
The Number of Legal Go Positions

John Tromp(B)

Stony Brook, USA
john.tromp@gmail.com

Abstract. The number of legal 19 × 19 Go positions has been deter-
mined as

208168199381979984699478633344862770286522453884530548425

639456820927419612738015378525648451698519643907259916015

628128546089888314427129715319317557736620397247064840935

A roughly 1.2 % fraction of the 319×19 total number of positions, this
is more naturally expressed in ternary. Replacing the usual ternary dig-
its 0,1,2 by +(empty), (black), and (white) respectively, yields the
following (illegal) position that counts all legal positions:

1 Introduction

Go [2,4] almost needs no introduction, but one can be found in the parent paper
“Combinatorics of Go” [1], which derived a dynamic programming algorithm to
compute numbers of legal positions. With the resources available at the Center
for Mathematics and Computer Science (CWI) in 2006, John Tromp and Michal
Koucký, who helped develop a file-based implementation, were able to count the
number of legal 17 × 17 positions. This was announceed on August 18, 2006,
over 10 months after the quick succession of results for 14 × 14 through 16 × 16.
c© Springer International Publishing AG 2016
A. Plaat et al. (Eds.): CG 2016, LNCS 10068, pp. 183–190, 2016.
DOI: 10.1007/978-3-319-50935-8 17

184 J. Tromp

Since then we have been on the lookout for potential new sources of computing
power for the final two steps of 18 × 18 and 19 × 19. We submitted many a
proposal, both formal and informal, academic and commercial. It was not until
early 2014 that Tromp got an offer from Piet Hut at the Institute for Advanced
Studies, to use their computing cluster, which led to the results reported here.
This paper focuses on these recent results and the software used to obtain them,
at the expense of repeating a great deal of the underlying theory detailed in the
parent paper. The reader is therefore strongly advised to have a copy of that
paper handy for filling in some of the missing details.

2 Preliminaries

A position on an m × n Go board is a mapping from the set of points {0, . . . ,
m − 1} × {0, . . . , n − 1} to the set of colors {empty, black, white}. Points are
adjacent in the usual grid sense—equal in one coordinate and differing by one
in the other. A point colored black or white is called a stone. Adjacent stones
of the same color form connected components called strings. An empty point
adjacent to a string is called a liberty of that string. A position can arise in a
game of Go if and only if all its strings have liberties. Such positions are called
legal. The number of legal m × n positions is denoted L(m,n).

3 The Border State Graph

The parent paper established a correspondence between legal positions and paths
through a graph of so-called border states, as illustrated in Fig. 1 for a small 3×3
board.

E
E

E
E
E

E

Fig. 1. A 3 × 3 position and corresponding path through the border state graph

The Number of Legal Go Positions 185

We number the points of the board (plus an extra point to its right) from
0 through 9, isomorphic to the ordering of border states on the right. All the
points less than a point p constitute a partial board up to p, and the position on
these points is a called partial position. Each border state on the path records
not only the colors of the previous n = 3 points (‘E’ denoting the board edge)
but also what is needed to ensure that they have liberties when extending the
partial position. This includes knowledge of which stones currently lack liberties
and how they are connected in the partial position, shown as lines pointing left
and possibly joining up.

The border state of a partial board up to p together with the color of p
uniquely determines the successor border state up to p + 1, if legal. The border
state graph consists of all border states and their successor transitions. An exam-
ple of an illegal successor would be a white stone at p = 3, preventing the top
left black stone from gaining a liberty. Now the problem of computing L(m,n)
is reduced to that of counting paths of length mn in a certain graph.

4 The Path Counting Implementation

The go counting software is publicly available at my github repository [5].
To jump right in, file modulus.h implicitly defines a list of relatively prime

numbers each of the form Mi = 264 − d, for many different small values of
0 ≤ d < 256. This allows us to split up the task of computing L(m,n) into many
smaller independent jobs that each compute modulo some Mi. The resulting set
of equations

L(m,n) = ai mod Mi,

is readily solved using the Chinese Remainder Theorem [3], as implemented in
the Haskell program CRT.hs. For L(18, 18), a 508 bit number, we need � 508

64 � = 8
jobs, while for L(19, 19), � 566

64 � = 9 jobs suffice.
File golegal is a shell script for computing modular path counts, to be

invoked as

./golegal width modulus [y [x [incpus [memsize [height [ncpus]]]]]]

For example, if we want to compute L(13, 13) modulo M1 = 264 − 3, using
3 GB of memory and 2 cores, (and we already ran make all to create the start
and legal executables), we would run

./golegal 13 1 0 0 2

This creates a top-level directory 13.1 with data sets in subdirectories yx.00.00
through yx.13.00, each one computed from the previous with multiple invoca-
tions of legal, one for each cpu. If problems arise necessitating a restart, then
we can invoke golegal with appropriate values of y and x. For historical rea-
sons, this implementation works row by row rather than column by column as
in Fig. 1.

Within each yx.*.* subdirectory are the start and end timestamps, the
cpu.* logs containing the standard output of all legal invocations, and finally

186 J. Tromp

the fromto.*.* directories holding the actual counts. Let us look at what hap-
pens in the sample execution

time ./legal 13 1 12 10 2 2 1 500M &> 13.1/yx.12.11/cpu.1

The shell script chose a default memory footprint of 500MB, which is allocated
to hold blocks of state-count pairs. The executable starts with opening all files in
13.1/yx.12.10/fromto.*.1/ directories in order to merge their already sorted
records into a single stream of state-count pairs (see instream.c). This stream
is processed in the legal.c code fragment

for (; (mb = minstream(gin))->state != FINALSTATE; nin++,deletemin(gin)) {

sn.cnt = mb->cnt;

nnew = expandstate(mb->state, x, newstates);

for (i=0; i<nnew; i++) {

sn.state = newstates[i];

jtinsert(jts, &sn);

}

if (nnew < 3) // nnew == 2

modadd(modulus, &nnewillcnt, mb->cnt);

if (jtfull(jts))

dumpstates(go, jts, noutfiles++, mb->state);

}

The call to expandstate (in states.c) generates the 2 or 3 successor states,
each of which is paired with the state count and inserted into the custom jtset
data structure from sortstates.c. State expansions involve first unpacking the
highly compressed representation (using only 3 bits per border point), then try-
ing all 3 possible colors for the next point to record the effects on liberties and
connections, and packing the results back into the highly compressed represen-
tation. The sum count of missing, i.e., newly illegal, successors is maintained
in nnewillcnt to be logged and cross-checked. Whenever the jtset reaches its
capacity, routine dumpstates from outstream.c is called to dump the state-
count pairs to files. This involves first (radix) sorting all pairs by state, merging
identical ones by summing their counts, and then partitioning them over all cpus,
writing one file for each.

The partition boundaries have been precomputed in partition.c1 to ensure
an almost uniform distribution of states over cpus. The first line of output

width=13 bump=11 tot=48744371 part=24372185

shows the width, the bump (x-coordinate) of new states, the number of states,
and the boundary between states for cpu 0 and states for cpu 1. Each state pair
is written as a state delta followed by the 64 bit count. With the states being
sorted, the delta is just over 1 byte on average. Each file ends with a checksum
record, that uses a sentinel FINALSTATE and a count such that the sum of all
counts equals zero (for the given modulus).
1 This is probably the trickiest part of the code, and was still found to contain bugs

during the 18 × 18 run (affecting efficiency rather than correctness).

The Number of Legal Go Positions 187

In a typical file name of 13.1/yx.12.11/fromto.1.0/1.6546124577333, the
basename consists of the number of dumpstates calls, followed by the next state
in the input stream (in octal). This helps with mid-step restarts using manual
invocations of legal, an advanced feature best avoided.

If the memory allocated is too small then dumpstates will be called hundreds
of time, which might require thousands of files to be opened for reading in the
next step, creating IO bottlenecks. For the 19×19 jobs I liked to use a minimum
of 20 GB.

The final lines of output are

(12,10) size 24313729 xsize 24391897 mod 18446744073709551613
newillegal 8421059390853372058 needy 15106516706600782168

legal 17975594761389357431 at (12,11)

The first summarizes the input stream, giving the merged size and total size
in number of states, as well as reminding us of the modulus used. The next shows
the sum count of illegal successors, of states with some border stones in need of
liberties, and of states with no such stones.

Apart from setting up the directory structure and iterating over all the steps
and cpus, the golegal shell script also conserves space by removing files that
can be considered obsolete, and takes care to protect against accidental damage
by making files and directories read-only.

The perl script gocheck performs many checks and balances on these num-
bers. For instance, the total of newillegal + needy + legal should be congru-
ent to 3 times the previous step’s total of needy + legal. It also checks that
L(m,n) = L(n,m) if the latter has been previously computed, as is usually the
case when n < m. These checks, in addition to the file checksums make it very
hard for disk/memory corruption errors to go undetected. And if any of jobs
manages to produce even a slightly wrong result, then Chinese Remaindering
will amplify this to a huge difference in the reconstructed result, which will then
no longer match the highly accurate approximation formula (see below).

5 Results

Table 1 shows the number of legal positions for 18 × 18 and 19 × 19.
The L(18, 18) computation ran from summer 2014 through March 2015,

taking over 50,000 CPU-hours and 4PB of disk IO, generously provided by
the Intel x86 Linux Cluster of the IAS School of Natural Sciences in Prince-
ton. It used 8 jobs with modulo indices 1,2,3,4,5,6,7,8. The smaller of two
prime factors found with Dario Alejandro Alpern’s ECM implementation is
7176527950749135946361.

The 18 × 18 result was announced on Hacker News on March 9, 2015 [6]
accompanied by a request for yet more computing power to tackle 19 × 19.

The L(19, 19) computation ran from March 9, 2015 through December 26,
2015, taking over 250,000 CPU-hours and 30PB of disk IO, generously provided

188 J. Tromp

Table 1. Number of legal n× n positions.

n #digits L(n, n)

18 153 6697231142888292128927401888417065435099377806401787328103183

3769694562442854721810521432601277437139718484889097011183628

3470468812827907149926502347633

19 171 2081681993819799846994786333448627702865224538845305484256394

5682092741961273801537852564845169851964390725991601562812854

6089888314427129715319317557736620397247064840935

by the Intel x86 Linux clusters at the IAS School of Natural Sciences in Prince-
ton, the IDA Center for Communications Research, also in Princeton, and on a
HP Helion Cloud server. It used 9 jobs with modulo indices 0,1,2,3,4,5,6,11,19.
Due to delays in transferring log files, the actual reconstruction of the number
didn’t happen until January 20, 2016.

Factorizing L(19, 19) results in 8 prime factors, the first 7 of which are
5, 401, 4821637, 964261621, 2824211368611548437, 219846696500237600175961
3307922757, and 65948646836807567941440434317404197. An interesting obser-
vation about this deconstruction is that what allows us to do this in just a few
hours is that the ECM factoring algorithm is exponential, not in the number
of digits itself, but in the square root thereof. Similarly, our construction of
L(19, 19) is only possible due to the path counting algorithm being exponential,
not in the number of board points, but in the square root thereof.

This final result was announced on Hacker News on January 22, 2016 [7],
and has been reported on (with various inaccuracies) by the popular press [9] as
well as by several enthusiast sites [8,10].

6 The Base of Liberties

If we take the mn’th root of the number of all 3mn positions on an m×n board,
we of course get the base of 3. If we count only legal positions, then the mn’th
root can be shown to converge to some number L < 3. Since this single number
characterizes the growth rate of stones having liberties, we call it the base of
liberties. The parent paper showed that, conditional on some conjecture about
vanishing error terms,

L(m,n) = A Bm+nLmn(1 + O(mφm))

for some constants A, B, φ < 1, and n = Θ(m). The constants A, B, and L
can all be computed as limits of expressions involving legal counts of square and
almost-square boards.

The Number of Legal Go Positions 189

L = lim
n→∞

L(n, n)L(n + 1, n + 1)
L(n, n + 1)2

,

B = lim
n→∞

L(n, n + 1)
L(n, n)Ln

= lim
n→∞

L(n, n)
L(n, n − 1)Ln

,

A = lim
n→∞

L(n, n)
B2nLn2 .

Table 2. Legal counts of almost square boards.

n #digits L(n, n+ 1)

17 145 20722054276190233030395875202363901217542740727187846094339981969

33282608067036314403465202963700297341152216286750576593627459392

979397487964077

18 162 21645008927907827531439545348046842446969487357646989370951775056

32614907511229224633397451785779540083245864195480719950197794545

84564790800309660950831580481393

19 180 20020319408629769567144797301355785099698625915243038261123500773

48906207401543395415870817978902800457543055297838678738457045887

23770851289942216392403148498022616435740968427261

Of course L could also be approximated according to its definition as
L(n, n)n

−2
but the above formula offers much better convergence. Using the

almost-square legal counts in Table 2, as computed by our algorithm, our best
estimates using L(19, 19), L(19, 18), and L(18, 18) are

L ≈ 2.975734192043357249381,
B ≈ 0.96553505933837387,
A ≈ 0.8506399258457145.

Table 3 shows the rapid convergence of L(n, n)L(n + 1, n + 1)/L(n, n + 1)2.

Table 3. Convergence to the base of liberties L.

n L(n, n)L(n + 1, n + 1)/L(n, n + 1)2

15 2.97573419204335724932

16 2.975734192043357249362

17 2.9757341920433572493811

18 2.97573419204335724938097

Although the formula for L(m,n) is only asymptotic, convergence turns out
to be quite fast. Compared to the exact results in Table 1, it achieves relative

190 J. Tromp

accuracy 0.99993 at n = 5, 0.99999999 at n = 9, and 1.00000000000023 at
n = 13. It is consistent with all the simulated results. For n = 99 it gives the
same result of 4 · 104638. Accuracy is also excellent far away from the diagonal.
For instance, at L(7, 268), the relative accuracy is still 1.0000007, witnessing the
wide range of application of the asymptotic formula.

Acknowledgements. We are indebted to Piet Hut and Lee Colbert for supporting
both the 18×18 and 19×19 computations, and to Michael Di Domenico for supporting
and helping script the 19 × 19 computation.

References

1. Tromp, J., Farnebäck, G.: Combinatorics of go. In: Herik, H.J., Ciancarini, P.,
Donkers, H.H.L.M.J. (eds.) CG 2006. LNCS, vol. 4630, pp. 84–99. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-75538-8 8

2. Wikipedia: Go (game). http://en.wikipedia.org/wiki/Go (game)
3. Wikipedia: Chinese remainder theorem. https://en.wikipedia.org/wiki/Chinese

remainder theorem
4. Tromp, J.: The game of Go (website). http://tromp.github.io/go.html
5. Tromp, J.: github repository. https://github.com/tromp/golegal
6. Tromp, J.: Number of legal 18×18 Go positions computed. One more to go, Hacker

News, March 9, 2015. https://news.ycombinator.com/item?id=9167781
7. Tromp, J.: Number of legal Go positions computed, Hacker News, January 22,

2016. https://news.ycombinator.com/item?id=10950875
8. GoBase.org (website). http://gobase.org/
9. Johnson, L.: After 2,500 years, a Chinese gaming mystery is solved, Motherboard,

January 25, 2016. http://motherboard.vice.com/read/after-2500-years-a-chinese-
gaming-mystery-is-solved

10. James, M.: Number of legal Go positions finally worked out, IProgrammer, Febru-
ary 3, 2016. www.i-programmer.info/news/112-theory/9384-number-of-legal-go-
positions-finally-worked-out.html

http://dx.doi.org/10.1007/978-3-540-75538-8_8
http://en.wikipedia.org/wiki/Go_(game)
https://en.wikipedia.org/wiki/Chinese_remainder_theorem
https://en.wikipedia.org/wiki/Chinese_remainder_theorem
http://tromp.github.io/go.html
https://github.com/tromp/golegal
https://news.ycombinator.com/item?id=9167781
https://news.ycombinator.com/item?id=10950875
http://gobase.org/
http://motherboard.vice.com/read/after-2500-years-a-chinese-gaming-mystery-is-solved
http://motherboard.vice.com/read/after-2500-years-a-chinese-gaming-mystery-is-solved
www.i-programmer.info/news/112-theory/9384-number-of-legal-go-positions-finally-worked-out.html
www.i-programmer.info/news/112-theory/9384-number-of-legal-go-positions-finally-worked-out.html

	The Number of Legal Go Positions
	1 Introduction
	2 Preliminaries
	3 The Border State Graph
	4 The Path Counting Implementation
	5 Results
	6 The Base of Liberties
	References

