
Fast Seed-Learning Algorithms for Games

Jialin Liu1(B), Olivier Teytaud1, and Tristan Cazenave2

1 TAO, Inria, University of Paris-Sud, UMR CNRS 8623, Gif-sur-yvette, France
jialin.liu.cn@gmail.com

2 LAMSADE, Université Paris-Dauphine, Paris, France

Abstract. Recently, a methodology has been proposed for boosting the
computational intelligence of randomized game-playing programs. We
propose faster variants of these algorithms, namely rectangular algo-
rithms (fully parallel) and bandit algorithms (faster in a sequential
setup). We check the performance on several board games and card
games. In addition, in the case of Go, we check the methodology when
the opponent is completely distinct to the one used in the training.

1 Introduction: Portfolios of Random Seeds

Artificial intelligence (AI) has been invaded by ensemble methods [2,13]. In
games, some recent papers propose to do so, and in particular to combine variants
of a single program, thanks to tricks on random seeds.

The Impact of Random Seeds. We assume that an AI is given. This AI
is supposed to be stochastic; even with the same flow of information, it will
not always play the same sequence of moves. This is for example the case for
Monte Carlo Tree Search [5,10]. Given such an AI, we can check its performance
against a baseline program (possibly itself) as we vary the random seed, i.e.,
we can generate K different random seeds, and for each of these seeds play Kt

games against the baseline. We can then plot the success rates, sort, and compare
the differences to the standard deviations. Results are presented in Fig. 1 and
show for several games that the seed has a significant impact. The methodologies
presented in this paper are based on this phenomenon.

Related Work. Several works were dedicated to combining several AIs in the
past. [11] combines several different AIs. Nash methods have been used in [7] for
combining several opening books.

The work in [12] constructed several AIs from a single stochastic one and
combined them by the BestSeed and Nash methods, detailed in Sect. 2. The
application of the methodologies above to Go has already been investigated in
[12]. These results were tested in cross-validation. We extend these results in
Go to the case with transfer (i.e. we check the impact in terms of the suc-
cess rate against other opponents, not related to the ones in learning) and we
provide quadratically faster algorithms. We also perform experiments on addi-
tional games (Atari-Go, Breakthrough, Domineering, and several games from
the GameTestBed platform).
c© Springer International Publishing AG 2016
A. Plaat et al. (Eds.): CG 2016, LNCS 10068, pp. 58–70, 2016.
DOI: 10.1007/978-3-319-50935-8 6

Fast Seed-Learning Algorithms for Games 59

Fig. 1. Impact of the seed on the success rate. x-axis: index of seed; y-axis: success
rate. For the nth value, we consider the nth worst seed for Black and the nth seed
for White, and display their average scores against all opponent seeds. The label on
the y-axis shows the standard deviation of these averages; we see that there are good
seeds, which obtain a success rate far above 50% - by much more than the standard
deviation.

2 Known Algorithms for Boosting an AI Using Random
Seeds

This section presents an overview of two methods proposed in [12] for building
a boosted algorithm from a set of seeds: the Nash-approach and the BestSeed-
approach. We propose extensions of these methods and apply them to some
new games. Typically, a stochastic computer program uses a random seed. The
random seed ω is randomly drawn (using the clock, usually) and then a pseudo-
random sequence is generated. Therefore, a stochastic program is in fact a ran-
dom variable, distributed over deterministic program. Let us define: AI is our
game playing artificial intelligence; it is stochastic. AI(ω) is a deterministic ver-
sion; ω is a seed, which is randomly drawn in the original AI. We can easily
generate plenty of ω and therefore one stochastic AI becomes several determin-
istic AIs, termed AI1, AI2, Let us assume that one of the players plays
as Black and the other plays as White. We can do the same construction as

60 J. Liu et al.

Algorithm 1. Approach for boosting a game stochastic game AI.
Require: A stochastic AI playing as Black, a stochastic AI ′ playing as White.
Output: A boosted AI termed BAI playing as Black, a boosted AI BAI ′ playing as

White.
1: Build Mi,j = 1 if AIi (Black) wins against AI ′

j (White) for i ∈ {1, . . . , K} and
j ∈ {1, . . . , Kt}, otherwise Mi,j = 0.

2: Build M ′
i,j = 1 if AI ′

i (White) wins against AIj (Black) for i ∈ {1, . . . , K} and
j ∈ {1, . . . , Kt}, otherwise M ′

i,j = 0.
3: if BestSeed then � deterministic boosted AI
4: BAI is AIi where i maximizes

∑Kt
j=1 Mi,j .

5: BAI ′ is AI ′
i where i maximizes

∑Kt
j=1 M ′

i,j .
6: end if
7: if Nash then � stochastic boosted AI
8: Compute (p, q) a Nash equilibrium of M .
9: BAI is AIi with probability pi

10: Compute (p′, q′) a Nash equilibrium of M ′.
11: BAI ′ is AI ′

j with probability p′
i

12: end if
13: if Uniform then � boosted AI
14: BAI is AIi with probability 1/K.
15: BAI ′ is AI ′

j with probability 1/K.
16: end if

above for the AI playing as Black and for the AI ′ playing as White. We get
AI1, AI2,. . . for Black, and AI ′

1, AI ′
2, . . . for White. From now on, we present

the learning algorithm for Black - still, for this, we need the AI ′ for White as
well. The algorithm for enhancing the AI as White is similar. Let us define, for
i ∈ {1, . . . , K} and j ∈ {1, . . . ,Kt}, Mi,j = 1 when AIi (playing as Black) wins
against AI ′

j (playing as White). Otherwise, Mi,j = 0. Also, let us define M ′
i,j = 1

when AI ′
i (playing as White) wins against AIj (playing as Black). Thus, we have

M ′
i,j = 1 − Mj,i. [12] uses K = Kt, hence they use the same squared matrix for

Black and for White - up to a transformation M �→ 1 − M ′. The point in the
present paper is to show that we can save up time by using K �= Kt. This means
that we need two matrices: M (used for the learning for Black) is the matrix
of Mi,j for i ∈ {1, . . . , K} and j ∈ {1, . . . , Kt}; and M ′ (used for the learn-
ing for White) is the matrix of (M ′)i,j for i ∈ {1, . . . , K} and j ∈ {1, . . . , Kt}.
If Kt ≤ K, M and M ′ have Kt × Kt entries in common (up to transformation
(M ′)i,j = 1−Mj,i); therefore building M and M ′ needs simulating 2K×Kt−K2

t

games.
For arbitrary values of K and K ′, boosted AIs can be created using BestSeed

and Nash approaches, summarized in Algorithm 1. The Nash approach provides
a stochastic policy, usually stronger than the original policy [12]. This can be
done even if the matrix is not squared.

Fast Seed-Learning Algorithms for Games 61

3 Faster Methods

3.1 Rectangular Learning

At first view, the approach in [12] is simple and sound: they need one squared
matrix for both Black and White. However, their approach needs the result of
K2 games. With our rectangular approach, if we use K different seeds and Kt

opponent seeds, we need 2K × Kt − K2
t games.

Let us now check the precision of our approach. Our algorithms use averages
of rows and averages of columns. Let us define μi the average value of the ith row
of M , if Kt was infinite - this is the average success rate of AIi playing as Black
against AI playing as White. And let us define μ̂i the average value that we
get, with our finite value Kt. Hoeffding’s bound [9] tells us that with probability
1−δ, |μi−μ̂i| ≤ √− log(δ/2)/(2Kt). By Bonferroni correction (i.e. union bound),
with probability 1 − δ, for all i ≤ K, |μi − μ̂i| ≤ √− log(δ/(2K))/(2Kt). For a
requested precision ε, we can do as follows:

– Choose a value of K large enough, so that at least one seed i is optimal within
precision ε/2.

– Choose Kt such that
√− log(δ/(2K))/(2Kt) ≤ ε/2.

We see that Kt slightly more than logarithmic as a function of K is enough for
ensuring ε arbitrarily small asymptotically in K. On the other hand, we have no
bound on K necessary for having at least one seed optimal within precision ε/2.

3.2 Bandit Methods

Bandits are a natural method for finding approximate optima quickly. Rather
than computing full matrices, we consider the following approach: apply Exp3
[1], both for Black and for White, for sampling in the matrix M (evaluate Mi,j

only when you need) as a matrix game; Black is the row player and maximizes;
White is the column player and minimizes. We use far less evaluations than the
size of the matrix.

Finally, we can simply use UCB (separately for Black and White), which can
be modified [15] for handling the infinite nature of the set of seeds; we apply this
to the game of Go in 9× 9 and 19× 19.

4 Testbeds

We provide experiments on a list of games. First, we consider MCTS, applied
to four board games, namely Domineering, Atari-Go, Breakthrough and Go.
Then, we consider the randomized policy in the GameTestBed platform. Dom-
ineering is a two-player game with very simple rules: each player in turn puts
a tile on empty locations in the board. The game starts with an empty board.
The first player who can not play loses the game. Usually, one of the player
has vertical 2× 1 tiles, and the other has horizontal 1× 2 tiles. Domineering

62 J. Liu et al.

can be played on boards of various shapes, most classical cases are rectangles
or squares. For squared boards, Domineering is solved until board size 10× 10
[3,4]. Domineering was invented by Göran Andersson [6]. Jos Uiterwijk recently
proposed a knowledge based method that can solve large rectangular boards
without any search [14]. The Breakthrough game, invented by Dan Troyka in
2000, has very simple rules: all pieces can move straight ahead or in diagonal (i.e.
three possible target locations). Captures are possible in diagonal only. Players
play in turn, and the first player who reaches the opposite first row or captures
all opponents pieces has won. There is no draw in Breakthrough - there is always
at least one legal move, and pieces can only go forward (straight or diagonal) so
that loops can not occur. This game won the 2001 8× 8 Game Design Compe-
tition. Yasuda Yasutoshi popularized the Atari-Go variant of the game of Go;
the key difference is that the first player who makes a capture wins the game.
Atari-Go is also known as Ponnuki-Go, One-capture-Go, or Capture-Go. Last
but not least, we provide results of experiments on the GameTestBed platform
(https://gforge.inria.fr/projects/gametestbed/).

5 Experiments

Besides playing against the original stochastic AI, we consider the following
opponent (K ′ = 1 corresponds to the original opponent, whereas K ′ >> 1 is a
much stronger opponent):

– Generate K ′ seeds, randomly, for Black and K ′ seeds, randomly, for White.
– Consider the worst success rate of our boosted AI playing as White against

these K ′ strategies for Black and consider the worst success rate of our boosted
AI playing as Black against these K ′ strategies for White. Our success rate is
the average of these two success rates (Black and White).

This is a strong challenge for K ′ large; since we consider separately White and
Black, we have indeed K ′2 opponent strategies (each of the K ′ seeds for Black
and each of the K ′ seeds for White) and consider the worst success rate. We will
define this opponent as a K ′-exploiter : it is an approximator of the exploitability
property of Nash equilibria. It represents what can be done if our opponent could
play the game K ′ times and select the best outcome. For K ′ = 1, this opponent
is playing exactly as the original AI: this is the success rate against a randomly
drawn seed. A score ≥50% against K ′ = 1 means that we have outperformed
the original AI, i.e. boosting has succeeded; but it is satisfactory to have also a
better success rate, against K ′ > 1, than the original AI.

In order to validate the method, we take care that our algorithm is tested
with a proper cross-validation: the opponent uses seeds which have never been
used during the learning of the portfolio. This is done for all our experiments,
BestSeed, Uniform, or Nash. For this reason, there is no bias in our results. In
addition, we test our performance, in the case of Go, against another opponent;
therefore, this is transfer learning, as explained in Sect. 5.

https://gforge.inria.fr/projects/gametestbed/

Fast Seed-Learning Algorithms for Games 63

Fig. 2. Results for domineering, with the BestSeed and the Nash approach, against the
baseline (K′ = 1) and the exploiter (K′ > 1). x-axis: K, number of seeds optimized
for both players; y-axis: success rate. Kt = 900 in all experiments. The performance of
the uniform version (original algorithm) is also presented for comparison.

Performance of Rectangular Algorithms in Cross-Validation, for Some
Board Games. All results are averaged over 100 runs. Results for Domineering,
Atari-Go and Breakthrough are presented in Figs. 2, 3, and 4 respectively. Table 3
shows the numerical results when K = 9000 and Kt = 900.

In short, BestSeed performs well against the original algorithm (correspond-
ing to K ′ = 1), but its performance against the exploiter (K ′ > 1) is very weak.
On the other hand, the Nash approach outperforms the original algorithm both
in terms of success rate against the baseline (K ′ = 1) in all cases and against the
exploiters (K ′ > 1) in most cases (i.e. curves on the middle column in Figs. 2, 3
and 4 are better than those on the right column) - however, for Breakthrough
in large size the results were (very) slightly detrimental for K ′ > 1, i.e. the
“exploiter” could learn strategies against it.

Performance of the Bandit Method in Cross-Validation In this section,
we present results obtained by Exp3 on the GameTestBed platform. We apply
800 iterations of Exp3 with 400 seeds for each player. The arms with frequency
greater than 99% of the largest frequency are chosen as possible seeds and we

64 J. Liu et al.

Fig. 3. Results for Atari-Go, with the BestSeed and the Nash approach, against the
baseline (K′ = 1) and the exploiter (K′ > 1). x-axis: K, number of seeds optimized
for both players; y-axis: success rate. Kt = 900 in all experiments. The performance of
the uniform version (original algorithm) is also presented for comparison.

play them with probability proportional to their frequencies. Each learning is
repeated 100 times, and each learnt AI is tested against 400 randomly drawn
seeds which have never been used during the learning. Table 1 shows the results
against the original algorithm, and against a stronger opponents (K ′ = 16).
With the Exp3 method and most frequent arm selection, our boosted algorithm
outperforms the original AI and its success rate against the stronger opponent
K ′ = 16 is improved. Please note that the presented games are hard to learn: Nim
is a simple game but has a brute representation which makes learning hard; and
two of the games are phantom games with tricky partially observable states. The
policies are the default randomized policies in the freely available code above.

We also tested UCB with progressive widening [15]; the infinite set of arms is
handled by considering, after N simulated games, the �100N

1
3 	 first arms. UCB

was parallelized by pulling the arms with the 40 best scores simultaneously. We
get the following results (we performed the learning once, the standard deviation
refers to the success rate in cross-validation):

Fast Seed-Learning Algorithms for Games 65

Table 1. Success rate for five games of the GameTestBed platform, with the Exp3
method and most frequent arm selection, against the baseline (K′ = 1) and the stronger
exploiter (K′ = 16). In the game Morra, the AI with given random seed is still sto-
chastic. Hence, the success rate is not greatly improved.

Game Success rate (%)

Baseline Most frequently chosen

K′ = 1 K′ = 16 K′ = 1 K′ = 16

Phantom 4 in a row 50 0.50 ± 0.00 69.00 ± 0.00 8.75 ± 0.00

Nim 50 0.00 ± 0.00 73.50 ± 0.00 3.00 ± 0.00

Phantom tic-tac-toe 50 0.50 ± 0.00 65.50 ± 0.00 15.25 ± 0.00

Morra 50 47.73 ± 0.22 52.12 ± 0.23 48.11 ± 0.22

PigStupid 50 40.78 ± 0.25 50.04 ± 0.25 41.30 ± 0.25

– 9× 9 Go, MCTS with 400 simulations per move, after 60 000 simulated games,
the seed 1125 was selected for Black and the seed 898 was selected for White,
success rate 79.8%.

– 19× 19 Go, GnuGo not MCTS1, after only 3780 simulated games, the seed
606 was selected for Black and the seed 472 was selected for White, success
rate 55.9%. This algorithm is far less stochastic than MCTS.

Table 2. Performance of BestSeed-Gnugo-MCTS against various GnuGo-default pro-
grams, compared to the performance of the default Gnugo-MCTS. The results are for
GnuGoMCTS playing as Black vs GnuGo-classical playing as White, and the games
are completely independent of the learning games (which use only Gnugo-MCTS).
Results are averaged over 1000 games. All results in 5 × 5, komi 6.5, with a learning
over 100 × 100 random seeds.

Opponent Performance of
BestSeed

Performance of the original algorithm
with randomized random seed

GnuGo-classical level 1 1. (± 0) .995 (± 0)

GnuGo-classical level 2 1. (± 0) .995 (± 0)

GnuGo-classical level 3 1. (± 0) .99 (± 0)

GnuGo-classical level 4 1. (± 0) 1. (± 0)

GnuGo-classical level 5 1. (± 0) 1. (± 0)

GnuGo-classical level 6 1. (± 0) 1. (± 0)

GnuGo-classical level 7 .73 (± .013) .061 (± .004)

GnuGo-classical level 8 .73 (± .013) .106 (± .006)

GnuGo-classical level 9 .73 (± .013) .095 (± .006)

GnuGo-classical level 10 .73 (± .013) .07 (± .004)

1 GnuGo does not accept MCTS for 19 × 19.

66 J. Liu et al.

Fig. 4. Results for Breakthrough, with the BestSeed and the Nash approach, against
the baseline (K′ = 1) and the exploiter (K′ > 1). x-axis: K, number of seeds optimized
for both players; y-axis: success rate. Kt = 900 in all experiments. The performance of
the uniform version (original algorithm) is also presented for comparison.

Fig. 5. Comparison between moves played by BestSeed-MCTS (top) and the original
MCTS algorithm (bottom) in the same situations. GnugoStrong, used as an evaluator,
prefers the moves chosen by BestSeed-MCTS for situations 1, 2, 6, 7, 8; whereas 3, 4
and 5 are equivalent.

Fast Seed-Learning Algorithms for Games 67

Table 3. Success rate for Domineering, Atari-Go and Breakthrough, with the BestSeed
and Nash approaches, against the baseline (K′ = 1) and the exploiter (K′ > 1).
K = 9000 and Kt = 900. The experiments are repeated 100 times. The standard
deviations are shown after ±. K′ = 1 corresponds to the original algorithm with
randomized seed; K′ = 2 corresponds to the original algorithm but choosing optimally
(after checking their performance against its opponent) between 2 possible seeds, i.e.
it is guessing, in an omniscient manner, between 2 seeds, each time an opponent is
provided. K′ = 4, K′ = 8, K′ = 16 are similar with 4, 8, 16 seeds respectively.

Domineering

Board Method Success rate (%)

K′ = 1 K′ = 2 K′ = 4 K′ = 8 K′ = 16

5× 5 Uniform 49.03 ± 1.30 41.55 ± 0.92 32.53 ± 0.60 28.95 ± 0.45 25.06 ± 0.41

BestSeed 82.50 ± 2.41 75.00 ± 2.53 59.50 ± 1.98 53.00 ± 1.20 50.00 ± 0.00

Nash 78.50 ± 2.50 67.54 ± 2.39 55.96 ± 1.60 50.00 ± 0.00 50.00 ± 0.00

7× 7 Uniform 53.33 ± 1.41 44.33 ± 0.85 39.58 ± 0.26 37.97 ± 0.17 36.55 ± 0.13

BestSeed 67.50 ± 2.51 54.50 ± 2.03 44.50 ± 1.88 41.50 ± 1.90 28.50 ± 2.50

Nash 66.98 ± 1.39 58.01 ± 0.83 52.79 ± 0.32 50.71 ± 0.25 48.72 ± 0.19

9× 9 Uniform 50.68 ± 0.58 46.68 ± 0.43 44.06 ± 0.26 42.50 ± 0.13 41.56 ± 0.09

BestSeed 65.50 ± 3.40 36.50 ± 3.26 14.50 ± 2.50 3.50 ± 1.29 0.50 ± 0.50

Nash 58.60 ± 0.61 53.43 ± 0.46 50.04 ± 0.37 47.15 ± 0.28 45.11 ± 0.26

Atari-Go

Board Method Success rate (%)

K′ = 1 K′ = 2 K′ = 4 K′ = 8 K′ = 16

5× 5 Uniform 49.95 ± 0.54 46.72 ± 0.46 43.26 ± 0.37 40.78 ± 0.30 37.85 ± 0.26

BestSeed 69.50 ± 2.76 56.50 ± 2.83 41.00 ± 2.89 21.00 ± 2.49 7.00 ± 1.75

Nash 61.16 ± 0.48 57.91 ± 0.50 54.33 ± 0.40 51.18 ± 0.39 47.96 ± 0.26

7× 7 Uniform 49.76 ± 0.37 47.61 ± 0.30 45.10 ± 0.30 43.02 ± 0.22 41.84 ± 0.18

BestSeed 59.50 ± 3.25 45.50 ± 3.28 20.50 ± 2.68 5.00 ± 1.52 1.00 ± 0.71

Nash 57.79 ± 0.45 54.66 ± 0.42 51.40 ± 0.33 47.97 ± 0.37 45.99 ± 0.28

9× 9 Uniform 50.16 ± 0.25 48.39 ± 0.22 47.01 ± 0.16 46.04 ± 0.13 45.11 ± 0.10

BestSeed 55.50 ± 3.49 26.00 ± 3.39 12.50 ± 2.19 1.00 ± 0.71 0.00 ± 0.00

Nash 53.61 ± 0.43 50.46 ± 0.37 48.06 ± 0.24 46.02 ± 0.22 44.15 ± 0.21

Breakthrough

Board Method Success rate (%)

K′ = 1 K′ = 2 K′ = 4 K′ = 8 K′ = 16

5× 5 Uniform 50.12 ± 0.45 47.80 ± 0.35 45.42 ± 0.23 43.18 ± 0.20 42.01 ± 0.15

BestSeed 60.50 ± 3.45 42.50 ± 3.30 19.00 ± 2.75 4.50 ± 1.45 0.50 ± 0.50

Nash 57.77 ± 0.54 54.32 ± 0.36 50.75 ± 0.32 48.38 ± 0.29 45.64 ± 0.23

6× 6 Uniform 50.15 ± 0.09 49.31 ± 0.07 48.86 ± 0.05 48.51 ± 0.04 48.09 ± 0.04

BestSeed 49.00 ± 3.71 33.00 ± 3.52 11.00 ± 2.09 2.50 ± 1.10 0.00 ± 0.00

Nash 50.94 ± 0.33 47.81 ± 0.29 46.73 ± 0.22 45.13 ± 0.16 43.67 ± 0.16

7× 7 Uniform 50.08 ± 0.06 49.51 ± 0.07 49.03 ± 0.05 48.70 ± 0.05 48.36 ± 0.04

BestSeed 55.50 ± 3.19 24.50 ± 2.81 6.00 ± 1.64 1.00 ± 0.71 0.00 ± 0.00

Nash 51.16 ± 0.32 48.40 ± 0.24 46.63 ± 0.18 45.13 ± 0.16 44.12 ± 0.14

8× 8 Uniform 50.03 ± 0.07 49.60 ± 0.06 49.07 ± 0.06 48.70 ± 0.05 48.34 ± 0.04

BestSeed 49.00 ± 3.50 25.00 ± 2.99 6.50 ± 1.84 0.50 ± 0.50 0.00 ± 0.00

Nash 50.91 ± 0.28 48.89 ± 0.22 46.86 ± 0.19 45.65 ± 0.15 44.41 ± 0.16

68 J. Liu et al.

Performance in Transfer, in the Case of Go. Earlier results [12] and in
Sect. 5 are performed in a classical machine learning setting, i.e. with cross-
validation; we now check the transfer, i.e. the fact that we boost an AI, we get
a better performance also when we test its performance against another AI.

Transfer to GnuGo. We applied BestSeed to GnuGo, a well known AI for the
game of Go, with Monte Carlo tree search and a budget of 400 simulations. The
BestSeed approach was applied with a 100× 100 learning matrix, corresponding
to seeds {1, . . . , 100} for Black and seeds {1, . . . , 100} for White.

Then, we tested the performance against GnuGo “classical”, i.e. the non-
MCTS version of GnuGo; this is a really different AI with different playing style.
We got positive results as shown in Table 2. Results are presented for Black; for
White the BestSeed had a negligible impact.

Transfer. Validation by a MCTS with long thinking time. Figure 5 provides a
summary of differences between moves chosen (at least with some probability)
by the original algorithm, and the ones chosen in the same situation by the algo-
rithm with optimized seed. These situations are the 8 first differences between
games played by the original GnuGo and by the GnuGo with our best seed. We
use GnugoStrong, i.e. Gnugo with a larger number of simulations, for checking if
Seed 59 leads to better moves. GnugoStrong is precisely defined as << gnugo –
monte-carlo –mc-games-per-level 100000 –level 1>>. On these situations (Fig. 5)
such that BestSeed differs from the original GnuGo with the same number of
simulations, GnugoStrong played 5 games (playing both sides), all leading to the
same result in each case.

6 Conclusions

Our results (success rate of the boosted algorithm against the non-boosted base-
line) are roughly for BestSeed: 73.5%, 67.5%, 59% for Atari-Go in 5× 5, 7× 7
and 9× 9 respectively; 65.5%, 57.5%, 55.5%, 57% for Breakthrough in 5× 5,
6× 6, 7× 7 and 8× 8 respectively; 86%, 71.5%, 65.5% for Domineering in 5× 5,
7× 7 and 9× 9 respectively. On several games in Gametestbed, we got more
than 70% success rate against the baseline. We got close to 80% in 9 × 9 Go.
Against K ′ = 16, the results were usually positive, though not always (see Break-
through) - we believe that this would be solved with larger K,K ′, as proved in
[12]; asymptotically, the Nash method should be optimal against all K ′.

Usually, the boosted AIs significantly outperform the baselines, without addi-
tional computational cost. This does not require any source code development.
The rectangle versions are faster than the original algorithms, and the bandit
versions are indeed much faster.

Approximating Nash using the adversarial bandit algorithm, Exp3, does not
require computing the whole matrix. The computational cost is decreased to its
square root, up to logarithmic factors (see [8]) and with a minor cost in terms
of precision. The success rate is significantly improved.

Fast Seed-Learning Algorithms for Games 69

Our work on applying UCB with an infinite set of seeds to Go is preliminary
(the parameters of progressive widening are arbitrarily chosen and the UCB
parameters are guessed rather than optimized). Nevertheless, the fact that the
boosted AI is significantly enhanced validates the effectiveness of our approach.

Further work. The simplest further work consists in optimizing the seeds
specifically for time steps. This should provide an easy exploitation of the time
structure of the game. A work in progress is the use of Exp3 with infinite set of
seeds, handled by progressive widening (as we did for UCB - after N simulated
games, only the first �CNγ	 seeds are considered, with C ≥ 2 and γ ∈ (0, 1]).
Also, worst-so-far seed might be removed periodically.

References

1. Auer, P., Cesa-Bianchi, N., Freund, Y., Schapire, R.E.: Gambling in a rigged casino:
the adversarial multi-armed bandit problem. In: Proceedings of the 36th Annual
Symposium on Foundations of Computer Science, pp. 322–331. IEEE Computer
Society Press, Los Alamitos (1995)

2. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996). http://www.
citeseer.ist.psu.edu/breiman96bagging.html

3. Breuker, D., Uiterwijk, J., van den Herik, H.: Solving 8×8 domineering.
Theor. Comput, Sci. 230(1–2), 195–206 (2000). http://www.sciencedirect.com/
science/article/pii/S0304397599000821

4. Bullock, N.: Domineering: solving large combinatorial search spaces. ICGA J.
25(2), 67–84 (2002)

5. Coulom, R.: Efficient selectivity and backup operators in Monte-Carlo tree search.
In: Ciancarini, P., van den Herik, H.J., Donkers, H.H.L.M. (eds.) Proceedings of
the 5th International Conference on Computers and Games, pp. 72–83, Italy, Turin
(2006)

6. Gardner, M.: Mathematical games. Sci. Am. 230, 106–108 (1974)
7. Gaudel, R., Hoock, J.B., Pérez, J., Sokolovska, N., Teytaud, O.: A principled

method for exploiting opening books. In: International Conference on Com-
puters and Games, pp. 136–144, Kanazawa, Japon (2010). http://hal.inria.fr/
inria-00484043

8. Grigoriadis, M.D., Khachiyan, L.G.: A sublinear-time randomized approximation
algorithm for matrix games. Oper. Res. Lett. 18(2), 53–58 (1995)

9. Hoeffding, W.: Probability inequalities for sums of bounded random variables. J.
Am. Stat. Assoc. 58(301), 13–30 (1963)

10. Kocsis, L., Szepesvári, C.: Bandit based Monte-Carlo planning. In: Fürnkranz, J.,
Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp.
282–293. Springer, Heidelberg (2006). doi:10.1007/11871842 29

11. Nagarajan, V., Marcolino, L.S., Tambe, M.: Every team deserves a second chance:
identifying when things go wrong (student abstract version). In: 29th Conference
on Artificial Intelligence (AAAI 2015), Texas, USA (2015)

12. Saint-Pierre, D.L., Teytaud, O.: Nash and the bandit approach for adversarial
portfolios. In: CIG 2014 - Computational Intelligence in Games, pp. 1–7. IEEE,
Dortmund, August 2014.https://hal.inria.fr/hal-01077628

13. Shapire, R., Freund, Y., Bartlett, P., Lee, W.: Boosting the margin: a new expla-
nation for the effectiveness of voting methods, pp. 322–330 (1997)

http://www.citeseer.ist.psu.edu/breiman96bagging.html
http://www.citeseer.ist.psu.edu/breiman96bagging.html
http://www.sciencedirect.com/science/article/pii/S0304397599000821
http://www.sciencedirect.com/science/article/pii/S0304397599000821
http://hal.inria.fr/inria-00484043
http://hal.inria.fr/inria-00484043
http://dx.doi.org/10.1007/11871842_29
https://hal.inria.fr/hal-01077628

70 J. Liu et al.

14. Uiterwijk, J.W.H.M.: Perfectly solving domineering boards. In: Cazenave, T.,
Winands, M.H.M., Iida, H. (eds.) CGW 2013. CCIS, vol. 408, pp. 97–121. Springer,
Heidelberg (2014). doi:10.1007/978-3-319-05428-5 8

15. Wang, Y., Audibert, J.Y., Munos, R.: Algorithms for infinitely many-armed ban-
dits. In: Advances in Neural Information Processing Systems, vol. 21 (2008)

http://dx.doi.org/10.1007/978-3-319-05428-5_8

	Fast Seed-Learning Algorithms for Games
	1 Introduction: Portfolios of Random Seeds
	2 Known Algorithms for Boosting an AI Using Random Seeds
	3 Faster Methods
	3.1 Rectangular Learning
	3.2 Bandit Methods

	4 Testbeds
	5 Experiments
	6 Conclusions
	References

