
Using Deep Convolutional Neural Networks
in Monte Carlo Tree Search

Tobias Graf(B) and Marco Platzner

University of Paderborn, Paderborn, Germany
tobiasg@mail.upb.de, platzner@upb.de

Abstract. Deep Convolutional Neural Networks have revolutionized
Computer Go. Large networks have emerged as state-of-the-art models
for move prediction and are used not only as stand-alone players but also
inside Monte Carlo Tree Search to select and bias moves. Using neural
networks inside the tree search is a challenge due to their slow execution
time even if accelerated on a GPU. In this paper we evaluate several
strategies to limit the number of nodes in the search tree in which neural
networks are used. All strategies are assessed using the freely available
cuDNN library. We compare our strategies against an optimal upper
bound which can be estimated by removing timing constraints. We show
that the best strategies are only 50 ELO points worse than this upper
bound.

1 Introduction

Deep Convolutional Neural Networks (DCNNs) have changed Computer Go
substantially [5,11,12,14]. They can predict expert moves at such a high qual-
ity that they even can play Go themselves at a reasonable level [14]. Used in
Monte Carlo Tree Search (MCTS) [2] to select and bias moves they can increase
playing strength by hundreds of ELOs. During the writing of this paper Google
DeepMind has released their program AlphaGo [12] which uses neural networks
not only for move prediction but also for positional evaluation. For the first time
in Computer Go their program has beaten a professional player and is going to
challenge one of the best players in the world.

DCNNs achieved remarkable improvements but they pose a challenge for
MCTS as their execution time is too slow to be used in the whole search tree.
While a remedy is to use several GPUs [12] this paper focuses on single GPU
scenarios where not all nodes in the search tree can use the DCNN as a move
predictor. To decide which nodes profit the most from DCNN knowledge several
strategies are possible. This paper evaluates four typical strategies to replace
knowledge from fast classifiers with DCNN predictions. All strategies are assessed
within the same Go program to decide which is best. Moreover, we construct
an upper bound on playing strength by using an equal test environment but
removing timing constraints. We then compare the strategies with this upper
bound to show the loss in playing strength resulting from the use of replacement
strategies.
c© Springer International Publishing AG 2016
A. Plaat et al. (Eds.): CG 2016, LNCS 10068, pp. 11–21, 2016.
DOI: 10.1007/978-3-319-50935-8 2



12 T. Graf and M. Platzner

The contributions of our paper are as follows.

– We demonstrate that replacing traditional move prediction knowledge in Com-
puter Go programs can yield remarkable improvements in playing strength.

– We investigate the scalability of knowledge in MCTS, i.e., in how far do better
neural networks lead to stronger MCTS-players.

– As DCNNs are too slow to be used in the complete search tree we explore
several strategies to decide which nodes profit the most from DCNNs.

– We look into technical aspects of using GPUs inside MCTS.

The remainder of this paper is structured as follows: In Sect. 2 we describe
the settings and architectures of the deep convolutional neural networks we use
in the paper. In Sect. 3 we outline several replacement strategies for an efficient
application of slow knowledge in MCTS. In Sect. 4 we show the results of sev-
eral experiments regarding the quality of DCNNs and replacement strategies. In
Sect. 5 we present related work. Finally, in Sect. 6 we draw our conclusion and
point to future directions.

2 Deep Convolutional Neural Networks

In this section we outline the Deep Convolutional Neural Networks which are
used in this paper. The architecture of our DCNNs is similar to [11]. We use
several convolutional layers (3, 6 or 12) with 5× 5 filter in the first one and 3× 3
in the others. The width of each layer is 128, 192 or 256. After all convolutional
layers we add an extra 3× 3 convolutional layer with one output feature followed
by a softmax layer. The position is encoded with black to move (if white moves
the colors of the stones are reversed). The 20 input features of the neural network
are:

– Black, White, Empty, Border
– Last 5 moves
– Legality
– Liberties (1, 2, 3, ≥4)
– Liberties after move (1, 2, 3, 4, 5, ≥6)

We used the Caffe framework [10] to train all DCNNs. We trained the networks
with plain SGD with mini-batch size 128 for 3 million iterations (one iteration is
one mini-batch). The learning rate is 0.05 for the first 1.5 million iterations and
then halved for the rest of the training every 500,000 iterations. We used a weight
decay of 1e-6 and initialized all weights with the msra-filler [8]. As dataset of Go
games we used KGS games1 with players having at least 4 dan strength using
only no-handicap games which have at least 150 moves. The positions are split
into a validation set with 1,280,000 positions and a training set with 60,026,402
positions. Positions of both sets are from distinct games. The positions in the
training set are randomly rotated and mirrored to one of 8 possible orientations.

1 http://u-go.net/gamerecords-4d/.

http://u-go.net/gamerecords-4d/


Using Deep Convolutional Neural Networks in Monte Carlo Tree Search 13

 0.44

 0.45

 0.46

 0.47

 0.48

 0.49

 0.5

 0.51

 0.52

 0.53

 0.54

 0.55

 0.56

 0.57

5.0*105 1.0*106 1.5*106 2.0*106 2.5*106 3.0*106

Va
lid

at
io

n 
Ac

cu
ra

cy

Training Iterations

Validation Accuracy vs. Training Iterations

3-128
6-128

12-128
12-192
12-256

Fig. 1. Accuracy on validation set during training

Figure 1 shows the accuracy on the validation set during training. Accuracy is
the percentage of positions where the top model prediction equals the move of the
expert. After 1.5, 2.0 and 2.5 million iterations sharp increases in accuracy due
to the learning-rate schedule can be observed. The achieved validation accuracy
after training is comparable to those reached in [11].

3 Integration of DCNNs into MCTS

Deep Convolutional Neural Networks need considerably more computing time
than conventional models used in MCTS. This section surveys several techniques
to include DCNNs into MCTS without hampering the speed of the search.

3.1 Selection Formula

To include knowledge into MCTS we use the following formula which includes
RAVE [6] and progressive bias [3].

(1 − β) · QUct(s, a) + β · QRave(s, a) + K
π(s, a)

√
visits(s, a)

where π(s, a) ∈ [0, 1] is the output of the move prediction model.



14 T. Graf and M. Platzner

3.2 Using GPUs Inside MCTS

To include deep convolutional neural networks into MCTS we make use of the
cuDNN library version 3.02 of Nvidia [4]. The GPU-accelerated library contains
primitives for deep neural networks which are highly tuned. It supports multi-
threading and allows using separate streams. While the library is much more
low level than the Caffe framework it provides the necessary functionality for an
efficient use inside MCTS.

We use a batch-size of one for each DCNN execution on the GPU. To increase
the utilization of the GPU each thread of the MCTS gets a dedicated CUDA
stream. In this way memory transfers and kernels from different threads can be
executed concurrently. Moreover, in case of asynchronous replacement strategies
we use CUDA events. This allows to efficiently continue the work on the CPU
while the GPU evaluates the DCNN.

Table 1 shows the execution times of all DCNNs from the previous section
on a system with two Intel Xeon E5-2670 (16 cores, 2.6 GHz) and a Tesla K20
GPU. In contrast to the baseline which only uses shape and common fate graph
patterns [7] larger DCNNs are more than 10 times slower in execution time and
achieve less than half the playout-rate.

Table 1. Execution time, playout-rate in MCTS and accuracy

Execution time Playout-rate MCTS Accuracy validation-set

Baseline 0.38 ms 11552 p/s 42.1%

DCNN-3-128 0.94 ms 10734 p/s 49.6%

DCNN-6-128 1.70 ms 8939 p/s 52.7%

DCNN-12-128 3.23 ms 5458 p/s 54.4%

DCNN-12-192 7.52 ms 3111 p/s 55.4%

DCNN-12-256 10.07 ms 2338 p/s 55.9%

3.3 Replacement Strategies

In this paper we explore four replacement strategies for knowledge inside MCTS.
We assume that a fast move predictor (e.g., [7,13]) is available in addition to the
slower DCNN. This allows to specify different strategies to decide which knowl-
edge can be used. All replacement strategies try to predict which nodes inside
the search tree are important. In these nodes they apply the slow knowledge as
soon as possible. All strategies can be formulated in a synchronous and an asyn-
chronous version. On the one hand, the advantage of the synchronous version is
that MCTS does not waste iterations with low quality knowledge. On the other
hand, asynchronous versions can continue with the search. They will use more
low quality knowledge in the beginning but in return can search faster and build
a deeper search tree.
2 We also tested the release candidate of version 4. We observed faster single execution

times but a small slowdown when used in parallel MCTS.



Using Deep Convolutional Neural Networks in Monte Carlo Tree Search 15

Replace by Depth. This strategy decides which node gets DCNN knowledge
by the depth of each node in the search tree. We specify a parameter D and
every node with depth ≤D gets DCNN knowledge while all others nodes only use
the fast classifier. At an extreme with D = 0 only the root node receives DCNN
knowledge. The reasoning behind this strategy is that decisions near the root are
the most important and should use the best knowledge available. Disadvantages
are that the parameter D is highly dependent on the overall time spent for
the search and thus has to be changed for different thinking times. Moreover,
MCTS builds up a very irregular search tree where some promising branches are
searched very deeply while others are not. On the one hand, specifying an overall
depth threshold cannot capture this important aspect of MCTS. On the other
hand, this strategy does its decision at node initialization so that knowledge can
be fully utilized.

The strategy can be turned into an asynchronous version by initializing each
node with fast knowledge and for nodes with depth ≤D immediately a request
is sent to the GPU. Once the DCNN execution has been finished it replaces the
fast knowledge of the node.

Replace in Principal-Variation. Beginning from the root node we can follow
in each node of the search tree the move which has been investigated most.
The sequence of moves resulting from this is called the principal variation and
represents best play from both sides. The following strategy tries to identify the
principal variation of the search and initializes all nodes of this variation with
slow DCNN knowledge. All other nodes are interpreted as less important and are
using fast knowledge. In MCTS the principal variation changes during the search
quite often so we also want to include variations which are close. This leads to
the following strategy with the parameter ε ∈ [0, 1]: When starting MCTS at
the root we set a flag PV ← true. If the move a is selected and the count of
the move na is smaller than ε · maxana then PV ← false else it is unchanged.
When a new node is expanded we initialize the node with DCNN knowledge if
PV is true. Otherwise, the node is initialized with the fast classifier. Moreover,
if we encounter nodes during tree traversal which do not have DCNN knowledge
we replace it with DCNN knowledge if PV is true. In the synchronous version we
wait until the knowledge is available. In the asynchronous version we continue
the work.

The advantage of the strategy is that DCNN knowledge can be utilized early
in the search as important nodes are identified before expansion. In contrast to
the depth-replacement strategy it is also independent of the overall search time
and adapts to the irregular shape of the search tree. The disadvantage is that
if the principal variation is not followed early on in the search, abrupt changes
can occur. Then all nodes in the new principal variation do not have the DCNN
knowledge and are thus promoted only now which can be very late in the search.

Replace by Threshold. This strategy initializes the knowledge in each node
with the fast classifier. If a node is searched more than T times the fast knowledge



16 T. Graf and M. Platzner

is replaced by the DCNN. In the synchronous version a node is locked for other
threads and the current thread waits for the GPU to finish the DCNN execution.
In the asynchronous version a node is not locked for other threads and the current
thread just sends a request to the GPU and continues the MCTS. Once the GPU
has finished work the DCNN knowledge is used in the node.

The advantage of this strategy is that the threshold is mostly independent
of the overall search time and can thus be easily tuned. Moreover, the more a
node is searched by MCTS the more important it is. So this strategy identifies
all significant nodes. The disadvantage is that this only happens quite late so
that DCNN knowledge cannot be fully utilized in early stages.

Increase Expansion Threshold. MCTS expands nodes after a certain amount
of simulations have passed through the node. The default value of Abakus is 8,
i.e., if a move has more than 8 simulations a new node is expanded. While the
value of 8 is optimized for a fast classifier we can increase the value to fit the slow
DCNN. The synchronous version of this strategy initializes each node by DCNN
knowledge and controls the rate at which nodes are expanded with a threshold
E. The asynchronous version initializes each node with the fast classifier and
immediately sends a request to the GPU and replaces the knowledge once the
DCNN data is available.

The disadvantage of this strategy is that smaller trees are searched when the
expansion threshold E is set too high. However, the DCNN knowledge can be
exploited in each node from the beginning.

4 Experiments

In this section we show the results of our experiments. We run several tour-
naments of our program Abakus against the open source program Pachi [1].
Abakus makes use of RAVE [6], progressive widening [9], progressive bias [3]
and a large amount of knowledge (shape and common fate graph patterns [7])
in the tree search part. With the addition of DCNNs it holds a 5-Dan rank on
the internet server KGS3.

As Pachi is weaker than Abakus we used handicap games to level the
chances. One challenge for the experiments was the great range of strength which
results from using DCNNs. Therefore, we used a handicap of 7 stones and komi
of 0.5 in all the experiments.

In our first experiments we wanted to illustrate the raw strength improvement
one can get by using DCNNs. The DCNN knowledge is used whenever a new
node in the search tree is expanded. In this way the shallow knowledge is never
used. To achieve a direct comparison we performed games with a fixed amount of
playouts. This can also be seen as the maximum strength improvement possible
by using the specific DCNN. In practice, these gains cannot be achieved as appli-
cation of DCNNs; they need considerably more time than the shallow knowledge.

3 www.gokgs.com.

www.gokgs.com


Using Deep Convolutional Neural Networks in Monte Carlo Tree Search 17

Table 2. Playing strength of Abakus (white) against Pachi (black, 7 handicap
stones), 512 games played for each entry, 95% confidence intervals, Abakus 11,000
playouts/move, Pachi 27,500 playouts/move

Winrate vs. ELO vs. Pachi ELO vs. Average speed

Pachi baseline

Baseline 9.8% ± 2.6 −386 [−444, −341] 0 12,092 Playouts/s

DCNN-3-128 49.3%± 4.3 −5 [−35, 25] 381 11,349 Playouts/s

DCNN-6-128 67.4%± 4.1 126 [95, 159] 512 9,277 Playouts/s

DCNN-12-128 78.9%± 3.5 229 [194, 269] 615 5,661 Playouts/s

DCNN-12-192 81.9%± 3.3 263 [226, 305] 649 3,258 Playouts/s

DCNN-12-256 85.6%± 3.0 310 [271, 358] 696 2,456 Playouts/s

The number of playouts per move was chosen as 11,000 for Abakus and 27,500
for Pachi. This is approximately the same amount of playouts which each pro-
gram can achieve in 1 s on an empty board. In this way the experiments are
comparable to later experiments which use 1 s thinking time.

The results are shown in Table 2. The better the DCNN is the stronger the
program plays against Pachi. But we can also see that the strength improvement
declines for the last DCNNs. Moreover, the average speed reduces quickly as more
powerful networks are used (which here is not taken into account as the number
of playouts is fixed per move).

The next experiments evaluate the four replacement schemes by using a fixed
amount of time. We used 1 s per move so that the above results give an approxi-
mate upper bound on the playing strength. As the gain by large networks dimin-
ishes we used the DCNN-12-128 for the following experiments as it gives a good
trade-off between quality and execution time.

In Table 3 we see the results for the replacement scheme depth. The column
“DCNN Apply/Coun” shows the average number of simulations of a node when
the DCNN knowledge is applied and how often this is done during a search. The
depth replacement strategy applies knowledge once a node is expanded but as
the search-tree is reused on the next move several old nodes are upgraded with
the knowledge. This explains the quite high number of D = 0 for apply, whereas
the application only uses knowledge in the root.

In Table 4 we see the results for the strategy to increase the expansion thresh-
old to lower the rate of new nodes in the search tree. As long as E is not set too
high this strategy achieves as good results as the threshold strategy. It’s advan-
tage is that knowledge is applied very early (at about 8 simulations on average)
but the search tree is not as big as usual.

In Table 5 we see the results for the principal variation replacement scheme.
While the scheme tries to use the DCNN as soon as possible knowledge is often
applied quite late (e.g., in the synchronous case for ε = 0.5 if the DCNN is used



18 T. Graf and M. Platzner

Table 3. Replace by depth: evaluation with DCNN-12-128 and various parameters
D, playing strength of Abakus against Pachi, 512 games played for each entry, 95%
confidence intervals, 1 s/move

D Winrate ELO ELO vs UB DCNN
apply/count

Playouts/s

Upper bound 78.9%± 3.5 229 [194,269] 0

Synchronous 0 42.6%± 4.3 −52 [−83, −22] −281 2169.1/1.2 12077 p/s

4 59.6%± 4.3 67 [37, 99] −162 28.8/201 10892 p/s

8 63.4%± 4.2 95 [65, 127] −134 3.0/539 7694 p/s

12 60.4%± 4.2 74 [43, 105] −155 0.6/629 6125 p/s

Asynchronous 0 41.2%± 4.3 −62 [−93, −31] −291 2233.3/1.2 12109 p/s

4 64.7%± 4.1 106 [75, 138] −123 35.9/228 11804 p/s

8 68.2%± 4.0 132 [101, 166] −97 10.7/637 9180 p/s

12 62.5%± 4.2 89 [58, 121] −140 8.1/704 7252 p/s

in a node on average 46 simulations have already passed through it) which shows
that the principal variation often changes during a search.

In Table 6 we see the results for the replacement scheme threshold. As soon
as the threshold is sufficiently high to not disturb the search the winrate stays
quite high. Only for large thresholds the winrate starts to drop as knowledge is
applied too late in the nodes.

In conclusion, the strategies to replace knowledge by a simulation threshold
or to increase the expansion threshold of MCTS achieve the best results. The
depth replacement scheme cannot adapt to the search tree which results in worse
playing strength. Using knowledge exclusively in the principal variation accom-
plished better results but it seems difficult to identify the final principal variation
in a search. All strategies performed better when executed asynchronously.

Table 4. Increase expansion-threshold: evaluation with DCNN-12-128 and various
parameters E, playing strength of Abakus against Pachi, 512 games played for each
entry, 95% confidence intervals, 1 s/move

E Winrate ELO ELO vs UB DCNN
apply/count

Playouts/s

Upper bound 78.9%± 3.5 229 [194, 269]

Synchronous 8 58.1%± 4.3 57 [27, 88] −172 0.0/634 5513 p/s

16 64.8%± 4.1 106 [75, 139] −123 0.0/449 9551 p/s

24 69.1%± 4.0 140 [109, 174] −89 0.0/313 10743 p/s

32 72.2%± 3.9 166 [133, 201] −63 0.0/236 11167 p/s

Asynchronous 8 67.1%± 4.1 124 [93,157] −105 7.5/710 6669 p/s

16 72.7%± 3.9 170 [137, 205] −59 7.4/531 12002 p/s

24 70.4%± 4.0 151 [119, 185] −78 8.1/344 12329 p/s

32 65.8%± 4.2 114 [82, 148] −115 9.1/252 12443 p/s



Using Deep Convolutional Neural Networks in Monte Carlo Tree Search 19

Table 5. Replace in principal-variation: evaluation with DCNN-12-128 and various
parameters ε, playing strength of Abakus against Pachi, 512 games played for each
entry, 95% confidence intervals, 1 s/move

ε Winrate ELO ELO vs UB DCNN
apply/count

Playouts/s

Upper bound 78.9%± 3.5 229 [194,269] 0

Synchronous 0.1 63.1%± 4.2 93 [62, 125] -136 3.1/590 6827 p/s

0.2 68.1%± 4.0 131 [100, 165] −98 8.3/473 8514 p/s

0.3 63.6%± 4.2 97 [66, 129] −132 15.8/338 9838 p/s

0.4 67.3%± 4.1 125 [94, 159] −104 27.3/228 10639 p/s

0.5 68.2%± 4.0 132 [101, 166] −97 46.0/148 11180 p/s

Asynchronous 0.1 61.7%± 4.2 83 [52,115] −146 11.6/691 7947 p/s

0.2 65.6%± 4.1 112 [81, 145] −117 17.8/592 9728 p/s

0.3 71.3%± 3.9 158 [126, 193] −71 26.0/447 10810 p/s

0.4 66.6± 4.1 120 [89, 153] −109 36.7/317 11375 p/s

0.5 64.3%± 4.2 102 [71, 134] −127 51.2/219 11707 p/s

Table 6. Replace by threshold: evaluation with DCNN-12-128 and various para-
meters T, playing strength of Abakus against Pachi, 512 games played for each entry,
95% confidence intervals, 1 s/move

T Winrate ELO ELO vs UB DCNN Playouts/s

apply/count

Upper bound 78.9%± 3.5 229 [194,269]

Synchronous 0 58.1%± 4.3 57 [27, 88] −172 0.0/634 5513 p/s

8 67.0%± 4.1 123 [92, 156] −106 8.0/493 8026 p/s

16 70.3%± 4.0 150 [118, 184] −79 16.0/382 9174 p/s

32 67.6%± 4.1 128 [96, 161] −101 32.0/256 10052 p/s

64 66.5%± 4.1 119 [88, 152] −110 64.0/153 10678 p/s

128 68.8%± 4.0 137 [105, 171] −92 128.0/85 11195 p/s

Asynchronous 0 67.1%± 4.1 124 [93, 157] −105 7.5/710 6669 p/s

8 73.2%± 3.8 175 [142, 211] −54 16.1/653 10886 p/s

16 69.0%± 4.0 139 [108, 173] −90 23.5/484 11711 p/s

32 71.5%± 3.9 160 [127, 195] −69 40.6/307 11981 p/s

64 70.8%± 3.9 154 [122, 189] −75 74.8/175 12066 p/s

128 66.9%± 4.1 122 [91, 155] −107 141.7/94 12118 p/s

5 Related Work

Deep Convolutional Neural Networks have been first used as stand-alone players
[5] without using MCTS. Later DCNNs were used inside MCTS [11] with the help
of asynchronous node evaluation. A large mini-batch size of 128 taking 150ms for
evaluation is used and every node in the search tree is added to the mini-batch



20 T. Graf and M. Platzner

in FIFO order. Once the mini-batch is complete it is submitted to the GPU.
The disadvantage of the method is a large lag due to using a big mini-batch.
According to the authors the main reason for using such a large mini-batch size
was that reducing the size was not beneficial in their implementation. As shown
in this paper using the freely available cuDNN library of Nvidia allows to reduce
the mini-batch size to one which substantially reduces the lag.

The Darkforest [14] program uses a synchronized expansion. Whenever a
node is added the GPU evaluates the DCNN while the MCTS waits for the result
and only then expands the search tree (Synchronous Replace by Threshold with
T = 0).

AlphaGo [12] uses the strategy which we call in our paper Increase-
Expansion-Threshold. Knowledge inside the MCTS is initialized with a fast clas-
sifier and asynchronously updated once the GPU has evaluated the DCNN. They
use a threshold of 40 which in relation to our experiments is quite large but they
use DCNNs for move prediction and positional evaluation which results in twice
as many neural networks to evaluate.

6 Conclusions and Future Work

In this paper we demonstrated that using Deep Convolutional Neural Networks
in Monte Carlo Tree Search yields large improvements in playing strength. We
showed that in contrast to the baseline program which already uses a great
deal of knowledge DCNNs can boost the playing strength by several hundreds
of ELO. Ignoring execution time better move predictors led to better playing
strength with improvements close to 700 ELO.

Because DCNNs have slow execution times we suggested to use the cuDNN
library of Nvidia to accelerate them on the GPU. Using different CUDA streams
for each MCTS search thread fully utilizes the GPU. CUDA events allowed to
asynchronously execute the DCNN on the GPU while continuing with the tree
search on the CPU.

To decide which nodes in the search tree profit most from DCNN knowledge
we investigated several replacement strategies. The results show that the best
strategy is to initialize the knowledge used inside MCTS with a fast classifier and
when sufficient simulations have passed through a node in the search tree replace
it with the DCNN knowledge. A second possibility is to increase the expansion
threshold inside MCTS. As long as the threshold is not large the results were close
to the best strategy. In the experiments in all replacement schemes asynchronous
execution on the GPU yielded better results than synchronous execution. This
shows that it is important to not disturb the speed of search even if DCNN
knowledge is of much higher quality than the initial knowledge.

All replacement strategies in this paper focus on using neural networks for
move predictions inside MCTS. Future work includes extending these schemes
for positional evaluation as well. As the amount of work for the GPU doubles
strategies for the efficient use of DCNNs get even more important.



Using Deep Convolutional Neural Networks in Monte Carlo Tree Search 21

References

1. Baudǐs, P., Gailly, J.: PACHI: state of the art open source go program. In: Herik,
H.J., Plaat, A. (eds.) ACG 2011. LNCS, vol. 7168, pp. 24–38. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-31866-5 3

2. Browne, C., Powley, E., Whitehouse, D., Lucas, S., Cowling, P., Rohlfshagen, P.,
Tavener, S., Perez, D., Samothrakis, S., Colton, S.: A survey of Monte Carlo tree
search methods. IEEE Trans. Comput. Intell. AI Games 4(1), 1–43 (2012)

3. Chaslot, G., Winands, M., Uiterwijk, J., van den Herik, H., Bouzy, B.: Progressive
strategies for Monte-Carlo tree search. New Math. Nat. Comput. 4(3), 343–357
(2008)

4. Chetlur, S., Woolley, C., Vandermersch, P., Cohen, J., Tran, J., Catanzaro, B.,
Shelhamer, E.: cuDNN: efficient primitives for deep learning (2014). http://arxiv.
org/abs/1410.0759

5. Clark, C., Storkey, A.: Training deep convolutional neural networks to play go.
In: Proceedings of The 32nd International Conference on Machine Learning, pp.
1766–1774 (2015)

6. Gelly, S., Silver, D.: Combining online and offline knowledge in UCT. In: Pro-
ceedings of the 24th International Conference on Machine Learning (ICML 2007),
New York, NY, USA, pp. 273–280 (2007)

7. Graf, T., Platzner, M.: Common fate graph patterns in monte carlo tree search for
computer go. In: 2014 IEEE Conference on Computational Intelligence and Games
(CIG), pp. 1–8, August 2014

8. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-
level performance on imagenet classification. In: IEEE International Conference on
Computer Vision (2015)

9. Ikeda, K., Viennot, S.: Efficiency of static knowledge bias in Monte-Carlo tree
search. In: Herik, H.J., Iida, H., Plaat, A. (eds.) CG 2013. LNCS, vol. 8427, pp.
26–38. Springer, Heidelberg (2014). doi:10.1007/978-3-319-09165-5 3

10. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R.,
Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature
embedding. arXiv preprint arXiv:1408.5093 (2014)

11. Maddison, C., Huang, A., Sutskever, I., Silver, D.: Move evaluation in go using deep
convolutional neural networks. In: International Conference on Learning Represen-
tations (2015)

12. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., van den Driessche, G.,
Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S.,
Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M.,
Kavukcuoglu, K., Graepel, T., Hassabis, D.: Mastering the game of Go with deep
neural networks and tree search. Nature 529(7587), 484–489 (2016)

13. Stern, D., Herbrich, R., Graepel, T.: Bayesian pattern ranking for move prediction
in the game of go. In: Proceedings of the 23rd International Conference on Machine
Learning, pp. 873–880 (2006). http://dx.doi.org/10.1038/nature16961

14. Tian, Y., Zhu, Y.: Better computer go player with neural network and long-term
prediction. In: International Conference on Learning Representations (2016)

http://dx.doi.org/10.1007/978-3-642-31866-5_3
http://arxiv.org/abs/1410.0759
http://arxiv.org/abs/1410.0759
http://dx.doi.org/10.1007/978-3-319-09165-5_3
http://arxiv.org/abs/1408.5093
http://arxiv.org/abs/1408.5093
http://arXiv.org/abs/1408.5093
http://dx.doi.org/10.1038/nature16961

	Using Deep Convolutional Neural Networks in Monte Carlo Tree Search
	1 Introduction
	2 Deep Convolutional Neural Networks
	3 Integration of DCNNs into MCTS
	3.1 Selection Formula
	3.2 Using GPUs Inside MCTS
	3.3 Replacement Strategies

	4 Experiments
	5 Related Work
	6 Conclusions and Future Work
	References


