
Monte Carlo Approaches
to Parameterized Poker Squares

Todd W. Neller1(B), Zuozhi Yang1, Colin M. Messinger1, Calin Anton2,
Karo Castro-Wunsch2, William Maga2, Steven Bogaerts3,

Robert Arrington3, and Clay Langley3

1 Gettysburg College, Gettysburg, PA, USA
tneller@gettysburg.edu

2 MacEwan University, Edmonton, AB, Canada
antonc@macewan.ca

3 DePauw University, Greencastle, IN, USA
stevenbogaerts@depauw.edu

Abstract. Parameterized Poker Squares (PPS) is a generalization of Poker
Squares where players must adapt to a point system supplied at play time and
thus dynamically compute highly-varied strategies. Herein, we detail the top three
performing AI players in a PPS research competition, all three of which make
various use of Monte Carlo techniques.

1 Introduction

The inaugural EAAI NSG Challenge1 was to create AI to play a parameterized form
of the game Poker Squares. We here describe the game of Poker Squares, our parame-
terization of the game, results of the competition, details of the winners, and possible
future directions for improvement.

2 Poker Squares

Poker Squares2 (a.k.a. Poker Solitaire, Poker Square, Poker Patience) is a folk sequen-
tial placement optimization game3 appearing in print as early as 1949, but likely having
much earlier origins. Using a shuffled 52-card French deck, the rules of [7, p. 106] read
as follows.

Turn up twenty-five cards from the stock, one by one, and place each to best
advantage in a tableau of five rows of five cards each. The object is to make as
high a total score as possible, in the ten Poker hands formed by the five rows and
five columns. Two methods of scoring are prevalent, as follows:

1 Whereas DARPA has its “grand challenges”, ours are not so grand.
2 http://www.boardgamegeek.com/boardgame/41215/poker-squares,
http://cs.gettysburg.edu/∼tneller/games/pokersquares.

3 http://www.boardgamegeek.com/geeklist/152237/sequential-placement-optimization-games.

c© Springer International Publishing AG 2016
A. Plaat et al. (Eds.): CG 2016, LNCS 10068, pp. 22–33, 2016.
DOI: 10.1007/978-3-319-50935-8 3

http://www.boardgamegeek.com/boardgame/41215/poker-squares
http://cs.gettysburg.edu/~tneller/games/pokersquares
http://www.boardgamegeek.com/geeklist/152237/sequential-placement-optimization-games


Monte Carlo Approaches to Parameterized Poker Squares 23

Hand English American

Royal flush 30 100

Straight flush 30 75

Four of a kind 16 50

Full house 10 25

Flush 5 20

Straight 12 15

Three of a kind 6 10

Two pairs 3 5

One pair 1 2

The American system is based on the relative likelihood of the hands in regular
Poker. The English system is based on the relative difficulty of forming the hands
in Poker Solitaire.

You may consider that you have “won the game” if you total 200 (American)
or 70 (English).

Note that the single remaining Poker hand classification of “high card”, which does
not fit any of the above classifications, scores no points.

3 Parameterized Poker Squares

As David Parlett observed, “British scoring is based on the relative difficulty of forming
the various combinations in this particular game, American on their relative ranking in
the game of Poker.” [9, pp. 552–553] We observe that different point systems give rise
to different placement strategies.

For example, in playing with British or American scoring, one often has a row and
column where one dumps unwanted cards so as to form higher scoring combinations
in the other rows and columns. However, a very negative score (i.e., penalty) for the
“high card” category would discourage leaving any such row or column without a high
probability of alternative scoring.

In our parameterization of Poker Squares, we parameterize the score of each of the
10 hand categories as being an integer in the range [−128, 127]. Given a vector of 10
integers corresponding to the hand classification points as ordered in the table above,
the player then plays Poker Squares according to the given point system.

The goal is to design Poker Squares AI with high expected score performance across
the distribution of possible score parameters.

4 Point Systems

Contest point systems consisted of the following types.



24 T.W. Neller et al.

– Ameritish - a randomized hybrid of American and English (a.k.a. British) point sys-
tems; includes American and English systems (given above)

– Random - points for each hand category are chosen randomly in the range
[−128, 127]

– Hypercorner - points for each hand category are chosen with equal probability from
{−1, 1}

– Single Hand - only one hand category scores 1 point; all other categories score no
points

Hand categories are decided according to the rules of Poker, with higher rank-
ing hand categories taking precedence. Note that the high card hand category may be
awarded points in non-Ameritish systems.

4.1 Contest Structure and Results

For each point system tested in contest evaluation, each Java player program was given
the point system and 5min to perform preprocessing before beginning game play. For
each game, each player was given 30 s of total time for play decision-making. A player
taking more than 30 s of total time for play decision-making or making an illegal play
scored 10 times the minimum hand point score for the game.

For each point system tested, each player’s scores were summed to a total score and
this total was normalized to a floating point number ranging from 0 (lowest score of all
players) to 1 (highest score of all players). Players were ranked according to the sum
of their normalized scores across all point system tests. All testing was performed on
a Dell Precision M4800 running Windows 7 (64-bit) with and Intel Core i7-4940MX
CPU@ 3.1GHz, 32GB RAM, and running Java version 1.8.0 51. Results of the contest
can be seen in Fig. 1.

Fig. 1. Results of Contest Evaluation

Non-fixed point systems were generated with contest random seed 34412016. The
twelve point systems used for contest evaluation included American, Ameritish, British,



Monte Carlo Approaches to Parameterized Poker Squares 25

Hypercorner, Random, and the following seven Single-Hand systems: High Card, One
Pair, Two Pairs, Three of a Kind, Straight, Flush, and Full House.

Detailed performance information is available online4. Final contest standings were
as follows:

1. Score: 11.821; Player: BeeMo; Students: Karo Castro-Wunsch, William Maga; Fac-
ulty mentor: Calin Anton; School: MacEwan University

2. Score: 11.763; Player: GettysburgPlayer; Students: Colin Messinger, Zuozhi Yang;
Faculty mentor: Todd Neller; School: Gettysburg College

3. Score: 11.334; Player: Tiger; Students: Robert Arrington, Clay Langley; Faculty
mentor: Steven Bogaerts; School: DePauw University

4. Score: 11.170; Player: JoTriz; Student: Kevin Trizna; Faculty mentor: David Mutch-
ler; School: Rose-Hulman Institute of Technology

5. Score: 7.149; Player: SRulerPlayer; Student: Zachary McNulty; Faculty mentor:
Timothy Highley; School: La Salle University

6. Score: 0.192; Player: MonteCarloTreePlayer; Student: Isaac Sanders; Faculty men-
tor: Michael Wollowski; School: Rose-Hulman Institute of Technology

7. Score: 0.190; Player: DevneilPlayer; Student: Adam Devigili; Faculty mentor: Brian
O’Neill; School: Western New England University

As a benchmark, a random player was evaluated alongside contestants, scoring
0.153 tournament points. We first note that a cluster of 4 players scored close to the
tournament maximum possible score of 12. The two bottom entries scored only slightly
better than random play.

In the following sections, we will provide details of the top three performing players.

5 BeeMo

BeeMo implements a parallel flat Monte Carlo search guided by a heuristic which uses
hand patterns utilities. These utilities are learned through an iterative improvement algo-
rithm involving Monte Carlo simulations and optimized greedy search. BeeMo’s devel-
opment process was focused on three domains: game state representation, search, and
learning. For each of these domains, we investigated several approaches. In the follow-
ing subsections, we present the best combination of approaches according to empirical
evaluations. For a more detailed description of all designs, see [4].

5.1 Game State Representation

We used a simple array representation for the tableau of face up cards and a bit packed
representation for the deck of face down cards. We implemented a hand encoding
scheme based on hand patterns, which are a representation of hands which retains only
the relevant hand information:

– if the hand contains a flush - 1 bit;
– if the hand contains a straight - 1 bit;

4 http://cs.gettysburg.edu/∼tneller/games/pokersquares/eaai/results/.

http://cs.gettysburg.edu/~tneller/games/pokersquares/eaai/results/


26 T.W. Neller et al.

– number of cards in the hand without a pair - 3 bits;
– number of pairs in the hand - 2 bits;
– if the hand contains three of a kind - 1 bit;
– if the hand contains four of a kind -1 bit;
– if the hand is a row - 1 bit.

The hand pattern encoding was extended with contextual information about the
number of cards of the primary rank and secondary rank remaining in the deck. These
are the ranks with the largest and second largest number of repetitions in the hand,
respectively. We also added information about the number of cards in the remaining
deck that can make the hand a flush. Instead of actual number of cards we used a coarse
approximation with three values: not enough cards, exactly enough cards, and more
than enough cards remaining to complete a certain hand. The approximation is repre-
sented on 2 bits, and so the contextual information adds 6 extra bits to the hand pattern,
for a total of 16 bits for hand pattern and contextual information. The extra informa-
tion increases the number of empirically observed unique patterns by a factor of 10.
Our experiments indicate that this added complexity is overcome by the significant
improvement in training accuracy.

5.2 Search

We implemented several game tree search algorithm classes: rule based, expectimax,
greedy, and Monte Carlo. We compared their performance using a crafted heuristic
for the American scoring system. Our empirical analysis indicated that the best search
algorithms belong to theMonte Carlo and Greedy classes. As the final agent uses a com-
bination of flat Monte Carlo and optimized greedy, we will present our implementation
of these algorithms.

Optimized Greedy implements a greedy strategy based on hand pattern utilities.
Every new card placed on the tableau of face up cards, influences only two hands: the
column and the row in which the card is placed. Thus, the value of placing the card in
any position can be estimated by the sum of the changes of the values for the column
hand and for the row hand. The change in every hand is the difference of the hand
pattern utility after and before placing the card. The optimized greedy algorithm places
the card in the position that results in the largest value. Computing these values is very
fast as it needs four look ups in a hash table of hand pattern utilities, two subtractions
and an addition. It is exactly this simplicity that makes the algorithm very fast.

The algorithm plays ten of thousand of games per second, has impressive perfor-
mances (consistently scores over 115 points on the American scoring), and it is essen-
tially the same for any scoring system - the only changes are in the hand pattern utilities’
hash table entries.

Flat Monte Carlo is a variation of the imperfect information Monte Carlo [5]. At
a given node, the algorithm evaluates each child by averaging the scores of a large
number of simulated games from that child, and then selects a move that results in the
child with the largest value. Any search algorithm can be used to guide the simulated
games, but a fast one is preferable. For this reason we used the optimized greedy search
for the simulated games.



Monte Carlo Approaches to Parameterized Poker Squares 27

The resulting algorithm consistently outperformed optimized greedy by a margin
of 10 points on the American scoring. However, the time efficiency of the algorithm
was significantly worse than that of optimized greedy. Parallelization improved the
algorithm speed significantly. In its final implementation the algorithm creates several
threads of game simulations which are run in parallel on all available cores. Despite
being an order of magnitude slower than the greedy algorithm, the parallel flat Monte
Carlo is fast and has the best score performances of all the algorithms we tried.

5.3 Learning

Because the scoring scheme is not known, learning the partial hand utilities is the most
important part of the agent. We used Monte Carlo simulations for learning the hand
pattern utilities. The learning algorithm uses rounds of 10,000Monte Carlo simulations,
5,000 for training and 5,000 for evaluation.

All hand pattern utilities are initialized to zero. At the end of a training game, the
value of each final hand is recorded for every hand pattern which resulted in the hand.
For example, if a partial hand has only a 5� and at the end of the game results in a flush
with a score of 20, then a value of 20 is recorded for the pattern which encodes a hand
with only 5�. The utility of a hand pattern is estimated as the average of all recorded
values. The updated hand pattern utility set is used in the next simulated game.

Using flat Monte Carlo search for the training phase, the agent learned hand pattern
utilities which for the American scoring resulted in performance comparable to those
obtained using the crafted hand pattern utilities, and reduced running time.

While simple and fast, flat Monte Carlo search suffers from lack of specialization.
When used for learning hand pattern utilities this drawback negatively affects the accu-
racy of the estimations. For example, low frequency patterns with high utilities are
rarely updated and thus the learned values may be unreliable. To check if our learn-
ing algorithm has such a pitfall we implemented a UCT evaluation scheme inspired by
the UCB1 variation of the Upper Confidence Bound [2]. We used a small exploration
parameter which was optimized empirically. UCB1 slightly increased the number of
discovered patterns, but its influence on agent’s performance was positive only for the
American and British scoring systems. For the final agent we decided to use both eval-
uation schemes by alternating them with different frequencies.

In the evaluation phase, 5,000 simulated games are played using the set of hand
pattern utilities learned in the training phase. The average of the games’ scores is used
to evaluate the overall utility of a set of patterns. The set with the highest overall utility
is used by the final agent. The agent consistently completes 180 rounds of learning
during the allowed 300 s. However, most of the improvements are done in the first 10
rounds, after which the performance evolution is almost flat.

As indicated in the contest results, the final agent played strongly under all scoring
systems. Given that (1) players employed various heuristics and differing uses of Monte
Carlo techniques, and (2) players achieved similar peak performance, we conjecture that
these top players closely approximate optimal play.



28 T.W. Neller et al.

6 GettysburgPlayer

The GettysburgPlayer uses a static evaluation, which abstracts game states and attempts
to assess their values given any scoring system, in combination with expectimax search
limited to depth 2.

6.1 Static Evaluation

The total state space is too large to evaluate in advance, so the state space is abstracted
and on-policy Monte Carlo reinforcement learning is applied in order to simultane-
ously improve estimates of the abstracted game and improve play policy that guides
our Monte Carlo simulations.

Abstracting Independent Hands. Our Naı̈ve Abstract Reinforcement Learning
(NARL) player abstracts the state of each independent row/column and learns the
expected value of these abstractions throughMonte Carlo ε-greedy reinforcement learn-
ing. Each hand abstraction string consists of several features which we considered
significant.

– Number of cards played in the game so far
– Indication of row (“-”) or column (“|”)
– Descending-sorted non-zero rank counts and how many cards are yet undealt in each
of those ranks appended to each parenthetically

– Indication of whether or not a flush (“f”) is achievable and how many undealt cards
are of that suit

– Indication of whether or not a straight (“s”) is achievable
– Indication of whether or not royal flush (“r”) is achievable

For example, “14|1(3)1(2)1(2)f(8)s” represents a column hand abstraction
after the 14th move. There is one card in each of three ranks, two of which have two
of that rank undealt and one has three undealt. A flush is achievable with eight cards
undealt in that suit. A straight is achievable and a royal flush is not.

During Monte Carlo reinforcement learning, such hand abstractions are generated
and stored in a hash map. Each abstraction maps to the expected hand score and number
of occurrences of the hand. These are continuously updated during learning. By storing
the expected scores of each row/column complete/partial hand, the hash map allows us
to sum scoring estimates for each row and column, providing a very fast estimate of
the expected final score of the game grid as a whole. Note that this naı̈vely assumes the
independence of the hand scoring estimates.

Raising Proportion of Exploration Plays. During the Monte Carlo reinforcement
learning stage, we use an ε-greedy policy with a geometric decay applied to the ε para-
meter. Thus for most of time the player chooses an action that achieves a maximal
expected score, but also makes random plays with probability ε.

In our initial application of ε-greedy play, ε = 0.1 with geometric ε-decay
δ = 0.999975 per simulated game iteration. However, we empirically observed that



Monte Carlo Approaches to Parameterized Poker Squares 29

if we significantly raise the initial value of ε to 0.5, increasing initial exploration, the
player has a better performance.

In addition, the time cost for random play is much less than greedy play, so increas-
ing the proportion of random plays increases the number of overall learning iterations
per unit time. Empirically, this relatively higher ε will not only raise the number of
exploration plays but also will be able to leave sufficient time for exploitation plays.
However, purely random play makes certain types of hands highly improbable (e.g.,
royal flush, straight), so sufficient exploitation-heavy play time is necessary to learn the
value of long-term attempts to achieve such hands.

Considering Frequency of Partial Hand Sizes. We observed our player’s behavior
and found that it tended to spread cards evenly among rows and columns in the early
and middle stages of the game. The reason for this behavior is that the player is making
greedy plays that maximize expected score gain. In a pre-evaluation between NARL and
another player developed earlier that performed better under the single-hand Two Pairs
point system, we observed that with same card dealt, NARL tended to set up one pair
evenly among rows and columns according to the assumption of hand independence,
while the comparison player appeared to gain an advantage by preferring to focus on
developing a row/column with a pair and two single cards early.

Based on this observation, we added the current distribution of hand sizes to the
abstraction. The number of cards played in each row and column are tallied, and we
summarize the distribution in a hand size frequency vector represented as a string.
For instance, the string “721000” represents a grid hand size distribution after the 2nd
move. (The number of cards dealt can be inferred from the abstraction.) The zero-based
index of the string corresponds to hand size in a row/column. Thus, “721000” indicates
that there are seven empty hands, two with one card, one with two cards, and none with
more than two.

The previous grid hand abstraction is trained together with hand size abstraction
to learn the difference between the final score and expected score at each of the 25
states across the game. In practice, we find that adding this abstraction feature generally
improves performance for some simpler point systems.

Experiments and Data. We experimented with 3 players, all of which used ε-decay
δ = 0.999975. The first used an initial epsilon ε0 = 0.1, whereas the second and third
used ε0 = 0.5. Only the third player incorporated the hand size frequency abstraction
feature.

For each random point system (the Ameritish point system, Random point system,
Hypercorner point system) we generated a sample of 500 systems and measured the
average greedy-play performance of 2000 games for each player and system. For fixed
point systems, we collected average performance of 2000 games for each player and
system. For each point system, performance was scaled between 0 and 1 as with the
previously described tournament scoring (Fig. 2).



30 T.W. Neller et al.

Fig. 2. Comparison of learning evaluation performance. NARL with ε0 = 0.5 performed best for
most point systems.

6.2 Search Algorithm

Using the NARL static evaluation, we compared three search algorithms: (1) Flat
Monte Carlo [3, Sect. 2.3] limited to depth 5, (2) Flat UCB1 limited to depth 5 and
multiplying the exploration term

√
2ln(n)/n j by 20 to encourage greater exploration5,

and (3) expectimax with a depth limit of 2.
The three algorithms were paired with the three static evaluators and tested against

each other using the contest software, 8 scoring systems, and the seed 21347. Each
player ran 100 games per point system. The final comparison was based upon each
player’s total normalized score. A combination of depth 2 expectimax and the NARL
evaluator (ε0 = 0.5) received the highest total score and was submitted for competition.

Significance testing of the various player components revealed that our static eval-
uation function was most significant to the player’s performance [8]. Space limitations
preclude the full set of alternative designs considered. However, these and relevant
experimental data are available in [8] as well.

7 Tiger: A Heuristic-Based MCTS Player

This summary is based on a more detailed discussion available in [1]. The player uses
Monte Carlo Tree Search (MCTS) [3] with added domain knowledge to select moves.

7.1 Design and Application of the State Heuristic

This player includes a state heuristic that can accommodate any scoring system. It can
be framed as ten applications of a hand heuristic, corresponding to the ten rows and

5 The factor of 20 was chosen through limited empirical performance tuning. It is not necessarily
optimal for this problem.



Monte Carlo Approaches to Parameterized Poker Squares 31

columns in the game. Five-card hands are simply scored according to the current scoring
system. One to four card hands, however, are evaluated with probability estimates.

In four-card hands, for each hand type, a weight in [0, 1] is calculated, representing
an estimated likelihood of obtaining that hand type with the next card draw given the
cards remaining in the deck. For example, suppose a 4-card hand contains a 6�, 6♣, 6♠,
and 7♠, while the deck contains only a 6�, 7�, and 8�. Here, three-of-a-kind is given a
weight of 1/3 because among the remaining cards only 8� would result in three-of-a-
kind. Once these weights are calculated for every hand type, each weight is multiplied
by the hand type value according to the current scoring system, and added together to
form a weighted sum. Note that this ignores the fact that the ten hands in the grid are
dependent on each other, both spatially and in “competition” for cards.

This approach gets much more computationally intensive for hands with fewer than
four cards, and so in this case we instead use estimated a-priori probabilities of hand
types as weights. These probabilities are then used to compute a weighted sum in the
same way as in a four-card hand. Note, however, that by this measure hands with fewer
cards will be inadvertently favored, because fewer cards will tend to mean more possible
hand-types. To counter this, we apply weights α, β, and γ to one, two, and three-card
hand heuristic values, respectively. For now, we fix these values at α = 0.2, β = 0.4,
and γ = 0.6, with tuning experiments described below.

With this heuristic, various selection strategies exist. UCT [6] is a standard measure
balancing exploration and exploitation with no domain-specific heuristic. Best Move
always chooses the single unexplored node with the highest heuristic value. Prune +

UCT prunes nodes below a heuristic score threshold and then applies standard UCT.
In simulation, Random is the standard MCTS strategy of choosing random moves

without a heuristic. Prune + Random chooses moves at random from a tree pruned via
the heuristic. Best Move chooses the single move with the highest heuristic value.

7.2 Experiments and Results

Table 1 shows results for various experiments. We begin by considering the practical
cost of calculating the heuristic itself, since time spent on heuristic calculations means
fewer iterations of the core MCTS process. Row (1) reflects standard MCTS, with UCT
selection and Random simulation. Rows (2) – (4) also use these standard strategies,
but with the “+ Calc.” notation indicating that the heuristic calculations are performed
but not actually applied. Note a total cost of 13 points (comparing rows (1) and (4))
in the American scoring system when the heuristic is calculated in both selection and
simulation, with most of the cost coming from simulation.

In simulation, ignoring for now the “Tuned” column, note that Prune + Random’s
score of 95 (row (5)) shows improvement over the 92 of standard MCTS (row (1)) and
the 80 of the added heuristic calculation cost (row (3)). Best Move simulation (row
(6)) improved more strongly to an untuned score of 112. It seems intuitive that Best
Move simulation is more effective than Prune + Random, since Best Move plays a
simulated game according to the best choices that the heuristic is capable of suggesting.
In contrast, Prune + Random gives the heuristic less control, only determining a set of
higher-scoring moves from which a random selection is made.



32 T.W. Neller et al.

Table 1.Mean scores over 2,000 games for various selection and simulation strategies

Row Selection Simulation Untuned Tuned

(1) UCT Random 92

(2) UCT + Calc Random 90

(3) UCT Random + Calc 80

(4) UCT + Calc Random + Calc 79

(5) UCT Prune + Random 95

(6) UCT Best Move 112 118

(7) Best Move Random 72

(8) Prune + UCT Random 91 94

(9) Prune + UCT Best Move 113 123

Next consider the selection strategy results, again ignoring for now the “Tuned”
column. Prune +UCT seems unhelpful when comparing rows (1) vs. (8), and (6) vs. (9)
(untuned). The final set of experiments will consider this further. Best Move selection,
in contrast, appears not merely unhelpful but harmful. With a score of 72 (row (7)), it
scores even worse than row (2) in which the calculations are performed but not applied.
This is not surprising, since such a drastic approach severely limits the number of nodes
available for exploration. That is, while Best Move simulation is a useful limitation in
contrast to Random simulation, the more principled exploration of selection with UCT
should not be so severely restricted by a Best Move approach.

Finally, consider further tuning of α, β, and γ values for weighting one-, two-, and
three-card hands, respectively. After experiments on many combinations of settings, it
was found that α = 0.1, β = 0.3, γ = 0.85 gave the best performance on the American
scoring system, with other high-scoring settings converging on those values. Results
for this setting are shown in the “Tuned” column of Table 1. This newly-tuned heuristic
sheds new light on Prune + UCT selection, which seemed ineffective in the untuned
results. Row (8) shows that Prune +UCT selection with tuned parameter settings attains
a 94, compared to the 91 with the untuned settings, and the 92 (row (1)) of standard
MCTS. Similarly, Best Move simulation now scores 118 (row (6)), showing further
improvement over the untuned 112. These experiments demonstrate that both Prune +
UCT selection and Best Move simulation can be improved and are worthwhile after
tuning the heuristic, with a final top score of 123 when both strategies are applied.

8 Conclusion

The inaugural EAAI NSG Challenge was reported to be a very positive experience by
both students and faculty. Informal evaluation indicates that more than half of entries
perform well beyond human-level play, and most were densely clustered at the top of
the distribution, lending confidence to a conjecture that optimal play is not far beyond
the performance observed.



Monte Carlo Approaches to Parameterized Poker Squares 33

In the future, it would be interesting to perform more significance testing across
implementations in order to demonstrate the relative value of different design compo-
nents, e.g., the parallelization of BeeMo. Testing comparable elements of designs would
guide a hybridization of approaches, e.g., testing a single search algorithm with each
of our various static evaluation functions. We conjecture that an ensemble or hybrid
approach would yield performance improvements.

References

1. Arrington, R., Langley, C., Bogaerts, S.: Using domain knowledge to improve monte-carlo
tree search performance in parameterized poker squares. In: Proceedings of the 30th National
Conference on Artificial Intelligence (AAAI 2016), pp. 4065–4070. AAAI Press, Menlo Park
(2016)

2. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed bandit problem.
Mach. Learn. 47(2–3), 235–256 (2002). http://dx.doi.org/10.1023/A:1013689704352

3. Browne, C., Powley, E., Whitehouse, D., Lucas, S., Cowling, P.I., Rohlfshagen, P., Tavener,
S., Perez, D., Samothrakis, S., Colton, S.: A survey of Monte Carlo tree search methods.
IEEE Trans. Comput. Intell. AI Games 4(1), 1–49 (2012). http://www.cameronius.com/cv/
mcts-survey-master.pdf

4. Castro-Wunsch, K., Maga, W., Anton, C.: Beemo, a Monte Carlo simulation agent for playing
parameterized poker squares. In: Proceedings of the 30th National Conference on Artificial
Intelligence (AAAI 2016), pp. 4071–4074. AAAI Press, Menlo Park (2016)

5. Furtak, T., Buro, M.: Recursive Monte Carlo search for imperfect information games. In: 2013
IEEE Conference on Computational Inteligence in Games (CIG), Niagara Falls, ON, Canada,
11–13 August 2013, pp. 1–8 (2013). http://dx.doi.org/10.1109/CIG.2013.6633646

6. Kocsis, L., Szepesvári, C., Willemson, J.: Improved monte-carlo search. Univ. Tartu, Estonia,
Technical report 1 (2006)

7. Morehead, A.H., Mott-Smith, G.: The Complete Book of Solitaire & Patience Games, 1st edn.
Grosset & Dunlap, New York (1949)

8. Neller, T.W., Messinger, C.M., Zuozhi, Y.: Learning and using hand abstraction values for
parameterized poker squares. In: Proceedings of the 30th National Conference on Artificial
Intelligence (AAAI 2016), pp. 4095–4100. AAAI Press, Menlo Park (2016)

9. Parlett, D.: The Penguin Book of Card Games. Penguin Books, updated edn. (2008)

http://dx.doi.org/10.1023/A:1013689704352
http://www.cameronius.com/cv/mcts-survey-master.pdf
http://www.cameronius.com/cv/mcts-survey-master.pdf
http://dx.doi.org/10.1109/CIG.2013.6633646

	Monte Carlo Approaches to Parameterized Poker Squares
	1 Introduction
	2 Poker Squares
	3 Parameterized Poker Squares
	4 Point Systems
	4.1 Contest Structure and Results

	5 BeeMo
	5.1 Game State Representation
	5.2 Search
	5.3 Learning

	6 GettysburgPlayer
	6.1 Static Evaluation
	6.2 Search Algorithm

	7 Tiger: A Heuristic-Based MCTS Player
	7.1 Design and Application of the State Heuristic
	7.2 Experiments and Results

	8 Conclusion
	References


