
Systematic Selection of N -Tuple
Networks for 2048

Kazuto Oka and Kiminori Matsuzaki(B)

Kochi University of Technology, Kami 782–8502, Japan
195061f@gs.kochi-tech.ac.jp, matsuzaki.kiminori@kochi-tech.ac.jp

Abstract. The puzzle game 2048, a single-player stochastic game played
on a 4 × 4 grid, is the most popular among similar slide-and-merge
games. One of the strongest computer players for 2048 uses temporal
difference learning (TD learning) with N -tuple networks, and it matters
a great deal how to design N -tuple networks. In this paper, we study
the N -tuple networks for the game 2048. In the first set of experiments,
we conduct TD learning by selecting 6- and 7-tuples exhaustively, and
evaluate the usefulness of those tuples. In the second set of experiments,
we conduct TD learning with high-utility tuples, varying the number
of tuples. The best player with ten 7-tuples achieves an average score
234,136 and the maximum score 504,660. It is worth noting that this
player utilize no game-tree search and plays a move in about 12µs.

1 Introduction

The puzzle game 2048 [4], a single-player stochastic game played on a 4×4 grid,
is the most popular among similar slide-and-merge games like Threes and 1024.
One of the reasons why the game attracts so many people is that it is very easy
to learn but hard to master. The game also attracts researchers in the field of
artificial intelligence and computational complexity. The difficulty of the game
was discussed from the viewpoint of computational complexity by Abdelkader
et al. [2] and Langerman and Uno [6]. As a testbed of artificial intelligence
methods, there have been some competitions of computer players for the game
2048 [5,18] and a two-player version of 2048 [1,8].

One of the strongest computer players for 2048 uses temporal difference learn-
ing (TD learning for short) with N -tuple networks together with the expecti-
max algorithm [16]. An N -tuple network consists of a number of N -tuples: each
N -tuple covers N cells on the grid and it contributes a number of features each for
one distinct occurrence of tiles on the covered cells. Given an N -tuple network,
the evaluation function simply calculates the summation of feature weights for
all occurring features, where the weights can be obtained through TD learning
over a number of self-plays.

In this approach, it matters a great deal how to design (or select) N -tuple
networks. The authors of the previous work used hand-designed networks: Wu
et al. [16] used a network with four 6-tuples; former work by Szubert and
Jaśkowski [14] used a network with two 6-tuples and two 4-tuples. As we can
c© Springer International Publishing AG 2016
A. Plaat et al. (Eds.): CG 2016, LNCS 10068, pp. 81–92, 2016.
DOI: 10.1007/978-3-319-50935-8 8

82 K. Oka and K. Matsuzaki

Fig. 1. The N -tuple network (with two 4-tuples and two 6-tuples) by Szubert and
Jaśkowski [14]

Fig. 2. The N -tuple network (with four 6-tuples) by Wu et al. [16]

easily imagine, the more and the larger tuples we use, the higher score we would
obtain. The resources such as memory size or computation time, however, limit
the available number and/or size of tuples.

In this paper, we study the N -tuple networks for the game 2048. In the first
set of experiments, we conduct TD learning exhaustively for 6- and 7-tuples,
and evaluate the usefulness of those tuples. By looking closely at the usefulness
of those tuples, we find several interesting facts about them. In the second set
of experiments, we conduct TD learning with high-utility tuples, varying the
number of tuples. We confirm that the more tuples we use the higher score we
obtain up to around 20 tuples where the score peaks for the case of 6-tuples.

The main contributions of the paper are summarized as follows.

– A systematic way of selecting N -tuple networks. The way we select N -tuple
networks in this paper does not rely on heuristics or human knowledge of the
games.

– Comparing usefulness of N -tuples. We evaluate the usefulness of tuples from
exhaustive experiments. The results are consistent with the heuristics of the
game.

– The best player with ten 7-tuples achieves the average score 234,136 and the
maximum score 504,660. It is worth noting that this player does not utilize
game-tree search like expectimax and plays a move in about 12µs (about
88,000 moves per second).

Rules of 2048. The game 2048 is played on a 4 × 4 grid. The objective of the
original 2048 game is to reach a 2048 tile by moving and merging the tiles on
the board according to the rules below. A new tile will be put randomly with
number 2 (with probability of 90 %) or 4 (with probability 10 %). In the initial
state, two tiles are put randomly (Fig. 3). The player selects a direction (either
of up, left, down, and right), and then all the tiles will move in that direction.
When two tiles of the same number combine they create a tile with the sum
value and the player get the sum as the score. Here, the merges occur from the
far side and a newly created tile do not merge again on the same move: moves to

Systematic Selection of N -Tuple Networks for 2048 83

(a) (b) (c)

(a) An example of the initial state. Two tiles are put randomly.
(b) After moving up. A new 2-tile appears at the lower-left corner.
(c) After moving right. Two 2-tiles are merged to a 4-tile, and score 4 is given.

Fig. 3. The process of the game 2048

the right from 222�, �422 and 2222 result in ��24, ��44, and ��44, respectively.
Note that the player cannot select a direction in which no tiles move nor merge.
After each move, a new tile appears at an empty cell. If the player cannot move
the tiles, the game ends.

Paper Overview. The rest of the paper is organized as follows. Section 2
reviews the idea of applying N -tuple networks and TD learning to the game
2048. In Sect. 3, we analyze the usefulness of 6- and 7-tuples by experiments
that selects those tuples exhaustively. Based on the analysis of usefulness of
tuples, we select a number of high-utility tuples and conduct experiments in
Sect. 4. Section 5 discusses related work and Sect. 6 concludes the paper.

2 N -Tuple Networks and Temporal Difference
Learning for 2048

In this section, we review the idea of applying N -tuple networks (in Sect. 2.1)
and TD learning to the game 2048 (in Sect. 2.2). The algorithm was given by
Szubert and Jaśkowski [14] and it was called TD-afterstate in their paper.

2.1 Evaluation Function with N-Tuple Networks
and Playing Algorithm

An N -tuple network consists of a number of N -tuples where each N -tuple covers
N cells on the grid. In this paper, N denotes the number of cells in a tuple, and
m the number of tuples in the network. If each cell in the tuple may have one of
K values an N -tuple contributes KN features, that is, we assign a feature weight
for each of KN features. We use K = 16, which means the maximum value of
a tile is 32768. (We did not know any player that achieved a 65536 tile, at the
time we did the experiments. Recently, Yeh et al. [19] reported their success of
a 65536 tile.) Note that 6- and 7-tuples require 64 MB and 1 GB, respectively,
under the condition of K = 16 and 32 bits for each feature weight.

84 K. Oka and K. Matsuzaki

Given an N -tuple network and corresponding set of feature weights, we cal-
culate the value of an evaluation function of a state as follows. Since the board of
the game 2048 is symmetric in terms of rotation and reflection, we can consider
8 sampling for each N -tuple. We take the feature weight for each sampling, and
compute the sum of those values as the evaluation value of the state. Given a
state s, the evaluation value V (s) of the state is the sum of the feature weights
for all N -tuple and all symmetric boards.

Let us see an example in Fig. 4 where we use an N -tuple network with two
3-tuples. We have eight symmetric boards for a state s, and each board has two
feature weights for each tuple. Therefore, in this example, the evaluation value of
a state is the sum of 16 feature weights. If we have a network with m N -tuples,
then the evaluation value of a state is the sum of 8m feature weights.

Fig. 4. An example for calculating an evaluation value of a state

The 2048 player in this paper greedily selects a move such that the sum
of score and evaluation value is the maximum. For a state s, let the set of
possible moves, the score given by move a, and the next state by move a be
A(s) ⊆ {N,E,S,W}, R(s, a) and N(s, a), respectively, the player selects

arg max
a∈A(s)

(R(S, a) + V (N(S, a))) .

2.2 Temporal Difference Learning

Temporal difference learning (TD learning) is one of the reinforcement learning
algorithms. Though the idea of TD learning was introduced by Sutton [13], its
origins reach back to the 1950’s referring to the famous program for checkers [11].
TD learning has been adapted to several games such as backgammon [15],
Othello [9], and Go [12].

Systematic Selection of N -Tuple Networks for 2048 85

In our algorithm, the evaluation values are adjusted by TD learning as fol-
lows. Let st be a state at time t. The player selects a move a such that the sum
of score and evaluation value of the state after the move is the maximum. Let
r = R(st, a) and s′

t be the score and the state after the move, respectively (note
that s′

t �= st+1 because st+1 is given by putting a tile on s′
t). Then, the TD error

Δ for the evaluation value is defined as follows.

Δ = r + V (s′
t) − V (s′

t−1)

To reduce the TD error, we update the evaluation values Vj(st−1) for all the
N -tuples by a certain portion of Δ:

V ′
j (St−1) = Vj(St−1) + αΔ

where the rate α is called learning rate and it was set to α = 2−10 throughout
the experiments.

3 Exhaustive Analysis of Usefulness of N -Tuples

Though the game 2048 is a small game, there are still a large number of N -tuples.
Table 1 shows the number of all the N -tuples and connected ones. (We count
N -tuples that are the same after rotation or reflection once.) In the following, we
only consider connected 6- and 7-tuples to keep the number of tuples manageable.

Table 1. Number of N -tuples

N 3 4 5 6 7 8 9 10 11 12 13

All 77 252 567 1051 1465 1674 1465 1051 567 252 77

Connected CN 8 17 33 68 119 195 261 300 257 169 66

As a first task, we would like to order the N -tuples in terms of their usefulness.
When we form N -tuple networks by randomly selecting tuples and conduct

TD learning, the (average) scores differ to a degree. Therefore, we have made
the following two assumptions on the usefulness of N -tuples: (1) N -tuples con-
tribute independently from each other; (2) N -tuples contribute linearly. With
these assumptions, we consider scores come simply from the sums of partial
scores of N -tuples selected in the networks.

Let 6-tuples be indexed from 1 to C6 = 68 and 7-tuples be from 1 to C7 = 119.
Let pi be the partial score of the i-th tuple, and sji be the 0–1 variable showing
that the i-th tuple is selected in the j-th experiment. We assume that the score
Pj of the j-th experiment is the sum of partial scores of selected tuples, Pj =
∑C

i=1 sjipi. Then, given a set of experimental results with the selected tuples
and scores, we can estimate the partial scores by the least squares method: we
reduce the squared error E =

∑
j(Pj − ∑C

i=1 sjipi)2.

86 K. Oka and K. Matsuzaki

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 10 20 30 40 50 60 70

pa
rt

ia
l s

co
re

rank of 6-tuples

Fig. 5. Partial scores of 6-tuples

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 20 40 60 80 100 120

pa
rt

ia
l s

co
re

rank of 7-tuples

Fig. 6. Partial scores of 7-tuples

Here are the details of the experiments. For each experiment, we randomly
selected 10 tuples and executed TD learning with 1,000,000 self-play games.
We used the average of the scores of the last 10,000 games as the score of the
experiment. We conducted 680 experiments for 6-tuples and 1190 experiments
for 7-tuples so that each tuple was selected 100 times on average.

Figures 5 and 6 plot the partial scores in descending order. The medians
of partial scores are M6 = 13,066 for 6-tuples and M7 = 12,566 for 7-tuples:
those of the best tuples are 31,161 = 2.38M6 and 32,900 = 2.61M7, respectively;
those of the worst tuples are 9,052 = 0.69M6 and 7,683 = 0.61M7, respectively.
(The absolute values of partial scores may not be comparable, since we stop the
experiments at 1,000,000 games before the scores saturate.)

Table 2 shows the four best and the four worst tuples for N = 6 and N = 7.
In both cases, the best tuples 〈6-01〉 and 〈7-001〉 include an edge connecting
two adjacent corners and are closely connected. This is reasonable for the slide-
and-merge property and keep-large-tile-on-corner heuristics of the game. Seven
out of the 8 worst tuples do not include corner cells and it is according to our
expectation. The worst 7-tuple 〈7-119〉, however, includes two corner cells. We
consider the following reason for this: since either of the two diagonal corners is
often empty, the tuples with two diagonal corner cells have less information. We
will see this again later.

Table 3 shows the results of other interesting tuples. Wu et al. [16] used the
four 6-tuples 〈6-01〉 and 〈6-04〉 in Table 2 and 〈6-40〉 and 〈6-48〉 in Group 1 of
Table 3. Although it is a common technique to make N -tuples by sliding existing
(better) N -tuples, those N -tuples are not necessary good ones.

Group 2 of Table 3 shows N -tuples that apparently look good but are not so
good. From the keep-large-tile-on-corner heuristics, one may design the 6-tuples
〈6-24〉 that covers the cells near a corner, but it is ranked 24th out of 68 and
not so good. The case of 7-tuples is very surprising. One may design the 7-tuple
〈7-096〉 that has two edges among three corners, but it seems useless. This is
more evidence of the reason of the worst 7-tuple. In fact, all tuples that include
two diagonal corners (〈7-119〉 in Table 2 and 〈7-096〉, 〈7-087〉, 〈7-079〉 in Group
2 of Table 3) seem useless.

Systematic Selection of N -Tuple Networks for 2048 87

Table 2. Four best and four worst 6-tuples and 7-tuples

N 4 best tuples 4 worst tuples

6-01 6-02 6-03 6-04 6-65 6-66 6-67 6-68

6

31,161 24,530 22,207 20,576 9,644 9,642 9,563 9,052

7-001 7-002 7-003 7-004 7-116 7-117 7-118 7-119

7

32,900 23,504 23,483 23,338 8,543 8,204 7,918 7,683

Table 3. Other interesting tuples

group 1 group 2

6-40 6-48 6-24 7-096 7-087 7-079

12,190 11,330 14,320 10,573 10,988 11,521

group 3

6-08 7-007 7-012 7-034 7-086 7-096

18,990 21,766 17,394 14,018 10,995 10,573

Group 3 of Table 3 tells an interesting fact. Adding a cell to an existing (good)
N -tuple is a possible way of generating an N + 1-tuple. It usually works well
but not in some cases. By adding to a cell to the useful 6-tuple 〈6-08〉 we can
generate five 7-tuples, among which two are useful but other two are useless.
The converse does not hold in some cases either. The 6-tuple 〈6-08〉 is the best
among those given by removing a cell from 〈7-007〉, 〈6-16〉 from 〈7-016〉, and
〈6-17〉 from 〈7-017〉. Note that the numbers of 6-tuples and 7-tuples are 68 and
119, respectively.

4 Performance with Respect to Number of N -Tuples

In the previous section, we ordered the N -tuples by their usefulness. Now we
select the first m tuples to conduct TD learning with them.

In the second set of experiments, we selected at most 45 6-tuples or at most
10 7-tuples. Since a 6-tuple requires 64 MB and a 7-tuple does 1 GB to store

88 K. Oka and K. Matsuzaki

 0

 50

 100

 150

 200

 250

 0 1 2 3 4 5 6

av
er

ag
e

sc
or

e
(x

10
00

)

number of game learned (x1,000,000)

m=40
m=20
m=16
m=10
m= 8
m= 4
m= 2
m= 1

Fig. 7. Average scores with 6-tuples

 0

 50

 100

 150

 200

 250

 0 1 2 3 4 5 6

av
er

ag
e

sc
or

e
(x

10
00

)

number of game learned (x1,000,000)

m=10
m= 8
m= 6
m= 4
m= 2
m= 1

Fig. 8. Average scores with 7-tuples

 0

 100

 200

 300

 400

 500

 600

 0 1 2 3 4 5 6

m
ax

 s
co

re
 (

x1
00

0)

number of game learned (x1,000,000)

m=40
m=20
m=16
m=10
m= 8
m= 4
m= 2
m= 1

Fig. 9. Maximum scores with 6-tuples

 0

 100

 200

 300

 400

 500

 600

 0 1 2 3 4 5 6

m
ax

 s
co

re
 (

x1
00

0)

number of game learned (x1,000,000)

m=10
m= 8
m= 6
m= 4
m= 2
m= 1

Fig. 10. Maximum scores with 7-tuples

feature weights, the program with N = 6 and m = 45 consumes about 3 GB of
memory and that with N = 7 and m = 10 does about 10 GB of memory. The
experiments were conducted on a PC with two Intel Xeon E5645 CPU (6 cores,
2.4 GHz), 12 GB of memory, with the CentOS 5.5 (kernel 2.6.18–194.e15) and
g++ 4.6.3.

For each set of N -tuples, we executed TD learning with 6,000,000 self-play
games, and then had additional 10,000 games with the obtained feature weights.
During the self-play and learning, we output the summary of the average score
and the maximum score once every 10,000 games. For the additional games, in
addition to the average and maximum scores, we measured the execution time
to calculate the time for selecting a move, and the ratio of reaching 2048, 4096,
8192, 16384 and 32768 tiles. We conducted the experiments five times for each
set of N -tuples and all the results (including the maximum score) were averaged
among the five experiments.

Figures 7, 8, and 11 plot the average scores with respect to the number of
games learned. Figures 9, 10, and 12 plot the maximum scores with respect to
the number of games learned.

Systematic Selection of N -Tuple Networks for 2048 89

 0

 50

 100

 150

 200

 250

 0 1 2 3 4 5 6

av
er

ag
e

sc
or

e
(x

10
00

)

number of game learned (x1,000,000)

N=7, m=10
N=6, m=40
N=6, m=10
N=7, m= 4
N=6, m= 4

Fig. 11. Comparing average scores
with 6- and 7-tuples

 0

 100

 200

 300

 400

 500

 600

 0 1 2 3 4 5 6

m
ax

 s
co

re
 (

x1
00

0)

number of game learned (x1,000,000)

N=7, m=10
N=6, m=40
N=6, m=10
N=7, m= 4
N=6, m= 4

Fig. 12. Comparing maximum scores
with 6- and 7-tuples

0 10 20 30 40 50

50

100

150

200

250

time for a move (µs)

av
er
ag

e
sc
or
e
(x
10

00
)

6-01
6-02

6-04
6-066-08

6-10
6-12 6-16

6-20
6-25 6-30 6-35 6-40 6-45

7-01

7-02

7-04

7-06

7-08
7-10

Fig. 13. Score w.r.t. computing time

In general, we confirmed the fact that the more N -tuples we use the higher
score we obtain up to a certain number of N -tuples. For the case of N = 6, the
more N -tuples we use the higher average score we obtain up to around m = 20,
and the higher maximum score up to around m = 10. In terms of the learning
speed, the more tuples we use the faster the learning proceeds. In the case of
N = 6 and m = 40, after 1,000,000 games the learning seems to converge. For
the case of N = 7, the more N -tuples we use the higher score we obtain (for
m ≤ 10).

Comparing N = 6 and N = 7, we can see that the learning proceeds faster
for N = 6. This is due to the difference of numbers of features that an N -tuple
contributes. For the N = 7 cases, 6,000,0000 games seem to be not sufficient to
converge. Nonetheless, the results with N = 7 and m = 10 finally outperform
all the results with N = 6.

Figure 13 plots the average scores to the time for selecting a move. The time
for selecting a move is almost linear in the number m of used N -tuples. For the
same number m, the program with 7-tuples took about 1.5 times as much time

90 K. Oka and K. Matsuzaki

Table 4. Ratio when the program achieves 2048, 4096, 8192, 16384, and 32768

N = 6
tile m = 1 m = 2 m = 4 m = 6 m = 8 m = 10 m = 12

2048 78.41 88.36 95.66 96.00 97.45 97.16 97.78
4096 36.05 62.77 90.32 91.36 93.87 94.05 95.17
8192 0.07 0.33 56.38 70.28 75.67 79.29 84.08

16384 0.00 0.00 0.04 0.07 0.05 29.64 39.02
32768 0.00 0.00 0.00 0.00 0.00 0.00 0.00

N = 6
tile m = 16 m = 20 m = 25 m = 30 m = 35 m = 40 m = 45

2048 97.87 98.38 98.45 98.42 98.46 98.41 98.30
4096 95.42 96.11 96.25 95.97 95.91 95.89 95.64
8192 85.01 86.51 87.61 86.41 86.14 85.75 86.45

16384 38.96 49.75 56.00 52.61 52.76 50.09 51.42
32768 0.00 0.00 0.00 0.00 0.00 0.00 0.00

N = 7
tile m = 1 m = 2 m = 4 m = 6 m = 8 m = 10

2048 82.54 90.74 96.43 97.16 98.27 98.50
4096 40.39 71.75 86.97 89.18 93.59 96.87
8192 0.31 26.08 63.22 73.28 84.87 83.63

16384 0.00 0.00 6.71 27.91 47.17 56.57
32768 0.00 0.00 0.00 0.00 0.00 0.03

as that with 6-tuples did. The program with N = 7 and m = 10 obtained better
results in less time than that with N = 6 and m = 40 (Weak points are the
memory size and the cost of learning process).

In Fig. 13, the curves are the Logistic curves through the origin at the mid-
point f(x) = L (1−e−kx)

(1+e−kx)
, fitted to the points (the average scores with respect to

the computing times). We can see the fact that the average score peaks for the
case of N = 6. Since the average score does not peak for N = 7 up to m = 10, we
fitted the curve with an additional result for m = 30 (the average score 249,625
and the computation time 40µs)1. These facts suggest that we should combine
N -tuples with another game-tree-search technique.

Table 4 shows the ratio when the program successfully achieves tiles 2048,
4096, 8192, 16384 and 32768. Since the program did not use any game-tree-
search technique, it failed suddenly with a little probability (missing 1.5 % for
2048) even with 40 6-tuples or 10 7-tuples. In contrast, with 40 6-tuples or 10
7-tuples, the program succeeded to make 16,384 once for two tries. Furthermore,
the program with N = 7 and m = 10 happened to reach 32,768.

1 Since it requires 30 GB of memory to conduct the experiment, we used a PC with
32 GB memory for this additional experiment.

Systematic Selection of N -Tuple Networks for 2048 91

5 Related Work

Several game-playing algorithms have been adapted to the game 2048 [3,7,10,
14,16,17,20]. Among them, the state-of-the-art algorithm combines expectimax
with TD learning or some other heuristics.

The first application of TD learning to the 2048 player was done by Szubert
and Jaśkowski [14]. They utilized hand-selected two 4-tuples and two 6-tuples
and the player learned with 1,000,000 self-play games achieved the average score
100,178. The two 4-tuples were extended to two 6-tuples by Wu et al. [16] and the
extension increased the average score to 142,727. The hand-selected four 6-tuples
achieved better score than our systematically selected four 6-tuples (the average
score was 109,983). Wu et al. also proposed the multi-staged extension of the
learning algorithm, and by the combination with expectimax search the player
achieved the average score 328,946 (multi-staged TD, expectimax depth = 5).
They recently achieved a 65536-tile [19].

The expectimax algorithm takes much more time when the depth is large.
In the competition of computer players for the game 2048, it is often required
to play a move in 1–10 ms [5,18]. Our player with N = 7 and m = 10 requires a
large memory (about 10 GB) but runs much faster (about 12µs for a move).

6 Conclusion

In this paper we designed experiments, with which we can systematically evalu-
ate the usefulness of N -tuples. In addition to confirming the usefulness of previ-
ous hand-selected N -tuples, we found several interesting properties of N -tuples
for the game 2048. By selecting the N -tuples from the head of the lists, we can
easily obtain N-tuple networks. From the second set of experiments, we con-
firmed the fact that the more N -tuples we use the higher scores we obtain up to
a certain number of tuples where the score peaks. With 10 7-tuples, the program
achieved the average score 234,136 and the maximum score 504,660. As far as
the authors know, these scores are the highest among the TD learning players
(without game-tree-search techniques).

Our future work includes the following two tasks. First, we would like to
confirm the performance of our 7-tuples with expectimax search. Second, we
would like to propose a better way of selecting N -tuples from the ordered list.

Acknowledgment. Most of the experiments in this paper were conducted on the
IACP cluster of the Kochi University of Technology.

References

1. GPCC (games and puzzles competitions on computers) problems for 2015 (2015,
in Japanese). http://hp.vector.co.jp/authors/VA003988/gpcc/gpcc15.htm

2. Abdelkader, A., Acharya, A., Dasler, P.: On the complexity of slide-and-merge
games, [cs.CC] (2015). arXiv:1501.03837

http://hp.vector.co.jp/authors/VA003988/gpcc/gpcc15.htm
http://arxiv.org/abs/1501.03837

92 K. Oka and K. Matsuzaki

3. Chabin, T., Elouafi, M., Carvalho, P., Tonda, A.: Using linear genetic programming
to evolve a controller for the game 2048 (2015). http://www.cs.put.poznan.pl/
wjaskowski/pub/2015-GECCO-2048-Competition/Treecko.pdf

4. Cirulli, G.: 2048 (2014). http://gabrielecirulli.github.io/2048/
5. Jaśkowski, W., Szubert, M.: Game 2048 AI controller competition @ GECCO

2015 (2015). http://www.cs.put.poznan.pl/wjaskowski/pub/2015-GECCO-2048-
Competition/GECCO-2015-2048-Competition-Results.pdf

6. Langerman, S., Uno, Y.: Threes!, fives, 1024!, and 2048 are hard. CoRR
abs/1505.04274 (2015)

7. Oka, K., Matsuzaki, K., Haraguchi, K.: Exhaustive analysis and Monte-Carlo tree
search player for two-player 2048. Kochi Univ. Technol. Res. Bull. 12(1), 123–130
(2015, in Japanese)

8. Oka, K., Matsuzaki, K.: An evaluation function for 2048 players: evaluation for
the original game and for the two-player variant. In: Proceedings of the 57th Pro-
gramming Symposium, pp. 9–18 (2016, in Japanese)

9. van der Ree, M., Wiering, M.: Reinforcement learning in the game of Othello:
learning against a fixed opponent and learning from self-play. In: IEEE Symposium
on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL), pp.
108–115 (2013)

10. Rodgers, P., Levine, J.: An investigation into 2048 AI strategies. In: 2014 IEEE
Conference on Computational Intelligence and Games, pp. 1–2 (2014)

11. Samuel, A.L.: Some studies in machine learning using the game of checkers. IBM
J. Res. Dev. 44(1), 206–227 (1959)

12. Schraudolph, N.N., Dayan, P., Sejnowski, T.J.: Learning to evaluate go positions
via temporal difference methods. In: Computational Intelligence in Games, pp.
77–98 (2001)

13. Sutton, R.S.: Learning to predict by the methods of temporal differences. Mach.
Learn. 3(1), 9–44 (1988)

14. Szubert, M., Jaśkowski, W.: Temporal difference learning of N-tuple networks
for the game 2048. In: 2014 IEEE Conference on Computational Intelligence and
Games, pp. 1–8 (2014)

15. Tesauro, G.: TD-Gammon, a self-teaching backgammon program, achieves master-
level play. Neural Comput. 6(2), 215–219 (1994)

16. Wu, I.C., Yeh, K.H., Liang, C.C., Chang, C.C., Chiang, H.: Multi-stage temporal
difference learning for 2048. In: Cheng, S.-M., Day, M.-Y. (eds.) Technologies and
Applications of Artificial Intelligence. LNCS, vol. 8916, pp. 366–378. Springer,
Cham (2014). doi:10.1007/978-3-319-13987-6 34

17. Xiao, R.: nneonneo/2048-ai (2015). https://github.com/nneonneo/2048-ai
18. Yeh, K.H., Liang, C.C., Wu, K.C., Wu, I.C.: 2048-bot tournament in Taiwan

(2014). https://icga.leidenuniv.nl/wp-content/uploads/2015/04/2048-bot-tour-
nament-report-1104.pdf

19. Yeh, K.H., Wu, I.C., Hsueh, C.H., Chang, C.C., Liang, C.C., Chiang, H.:
Multi-stage temporal difference learning for 2048-like games, [cs.LG] (2016).
arXiv:1606.07374

20. Zaky, A.: Minimax and expectimax algorithm to solve 2048 (2014). http://
informatika.stei.itb.ac.id/∼rinaldi.munir/Stmik/2013-2014-genap/Makalah2014/
MakalahIF2211-2014-037.pdf

http://www.cs.put.poznan.pl/wjaskowski/pub/2015-GECCO-2048-Competition/Treecko.pdf
http://www.cs.put.poznan.pl/wjaskowski/pub/2015-GECCO-2048-Competition/Treecko.pdf
http://gabrielecirulli.github.io/2048/
http://www.cs.put.poznan.pl/wjaskowski/pub/2015-GECCO-2048-Competition/GECCO-2015-2048-Competition-Results.pdf
http://www.cs.put.poznan.pl/wjaskowski/pub/2015-GECCO-2048-Competition/GECCO-2015-2048-Competition-Results.pdf
http://dx.doi.org/10.1007/978-3-319-13987-6_34
https://github.com/nneonneo/2048-ai
https://icga.leidenuniv.nl/wp-content/uploads/2015/04/2048-bot-tournament-report-1104.pdf
https://icga.leidenuniv.nl/wp-content/uploads/2015/04/2048-bot-tournament-report-1104.pdf
http://arxiv.org/abs/1606.07374
http://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2013-2014-genap/Makalah2014/MakalahIF2211-2014-037.pdf
http://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2013-2014-genap/Makalah2014/MakalahIF2211-2014-037.pdf
http://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2013-2014-genap/Makalah2014/MakalahIF2211-2014-037.pdf

	Systematic Selection of N-Tuple Networks for 2048
	1 Introduction
	2 N-Tuple Networks and Temporal Difference Learning for 2048
	2.1 Evaluation Function with N-Tuple Networks and Playing Algorithm
	2.2 Temporal Difference Learning

	3 Exhaustive Analysis of Usefulness of N-Tuples
	4 Performance with Respect to Number of N-Tuples
	5 Related Work
	6 Conclusion
	References

