A Multi-agent Solution for the Deployment
of Distributed Applications in Ambient Systems

Ferdinand Piette!2®) Costin Cavall, Cédric Dinont?,
Amal El Fallah Seghrouchni®, and Patrick Tailliert!

! Sorbonne Universités, UPMC Univ Paris 06, LIP6, Paris, France
2 Institut Supérieur de I'Electronique et du Numérique, Lille, France
ferdinand.piette@yncrea.fr

Abstract. Ambient Intelligence (AmlI) and Internet of Things (IoT)
are promising fields for the application of Multi-Agent Systems (MAS).
A specific MAS application, described through a video doorkeeper sce-
nario in this paper, is the deployment and the configuration of distrib-
uted applications on a hardware infrastructure in ambient systems. It
requires the modelling of the available infrastructure and of the deploy-
able applications, respecting a domain ontology, which can then be used
by reasoning tools to find the hardware entities that can support the
running of the application in the existing infrastructure. It also requires
a distributed architecture that allows this solution to be scalable and to
provide mechanisms to enhance privacy. In this paper, we discuss this last
point. We describe the use of goal-driven agents and show how the MAS
architecture and organisation allow for the privacy of the infrastructure
resources to be enhanced.

Keywords: Applicative paper -+ Multi-agent system - Ambient
Intelligence + Goal-driven agents - Agent design + Privacy management -
Deployment

1 Deployment of Smart Applications

Aml research focuses on the improvement of human interactions with smart
applications [13]. These improvements are made possible by the proposal of
frameworks and platforms that facilitate the development of context-aware and
dynamic applications. These platforms offer mechanisms to build such applica-
tions by handling data and events [16, 18] or by wrapping hardware and software
capabilities into agents [9,14]. However, it is often assumed that an underly-
ing interoperable hardware and energy infrastructure already exists [22]. Mean-
while, the Internet of Things (IoT) aims to provide a global infrastructure for the
information society, enabling advanced services by interconnecting physical and
virtual “things” based on existing and evolving interoperable information and
communication technologies [17]. The main challenge of the IoT is to achieve full
interoperability of interconnected devices while guaranteeing the trust, privacy
© Springer International Publishing AG 2016

M. Baldoni et al. (Eds.): EMAS 2016, LNAT 10093, pp. 156-175, 2016.
DOI: 10.1007/978-3-319-50983-9_9

A Multi-agent Solution for the Deployment of Distributed Applications 157

and security of communications [4]. However, a gap exists between Aml and the
IoT. Indeed, because of the heterogeneity of such systems, it is difficult to have
horizontal communication between connected devices. Present applications use
devices that are vertically connected, from the device to an external server that
collects and processes the data. The available commercial products are usually
not directly interoperable. Moreover, this approach raises privacy questions: the
user does not own his data any more, so privacy cannot be guaranteed. Hence,
to fill this gap between IoT and AmlI applications, adequate deployment mecha-
nisms are required. We addressed the deployment problem in [23] by proposing
to model the available hardware infrastructure and the needs of the applications
using graphs that describe the various entities, their relations and properties. For
deploying an application on the infrastructure, we proposed an extended graph
matching algorithm for finding the hardware entities of the infrastructure that
fulfil the requirements of the distributed application. However, this solution was
centralised, which makes it unsuitable for real systems that need to take into
consideration, among others, privacy and scalability. To address these issues, we
propose a multi-agent-based distributed deployment software. Through its mod-
ularity, the multi-agent paradigm facilitates the local processing of data and
guarantees the autonomy of the different parts of the hardware infrastructure,
thus enhancing the privacy and robustness of the software.

This paper is organised as follows. Section2 shows similar works that use
agents for the deployment of applications and privacy management. Section 3
presents a scenario that illustrates the deployment of applications and introduces
the different key aspects of our solution. The next sections show that multi-agent
systems are a well-adapted paradigm to handle the distributed aspect and ensure
resource privacy. We detail this multi-agent architecture of our solution (Sect. 4)
and the behaviour of each kind of agent using a goal-directed approach (Sect. 5).
At last, Sect. 6 explains some implementation specificities and presents the first
results. We conclude by presenting the next steps of this work.

2 Related Work

Several works address the deployment problem. Braubach et al. [6] propose a
deployment reference model based on a MAS architecture (e.g. agent services)
for deploying MAS applications. As an agent is a software entity, the deployment
of agents does not have to deal with the high heterogeneity of hardware enti-
ties. Some other works in the service-oriented architectures (SOA) community
[3] reason on deployment patterns, that specify the structure and constraints of
composite solutions on the infrastructure, in order to compose services. The cited
paper refers not to the localisation of resources and installation of software, but
rather to the binding of existing resources in order to provide the desired compo-
sition of services. This is realised using a centralised pattern-matching algorithm
that takes into account the various requirements for the given service. Flissi
et al. [15] propose a meta-model for abstracting the concepts of the deployment
of software over a grid. All these works have shortcomings when considering

158 F. Piette et al.

their use for deploying AmlI applications on the IoT infrastructure. Some do not
take into consideration the heterogeneity of the hardware and software, as well
as the interaction between the two layers (i.e. software and hardware). Others
do not tackle the privacy problem. And some propose centralised solutions that
are not scalable for real life Aml applications. Our MAS approach takes these
problems into consideration: scalability is handled thanks to the agent structure;
the autonomy of agents, organisation and privacy policies provide resource pri-
vacy; and heterogeneity is supported by the description of the system and the
reasoning mechanisms that find projections of applications on the infrastructure.

Privacy in multi-agent systems has already been well explored. Such et al.
[27] categorise research on data privacy on different levels: collection, disclosure,
processing and dissemination. Multi-agent system specificities have been used
to propose different manners of handling the data privacy. Some works focus
on norms [5,20] and privacy policies [12,28,29], checked by agent brokers to
control the disclosure of the data. Other works [24,26] use social relationships
like trust, intimacy or reputation to select the agents with which data can be
shared. Trusted third parties are already used in [1,11,21] in order to anonymise
the data or the metadata (e.g. IP address, receiver or sender identity), and also
to check disclosure authorisations. At last, some works [2] focus on integrating
secure communication in the agent platforms by using well known encryption
protocols. All these works use MAS in order to provide data privacy. In our
work, as explained in Sect. 4, we take advantage of MAS properties to handle
the privacy of the hardware resources and of the structure of the system. The
data privacy of the deployed applications is left to the developer who can use
one of the cited methods.

3 Scenario

The scenario we use in this paper highlights the dynamic deployment of distrib-
uted applications. Mr Snow uses a video doorkeeper for dependant persons (e.g.
visually impaired) application in his home. When someone rings at the door, the
image of the entrance camera is displayed on a screen near Mr Snow, making
sure he can properly see the person. He can then discuss with the person and
decide whether or not to remotely open the door.

It is Saturday morning and Mr Snow is waiting for a parcel that will be
delivered to his home at any time. While he is grooming himself in the bathroom,
his neighbour, Mr Den, rings the door. The smart house, aware that Mr Snow
is in his bathroom, selects the connected mirror of the bathroom, instead of
any of the other display screens of the house, as a support to display the image
stream of the entrance camera. Mr Snow, not being able to receive his guest,
informs him, thanks to the microphone in the mirror, that he will meet him in
an hour. After getting ready, Mr Snow goes to his neighbour. In the middle of
their conversation, he is notified on his smartphone that an unkonwn man rings
at his door again. He decides to display the image of this man on Mr Den’s
television to ask him if he recognises the guest since his smartphone screen is

A Multi-agent Solution for the Deployment of Distributed Applications 159

to small. By default, Mr Snow does not have the right to use any devices that
he does not own, but Mr Den has authorised him to access the television when
he is at home. The doorkeeper application is redeployed dynamically to use
the requested hardware entities. Neither Mr Snow nor his neighbour know the
visitor. Mr Snow decides to activate the microphone of the camera which allows
him to learn that the unknown person is the expected transporter, who he can
now go and see in person.

The important point in this scenario is not the video doorkeeper application,
but the way it is deployed dynamically in the environment, considering the user’s
context. The scenario shows two deployment situations: (1) the application was
deployed for use in the user’s own home infrastructure, but in a less usual place:
the bathroom; (2) the application was deployed on the infrastructure of another
user, as the necessary access rights had been granted. We can isolate five main
needs of the system:

1. The system has to find which hardware entities to use in order to launch the
desired application. These entities have to respect hardware requirements and
contextual constraints such as the user location.

2. Once the hardware entities have been chosen, the system has to deploy the
application or some part of it on the infrastructure. In the scenario, the appli-
cation can be divided into two parts. The first one monitors the door bell of
the house and is automatically deployed when a user chooses to launch the
video doorkeeper application. When someone rings the door, the second part
of the application, the one which will display the image stream of the camera
on a screen near the user, is deployed. It is the deployment of the second part
that interests us.

3. The system has to undeploy (part of) the applications. In the scenario, when
the user ends the communication with the guest, the second part of the video
doorkeeper application should be undeployed and the corresponding resources
released.

4. The system has to monitor the environment: get contextual information about
the user location or the current amount of bandwidth of a communication
channel for instance. If an inconsistency between the hardware infrastruc-
ture properties and the requirements of an application is detected, another
deployment of the application (or some parts of it) should be planned.

5. At last, a user has to manage the hardware entities he owns. He can also use
hardware entities of others if he has the required permissions (as described in
Sect. 4.2). However, he does not have access to information on the structure
of the infrastructure he does not own.

The first need is already discussed in our previous work [23] and later improved
in a distributed version of the algorithm that finds the hardware entities of
the infrastructure that can support the deployment of an application, based
on their descriptions. The second and third needs involve interactions with the
real environment in order to configure the hardware entities. The fourth need
also involves interactions with the environment to sense its properties and state.
At last, the fifth need raises the question of the privacy of hardware resources:

160 F. Piette et al.

how can the system guarantee that users cannot have information about the
hardware entities of others?

The multi-agent system we describe in this paper is used to deploy appli-
cations on an available hardware infrastructure, to monitor the system and to
maintain its consistency. As we describe below, the agents are in charge of the
high level reasoning, while artifacts correspond to tools for interacting with the
environment. The decentralisation of MAS is an asset to enhance resource pri-
vacy. Indeed, the description of the hardware infrastructure can be split into
agents so that no global knowledge exists. Then the agents can be organised
to apply sharing policies and guide the deployment of the applications. At last,
cooperation between agents allows to find solutions of the deployment even if no
local solution exists.

With these observations, we can establish the different roles of the system.
These roles will be associated with the different entities of the MAS.

1. Interact with a user

2. Maintain the consistency of an application

3. Find a projection of the requirements of an application on the infrastructure
graph

4. Interact with the environment to configure hardware entities and deploy appli-
cations

5. Sense the environment properties

6. Update the description of the environment

7. Manage sharing policies and resource privacy

4 Multi-agent Architecture

Our scenario highlights several necessary specificities of the deployment software.
This software has to dynamically deploy and undeploy distributed AmI applica-
tions in an environment that is also dynamic: when a visitor rings the doorbell,
the deployment of the video doorkeeper should start, considering the available
hardware entities and the location of the user, in order to choose the most rel-
evant screen for displaying the image of the camera. Given its the distribution
and openness that characterize the Aml domain, privacy is a very important
characteristic of the deployment software. Privacy is defined by Alan Westin
[30] as the claim of individuals, groups or institutions to determine for them-
selves when, how and to what extent information about them is communicated.
In this scenario, we focus on resource privacy since the data manipulated by the
deployment solution concerns hardware resources. Mr Snow is the owner of the
hardware entities in his house and he does not want unauthorised persons to use
or even know of the existence of these resources. At last, autonomy and robust-
ness of the system are also very important specificities: if my neighbour’s system
failed, mine should continue to work normally and should not be impacted.

As the required software demands distribution, privacy, context management,
autonomy and robustness, we identified MAS as a suitable solution. Through its

A Multi-agent Solution for the Deployment of Distributed Applications 161

modularity, this paradigm facilitates a local processing of the data and guar-
antees the autonomy of the different parts of the hardware infrastructure, thus
handling aspects of privacy and robustness. To solve the dynamic deployment
problem, we use the graph representation for the hardware infrastructure from
our previous work [23]. Nodes represent hardware entities or relations between
these entities and properties can be attached to each node. The requirements
of the deployable applications are also described using such graphs. A graph
matching algorithm can then be used on the available infrastructure graph to
find the entities that can support the running of the application.

In the next sub-sections, we present the modelling of agents and the agent
organisation for our deployment solution, while focusing on the encapsulation of
resource privacy.

4.1 Agents and Artifacts

The deployment software involves the user deploying applications on an
infrastructure. Three types of agent were therefore defined to represent and
clearly separate each of the parties in handling the deployment: User Agent,
Application Agent and Infrastructure Agent. A fourth type of agent was intro-
duced for providing organisation capabilities and enhancing resource privacy:
the Infrastructure Super Agent. For each type of agent we identified the main
goals, that will be described in Sect. 5:

An Infrastructure Agent deals with a part of the global hardware
infrastructure. It uses the graph representation of this available infrastructure
[23] (hardware entities, relations and properties). This graph representation is
never shared with other agents. To deploy an application, an Infrastructure Agent
has to find a projection (possibly partial) of the hardware requirements of the
application on the infrastructure (role 3, as identified above). The agent may
need to cooperate with other agents to complete the projection if no local solu-
tion can be found. This infrastructure description is updated (role 6) when the
agent receives information about the current state and properties of the real
infrastructure. At last, as the infrastructure description is not shared with the
other agents, the Infrastructure Agents have to manage the authorization levels
and the sharing policy (role 7).

An Application Agent manages an entire application during its runtime
(role 2). It has a graph-based description of the application that expresses its
hardware requirements and the way the hardware entities should be used (con-
figuration, software deployment, ...). If the hardware requirements of parts of the
deployed application are no longer respected during its runtime, then the agent
will plan another deployment of these parts by interacting with Infrastructure
Agents. An example of such graph is represented in Fig. 1: the upper part rep-
resents the functionalities of the application and the bottom part shows their
hardware requirements.

The User Agent is attached to a user and saves his preferences and his
context. It is the interface between the user and the other agents (role 1). Each
user is represented in the MAS by his own agent. This one handles the user’s

162 F. Piette et al.

requests for the deployment or undeployment of applications and creates the
associated Application Agents.

The Infrastructure Agents can be grouped to form sub multi-agent systems.
These groups are represented by an Infrastructure Super Agent. From an
outside point of view, a Infrastructure Super Agent is seen as a regular Infrastruc-
ture Agent. It acts as a proxy between the agents inside and outside of the group.
It is then easier to abstract groups of agents and make then invisible from the
outside. It results on a multi-scale organisation that helps to enhance resource
privacy by hiding information about the structure of it sub-organisations.

datastream

I #1: Cameral I #4: 00@7

framerate>10
Y Y

#rl:@ #r3: has #r4: I“‘:JHSOH

y A A
I #2: CommDeViceI I #3: CommDeViceI I #5: OS I

L J OSType=Linux
[#rQ: communica‘cesWith}

bandwidth = #1.framerate X #1.imageSize

Fig. 1. Example of a basic application graph

In addition to these four classes of agent, we also propose two classes of
artifact which are resources and tools that can be instantiated and/or used by
agents in order to interact with the environment [25]:

Deployment artifacts [15] can be used by the Infrastructure Agents in
order to effectively deploy/undeploy some parts of an application, or configure
hardware entities so that they can be used by the application (role 4).

Monitoring artifacts provide useful contextual information to the MAS
(role 5) such as the location of a user or the current available bandwidth of a
communication channel. This information helps the agents keep their application
or infrastructure descriptions up to date.

4.2 Sharing Policies

To improve privacy by controlling the use of resources, we also propose shar-
ing policies. User Agents can be authorised, by the owner of some hardware
infrastructure, to use some parts of its infrastructure, and cooperate with the
associated Infrastructure Agents or Super Agents, to deploy applications. If a

A Multi-agent Solution for the Deployment of Distributed Applications 163

User Agent is not authorised by the Infrastructure (Super) Agent, it cannot use
the hardware resources proposed by this agent. These authorization levels are
defined by the owner of each Infrastructure (Super) Agent. The Administrator
level is defined to identify these owners. With this level, a user can manage the
other authorization levels, configure or create sub-organisations of Infrastructure
Agents (by implicitly instantiating Infrastructure Super Agents) and has access
to every hardware entity managed by the agent. When an administrator creates a
sub-organisation, he is automatically the administrator of the new Infrastructure
Super Agent.

4.3 Deployment

The deployment is started by a user, through his User Agent. The latter then
creates an Application Agent that will handle the deployment and the monitor-
ing of the application. This agent chooses among the authorized Infrastructure
(Super) Agents the ones it will ask for the deployment of parts of the application.
The concerned Infrastructure Agents try to find the hardware entities that will
support the deployment of the application. If a partial projection is found, the
agent will cooperate with other authorized agents in order to complete the pro-
jection. Once such projection is found, the concerned agents effectively deploy
the application through the deployment artifacts. The monitoring artifacts pro-
vide the Infrastructure Agents with information about the environment. When
some properties change, these agents notify all the Application Agents that have
inconsistent applications. These ones can decide to plan another deployment of
some parts of the application.

Figures2 and 3 show the interaction between an Application Agent and the
Infrastructure Agents in order to get a projection of the application and to
effectively deploy this application. As stated before, the current Infrastructure
Agent (“Infra Agent Actor” in the figures) may need to request other agents
(“Infra Agent Delegate”) to handle a part of the deployment.

4.4 Scenario Illustration

Figure 4 shows the agent structure of the doorkeeper scenario. The description of
the infrastructure is split into three Infrastructure Agents. The first one manages
the hardware entities located in the living room of Mr Snow, like the television
set. The second one manages the entities of the bathroom like the connected
mirror. These two agents are grouped behind an Infrastructure Super Agent
representing the house of Mr Snow. And the last one manages the house of
the neighbour. Similarly, the Infrastructure Agent managing the house of Mr
Snow’s neighbour can be a super agent, regrouping several Infrastructure Agents
(or other sub-super agents) to manage more finely the house. The advantage
of such organisation is that it is easy to abstract groups of agents and make
them invisible from the outside, resulting in a multi-scale organisation that helps
improve privacy. Indeed, Mr Snow knows about his own Infrastructure Agents
(bathroom and living room), but he does not have to know anything about the

164 F. Piette et al.

App Agent Infra Agent Infra Agent
Actor Delegate
request(projection,app)
g : :I init algo
fail : notify _
— complete : notify :I compute projection
: partial p; H
request(projection,app,p;)
’__ partial p;+1
D notify — complete k<1

Fig. 2. Infrastructure Agent: get a projection of a part of the application

details of Mr Den’s infrastructure organisation. If he wants to interact with his
neighbour’s house, he has to interact with Mr Den’s Infrastructure Super Agent —
provided that the right access rights were granted, as described below —, without
knowing the real number of agents managing Mr Den’s house, and reciprocally.

We also find two Application Agents. The first one manages the video door-
keeper application; when a visitor rings the doorbell, this Application Agent
triggers the deployment of the video interaction functionality. The second one
manages the application which provides the location of the Mr Snow inside his
own house to his own Infrastructure Agents. The contextual location information
is useful for deploying other applications. Indeed, the display screen of the video
doorkeeper application has to be chosen near the user. Then, we have two User
Agents. The first one is the interface between the deployment software and Mr
Snow, and the second one is owned by Mr Snow’s neighbour. At last, we have
a certain number of deployment artifacts that can configure the display screens,
the cameras, or deploy software on devices (TV box, connected mirror etc.).

In this scenario, three authorisation levels are defined: the administrator level,
the regular user level and the guest level. With the regular user level, the agent
has access to the resources of the Infrastructure (Super) Agent but it cannot
reconfigure authorisation levels or agent organisation. With the guest level, the
agent has a restricted access to the resources. Only the resources considered as
non critical by an administrator are allowed to be shared. These authorisation
levels are not limited to three and can be modified by the administrator of
the Super Agent. In the video doorkeeper scenario, Mr Snow’s User Agent is
a Regular user for his home Infrastructure Super Agent, but it is just a Guest

A Multi-agent Solution for the Deployment of Distributed Applications 165

App Agent Infra Agent Infra Agent Artifact
Actor Delegate

request([un]deploy,app) request ([un]deploy,app,parts)

n

|: notify B fail
i<1 :
> = n_ |
— success j==n _

[un]deploy (part;)

notify B fail i
k<1
- = : m |
|: notify success l==m

Fig. 3. Infrastructure Agent: deploy a part of an application

to his neighbour’s home Infrastructure Super Agent. As such, it has only access
to the television of Mr Snow’s neighbour. This ensures the privacy of the other
resources of Mr Den. The Application Agents have the same authorisation level
as the User Agent that creates them. They can interact with the authorised
Infrastructure Agents in order to effectively deploy their application.

4.5 Summary

In this section, we defined the multi-agent system architecture. User, Application
and Infrastructure Agents were defined in order to provide a clear separation.
Infrastructure Super Agents were introduced to allow the creation of hierarchical
organisations of Infrastructure Agents. Sharing policies were defined to control
the use of the hardware resources of the infrastructure. The authorizations based
on these sharing policies define the organisation and the possible acquaintances
for the agents of the MAS.

The agent decomposition encapsulates a part of the privacy mechanism.
Indeed, the graph representation of the available hardware infrastructure man-
aged by an Infrastructure Agent is only known by this agent and is never
shared with others. Moreover, the architecture used helps keep a clear sepa-
ration between the applicative part, managed by the Application Agents, and
the hardware part, monitored by the Infrastructure Agents. As agents only have
a local view of the system, the privacy is enhanced. Privacy policies can allow
or prevent the sharing of resources to User Agents. This results in privacy by
design.

166 F. Piette et al.

Mr Den’s
house
infrastructure
(super) agent

Living room
infrastructure
agent

Mr Snow’s
house
infrastructure
super agent

Bathroom
infrastructure
agent

authorised as:

Doorkeeper
app. agent

regular user

authorised as:

guest

authorised as:

regular user

owned by

Location
app. agent

Mr Snow
user agent

Mr Den
user agent

owned by

Fig. 4. Agent organisation

5 Agents’ Behaviour

The four types of agent presented in the previous section were designed using
a goal-based model due to its benefits to the autonomy and robustness of the
application [10]. Goals are specified by describing their associated plans: higher
level goal plans describing relationships between goals and lower level action
plans for concrete actions. This goal-based representation is based on the Goal-
Plan Separation (GPS) approach [8], where each agent has a main goal plan (i.e.
plan without any actions, so only decisions, perceptions and goal adoptions) that
describes the top level behaviour, which can be pursued using other goal plans
or directly action plans (i.e. plan without any goal adoptions). This approach
helps handle agent complexity through a multi-level description, from top level
abstract behaviours with goals to concrete action plans. Using goal-plans also
has the advantage of specifying the relationships between goals in a plan format.
Plans are represented using a flowchart notation we adapted for modelling
goal-driven agents (Fig.5). The notation contains the main elements that allow
for the behaviours of agents to be defined. Event perceptions (wait), decision
nodes and iterators (ForEach) can be used in any type of plan. Action nodes are
specific to action plans and goal adoptions (parallel or synchronous) are specific
to goal plan. Parallel executions are launched when adopting goals. For this
application, we considered a simple goal model (similar to a perform goal [7])
where a goal is successful (“S”) when the plan executing for it ends with “End
ok”. This allowed us to keep a simple goal life-cycle appropriate for using in our
application, while still benefiting from the features of the goal-based design.

A Multi-agent Solution for the Deployment of Distributed Applications 167
L o Ah in ForEach
| Wait Decision Perform L egin rortac
for events action(s) vy

E; E; case; case; h- Vend ForEach
L Adopt goal Adopt goal
in parallel with and wait for

current plan outcome

F S
Fig. 5. Flowchart nodes for efficiently describing the plans of goal-driven agents

We continue by describing in detail the agents of the system. Since the
Infrastructure Super Agent is only a proxy between the agents of the group
it represents and the other agents outside this group, its implementation is not
detailed here. In what follows, Px;_; are the plans for a goal Gx;.

5.1 User Agent

The User Agent acts as an interface between the user and the deployment MAS.
The main goal plan of the User Agent (Fig.6) waits for user input and, depend-
ing on the received request, adopts the necessary goal, corresponding to the
agent functions identified in Sect.4.1. The goal plan of Gy (Fig.7) creates an
Application Agent, wait for a confirmation and adopt a goal that monitor the
Application Agent.

Main Goal-plan

Begin Pyo-1 Launch application a

‘ Begin PUlfl(a)

Message from User Message from User

launch(a) kill(A) Create
application
agent
G Guz(A ’ S
Ul(a) U2() Monitor
Launch Kill application
application a agent A agent
end ok
Fig. 6. User Agent: main goal plan Fig. 7. User Agent: goal plan for Gy

5.2 Application Agent

The Application Agent is created by a User Agent. It tries to deploy a pre-
cise application by cooperating with one or more known Infrastructure (Super)
Agents, from which it does not need to have any infrastructure details.

168 F. Piette et al.

Main Goal-plan
Begin Pao—1

Launch application
partO

Event(deploy,p) 0 Message from A inconsistant(p)

Event(undeploy,p)
La}lnc%l Undeploy Rec!eplf)y
application application application
part p part p part p

Fig. 8. Application Agent: main goal plan

Launch application part p
Begin Pa1-1(p)

Get projection of
application part p

Deploy application
part p

end error

W Undeploy
application part p

S/F

S

end ok

Fig. 9. Application Agent: goal plan for G a1: “Launch application part”

Upon its creation, an Application Agent execute its main goal plan (Fig. 8).
The goal G 41 that deploy an initial functionality (Fig.9) is adopted and the
agent waits for internal events for new deployments or undeployments.

The deployment is done in two steps: first the agent obtains a deployment
solution from Infrastructure Agents via G 1.1 and then it requests the deploy-
ment according to this solution through G 41.2. The Application Agent sends a
list of the requirements described in the application graph to the Infrastruc-
ture Agent and the solution it receives contains the list of requirements that
could be fulfilled. Note that the reply does not contain any actual infrastructure
details, which is important for the privacy of the infrastructure. It can be seen
(Fig. 10) that the agent may need to call multiple Infrastructure Agents in order
to obtain a complete deployment solution. Indeed an Infrastructure Agent tries
to find in its own infrastructure the hardware entities that match the require-
ments of the application. However, if these requirements only partially match,
the Infrastructure Agent will return a partial solution to the Application Agent.
In this case, the latter will call another Infrastructure Agent that will continue to
match the requirements of the application. Once a solution has been found, the

A Multi-agent Solution for the Deployment of Distributed Applications 169

Application Agent interacts again with the concerned Infrastructure Agents to
effectively deploy the functionalities of the application: plan P4; o simply sends
messages and waits for a confirmation (Fig. 11). The plan for the undeployment
of a part of the application (G 42) is similar to the plan that deploy a part of the
application (G a1.2). The plan for the redeployment of a part of the application
(G a3) only undeploy this part first and deploy it again. After a functionality was
deployed, the agent monitors it through G49 and wait for a message from the
Infrastructure Agents that tells that a part of the application is inconsistency
(e.g. changing infrastructure availability, changing user location).

Get projection of
application part p Deploy application part p
Begin Pai.1-1(p) Begin Pa1.2-1(p)

ForEach A of known
agent infrastructure

Send message to agent

Send message to A
request(deploy, f)

request(projection, p)

none

projection found none

3 response lok V response ok

End ok End fail End fail End ok
Fig.10. Application Agent: plan for Fig.11. Application Agent: plan for
Ga1.1: “get projection of application G a1.2: “deploy application part”

part”

Note here that the Application Agents only handle the application deploy-
ment. The application itself is in charge of its own actions, data and privacy.

5.3 Infrastructure Agent

An Infrastructure Agent receives requests from Application Agents that it tries to
satisfy (Fig. 12). Only requests originating from known User Agents are treated,
in other words only applications from agents that were granted one of the levels
of authorisation are accepted.

When it receives a request for a deployment solution, the Infrastructure Agent
uses the graph matching algorithm to determine if it can fulfil the requirements
of the request (Fig.13) using the devices it manages. The algorithm takes into
consideration the levels of authorisation of the involved User Agents. If it cannot
produce a complete solution, the Infrastructure Agent requests the help of other
agents in its group, but without informing the Application Agents. In this way,
the components of the infrastructure remain private. If a complete solution is
eventually produced and the Infrastructure Agent is given the order to deploy

170 F. Piette et al.

Main Goal-plan
Begin Pjao-1

G Keep infrastructure
11 graph up to date

Message from A Message from A
request(projection, f) request(undeploy, f)

w

Message from A
request(deploy, f)

Compute Have }ll'avi'
application . application app }Cﬂ 10'n
m re. ti 013(‘47 f) functionality m functionality
projection depl d undeployed
eploye

Fig. 12. Infrastructure Agent: main goal plan

the application, it will dispatch the deployment tasks to its own deployment
artifacts as well as to any other Infrastructure Agents that were included in the
final solution. In case any of these requests fails (e.g. an artifact malfunctions),
the whole application is undeployed and the Application Agent is informed, which
will cause it to restart the deployment procedure.

In parallel with the request handling, the agent also adopts G; which listens
for agent and artifact information in order to manage the graph the devices
corresponding to the Infrastructure Agent. In case of an inconsistency (e.g. Mr
Snow leaves Mr Den’s home, so any display he used there are no longer relevant
for the application), the agent informs the Application Agents that it will need
to redeploy the concerned parts of their applications.

6 Implementation and Experimentations

A demonstration model of the deployment software has been developed in an
apartment replica attached to our laboratory. This home replica implements
various scenarios applied to home care for dependent persons, including the pre-
sented scenario. These scenarios are using commercial connected devices tweaked
to be horizontally connected, thanks to the deployment software.

Our goal is to run the MAS on different devices like smartphones or embedded
systems with few resources. Most of existing regular MAS platforms like Jade
for instance are memory-consuming and Java-oriented platforms [19]. They are
not suitable for our purpose. That is why we designed our own MAS platform
in JavaScript. Indeed, web technologies are fully interoperable and the agents
can easily be run on devices like smartphones or the Raspberry Pi. Visualisation
and interfaces are also JavaScript web applications. The agents embed a moni-
toring and debugging web server that proposes interfaces for interacting with it.
The effective deployment is handled by deployment artifacts. The demonstration
model handles ssh and puppet artifacts in order to deploy and run software on
UNIX systems (computers, micro-computers, Unix-based devices etc.). We also
implemented a specific deployment artifact that configures the frame rate of IP

A Multi-agent Solution for the Deployment of Distributed Applications 171

Compute application projection
Begin Pro_1(partial, firstAppNode)

Init graph matching algorithm
(partial, firstAppNode)

Compute next partial projection

fail projection

__________ ForEach appNeighbour
complete 1 of firstAppNode

ForEach neighbour

Send message
to neighbour
request(projection, ...)

response(complete)

response(none)
response(partial)

Send message to A Send message to A
response(none) response(projection)

End fail End ok End ok

Send message to A
response(partial)

Fig. 13. Infrastructure Agent: plan for Gre: “compute application projection”

cameras. In this implementation we mostly used IP devices. We also integrated
EnOcean devices. These devices, however, are handled by a hard-coded gateway
that extends the IP network to EnOcean devices. Next stage will be to handle
multiple means of communication by automatically deploying gateways or prox-
ies between the devices when needed. At last, the agent implementation was,
in first place, not obvious. The multi-level GPS approach made it intuitive to
develop.

For these experiments, we generated random infrastructure and application
graphs for which we varied the number of nodes, the average number of edges
and the average number of properties each node has. We only considered the
infrastructure-application pairs for which at least one complete projection solu-
tion exists. In the graphs depicted below, each point is the median execution time
obtained by running the algorithm on 100 randomly-generated infrastructure-
application pairs. A random graph generation was introduced in order to evaluate
the MAS performances independently of the application domain. Then, the prop-
erties of the application and infrastructure graph in the context of smart-homes
were extracted and correlated with the general results.

172 F. Piette et al.

Figure 14 shows the variation of the computation times with the sizes of
the application and infrastructure graphs for only one infrastructure agent. The
execution time shows a moderate increase with respect to the infrastructure size
variation. However, it grows fast with the application graph size.

150
—0— 80 application nodes —0— 8000 infrastructure nodes
150 |-| —@— 60 application nodes —e— 5000 infrastructure nodes
I~ —+— 40 application nodes —+— 2000 infrastructure nodes
g —»— 10 application nodes —»— 100 infrastructure nodes
o
g
£ 100
o
2
i
=]
g
g 50
0 0,
0 0.2 0.4 0.6 0.8 1 10 20 30 40 50 60 70 80

Number of infrastructure nodes -10* Number of application nodes

Fig.14. The execution times of the projection algorithm executed for various
infrastructure and application sizes.

Figure 15 represents the variation of the execution times with size of the
infrastructure and application graph shared amoung different number of agents.
We can note that it is not efficient to let an agent manage only few infrastructure
nodes. In that case, a lot of time is lost in the cooperation process.

50 application nodes 500 infrastructure nodes
300 300
—o— 50 infrastructure agents —0— 50 infrastructure agents
—e— 40 infrastructure agents —e— 40 infrastructure agents
> —+— 20 infrastructure agents —— 20 infrastructure agents
E —— 1 infrastructure agent —— 1 infrastructure agent
o 200 200
E
B
g
et
g
100
? 100
3
¢} S 3
0,
%00 400 600 800 1,000 10 20 30 40 50 60 70 80
Number of infrastructure nodes Number of application nodes

Fig.15. The execution times of the graph-matching algorithm for various size of
infrastructure, application and number of agents.

These experiments show that the algorithm can be used with real applica-
tions and smart environments. Indeed, the computation time grows fast with
the size of the application graph, however, applications do not have an impor-
tant number of nodes. Contrariwise, the global infrastructure graph can grow

A Multi-agent Solution for the Deployment of Distributed Applications 173

rapidly, but we have seen that the computation time evolves reasonably. For
example, the application from the scenario in Sect.3 contains 23 nodes, while
the infrastructure is made of more than 50 nodes shared amoung 3 agents. The
average number of edges between the nodes is between 2 and 3.

This realisation helps us to figure out the difficulties of handling the hetero-
geneity of hardware entities. We are now able to handle applications through an
AppStore for Smart Homes. These applications can be automatically deployed
in a real environment, using the available hardware devices, and including mech-
anisms to ensure privacy management of the resources. This provides a concrete
base for the implementation of a complete middleware for the deployment of
distributed applications in a smart environment.

7 Conclusion and Future Work

In this paper, we presented a multi-agent solution for reasoning on the dynamic
deployment of distributed applications in ambient systems. We described the
modelling of the system and presented the specifications of the goal-based agents.
We illustrated the MAS using a context-aware video doorkeeper scenario. In
this scenario, a doorkeeper application is dynamically deployed in order to route
the video stream of the entrance hall camera to a relevant screen, near the
user, thanks to contextual information about his location. Even if smartphones
are nowadays the favorite interface of the users, we are convainced that multi-
modal interactions have to be proposed. The devices and the interfaces has to
be selected considering the context. Other scenarios to help people with reduce
mobility has been inplemented using the apartment replica we used.

The MAS proposed in this paper contains four classes of goal-directed agent
to handle a clear separation between the hardware and software layers and to
ensure resource privacy in ambient systems. In order to preserve the privacy
of the resources, the graph models of the infrastructure are handled locally by
the concerned agents. The use of MAS made it possible to introduce privacy
measures at architecture and organisation level, on top of which we were able to
add a user-defined privacy policy mechanism. This was an important criterion
for the choice of the agent paradigm since in the domain of Ambient Intelligence
there are often different infrastructure owners that need to ensure the privacy of
their resources. The separation between the applicative and the infrastructure
layers, together with the decentralised approach also enhance the robustness
of the solution. The clearly delimited entities, with either virtual (the appli-
cations) or physical (users, infrastructure elements) correspondents, guided the
agentification. The use of a goal-based representation for agents together with
the Goal-Plan Separation approach facilitated the modelling task. The specific
plan notation was efficient in describing the agent plans both during design and
for presentation purposes.

In terms of future work, for the deployment software, data privacy in the
deployed applications should also be taken into consideration in addition to the
resource privacy discussed here. We would like to facilitate the local process-
ing and storage of the data by defining data privacy policies which should be

174 F. Piette et al.

facilitated by the modularity of the MAS. This would impact the reasoning on
the deployment: the hardware entities would have to be filtered with respect to
this new data privacy policy. In the interest of the engineering of multi-agent
systems, we are studying the goal-based modelling approach with GPS agents
and the plan notation for the extension towards a development methodology for
robust software.

References

1. Aimeur, E., Brassard, G., Fernandez, J.M., Onana, F.S.M.: Privacy-preserving
demographic filtering. In: Proceedings of the 2006 ACM Symposium on Applied
Computing, SAC 2006, pp. 872-878. ACM, New York (2006)

2. Alberola, J., Such, J., Garcia-Fornes, A., Espinosa, A., Botti, V.: A performance
evaluation of three multiagent platforms. Artif. Intell. Rev. 34(2), 145-176 (2010)

3. Arnold, W., Eilam, T., Kalantar, M., Konstantinou, A.V., Totok, A.A.: Auto-
matic realization of SOA deployment patterns in distributed environments. In:
Bouguettaya, A., Krueger, I., Margaria, T. (eds.) ICSOC 2008. LNCS, vol. 5364,
pp. 162-179. Springer, Heidelberg (2008). doi:10.1007/978-3-540-89652-4_15

4. Atzori, L., lera, A., Morabito, G.: The internet of things: a survey. Comput. Netw.
54(15), 2787-2805 (2010)

5. Barth, A., Datta, A., Mitchell, J., Nissenbaum, H.: Privacy and contextual
integrity: framework and applications. In: 2006 IEEE Symposium on Security and
Privacy, pp. 15-198, May 2006

6. Braubach, L., Pokahr, A., Bade, D., Krempels, K.-H., Lamersdorf, W.: Deployment
of distributed multi-agent systems. In: Gleizes, M.-P., Omicini, A., Zambonelli, F.
(eds.) ESAW 2004. LNCS (LNAI), vol. 3451, pp. 261-276. Springer, Heidelberg
(2005). doi:10.1007/11423355-19

7. Braubach, L., Pokahr, A., Moldt, D., Lamersdorf, W.: Goal representation for BDI
agent systems. In: Bordini, R.H., Dastani, M., Dix, J., Fallah Seghrouchni, A. (eds.)
ProMAS 2004. LNCS (LNAI), vol. 3346, pp. 44-65. Springer, Heidelberg (2005).
doi:10.1007/978-3-540-32260-3_3

8. Caval, C., El Fallah Seghrouchni, A., Taillibert, P.: Keeping a clear separation
between goals and plans. In: Dalpiaz, F., Dix, J., Riemsdijk, M.B. (eds.) EMAS
2014. LNCS (LNAI), vol. 8758, pp. 15-39. Springer, Heidelberg (2014). doi:10.
1007/978-3-319-14484-9_2

9. Chen, H., Finin, T.W., Joshi, A., Kagal, L., Perich, F.: Intelligent agents meet the
semantic web in smart spaces. IEEE Internet Comput. 8(6), 6979 (2004)

10. Cheong, C., Winikoff, M.: Hermes: designing goal-oriented agent interactions.
In: Miiller, J.P., Zambonelli, F. (eds.) AOSE 2005. LNCS, vol. 3950, pp. 16-27.
Springer, Heidelberg (2006). doi:10.1007/11752660-2

11. Cissée, R., Albayrak, S.: An agent-based approach for privacy-preserving recom-
mender systems. In: Proceedings of the 6th International Joint Conference on
Autonomous Agents and Multiagent Systems, AAMAS 2007, pp. 182:1-182:8.
ACM, New York (2007)

12. Crépin, L., Demazeau, Y., Boissier, O., Jacquenet, F.: Sensitive data transaction
in hippocratic multi-agent systems. In: Artikis, A., Picard, G., Vercouter, L. (eds.)
ESAW 2008. LNCS (LNAI), vol. 5485, pp. 85-101. Springer, Heidelberg (2009).
doi:10.1007/978-3-642-02562-4_5

http://dx.doi.org/10.1007/978-3-540-89652-4_15
http://dx.doi.org/10.1007/11423355_19
http://dx.doi.org/10.1007/978-3-540-32260-3_3
http://dx.doi.org/10.1007/978-3-319-14484-9_2
http://dx.doi.org/10.1007/978-3-319-14484-9_2
http://dx.doi.org/10.1007/11752660_2
http://dx.doi.org/10.1007/978-3-642-02562-4_5

13.

14.

15.

16.

17.
18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

A Multi-agent Solution for the Deployment of Distributed Applications 175

Ducatel, K., Bogdanowicz, M., Scapolo, F., Leijten, J., Burgelman, J.: Scenarios
for ambient intelligence in 2010 (2001)

Fallah Seghrouchni, A., Olaru, A., Nguyen, N.T.T., Salomone, D.: Ao dai: agent
oriented design for ambient intelligence. In: Desai, N., Liu, A., Winikoff, M. (eds.)
PRIMA 2010. LNCS (LNAI), vol. 7057, pp. 259-269. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-25920-3_18

Flissi, A., Dubus, J., Dolet, N., Merle, P.: Deploying on the grid with deploy-
ware. In: 8th IEEE International Symposium on Cluster Computing and the Grid,
CCGRID 2008, pp. 177-184, May 2008

Hellenschmidt, M., Kirste, T.: A generic topology for ambient intelligence. In:
Markopoulos, P., Eggen, B., Aarts, E., Crowley, J.L. (eds.) EUSAI 2004. LNCS, vol.
3295, pp. 112-123. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30473-9_12
ITU-T: Overview of the internet of things, recommendations (2012)

Johanson, B., Fox, A., Winograd, T.: The interactive workspaces project: expe-
riences with ubiquitous computing rooms. IEEE Pervasive Comput. 1(2), 67-74
(2002)

Kravari, K., Bassiliades, N.: A survey of agent platforms. J. Artif. Soc. Soc. Simul.
18(1), 11 (2015)

Krupa, Y., Vercouter, L.: Contextual integrity and privacy enforcing norms for
virtual communities. In: Boissier, O., El Fallah Seghrouchni, A., Hassas, S.,
Maudet, N. (eds.) MALLOW. CEUR Workshop Proceedings, vol. 627 (2010).
CEUR-WS.org

Menczer, F., Street, W., Vishwakarma, N., Monge, A., Jakobsson, M.: IntelliSh-
opper: a proactive, personal, private shopping assistant. In: Proceeding 1st ACM
International Joint Conference on Autonomous Agents and MultiAgent Systems
(AAMAS) (2002)

O’Hare, G.M.P., Collier, R., Dragone, M., O’Grady, M.J., Muldoon, C., Montoya,
J.A.: Embedding agents within ambient intelligent applications. In: Bosse, T. (ed.)
Agents and Ambient Intelligence, Ambient Intelligence and Smart Environments,
vol. 12, pp. 119-133. IOS Press (2012)

Piette, F., Dinont, C., El Fallah Seghrouchni, A., Taillibert, P.: Deployment and
configuration of applications for ambient systems. In: The 6th International Con-
ference on Ambient Systems, Networks and Technologies (ANT-2015), Procedia
Computer Science, vol. 52, pp. 373-380 (2015)

Ramchurn, S.D.; Huynh, D.; Jennings, N.R.: Trust in multi-agent systems. Knowl.
Eng. Rev. 19(1), 1-25 (2004)

Ricci, A.: Agents and coordination artifacts for feature engineering. In: Ryan, M.D.,
Meyer, J.-J.C., Ehrich, H.-D. (eds.) Objects, Agents, and Features. LNCS, vol.
2975, pp. 209-226. Springer, Heidelberg (2004). doi:10.1007/978-3-540-25930-5_13
Such, J.M., Espinosa, A., GarciA-Fornes, A., Sierra, C.: Self-disclosure decision
making based on intimacy and privacy. Inf. Sci. 211, 93-111 (2012)

Such, J.M., Espinosa, A., Garca-Fornes, A.: A survey of privacy in multi-agent
systems. Knowl. Eng. Rev. 29, 314-344 (2014)

Tentori, M., Favela, J., Rodriguez, M.D.: Privacy-aware autonomous agents for
pervasive healthcare. IEEE Intell. Syst. 21(6), 55-62 (2006)

Udupi, Y.B., Singh, M.P.: Information sharing among autonomous agents in refer-
ral networks. In: Joseph, S.R.H., Despotovic, Z., Moro, G., Bergamaschi, S. (eds.)
AP2PC 2007. LNCS (LNAI), vol. 5319, pp. 13-26. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-11368-0_2

Westin, A.F.: Privacy and Freedom. Atheneum, New York (1967)

http://dx.doi.org/10.1007/978-3-642-25920-3_18
http://dx.doi.org/10.1007/978-3-540-30473-9_12
http://ceur-ws.org/
http://dx.doi.org/10.1007/978-3-540-25930-5_13
http://dx.doi.org/10.1007/978-3-642-11368-0_2

	A Multi-agent Solution for the Deployment of Distributed Applications in Ambient Systems
	1 Deployment of Smart Applications
	2 Related Work
	3 Scenario
	4 Multi-agent Architecture
	4.1 Agents and Artifacts
	4.2 Sharing Policies
	4.3 Deployment
	4.4 Scenario Illustration
	4.5 Summary

	5 Agents' Behaviour
	5.1 User Agent
	5.2 Application Agent
	5.3 Infrastructure Agent

	6 Implementation and Experimentations
	7 Conclusion and Future Work
	References

