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Abstract. Monte-Carlo Tree Search (MCTS) is a popular technique for
playing multi-player games. In this paper, we propose a new method
to bias the playout policy of MCTS. The idea is to prune the decisions
which seem “bad” (according to the previous iterations of the algorithm)
before computing each playout. Thus, the method evaluates the esti-
mated “good” moves more precisely. We have tested our improvement
for the game of Havannah and compared it to several classic improve-
ments. Our method outperforms the classic version of MCTS (with the
RAVE improvement) and the different playout policies of MCTS that we
have experimented.

1 Introduction

Monte-Carlo Tree Search (MCTS) algorithms are recent algorithms for decision
making problems [6,7]. They are competitively used in discrete, observable and
uncertain environments with a finite horizon and when the number of possible
states is large. MCTS algorithms evaluate a state of the problem using a Monte-
Carlo simulation (roughly, by performing numerous playouts starting from this
state). Therefore, they require no evaluation function, which makes them quite
generic and usable on a large number of applications. Many games are naturally
suited for these algorithms so games are classically used for comparing such
algorithms.

In this paper, we propose a method to improve the Monte-Carlo simulation
(playouts) by pruning some of the possible moves. The idea is to ignore the
decisions which seem “bad” when computing a playout, and thus to consider
the “good” moves more precisely. We choose the moves to be pruned thanks to
statistics established during previous playouts.

We experiment our improvement, called “Playout Pruning with Rave” (PPR)
on the game of Havannah. Classic MCTS algorithms already provide good results
with this game but our experiments show that PPR performs better. We also
compare PPR to four well-known MCTS improvements (PoolRave, LGRF1,
MAST and NAST2).

The remaining of this paper presents the game of Havannah in Sect. 2 and
the Monte-Carlo Tree Search algorithms in Sect. 3. Our new improvement is
described in Sect. 4. We present our results in Sect. 5. Finally, we conclude in
Sect. 6.
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2 Game of Havannah

The game of Havannah is a 2-player board game created by Christian Freeling
in 1979 and updated in 1992 [26]. It belongs to the family of connection games
with hexagonal cells. It is played on a hexagonal board, meaning 6 corners and
6 edges (corner stones do not belong to edges). At each turn a player has to play
a stone in an empty cell. The goal is to realize one of these three shapes (i) a
ring, which is a loop around one or more cells (empty or occupied by any stones)
(ii) a bridge, which is a continuous string of stones connecting two corners (iii)
a fork, which is a continuous string of stones connecting three edges. If there is
no empty cell left and if no player wins then it is a draw (see Fig. 1). Previous
studies related to the Monte-Carlo Tree Search algorithm applied to the game
of Havannah can be found in [10,20,30].

Fig. 1. The three winning shapes of Havannah (wins for the white player): a ring (left),
a bridge (middle left) and a fork (middle right), and a draw (right).

3 Monte-Carlo Tree Search Algorithms

The Monte-Carlo Tree Search (MCTS) algorithm is currently a state-of-the-art
algorithm for many decision making problems [3,9,16,31], and is particularly
relevant in games [1,5,12,14,15,19,21,22,29,30]. The general principle of MCTS
is to iteratively build a tree and perform playouts to bias the decision making
process toward the best decisions [6,7,18]. Starting with the current state s0 of
a problem, the MCTS algorithm incrementally builds a subtree of the future
states. Here, the goal is to get an unbalanced subtree, where the branches with
(estimated) good states are more developed. The subtree is built in four steps:
selection, expansion, simulation and backpropagation (see Fig. 2).

The selection step is to choose an existing node among available nodes in the
subtree. The most common implementation of MCTS is the Upper Confidence
Tree (UCT) [18] which uses a bandit formula for choosing a node. A possible
bandit formula is defined as follows:

s1 ← arg max
j∈Cs1

[
wj

nj
+ K

√
ln(ns1)

nj

]
,

where Cs1 is the set of child nodes of the node s1, wj is the number of wins for
the node j (more precisely, the sum of the final rewards for j), nj is the number
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Fig. 2. The MCTS algorithm iteratively builds a subtree of the possible future states
(circles). This figure (from [4]) illustrates one iteration of the algorithm. Starting from
the root node s0 (current state of the problem), a node s1 is selected and a new node s2
is created. A playout is performed (until a final state s3 is reached) and the subtree is
updated.

of playouts for the node j and ns1 is the number of playouts for the node s1
(ns1 =

∑
j nj). K is called the exploration parameter and is used to tune the

trade-off between exploitation and exploration.
Once a leaf node s1 is selected, the expansion step creates a new child node s2.

This new node corresponds to a decision of s1 which has not been considered yet.
Then, the simulation step is to perform a playout (a random game) until a final
state s3 is reached. This final state gives a reward (for example, in games, the
reward corresponds to a win, a loss or a draw). The last step (backpropagation)
is to use the reward to update the statistics (number of wins and number of
playouts) in all the nodes encountered during the selection step.

3.1 Rapid Action Value Estimate

One of the most common improvements of the MCTS algorithm is the Rapid
Action Value Estimate (RAVE) [12]. The idea is to share some statistics about
moves between nodes: if a move is good in a certain state, then it may be good
in other ones.

More precisely, let s be a node and mi the possible moves from s, leading
to the child nodes s′

i. For the classic MCTS algorithm, we already store, in s,
the number of winning playouts ws and the total number of playouts ns (after
s was selected). For the RAVE improvement, we also store, in s and for each
move mi, the number of winning playouts w′

s,s′
i
and the total number of playouts

n′
s,s′

i
obtained by choosing the move mi. These “RAVE statistics” are updated

during the backpropagation step and indicate the estimated quality of the moves
already considered in the subtree (see Fig. 3).
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Fig. 3. Illustration of the RAVE process. In each node, an array stores the RAVE
statistics of all possible moves (left); this array is updated when a corresponding move
is played (right). In this example, a new node (SE) is created and all the moves chosen
in the selection step (m2,m0) and in the simulation step (m3,m1) are updated in the
RAVE statistics of the selected nodes (SA,SC ,SE) during the backpropagation step.

Thus, the selection step can be biased by adding a RAVE score in the bandit
formula defined previously:

s1 ← arg max
j∈Cs1

[
(1 − β)

wj

nj
+ β

w′
s1,j

n′
s1,j

+ K

√
ln(ns1)

nj

]
,

where β is a parameter approaching 0 as nj tends to infinity (for instance,

β =
√

R
R+3nj

where R is a parameter [13]).

3.2 Playout Improvements

PoolRave is an extension of RAVE [17,25]. The idea is to use the RAVE sta-
tistics to bias the simulation step (unlike the RAVE improvement which biases
the selection step). More precisely, when a playout is performed, the PoolRave
improvement firstly builds a pool of possible moves by selecting the N best moves
according to the RAVE statistics. Then, in the simulation step, the moves are
chosen randomly in the pool with probability p, otherwise (with probability 1−p)
a random possible move is played, as in the classic MCTS algorithm.

The Last-Good-Reply improvement [2,8] is based on the principle of learning
how to respond to a move. In each node, LGR stores move replies which lead
to a win in previous playouts. More precisely, during a playout, if the node has
a reply for the last move of the opponent, this reply is played, otherwise a new
reply is created using a random possible move. At the end of the playout, if
the playout leads to a win, the corresponding replies are stored in the node.
If the playout leads to a loss, the corresponding replies are removed from the
node (forgetting step). This algorithm is called LGRF1. Other algorithms have
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been proposed using the same idea but LGRF1 is the most efficient one with
connection games [27].

The principle of the Move-Average Sampling Technique (MAST) [11] is to
store move statistics globally and to use these statistics to bias the playouts.
This is similar to the PoolRave improvement, except that here, the statistics are
independent of the position of the move in the tree.

The N-gram Average Sampling Technique (NAST) is a generalization of
MAST [23,28]. The idea is to look at sequences of N moves instead of one
move only. This improvement can be costly according to N but it is already
efficient with N = 2 (NAST2) for the game of Havannah [27].

4 Pruning in the Simulation Step

We propose a new improvement of the MCTS algorithm, called “Playout Pruning
with Rave” (PPR). The idea is to prune bad moves in the simulation step in
order to focus the simulation on good playouts (see Fig. 4, left). More precisely,
before the playout, we compute a list of good moves by pruning the moves which
have a winning rate lower than a given threshold Tw′ . The winning rate of a node

j is computed using the RAVE statistics of a node sPPR, with
w′

sPPR,j

n′
sPPR,j

.

Fig. 4. During a playout (left), the PPR process discards all moves with a RAVE
winning rate lower than a given threshold, then plays a move among this pruned list
(or a random move, according to a given probability). For example (right), after 100 k
MCTS iterations for black, PPR prunes the scratched cells and finally plays the starred
cell, which seems relevant: the three scratched cells on the right cannot be used by black
to form a winning shape; at the top left of the board several white cells prevent black
from accessing the scratched cells easily; the three remaining scratched cells are seen
by PPR as functionally equivalent to other possible cells of the board.

The node sPPR, giving the RAVE statistics, has to be chosen carefully.
Indeed, the node s2, selected during the selection step of the MCTS algorithm,
may still have very few playouts, hence inaccurate RAVE statistics. To solve this
problem, we traverse the MCTS tree bottom-up, starting from s2, until we reach
a node with a minimum ratio Tn, representing the current number of playouts
for sPPR over the total number of playouts performed.
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After the PPR list is computed, the simulation step is performed. The idea is
to use the moves in the PPR list, which are believed to be good, but we also have
to choose other moves to explore other possible playouts. To this end, during
the simulation step, each move is chosen in the PPR list with a probability p,
or among the possible moves with a probability 1 − p. In the latter case, we
have observed that considering only a part of all the possible moves gives better
results; this can be seen as a default pruning with, in return, an additional bias
(see Algorithm 1).

Algorithm 1. Monte-Carlo Tree Search with RAVE and PPR
{initialization}
s0 ← create root node from the current state of the problem

while there is some time left do

{selection}
s1 ← s0
while all possible decisions of s1 have been considered do

Cs1 ← child nodes of s1

β ←
√

R
R+3nj

s1 ← argmax
j∈Cs1

[
(1 − β)

wj
nj

+ β
w′

s1,j

n′
s1,j

+ K

√
ln(ns1 )

nj

]

{expansion}
s2 ← create a child node of s1 from a possible decision of s1 not yet considered

{pruning}
sPPR ← s2
while nsPPR < Tn do

sPPR ← parent node of sPPR

PPR ← { j |
w′

sPPR,j

n′
sPPR,j

> Tw′ }

{simulation/playout}
s3 ← s2
while s3 is not a terminal state for the problem do

ξ ← random()
if ξ ≤ p then

s3 ← randomly choose next state in PPR
else

s3 ← randomly choose next state in the (1 − ξ) last part of the possible moves

{backpropagation}
s4 ← s2
while s4 �= s0 do

ws4 ← ws4+ reward of the terminal state s3 for the player of s4
ns4 ← ns4 + 1
for all nodes j belonging to the path s0s3 do

w′
s4,j ← w′

s4,j+ reward of the terminal state s3 for the player of j

n′
s4,j ← n′

s4,j + 1

s4 ← parent node of s4

return best child of s0

The PPR improvement can be seen as a dynamic version of the PoolRave
improvement presented in the previous section: instead of selecting the N best
moves in a pool, we discard the moves which have a winning rate lower than Tw′ .
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PoolRave uses a static pool size, which implies that good moves may be discarded
(if the pool size is small in front of the number of good moves) or that bad moves
may be chosen (if the pool size is large in front of the number of good moves).
PPR automatically deals with this problem since the size of the PPR list is
naturally dynamic: the list is small if there are only few good moves, and large
if there are many good moves.

5 Experiments

We have experimented with the proposed MCTS improvement (PPR) for the
game of Havannah. Since RAVE is now considered as a classic MCTS baseline,
we have compared PPR against RAVE (using the parameters R = 130 and
K = 0). To have adequate statistical properties, we have played 600 games for
each experiment. Since the first player has an advantage in the game of Havan-
nah, we played, for each experiment, half the games with the first algorithm as
the first player and the other half with the second algorithm as the first player.

Below we report on the influence of the PPR parmeters (Sect. 5.1), scalability
of the playout pruning (Sect. 5.2), and the comparison between PPR and other
playout improvements (Sect. 5.3).

5.1 Influence of the PPR Parameters

To study the influence of the three parameters of the PPR improvement (Tn,
Tw′ , P ), we have compared PPR against RAVE using 1 k MCTS iterations and
a board size of 6. For each parameter, we have experimented with various values
while the other parameters were set to default values (see Fig. 5).

Fig. 5. Influence of the PPR parameters in the game of Havannah (PPR vs RAVE, 1 k
MCTS iterations, board size 6). Each parameter is studied while the other ones are set
to default values: Tn = 1%, Tw′ = 25% and p = 80%, where Tn is the minimum ratio
of playouts for the node sPPR, Tw′ is the win rate threshold for pruning bad moves and
p is the probability for using the PPR list.
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PPR has better win rates against RAVE when Tn (the minimum ratio of
playouts for the node sPPR over the total number of playouts) is lower than
10%. A low value for Tn means that we take a node sPPR close to the node s2
which has launched the playout; thus the PPR list is built using RAVE statistics
that are meaningful for the playout but quite unreliable. When Tn is too large,
no node has sufficient playouts so the PPR list is empty and PPR is equivalent
to RAVE (win rate of 50%).

The best values for the pruning threshold Tw′ (win rate in the RAVE statistics
of sPPR) stand between 20% and 40%. The moves with a winning rate lower than
this threshold are pruned when building the PPR list. Therefore, if Tw′ is too
high, all moves are pruned (i.e., the PPR list is empty) and the algorithm is
equivalent to RAVE (win rate of 50%). In addition, if Tw′ is too low, then the
PPR list also contains bad moves (low winning rate) which lowers the efficiency
of PPR.

Finally, the best values for the parameter p (probability for using the PPR
list instead of a random sampling, to choose a move) stand between 60% and
80% in our experiments. A low value implies that the PPR list is rarely used,
making PPR almost equivalent to RAVE. With a very high value, the PPR list
is frequently used, so PPR does not explore other moves, hence a highly biased
playout computation.

5.2 Scalability of the Playout Pruning

Like classic improvements of the simulation step (for instance, PoolRave and
LGRF1), PPR is useful for small numbers of playouts and large board sizes (see
Fig. 6).

In our experiments, PPR wins almost 80% of the games against RAVE with
1 k MCTS iterations, and almost 70% with 10 k iterations. PPR wins 60% or less
of the games against RAVE with a board size lower than 5 and 80% or more of

Fig. 6. Influence of the number of MCTS iterations (left, with board size 6) and board
size (right, with 1 k MCTS iterations) in the game of Havannah (PPR vs RAVE,
Tn = 1%, Tw′ = 25% and p = 80%).



Pruning Playouts in Monte-Carlo Tree Search 55

the games with a board size larger than 7. This is not very surprising because
RAVE is already very efficient when the board size is small, so adding pruning
is useless in this case. However, large boards have many more “dead areas” (i.e.,
irrelevant cells) that PPR can detect and prune (see Fig. 4, right).

5.3 PPR Vs Other Playout Improvements

We have compared PPR against several MCTS improvements (RAVE, PoolRave,
LGRF1, MAST, NAST2) for several board sizes and numbers of MCTS iterations
(see Table 1). Since RAVE is now considered as the classic MCTS baseline, we
have implemented all playout improvements (PPR, PoolRave, LGRF1, MAST,
NAST2) based on the RAVE algorithm.

Our results indicate that PPR outperforms the previous algorithms for the
game of Havannah. For a board size of 6, PPR wins more than 70% of the games
with 1 k MCTS iterations and more than 60% of the games with 10 k or 30 k
iterations. For a board size of 10, PPR is even better (more than 70%).

Table 1. PPR vs other MCTS improvements. We have performed 200 games for the
experiments with size = 10 and playouts = 30, 000; 600 games for the other experiments.

size playouts player win rate std dev

6

1,000

Rave 74.4% ±1.78
PoolRave 70.17% ±1.87
LGRF1 71.67% ±1.84
MAST 74.0% ±1.79
NAST2 85.0% ±1.46

10,000

Rave 63.67% ±1.96
PoolRave 67.0% ±1.92
LGRF1 63.17% ±1.97
MAST 64.5% ±1.95
NAST2 76.5% ±1.73

30,000

Rave 66.33% ±1.92
PoolRave 73.66% ±1.79
LGRF1 65.66% ±1.93
MAST 65.5% ±1.94
NAST2 60.5% ±1.99

size playouts player win rate std dev

10

1,000

Rave 86.33% ±1.40
PoolRave 72.16% ±1.82
LGRF1 79.00% ±1.66
MAST 83.66% ±1.50
NAST2 85.50% ±1.43

10,000

Rave 79.16% ±1.65
PoolRave 89.00% ±1.27
LGRF1 83.83% ±1.50
MAST 79.00% ±1.66
NAST2 85.16% ±1.45

30,000

Rave 75.85% ±2.13
PoolRave 91.01% ±1.42
LGRF1 79.69% ±2.01
MAST 82.04% ±1.91
NAST2 84.08% ±1.82

6 Conclusion

In this paper, we have proposed a new improvement (called PPR) of the MCTS
algorithm, based on the RAVE improvement. The idea is to prune the moves
which seem “bad” according to previous playouts during the simulation step.
We have compared PPR to previous MCTS improvements (RAVE, PoolRave,
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LGRF1, MAST, NAST2) for the game of Havannah. In our experiments, PPR
is the most efficient algorithm, reaching win rates of at least 60 %.

In future work, it would be interesting to compare PPR with other MCTS
improvements such as Contextual Monte-Carlo [24] or with stronger bots [10]. We
would also try PPR for other games or decision making problems to determine
if the benefit of PPR is limited to the game of Havannah or if it is more general.
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Système d’Information de l’Université du Littoral Côte d’Opale).
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