
A Namespace Approach for Modularity in BDI
Programming Languages

Gustavo Ortiz-Hernández1,2(B), Jomi Fred Hübner3, Rafael H. Bordini4,
Alejandro Guerra-Hernández2, Guillermo J. Hoyos-Rivera2,

and Nicandro Cruz-Ramı́rez2

1 Centro de Investigaciones en Inteligencia Artificial - UV, Xalapa, Mexico
gusorh@gmail.com

2 Institute Henri Fayol - MINES, Saint-Étienne, France
3 Federal University of Santa Catarina, Florianópolis, SC, Brazil

4 FACIN-PUCRS, Porto Alegre, RS, Brazil

Abstract. In this paper we propose a model for designing Belief-Desire-
Intention (BDI) agents under the principles of modularity. We aim to
encapsulate agent functionalities expressed as BDI abstractions into
independent, reusable and easier to maintain units of code, which agents
can dynamically load. The general idea of our approach is to exploit
the notion of namespace to organize components such as beliefs, plans
and goals. This approach allowed us to address the name-collision prob-
lem, providing interface and information hiding features for modules.
Although the proposal is suitable for agent-oriented programming lan-
guages in general, we present concrete examples in Jason.

Keywords: Agent-oriented programming · Modularity · Namespace

1 Introduction

In the last decades, several programming paradigms have arisen, often presented
as an evolution of their predecessors, and with the main purpose of abstracting
more complex and larger systems in a more natural and simpler way. Partic-
ularly, the Agent-Oriented-Programming (AOP) paradigm has been promoted
as a suitable option to deal with the challenges arising when developing mod-
ern systems. This paradigm offers high-level abstractions which facilitate the
design of large-scale and complex software systems, and also allows software
engineers to employ a suite of well-known strategies for dealing with complexity,
i.e., decomposition, abstraction and hierarchy.

These strategies are usually applied at the Multi-Agent-System (MAS) level
[8,15,19]. However, even a single agent is intrinsically a complex system, hence its
design and development should consider the above mentioned strategies. Regard-
ing this, the principle of modularity applied to individual agent development can
significantly improve and facilitate the construction of agents.

c© Springer International Publishing AG 2016
M. Baldoni et al. (Eds.): EMAS 2016, LNAI 10093, pp. 117–135, 2016.
DOI: 10.1007/978-3-319-50983-9 7

118 G. Ortiz-Hernández et al.

In this paper, we present an approach for programming agents following the
principle of modularity, i.e., to develop agent programs into separate, indepen-
dent, reusable and easier to maintain units of code. In order to support modu-
larity, we identify three major issues to be addressed: (i) a mechanism to avoid
name-collision, (ii) fulfilling the information hiding principle, and (iii) providing
module interfaces.

Our contribution is to address these issues by simply introducing the notion
of namespace in the AOP paradigm. In the context of BDI languages, which is
the focus of this paper, the novelty of our approach is that it offers a syntactic
level solution, independent of the operational semantics of some language in
particular, which simplifies its implementation.

The rest of this paper is organized as follows: related and previous work
are presented in Sect. 2; our proposal is described in Sect. 3; we explain details
of implementation in Sect. 4 and offer an example in Sect. 5; an evaluation is
presented in Sect. 6; finally, we discuss and conclude in Sects. 7 and 8 respectively.

2 Related Work

There exist much work supporting and implementing the idea of modularity in
BDI languages. An approach presented by Busetta et al. [6] consists in encap-
sulating beliefs, plans and goals that functionally belong together in a common
scope called capability. The programmer can specify a set of scoping rules to say
which elements are accessible to other capabilities. An implementation is devel-
oped for JACK [17]. Further, Braubach et al. [3] extend the capability concept to
fullfill the information hiding principle by ensuring that all elements in a capa-
bility are part of exactly one capability and remain hidden from outside, guaran-
teeing that the information hiding principle is not violated. An implementation
for JADEX [4] is provided. Both approaches propose an explicit import/export
mechanism for defining the interface.

The modules proposed by Dastani and Steunebrink [12] are conceived as
separate mental states. This modules are instantiated, updated, executed and
tested using a set of predefined operations. Executing a module means that the
agent starts reasoning in a particular mental state until a predefined condition
holds. This approach is extended by Cap et al. [7], by introducing the notion
of sharing scopes to mainly enhance the interface. Shared scopes allow modules
posting events, so that these are visible to other modules sharing the same scope.
These ideas are conceived in the context of 2APL [10] and an implementation is
described in [11].

Also following the notion of capability, Madden and Logan [21] propose a
modularity approach based on XML’s strategy of namespaces [5], such that each
module is considered as a separate and unique namespace identified by an URI.
They propose to handle a local belief-base, local goal-base and local events-queue
for each module, and then to specify, by means of an export/import statement,
which beliefs, goals and events are visible to other modules. In this system, there
is only one instance of each module, i.e., references to the exported part of the

A Namespace Approach for Modularity in BDI Programming Languages 119

module are shared between all other modules that import it. These ideas are
supported by the Jason+ language, implemented by Logan and Kiss [9].

Another work tackling the name-collision issue is presented by Ortiz et al. [23].
They use annotations to label beliefs, plans and events with a source according to
the module to which they belong. In this approach, modules are composed by a
set of beliefs, plans and a list of exported and imported elements. Both imported
and exported elements are added to a unique common scope. An implementation
of this approach is developed as a library that extends Jason.

In Hindriks [16], a notion of module inspired by what they call policy-based
intentions is proposed for GOAL. A module is designated with a mental state
condition, and when that condition is satisfied, the module becomes the agent
focus of execution, temporarily dismissing any other goal. They focus on isolating
goals/events to avoid the pursuit of contradictory goals.

In Riemsdijk et al. [26], modules are associated with a specific goal and they
are executed only to achieve the goal for which they are intended to be used. In
this approach, every goal is dispatched to a specific module. Then all plans in
the module are executed one-by-one in the pursuit of such goal until it has been
achieved, or every plan has been tried. This proposal is presented in the context
of 3APL [13].

A comparative overview of these approaches is given in Table 1. All solutions
tackle the name-collision problem, providing a mechanism to scope the visibility
of goal/events to a particular set of elements, e.g., plans. They also offer different
approaches for providing the interface of modules. However, not all of them fulfill
the information hiding principle.

It is also worth mentioning that all those approaches propose some particular
operational semantics tied to the AOP language in which they have been con-
ceived and implemented. The proposal that we present in this paper provides a
mechanism to address those issues independently of the operational semantics.

3 Modules and Namespaces

A module is as a set of beliefs, goals and plans, as a usual agent program, and
every agent has one initial module (its initial program) into which other modules
can possibly be loaded. We refer to the beliefs, plans and goals within a module
as the module components (cf. Fig. 1).

Modularity is supported through the simple concept of namespace, defined
as an abstract container created to hold a logical grouping of components. All
components can be prefixed with an explicit namespace reference. We write
zoo::color(seal,blue) to indicate that the belief color(seal,blue) is asso-
ciated with the namespace identified by zoo. Furthermore, note that the belief
zoo::color(seal,blue) is not the same belief as office::color(seal,blue)
since they are in different namespaces.

Namespaces are either global or local. A global namespace can be used by
any module; more precisely, the components associated with a global namespace

120 G. Ortiz-Hernández et al.

Table 1. The columns represent existing features in the surveyed approaches, in respect
to the issues mentioned in Sect. 1. The abbreviations stand for: (IL) implementing
language; (IS) the approach is independent of the language’s operational semantics;
(IH) fulfills the information hiding principle; (NC) provides a mechanism to deal with
the name-collision issue. The last column refers to the general notion used to provide
an interface.

Approach IL IS IH NC Interface’s mechanism

Busetta et al. [6] JACK ✗ ✓ ✓ Explicit import/export

Braubach et al. [3] JADEX ✗ ✓ ✓ Explicit import/export

Dastani and Steunebrink [12] 2APL ✗ ✗ ✓ Set of predefined operations

Cap et al. [7] 2APL ✗ ✗ ✓ Sharing scopes

Madden and Logan [21] Jason+ ✗ ✓ ✓ Explicit import/export

Hindriks [16] GOAL ✗ ✗ ✓ Mental-state condition

Riemsdijk et al. [26] 3APL ✗ ✗ ✓ Goal dispatching

Ortiz et al. [23] Jason ✗ ✗ ✓ Unique-common scope

Our proposal Jason ✓ ✓ ✓ Global namespaces

Module

Belief Plan Goal

Namespace

Global Local

* * 1

assoc

init

1..*

Component
1

load

Agent

Fig. 1. Proposed model for modularity.

can be consulted and changed by any module. A local namespace can be used
only by the module that has defined the namespace.

We introduce the notion of abstract namespace of a module to denote a
namespace whose name is undefined at design-time, and will be defined at run-
time when the module is loaded. To indicate that a component is in a mod-
ule’s abstract namespace, the prefix is simply omitted, e.g., a belief written as
taste(candy,good) is in an abstract namespace and its actual namespace will
be defined when the module is loaded.

The module loading process involves associating every component in the
abstract namespace of the module with a concrete namespace, and then simply
incorporating the module components into the agent that loaded the module.
Therefore, a concrete namespace must be specified at loading time to replace
the module’s abstract namespace.

A Namespace Approach for Modularity in BDI Programming Languages 121

When a module (the loader) loads another module (the loaded), they interact
in two directions: the loader imports the loaded module components associated
with global namespaces and the loader extends the functionality of the module
by placing components in those namespaces. Figure 2 illustrates the interaction
when a module A loads some module B.

Fig. 2. The interaction between modules.

A module is formally defined as a tuple:

mod = 〈bs, ps, gs〉
where bs = {b1, . . . , bn} is a set of beliefs, ps = {p1, . . . , pn} is a set of plans, and
gs = {g1, . . . , gn} a set of goals. As shown in Fig. 1, each of these components
is associated with a namespace. We use subscripts to denote the elements of a
module, e.g., modbs stands for the beliefs included in module mod.

3.1 Syntax

As in many programming languages, we use identifiers to refer to the mod-
ule components, i.e., its beliefs, plans and goals. Since the syntactic identifiers
depend on the programming language and our proposal is intended to be lan-
guage independent, we propose to extend the syntax of identifiers allowing a
namespace prefix:

〈id〉 :: = [〈nid〉 ::] 〈natid〉

where nid is a namespace identifier and natid is used to denote the native identi-
fiers of some AOP language. For example, a belief formula like count(0), whose
identifier is count, can be written ns2::count(0) to associate the belief with
namespace ns2.

We use a syntactical name-mangling technique1 to associate every component
in the abstract namespace of a particular module to a concrete namespace and
to bring support for local namespaces. Restriction access to local namespaces is

1 A technique used in programming languages, which consists in attaching additional
information to an identifier, typically used to solve name conflicts.

122 G. Ortiz-Hernández et al.

Algorithm 1. The mangling(src, nid) function associates each compo-
nent in the abstract namespace of a module program src with a concrete
namespace nid and renames local namespaces with an internally generated
identifier.
1 begin

Input: src : a module program
Input: nid : a concrete namespace

2 mod = parse(src)
3 foreach id ∈ ids(mod) do
4 if ns(id) is an abstract namespace then
5 replace id by nid::id in mod

6 if ns(id) is local then
7 replace id by #nid::id in mod

8 return mod

implemented by replacing every local namespace identifier in the components of
a particular module by an internally created identifier. This is generated in such
a way that it is not a valid identifier according to the grammar of the native
language. For instance, if ns2 is the identifier of a local namespace, the mangling
function renames ns2::color(box,blue) to #ns2::color(box,blue), where
#ns2 is an invalid identifier and thus no developer can write a program that
accesses this belief. We use #nid to denote a mapping from nid to an internally
generated identifier, unique in the module program where it is being used. The
mangling function is described in Algorithm1. To avoid cluttering the notation,
we define an auxiliary function ids(mod) = {id1, . . . idn} that gets all identifiers
id that are in the components bs, ps, and gs of module mod and function ns(id)
gives the namespace of identifier id.

3.2 Loading Modules

We represent an agent state as a tuple ag = 〈B,P,G, . . .〉, where B =
{b1, . . . , bn} stands for the agent’s belief base, P = {p1, . . . , pn} a plan library
and G = {g1, . . . , gn} the goals of the agent.2 All identifiers used in the beliefs,
plans and goals are prefixed with a proper namespace. The dots symbol (. . .) is
used in the agent tuple to denote the existence of other components proper of
the agent’s mental state (such as intentions, mail box, etc.) that are not relevant
for the purpose of presenting our proposal.

2 Sometimes when referring to intentional agents, a distinction between desires and
intentions is highlighted to focus on the commitment of the agent towards some
goal. In the agent state we do not take commitment into consideration; a goal g ∈ G
can be either a desire or an intention. However, a goal g ∈ gs in some module is
considered as an initial goal.

A Namespace Approach for Modularity in BDI Programming Languages 123

When an agent loads a module, it incorporates the module components,
i.e., beliefs, plans and goals, into its own belief base, plan library and goals,
respectively. A namespace must be specified at loading time to replace the mod-
ule’s abstract namespace with a concrete namespace. A transition rule (Load)
presents the dynamics of loading a module in a particular namespace. The con-
dition (upper part) stands for the action load(src,nid) that takes a module
program src and a namespace nid as parameters. This rule executes the man-
gling function on the module and incorporates the module components into the
agent’s current state, already associated with a proper namespace identifier.

(Load)
load(src,nid)

〈B,P,G, . . .〉 → 〈B′, P ′, G′, . . .〉
where: mod = mangling(src, nid)

B′ = B ∪ modbs
P ′ = P ∪ modps
G′ = G ∪ modgs

The agent’s initial module is loaded in what we call the default namespace.
This is a predefined global namespace whose identifier is default. The initial
module program determines the initial belief base, plan library and goals of the
agent. We use src0 to denote the initial module program. The next transition
rule (Init) describes the agent’s initialization.

(Init)
src0

〈B,P,G, . . .〉 → 〈B′, P ′, G′, . . .〉
where: mod = mangling(src0, default)

B′ = modbs
P ′ = modps
G′ = modgs

4 Implementation

We present the implementation of our proposal in Jason [2], a Java-based inter-
preter for an extended version of AgentSpeak(L) [24]. An agent program in
Jason is defined as a set of initial beliefs bs, a set of initial goals gs and a set
of plans ps, where each b ∈ bs is an atomic grounded formula (initial beliefs
may also be represented as Prolog style rules). Every plan p ∈ ps has the form
te : ctx ← body, where te stands for a triggering event defining the event that
the plan is useful for handling. A plan is considered relevant for execution when
an event which matches its trigger element occurs, and applicable when the
condition ctx holds. The element body is a finite sequence of actions, goals and
belief updates. Actions in Jason can be external or internal. An external action
changes the environment, unlike an internal action which is executed internally
to the agent. Jason allows the developer to extend the parsing of source code by
implementing user-customized directives.

124 G. Ortiz-Hernández et al.

The basic syntactical construct of a Jason program is the atomic formula,
which as in logic programming has the form p(t1, . . . , tn), where p is the functor,
and each ti denotes a term that can be either a number, list, string, variable, or
a structure that has the same format of a positive literal. We say then that each
p in a Jason program is a Jason identifier. For instance, a plan such as:

+!go(home) : forecast(sunny) ← walk to(0,0).

contains the following identifiers: go, home, forecast, sunny and walk to.
We have extended the syntax of Jason identifiers to allow a namespace pre-

fix.3 Since Jason identifiers are used for beliefs and goals, by prefixing them with
a namespace these components are scoped within a particular namespace.4 So,
a plan written as:

+!ns1::go(home) : ns2::forecast(sunny) ← +b.

will consider only an achievement-goal addition event +!go(home) in namespace
ns1, and a belief forecast(sunny) in namespace ns2; beliefs and goals in other
namespaces are thus not relevant for this plan. Terms within a literal are not
changed when a module is loaded. However, terms can be explicitly prefixed
with a namespace. A term prefixed with :: is in the abstract namespace (e.g. in
forecast(::sunny) the term sunny is associated with the abstract namespace).

Jason keywords (e.g., source, atomic, self, tell, . . .), strings and numbers
are handled as constants and are not associated with namespaces.

The Jason internal action .include and parsing directive include were
extended with a second parameter to implement the dynamics of loading a mod-
ule as presented in Sect. 3.2. The first argument is the file with the module’s
source code and the second argument the global namespace used to replace the
abstract namespace. A parsing directive namespace/2 is provided to define the
type of the namespace (local or global) and as a syntactic sugar to facilitate the
namespace association of components, so that the identifiers enclosed by this
directive will be associated with the specified namespace.

The beliefs related to perception are placed in the default namespace, and
thus also the corresponding events (external events generated from perception).
This solution keeps backward compatibility with previous source code, since the
initial module is loaded in the default namespace and the previous version of
Jason does not have modules other than the initial one.

5 Example

This section illustrates our proposal for modules in more detail showing an imple-
mentation of the Contract Net Protocol (CNP) [25]. The modules initiator

3 For the unification algorithm used by Jason, we can simply consider the namespace
prefix as being part of the predicate symbol of the literal.

4 Plans are also scoped within a namespace given that their triggering events are based
on beliefs or goals.

A Namespace Approach for Modularity in BDI Programming Languages 125

and participant (Codes 5 and 6) encapsulate the functionality to start and
participate in a CNP, respectively. The multi-agent system is composed of the
initiator agents bob and alice, whose initial module code is presented in codes
1 and 2 respectively; and the participant company A and company B (Codes 3
and 4). In this implementation, every CNP instance takes place in a different
namespace to isolate the beliefs and events of each negotiation.

Agent bob statically loads the module initiator twice (lines 1–2) using the
directive include/2. This agent starts two CNP’s for tasks build(park) and
build(bridge) (initial goals in lines 4–5) in namespaces hall and comm. Each
goal is handled by the module instance loaded in the same namespace where the
goal is posted.

1 {include("initiator.asl",hall)}
2 {include("initiator.asl",comm)}
3

4 !hall::startCNP(build(park)).
5 !comm::startCNP(build(bridge)).
6

7

8

9

10

11

12

Code 1. bob.asl

1 !start([fix(tv),fix(pc),fix(oven)]).
2

3 +!start([]).
4 +!start([fix(T)|R])
5 <- .include("initiator.asl",T);
6 .add_plan(
7 {+T::winner(W)<-
8 .print("Winner to fix",T,"is",W)
9 });

10 // sub-goal with new focus
11 !!T::startCNP(fix(T));
12 !start(R).

Code 2. alice.asl

Agent alice starts multiple CNP’s. It uses the internal action .include/2
for dynamically loading the module initiator. It starts one CNP for each task
in a given list of tasks (line 5). Agent alice extends the functionality provided by
the module initiator to print in the console the winner as soon as it is known.
Namely, it adds one plan to the same namespace where the module is loaded
(lines 6–9).

Agent company A participates in all CNPs. It loads the module participant
in every namespace where it listen that a CNP has started (note that the
namespace in line 2 of code 3 is a variable). The agent customizes the mod-
ule by adding beliefs in the same namespace where the module is loaded (lines
3–4). The module uses these beliefs to decide what tasks can be accepted and
how much to bid (cf. lines 6–7 of Code 6).

Agent company B plays participant only for CNPs started by agent bob,
and taking place in namespaces hall or comm. When a CNP starts under these
conditions, it loads the module participant in the corresponding namespace.
The beliefs in lines 8–9 and the plan added in lines 14–19 extend the functionality
of the module by setting the strategy for bidding and accepting tasks. This
company only accepts tasks for building and its bid depends on the namespace
in which the CNP is being carried on. Directive namespace/2 in line 1 defines the
local namespace supp. This namespace encapsulates the beliefs used to estimate
the final price of tasks (lines 2–5), so that they are inaccessible to other modules.

126 G. Ortiz-Hernández et al.

Fig. 3. The namespaces of agent alice during its execution.

The initiator module provides functionality to start a CNP. It starts with
a forward declaration of the local namespace priv in line 1. The namespace
of startCNP (line 11) is abstract and a concrete namespace is given when the
module is loaded (cf. lines 1–2 and 5 of Codes 1 and 2, respectively). Because the
namespace given to startCNP is global (as defined by the loader), this module is
exporting the plan @p1. The identifiers without an explicit namespace between
lines 30 and 55 will be placed in the local namespace priv. This is used to
encapsulate the module’s internal functionality, so that the plans to carry out
contracts and announcements are only accessible from within this module (as
illustrated in the line 23). Similarly, the beliefs added to memorize the current
state of the CNP and the rule in lines 4–8 are private and will not interfere or
clash with any other belief of the agent. However, a loader module can retrieve
the current state of the CNP by means of plans @p2 and @p3. Figure 3 illustrates

1 +N::cnpStarted[source(A)]
2 <- .include("participant.asl", N);
3 +N::price(_,(3*math.random)+10);
4 +N::acceptable(fix(_));
5 !N::joinCNP[source(A)].
6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Code 3. company A.asl

1 {begin namespace(supp,local)}
2 price(bridge,300).
3 price(park,150).
4 gain(hall,1.5).
5 gain(comm,0.8).
6 {end}
7

8 hall::acceptable(build(_)).
9 comm::acceptable(build(_)).

10

11 +N::cnpStarted[source(bob)]
12 : .member(N,[hall,comm])
13 <- .include("participant.asl",N);
14 .add_plan({
15 +?N::price(build(T),P)
16 : supp::gain(N,G)
17 <- ?supp::price(T,M);
18 P=M*(1+G)
19 });
20 !N::joinCNP[source(bob)].

Code 4. company B.asl

A Namespace Approach for Modularity in BDI Programming Languages 127

the relation (imports and extends) between the modules alice and initiator
using the same notation of Fig. 2.
1 {namespace(priv,local)} //Forward definition
2

3 // character :: forces a term to be considered in the abstract namespace
4 priv::all_proposals_received
5 :- .count(::introduction(participant)[source(_)],NP) &
6 .count(::propose(_)[source(_)], NO) &
7 .count(::refuse[source(_)], NR) &
8 NP = NO + NR. // participants = proposals + refusals
9

10 // starts a CNP
11 @p1 +!startCNP(Task)
12 <- .broadcast(tell, ::cnpStarted); // tell everyone a CNP has started
13 // this_ns is a reference to the namespace where this module is loaded
14 // in this example is the namespace where the CNP is being performed
15 .print("Waiting participants for task ",Task," in ",this_ns,"...");
16 .wait(3000); // wait participants introduction
17 +priv::state(propose); // remember the state of the CNP
18 .findall(A, ::introduction(participant)[source(A)], LP);
19 .print("Sending CFP for ",Task," to ",LP);
20 .send(LP,tell, ::cfp(Task)); //send call for proposals to participants
21 // wait until all proposals are received for a maximum 15secs
22 .wait(priv::all_proposals_received, 15000,_);
23 !priv::contract(this_ns).
24

25 // to let the agent to query the current state of the CNP
26 @p2 +?cnp_state(S) <- ?priv::state(S). @p3
27 +?cnp_state(none).
28

29 {begin namespace(priv)}
30 //.intend(g) is true if the agent is currently intending !g
31 +!contract(Ns) : state(propose) & not .intend(::contract(_))
32 <- -+state(contract); // updates the state of CNP
33 .findall(offer(Price,A), Ns::propose(Price)[source(A)], L);
34 .print("Offers in CNP taking place in ",Ns," are ",L);
35 L \== []; // constraint the plan execution to at least one offer
36 .min(L,offer(WOf,WAg)); // sort offers, the first is the best
37 +Ns::winner(WAg);
38 !announce_result(Ns,L);
39 -+state(finished).
40

41 // nothing todo, the current phase is not propose
42 +!contract(_).
43 -!contract(Ns)
44 <- .print("CNP taking place in ",Ns," has failed! None proposals");
45 -+state(finished).
46

47 +!announce_result(_,[]).
48 // announce to the winner
49 +!announce_result(Ns,[offer(_,Ag)|T]) : Ns::winner(Ag)
50 <- .send(Ag,tell, Ns::accept_proposal); // notify the winner
51 !announce_result(Ns,T).
52 // announce to others
53 +!announce_result(Ns,[offer(_,Ag)|T])
54 <- .send(Ag,tell, Ns::reject_proposal);
55 !announce_result(Ns,T).
56 {end}

Code 5. initiator.asl

The participant module has a plan to join a CNP by sending an intro-
duction message to the agent playing initiator in the corresponding namespace.
When a call for proposals is received, an offer is sent back only if the task is
supposed to be accepted, otherwise the agent replies with a refuse message (lines

128 G. Ortiz-Hernández et al.

6–13). The accepted tasks and the amount to bid are not provided in the module
(lines 6, 7 and 13). They are meant to be defined by a loader module that can
extend every instance of this module to specify both tasks to be accepted and
the strategy for bidding (e.g. as in modules company A and company B).
1 // participating in CNP
2 +!joinCNP[source(A)]
3 <- .send(A,tell, ::introduction(participant)).
4

5 // Answer to Call For Proposal
6 +cfp(Task)[source(A)] : acceptable(Task)
7 <- ?price(Task,Price);
8 .send(A,tell, ::propose(Price));
9 +participating(Task).

10

11 +cfp(Task)[source(A)] : not acceptable(Task)
12 <- .send(A,tell, ::refuse);
13 .println("Refusing proposal for task ", Task, " from Agent ", A).
14

15 // Answer to My Proposal
16 +accept_proposal : participating(Task)
17 <- .print("My proposal in ",this_ns," for task ", Task," won!").
18 // do the task and report to initiator
19 +reject_proposal : participating(Task)
20 <- .print("I lost CNP in ",this_ns," for task ",Task,".").

Code 6. participant.asl

6 Evaluation

We developed a non-modular version of the CNP to compare with the version
presented in Sect. 5. Then, we performed five extensions to both versions. The
first consists in modifying the vocabulary used by agents for communication. The
second modifies the protocol so that every agent specifies the limit of CNP’s in
which it is able to participate simultaneously. In the third, initiator agents set
a deadline for the call for proposals. The fourth adds one more agent playing
initiator and four participants with their own acceptable tasks and strategy to
bid. Finally, in the fifth only acceptable proposals are announced.

The comparison among the versions is shown in Table 2. The abbreviations
stand for: (num) extension number; (ags) number of agents; (I) number of agents
playing initiator; (P) number of agents playing participant; (eds) the number of
files edited; (m) modular version, i.e., developed using our approach; (n) non-
modular version; (adds) blocks of code added; (dels) blocks of code deleted;
(chgs) changes in a line of code. The size of the implementation was calculated
after compressing the source files with a zip utility. The initial size is given in
bytes, then a percentage representing the increment is given. The extensions are
progressive and each is compared against the previous.

For instance, to accomplish extension 2 of the modular version (starting from
extension 1), we added six blocks of code and changed two lines across a total
of four files, which increased the size of the system programs in 8.2% (i.e., 190
and 195 more bytes than initial implementation and extension 1, respectively)
when compared with its previous extension. To extend the corresponding non-
modular version, three files were edited to add twelve blocks of code and perform

A Namespace Approach for Modularity in BDI Programming Languages 129

six changes in different lines, increasing the program size in 7% (i.e., 224 and
199 more bytes than initial implementation and extension 1, respectively). The
number of agents remained the same in both versions. Total row summarizes the
updates and the increase along all extensions of the system. If the same file had
to be edited during two different editions it is counted twice.

Table 2. Comparison of the CNP across a series of extensions.

num Extension ags eds Size Updates

adds dels chgs

I P m n m n m n m n m n

Initial implementation 2 3 - - 2359 2864 - - - - - -

1 Update communication vocabulary 2 3 2 5 −0.5% 0.8% 0 0 0 0 15 37

2 Participants set a limit of CNP’s 2 3 4 3 8.2% 7.0% 6 12 0 0 2 6

3 Initiators set a deadline 2 3 3 2 2.1% 1.5% 3 4 0 0 1 2

4 Add more participants 3 7 5 5 50.6% 85.9% 48 126 0 0 0 0

5 Participants are not notified if lose 3 7 2 10 −1.3% −6.6% 0 0 2 10 0 0

Total - - 16 25 59.1% 88.6% 57 142 2 10 18 45

The results show that the modular version required a total of 77 updates
(57 additions, 2 deletions and 18 changes) against the non-modular for which
197 updates were necessary. In this particular case study we are reducing the
maintainability effort by 60% (120 updates less). We can conclude that a project
developed using our approach is easier to maintain.

This results can be analyzed in terms of the Don’t repeat yourself (DRY)
principle.5 Our proposal enforces this principle since it represents a mechanism
to avoid the repetition of code in several parts of the system. In contrast to the
non-modular version, where every component implementing the functionality of
the protocol is repeated in the program of each agent, the higher the number
of participant agents (interested in different tasks and having distinct bidding
strategies) the greater the count of repetition occurrences. For instance, if some
change is performed in the protocol, even as simple as the way in which par-
ticipants introduce themselves, the change have to be propagated to the source
code of every agent participating in the CNP’s.

We made some initial effort in comparing our proposal with the usual
include directive in previous releases of Jason. Due to the chosen metrics and
example, the difference appeared negligible. In future work we will consider other
metrics and examples where the difference to a version with the old include direc-
tive might be more significant. In any case, it should be emphasized that clearly
the old directive does not solve the problem of name collision nor supports infor-
mation hiding. For instance, if an agent tom already uses price/2 (e.g., to record

5 A principle of software development with the purpose of reducing the repetition of
information [18], so that a modification of any single element of a system does not
require a change in other logically unrelated elements.

130 G. Ortiz-Hernández et al.

the prices for supplies), when it includes the source file implementing the CNP
(using an include without support for namespaces), since the belief price/2 is
also used by the CNP implementation to determine the bids, a name-collision
arises and the resulting behavior is unexpected.6 For solving this, it is neces-
sary either to change the name of the belief used by tom to record the prices
of supplies, or that one used in the CNP implementation. Note that the latter
alternative implies updating every agent using the source file implementing the
CNP.

The following section overviews how this proposal for modules addresses the
issues mentioned in Sect. 1; and highlight some of its properties, as well as the
major differences of our approach over related work mentioned in Sect. 2.

7 Discussion

The notion of namespaces adapted to the context of BDI-AOP languages is
suitable to address the main issues related to modularity. For instance, the
name-clashing problem is tackled by associating each component to a unique
namespace, enabling the programmer to write qualified names for disambiguat-
ing references to components.

The interface is provided through the concept of global namespace, which
supports both importing components and extending the functionality of mod-
ules. The notion of abstract namespace allows dynamic association of module
components to namespaces, thus the same module can be loaded several times
in different namespaces and also multiple modules can be loaded into the same
namespace to compose a more complex solution. The local namespaces permit
programmers to encapsulate components which facilitates independent develop-
ment of modules. Moreover, loading modules at runtime can be seen as dynamic
updating, i.e., the acquisition of new capabilities without stopping its execution.

The main difference of our approach resides in the strategy adopted to achieve
modularity. On the one hand, the strategy adopted in this paper consists in log-
ically organizing component names in the agent’s mental state, by attaching
additional information to their identifiers. On the other hand, approaches men-
tioned in Sect. 2, in general, are based in mechanisms for dealing with multiple
mental states inside the agent, in which modules are active components of the
operational semantics of the language, i.e., new transition rules are needed for
handling multiple belief bases, plan libraries and/or event queues in the same
reasoning cycle. The latter strategy leads to solutions that are more difficult to
implement, in contrast to ours, which brings a syntactic level solution, so that it
can be implemented in several BDI languages by simply extending their parsers.

6 This is also reported by Madden and Logan [21] from the experience of using the
usual include directive available in previous releases of Jason for the development
of a large-scale multi-agent system [20].

A Namespace Approach for Modularity in BDI Programming Languages 131

7.1 Module Relationships

Next, we discuss how our approach is suited to construct association, composition
and generalization relationships between modules as defined and analyzed for
capabilities by I. Nunes in [22], as well as some principles from Object-Oriented
programming.7

Association. There exists an association between a loader module and a loaded
module when the execution of at least one plan of the loader requires a goal,
whose plan to achieve it, is part of the loaded module. According to [22], asso-
ciation promotes high cohesion by allowing to modularize functionality that
addresses different concerns into separate modules.

An example of association is illustrated by Codes 7 and 8. The module one
loads module A and executes one of its plans. The module is loaded using a local
namespace to avoid breaking the information hiding principle. In this relation-
ship A is not aware of one.

1 {namespace(ia,local)}
2

3 +!do <- .include("A.asl",ia);
4 !ia::inc(2).

Code 7. one.asl

1 count(0).
2

3 +!inc(S) : count(X)
4 <- -+count(X+S).

Code 8. A.asl

Composition. It is a stronger relationship than association. As stated in [22]
there exist situations in which the loaded module uses components of the loader
module. This increases the coupling between modules, but allows to model the
notion of containment ensuring the information hiding. We missed this type of
relationship in our implementation, because we stand for passing information as
arguments, when sharing information from loader to loaded is necessary. In this
way, the information hiding principle is not broken and the coupling is reduced.

However, it is possible to model the composition relationship described by
I. Nunes using namespaces, by simply adding a symbol to reference the abstract
namespace of the loader module.

We provide an example in Codes 9 and 10. The module B access to belief
rate/1 in module two. The resulting output of executing plan do/0 in module
two will be counter 1. The symbol ◦ is used to refer the loader ’s abstract
namespace.8

7 The concept of capability and modules are quite similar, since both are composed
of a set of beliefs, plans and goals [3,6], the relationships identified for capabilities
can be applied to our notion of modules as well.

8 This can be supported by extending the mangling function (c.f. algorithm 1) in order
to replace the ◦ symbol by the corresponding namespace at loading time.

132 G. Ortiz-Hernández et al.

1 {namespace(ib,local)}
2

3 rate(0.50).
4

5 +!do <- .include("B.asl",ib);
6 !ib::inc(2);
7 ?ib::count(X);
8 .print("counter ",X).

Code 9. two.asl

1 count(0).
2

3 +!inc(S) : count(X)
4 <- ?◦::rate(R);
5 -+count(X+S*R).
6

Code 10. B.asl

Cardinality. Since the same module can be loaded in multiple namespaces while
each instance conserves its individual beliefs, it is also possible to represent the
cardinality in modules associations. For example, at Codes 2 and 5 in Sect. 5,
module bob loads one instance of initiator for each contract net protocol it
starts, so that each negotiation maintains its own state.

Visibility. Local namespaces can be used to keep components private within a
module, and global namespaces to share components between all modules. How-
ever, sometimes it results useful to share components only among the instances
of the same module, e.g., in order to avoid replicating the same information sev-
eral times. It is possible to model this, by introducing a new level of visibility
for namespaces (besides global and local). For instance, a module namespace will
be accessible only from within all instances of the same module. Comparably to
the class visibility level from the Object-Oriented programming as implemented
by the modifier static in Java.

Multi-inheritance. This can be modeled as the union of modules. Typically
this union is meant to form a new module which encapsulates a more complex
and specialized behavior, while reusing beliefs, plans and goals from other mod-
ules.

In the following example (Codes 11 and 12), the module C inherits B by
including all its components in the same namespace (line 9). The parent ’s local
namespaces of each module (if exist) still hidden from the child module, and
vice-versa. The inclusion of the parent module is performed at the end of the
source code, in order to override the already existing plan inc/1 in A. This latter
works in the particular case of Jason because, by default, the first plan listed in
the code is selected for execution, in the case that multiple applicable plans to
achieve the same goal exist. A more sophisticated solution for AgentSpeak(L)-
style languages is presented by A. Dhaon and R. Collier in [14]. Their method
consists in customizing the selection function used for the interpreter to select
the next plan for execution, and thus disambiguate which plan must be executed
when the same plan is implemented in different levels of the module’s hierarchy.

Dynamic extension of modules can be performed too by using the notion of
namespaces, in Code 2 at lines 6–9, the functionality of module initiator (c.f.
code 5) is extended. This is useful in the case that the programmer desires to
extend the functionality for only one instance without creating a new module.
A similar mechanism is used in Java through the concept of anonymous classes.

A Namespace Approach for Modularity in BDI Programming Languages 133

A related approach for constructing inheritance relationships between mod-
ules in the realm of logic programming, that can be adapted as a more general
solution for modeling multi-inheritance in Agent-Oriented programming, is pre-
sented by Baldoni et al. in [1]. They use a modal operator instead of namespaces
to group rules, then a set of logic implications establishes the inheritance rela-
tionship between modules. However, it should be carefully analyzed in order
to evaluate its feasibility before adopting it in the context of Agent-Oriented
programming.

1 {namespace(ic,local)}
2

3 +!init
4 <- .include("C.asl",ic);
5 !ic::inc(2);
6 !ic::mult(2);
7 ?ic::count(X);
8 .print("counter "X).
9

Code 11. three.asl

1 //belief count/1 is inherited from A
2 +!mult(T) : count(X)
3 <- -+count(X*T).
4

5 //overrides plan inc/1 in A
6 +!inc(S) : count(X)
7 <- -+count(X+1).
8

9 {include("A.asl")}

Code 12. C.asl

8 Conclusion

In this paper we have presented a solution for programming BDI Agents under
the principles of modularity, and we explored the assumption that the notion
of namespace is enough to address the main issues related to modularity, such
as avoiding name-collisions, following the information hiding principle and pro-
viding an interface. We have exemplified the properties and feasibility of the
approach using the Jason language.

It is future work to provide an unload mechanism that removes components
from modules that are no longer used by the agent. We also aim to implement the
approach in other languages to further evaluate the generality of the approach.

References

1. Baldoni, M., Giordano, L., Martelli, A.: A modal extension of logic programming:
modularity, beliefs and hypothetical reasoning (1995)

2. Bordini, R.H., Hübner, J.F., Wooldridge, M.J.: Programming Multi-Agent Systems
in AgentSpeak Using Jason. John Wiley & Sons Ltd., Chichester (2007)

3. Braubach, L., Pokahr, A., Lamersdorf, W.: Extending the capability concept for
flexible BDI agent modularization. In: Bordini, R.H., Dastani, M.M., Dix, J., Fal-
lah Seghrouchni, A. (eds.) ProMAS 2005. LNCS (LNAI), vol. 3862, pp. 139–155.
Springer Berlin Heidelberg, Berlin, Heidelberg (2006). doi:10.1007/11678823 9

4. Braubach, L., Pokahr, E., Lamersdorf, W.: Jadex: a BDI agent system combining
middleware and reasoning. In: Software Agent-Based Applications, Platforms and
Development Kits, pp. 143–168. Birkhaeuser (2005)

http://dx.doi.org/10.1007/11678823_9

134 G. Ortiz-Hernández et al.

5. Bray, T., Hollander, D., Layman, A., Tobin, R.: Namespaces in XML
1.0. W3C recommendation, W3C, August 2006. http://www.w3.org/TR/2006/
REC-xml-names-20060816. Accessed 16 Aug 2006

6. Busetta, P., Howden, N., Rönnquist, R., Hodgson, A.: Structuring BDI agents
in functional clusters. In: Jennings, N.R., Lespérance, Y. (eds.) ATAL 1999.
LNCS (LNAI), vol. 1757, pp. 277–289. Springer, Heidelberg (2000). doi:10.1007/
10719619 21

7. Cap, M., Dastani, M., Harbers, M.: Belief/goal sharing BDI modules. In: The
10th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2011), Richland, SC, vol. 3, pp. 1201–1202. International Foundation for
Autonomous Agents and Multiagent Systems (2011)

8. Cuesta, P., Gomez, A., Gonzalez, J.: Agent oriented software engineering. In:
Moreno, A., Pavon, J. (eds.) Issues in Multi-Agent Systems, Whitestein Series
in Software Agent Technologies and Autonomic Computing, pp. 1–31. Birkhäuser
Basel (2008)

9. Logan, B., Kiss, D.N.: Jason+ - extension of the jason agent programming lan-
guage. Technical report, School of Computer Science and Information Technology,
University of Nottingham (2010)

10. Dastani, M.: 2APL: a practical agent programming language. Auton. Agents Multi
Agent Syst. 16(3), 214–248 (2008)

11. Dastani, M., Mol, C.P., Steunebrink, B.R.: Modularity in agent programming lan-
guages. In: Bui, T.D., Ho, T.V., Ha, Q.T. (eds.) PRIMA 2008. LNCS (LNAI), vol.
5357, pp. 139–152. Springer Berlin Heidelberg, Berlin, Heidelberg (2008). doi:10.
1007/978-3-540-89674-6 17

12. Dastani, M., Steunebrink, B.: Modularity in BDI-based multi-agent programming
languages. In: Proceedings of the 2009 IEEE/WIC/ACM International Joint Con-
ference on Web Intelligence and Intelligent Agent Technology (WI-IAT 2009),
Washington, US, vol. 02, pp. 581–584. IEEE Computer Society (2009)

13. Dastani, M., Riemsdijk, M.B., Dignum, F., Meyer, J.-J.C.: A programming lan-
guage for cognitive agents goal directed 3APL. In: Dastani, M.M., Dix, J.,
El Fallah-Seghrouchni, A. (eds.) ProMAS 2003. LNCS (LNAI), vol. 3067, pp.
111–130. Springer Berlin Heidelberg, Berlin, Heidelberg (2004). doi:10.1007/
978-3-540-25936-7 6

14. Dhaon, A., Collier, R.W.: Multiple inheritance in agentspeak(l)-style programming
languages. In: Proceedings of the 4th International Workshop on Programming
Based on Actors Agents & #38; Decentralized Control (AGERE! 2014), pp. 109–
120, New York, NY, USA. ACM (2014)

15. Bergenti, F., Gleizes, M.-P., Zambonelli, F.: Methodologies and Software Engi-
neering for Agent Systems: The Agent-Oriented Software Engineering Handbook.
Multiagent Systems, Artificial Societies, and Simulated Organizations, vol. 11.
Springer, Heidelberg (2004)

16. Hindriks, K.: Modules as policy-based intentions: modular agent programming in
GOAL. In: Dastani, M., El Fallah Seghrouchni, A., Ricci, A., Winikoff, M. (eds.)
ProMAS 2007. LNCS (LNAI), vol. 4908, pp. 156–171. Springer Berlin Heidelberg,
Berlin, Heidelberg (2008). doi:10.1007/978-3-540-79043-3 10

17. Howden, N., Ronnquist, R., Hodgson, A., Lucas, A.: JACK intelligent agents -
summary of an agent infrastructure. In: Proceedings of the 5th ACM International
Conference on Autonomous Agents (2001)

18. Hunt, A., Thomas, D.: The Pragmatic Programmer: From Journeyman to Master.
Addison-Wesley Longman Publishing Co. Inc., Boston (1999)

http://www.w3.org/TR/2006/REC-xml-names-20060816
http://www.w3.org/TR/2006/REC-xml-names-20060816
http://dx.doi.org/10.1007/10719619_21
http://dx.doi.org/10.1007/10719619_21
http://dx.doi.org/10.1007/978-3-540-89674-6_17
http://dx.doi.org/10.1007/978-3-540-89674-6_17
http://dx.doi.org/10.1007/978-3-540-25936-7_6
http://dx.doi.org/10.1007/978-3-540-25936-7_6
http://dx.doi.org/10.1007/978-3-540-79043-3_10

A Namespace Approach for Modularity in BDI Programming Languages 135

19. Jennings, N.R.: Agent-oriented software engineering. In: Imam, I., Kodratoff, Y.,
El-Dessouki, A., Ali, M. (eds.) IEA/AIE 1999. LNCS (LNAI), vol. 1611, pp. 4–10.
Springer, Heidelberg (1999). doi:10.1007/978-3-540-48765-4 2

20. Madden, N., Logan, B.: Collaborative narrative generation in persistent virtual
environments. In: Intelligent Narrative Technologies: Papers from the 2007 AAAI
Fall Symposium, Menlo Park, CA. AAAI Press, November 2007

21. Madden, N., Logan, B.: Modularity and compositionality in jason. In: Braubach, L.,
Briot, J.-P., Thangarajah, J. (eds.) ProMAS 2009. LNCS (LNAI), vol. 5919, pp.
237–253. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14843-9 15

22. Nunes, I.: Improving the design and modularity of BDI agents with capability
relationships. In: Dalpiaz, F., Dix, J., Riemsdijk, M.B. (eds.) EMAS 2014. LNCS
(LNAI), vol. 8758, pp. 58–80. Springer International Publishing, Cham (2014).
doi:10.1007/978-3-319-14484-9 4

23. Ortiz-Hernandez, G., Guerra-Hernandez, A., Hoyos-Rivera, G.J.: JasMo - a mod-
ularization framework for Jason. In: 12th Mexican International Conference on
Artificial Inteligence (MICAI), Mexico. IEEE, November 2013

24. Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable language.
In: Velde, W., Perram, J.W. (eds.) MAAMAW 1996. LNCS, vol. 1038, pp. 42–55.
Springer, Heidelberg (1996). doi:10.1007/BFb0031845

25. Smith, R.G.: The contract net protocol: high-level communication and control in
a distributed problem solver. IEEE Trans. Comput. 29(12), 1104–1113 (1980)

26. van Riemsdijk, M.B., Dastani, M., Meyer, J.-J.Ch., de Boer, F.S.: Goal-oriented
modularity in agent programming. In: Proceedings of the Fifth International Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2006), pp.
1271–1278, New York, NY, USA. ACM (2006)

http://dx.doi.org/10.1007/978-3-540-48765-4_2
http://dx.doi.org/10.1007/978-3-642-14843-9_15
http://dx.doi.org/10.1007/978-3-319-14484-9_4
http://dx.doi.org/10.1007/BFb0031845

	A Namespace Approach for Modularity in BDI Programming Languages
	1 Introduction
	2 Related Work
	3 Modules and Namespaces
	3.1 Syntax
	3.2 Loading Modules

	4 Implementation
	5 Example
	6 Evaluation
	7 Discussion
	7.1 Module Relationships

	8 Conclusion
	References

