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Abstract. This paper presents a new Monte-Carlo tree search method
that focuses on identifying the best move. UCT which minimizes the
cumulative regret, has achieved remarkable success in Go and other
games. However, recent studies on simple regret reveal that there are
better exploration strategies. To further improve the performance, a leaf
to be explored is determined not only by the mean but also by the whole
reward distribution. We adopted a hybrid approach to obtain reliable
distributions. A negamax-style backup of reward distributions is used in
the shallower half of a search tree, and UCT is adopted in the rest of
the tree. Experiments on synthetic trees show that this presented method
outperformed UCT and similar methods, except for trees having uniform
width and depth.

1 Introduction

Monte Carlo tree search (MCTS) algorithms including UCT [5] have achieved
remarkable success, especially in the game of Go [10].

UCT is an algorithm based on the minimization of cumulative regret [1,13],
which is suitable for estimating the expected score at each node. However, in
game-playing algorithms, it is more important to identify the best move at the
root, than to identify its score. Both goals are closely related but still different, as
MTD(f) [16] exploits this difference in the context of αβ search. Recent studies
have shown that the performance of MCTS is improved by focusing on simple
regret instead of on cumulative regret [6,14,15,19]. However, it is also known to
be difficult to directly minimize the simple regret in tree search algorithms.

This paper presents an alternative Monte-Carlo tree search method that
focuses on the confidence when choosing the best move. Our work is based on the
careful combination of two ideas, each of which can be found in existing work:
(1) negamax-style backup of the distribution of rewards at each interior
node [4,18] in a main search tree, and (2) hybrid MCTS on top of UCT [15,19].
By using reward distributions obtained with a negamax-style backup, we can
estimate the probability that the current move will be superseded by another
move by a deeper search [4]. By using these distributions, we can identify the best
leaf that most influences the confidence at the root. The negamax-style backup
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also contributes to the convergence [18]. We adopted UCT on an extended tree
in order to obtain the distribution at each leaf in the main search tree.

The experiments on incremental random trees show that the presented
method outperforms UCT, except in trees with a uniform width and depth.

2 Background and Related Work

This section briefly reviews related work on best-first search methods including
Monte-Carlo tree search and negamax-style backup of reward distributions.

Monte Carlo tree search (MCTS) [5] is a kind of best-first algorithm that
iteratively expands and evaluates a game tree by using a random simulation.
In this section, we consider a general framework of best-first search algorithms
where each iteration consists of the following four steps.

1. leaf selection: a leaf with the highest priority is selected.
2. expansion: if necessary, the leaf is expanded, and a leaf is selected again among

newly created leaves.
3. evaluation: the leaf is evaluated or the evaluation is elaborated (e.g., by ran-

dom simulation in UCT).
4. backpropagation: the evaluated value is shared throughout the tree.

We followed the convention in which MCTS starts with a tree having only its
root and the immediate successor nodes. Then a leaf is expanded when we visit
the leaf for the first time in step 2 [3,5,8]. Sometimes, a search tree is fixed to
simplify analysis [18,19]. This is necessary in typical game programs in order to
handle expansion of the tree during the search process. The other steps—leaf
selection, evaluation, and backpropagation—characterize the search algorithms
as discussed in the Subsects. 2.1 to 2.3. In this paper, we use move a or the
position after move a interchangeably for simplicity, because a position after
move a is defined without ambiguity in deterministic games.

2.1 Monte Carlo Tree Search and UCT

UCT [13] has been applied to many games including Go and has achieved remark-
able success. For the evaluation of a leaf, it conducts random play (called simula-
tion, or roll-out) starting at the position corresponding to the leaf and observes
its outcome as a reward. In this paper, we assume reward r to be a win (1), loss
(0), or draw (0.5), following the usual convention. Focusing on wins/losses/draws
instead of raw game scores is known to be effective in Go [3,8]. Note that reward
r is replaced by 1 − r for nodes where the opponent player moves. The observed
reward is shared among the nodes between the leaf and the root in the backprop-
agation step, and the average of the rewards Xi,ti =

∑ti
t′ rt′/ti is maintained for

each node i, where ti is the number of visits to the node.
In the selection step, the algorithm descends from the root to a leaf by recur-

sively selecting the most urgent child at each node. The urgency of a node among
its siblings is determined by UCB defined by the following equation:

UCB = Xi,ti +
√

2 ln t/ti, (1)
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where t is the number of times the parent of node i is visited up to now. UCT
models a move in a game as an arm in a multi-armed bandit problem [1], assum-
ing that the reward is stochastically determined by a distribution with mean
μi when arm i is pulled. In typical game playing programs, we need to handle
terminal or solved positions where the reward is fixed [20]. We need to ignore
losing moves in the selection step by propagating win/loss information that is
found to ancestors.

2.2 Improvements in UCT

UCT works so that the cumulative regret of the root is minimized [1,13]. Cumu-
lative regret is the summation of the difference between the best choice, which
is unknown to the agent, and his or her actual choice over time,

∑T
t (r∗ − rt),

where r∗ is the mean reward of the best arm and rt is the observed reward
at time t. Therefore, it is suitable for the estimation of the expected reward
at a root. Simple regret is an alternative criterion for the accuracy of the final
choice, r∗ − rT , where rT is the mean reward of the agent’s final choice after
time T [6]. Informally, if one does more exploration of sub-optimal moves, simple
(cumulative) regret decreases (increases).

Recent studies suggest that a hybrid approach is effective. This is a primary
strategy for a root (or shallower part of a tree) to reduce simple regret at the
root, and a sub-strategy to reduce cumulative regret in the rest of the tree. For
a primary strategy, the approximated value of information (VOI) is reported to
be effective in MCTS SR+CR [19], while SHOT [7] is used in H-MCTS [15].
H-MCTS has been tested on various domains; however, it inherits the limitation
of SHOT in which the number of simulations must be fixed in advance. Our app-
roach adopts alternative primary strategies and achieves an anytime algorithm.
Additionally, Liu and Tsuruoka presented an adjustment in confidence bounds
to reduce simple regret [14].

2.3 Minimax Backup of Reward Distribution

Usually, only the average of observed rewards is maintained at each node
in MCTS. However, if a histogram of rewards is maintained in addition to
the average, more information about positions can be extracted from the
histogram1 [11,12]. Moreover, reward distribution can be propagated in negamax
style [4,18].

Bayes-UCT [18] is a Bayesian extension to UCT that selects a node having
the maximum Bayes-UCT value among the siblings:

Bayes-UCT1 := μ̂i +
√

2 ln t/Ti(t), Bayes-UCT2 := μ̂i +
√

2 ln tσi, (2)

where μ̂i is the estimated mean of child i’s reward distribution obtained by nega-
max backup, i.e., μ̂i =

∫
x
(1 − x)pi(x), where pi(x) is the probability that node i

1 http://www.althofer.de/crazy-shadows.html.

http://www.althofer.de/crazy-shadows.html
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Table 1. Comparison of similar work and our work. The top half of the table summa-
rizes existing methods. The column “minimax backup” indicates how the distribution
of each node is presented, where “-” means the minimax backup of reward distributions
is not adopted. The column “primary strategy” gives the main strategy of choosing
a leaf to be expanded or that for a playout. The column “sub-strategy” lists a sub-
strategy for the deeper part of a tree if a hybrid approach is adopted, or “-” otherwise.
The bottom half of the table summarizes our approaches discussed in this paper, which
respectively adopt discrete and UCT for minimax backup and hybrid.

Existing method minimax backup primary strategy sub-strategy

Baum and Smith [4] discrete QSS -

BayesUCT [18] Beta distribution UCB (Bayes) -

H-MCTS [15] - SHOT [7] UCT

MCTS SR+CR [19] - ε-greedy, UCB√
(·), VOI UCT

Yokoyama and Kitsuregawa [21] discrete [4] QSS [4], UCT αβ search

Work in this paper

HB+EExpected discrete [4] EExpected UCT

HB+ERobust ERobust

HB+ETerminal ETerminal=QSS [4]

HB+BayesUCT1 μ̂i +
√

2 ln t/ti [18]

HB+BayesUCT2 μ̂i +
√
2 ln tσi [18]

has the game theoretical value x for player to move, and σi is the standard devi-
ation of the distribution. Note that reward 1−x in a node corresponds to reward
x in a parent node because the player whose turn it is to move changes with each
move. Here, the observed average Xi in UCT (Eq. (1)) is replaced by μ̂i, and it is
shown that μ̂i converges more rapidly to the game theoretical reward of node i.
There are many differences between this approach and our work, including explo-
ration strategies and the adoption (or not) of a prior distribution or continuous
probability distribution. In this work, we used μ̂i =

∑
x∈{0,0.5,1}(1 − x)pi(x)

instead.
Before the introduction of MCTS, Baum and Smith presented a best-first

search method that utilizes the reward distribution at each node [4].
Bayes-UCT as well as Baum and Smith’s method assumes the existence of an

external function to assign a probability distribution to each leaf, as a prior or
special kind of evaluation function. In this work, the assumption is not necessary
due to the use of UCT to yield the distribution. We also present improved
strategies for exploration. The upper half of Table 1 summarizes the existing
methods.

3 Exploration with Refinement of Confidence

We present a new hybrid MCTS algorithm that iteratively refines the confidence
of the choice at the root. Our algorithm maintains the main tree for our primary
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main tree

extended tree for UCT

root

lmain

luct

random simulation

Fig. 1. Two parts of a search tree maintained with our algorithm

1. leaf selection: the most valuable leaf in the main tree is selected, with respect to
the exploration strategy defined in Sect. 3.2.

2. evaluation: evaluation of the leaf lmain is elaborated by budget times of internal
playouts in UCT with root lmain:
(a) leaf selection: the most valuable leaf luct is identified by recursively descending

successor node having the highest UCB1 value from lmain.
(b) expansion: if the same condition in step 2 in Sect. 2 is satisfied, the leaf luct is

expanded, and a new luct is then selected among newly created leaves.
(c) evaluation: the evaluation of the leaf is elaborated by a random simulation

that starts from the leaf.
(d) backpropagation: the reward is stored in each node between lmain and luct. In

addition to the usual back up of the reward, we maintain a histogram of the
rewards (i.e., the frequencies of {0, 0.5, 1}) in each node.

3. expansion: after evaluation, if there appear such nodes in the UCT tree that meet
the conditions described in Sect. 3.3, they are promoted into the main tree.

4. backpropagation: the distribution of the rewards is updated for each node between
lmain and the root, by using Eq. (4).

Fig. 2. Outline of our algorithm

strategy introduced in the next subsections, as well as the extended tree for our
sub-strategy, UCT, as depicted in Fig. 1. The algorithm iteratively extends the
whole tree and refines evaluations in a best-first manner as listed in Fig. 2. Steps
1 through 4 are for the primary strategy, and steps 2(a) through 2(d) are for
the sub-strategy, UCT (see Sect. 3.1). We first select leaf lmain in the main tree
by using a strategy introduced in Sect. 3.2. Then, it runs playouts according to
UCT budget times, where the budget is usually one. A newly created leaf is first
added to the UCT tree and will be incorporated into the main tree when they
meet the conditions described in Sect. 3.3.

3.1 Hybrid Backup of Reward Distribution

For each node in a search tree, an array of size 3 is assigned to present the reward
distribution of the node. We introduce different backup procedures for the main
tree and extended tree and call the scheme hybrid backup (HB). In each node
in the extended tree, we maintain a histogram that holds the frequency of each
reward value (i.e., {0, 0.5, 1}) and adapt it for the reward distribution of the
node. When a playout is completed, the corresponding frequency count in the
histogram in each node involved in the playout is updated by one.
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For nodes in the main tree, a negamax-style backup is adopted. Let pi(x) be
the probability that the game theoretical value of node i is x, and c(i)(x) (c(i)(x))
be the cumulative distribution function, CDF, for probability pi(x) being less
(more) than or equal to x:

c(i)(x) :=
∑

k:k≤x pi(k), and c(i)(x) :=
∑

k:k≥x pi(k). (3)

Inversely, probability pi(x) is easily computed by function c(i)(x) or c(i)(x). We
introduce the negamax backup of probability distributions, following Baum and
Smiths method [4]. The distribution of internal node n is defined based on those
of the successor nodes assuming that there is no correlation between sibling
nodes:

c(n)(1 − x) =
∏

c∈successor(n) c(c)(x). (4)

The CDF c(i)(x) in each node in the main tree is updated by using Eq. (4),
so that it represents the negamax CDF of distributions of its successors. Recall
that we limit the reward in {0, 0.5, 1} in this work. Therefore, pi or c(i)(·) can
be stored in an array of size three. Also,

∑
x pi(x) = 1 holds for any node i.

The intuition behind this design is that the estimated probability distribution
is not accurate without a carefully designed prior distribution when the number
of samples remains small. Therefore, we count the frequencies of reward values
in the deeper part of the tree to average the results. If the number of samples
is sufficient, the estimated distribution is accurate. Consequently, the negamax
backup of probability distributions is adopted in the shallower part of the tree
to achieve better convergence.

3.2 Exploration Strategy

Here, we introduce the primary strategy to select leaf lmain in the main tree to be
explored next in step 1 in Fig. 2. Let m0 be the best move at the root, estimated
so far by searching. We define the uncertainty U as the difference between the
estimated mean reward of root R and that of m0:

U := μ̂′
R − μ̂′

m0
, (5)

where each of μ̂′
R (= 1 − μ̂R) and μ̂′

m0 (= μ̂m0) is the mean of the distribution
at corresponding node (with respect to the root player). We can focus on the
identification of the best move by minimizing U rather than by minimizing the
variance of μ̂R. For example, if U is zero, we can be confident that the best
move is m0 regardless of the value of the leaves, under the given distributions.
Otherwise, there would be another move mi that potentially has a better value
than m0.

Our goal is to select leaf l with the highest priority in the main tree to
continue the exploration. Let Ul be the value of U after the exploration of leaf l,
which is not known until the exploration is completed. When Ul is much smaller
than U (Ul � U), it means that the best move become clearly distinguished
from other moves. When Ul is much larger than U (Ul � U), it means that the
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previous estimation of U was inaccurate and needed to be updated. Therefore,
in the both cases, such l has a high priority for exploration, as discussed in the
literature [4].

Below we discuss four strategies to select l (strategy four has two variants).

HB + ETerminal. One reasonable strategy is to select l that has the maximum
absolute difference |Ul − U |, averaging over all possible Ul values with its prob-
ability. Let us assume that the exploration of leaf l reveals that l is terminal
or solved with a game-theoretical value r according to its current distribution.
Let Û=r

l be the value Ul when leaf l is found to be terminal with value r. Fur-
ther assuming that the distributions of other leaves are not changed during the
exploration of l, we can directly calculate Û=r

l . Then, in strategy HB+ETerminal,
we select l that has the maximum absolute difference |U=r

l − U | averaging over
all possible U=r

l values with its probability:

arg maxl

∑
r∈{0,0.5,1} pl(r)|Û=r

l − U | (6)

This strategy is equivalent to QSS [4], though their work does not involve MCTS.

HB + EExpected. In many games, terminal nodes are relatively rarer than non-
terminal nodes. Following this observation, we introduce a model in which leaf l
is assumed to be an unsolved node after exploration with an additional playout
result r with probability pl(r). This assumption is natural when we adopt UCT
as a sub-strategy. Let Û+r

l be the value of Ul when the distribution of leaf l
is changed by observing an additional result r. Then, we select l that has the
maximum absolute difference |U+r

l − U |, averaging all over possible U+r
l values

with its probability:

arg maxl

∑
r∈{0,0.5,1} pl(r)|Û+r

l − U | (7)

HB + ERobust. This is our main strategy that identifies the worst playout result
on any leaf l that maximizes Ul. Recall that a Ul larger than the current U sug-
gests an error in the current estimation. To extend this idea further, HB+ERobust

explores l that can achieve the maximum Ul considering all U+r
l :

arg maxl maxr∈{0,0.5,1} U+r
l . (8)

A distribution obtained by the negamax procedure tends to be unstable in that
a single playout may substantially modify the distribution. This strategy is
expected to remedy the instability by exploring such nodes first.
Property 1. Value U+r

l is maximized when r is 1 (0) for a leaf l that is (is not)
the descendant of the current best move m0 at the root. Note that reward r here
is for a player to move at the root. When a player to move at leaf l differs from
that at the root, reward r at the root, corresponds to 1 − r at leaf l.

HB+BayesUCT. All strategies introduced so far are aimed at minimizing
the uncertainty U . Alternatively, we can adopt BayesUCT [18]. HB+BayesUCT
descends from the root to a leaf, choosing the node having the largest Bayes-UCB
value shown in Eq. (2). Here, μ̂i is the mean of probability p(r) for r ∈ {0, 0.5, 1}.

The lower half of Table 1 summarizes our strategies.
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3.3 Implementation Details

Nodes in the extended tree should be promoted to the main tree in step 3 in each
iteration in Fig. 2, when the sub-trees under the nodes are sufficiently searched.
In our experiments, all of leaf lmain’s children are promoted at the same time,
when the number of visits to lmain reaches at least 20 and when the minimum
number of visits to each of them reaches at least 2. The condition on the number
of visits is crucial, especially in strategies HB+ETerminal and HB+EExpected. In
these strategies, such a node has the least priority and is rarely selected for
exploration if it has a single reward of positive frequency. If the playout result of
node l up to this point is always a win, for example the same result is assumed
to be observed in the next playout in ETerminal and EExpected, then it yields that
Ul = U . Here we note that HB+ERobust is free from this problem.

In strategies HB+ETerminal, HB+EExpected and HB+ERobust, the computa-
tion of the priority of each leaf can be accelerated by first identifying the influence
of each leaf on the root [4]. We followed this technique in the current work. Still,
it requires computation proportional to the number of nodes in the main tree.
Note that this computational cost is usually concealed because the number of
nodes in the main tree is much less than that in the extended tree.

Also, the balance in the computational costs in a primary strategy and in
UCT can be adjusted by the budget, which is the number of internal playouts
performed in step 2. When the budget is more than 1, we need to estimate Ul

after multiple playouts. In HB+ERobust, such Ul is estimated without additional
computational costs because reward r giving the maximum Û+r

l remains the
same, regardless of the budget, for each leaf l by Property 1 (see 3.2). Addition-
ally, in HB+ETerminal, we assumed the same Ul for multiple playouts. However,
in HB+EExpected, Ul must be computed with additional costs.

We handled solved nodes using the method by Winands et al. [20]. Note
that the reward distribution of a solved node automatically converges when a
negamax-style backup is adopted. However, we still need to maintain solved
nodes for UCT in the extended tree. Also, in HB+BayesUCT, solved nodes of a
draw reward may be chosen in Eq. (2). Therefore, such nodes should be excluded
from the candidates for exploration because the exploration no longer contributes
to updating the probability distribution. Further it is noted that in UCT, solved
nodes of a draw reward should be kept as candidates for exploration so as to
stabilize the reward average.

4 Experimental Results

We conducted experiments on incremental random trees in order to compare the
performance of various algorithms. A random value in a uniform distribution was
assigned to each edge. The game score at a leaf was the summation of edge values
from the root, and the reward of the leaf with respect to the root player was 1
for a positive score, 0.5 for score zero, and 0 for a negative score. All trees were
generated with uniform width and depth, but some sub-trees were pruned in
advance to introduce variations in width and depth. In the pruning procedure,
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each internal node in a tree is set to be terminal with probability P , and the sub-
tree under the node is pruned. Also, exactly one edge at each node is assigned
value zero instead of a random value so that the score of the principal variation
is zero, for simplicity of analysis [9]. However, it is known that the performance
of UCT is sensitive to the rewards of moves at the root [2,12]. We introduced
the bias parameter Bi that is added to the game scores of all leaves, in order to
introduce diversity in the game score for the principal variation. Because each
edge value is an integer, the reward of each leaf cannot be a draw when the bias
is 0.5.

4.1 Failure Rates

We compared six algorithms: five variations of the proposed method with
hybrid backup, and the usual UCT for reference. Algorithms HB+ETerminal,
HB+EExpected, HB+ERobust, HB+BayesUCT1, and HB+BayesUCT2 were
introduced in Sect. 3. In this experiment, the budget in our algorithms was
fixed in 1, and all algorithms incorporated MCTS Solver for handling solved
nodes [20]. At the beginning of the search, we initialized the current best move
randomly, because all moves have an equal mean of reward distribution. The
current best move was replaced if and only if there appeared a better move with
respect to the mean of its reward distribution.

Although we generated game trees in advance, each search algorithm starts
with only its root with the immediate successor nodes and then gradually incor-
porates new leaves as explained in Sect. 3. We tested two configurations of
branching factor and depth; (4, 12) and (8, 8). In addition, its terminal prob-
ability P was 0, 0.1, or 0.2. For each configuration of trees, we generated 400
instances and ran each algorithm 200 times. We measured the effectiveness
of each algorithm through the failure rate, following the method described by
Kocsis and Szepesvári [13]. The failure rate is the rate in which the algorithm
fails to choose the optimal move at the root.

The results are summarized in Table 2. The proposed method HB+ERobust

achieved the best results among all methods in trees where terminal probability
P was not zero, while UCT achieved the best results when P was zero. These
results are consistent with previous reports that found the performance of UCT
degrades when a tree has a non-uniform width or has traps each of which is a
losing move [17,18]. The performance of both HB+ERobust and UCT improved
when bias was added to the trees. The performance of BayesUCT was not as
good as expected in these configurations. Although a detailed analysis of the
reasons for this is beyond the scope of this paper, the differences in discrete
histograms or Beta distributions in the representation of reward distributions
may affect the performance. It might also depend whether a game tree is fixed
or iteratively expanded during the search.

In Fig. 3, we can see how the failure rate decreases as the number of playouts
increases. We can observe that the failure rate of HB+ERobust decreases faster
than UCT and the other methods if the terminal probability is positive.



Monte Carlo Tree Search with Robust Exploration 43

Table 2. Table of failure rates when there were 4000 playouts, where B is branching
factor, D is maximum depth, P is terminal probability, and Bi is bias. In each setting,
the lowest failure rate observed is indicated in bold.

B - D P Bi Hybrid Backup (HB) UCT

ETerminal EExpected ERobust BayesUCT1 BayesUCT2

4-12 0.0 0 0.079025 0.078487 0.078575 0.037750 0.129050 0.013088

0.5 0.060987 0.058975 0.029712 0.057512 0.085550 0.016987

0.1 0 0.001275 0.001212 0.000188 0.005525 0.017175 0.040137

0.5 0.000163 0.000238 0.000000 0.001225 0.000988 0.000213

0.2 0 0.000000 0.000000 0.000000 0.000650 0.000450 0.002288

0.5 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.0 1 0.050350 0.046487 0.025087 0.066387 0.145387 0.023013

0.1 1 0.001213 0.001225 0.000325 0.034000 0.028837 0.007738

0.2 1 0.000000 0.000000 0.000000 0.001088 0.002325 0.000025

0.0 2 0.008500 0.008138 0.001512 0.003912 0.067475 0.000000

0.1 2 0.000113 0.000100 0.000000 0.001438 0.007950 0.000013

0.2 2 0.000000 0.000000 0.000000 0.000000 0.000450 0.000000

8-8 0.0 0 0.264350 0.251387 0.301200 0.777625 0.174887 0.016825

0.1 0 0.090300 0.074125 0.046825 0.093362 0.068025 0.098437

0.2 0 0.007125 0.004425 0.001187 0.036912 0.014563 0.067225

Table 3. Average milliseconds consumed by single playout.

budget P = 0.0 P = 0.1 P = 0.2

HB+ERobust 1 0.151095 0.079921 0.041580
10 0.021505 0.015718 0.011130
20 0.016167 0.012834 0.008930

budget P = 0.0 P = 0.1 P = 0.2

UCT 1 0.012968 0.008496 0.004249

4.2 Acceleration by Increasing Budget

We measured the computational efficiency of HB+ERobust, which was the most
effective algorithm in the previous experiments. The computational cost of the
primary strategy in HB+ERobust is more expensive than that of UCT. Therefore,
the computational efficiency per playout is improved by increasing the number
of internal playouts and the budget at the expense of exploration accuracy.

We measured the average consumed time for a playout by dividing the total
time consumed by the number of playouts. We used trees with branching factor
4 and depth 12 and performed 4000 playouts for each tree, which means that
the main tree is explored 4000/budget times. In our hybrid algorithms, UCT
sometimes identifies that the root of the current exploration, which is a leaf
in the main tree, is solved. In such cases, exploration on the node is stopped,
and the distributions of the main tree are updated, even before the number of
playouts reaches a given budget. We used a computer equipped with an AMD
Opteron Processor 6274, 2.2 GHz, running Linux for this experiment.
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Fig. 3. Failure rates: (branching factor, depth) is (4, 12) on left, and (8, 8) on right.
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Fig. 4. Failure rates of HB+ERobust for budgets, 1, 10, and 20.

The failure rate is slightly increased by increasing the budget, although the
difference is limited, as shown in Fig. 4. Table 3 lists the average time consumed
per playout in HB+ERobust and in UCT. We can see that the efficiency improved
by increasing the budget. Though UCT is still faster than HB+ERobust with a
budget of 20, we argue that the difference is almost negligible in typical situations
where a random simulation for each playout consumes about 1 ms.

5 Conclusion

This paper presented a new anytime Monte-Carlo tree search method that iter-
atively refines the confidence on the best move. It is estimated by the reward
distribution of each move at the root, where the distributions of interior nodes are
obtained by a negamax-style backup in the main game tree and by UCT in the
extended tree. In each iteration, the leaf that most contributes to the confidence
is explored further by UCT. The experiments on synthetic trees showed that
the presented method outperformed UCT and similar methods, except for trees
having uniform width and depth. Among several strategies, the experimental
results suggest that a strategy expecting the worst playout outcome performed
the best.
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