + β · L (1)

3.1 Library Setup, Exit, Query Routines

The shmem init routine retrieves or calculates the local processing element (PE)
number (for shmem my pe) and number of PEs (for shmem n pes), configures the
optimized hardware barrier or collective dissemination barrier arrays, obtains
the SHMEM heap memory offset, and precalculates a few other addresses for
improved runtime performance. The shmem ptr routine can directly calculate
remote memory locations using simple logical shift and bitwise operations.

3.2 Memory Management Routines

Memory management on the Epiphany processor is atypical. Each Epiphany-III
core has a flat 32 KB local memory map from address 0x0000 to 0x7fff. Pro-
grams are typically loaded starting at 0x0100 if extremely constrained for mem-
ory, or 0x0400 if using the COPRTHR 2 interface. The stack pointer typically
moves downward from the high address. Data used for the application, including
the SHMEM data heap, begins directly after the program space. Figure 2 shows
the typical memory layout of an Epiphany-III core using the COPRTHR 2 inter-
face as it relates to the PGAS model. The static or global variables that are typ-
ically defined within the application appear below the free local memory address
within the symmetric heap. They are still symmetrical across all Epiphany cores
as the program binary is identical.

Due to the tight memory constraints, a more modern memory allocator was
not addressed in this work. The basic memory management system calls brk and
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Fig. 2. The PGAS memory model (left) and the equivalent typical memory layout on
an Epiphany-III core (right)
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sbrk are more suited for controlling the amount of memory allocated from the
SHMEM data heap for each process element because there is no virtual address
abstraction. Instead, there is a local base memory tracking pointer that stores
the current free memory base address and incremented with each allocation. The
memory management routines build on these calls, but care must be taken to
adhere to the following rules:

1. shmem free must be called in the reverse order of allocation if making sub-
sequent allocations

2. shmem realloc can only be used on the last (re)allocated pointer
3. shmem align alignment must be a power of 2 greater than 8 (default is 8)

This is a pragmatic approach that we feel is reasonable and won’t even be
noticed on most codes. Calling shmem free moves the local base memory tracking
pointer to the address in the function argument so most routines only need
to call it once for the first allocated buffer in a series if freeing all memory.
The shmem realloc routine could be designed to copy the contents of the old
buffer to the new buffer, however, this would waste the memory space in the
original allocation (a precious commodity on the Epiphany architecture). Future
developments with COPRTHR 2 may address these deficiencies by exporting the
COPRTHR host-side memory management to the coprocessor threads.

3.3 Remote Memory Access Routines

Inter-process memory copying on the Epiphany is trivial, and a simple loop over
incrementing source and destination arrays can be done in C code. However,
like many optimized memcpy routines, high-performance copies are non-trivial.
A high-performance inter-processor memory copy routine does not appear to be
in the eLib library. So after quite some time of hand-tuning in assembly, a put-
optimized method was written that makes use of a “zero-overhead” hardware
loop and four-way unrolled staggered double-word loads and (remote) stores.
A specialization for the edge case of unaligned memory is also included since
the Epiphany architecture requires loads and stores to be memory aligned to
the data size. Assuming the fast path is taken, the core can transfer a double-
word (8 bytes) per clock cycle. However, since the 8 byte load operation requires
an additional cycle, the effective peak network copy is 8 bytes every two clocks.
For a clock rate of 600 MHz, peak contiguous network transfers may achieve
up to 2.4 GB/s. Having the NoC and core clocks pinned ensures that applica-
tion communication performance scales with the chip clock speed. The same
put-optimized memory copy subroutine is used for get operations. This is sub-
optimal, but remote read operations will never be as high-performance as remote
write operations on the Epiphany architecture, so they should generally be
avoided. Remote direct read operations are slower than equivalent remote direct
write operations because the read request must first traverse the network to the
receiving core network interface, then the data must traverse the network back to
the requesting core. Unlike a remote direct write operation which can issue store
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Fig. 3. Performance of optimized shmem put (top left) and shmem get (top right) for
contiguous data exchange operations for 16 processing elements, speedup compari-
son with eLib (bottom left), and experimental inter-processor user interrupt for high-
performance shmem get (bottom right).

instructions without a response, the read operation stalls the requesting core
until the load instruction returns data to a register. Issuing multiple requests
does little to mitigate this performance issue, thus, the throughput of the opti-
mized shmem put is approximately an order of magnitude greater than shmem get
as shown in Fig. 3.

In order to address this performance disparity with contiguous remote reads,
an inter-processor interrupt is configured and signaled by the receiving core,
causing an equivalent fast write to be executed. The receiving core is then sig-
naled to continue upon completion of the inter-processor ISR. This is an exper-
imental feature because it uses the user interrupt and must be enabled with
SHMEM USE IPI GET during compilation. It has the greatest performance impact
for large transfers. The method has a turnover point for buffers larger than
64 bytes so that smaller transfers are read directly and larger transfers use the
inter-processor interrupt. All results for contiguous block transfers and a perfor-
mance comparison with the equivalent eLib interface in the eSDK are shown in
Fig. 3.
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3.4 Non-blocking Remote Memory Access Routines

The set of non-blocking remote memory access routines (shmem put nbi and
shmem get nbi) makes use of the on-chip DMA engine. The DMA engine has
two independent DMA channels per processor node so that two non-blocking
transfers may execute concurrently. Each channel has a separate DMA speci-
fication of the source and destination address configuration. The configuration
is capable of 2D DMA operations with flexible stride sizes. This could support
an extension to the OpenSHMEM 1.3 standard for non-blocking strided remote
memory access routines if needed. The performance results for the non-blocking
remote memory access routines appear in Fig. 4.

Application performance improvement may be realized for large non-blocking
transfers by splitting transfers into two portions and calling two non-blocking
transfers, however, the performance benefit is marginal and often worse. Due
to hardware errata in the Epiphany-III, the DMA engine is throttled to less
than half of the peak bandwidth of 8 bytes per clock, or 4.8 GB/s [9]. If fully
enabled, as expected in future chips, the DMA engine would be used for the
blocking remote memory access routines rather than remote load/store instruc-
tions. In general, it may be faster to use blocking transfers because the DMA
engine setup overhead is relatively high, and there are often bank conflicts with

Fig. 4. Performance of non-blocking remote memory access routines.
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the concurrent computation and DMA engine access, hindering fully overlapped
communication and computation. The blocking operation, shmem quiet, spin-
waits on the DMA status register. Alternatively, a DMA ISR could be used to
continue the shmem quiet operation, but it is not clear how this could be higher
performance.

3.5 Atomic Memory Operations

The Epiphany-III ISA does not have support for atomic instructions, but the
TESTSET instruction used for remote locks may be used to define other atomic
operations in software. With the current code design, it is trivial to extend to
other atomic operations with a single line of code if additional atomic operations
are defined by the OpenSHMEM specification in the future. At a core level,
memory access for both fetch and set operations completes in a single clock cycle
and is therefore implicitly atomic. The fetch operation still must traverse the
network to the remote core and return the result. Each data type specialization
uses a different lock on the remote core as per the specification. The performance
results for the 32-bit integer atomic routines appear in Fig. 5.

3.6 Collective Routines

Multi-core barriers are critical to performance for many parallel applications.
The Epiphany-III includes hardware support for a fully collective barrier with
the WAND instruction and corresponding ISR. This hardware support is included
as an experimental feature within the OpenSHMEM library and must be enabled

Fig. 5. Performance of OpenSHMEM atomic operations for 32-bit integers and a vari-
able number of processing elements. Atomic operations are performed in a tight loop
on the next neighboring processing element.
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Fig. 6. Performance of shmem barrier for variable number of processing elements (left)
and the performance of shmem broadcast64 for variable message sizes (right)

by specifying SHMEM USE WAND BARRIER at compile time. After several implemen-
tations of barrier algorithms, it was determined that a dissemination barrier was
the highest-performing software barrier method. It is not clear if this algorithm
will continue to achieve the highest performance on chip designs with a larger
number of cores; alternative tree algorithms may be needed. The eLib inter-
face in the eSDK uses a counter-based collective barrier and requires a linearly
increasing amount of memory with the number of cores. The dissemination bar-
rier requires 8 · log2(N) bytes of memory, where N is the number of processing
elements within the barrier. The use of this synchronization array mitigates
the need for signaling by locks at each stage of the barrier. The collective eLib
barrier completes in 2.0µs while the WAND barrier completes in 0.1µs. The
performance for group barriers for a subset of the total processing elements is
shown in Fig. 6. The latency of the dissemination barrier increases logarithmi-
cally with the number of cores so that more than eight cores take approximately
0.23µs.

Broadcasts are important in the context of the Epiphany application devel-
opment in order to limit the replication of off-chip memory accesses to common
memory. It is faster to retrieve off-chip data once and disseminate it to other
processing elements in an algorithmic manner than for each processing element
to fetch the same off-chip data. The data are distributed with a logical net-
work tree, moving the data the farthest distance first in order to prevent sub-
sequent stages increasing on-chip network congestion. The broadcast routines
use the same high-performance memory copying subroutine as the contiguous
data transfers. Effective core bandwidth approaches the theoretical peak perfor-
mance for this algorithm and is approximately 2.4/log2(N) GB/s. Figure 6 shows
collective broadcast performance for variable message sizes.

The shmem collect and shmem fcollect routines use ring and recursive
doubling algorithms for concatenating blocks of data from multiple processing
elements. Each uses the optimized contiguous memory copying routine. There
is likely room for improvement with these routines; the measured performance
appears in Fig. 7.
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Fig. 7. Performance of linear scaling shmem collect64 and recursive doubling
shmem fcollect64 for variable message sizes on 16 processing elements

The shmem TYPE OP to all reduction routines are important for many multi-
core applications. The routines use different algorithms depending on the number
of processing elements. A ring algorithm is used for processing elements that
number in non-powers of two and a dissemination algorithm for powers of two.
The symmetric work array is used for temporary storage and the symmetric
synchronization array is used for multi-core locks and signaling. The performance
of shmem int sum to all appears in Fig. 8. Other routines vary marginally in
performance due to data types and the arithmetic operation used. Reductions
that fit within the symmetric work array have improved latency as seen in the
figure.

Fig. 8. Reduction performance for shmem int sum to all for all 16 processing ele-
ments. The latency and the number of collective reductions per second are shown.
The effect of the minimum symmetric work array size for reductions, defined as
SHMEM REDUCE MIN WRKDATA SIZE per the OpenSHMEM specification, is apparent for
small reductions
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Fig. 9. Performance of the new (to version 1.3) contiguous all-to-all data exchange
operation, shmem alltoall, for 16 processing elements

The performance of the contiguous all-to-all data exchange, shmem alltoall,
appears in Fig. 9. This routine has a relatively high overhead latency compared
to other collectives.

3.7 Distributed Locking Routines

The distributed locking routines, shmem set lock and shmem test lock, are
easily supported by the atomic TESTSET instruction. The actual lock address is
defined in the implementation to be on the first processing element. These lock-
ing mechanisms are also the basis for the atomic operations detailed in Sect. 3.5
but for multiple processing elements. The shmem clear lock routine is a sim-
ple remote write to free the lock. Although this scheme works well for the 16
processing elements on the Epiphany-III, the performance bottleneck will likely
be a problem scaling to much larger core counts. Application developers should
avoid using these global locks.

4 Future Work and Discussion of Extensions
for Embedded Architectures

It is our intention to release ARL OpenSHMEM for Epiphany, as well as the per-
formance evaluation codes and benchmarks used in this paper, as open source
software through the U.S. Army Research Laboratory’s GitHub account [10] for
Parallella community input and further development. The Epiphany architecture
may also be updated in the future to add more hardware support for many of the
existing OpenSHMEM routines. Many of the currently proposed OpenSHMEM
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extensions and updates should be addressable. A non-blocking strided remote
memory access routine could be supported with the existing DMA engine as
mentioned in Sect. 3.4. Some other extensions do not make sense for the architec-
ture. For example, Epiphany is not a multithreaded architecture and, although
it can be performed via software, is not the ideal mechanism for improving per-
formance. The OpenSHMEM standard should remain sufficiently lightweight to
address low-level operations without relying on specific architectural features.

One of the more challenging portions of the OpenSHMEM standard for
the Epiphany architecture and other embedded architectures are the memory
management routines. It makes some sense for some platforms to have a pre-
allocated symmetric heap from which memory allocations will be made. Within
an Epiphany local core, there is no memory virtualization between the physical
address and the memory address returned by the allocation routines as avail-
able memory is linearly removed from the symmetric heap. The limitations of
the available core space make it challenging to introduce a Linux-like abstract
model of virtual memory. As OpenSHMEM is a low-level interface and applica-
tion developers are already accustomed to explicitly managing memory, it may
make some sense to improve memory management interfaces, such as those dis-
cussed in Sect. 3.2, for embedded architectures.

5 Conclusion

OpenSHMEM provided an effective and pragmatic programming model for
the Epiphany architecture. The header-only implementation enabled compiler
optimizations for program size and application performance that is difficult
to achieve using a standard pre-compiled library. We demonstrated improved
performance and many useful features compared to the current eLib library
despite the additional software abstraction with the OpenSHMEM interface.
The ARL OpenSHMEM for Epiphany demonstrated high-performance execu-
tion while approaching hardware theoretical networking limits, and low-latency
operation for many of the OpenSHMEM routines.
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Abstract. There is increasing use of multithreading in High Perfor-
mance Computing (HPC) programs in order to maximize the use of
hardware resources of multi-core compute nodes. The latest version of
the OpenSHMEM API Specification does not standardize the interaction
between threads and OpenSHMEM routines in multithreaded applica-
tions. In this paper, we evaluate two proposals that have been put for-
ward to try to address this deficiency: “Thread-Safe” and “Contexts-
Domains”. Both of these proposals have been implemented, at least in
part, in Cray SHMEM, a vendor-specific OpenSHMEM implementation
from Cray Inc. We provide a design overview of the two proposals and
give some experimental results showing significant performance benefits
of each. To the best of our knowledge, this is the first paper to compare
and contrast these two proposals.

1 Introduction

SHMEM is a popular library-based Partitioned Global Address Space (PGAS) [6]
programming model. The original SHMEM library was developed by Cray
Research, the predecessor of Cray Inc., and in due course different vendor-specific
closed source and other open source implementations of SHMEM were devel-
oped. OpenSHMEM [8] is an effort driven by Extreme Scale Systems Center
(ESSC) at ORNL and University of Houston, with significant inputs from the
SHMEM programming community, to standardize the SHMEM programming
library interface with an API specification. OpenSHMEM provides the means to
develop light-weight, portable, and scalable applications.

As modern compute processors contain a larger number of compute cores,
multithreading in HPC applications is becoming more common in order to better
utilize all of the compute resources.

But, with the current OpenSHMEM API, Version 1.3, interaction between
OpenSHMEM routines and threads are not yet standardized. Hence, there is no
explicit support for the use of OpenSHMEM routines in multithreaded applica-
tions. To be thread-safe in such applications, all calls to OpenSHMEM routines
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must be made only by the thread that initiated the call to shmem init. This
severely limits overall concurrency of the application.

Cray SHMEM is a vendor-specific OpenSHMEM implementation from Cray
Inc. Released versions of Cray SHMEM support increased concurrency of some
OpenSHMEM calls with explicit support for multithreaded applications. In this
paper, we will refer to this feature, proposed and implemented by Cray Inc., as
“Thread-safe” [18]. It is available as non-standard SHMEMX-prefixed extensions.

Another proposal for addressing this need comes from Intel [9]. We will refer
to this feature as “Contexts-Domains”. As a part of the work described in this
paper, we developed a prototype version of some of the Contexts-Domains fea-
tures in Cray SHMEM. Both of these proposed features are evaluated in this
paper.

The contributions of this work are:

– implementation of a Contexts-Domains prototype in Cray SHMEM;
– compare and contrast the two different threading proposals based on effect of

Thread Local Storage(TLS), support for different available thread-levels, usage
of explicit and implicit non-blocking communication operations, differences in
memory ordering, and efficient resource utilization;

– performance analysis of these extensions using modified multithreaded OSU
Microbenchmarks [5]; and

– performance analysis with context and thread-safe implementations of all-to-
all collective communication pattern.

This paper is organized as follows. In Sect. 2, we provide overviews of the
Thread-Safe and Contexts-Domains proposals. In Sect. 3, we provide details of
the Thread-Safe and Contexts-Domains design in Cray SHMEM. In Sect. 4, we
compare and contrast different features of these two proposals. Performance
results of an all-to-all collective communication pattern implemented with these
two features are provided in Sect. 5. We discuss related work in Sect. 6, future
work in Sect. 7, and conclude in Sect. 8.

2 Background

In this section, we provide brief introductions to Cray SHMEM and two different
proposals for multithreading in OpenSHMEM applications. In brief, these pro-
posals try to support safe and efficient interaction between OpenSHMEM calls
and threads with standard APIs.

The main motivation is to take advantage of the power of combining differ-
ent programming models in the same HPC application to increase concurrency,
reduce communication overhead within nodes, and provide better scalability.
Common hybrid programming approaches include use of threading models like
OpenMP [16], OpenACC [15], or pthread [13] with distributed memory models
like MPI [10], or OpenSHMEM.

In this paper we use the phrase “threaded region” to be a region of code
where more than one thread may be running concurrently and use the phrase
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“SHMEM threaded region” to be a threaded region where multiple threads make
independent SHMEM communication calls.

2.1 Cray SHMEM

Cray SHMEM is a closed source vendor-specific OpenSHMEM implementation
from Cray Inc. It is part of the Message Passing Toolkit (MPT) [1] software
stack from Cray Inc. Other software libraries that are part of this software
stack include Cray-MPICH, Cray-Global Arrays [3], and DMAPP [17]. Cray
SHMEM is at version 7.4.0 and it is compliant with OpenSHMEM specification
version-1.3 [4]. In addition to providing support for standard OpenSHMEM fea-
tures, Cray SHMEM has support for thread-safe extensions, flexible PE subsets
creation and management, point-to-point put operation with signal, and local
shared memory pointers. As required by the OpenSHMEM standard, these extra
features [11] are supported as SHMEMX-prefixed extensions.

2.2 Overview of Thread-Safe Proposal

The proposed extensions for thread-safety in OpenSHMEM supports calls to
RMA and AMO routines in SHMEM threaded regions, with restrictions on using
SHMEM collectives in these regions.

In a thread-safe OpenSHMEM implementation, the SHMEM Processing Ele-
ment (PE) is an OS process that can be multithreaded. With respect to the
symmetric heap; it is a per PE resource and hence the threads of a PE do not
separately address symmetric data objects. Rather, the address space is shared
by all threads of a PE.

The routines associated with this proposal are listed in Fig. 1.
Similar to shmem init, shmemx init thread is used to initialize OpenSH-

MEM resources. In addition, it specifies the thread-level usage of the applica-
tion. SHMEM THREAD SINGLE and SHMEM THREAD MULTIPLE are the two currently
proposed thread levels. This is discussed in detail in Sect. 4.4.

shmemx query thread is used to query the current thread-level used by
an application.

Though applications may use multiple threads per PE, it is not necessary for
all threads to make OpenSHMEM calls. Any thread that will make OpenSHMEM

int shmemx init thread ( int r e qu i r ed th r e ad ing type ) ;
int shmemx query thread (void ) ;
void shmemx thread reg i s te r (void ) ;
void shmemx thread unreg i s ter (void ) ;
void shmemx thread quiet (void ) ;
void shmemx thread fence (void ) ;

Fig. 1. OpenSHMEM extensions for thread-safe proposal
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calls must call shmemx thread register to register it with the OpenSHMEM
library. This allows the library to map threads to network resources.

Similar to shmem fence and shmem quiet, memory ordering is done with
shmemx thread fence and shmemx thread quiet. shmemx thread fence orders
communication for a particular thread. shmemx thread quiet waits for comple-
tion of all outstanding operations for a particular thread, while shmem quiet
waits for completion of all outstanding operations on all registered threads asso-
ciated with a PE.

2.3 Overview of Contexts-Domains Proposal

Dinan et al. [9] proposed a new feature called Contexts and Domains to allow
the programmer to generate independent streams of communication. This feature
separates message injection resources from remote completion tracking.

OpenSHMEM extensions associated with this proposal are provided in
Fig. 2. Domains are essentially a group of Contexts with a similar prop-
erty. They are created and destroyed with shmemx domain create and
shmemx domain destroy. While a list of properties on which these groups can be
formed are not yet completely defined, SHMEM thread-level can be considered
as an example property.

Each Context created through shmemx ctx create is associated with a par-
ticular domain and there is no limit on the number of contexts created per
domain. shmemx ctx t and shmemx domain t are opaque handles to access con-
texts and domains respectively.

Relation Between Threads and Contexts. By definition, threads are not
mapped to a particular context. Contexts and threads are two separate entities in
an application. Contexts are network resource objects with a particular property
and domains are group of contexts with similar property.

typedef int shmem ctx t ;
typedef int shmem domain t ;
void shmemx domain create ( int t h r e ad l e v e l , int num domain ,

shmem domain t domain [ ] ) ;
void shmemx domain destroy ( int num domain ,

shmem domain t domain [ ] ) ;
int shmemx ctx create ( shmem domain t domain ,

shmem ctx t ∗ ctx ) ;
void shmemx ctx destroy ( shmem ctx t ctx ) ;
void shmemx ctx fence ( shmem ctx t ctx ) ;
void shmemx ctx quiet ( shmem ctx t ctx ) ;
void shmemx sync ( int PE start , int l ogPE str ide ,

int PE size , long ∗pSync ) ;
void shmemx sync al l (void ) ;

Fig. 2. OpenSHMEM extensions for contexts-domains proposal
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void shmemx ctx TYPE p(TYPE ∗addr , TYPE value , int pe ,
shmem ctx t ctx ) ;

void shmemx ctx TYPE get (TYPE ∗dest , const TYPE ∗ source ,
s i z e t nelems , int pe ,
shmem ctx t ctx ) ;

void shmemx TYPE inc (TYPE ∗dest , int pe , shmem ctx t ctx ) ;

Fig. 3. OpenSHMEM extensions for context-based communications

Any thread can make use of a context object by using the context han-
dle. Each of these contexts are not mapped to any particular thread. Based
on the thread-level, any context can be accessed by any thread by referenc-
ing the context handle. For example, a group of contexts with thread-level
SHMEM THREAD SINGLE forms a domain. But only one thread can access it at
a time.

shmemx ctx fence and shmemx ctx quiet are context-based fence and quiet
operations. A call to these by a thread only affects the context that was refer-
enced by the context handle argument.

In addition to these routines, there are context versions of RMA and
AMO routines that have an extra argument of shmem ctx t handle to spec-
ify the context on which the particular communication operation takes place.
Figure 3, shows an example set of communication routines with a context handle
argument.

2.4 Usage Details Using Thread-Safe and Contexts-Domains
Extensions

Figure 4 shows the basic usage details of extensions associated with the two
proposals.

Fig. 4. Basic usage details of thread-safe and contexts-domains extensions
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With the Thread-Safe feature, we register threads and then use normal RMA
and AMO routines which are now thread-safe as a result of the combination
shmemx init thread and shmemx thread register. Finally, we unregister the
threads and exit after usage.

With the Contexts-Domains feature, any thread can create domain and con-
text objects and make them visible to other threads. Any thread can pick these
objects and use them for context-based communications. Threads involved in
context and domain object creation or context-based communication operations
need not be registered.

Thread-Safe APIs and Contexts-Domains APIs can be used in the same
application, though not in the same SHMEM threaded region. Threads and
contexts are two separate entities in an application. That said, even registered
threads can make use of the context objects.

3 Implementation Details

In this Section, we provide basic implementation details of the Thread-Safe and
Contexts-Domains extensions in Cray SHMEM.

3.1 DMAPP

The Cray DMAPP (Distributed Shared Memory Application) library is a low-
level communication layer developed by Cray Inc. to provide support for logi-
cally shared, distributed memory programming models. It is designed to deliver
the full hardware performance of the current Cray networks. DMAPP provides
support for Remote Memory Access (RMA) between processes within a job in
an one-sided manner. Cray’s implementation of OpenSHMEM and Partitioned
Global Address Space (PGAS) compilers, such as Coarray Fortran [14] and Uni-
fied Parallel C (UPC) [7], are implemented on top of DMAPP.

All PUT, GET, and AMO communication operations are called Events.
There are two types of Remote Memory Access mechanisms: Fast Memory Access
(FMA), and Block Transfer Engine (BTE). FMA and BTE mechanisms initiate
Put and Get events with FMA handling data transfers for small data sizes and
BTE for large data sizes. FMA mechanism is also used to initiate AMO events.

For each process in a Cray SHMEM based application, DMAPP creates a
local instance of a Communication Domain (CDM) and it obtains an identifier
called an cdm handle, for future reference to this CDM. In order to use the FMA
and BTE mechanisms we configure the FMA and BTE descriptors and attach
them to the CDM.

All communication operations on that PE are done through this CDM.
DMAPP does not support shared CDMs and each PE should have a unique
CDM. The number of FMA descriptors per node is limited. This is a hardware
limitation. For example, on Cray-developed Aries [2] RDMA interconnect the
number of FMA descriptors per node is fixed to 120.
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The event notification mechanism is through Completion Queues (CQ). The
event notification mechanism is the process to track the progress of communi-
cation operations. Each CDM has its own CQ and all events on that particular
CDM are tracked through this CQ. By DMAPP design, there is 1-to-1 relation
between CDM and FMA descriptors, as well as with CDM and CQ.

3.2 Thread-Safe Implementation Details

As mentioned in Sect. 3, in a single threaded application, each PE has its own
CDM and a corresponding CQ per CDM. In a multithreaded application, each
registered thread gets its own CDM and a corresponding CQ. Only registerd
threads can make OpenSHMEM calls.

If we over allocate the number of resources and register more threads than
the number of CDMs per node, one or more threads are forced to share a CDM.
For each thread, the cdm handle that is uses to refer to its CDM is stored
in Thread Local Storage (TLS). It is referenced during every communication
operation from that thread.

The shmemx thread quiet routine for a particular thread waits for comple-
tion of all events in the associated CQ. In an over allocation scenario, if multiple
threads share the same CQ, the shmemx thread quiet routine waits for com-
pletion of all events from all threads that share the CQ. This is because of the
1-to-1 relation between CDM and CQ.

Figure 5 shows the basic relation between threads and DMAPP network
resources. In Fig. 5, we have three threads in PE and among them two are reg-
istered. These registered threads have their own CDMs with an allocated CQ.
All events from these registered threads are tracked with their allocated CQs.

3.3 Context Implementation Details

In terms of Contexts-Domains implementation, in spite of nomenclature based
similarities, context-based domains and DMAPP-based domains are two sep-
arate entities. In this paper, context-based domain is referred as domain and
DMAPP-based resource domain is referred as CDM.

Fig. 5. Thread-safe design in cray SHMEM
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Fig. 6. Contexts-domains prototype: design-1 domain-based resource sharing

Domain and Context features are used to split up message injection resources
from remote completion tracking. There are two different ways to track event
completion. Based on remote completion tracking, we have designed two different
Context prototypes.

– Design:1 Domain-based Resource Sharing; and
– Design:2 Context-based Resource Sharing

Design:1 Domain-Based Resource Sharing. Each domain has its own
CDM, and all contexts from that particular CDM shares same CQ. Now, CQ
tracks completion of all events on that particular domain, and this is of little use
because all memory ordering operations are contexts-based. Hence, completion
of all events from a context is tracked separately with a unique reference called
sync id. sync id is generated for each context-based events. This sync id is
tracked separately in SHMEM library-level, rather than on the DMAPP-level.
shmem ctx quiet operation on a particular context waits for completion of all
sync ids associated with that context.

Figure 6, shows basic design for domain-based resource sharing. In Fig. 6,
we have two domains created for a particular PE, with multiple contexts per
domain. Each domain has its registered CDM, with an allocated CQ. All events
from contexts that shares the same domain is tracked by a single CQ. Different
shades of the CQs represent events from multiple different contexts, and events
tracked using their sync id in the SHMEM library-level is not shown in Fig. 6.

Design:2 Context-Based Resource Sharing. In this Design, each context
has its own CDM and all memory ordering operations will be tracked through
CQ mapped to that CDM. Here, domain is just a group of CDMs with similar
properties.

Figure 7, shows design for context-based resource sharing. There are two
domains, each with different thread-levels. Domain-1 has SHMEM THREAD SINGLE
as thread-level with 2 contexts associated with it. Domain-2 has thread-level as
SHMEM THREAD MULTIPLE, with 2 contexts associated with it. There are only 3
CDMs available to share within that PE. Due to thread-levels, all contexts in
Domain-1 gets a unique CDM, while Contexts in Domain-2 share a common
CDM.
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Fig. 7. Contexts-domains prototype: design-2 context-based resource sharing

4 Compare and Contrast Thread-Safe and
Contexts-Domains Features

In this Section, we compare various features of thread-safe and context exten-
sions. Features analyzed in subsections, may be generic or specific to a proposal.
These features are analyzed in terms of the runtime and explains the reason
behind the design decisions briefed in Sect. 3.

4.1 Experimental Setup

Features in Sect. 4, are experimented with Cray SHMEM version 7.4.0. Tests
were run on a 52 node Cray XC system with 36 core Intel Broadwell processors
per node with Cray-developed Aries interconnect architecture. In this paper,
a node is a group of processors, memory, and network components that acts
as network end points on system interconnection network. We also use Cray
Programming Environment with Cray Compiler Environment (CCE) version
8.4 for tests. OpenMP [16] from CCE is used for all Microbenchmarks as hybrid
design with OpenSHMEM.

4.2 Impact of Thread Local Storage (TLS)

As stated in the thread-safe extensions design in Sect. 3.2, each registered thread
uses Thread Local Storage for storing cdm handle. The performance impact of
using TLS is analyzed in this Section. We modified the OSU Microbenchmarks
and created a multithreaded version of the PUT benchmark with thread-level
SHMEM THREAD MULTIPLE. The inter-node communication of a pair of PE making
communication calls of different data sizes from 32 registered threads per PE to
one another is analyzed.

In Fig. 8, cdm-handle-use-TLS represents the version of the modified OSU
PUT Microbenchmark that uses TLS for storing cdm handle. cdm-handle-
no-TLS, uses a local variable instead of TLS. In the cdm-handle-no-TLS ver-
sion, significant changes are made in Cray SHMEM implementation, to allow
users to directly pass cdm handle as an extra argument in the SHMEM commu-
nication calls. Though there are no performance difference on large data sizes,
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Fig. 8. Analysis of modified OSU put microbenchmarks for small data sizes less than
512 bytes with thread-level SHMEM THREAD MULTIPLE for cdm handle stored in TLS and
cdm handle stored as Local variable

we see a variability on small data sizes less than 512 bytes. Figure 8 shows the
performance variability for small data sizes less than 512 bytes. Comparing the
median of multiple iterations, we see cdm-handle-no-TLS to perform 8% better
than cdm-handle-use-TLS. Similar performances are observed on both GCC
and CCE compiler.

4.3 Usage of Explicit and Implicit Non-blocking Operations

As mentioned in Sect. 3.3, in domain-based resource sharing design unique
sync id from each context-based events are tracked. Not all DMAPP events
generate sync ids. Only explicit non-blocking operations generate sync ids and
not the implicit non-blocking operations.

Figure 9(a) shows performance of modified OSU Microbenchmark with 2
PEs(32 threads per PE) on separate nodes that use 32 domains with 1 context
per domain design. Each domain object is accessed by only one thread. Since,
each domain has only one context, memory ordering can be tracked directly on
CQs. In Fig. 9(a), explicit-events refers to benchmark version with all events
as explicit operations, while implicit-events refers to version with all events
as implicit operations.

We see for small message sizes less than 1M, using implicit operations shows
45% better latency when compared to using explicit operations. And for large
data sizes, there is no obvious performance impact. This is because, for small data
sizes there are optimizations performed over implicit operations in DMAPP to
chain events together and generate a unique sync id for a chain of non-blocking
events rather than one sync id per event.

This performance degradation can be avoided in context-based resource shar-
ing design. While domain-based resource sharing requires conversion of all events
into explicit operations to track sync ids, context-based resource sharing does
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Fig. 9. Analysis of SHMEM THREAD MULTIPLE implementation in modified OSU put
microbenchmarks on 2 PEs from 2 separate nodes

not involve tracking of sync id, as all events are tracked directly through CQs
mapped to contexts.

4.4 Hierarchy of Threading Support

At present, Cray SHMEM supports two levels of threading: SHMEM THREAD
SINGLE, and SHMEM THREAD MULTIPLE. This is also similar to thread-levels avail-
able in MPI [10]. The support for thread-levels similar to MPI THREAD FUNNELED
and MPI THREAD SERIAL are not discussed for current proposals. The existing
thread-levels are same in both the thread-safe and context features.

In thread-safe, SHMEM THREAD SINGLE allows registration of only one thread
per process, while SHMEM THREAD MULTIPLE allows multiple thread registrations.
This is a hint for implementations to provide thread-safety during communi-
cation, which in turn means introduction of locks to ensure thread-safety. The
thread-safe proposal allows usage of one of the two thread-levels. Hence, if more
than one thread gets involved in communication, locks are introduced by default
in all CDMs. Locks are essential only in scenarios where number of registered
threads being greater than number of CDMs. But, as determination of actual
number of registered threads is not possible during initialization, all CDMs are
locked by default.

Figure 9(b), shows performance difference between SHMEM THREAD MULTIPLE
implementation with and without locks. We modified OSU PUT Microbench-
marks, to use multiple threads for simultaneous communication. We use 2 PEs
with each PE on different nodes and with 32 threads registered per PE. We see
No-lock based implementation is 4X times better than lock based implemen-
tation for small data sizes.

While No-lock design provides exceptional performance, this design cannot
be used for thread-safe implementation, as it assumes ideal usage of threads. The
ideal usage referred here is number of registered threads being equal to number
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of CDMs available per PE. This is one disadvantage of mapping threads directly
to network resources. Section 4.5 shows how this is fixed with Contexts-Domains
features and map resources with No-lock design.

4.5 Efficient Usage of Network Resources

This Section is an extension to Sect. 4.4, with more analysis on Contexts-
Domains design to efficiently share network resources. There is a limitation on
number of available network resources per node. Table 1 shows the growing need
for network resource per node on different Cray architectures. This is a hardware
limitation. Efficient usage of network resources is of an essence. In the DMAPP
design, by network resources we refer to number of CDM’s available per node.
When applications subscribes for more than the actual available resources, then
multiple threads or contexts (in context-based sharing) are forced to share a
single CDM.

Though Contexts-Domains features cannot resolve this over allocation sce-
narios, it can help in providing sufficient hints to SHMEM runtime for effi-
cient network resource mapping. The only possibility of providing such hints in
thread-safe extensions is using SHMEM MAX NUM THREADS environmental variable.
It is used during initialization to refer the maximum number of possible thread
registrations. But, this is not sufficient, and users do not have any control over
the way network resources are shared by threads. There are multiple scenarios
that SHMEM MAX NUM THREADS fail to address. For example on over allocation;

– Even if threads are registered and over allocated only during a particu-
lar module of the application, locks are introduced on all CDMs starting
from shmem init thread irrespective of the module where the over alloca-
tion occurs.

– Even if only the master thread is active at a time, though locks are not func-
tional, check for locks is done during all communication events from master
thread;

Table 1. Growing network resource demand (based on cray architectures)

Architecture Threads/Node Interconnect CDMs/Node

Ivy Bridge 40+ Aries with Dragonfly 120

Haswell 56+ Aries with Dragonfly 120

Broadwell 70+ Aries with Dragonfly 120

Knights Landing 250+ Aries with Dragonfly 120

Context features helps to differentiate network resources from threads. While
in thread-safe features the threads are mapped directly to a network resource,
threads and context objects are two separate entities in Contexts-Domains. From
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Sect. 2.3, we know contexts are mapped directly to network resources. The map-
ping is based on either domain-based resource sharing or context-based resource
sharing design and threads as separate entities are not mapped to any particular
contexts. If contexts handles are made visible to threads, any thread can make
use of it.

Fig. 10. Relation between threads and
contexts

Contexts with similar network fea-
tures group together as a domain.
In Fig. 10, Context-1 belong to one
particular domain, while Context-2
and Context-3 belong to a dif-
ferent domain. With this design,
instead of locking all resources during
shmem init thread, we can lock only
particular resources based on the prop-
erty of the contexts. Any thread can
make use of this created contexts at
any time, with usage is based on the
resource property of contexts. For example, if a particular context is created as
a private context or with thread-level as SHMEM THREAD SINGLE, then only one
thread should be allowed to access that particular context at a time. If a context
is created as a shared context or with thread-level as SHMEM THREAD MULTIPLE,
any number of threads can access that context simultaneously. Contexts cre-
ated with thread-level as SHMEM THREAD SINGLE is similar to the No-lock design
from Sect. 4.4 and provide better performance than the Contexts created with
thread-level as SHMEM THREAD MULTIPLE.

If the above details explain the ways by which threads are separated from
directly mapping against network resources, these same features also provides
opportunities for fine-grain synchronization on a single thread by creating mul-
tiple communication streams per thread. For example, if the number of avail-
able network resources are more than actual threads being used. Then, a sin-
gle thread can make use of multiple contexts, and each context with its own
stream of communication provides better concurrency, and computation overlap.
Dinan et al. [9], demonstrate this feature with experimental results from using
context, and domain features on Mandelbrot Set Benchmark, and Integer Sort
Benchmark.

4.6 Memory Ordering Extensions

One important property, that hinders the co-existence of both thread-safe and
context features are memory ordering. Thread-safe features allows shmem quiet
and shmem fence to perform memory ordering across all registered threads in a
PE. Contexts-Domains avoids the property of shmem quiet and shmem fence to
function across all created active contexts. This property in thread-safe exten-
sions is expensive, and is fundamentally against the fine-grain synchronization
principle of contexts.
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A well-behaved, multithreaded application will not use shmem quiet
in a SHMEM threaded region and memory ordering is done with
shmem thread quiet on a per thread basis. As part of thread-safe features,
to support a well-behaved application we suggest to introduce an environ-
mental variable to provide the users with an opportunity to decide the prop-
erty of shmem quiet and shmem fence. SHMEM THREADED QUIET is the new envi-
ronmental variable and it accepts SERIAL, SHARED, or INDEPENDENT as input.
shmem quiet functionality with each values are explained below:

– SERIAL - shmem quiet is not thread-safe. Usage of shmem quiet inside an
SHMEM threaded region requires serialization and this is the default property;

– SHARED - thread-safe and ensures memory ordering across all registered
threads; and

– INDEPENDENT - thread-safe, and functionality is similar to shmem thread
quiet, which invokes memory ordering only on the current thread which ini-
tiated the shmem quiet call.

Figure 11, shows the inter-node performance analysis of modified OSU Put mul-
tithreaded Microbenchmark on 2 PEs, with 16 registered threads per PE. We
see the performance results across different data sizes, with different values for
SHMEM THREADED QUIET environmental values.

Though there are no performance variations for large data sizes, for small
data sizes we see SHMEM THREADED QUIET with value SERIAL to have bet-
ter latency and message rate compared to SHMEM THREADED QUIET with value
SHARED.
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Fig. 11. Performance analysis on using different values for SHMEM THREADED QUIET

environmental variable using OSU put microbenchmark

5 Experiments

The purpose of this experimentation is to analyze the impact of optimized net-
work resource mapping. For this test, we implemented different versions of multi-
threaded all-to-all collective communication pattern.
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We used a fixed data size of 4 MB per PE. Each PE uses 32 threads and
latency is measured across different sets of PEs. As per the all-to-all collective
communication pattern, based on number of PEs used, data is split equally
among all PEs and sent to all other PEs. Further for multithreaded version of
this communication pattern, on each PE this data is split further equally among
its threads and threads are simultaneously used for communication.

There are three different versions of this benchmark. Figure 12(a) refers to
the performance comparison between these versions. And, Fig. 12(b) to the usage
details of 32 threads per PE.

– Thread safe version(TS), refers to the version implemented with thread-
safe extensions. 32 threads per PE are registered, and each thread is used for
communication.

– Context Design 1(CTX1), refers to the version implemented with 1 domain
(Domain-1) created using thread-level as SINGLE, and this domain has 32
contexts associated to it. For communication, 32 threads created in the appli-
cation make use of 1 context object each.

– Context Design 2(CTX2), refers to the version implemented with 2 domains.
Domain-1 is created using thread-level as SINGLE and Domain-2 with thread-
level as MULTIPLE. Each domain as 16 contexts. Then 32 threads in the
application make use of 1 context object each.

This test is performed using 32 cores per node Broadwell machine with Aries
interconnect. Since, Aries architecture has 120 CDMs, all registered thread in TS
and all Contexts in CTX1, and CTX2 receive its own CDM. In TS, by design all
its associated CDMs are locked. And as all contexts in CTX1 are created with
thread-level as SINGLE, there are no locks in its associated CDMs. While, in
CTX2 16 contexts which have the thread-level as MULTIPLE are locked, while
the other 16 contexts with thread-level as SINGLE are not locked.

From the experimental evaluation, we see the performance of CTX1 to be
18% better than TS, and 7% better than CTX2.
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6 Related Work

6.1 PAMI

PAMI [12], Parallel Active Message Interface is a communication library for
Blue Gene/Q Supercomputers. Contexts objects in PAMI are similar to the
proposed Contexts-Domains extensions. In PAMI, progress of communication
events on each context is independent and advance concurrently. However, the
major difference is that all operations in PAMI contexts are not thread-safe.
Hence, they can be considered as creating all contexts with thread-level property
as SHMEM THREAD SINGLE.

6.2 MPI-3 RMA

In Cray-MPICH, MPI-3 RMA features are designed to provide contention-free
multithreaded communication and message completion with high bandwidth
and high message rate. This property of contention free communication, and
message completion allows users to flush outstanding messages on one thread
while other threads can continue to make uninterrupted progress driving further
communication.

To detail further, MPI-3 RMA features allocate network resources to threads
dynamically. This design scales upto any number of threads per rank. There will
be contention for network resources, only if number of threads per rank that
are simultaneously driving communication exceeds number of available network
resource to threads on that rank, else this design is contention-free. This is true
even when various threads are simultaneously making both communication and
message completion calls, such as MPI Win flush.

7 Future Work

Experimentations and performance analysis in Sects. 4 and 5 were analyzed from
the runtime’s perspective. Those analysis are performed to understand the mul-
tithreaded features, that would allow the OpenSHMEM libraries to obtain the
performance as close to the underlying communication layers through effecient
resource mapping. In future work, we will study more multithreaded OpenSH-
MEM applications using the Thread-Safe and Contexts-Domains features and
evaluate these proposals more from a user’s perspective. We will also study the
different usage scenarios, with the suitability of features from particular proposal
when compared to the other.

8 Conclusion

In this work, we presented an evaluation of two features that have been proposed
as extensions to OpenSHMEM: “Thread-Safe” and “Contexts-Domains”. The
Thread-Safe feature has been implemented in Cray SHMEM and has been in
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released versions for some time. A prototype of the Contexts-Domains feature
has been implemented in an unreleased version of Cray SHMEM.

Evaluation of different designs with various performance measurements
allowed us to make more optimal design decisions. Limited network resources
requires some interaction between user and library to make optimal use of these
resources. The Thread-Safe feature provides a fairly simple way to increase
concurrency of SHMEM operations in multithreaded SHMEM programs. The
Contexts-Domains feature provides a different and somewhat more complicated
way to increase concurrency of SHMEM operations in multithreaded SHMEM
programs but with potential for greater concurrency than with thread-safe.
Contexts-Domains feature exposes SHMEM users to a new layer of network
properties and provide them with explicit control for resource allocation. A right
level of abstraction is needed to avoid delegating the complete network resource
allocation functionality to users.

These two features are not incompatible when used in threaded regions of
a SHMEM application. Calls to Thread-Safe routines can be inserted in code
regions that can benefit from it and calls to Contexts-Domains routines can
be inserted in other code regions. In future work, we will study more on the
interoperability of these two features.

Acknowledgments. The authors wish to acknowledge Cray Inc., employees who
worked on design and implementation of thread-safe extensions to OpenSHMEM:
Monika ten Bruggencate, Kim McMahon, and Steve Oyanagi. Special thanks to James
Dinan (Intel) for all discussions on Context proposal. Any opinions, findings, and con-
clusions or recommendations expressed in this material are those of the authors and
do not necessarily reflect the views of Cray Inc.

References

1. Cray - Message Passing Toolkit. http://goo.gl/Cts1uh
2. Cray-developed Aries Interconnect. http://goo.gl/Xf74rG
3. Cray Global Arrays. http://goo.gl/sRKRu5
4. OpenSHMEM specification version-1.3. http://goo.gl/YK2JKD
5. OSU Micro-benchmarks. http://goo.gl/LgMc8e
6. Almasi, G.: Encyclopedia of Parallel Computing. Ed. by Padua, D.A. (2011)
7. Carlson, W.W., Draper, J.M., Culler, D.E.: S-246, 187 Introduction to UPC and

Language Specification
8. Chapman, B., Curtis, T., Pophale, S., Poole, S., Kuehn, J., Koelbel, C., Smith, L.:

Introducing OpenSHMEM: SHMEM for the PGAS community. In: Proceedings of
the Fourth Conference on Partitioned Global Address Space Programming Model,
PGAS 2010 (2010)

9. Dinan, J., Flajslik, M.: Contexts: a mechanism for high throughput communica-
tion in OpenSHMEM. In: Proceedings of the 8th International Conference on Par-
titioned Global Address Space Programming Models, PGAS 2014, pp. 10:1–10:9
(2014)

10. The MPI Forum. MPI: A Message Passing Interface (1993)

http://goo.gl/Cts1uh
http://goo.gl/Xf74rG
http://goo.gl/sRKRu5
http://goo.gl/YK2JKD
http://goo.gl/LgMc8e


180 N. Namashivayam et al.

11. Knaak, D., Namashivayam, N.: Proposing OpenSHMEM extensions towards
a future for hybrid programming and heterogeneous computing. In: Gorentla
Venkata, M., Shamis, P., Imam, N., Lopez, M.G. (eds.) OpenSHMEM 2014. LNCS,
vol. 9397, pp. 53–68. Springer, Heidelberg (2015). doi:10.1007/978-3-319-26428-8 4

12. Kumar, S., Mamidala, A.R., Faraj, D.A., Smith, B., Blocksome, M.,
Cernohous, B., Miller, D., Parker, J., Ratterman, J., Heidelberger, P., Chen, D.,
Steinmacher-Burrow, B.: PAMI: A Parallel Active Message Interface for the Blue
Gene/Q Supercomputer. In: IEEE 26th International Parallel Distributed Process-
ing Symposium (IPDPS) 2012, pp. 763–773 (2012)

13. Lewis, B., Berg, D.J.: Multithreaded Programming with Pthreads (1998)
14. Numrich, R.W., Reid, J.: Co-array fortran for parallel programming. SIGPLAN

Fortran Forum 17(2) (1998)
15. OpenACC. OpenACC application program interface version 2.5, October 2015
16. OpenMP Architecture Review Board. OpenMP application program interface ver-

sion 4.5, November 2015
17. ten Bruggencate, M., Roweth, D.: DMAPP: An API for One-Sided Programming

Model on Baker Systems. Technical report, Cray Users Group (CUG), August 2010
18. ten Bruggencate, M., Roweth, D., Oyanagi, S.: Thread-safe SHMEM extensions.

In: Poole, S., Hernandez, O., Shamis, P. (eds.) OpenSHMEM 2014. LNCS, vol.
8356, pp. 178–185. Springer, Heidelberg (2014). doi:10.1007/978-3-319-05215-1 13

http://dx.doi.org/10.1007/978-3-319-26428-8_4
http://dx.doi.org/10.1007/978-3-319-05215-1_13


OpenCL + OpenSHMEM Hybrid Programming
Model for the Adapteva Epiphany Architecture

David A. Richie1 and James A. Ross2(B)

1 Brown Deer Technology, Forest Hill, MD 21050, USA
drichie@browndeertechnology.com

2 U.S. Army Research Laboratory, Aberdeen Proving Ground,
Adelphi, MD 21005, USA

james.a.ross176.civ@mail.mil

Abstract. There is interest in exploring hybrid OpenSHMEM + X
programming models to extend the applicability of the OpenSHMEM
interface to more hardware architectures. We present a hybrid OpenCL
+ OpenSHMEM programming model for device-level programming for
architectures like the Adapteva Epiphany many-core RISC array proces-
sor. The Epiphany architecture comprises a 2D array of low-power
RISC cores with minimal uncore functionality connected by a 2D mesh
Network-on-Chip (NoC). The Epiphany architecture offers high com-
putational energy efficiency for integer and floating point calculations as
well as parallel scalability. The Epiphany-III is available as a coprocessor
in platforms that also utilize an ARM CPU host. OpenCL provides good
functionality for supporting a co-design programming model in which the
host CPU offloads parallel work to a coprocessor. However, the OpenCL
memory model is inconsistent with the Epiphany memory architecture
and lacks support for inter-core communication. We propose a hybrid
programming model in which OpenSHMEM provides a better solution
by replacing the non-standard OpenCL extensions introduced to achieve
high performance with the Epiphany architecture. We demonstrate the
proposed programming model for matrix-matrix multiplication based on
Cannon’s algorithm showing that the hybrid model addresses the defi-
ciencies of using OpenCL alone to achieve good benchmark performance.

Keywords: OpenCL · OpenSHMEM · Hybrid programming model ·
Single-board computer · Network-on-Chip (NoC)

1 Introduction and Motivation

The emergence of a wide range of parallel processor architectures continues to
present the challenge of identifying an effective programming model that pro-
vides access to the capabilities of the architecture while simultaneously providing
the programmer with familiar, if not standardized, semantics and syntax. The
programmer is often left with the choice of using a non-standard programming
model specific to the architecture or a standardized programming model that
c© Springer International Publishing AG 2016
M. Gorentla Venkata et al. (Eds.): OpenSHMEM 2016, LNCS 10007, pp. 181–192, 2016.
DOI: 10.1007/978-3-319-50995-2 12
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yields poor control and performance. The parallel RISC processor investigated
in this work has presented precisely this challenge as suitable programming mod-
els matched to the architecture have been explored.

The Adapteva Epiphany RISC array architecture [1] is a scalable 2D array
of low-power RISC cores with minimal uncore functionality supported by an on-
chip 2D mesh Network-on-Chip (NoC) for fast inter-core communication. The
Epiphany architecture is scalable to 4,096 cores and represents an example of an
architecture designed for power-efficiency at extreme on-chip core counts. Proces-
sors based on this architecture exhibit good performance/power metrics [2] and
scalability via the 2D mesh network [3,4], but require a suitable programming
model to fully exploit these capabilities. A 16-core Epiphany-III coprocessor [5]
has been integrated into the Parallella mini-computer platform [6] where the
RISC array is supported by a dual-core ARM CPU and asymmetric shared-
memory access to off-chip global memory.

RISC array processors such as those based on the Epiphany architecture
may offer significant computational power efficiency in the near future with
requirements in increased floating point performance, including long-term plans
for exascale platforms. The power efficiency of the Epiphany architecture has
been specifically identified as both a guide and prospective architecture for such
platforms [7]. The Epiphany-IV processor has a performance efficiency of 50
GFLOPS/W (single precision) [2] making it one of the most efficient fully diver-
gent parallel processors based on general-purpose cores. This approaches the
threshold for exascale computing requirements of a power budget of 20 MW [8].
This architecture has characteristics consistent with future processor predictions
arguing hundreds [9] and thousands [10,11] of cores on a chip.

One aspect of the low-power design of the Epiphany architecture is the use
of a cache-less distributed on-chip memory architecture that for the Epiphany-
III provides 32 KB of local memory per core for both instructions and data.
Utilizing this core local memory and managing inter-core communication is crit-
ical to achieving good performance and this is a central element in the design
of the architecture. In previous work, these technical challenges were the pri-
mary factors in achieving good performance with threaded MPI and less favor-
able results using OpenCL. Here we revisit OpenCL with a hybrid model that
uses OpenSHMEM to resolve the deficiencies of OpenCL in the context of this
architecture. Our main contributions are the presentation of a hybrid OpenCL
+ OpenSHMEM programming model with benchmarks for the application to
matrix-matrix multiplication.

An outline of the remainder of the paper is as follows. Section 2 describes the
Epiphany architecture and previous work using OpenCL and OpenSHMEM as
parallel programming models. Section 3 presents the proposed hybrid OpenCL
+ OpenSHMEM programming model for device-level programming. Section 4
discusses the application of the proposed programming model to Cannon’s algo-
rithm for matrix-matrix multiplication, including benchmark results. Section 5
discusses conclusions and future work.
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2 Background

Interest in exploring hybrid OpenSHMEM + X programming models has been
expressed recently within the OpenSHMEM community [12]. Just as the two-tier
parallel hybrid OpenMP + MPI model handles both symmetric multiprocessing
(SMP) execution within a node and distributed message passing for attached
network nodes, it is assumed that similar hybrid models may benefit from mix-
ing code with OpenSHMEM. In the specific case detailed within this paper, the
hybrid OpenCL + OpenSHMEM model exists at the same parallelism tier and
the combination of the programming models address the deficiencies of each
within the context of the Parallella platform and Epiphany architecture. While
OpenCL may do well addressing SMP architectures with hierarchical mem-
ory, it does not provide semantics for inter-processor communication between
processing elements or multiprocessors. OpenSHMEM provides the semantics
for non-uniform memory access (NUMA) across a partitioned global address
space (PGAS) and may not be ideal for SMP architectures. The OpenSHMEM
concept of memory exists virtually in a flat one-dimensional domain and lacks
the semantics of the tiered memory hierarchy found in the SMP-based OpenCL
programming model. Fundamentally, the Epiphany device-level architecture has
characteristics of both SMP and PGAS platforms so it makes sense to address
the architecture with a hybrid SMP and PGAS programming model.

2.1 Epiphany Architecture

The Adapteva Epiphany MIMD architecture is a scalable 2D array of RISC cores
with minimal uncore functionality connected with a fast 2D mesh Network-on-
Chip (NoC). Processors based on this architecture exhibit good energy efficiency
and scalability via the 2D mesh network, but require a suitable programming
model to fully exploit the architecture. The 16-core Epiphany-III coprocessor has
been integrated into the Parallella minicomputer platform where the RISC array
is supported by a dual-core ARM CPU and asymmetric shared-memory access to
off-chip global memory. Figure 1 shows the high-level architectural features of the
coprocessor. Each of the 16 Epiphany-III mesh nodes contains 32 KB of shared
local memory (used for both program instructions and data), a mesh network
interface, a dual-channel DMA engine, and a RISC CPU core. Each RISC CPU
core contains a 64-word register file, sequencer, interrupt handler, arithmetic
logic unit, and a floating point unit. Each processor tile is very small at 0.5 mm2

on the 65 nm process and 0.128 mm2 on the 28 nm process. Peak single-precision
performance for the Epiphany-III is 19.2 GFLOPS with a 600 MHz clock. Fab-
ricated on the 65 nm process, the Epiphany-III consumes 594 mW for an energy
efficiency of 32.3 GFLOPS per watt [Olofsson, personal communication]. The
64-core Epiphany IV, fabricated on the 28 nm process, has demonstrated energy
efficiency exceeding 50 GFLOPS per watt [2].

The raw performance of currently available Epiphany coprocessors is rela-
tively low compared to modern high-performance CPUs and GPUs; however,
the Epiphany architecture provides greater energy efficiency and is designed to
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Fig. 1. Adapteva Epiphany-III architecture diagram

be highly scalable. The published architecture road map specifies a scale-out of
the architecture to exceed 1,000 cores in the near future and, shortly thereafter,
tens of thousands of cores with an energy efficiency approaching one TFLOPS
per watt. Within this context of a highly scalable architecture with high energy
efficiency, we view it as a competitive processor technology comparable to GPUs
and other coprocessors.

While architecture energy efficiency is important, achievable performance
with a compelling programming model is equally, if not more, important. Key
to performance with the Epiphany architecture is data re-use, requiring precise
control of inter-core communication since the architecture does not provide a
hardware cache at any level. The cores can access off-chip mapped memory with
a significant performance penalty in both latency and bandwidth relative to
accessing on-chip core memory of any core.

2.2 OpenCL for Epiphany

OpenCL is an industry standard API for parallel programming accelerators or
coprocessors on heterogeneous platforms [13]. Designed primarily for computing
with general-purpose graphics processing units (GPUs), the API may be used
to access the compute capability of other types of devices including multi-core
CPUs and other accelerators. OpenCL support is provided for most mainstream
high-performance computing accelerators including Nvidia and AMD GPUs,
Intel and AMD multi-core CPUs, Intel Xeon Phi, and mobile CPU+GPU hybrid
processors. In this context, there is merit in exploring the use of OpenCL for
exposing the compute capability of the Epiphany coprocessor on the Parallella.
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OpenCL consists of a kernel programming API used to program the coproces-
sor device and a run-time host API used to coordinate the execution of these
kernels and perform other operations such as memory synchronization so that
parallel computationally intensive work can be offloaded from the host platform.
The OpenCL programming model is based on the parallel execution of a kernel
over many threads to exploit SIMD or SIMT architectures. From the perspective
of the host platform, parallel kernels are enqueued for execution on the coproces-
sor device. Each kernel is executed over a global n-dimensional range of work
items logically partitioned into local workgroups. Threads of execution within a
workgroup are allowed limited synchronization through the use of barriers, and
no synchronization between workgroups is allowed.

OpenCL was the first standard parallel programming API implemented for
the Epiphany architecture, and partial support for the OpenCL 1.1 standard was
available as part of the COPRTHR-1.5 SDK for Epiphany [14]. The selection of
OpenCL was supported by several factors. The Epiphany-III coprocessor was
available as part of a heterogeneous mini-computer (Parallella) that included a
dual-core ARM CPU host running Linux. As a result, the OpenCL co-design
programming model premised on the host-directed offload of parallel work to a
coprocessor was well suited to the platform.

The focus of the implementation of OpenCL for Epiphany was to leverage
the API to support effective parallel programming and take advantage of the
underlying architecture. As with other non-GPU architectures, limitations and
constraints exist in the use of OpenCL for targeting the Epiphany architecture.
OpenCL was designed for massively multithreaded architectures such as GPUs.
However Epiphany has no hardware support for multithreading and early exper-
iments with software supported multithreading were not successful due in part
to resource constraints. As a result, implementation of the OpenCL device exe-
cution model for Epiphany must constrain the workgroup size to the number of
physical cores on the device.

The most significant technical issue encountered in the implementation of
OpenCL for Epiphany was reconciling the physical memory architecture of the
Epiphany coprocessor with the logical memory model defined by the OpenCL
standard, shown in Fig. 2. OpenCL address space qualifiers co-mingle the con-
cepts of physical locality and visibility. For the Epiphany architecture, the phys-
ical memory co-located with each core executing a thread in an OpenCL work-
group is best described as symmetric distributed shared memory. This memory
is physically local to the executing thread while also having shared visibility
with all other threads since remote cores have non-uniform memory access to
the local memory of any core. Managing the use and re-use of this symmetric dis-
tributed memory is critical to performance with the Epiphany architecture. An
implementation treating this memory as OpenCL local may prove functionally
correct and consistent within the standard, but the programmer will be left with
poor performance without an interface to treat the memory correctly. Therefore,
an interface for the symmetric distributed shared memory is needed to properly
manage on-chip data movement.
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Fig. 2. OpenCL memory model

For this reason extensions were initially provided within the OpenCL imple-
mentation for Epiphany. A set of inter-thread memory copy routines were pro-
vided to allow for the direct copying of data between the local memory of one
core to another. These routines resolved the problem with OpenCL in a non-
standard way that nevertheless enabled algorithms to be implemented with good
performance. At the time of this development the OpenSHMEM standard was
close to publication but not yet released. In hindsight, OpenSHMEM was pre-
cisely the interface that was needed to resolve this critical issue that arises from
the use of OpenCL for Epiphany.

2.3 OpenSHMEM for Epiphany

An implementation of OpenSHMEM targeting the Epiphany architecture was
recently developed [15]. The interface provides access the complete OpenSHMEM

Fig. 3. OpenSHMEM memory model
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1.3 standard for Epiphany device-level execution. It fills the void left by the lack
of a standard programming model able to achieve good performance with on-
chip memory distributed through the NoC. Conceptually, the physical memory of
the Epiphany architecture maps directly to the OpenSHMEM and PGAS mem-
ory model (shown in Fig. 3). The OpenSHMEM interface for Epiphany does not
address the concept of coprocessor offload or off-chip memory. For applications
requiring these concepts, a hybrid programming model is required.

3 Hybrid OpenCL + OpenSHMEM Programming Model

Based on this prior work we propose a hybrid programming model that combines
OpenCL with OpenSHMEM for device-level programming of parallel proces-
sors like those based on the Epiphany architecture. In the simplest terms,
OpenSHMEM directly resolves the most critical technical issue encountered in
the implementation of OpenCL for such architectures, and replaces the non-
standard extensions that were originally introduced to support inter-core data re-
use and achieve good performance when implementing algorithms for Epiphany.
At the same time, OpenCL complements OpenSHMEM in that for hybrid plat-
forms that employ a parallel coprocessor, OpenCL provides support for the
offload of parallel work to the coprocessor while there is no equivalent opera-
tion defined within the OpenSHMEM standard.

OpenSHMEM for Epiphany provides the inter-core communication between
the OpenCL concept of a processing element or multiprocessor. In the case of
the Epiphany architecture, they are one in the same. There is a single processing
element per multiprocessor in order to address the hierarchical memory concept
of local memory within the OpenCL specification. The OpenCL interface defines
the global or constant memory (shown in Fig. 4).

The hybrid OpenCL + OpenSHMEM programming model uses OpenCL for
the development of host code that controls the overall application and directs the
operations of the coprocessor through the offload of parallel computational ker-
nels. The OpenCL kernel programming language, closely related to standard C, is
used for the implementation of kernels. The distributed shared memory for which
OpenCL provides no suitable API is then exposed using OpenSHMEM from
within the OpenCL kernel. The OpenSHMEM programming model is nested
within OpenCL and may be thought of as extending the latter. Developing
applications with this hybrid programming model will follow closely the app-
roach taken with OpenCL.

From an application development perspective, the OpenCL co-design model
is still used with no change in the development of OpenCL host code. It is the
OpenCL device programming API that is extended with OpenSHMEM. In this
way each OpenCL kernel would contain within it a unique OpenSHMEM parallel
job with a context inherited from the OpenCL kernel. All initialization and allo-
cation requirements in support of the OpenSHMEM API are performed within
the OpenCL kernel each time it is enqueued for execution. Whereas OpenCL ker-
nels are permitted to communicate through global memory, no communication
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Fig. 4. Hybrid OpenCL + OpenSHMEM memory model

using the OpenSHMEM API is permitted between kernels or between OpenCL
work groups. This follows from the OpenCL execution model that allows syn-
chronization within a work group but disallows synchronization between work
groups. The restriction upon synchronization between OpenCL work groups has
limited significance since the nested parallelism of OpenCL mode in which work
is distributed across multiple work groups containing multiple work items can
be ignored if a single work group is used. This simplification is employed in the
application of OpenCL to the Epiphany architecture. Since the OpenSHMEM
API is contained within the OpenCL device kernel context, all OpenSHMEM
memory allocation is only visible within a kernel and is not persistent across
multiple kernel invocations. This aspect of the hybrid programming model could
be revisited in the future but was unnecessary for the initial demonstrations
reported here.

It is worth addressing the issue of portability in the context of the proposed
hybrid programming model. As with the case of the use of non-standard exten-
sions originally employed to achieve good performance for OpenCL development
targeting Epiphany, the use of a hybrid OpenCL + OpenSHMEM program-
ming model will not be compliant with the OpenCL standard and will not be
portable to other architectures for which only a pure OpenCL implementation
exists. This issue cuts directly to the relevance of standards in the develop-
ment of high-performance code across differing architectures. The very concept
of performance-portability is questionable and completely separate from that
of portability in general. A code that is non-standard and utilizes architecture-
specific features is no less useful than a code that is completely portable and
compliant with a given programming standard but achieves poor performance.
For this reason, we contend that the utility of programming standards such as
OpenCL has less to do with portability and more to do with providing pro-
grammers familiar syntax and semantics for creating architecture-specific code.
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Therefore the lack of general portability of our proposed programming model is
not a significant concern for programmers developing high-performance code.

4 Application and Results

Multiplication of matrices is a central building block in many scientific appli-
cations. We apply the hybrid OpenCL + OpenSHMEM programming model to
matrix-matrix multiplication using the Cannon algorithm [16]. Cannon’s algo-
rithm exemplifies the use of 2D parallel decomposition to effectively exploit this
type of parallel architecture. The algorithm decomposes a square matrix-matrix
multiplication problem (C = A * B) across an N-by-N collection of processing ele-
ments. Sub-matrices are shared between neighboring processing elements after
each submatrix-submatrix multiplication. As illustrated in Fig. 5, the communi-
cation pattern begins by skewing the columns of matrix A left and the rows of
B upward within the 2D mesh network topology.

For reference, a purely OpenCL implementation is benchmarked in which
each thread per core must read in submatrices from global memory. This imple-
mentation lacks the data re-use that will lead to higher performance. Instead of
communicating submatrices for A and B to the left and upward, respectively,
equivalent bookkeeping is used to allow each thread to simply read in the subma-
trix that is needed from global memory. The performance using OpenCL alone
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Fig. 5. The 2D mesh network topology communication patterns for submatrix skewing
and shifting. A submatrix-submatrix multiplication occurs after each communication
step. For the Epiphany-III processor, this figure represents the full inter-core com-
munication pattern between the 16 cores on the device although the communication
pattern can be applied generally to larger or smaller square arrays of cores. The initial
skew communication may be unnecessary if the submatrices are read in pre-skewed. An
additional communication step is needed to restore the shifted and skewed matrices if
desired, but this is unnecessary since a copy of the A and B matrices remains within
shared device memory.
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Table 1. On-chip matrix-matrix multiplication performance with pure OpenCL and
hybrid OpenCL + OpenSHMEM programming model

Matrix size Programming model performance (MFLOPS) Speedup

OpenCL OpenCL + OpenSHMEM

32 × 32 218 504 2.3x

64 × 64 424 1000 2.4x

128 × 128 794 1817 2.3x

achieves up to 794 MFLOPS for a matrix sizes of 128× 128. It is worth not-
ing that the architecture is quite limited by the off-chip bandwidth, particularly
when loading memory directly rather than by using the off-chip DMA engine (a
feature not addressed by either OpenCL or OpenSHMEM standards).

The same OpenCL code is then modified with OpenSHMEM. No changes are
required for the OpenCL host code. The OpenSHMEM header is included in the
OpenCL kernel, and the core-local buffers for matrices A, B and C are allocated
using OpenSHMEM semantics for symmetric shared memory. The OpenCL ker-
nel is further modified to use an OpenSHMEM put call with appropriate barrier
synchronization between threads to implement the shifting of submatrices. The
result is that a submatrix is read once from global memory and then re-used.
This is known to be necessary to achieve optimal performance on the Epiphany
architecture. The performance of the hybrid OpenCL + OpenSHMEM pro-
gramming model achieves up to 1812 MFLOPS. With data re-use supported
by OpenSHMEM the hybrid implementation easily outperforms the reference
OpenCL-only implementation. Performance for this application is still limited by
off-chip bandwidth, however, the inclusion of the inter-core communication with
the OpenSHMEM interface increases performance by a factor of 2.3x. Results
for various matrix sizes are shown in Table 1.

5 Conclusions and Future Work

We have proposed and demonstrated a hybrid OpenCL + OpenSHMEM pro-
gramming model for device-level parallel programming architectures like the low-
power Epiphany RISC array processor. This hybrid model directly resolves the
most critical deficiency encountered in the use of OpenCL alone for this architec-
ture. The introduction of OpenSHMEM allows the proper management of the
on-chip distributed symmetric shared memory, which is critical for obtaining
high performance with this architecture. Benchmarks for matrix-matrix mul-
tiplication demonstrate that the hybrid programming model can achieve bet-
ter performance for this architecture and substantially outperforms the use of
OpenCL alone.
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Abstract. We describe the effort to implement the HPCG benchmark
using OpenSHMEM and MPI one-sided communication. Unlike the High
Performance LINPACK (HPL) benchmark that places emphasis on large
dense matrix computations, the HPCG benchmark is dominated by
sparse operations such as sparse matrix-vector product, sparse matrix
triangular solve, and long vector operations. The MPI one-sided imple-
mentation is developed using the one-sided OpenSHMEM implementa-
tion. Preliminary results comparing the original MPI, OpenSHMEM, and
MPI one-sided implementations on an SGI cluster, Cray XK7 and Cray
XC30 are presented. The results suggest the MPI, OpenSHMEM, and
MPI one-sided implementations all obtain similar overall performance but
the MPI one-sided implementation seems to slightly increase the run time
for multigrid preconditioning in HPCG on the Cray XK7 and Cray XC30.

1 Introduction

This OpenSHMEM implementation of the High Performance Conjugate Gra-
dient Benchmark (HPCG) modifies version 3.0 of HPCG available at http://
hpcg-benchmark.org/. Details of the original HPCG benchmark are also avail-
able at the web site.

The HPCG benchmark is aimed at providing more application-oriented mea-
surements of system performance [3,4,6]. Unlike the High Performance LIN-
PACK1 (HPL) benchmark (which is used for ranking TOP 500 computers2) that
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places emphasis on raw floating-point performance in the parallel solution of a
large dense matrix by LU factorization, HPCG was designed to test performance
of real-world applications in solving Partial Differential Equations (PDEs). The
HPCG benchmark is dominated by sparse operations such as sparse matrix-
vector product, sparse matrix triangular solve, and long vector operations. This
stresses the memory subsystem and tests the communication system for neigh-
borhood collectives for computing dot-products, and halo (domain boundary)
exchanges. The HPCG benchmark shows the times for components and esti-
mates the effective Giga Flops per second (Gflop/s) rate.

HPCG is a complete, stand-alone C++ code that measures the performance
of basic operations in a unified code. HPCG uses a Preconditioned Conjugate
Gradient (PCG) algorithm for solving the Laplace heat equation discretized on a
3D rectangular grid using a 27-point stencil. The Conjugate Gradient (CG) iter-
ation includes a multi-grid preconditioner based on local Gauss-Seidel smooth-
ing using sparse matrix triangular solves. HPCG measures the time for sparse
matrix-vector multiplication in the iterative PCG solver where the sparse matrix
is stored in compressed sparse row storage [11]. HPCG also measures the perfor-
mance of vector update operations, and global reduction operations in computing
global dot products and in determining convergence.

In this evaluation, the HPCG version 3.0, which uses two-sided MPI commu-
nication, was modified to use OpenSHMEM one-sided communication primitives
for global reduction operations and in the boundary halo exchange kernel. A sim-
ilar version using MPI-3 one-sided communication was obtained by converting
the OpenSHMEM primitives to equivalent MPI one-sided operations.

Section 2 describes the approach taken to generate an OpenSHMEM version
based on one-sided communication. Section 3 is a summary of results on the
Cray XK7 Titan supercomputer in the Oak Ridge Leadership Computing Facility
(OLCF) at the Oak Ridge National Laboratory. Section 4 summarizes the results
on the Durmstrang SGI Turing cluster and Sect. 5 summarizes the results on the
Cray XC30 Eos computer in OLCF. Finally, the summary analysis is in Sect. 6.

2 Implementation Details

The pure OpenSHMEM version [2,8–10] of HPCG was developed based on the
C++ version 3.0 of the HPCG benchmark. The HPCG benchmark generates a
synthetic problem for solving a three-dimensional second order elliptic partial
differential equation with zero Dirichlet boundary conditions that is discretized
on a rectangular grid using a 27-point stencil. The MPI tasks are arranged in a
three-dimensional processor grid (px × py × pz) where each processor contains a
(nx ×ny ×nz) local grid. The global domain is discretized as a ((nx ∗px)× (ny ∗
py)×(nz ∗pz)) grid. The local grid dimension and number of processors used are
read from a text input data file hpcg.dat. The resulting sparse linear equation
has 27 non-zeros per row for interior equations and 7 to 18 non-zero entries for
vertices on the boundary. The sparse matrix is symmetric positive definite and is
solved by the preconditioned conjugate gradient [11] method. The sparse matrix
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is stored in a compressed sparse row storage scheme [11]. The exact solution
vector is specified with all entries equal to 1.0 and used to generate the right-
hand side vector. An initial guess of all zeros is used. Although there is much
regularity in the sparsity pattern (since it was generated from a rectangular grid
of processors of a problem discretized on a rectangular grid), the benchmark
does not try to take advantage of this structure but treats the problem as a
general unstructured sparse system.

The benchmark prints out the times taken in several major components:

DDOT: Global reduction in computing vector dot products
SPMV: Sparse matrix-vector multiplication used in the iterative solver and

includes communication times for halo boundary exchanges (y(:) ← A ∗ x(:))
WAXPY: Vector operations (W (:) ← a ∗ X(:) + b ∗ Y (:))
MG: Multi-grid preconditioner including Gauss-Seidel smoothing operations

(sparse triangular solve)

Most of the communication is performed in the halo exchange of data in the
extended domain with immediate neighbors (in the routine ExchangeHalo) for
performing matrix-vector multiplication. The original version of HPCG initiates

for ( int i =0; i < num neighbors ; i++) {
int pe = ne ighbors [ i ] ;
shmem int inc(&nre c e i v e r s r e ady , pe ) ;
}

shmem fence ( ) ;
shmem quiet ( ) ;

shmem int wa i t unt i l (&nr e c e i v e r s r e ady , SHMEM CMP EQ, num neighbors ) ;
shmem int swap(&nre c e i v e r s r e ady , 0 , shmem my pe ( ) ) ;

for ( int i = 0 ; i < num neighbors ; i++) {
l o c a l i n t t n send = sendLength [ i ] ;
l o c a l i n t t o f f s e t = remoteOf f se t [ i ] ;
int pe = ne ighbors [ i ] ;
int nelem = n send ;
double ∗ s r c = sendBuf fe r ;
double ∗ dest = &( recvBu f f e r [ o f f s e t ] ) ;
shmem double put ( dest , src , nelem , pe ) ;

sendBuf fe r += n send ;
}
shmem fence ( ) ;

for ( int i =0; i < num neighbors ; i++) {
int pe = ne ighbors [ i ] ;
shmem int inc(&nrece ived , pe ) ;
} ;

shmem fence ( ) ;
shmem quiet ( ) ;

// wai t f o r messages to a r r i v e
shmem int wa i t unt i l (&nrece ived , SHMEM CMP EQ, num neighbors ) ;
shmem int swap ( &nrece ived , 0 , shmem my pe ( ) ) ;

Fig. 1. Code fragment to illustrate the use of SHMEM in ExchangeHalo().
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two-sided MPI communication using MPI Irecv() into receive buffers, it then
copies the data to be sent into send buffers for MPI Send() and finally uses
MPI Wait() to wait for the arrival of data.

The SHMEM one-sided communication version uses shmem int inc() and
shmem int wait until() for synchronization to indicate that the neighbor
processors are ready for the halo exchange. It uses the same send buffers but the
receive buffer is allocated in the shared memory heap. Figure 1 shows the use of
shmem double put() to perform remote data transfers. Again shmem int inc()
and shmem int wait until() are used to indicate the completion of data trans-
fers (similar to MPI Wait()).

In the MPI one-sided implementation, the MPI window is created and
destroyed within each invocation of ExchangeHalo(). Figure 2 shows the
straight-forward replacement of MPI Put for shmem double put() in perform-
ing the one-sided data transfer. Note that MPI Win fence() is used to mark the
beginning and end of the epoch. This use of MPI Win fence() and MPI Put is
similar to the example used in Chap. 3 of [5] to exchange ghost values in a mesh
decomposition.

s t a tu s = MPI Win fence (0 , win ) ;
a s s e r t ( s t a tu s == MPI SUCCESS ) ;

for ( int i = 0 ; i < num neighbors ; i++) {
l o c a l i n t t n send = sendLength [ i ] ;
l o c a l i n t t o f f s e t = remoteOf f se t [ i ] ;
s t a tu s = MPI Put ( sendBuffer , n send , MPI DOUBLE,

ne ighbors [ i ] , o f f s e t , n send , MPI DOUBLE, win ) ;
a s s e r t ( s t a tu s == MPI SUCCESS ) ;

sendBuf fe r += n send ;
}

s t a tu s = MPI Win fence (0 , win ) ;
a s s e r t ( s t a tu s == MPI SUCCESS ) ;

Fig. 2. Code fragment to illustrate the use of MPI one-sided communication in
ExchangeHalo().

3 Cray XK7 Titan

The Cray XK7 Titan machine in the Oak Ridge Leadership Computing Facility
(OLCF) at ORNL consists of 18,688 compute nodes. Each compute node has
32 GBytes of memory, one 16-core AMD Opteron 6200 Interlagos processor
and a NVidia Kepler Graphics Processing Unit (GPU) with 6 GBytes of device
memory. Each Interlagos processor has eight 256-bit floating point compute units
shared by 16 integer cores. Two compute nodes are connected to a Cray Gemini
network device (NIC) that has over 160 GBytes/sec of routing capacity. The
global network is arranged as a three-dimensional (3D) torus. The Random Ring
benchmark in the HPC Challenge Benchmark Suite [7] achieves transfer rates
of about 0.055 GBytes/sec per rank and the STREAMS benchmark for testing
memory subsystem achieves about 72 GBytes/sec.
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For this HPCG benchmark, only the CPU cores were used and the GPUs were
untouched. The batch policy on Titan cannot guarantee allocation of contiguous
nodes and this can lead to some variations in the communication performance. For
example, two MPI tasks may be adjacent nodes on the 3D network in one batch
run, but may require many hops across the network in another batch submission.

The native Cray SHMEM implementation (module cray-shmem version
7.2.5) was used to build the benchmark. A 104 × 104 × 104 local grid and 15
MPI tasks were used in all cases. Figure 3 gives a summary of performance of the
three versions of HPCG on Cray XK7 Titan. The time in DDOT is small com-
pared to the overall time. The times for halo boundary exchanges are included
in the SPMV time for sparse matrix vector multiplication. The MPI one-sided
implementation is slower compared to the OpenSHMEM or original version and
increases for higher number of processors. This might be due to the implicit
synchronization in MPI Win fence(). The difference in SPMV is only about

Fig. 3. Performance of HPCG on Cray XK7 using 15 MPI tasks per node.
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1 s out of 18 s. The times for WAXPY for the three versions are similar. The
times for MG seems to suggest that the MPI one-sided implementation has a
slightly higher run time and that the difference is at most 10%. Since the MG
computation is not communication intensive, one conjecture might be that an
extra background progress thread is created for the MPI one-sided implementa-
tion and so incurs higher overhead or affects the affinity or mapping of threads
to CPU cores.

4 SGI Turing Cluster

The SGI Turing Cluster consists of 16 compute nodes, each node has two Intel
Xeon E5-2660 processors, each Xeon has 10 cores running at 2.6 GHz (105 Watts)
for a total of 20 physical cores (or 40 virtual cores with Intel Hyper-Threading

Fig. 4. Performance of HPCG on SGI turing cluster.
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enabled). The node has eight 16 GBytes DDR4 memory cards for a total of
128 GBytes of memory. Each node also has a fast 1 TByte 10 K revolutions per
minute (RPM) SATA hard disk with 6 Gbits/sec peak transfer rate, one Intel
Xeon Phi 7120P PCIE accelerator and is connected with a Mellanox ConnectX-4
VPI adapter card, EDR IB (100 Gbits/sec) and 100 Gbits/s ethernet, single-port
QSFP, PCIe3.0× 16 network connector. The nodes are connected with a Mel-
lanox InfiniBand Edge Switch with 36 QSFP ports with a non-blocking switching
capacity of 7.2 Tbits/sec.

The native SGI MPT implementation of SHMEM (module mpt version 2.13)
was used to build the benchmark. A 104 × 104 × 104 local grid and at most 40
MPI tasks were used on a node. For this HPCG benchmark only the CPUs were
used and the Intel Xeon Phi accelerators were untouched.

Figure 4 gives a summary of the performance of the three versions of HPCG
on the SGI Turing cluster. The global reduction operations in DDOT may have
an implicit synchronization and so may include idle time or load imbalance.
There may be higher overhead in the OpenSHMEM version when initializing
the pSync and work arrays for global reduction operations. Note that the time
in DDOT is small compared to the overall time. The times for halo boundary
exchanges are included in the SPMV time for sparse matrix vector multipli-
cation. The times for all versions are very similar. The times for WAXPY for
the three versions are also very similar as well as the times for MG multi-grid
computations.

5 Cray XC30 Eos

The Cray XC30 Eos machine in the OLCF at ORNL consists of 736 compute
nodes. Each compute node has at least 64 GBytes of memory and two 8-core
2.6 GHz Intel Xeon E5-2670 for a total of 16 physical cores or 32 logical cores with
Intel Hyper-Threading enabled. Thus in total, the Eos machine contains over
11776 physical cores (23552 logical cores with Intel Hyper-Threading enabled)
and over 47 TBytes of memory. Every four compute nodes (or 64 physical cores)
are connected to a single Aries interconnect and organized in the network topol-
ogy called Dragonfly. According to Cray literature [1], the Aries/Dragonfly net-
work provides a higher bandwidth and lower latency interconnect than the Gem-
ini network on the Cray XK7 Titan. The Aries/Dragonfly network provides a
three-fold increase (over the Gemini network) in peak injection bandwidth to
about 10 GBytes/sec. The global bandwidth is about three times to twenty times
higher (depending on configuration) than the Cray XK7. The hardware injec-
tion rate for small puts and gets for Aries is about 120 M/sec (or 1.875 M/sec
per core), which is about three times higher than Gemini. Measured end-to-end
latencies for user-space communication3 on a quiet network are 0.8 µs for an
8-byte put, 1.6 µs for an 8-byte get and approximately 1.3 µs for an 8-byte MPI
message. Note that a 1.6 µs get latency suggests an effective maximum rate of
3 Latency measured on CPU core that is directly connected to the Aries NIC, other

CPU cores may have higher latencies.
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0.67 M requests per second if performed with no further concurrency. A nearest
point-to-point communication benchmark shows latency that is less than 1.4 µs
and with bandwidth of over 8.5 GBytes/sec. The Random Ring benchmark in the
HPC Challenge Benchmark Suite achieves a transfer rate of 0.141 GBytes/sec
per rank and the STREAMS benchmark for testing the memory system achieves
about 78 GBytes/sec per node.

HPCG was built using the native Cray SHMEM library (module cray-shmem
version 7.2.5). A 104×104×104 local grid and at most 32 MPI tasks were used in
all cases. Figure 5 gives a summary of performance of the three versions of HPCG
using only 1 MPI task on each Cray XC30 Eos node. The performance in all
cases was very similar. The DDOT time for OpenSHMEM seems to be slightly
higher compared to MPI one-sided implementation. However, this difference is
small (about 0.5 s) compared to the time in MG (about 35 s).

Fig. 5. Performance of HPCG using single MPI task on each node of Cray XC30.
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Figure 6 gives a summary of performance of the three versions of HPCG using
32 MPI tasks (on 32 virtual cores with hyper threading) on each node of the
Cray XC30 Eos. The time spent in SPMV in MPI one-sided implementation is
slightly higher compared to the OpenSHMEM version and increases slightly for
higher number of processors. This might be due to the implicit synchronization
in MPI Win fence(). The performance in MG for MPI one-sided implementation
is also about 10% higher compared to the MPI or OpenSHMEM versions. One
conjecture is that the MPI one-sided implementation uses an extra background
progress thread that may affect the affinity mapping of threads to CPU cores.

Fig. 6. Performance of HPCG using 32 MPI tasks on each node of Cray XC30.

6 Summary

The HPCG benchmark has been tested on high performance supercomput-
ers with the state-of-the-art networks on the Cray XK7 Titan, and the Aries
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interconnect on the Cray XC30. The benchmark has also been tested on an SGI
cluster using the SGI MPT version of SHMEM over Infiniband network. The
HPCG benchmark that uses MPI one-sided implementation has also been devel-
oped based on the OpenSHMEM version for comparison with OpenSHMEM.
The results for MPI, OpenSHMEM, and MPI-3 one-sided implementations are
all very similar. The times for MG for MPI one-sided are about 10% higher on
Cray XK7 Titan and Cray XC30 Eos on the largest scale. One conjecture might
be that the MPI one-sided implementation uses an extra background progress
thread and this affects the affinity mapping of threads to CPU cores. The times
for DDOT global reduction for OpenSHMEM are slightly higher compared to
MPI. This may be due to the need to initialize the pSync and Work arrays.
However, this higher cost has insignificant impact on the overall solution time
in HPCG.
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1 Introduction: Programming Models for Hardware
Accelerated Parallel Systems

In the past decade, many high performance parallel computing systems have
included hardware accelerators, such as GPUs or Xeon Phi Coprocessors. These
accelerators provide many more operations per watt than traditional multicore
CMOS chips. Often, accelerators also offer significant speedup for application
kernels.

Accelerator programming models are very efficient at targeting specific hard-
ware devices, but have minimal support for controlling multiple devices on mul-
tiple distributed nodes. For example, the CUDA language is commonly used
to program NVidia GPUs. To program a system that contains many GPUs on
many nodes, programs typically combine CUDA with a distributed communica-
tion layer, such as MPI, into a hybrid programming model.

Fig. 1. Hybrid MPI + CUDA model Fig. 2. Unified CUDA with communication

Figure 1 diagrams a hybrid model program. The programmer uses MPI ranks
to individually control CUDA kernels on a per device basis. A traditional CPU
core shuttles data to and from the accelerator and launches a CUDA kernels. Any
inter-device communication occurs outside the CUDA kernel, under the control
of the CPU. This is undesirable because it is inefficient to require CPU interac-
tion for all communication. Accelerators have begun to add support for direct
communication without CPU interaction [1,12]. This direct communication will
enable a change in programming model, with support for communication within
the accelerator kernel, such as shown in Fig. 2.

1.1 OpenSHMEM as an Alternative to MPI

OpenSHMEM presents an alternative to message passing for inter-device com-
munication in accelerated systems. Programs can combine OpenSHMEM with
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CUDA or OpenCL in a hybrid model that uses one-sided memory access to com-
municate between devices. Future systems could add symmetric memory regions
and one-sided access into accelerator kernels.

In this work, we pose a question: If a programmer uses SHMEM instead of
MPI to write a hybrid program, what features do they require and how does the
program perform? To answer this question, we ported the Scalable HeterOge-
neous Computing (SHOC) benchmark suite [4] from MPI + CUDA to OpenSH-
MEM + CUDA.

The SHOC benchmark suite represents a range of applications that have
been shown to benefit from hardware acceleration. Porting these benchmarks
shows how SHMEM can be used for periodic synchronization and communication
between accelerator kernels. SHOC requires an atypical use of SHMEM, where
we do not attempt to engineer communication/computation overlap with one-
sided accesses inside a computational core. So, we provide implementations of
several MPI collectives using only SHMEM. We also find that these codes require
the use of MPI groups, and so we provide an implementation of SHMEM teams
to provide the same functionality.

The results of porting show that SHMEM is sufficient to replace MPI commu-
nication for these hybrid codes. Using SHMEM required implementing replace-
ments for group based MPI collectives. We tested the implementation on the
Cray XK7 system Titan, to demonstrate that the implementation does not show
any significant performance reduction when using SHMEM instead of MPI.

1.2 Paper Organization

This paper is organized as follows. In Sect. 2 we describe the contents of the
SHOC benchmark suite and the ways in which MPI and CUDA are mixed in
that code. We then briefly describe other work using OpenSHMEM with acceler-
ated parallel systems. Section 3 describes the implementation specifics of struc-
tures ported from MPI to OpenSHMEM in SHOC. Finally, Sect. 4 presents the
performance results of the ported code on the Cray XK7 Titan system.

2 Background and Related Work

This section first provides an overview of the SHOC benchmark suite. This is
followed by a brief description of the SHMEM libraries used as the target for
porting.

2.1 SHOC Benchmark Suite

The Scalable HeterOgeneous Computing (SHOC) benchmark suite [4] was
designed to benchmark systems employing one or more hardware accelerators.
SHOC benchmarks devices that can be programmed with either OpenCL or
CUDA, and has been used most extensively on GPU based systems.



Using Hybrid Model OpenSHMEM + CUDA 207

SHOC is divided into three levels of benchmarks. Level 0 benchmarks are
artificial microkernels that measure bandwidth over the device bus, max floating
point operations, and kernel compile times. Level 1 benchmarks are common par-
allel algorithms such as matrix-matrix multiplication and breadth-first-search.
Level 2 benchmarks are kernels extracted from real applications.

Most benchmarks are written in both OpenCL and CUDA. The exceptions
are Level 0 benchmarks that test OpenCL compile time and OpenCL command
queue overhead, which have no CUDA equivalent. For both OpenCL and CUDA
variants, the benchmark suite can be run on one or more nodes with one or more
devices per node. MPI is used for all inter-node communication.

Each benchmark is classified as S (Serial), EP (Embarrassingly Parallel), or
TP (Truly Parallel). Serial (S) uses only a single accelerator device. All bench-
marks can run as in S mode or EP mode. In EP mode, there is no communication
between devices. All accelerators solve a local version of the problem only. A few
benchmarks have a TP implementation, where results are computed across mul-
tiple nodes. For example, a prefix scan can be run as EP using N MPI ranks to
give result of N different scan arrays, one on each rank. The same benchmark
can be run as TP on N MPI ranks to give a result of a single scan array across
all N ranks.

Benchmark Descriptions. This section describes all of the SHOC benchmarks
by level. Benchmarks are labeled TP if they provide a truly parallel implemen-
tation. These are the only benchmarks where replacing MPI with SHMEM will
have any impact on benchmark execution.

0. Level 0 (No communication)
0.1 BusSpeedDownload and
0.2 BusSpeedReadback copy data to and from devices over the PCIe bus.
0.3 KernelCompile and
0.4 QueueDelay are OpenCL only kernels to measure compile times and

command queue delay, respectively.
0.5 MaxFLOPS reports maximum GigaFLOPS achieved on a set of hand-

tuned microkernels, in both single and double precision mode.
0.6 DeviceMemory measures the speed to access data stored in different

memory regions of an accelerator.
1. Level 1 (Some truly parallel, others embarrassingly parallel)

1.1 (TP) Reduction performs a basic reduction operation on an array of
single or double precision numbers.

1.2 (TP) Scan performs a parallel prefix sum operation on an array of single
or double precision numbers.

1.3 (TP) Stencil2D performs a 9-point stencil operation on a 2D data set.
This benchmark uses MPI topologies to arrange the 2D data in a grid to
facilitate the halo exchanges between processes.

1.4 (EP) BFS computes a breadth-first-search tree for a randomly generated
graph. This benchmark uses atomic operations, and so can be used to
test performance of the SHMEM atomics.
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1.5 (EP) FFT computes a forward and reverse 1D Fast Fourier Transform
1.6 (EP) GEMM implements matrix-matrix multiplication
1.7 (EP) MD computes the Lennard-Jones potential from molecular dynam-

ics
1.8 (EP) MD5Hash computes many small MD5 digests. The significance for

benchmarking GPUs comes from the dependence on bitwise operations.
1.9 (EP) NeuralNet

1.10 (EP) Sort sorts an array of key-value pairs using a radix sort algorithm
1.11 (EP) Spmv implements sparse matrix-vector multiplication
1.12 (EP) Triad is a version of the STREAM Triad benchmark. The kernel

fetches three values from memory, then multiplies one by a value and
adds it to another. The significance for benchmarking is that this allows
testing of fused multiply-add capabilities.

2. Level 2 (Application inspired kernels)
2.1 (TP) QTC implements quality threshold clustering. This algorithm is

used in data analysis to partition data points based on an a priori speci-
fication of a threshold distance between points in a cluster and minimum
number of points per cluster. The algorithm was originally designed for
gene classification.

2.2 (EP) S3D is an embarrassingly parallel computationally intensive kernel
from the S3D turbulent combustion simulation.

2.2 Previous SHMEM Work with Teams, Collectives, and
Hardware Accelerators

SHMEM Teams and Collectives. To overcome some difficulties experienced
when using OpenSHMEM with Accelerators Knaak et al. [7] list a set of exten-
sions along with microbenchmarks to test the extensions. For synchronization,
we used put followed by wait many times in these collectives, so a put with
signal, as proposed here, would be very useful.

As mentioned the Cray Message Passing Toolkit recently added flexible
process group team operations [3] which is very similar to the API described
in [7] and the one which we implement for this work. Hanebutte et al. [5] further
propose federations as a way to extend teams with topologies that group pes
within a team. Our work does not explore processor topologies.

Regarding collectives, some work has been done to optimize existing Open-
SHMEM collectives by mapping them to MPI [6]. There is not other work that
we are aware of that addresses implementing MPI collectives using SHMEM
teams.

SHMEM with Hardware Accelerators and Hybrid Programming Mod-
els. Baker et al. [2] ported an MPI + OpenMP application to SHMEM +
OpenACC. Since they started with an application that does not use hardware
acceleration, most of the focus on optimizing the OpenACC for the NVidia hard-
ware on the Cray XK7. For the SHMEM portion, they note the same patterns
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as we saw in SHOC, that accelerator code is limited by the need to have all
communication outside of the accelerator kernels and that synchronization is
required between kernel launches.

To address the problem of overheads in moving data between main mem-
ory and GPU, NVidia GPU direct technologies [8,9,11] allow data movement
between nodes, but still require CPU involvement. The proposed model of
NVSHMEM [10] moves SHMEM communication directly into the CUDA kernel
and uses the GPU-GPU communication to move data between devices without
requiring the program to split up communication and kernel code. This model
will be explored in the next phase of SHOC benchmark porting.

3 Porting MPI Communication Structures in SHOC

There were two main tasks required to support the communication requirements
of the SHOC benchmarks in OpenSHMEM: MPI-style synchronization collec-
tives and process teams. These were required by the four truly parallel (TP)
benchmarks that used inter-device communication and synchronization. Table 1
summarizes the requirements that were implemented for each of the TP bench-
marks.

Table 1. SHOC benchmark requirements

Benchmark Requirements

QTC Team Split, Team Barrier, Team Broadcast,
Team AllReduce Sum

Scan Parallel Prefix Scan

Reduction AllReduce Sum

Stencil2D Reduce Sum, AllReduce Sum

Parallel Results DBa AllGather
aParallel results database is used in all EP and TP benchmarks.

3.1 Process Teams for Gradual Reduction of Devices

The QTC benchmark iteratively clusters elements into groups. At each iteration,
the number of elements to be clustered shrinks, meaning that eventually there
may be too few elements to use all of the GPU devices in the systems. This
pattern is representative of many iterative clustering algorithms, and could be
used in various data mining applications.

At a very high level, QTC executes the following:
1: procedure QTC Main Loop
2: Calculate total number of ranks needed for current work
3: if my rank is needed to do work then



210 M. Grodowitz et al.

4: color ← 1
5: else
6: color ← 0
7: end if
8: mygroup ← result of split mygroup by color
9: if color == 0 then

10: Exit Main Loop
11: end if
12: Move Data to CUDA device
13: Find local results using CUDA device
14: Use mygroup communicator to find global results using collectives
15: Use global results to create work for next iteration
16: goto top of main loop
17: end procedure

To support this pattern, we ported the code in two stages. In the first stage,
we used the Cray Message Passing Toolkit implementation of SHMEM, which
provides several team based operations. We used the following:

void shmem team spl it ( shmem team t parent team , int co lo r ,
int key , shmem team t ∗newteam)

int shmem team trans late pe ( shmem team t team1 , int team1 pe ,
shmem team t team2 )

void shmem team barrier ( shmem team t myteam , long ∗pSync )

void shmem team free ( shmem team t ∗newteam)

int shmem team npes ( shmem team t newteam)

int shmem team mype ( shmem team t newteam)

The first three functions are collectives that must be called by all team mem-
bers. The second three can be called by any pe in the team. These functions
provided two of the four requirements for QTC listed in Table 1. We imple-
mented team based broadcast and reduction sum-to-all using these along with
shmem get, shmem put, shmem wait functions.

In the second phase of porting, we implemented a shmem team t type and the
listed Cray SHMEM team function prototypes and on top of the OpenSHMEM
API. The only difference in function prototype between our OpenSHMEM team
functions and the Cray SHMEM functions was that our team split operation
had the following prototype:

void shmem team spl it ( shmem team t parent team , int co lo r ,
int key , shmem team t ∗newteam , long ∗pSyncBar )

We had to add the synchronization barrier symmetric array because our team
split operation was built on top of a team based gather collective that required
a barrier.
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3.2 Synchronization Collectives

To provide replacement SHMEM collectives for the MPI collectives in Table 1,
we implemented the following functions. We used C++ templates to provide a
friendlier API

template<class T>
void gather ( vector<T>& gvec , T ∗val , int root ,
shmem team t tm , long ∗pSyncBar ) ;

template<class T>
void a l l g a t h e r ( vector<T>& gvec , T ∗val , shmem team t tm ,
long ∗pSyncBar ) ;

template<class T>
T reduct ion sum (T val , int root , shmem team t tm ,
long ∗pSyncBar ) ;

template<class T>
T reduc t i on sum a l l (T val , shmem team t tm ,
long ∗pSyncBar ) ;

template<class T>
T pr e f i x s c a n (T val , shmem team t tm , long ∗pSyncBar ) ;

template<class T>
T ex p r e f i x s c a n (T val , shmem team t tm , long ∗pSyncBar ) ;

template<class T>
void bcast (T ∗buf , int count , int root , shmem team t tm ,

long ∗pSyncBar ) ;

In cases where shmem team t was equal to SHMEM TEAM WORLD, global collec-
tive functions were used.

Gather Implementation. Generally, shmem put is preferred over get, since it
returns more quickly. However, doing a gather operation based on put would
require each PE in the team to have a specific location on the root PE in which
to shmem put its value. But this would mean the root PE would need to have
a symmetric space in which to put that value. That symmetric space would be
the resulting gathered array, which cannot be shmalloc’d in a team based way.
Instead, using a non-blocking shmem get into a local, non-symmetric vector, the
problem is avoided altogether.

Since we use only the global get, put, and wait operations, these all
rely on translating all team based pe numbers into global pe numbers with
shmem translate pe. Having a fast version of this function is imported to all of
the team collective implementations.
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Reduction Implementation. For a reduction sum operation, a tree based
reduction was used. As with gather, the amount of symmetric space required per
PE was constant, no matter the total team size, to avoid any need for dynamic
memory allocation.

Processors were arranged into a k-ary tree, where k was specified at compile
time. Results were summed up the tree, with each pe accumulating values from
k children. Each PE blocked using the shmem int wait function on a counter
atomically incremented by each child until the counter reached k. The final result
eventually accumulates at the root of the tree.

We tested various values of k, and eventually decided on a binary tree that
avoided the use of atomic increment, as this was faster than any of the values
of k tested. We also tested the choice of using tree based value broadcast versus
a single rank putting values to all PEs. The tree based broadcast became faster
at 16 nodes, whereas the barrier was faster at lower node counts.

Broadcast Implementation. Team broadcast uses the same algorithm as the
final stage of reduction. Values are passed down a binary tree from root to leaves.

Prefix Scan Implementation. Prefix scan is implemented using conventional
upsweep and downsweep phases. The synchronization is mostly point-to-point,
though several barriers are required to ensure that flag values are properly reset
to 0. To support non power-of-two sized teams, the scan uses teams internally to
split the scan into sub-scans that are all power-of-two sized. The results of the
sub-scans are then scanned, and the results broadcast back to the sub-teams.

4 Performance Demonstration

This section provides the performance results of our team and collective imple-
mentations. Then, performance results from the SHOC benchmarks are pre-
sented.

4.1 Hardware Platform: Cray XK7

These benchmarks were run on the Cray XK7 Titan system at Oak Ridge
National Labs. The most relevant feature of using this system was the avail-
ability of the above mentioned team functions in the Cray Message Passing
Toolkit.

4.2 Scaling of Collectives

Figures 3, 4 and 5 compare the performance of these collectives implemented on
top of SHMEM vs the native MPI implementations. As expected, the native,
highly optimized MPI collectives are much faster for reduction and allgather.
However, the SHMEM gather implementation is significantly faster than the
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Fig. 3. AllGather Fig. 4. Gather Fig. 5. Sum

MPI implementation. This was a surprise, since we were not able to overlap any
of this gather operation with other computation. As mentioned above, the gather
operation simply issued non-blocking one-sided get operations to all processes,
then performed a barrier to prevent overwriting symmetric data too early.

4.3 Portable Teams Implementation

To port this code to other systems, a non-Cray SHMEM implementation was
needed. We tested the portable teams API layer using the OpenMPI 1.8.2 com-
piler on a commodity Linux cluster. The cluster has similar attributes to Titan,
with 16 cores per node. Still, total runtime is less important than scaling trends,
since different hardware was used. Figures 6, 7 and 8 show the scaling results.
The Cray team barrier operation shows a major slowdown at 32 cores (2 nodes),
then speeds up again. By contrast, the tree based barrier does fine up to 16
nodes, then scales poorly.

The split implementation on Cray SHMEM is also clearly different. It is
slower at low core count, but scales up much better. The OpenSHMEM based
split uses an AllGather collective underneath, so it will tend to scale poorly to
higher core counts.

Fig. 6. Team barrier Fig. 7. Team broadcast Fig. 8. Team split
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Overall, the portable teams implementation is usable at moderate core
counts. More testing and optimization would be needed to scale to large core
counts.

4.4 Benchmark Scaling

SHOC benchmark results are reported as throughput rates, rather than run-
times. Throughput is reported so that various benchmarks can be compared
against each other, despite having runtimes that are not comparable.

The only SHMEM communication in the embarrassingly parallel (EP) bench-
marks was in the results aggregation in the parallel database. This communica-
tion time is not included in any benchmark results, so all EP benchmarks ran,
as expected, exactly the same with either MPI or SHMEM. Their results are not
reported here, but may become relevant later, as a baseline, for future work in
porting SHOC CUDA kernels.

The four TP benchmarks use SHOC for communication outside of the CUDA
kernels. So, we were interested to see if there was any significant change in run-
time between MPI and OpenSHMEM implementations at varying node counts.
When running the benchmarks on up to 32 nodes, we did not observe any change
in runtime when using OpenSHMEM, as shown in Figs. 9 and 10.

Fig. 9. TP benchmarks with MPI Fig. 10. TP benchmarks with SHMEM

These results show that SHMEM can be effectively used as a communication
layer, performing the same functions as MPI. However, migrating from MPI to
SHMEM for hybrid programs is most natural when synchronizing collectives
are available. The implementations here perform decently well on moderate core
counts, but more testing and optimization would be needed to scale very large.
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5 Conclusion and Future Work

Porting the SHOC benchmarks to OpenSHMEM has demonstrated that teams
and collective operations are beneficial to supporting hybrid programming with
OpenSHMEM. To successfully port these codes to OpenSHMEM, we imple-
mented team data types, team split, free, barrier, and translate pe. In addition,
we implemented C++ template functions for team based gather, reduction sum,
prefix scan, and broadcast.

The performance of our implementation layer was good enough for low core
counts. More scalable implementations with lower level optimizations will be
required for larger job sizes.

The next phase of porting these benchmarks will be to look at moving the
SHMEM communication into the CUDA kernels using NVSHMEM.
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Abstract. Developing high performance OpenSHMEM applications
routinely involves gaining a deeper understanding of software execu-
tion, yet there are numerous hurdles to gathering performance metrics
in a production environment. Most OpenSHMEM performance profil-
ers rely on the PSHMEM interface but PSHMEM is an optional and
often unavailable feature. We present a tool that generates direct mea-
surement performance profiles of OpenSHMEM applications even when
PSHMEM is unavailable. The tool operates on dynamically linked and
statically linked application binaries, does not require debugging sym-
bols, and functions regardless of compiler optimization level. Integrated
in the TAU Performance System, the tool uses automatically-generated
wrapper libraries that intercept OpenSHMEMAPI calls to gather perfor-
mance metrics with minimal overhead. Dynamically linked applications
may use the tool without modifying the application binary in any way.

Keywords: Profiling · Tracing · Performance analysis · The TAU
Performance System · Code generation · Library wrapping

1 Introduction

OpenSHMEM application performance can be characterized via profiling and
tracing tools built on the PSHMEM interface. For every routine in the OpenSH-
MEM standard, PSHMEM provides an analogous routine with a slightly different
name. This allows profiling tools to intercept and measure OpenSHMEM calls
made by a user’s application by defining routines with the same function signa-
tures as OpenSHMEM routines – wrapper functions – which call the appropriate
PSHMEM routines. For example, the TAU Performance System R© [7] provides an
OpenSHMEM wrapper library which can be linked to any OpenSHMEM appli-
cation to acquire runtime measurements of OpenSHMEM routines. The library
can be used with statically or dynamically linked applications with runtime over-
head between 1.5% and 4% [4]. Regardless of which events are recorded, TAU’s
overhead is approximately O(1) in the number of application processes, i.e. as the
c© Springer International Publishing AG 2016
M. Gorentla Venkata et al. (Eds.): OpenSHMEM 2016, LNCS 10007, pp. 219–224, 2016.
DOI: 10.1007/978-3-319-50995-2 15
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number of SHMEM processing elements (PEs) increases the overhead incurred
by TAU remains relatively constant. This makes TAU an appropriate choice for
profiling large-scale OpenSHMEM applications when PSHMEM is available.

For reasons of practicality, applications are typically developed on small-scale
representative systems before being deployed on large-scale production systems.
Yet it is often the case that performance bugs – software faults that affect the
application’s performance but not correctness – present themselves only at scale.
Metrics such as time spent in code regions, compute intensity, message size, and
communication volume are especially difficult to discern in production environ-
ments or at large scale. A production system may use highly optimized runtime
libraries where performance tool interfaces (i.e. PSHMEM) have been disabled,
rendering profiling and tracing tools like TAU ineffective. Tools that do not
rely on PSHMEM but instead periodically sample the application (e.g. HPC-
Toolkit [1,5]) cannot resolve this problem due to their inability to capture atomic
events (e.g. the size, sender, and receiver of a message or the size of a memory
allocation) and their reliance on debugging symbols, which are often stripped
from production binaries. In short, OpenSHMEM developers would like to char-
acterize the performance of production applications operating at large scales
without modifying the application or relying on debugging symbols or special
tools interfaces like PSHMEM.

This work-in-progress paper presents a tool that generates direct measure-
ment (i.e. not sampled) performance profiles and traces of OpenSHMEM appli-
cations when PSHMEM is unavailable. The tool extends the existing OpenSH-
MEM profiling capabilities in TAU and therefore has similar runtime overhead
(less than 4%). By building on TAU, we receive the full benefit of TAU’s mea-
surement layer so there are no restrictions to the types of performance data that
can be gathered, i.e. PAPI can be used to gather hardware performance coun-
ters without any caveats. As detailed in Sect. 2, the tool parses the OpenSH-
MEM header files and automatically generates source code for wrapper libraries
that intercept OpenSHMEM API calls at link-time or at run-time so that both
dynamically and statically linked applications can be profiled. Since the tool uses
source code parsing and code generation, it does not require debugging symbols
and functions regardless of compiler optimization level.

2 Approach

Our goal is to provide performance data without relying on any special features
of a particular OpenSHMEM implementation, i.e. PSHMEM. At a high level
this involves two steps: constructing functionality similar to what is provided by
the PSHMEM interface and making it available to the application.

2.1 Symbol Wrapping

For every routine in the OpenSHMEM standard, PSHMEM provides an anal-
ogous routine with a slightly different name. We use symbol wrapping via the
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program linker to do the same. Nearly all program linkers support a -wrap
foosym command line option to enable wrapping of the symbol foosym. Any
undefined reference to foosym will be resolved to wrap foosym and any unde-
fined reference to real foosym will be resolved to foosym. In this case, we use
symbol wrapping to provide a unique wrapper function for each API function
defined in an OpenSHMEM implementation’s header files. When the applica-
tion’s object files are linked to form the executable file, a -wrap flag for every
OpenSHMEM API call is passed to the linker via the special @argfile syntax
supported by most linkers.

Fig. 1. Symbol wrapping via the program linker replacing a call to shmem int put with
a wrapper function at link time. The wrapper function uses TAU to record performance
data and invokes the original shmem int put.

Figure 1 demonstrates symbol wrapping with an OpenSHMEM applica-
tion that is statically linked against the OpenSHMEM implementation library
libopenshmem.a. At link time, the call to shmem int put in the application
is replaced with a call to wrap shmem int put, which is implemented in the
libTau-shmem-wrap.a wrapper library. The wrapper function uses TAU to
record performance data and invokes real shmem int put, which the linker
replaces with a call to the original shmem int put as defined in libopenshmem.a.

Symbol wrapping works equally well for statically linked applications
and dynamically linked applications that statically link against the OpenSH-
MEM implementation. However, applications that link dynamically against
libopenshmem.so should use library preloading instead of symbol wrapping
because symbol wrapping will only intercept SHMEM calls made from the appli-
cation itself.
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2.2 Library Preloading

Symbol wrapping is a powerful, low overhead way to wrap the OpenSHMEM
API, but it requires the user to re-link their application against a special library
of wrapper functions. This is not always possible in a production environment,
so we use library preloading to achieve dynamically what the linker does stati-
cally. The LD PRELOAD environment variable specifies a list of additional shared
libraries to be loaded before all others, selectively overriding functions in other
shared libraries. We use the LD PRELOAD environment variable to insert a dynamic
symbol wrapper at the front of the search list. The dynamic symbol wrapper
will resolve any undefined reference to foosym to wrap foosym and any unde-
fined reference to real foosym to foosym, just as the linker does statically
when passed the -wrap command line option. This requires the application to
be dynamically linked against the OpenSHMEM implementation library.

Fig. 2. Using a dynamic symbol wrapper to dynamically resolve undefined ref-
erences to shmem int put to wrap shmem int put and undefined references to
real shmem int put to shmem int put.

Figure 2 shows how the dynamic symbol wrapper library achieves sym-
bol wrapping at runtime when libTauSH-shmem-wrap.so is prepended to
the LD PRELOAD environment variable. Because the dynamic symbol wrap-
per is the first library on the search list, the call to shmem int put in
the application resolves to the definition of shmem int put provided by the
dynamic symbol wrapper. This implementation simply passes control to the
wrap shmem int put function defined in our wrapper library. When the wrap-

per library invokes real shmem int put, that symbol resolves dynamically
to the implementation provided in libTauSH-shmem-wrap.so. The dynamic
linker’s programing interface is then used to discover the address of the orig-
inal implementation of shmem int put as defined in libopenshmem.so.
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2.3 Automatic Wrapper Library Generation

In order to construct a tools interface for an arbitrary SHMEM implementation,
we use the Program Database Toolkit (PDT) [3,6] to parse the implementation’s
header files (e.g. shmem.h and shmemx.h) and discover the available API. For
each API function parsed, a wrapper function is automatically generated that
tracks the performance characteristics of that routine, e.g. wall clock time. If the
routine also sends or receives data (e.g. shmem int put) then the wrapper also
tracks the message size, target PE, and source PE. The wrapper functions can
also measure hardware performance counters via PAPI [2] to track cache misses,
operation counts, etc. For example, the application profile will show if a call to
shmem barrier used busy-wait.

3 Conclusions and Future Work

We present a tool that generates direct measurement performance profiles of
OpenSHMEM applications even when PSHMEM is unavailable. The tool oper-
ates on dynamically linked and statically linked application binaries, does not
require debugging symbols, and functions regardless of compiler optimization
level. This work completely removes the need for a PSHMEM interface with no
significant disadvantage to the user, however PSHMEM is still valuable to tools
other than TAU which cannot automatically generate wrapper libraries.

Many OpenSHMEM implementations – most notably OpenSHMEM refer-
ence implementation 1.2 – do not provide the implementation library in both
static and dynamic forms by default. Only the static library, libopenshmem.a,
is built by default. Performance tools that use this approach would benefit from
having both the static and dynamic libraries available by default as it would
fully enable the library wrapping features we have described. Without a dynamic
library, only link-time wrapping is possible.

TAU could also benefit from an interface which exposes synchronization of
the symmetric heap. At present, TAU intercepts the underlying system allocation
and deallocation calls and OpenSHMEM library calls to mark operations on the
symmetric heap. However, it is difficult to observe in a trace when an update
to the symmetric heap becomes visible to other PEs. TAU could make use of a
mechanism for notifying a performance measurement system of symmetric heap
updates when they occur to improve the quality of the performance data.
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1 Introduction

OpenSHMEM is a popular one-sided communication library for high-
performance computing systems developed around 2010 at the University of
Houston [2]. It is becoming an increasingly popular programming model for
next-generation HPC applications and systems because of its simple, intuitive
interface and the proliferation of one-sided communication devices such as Infini-
band [1]. Despite its increasing popularity, there are few benchmarks or mini-
applications for evaluating and optimizing OpenSHMEM system software and
hardware performance. This is particularly true for emerging multi-core and
many-core systems on which OpenSHMEM is particularly important.

In this paper, we present the first set of OpenSHMEM benchmarks of which
we are aware for systematically evaluating OpenSHMEM communication perfor-
mance. A key element of these benchmarks is their support for multi-threading,
based on the OpenSHMEM thread API proposed by Cray [9]. These benchmarks
are based on one-sided benchmarks and mini-applications previously developed
for MPI [4]. The initial version described in this paper focuses on simple messag-
ing micro-benchmarks and HPC mini-applications, in both cases with simple syn-
chronization strategies; support for additional benchmarks, mini-applications,
and synchronization methods is planned.

2 SHMEM-MT Benchmarking Approach

To develop a set of OpenSHMEM benchmarks for driving communication system
design and optimization, we have thus far focused on porting the MPI RMA-
MT benchmarks [4]. This work primarily focused on identifying the proper way
to port MPI RMA one-sided calls to OpenSHMEM, how the benchmarks were
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by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation,
for the United States Department of Energy’s National Nuclear Security Adminis-
tration under contract DE-AC04-94AL85000.

c© Springer International Publishing AG 2016
M. Gorentla Venkata et al. (Eds.): OpenSHMEM 2016, LNCS 10007, pp. 227–231, 2016.
DOI: 10.1007/978-3-319-50995-2 16



228 H. Weeks et al.

converted from MPI RMA to OpenSHMEM, and how threading was supported
when appropriate in the current version of these benchmarks.

The RMA-MT benchmark suite [4] was designed to provide a robust set of
tests to verify the functionality and measure the performance of MPI’s one-
sided communication implementation in a multi-threaded environment. These
benchmarks are based on previous benchmarks, including Thakur and Gropp’s
multi-threaded latency and bandwidth tests [10], the Sandia Microbenchmarks
(SMBs) [3], and a subset of the Mantevo Mini-Applications [5]. RMA-MT gener-
ally focuses on the most commonly-used subset of MPI one-sided calls. We used
the RMA-MT benchmark suite as the basis for the OpenSHMEM benchmarks
we present here.

Benchmark Conversion. When replacing synchronization methods in our
benchmarks, we used the synchronization methods that best matched the com-
munication pattern used by the benchmark. In latency and bandwidth bench-
marks, we used shmem quiet because only one processing element need be
involved in the communication (passive target). For message-rate and mini-app
benchmarks, we used barrier all because the underlying applications already
relied on barriers to synchronize the activities of multiple processes. Impor-
tantly, we have not yet attempted to port the lock-based versions of the RMA-
MT benchmarks for SHMEM-MT because of the significant semantic differences
between these communications (active target).

In contrast to the synchronization calls, converting the MPI window manage-
ment and RMA calls was straightforward. In particular, we replaced the calls to
malloc and MPI win create with appropriate shmem malloc calls and replaced
MPI get/put with shmem get/put. In addition, because command line argu-
ments given to the benchmarks are global variables that are stored in symmetric
memory, we were able to remove calls to broadcast these parameters that were
present in the original RMA-MT benchmarks.

It is important to note that the mini-applications still use a hybrid MPI/-
OpenSHMEM approach in some cases. As with the RMA-MT benchmarks, we
focused on converting the main halo exchange of each application to OpenSH-
MEM to test the performance-critical communications at scale in an applica-
tion setting. Other communications such as set-up and tear-down, as well as a
handful (one or two) MPI Allreduce calls per iteration in each mini-application,
are still performed using MPI. This approach is similar to that taken by other
researchers [6,7]. We hope to convert the remaining MPI communication oper-
ations in these mini-applications to OpenSHMEM in the near future, but have
not prioritized this effort as these calls are not generally performance critical at
the scale at which we currently execute.

Threading Support. Because MPI works on a per-process basis, the RMA-MT
messaging benchmarks rely on per-process synchronization and use threads only
for RMA data movement operations. In particular, these benchmarks multi-
thread operations between synchronization calls using a fork-join threading
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model. The benchmarks use this structure primarily because of the lack of fine-
grained thread-level synchronization operations in current versions of MPI, as
threads are not separate entities recognized by MPI, unlike in the OpenSHMEM
thread extensions provided by Cray.

Our initial port of the RMA-MT benchmarks to OpenSHMEM preserves
the basic fork-join threading structure of these benchmarks that results from
the lack of thread-level synchronization primitives in MPI RMA calls. In par-
ticular, we preserved synchronization methods at the processing element gran-
ularity by calling shmem quiet or shmem barrier all after pthread join at
the end of each test iteration, rather than relying on thread-level synchroniza-
tion. Converting these benchmarks to use the thread-level synchronization prim-
itives proposed for use in OpenSHMEM, for example shmem thread quiet and
shmem thread fence is an important direction for future work.

3 Initial Results

In this section we present initial results using this benchmark suite on a Cray
XC30 cluster. Each node has two Xeon Ivy Bridge 2.4 GHz 12-core processor with
hyper-threading enabled, 32 GB of memory per node, and a Cray Aries network
interface. SHMEM-MT benchmarks were compiled using the Cray compiler suite
and Cray shmem version 7.3.2. Each data point in this section is an average of
10 runs with each run performing 10,000 iterations, in the case of the messaging
benchmarks. Each point is plotted with error bars showing the standard devia-
tion of the 10 runs; in a large number of cases, the standard deviation of the ten
runs was small enough not to show up on the plots.
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Fig. 1. SHMEM-MT latency and bandwidth performance

Figure 1 shows the latency and bandwidth tests respectively. Both tests are
setup similarly; as the number of threads increase each message is split into
smaller equal pieces for each thread. We can see that for small messages, less than
32 KiB, Cray SHMEM achieves best performance when using a single thread.
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After 32 KiB, 4 threads sending portions of the message appear to outperform
the 1 thread case. For the message sizes used in this test, 16 threads performs
worse in bandwidth than the other cases, likely due to insufficient hardware-level
concurrency to amortize the increased synchronization overheads.

Figure 2 shows the runtime of the HPCCG and MiniFE mini-applications
when run with 24 ranks per node on up to 32 nodes using a weak scaling problem
size. In particular, HPCCG was set to 1003 elements per PE while the MiniFE
problem size was set at (330 ∗ nodes1/3)3. Note that, these mini-applications
do not yet include full threading support. In this case, messaging concurrency
is provided at the thread level, however we run a PE per core to maintain
computational concurrency.
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Fig. 2. SHMEM-MT mini-application weak-scaling runtime

In both cases, performance is largely constant as expected, particularly for
MiniFE. HPCCG runtimes begin to increase slightly with increased scale, but
to a level that is generally expected for this mini-application. Note that both
mini-applications also include solution verifications provided from the original
Mantevo versions that complete successfully.

4 Related Work

The most relevant related work to the work presented here is work by Luecke
et al. [8] where they compared the performance of SHMEM with MPI-2 RMA on
an SGI Origin 2000 and Cray T3E system. Unlike this work, they used a single
threaded approach and the MPI-2 RMA interface was the only one available.
Since that time, significant improvements have been made to the MPI RMA
interfaces for MPI-3, and OpenSHMEM [2] has emerged as a standard, with
matching implementations.
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5 Conclusions and Future Work

Overall, our work provides a first set of benchmarks for evaluating OpenSH-
MEM implementations and optimizations, particularly in the presence of multi-
ple threads. Our initial results show OpenSHMEM performance that is generally
comparable to other modern messaging systems; due to time and space limita-
tions, we defer a complete performance comparison across MPI, OpenSHMEM,
and similar messaging system implementations on different platforms for future
work. In addition, the relative ease with which we converted MPI RMA bench-
marks to OpenSHMEM demonstrates a path for developing further benchmarks
and mini-applications.
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Abstract. As we continue to develop extreme-scale systems, it is
becoming increasingly important to be mindful and more in control of
power consumed by these systems. With high performance requirements
being more constrained by power and data movement quickly becoming
the critical concern for both power and performance, now is an opportune
time for OpenSHMEM implementations to address the need for more
power-efficient data movement. In order to enable power efficient Open-
SHMEM implementations, we have formulated power trend studies that
emphasize power consumption for one-sided communications and the dis-
parities in power consumption across multiple implementations. In this
paper, we present power trend analysis, generate targeted hypotheses for
increasing power efficiency with OpenSHMEM, and discuss prospective
research for power efficient OpenSHMEM implementations.

1 Introduction

The OpenSHMEM community has spent nearly a decade developing a standard
API for the Partitioned Global Address Space (PGAS) programming model.
Alongside the development of a standard API has been a reference implementa-
tion of OpenSHMEM [4]. This implementation and other OpenSHMEM imple-
mentations [1–3,5] have been developed to be portable with comparable per-
formance across multiple platforms. As with most message-passing implementa-
tions, the goal of developers has primarily been to optimize performance. But
as high performance computing (HPC) reaches extreme scales of hundreds of
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petaflops to exaflops with the potential of moving petabytes of data in a sin-
gle application, computer hardware architects, software developers and com-
putational scientists have all realized that power efficiency is proportionately
important. As we continue to develop extreme-scale systems, it is becoming
increasingly necessary to be mindful and more in control of power consumed
by these systems. While much of what we can accomplish in power-efficient
computing is dependent on system architecture, there is a significant portion
of power-efficiency that can be exploited through ‘intelligent’ system software
development.

In order to make intelligent decisions when developing OpenSHMEM soft-
ware, we must first understand the correlations between software implementa-
tions of the OpenSHMEM API and the impact of the software design choices
on power consumption. We develop this understanding by profiling the power
consumption of a system under various configurations while executing bench-
marks and applications of interests. There are many options for profiling power
consumption, and we have chosen PowerInsight [7] to monitor and collect power
profiles for OpenSHMEM benchmarks and applications.

The benchmarks that we have chosen to profile are put and get benchmarks
from the OSU Micro-Benchmark Suite [8], as well as an OpenSHMEM implemen-
tation of the High Performance Conjugate Gradients (HPCG) Benchmark [6].
These profiles enable us to perform power trend analysis across the various imple-
mentations of OpenSHMEM and OpenMPI one-sided communications that is
presented in Sect. 2. In Sect. 3, we generate hypotheses and discover insights into
which OpenSHMEM implementation is more power-efficient and which opera-
tions would benefit most from re-engineering the software for power-efficiency
without negatively impacting performance.

2 OpenSHMEM Power Trend Analysis

We performed power studies on a PowerInsight instrumented cluster with Dual
Intel Xeon E5-2650v2 i7, 8 cores, 16 threads, a base frequency of 2.6 GHz, 64 GB
DDR3-1600 SDRAM, and Infiniband ConnectX 3. We used two nodes to perform
point-to-point studies with the OSU Micro-Benchmark Suite. For the purposes
of this study, we selected the point-to-point OpenSHMEM and one-sided MPI
latency benchmarks. For each of theses benchmarks, latency tests are performed
for put and get operations for both the OpenSHMEM and MPI standards. For
OpenSHMEM, tests are performed for heap memory allocation, and the MPI
tests are performed for passive and active synchronization. In each experiment,
rank 0 is the process actively executing the put or get operation.

To obtain power profiles that model more closely memory access and commu-
nication patterns found in scientific applications, we selected the HPCG Bench-
mark. For HPCG, we performed experiments on a single node, and executed weak
and strong scaling experiments from 4 to 32 processes. For both HPCG and the
OSU Benchmarks, the nodes were configured so that turbo boost was disabled
to provide more consistent profiles across multiple executions of the same input
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configurations. We collect power consumption measures for three consecutive
executions of the same input data size; the average of these measurements are
taken to generate a single power profile.

2.1 OSU Micro-Benchmarks Power Analysis

The first set of power profiles compares the power consumed by put operations
in the OpenSHMEM Reference implementation, the OpenMPI-OpenSHMEM
implementation, and one-sided OpenMPI. Figure 1 shows the CPU and memory
power profiles of ranks 0 and 1 for OpenSHMEM compared to OpenMPI with
active and passive synchronization. In these profiles, we observe that the active
process (rank 0) in the OpenSHMEM Reference implementation has a consis-
tently higher profile than the other two implementations for both memory and
CPU power. For CPU power, the reference implementation on average consumes
approximately 11 W to 16 W more power and approximately 33 J to 63 J more
energy. For memory on average, this implementation consumes approximately
2 W more power and 3 J to 14 J more energy. On the passive process (rank 1), the
OpenSHMEM Reference implementation on average consumes about 12 W more
CPU power and 22 J more energy on the CPU than the OpenMPI-OpenSHMEM
implementation, as well as approximately 2 W more power and 3 J energy for
memory accesses.

(a) Rank 0 PUT CPU power (b) Rank 1 PUT CPU power

(c) Rank 0 PUT memory power (d) Rank 1 PUT memory power

Fig. 1. PUT operations CPU and Memory power profiles
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(a) Rank 0 GET CPU power (b) Rank 1 GET CPU power

(c) Rank 0 GET memory power (d) Rank 1 GET memory power

Fig. 2. GET operations CPU and Memory power profiles

The last set of profiles of the OSU Micro-Benchmark Suite is a compari-
son of get operation power consumption for the OpenSHMEM Reference imple-
mentation, the OpenMPI-OpenSHMEM implementation, one-sided OpenMPI.
Figure 2 shows the CPU and memory power profile of ranks 0 and 1 for Open-
SHMEM compared to OpenMPI. For the get operation power consumption, we
observe that the OpenMPI-OpenSHMEM implementation, on average, consumes
less power on the active process than the other two implementations, approxi-
mately 5 W to 9 W less CPU power and 63 J to 125J less energy on the CPU.
For memory on average, the OpenMPI-OpenSHMEM implementation consumes
less than 2 W less power and approximately 16 J to 31 J less energy.

2.2 HPCG Benchmark Power Analysis

Profiling the HPCG benchmark gives us a better understanding of how power
consumption varies across OpenSHMEM implementations in a full communi-
cation pattern. The profiles for HPCG were collected for the OpenSHMEM
Reference implementation and the OpenMPI-OpenSHMEM implementation.
These studies focus primarily on power consumption scales with the number of
processes as we redistribute the workload (strong scaling) and as the workload
remains consistent across processes (weak scaling).

In the first set of HPCG power profiles, we study how CPU and memory
power consumption scales as we increase the number of processes and redistrib-
ute the workload. In this set of experiments, we maintain a global matrix size of
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(a) OpenSHMEM Reference
strong scaling CPU power

(b) OpenMPI-OpenSHMEM
strong scaling CPU power

(c) OpenSHMEM Reference
strong scaling memory power

(d) OpenMPI-OpenSHMEM
strong scaling memory power

Fig. 3. HPCG Benchmark strong scaling power profiles

256× 256× 128 elements and scale the number of processes from 4 to 32 on a sin-
gle node. In the case of 32 processes, the architecture is hyper-threaded with 16
physical cores and 2 threads per core. In Fig. 3, we compare the CPU and mem-
ory power profiles for the OpenSHMEM Reference and OpenMPI-OpenSHMEM
implementations. The CPU profiles show strong scaling for power consumption
as we scale the number of physical cores, but as hyper-threading is enabled
for experiments with 32 processes, power no longer increases linearly with the
number of the processes. We also observe that on average, the OpenSHMEM
Reference implementation has a peak power profile of about 9 W more than
the OpenMPI-OpenSHMEM implementation and consumes on average approxi-
mately 1200 J more energy. The most significant deviation in the power profiles of
the two implementations for the strong scaling experiments is observed for mem-
ory power consumption for hyper-threaded executions. While the OpenMPI-
OpenSHMEM implementation’s peak power profile has a nearly 10 W increase
from 16 to 32 processes, the OpenSHMEM Reference implementation memory
power profile is nearly identical from 16 to 32 processes.

The next set of HPCG power profiles show how CPU and memory power con-
sumption scales as the number of processes are increased from 4 to 32 and the
workload remains constant on each process. In these experiments, each process
maintains a local matrix size of 104× 104× 104 elements. With these weak scal-
ing studies, we make the same observations as with the strong scaling experiments.
Figure 4 shows the CPU and memory power profiles for these experiments.
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(a) OpenSHMEM Reference weak
scaling CPU power

(b) OpenMPI-OpenSHMEM weak
scaling CPU power

(c) OpenSHMEM Reference weak
scaling memory power

(d) OpenMPI-OpenSHMEM weak
scaling memory power

Fig. 4. HPCG Benchmark weak scaling power profiles

3 Insights and Prospective Research

Conducting power trend experiments for OpenSHMEM and one-side MPI imple-
mentations gives us some key insights into the potential for power efficiency with
OpenSHMEM. This initial phase of research has been conducted to generate
targeted hypotheses and help direct the development of power efficient Open-
SHMEM implementations. Some hypotheses we deduce from our power profile
analysis is that there is not a one-to-one mapping of performance to power
consumption in message passing implementations, particularly OpenSHMEM.
We have shown in our studies that power profiles of different OpenSHMEM
implementations with similar performance measurements have dissimilar peak
power costs. This leads to an additional hypothesis that there is a threshold
for performance optimizations correlating with energy optimizations (i.e. there
is a limit to performance optimizations that automatically realize energy opti-
mizations). Another hypothesis we deduce from this study is that a less power
efficient implementation may be optimized for power without degrading perfor-
mance. Since the gap in performance between each implementation is minimal
compared to the gap in power consumption, we can theoretically decrease the
gap in power consumption by implementing some of the algorithms of the more
power efficient implementation without adversely affecting performance.
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This research will continue to explore these hypotheses. Our immediate
research plans are to study the put and get operations in the OpenSHMEM Ref-
erence and OpenMPI-OpenSHMEM implementations, discover which parts of
the algorithms for these operations contribute to minimizing power consumption,
and apply these algorithms to the implementation that is less power efficient.
The potential of this research is to develop power efficient software development
standards for OpenSHMEM implementations.
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