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Abstract. Quantified Integer Programs (QIPs) are integer programs
with variables being either existentially or universally quantified. They
can be interpreted as a two-person zero-sum game with an existential
and a universal player where the existential player tries to meet all con-
straints and the universal player intends to force at least one constraint
to be not satisfied.

Originally, the universal player is only restricted to set the univer-
sal variables within their upper and lower bounds. We extend this idea
by adding constraints for the universal variables, i.e., restricting the
universal player to some polytope instead of the hypercube created by
bounds. We also show how this extended structure can be polynomial-
time reduced to a QIP.

1 Introduction

Integer linear programming has become a successful modeling and solution
framework for a wide range of applications in the Operations Research commu-
nity. Today, one can solve instances with thousands up to millions of variables
and constraints. As problems get more complex, uncertainty becomes a relevant
concern. Solutions to optimization problems can be sensitive to perturbations in
the parameters, which can render them suboptimal or even infeasible in prac-
tice. Methods such as stochastic or robust programming are able to cope with
parameter uncertainty and give average-case or worst-case optimal solutions,
respectively.

A special class of optimization problems under uncertainty are quantified pro-
grams. Quantified Integer Programs (QIPs) are integer linear programs, where
variables are either existentially or universally quantified. QIPs are PSPACE-
complete [9, p. 92] and they can be interpreted as a two-person zero-sum game,
where an existential player tries to stay feasible and a universal player tries to
violate at least one constraint. In [1] it was shown that QIPs can be used to
model and solve the game Gomoku.

In the original definition, a QIP is comparable to a multi-stage robust integer
program with a cubic uncertainty set. This uncertainty set is rather conservative,
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since it allows for worst-case realizations of each universal variable at the same
time. Therefore, we restrict the uncertainty set.

Such a restriction can also be seen from a gaming point of view: On the
one hand, only a certain set of moves are legal moves for the opposing player
according to the rules. On the other hand, when planning a move the aspect of
opponent modeling [7] can be seen as restricting the response of the opponent
by prohibiting unlikely moves during the analysis. This does not only help us to
adapt more efficiently to a well known opponent but also shrinks the game tree
of interest noticeably.

We will now generally and in an abstract manner define our problem. In
contrast to the original QIP problem we restrict the universal player not only
within some rigid bounds, but also dynamically, i.e., the permitted range of
the variables depends on previous and possible future universal decisions. When
setting a variable the universal player must check some conditions, depending
only on own actions.

2 Previous and Related Work

Quantified Constraint Satisfaction Problems have been studied since at least
1995 [3]. In 2003, Subramani revived the idea of universal variables in Constraint
Satisfaction Problems and coined the term Quantified Linear Program (QLP).
His QLP did not have an objective function and the universal variables could
only take values in their associated intervals. In the following year he extended
this approach by integer variables and called them Quantified Integer Programs
(QIPs) [6]. Later Wolf and Lorenz added a linear objective function [4] and
enhanced the problem to: “Does a solution exist and if yes which one is the
best.” Within the scope of his dissertation [9], Wolf gave some theoretical results
and adapted a solving procedure known from Stochastic Programming: With
his implementation of Multistage Benders Decomposition it is possible to solve
QLPs with millions of scenarios.

We will basically follow the notation used in [4]. Transposes are omitted when
they are clear.

Definition 1 (Quantified Integer Program). Let x = (x1, . . . , xn)� ∈ Z
n

be a vector of n ∈ N integer variables and l, u ∈ Z
n lower and upper bounds. Let

D = {x ∈ Z
n | x ∈ [l, u]}. Let A ∈ Q

m×n be the coefficient matrix with rational
entries, b ∈ Q

m the right-hand side vector and Q = (Q1, . . . , Qn)� ∈ {∃,∀}n

a vector of quantifiers. The term Q ◦ x ∈ D with the component wise binding
operator ◦ denotes the quantification vector (Q1x1 ∈ [l1, u1] ∩ Z, . . . , Qnxn ∈
[ln, un] ∩ Z)� such that every quantifier Qi binds the variable xi ranging in the
associated interval [li, ui]. We call a maximal consecutive subsequence of Q con-
sisting of identical quantifiers a quantifier block and denote the i-th corresponding
subsequence of x by xi and call it a variable block Bi. Let β ∈ N be the number
of such blocks. Let c ∈ Q

n be a vector of objective coefficients and let ci denote
the segment of c associated with Bi.
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We call

min
B1

(
c1x1 + max

B2

(
c2x2 + min

B3

(
c3x3 + max

B4

(
. . . + min

Bβ

cβxβ

))))

s.t. Q ◦ x ∈ D : Ax ≤ b

a quantified integer program (QIP) and denote it with (c,Q, l, u,A, b).

Note that the universal variables are only restricted to be in their associated
intervals. From now on the existential player will be referred to as “he” and the
universal player as “she”.

3 An Extension with Regard to the Uncertainty Set

We extend the idea of quantified variables by restricting the universal variables
to a polytope that can be described through a second system A∀x ≤ b∀ with
A∀ ∈ Q

m∀×n and b∀ ∈ Q
m∀

for m∀ ∈ N. For a given QIP (c,Q, l, u,A, b) we
only restrict the universal variables in such way that their range only depends
on other universal variables. In other words, we assume that existential variables
have no influence on universal decisions. Thus, we demand

A∀
i,j = 0 ∀ i ∈ {1, . . . , m∀} ∀j ∈ {k ∈ {1, . . . , n} | Qk = ∃} , (1)

i.e., each entry of A∀ belonging to an existential variable is zero.

Definition 2 (QIP with Polyhedral Uncertainty Set (QIP�∀)). Let
(c,Q, l, u,A, b) be a given QIP. Let b∀ ∈ Q

m∀
and A∀ ∈ Q

m∀×n with (1). Let
D�∀ = {x ∈ D | A∀x ≤ b∀} �= ∅. The quantified integer program with polyhedral
uncertainty set (QIP�∀) is given by (c,Q, l, u,A, b, A∀, b∀) with

min
B1

(
c1x1 + max

B2

(
c2x2 + min

B3

(
c3x3 + max

B4

(
. . . + min

Bβ

cβxβ

))))

s.t. Q ◦ x ∈ D�∀ : Ax ≤ b .

Note that we forbid an empty domain D�∀ since it would complicate the following
definitions.

Definition 3 (Legal Allocation). A legal allocation of an existential vari-
able xi demands this variable to be integer and within its bounds [li, ui]. The
same is true for universal variables in standard QIPs. In a QIP�∀, however, the
legal allocation options also depend on the (legal) allocation of previous variables
x1, . . . , xi−1. Thus, when assigning a value to the universal variable xi there must
exist a series of legal moves xi+1, . . . , xn such that the resulting vector x fulfills
A∀x ≤ b∀. The legal range [l∀i , u∀

i ] of xi can be determined by Fourier-Motzkin
elimination [8] of the domain D�∀ and fixating the previous variable allocations.
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Definition 4 (Strategy). A strategy S = (V,E, c) is an edge-labeled finite
arborescence1 with a set of nodes V = V∃ ∪̇ V∀, a set of edges E and a vector of
edge labels c ∈ Q

|E|. Each level of the tree consists either of only nodes from V∃
or only of nodes from V∀, with the root node at level 0 being from V∃. The i-th
variable is represented by the inner nodes at depth i − 1. Each edge connects a
node at some level i to a node at level i + 1. Outgoing edges represent moves of
the player at the current node, the corresponding edge label encodes the variable
allocation of the move. Each node v∃ ∈ V∃ has exactly one child, and each node
v∀ ∈ V∀ has as many children as legal allocation options.

A path from the root to a leaf represents a game sequence and the edge labels
along this path encode the corresponding variable allocation. Such a leaf at the
end of a path corresponding to x has the value c�x.

Definition 5 (Winning Strategy). A strategy is called a winning strategy
(for the existential player) if all paths from the root to a leaf represent a vector
x such that Ax ≤ b.

Definition 6 (Optimal Winning Strategy). A winning strategy is optimal
if the minimax value of the root is smaller than or equal to the minimax values
of all other winning strategies. The vector x̃ representing the path which obeys
the minimax rule is called the principal variation (PV), i.e., it consists of the
optimal moves when both players play perfectly. The optimal objective value is
c�x̃.

4 The Polynomial-Time Reduction to a QIP

Hereafter we provide an easy method to transform any given QIP�∀ (with a poly-
hedral uncertainty set) into a QIP (only restricted by bounds). This enables us
to use our solver Yasol, which is specialized in solving quantified programs [2].
Further, the deterministic equivalent program can be computed much more eas-
ily. It also enables us to model problems in a straightforward way (by stating
both systems A∀x ≤ b∀ and Ax ≤ b) and transform them later into a QIP to
solve them.

Our goal is to transfer the condition A∀x ≤ b∀ out of the domain of the
variables into the system of constraints. We rewrite the problem as a QIP as
given in Definition 1. Note that we cannot simply add A∀x ≤ b∀ to the constraint
system. This would not restrict the universal player but tighten the conditions
the existential player has to meet. Instead, the universal polyhedral constraints
are not enforced a priori. We introduce helper constraints and variables that
ensure that a violation of the universal constraints is detected, with the effect
that the existential player’s constraints are relaxed. That is, “the existential
player wins by default if the universal player cheats”. In addition to making all
constraints feasible, the universal player is penalized via the objective function.

1 An arborescence is a directed, rooted tree.
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Let us consider the k-th row of the system A∀x ≤ b∀ which is given by
n∑

i=1

A∀
k,i · xi ≤ b∀

k . (2)

It is solely the universal player’s task to meet this condition, since the exis-
tential player cannot influence the left hand side because of (1). Thus

n∑
i=1

A∀
k,i · xi > b∀

k (3)

⇐⇒
n∑

i=1

A∀
k,i · xi ≥ b∀

k + εk (4)

holds for some εk > 0. To determine an assignment for the parameter εk we need
to find the smallest possible gap between the sum of integral multiples of the
coefficients A∀

k,i and b∀
k. It is sufficient to underestimate this smallest possible

gap in order to ensure (3) ⇔ (4). This can be achieved by using the reciprocal
of the (lowest) common multiplier of the denominators (LCD) of the universal
polytope’s coefficients. Let RLCD

k be the reciprocal of the LCD of b∀
k and of the

coefficients A∀
k,i for i ∈ {1, . . . , n}. Then

n∑
i=1

A∀
k,i · xi ≥ b∀

k + RLCD
k (5)

is fulfilled if and only if the original constraint (2) is not satisfied. Note, that
RLCD

k = 1 if all entries of row k are integer.
We now introduce a new binary existential variable yk ∈ {0, 1} with the

property

yk

⎧⎪⎪⎨
⎪⎪⎩

= 0, if
n∑

i=1

A∀
k,i · xi ≤ b∀

k

∈ {0, 1}, if
n∑

i=1

A∀
k,i · xi > b∀

k

. (6)

This is achieved by using the following constraint
n∑

i=1

A∀
k,i · xi ≥ Lk + (−Lk + b∀

k + RLCD
k ) · yk (7)

with

Lk =
∑

1≤i≤n

A∀
k,i<0

A∀
k,i · ui +

n∑
1≤i≤n

A∀
k,i≥0

A∀
k,i · li (8)

which is the smallest value the left hand side of the original universal constraint
can take with respect to the bounds. Let us take a closer look at (7). If yk = 0
the constraint is always fulfilled, since

n∑
i=1

A∀
k,i · xi ≥ Lk (9)
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is always true due to the definition of Lk. If and only if the original constraint
is violated yk also can take the value 1 since (5) is met. However, if the original
constraint is satisfied yk must be bound to zero. Thus, we embedded the variable
yk in a new constraint such that (6) is fulfilled. We now introduce the binary
variable p ∈ {0, 1} with

p

{
= 0, if ∀ k ∈ {1, . . . , m∀} : yk = 0
∈ {0, 1}, if ∃ k ∈ {1, . . . , m∀} : yk = 1

. (10)

This variable can be embedded using the constraint

p ≤
m∀∑
k=1

yk . (11)

Thus, we introduced a variable that can indicate the violation of the system
A∀x ≤ b∀. If a universal constraint is violated we require each constraint of the
systems Ax ≤ b to be trivially satisfied: If the universal player did not abide
by her rules the existential player should not be punished for a violation of his
system. Thus, the system is modified as follows

Ax − Mp ≤ b (12)

using the parameter vector M ∈ Q
m with

Mk = max
x∈D

Ak,∗x − bk (13)

=
∑

1≤i≤n
Ak,i<0

Ak,i · li +
∑

1≤i≤n
Ak,i≥0

Ak,i · ui − bk (14)

for each k ∈ {1, . . . , m}. Hence, if p = 1 the inequality (12) is always satisfied.
The global indicator p is now used to punish the universal player by reducing

the objective value massively. Since the universal player is trying to maximize
the objective function we can penalize a violation of the universal constraints
by subtracting this new variable p with a sufficiently large coefficient M̃ in the
innermost term of the objective function. Note that this block is w.l.o.g. an
existential block and thus the existential player will set this variable to 1 if
possible, i.e., if the universal player did not meet her conditions. For the value
of M̃ we choose

M̃ =
∑

1≤i≤n
ci<0

ci · (li − ui) +
n∑

1≤i≤n
ci≥0

ci · (ui − li) + 1.

Note that
max
x∈D

c�x − M̃ < min
x∈D

c�x (15)

holds. Thus, when subtracting this value the objective function will definitely
yield a better objective value for the existential player than he could have
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achieved without it. However, the universal player can counteract by meeting
her system of equations and thus forcing p to be zero.

The final transformed problem looks as follows

min
B1

(
c1x1 + max

B2

(
c2x2 + min

B3

(
c3x3 + max

B4

(
. . . + min

Bβ ,y,p

(
cβxβ − M̃p

)))))

s.t. Q ◦ x ∈ D ∃y ∈ {0, 1}m∀ ∃p ∈ {0, 1} :

Ax − Mp ≤ b (16)

−A∀x − (L − b∀ − RLCD)y ≤ −L (17)

p −
m∀∑
k=1

yk ≤ 0 (18)

Note, that L ∈ Q
m∀

is a vector with entries according to (8) and RLCD ∈ Q
m∀

is
the vector of the reciprocals of the lowest common multiplier of the denominators
of the rows of A∀ and b∀. Further note, that the values for M̃ , M and L can
be calculated easily by using the upper and lower bound of x appropriately,
depending on the sign of the corresponding entries in c and A, respectively. Also
the number of auxiliary variables and constraints is linear in the input size. This
problem has the structure of a QIP since the variables are only restricted to be
within their bounds (D is a cubical integer lattice). For further investigations
the PV of a solution (a strategy) of this transformed problem will be denoted
by z = (x, y, p) ∈ D × {0, 1}m∀ × {0, 1}.

In the following we show how the transformed QIP and the QIP�∀ are con-
nected.

Theorem 1. If QIP�∀ has an optimal winning strategy with PV x̃ and objective
value v = c�x̃ the transformed QIP has an optimal winning strategy with PV
z̃ = (x̃, ỹ, p̃) with ỹi = 0 for i = 1, . . . , m∀ and p̃ = 0 with objective value v.

Proof. Since x̃ is the PV of an optimal winning strategy of QIP�∀ it satisfies
Ax̃ ≤ b and A∀x̃ ≤ b∀. Thus, z̃ = (x̃, ỹ, p̃) with ỹ = 0 and p̃ = 0 is feasible for
the transformed problem with objective value c�x̃ − Mp̃ = v. Let ẑ = (x̂, ŷ, p̂)
be the PV of the optimal winning strategy of the transformed problem and thus
c�x̂ − Mp̂ ≤ c�x̃. If x̂ �∈ D�∀ ẑ would also fulfill p̂ = 1, since at least one row of
the system A∀x̂ ≤ b∀ is violated. However, because of (15) the resulting value
of the objective function is smaller than any other solution obeying A∀x̂ ≤ b∀.
This is a contradiction to the minimax optimality of ẑ since the universal player
can avoid this by assigning her variables such that A∀x̂ ≤ b∀ holds. Thus, the
assignment x̂ ∈ D�∀ is true and A∀x̂ ≤ b∀. Further, y = 0 and p = 0 and x̂ is also
feasible for QIP�∀ with c�x̂ ≥ c�x̃. Therefore, c�x̂ = c�x̃ = v.

Theorem 2. If QIP�∀ has no winning strategy, then the transformed QIP also
has no feasible solution.
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Proof. Let QIP�∀ have no winning strategy. Assume S = (V,E, c) were a winning
strategy for the transformed QIP, i.e., in each leaf the system of inequalities
(16)-(18) is fulfilled. Note that this arborescence has a depth of n + m∀ + 1. We
consider the arborescence S̄ = (V̄ , Ē, c̄) with V̄ ⊆ V , Ē ⊆ E and c̄(e) = c(e)
for each e ∈ Ē. V̄ contains no node of a level larger than n and Ē contains
no edges leading to such nodes. Further, edges describing illegal allocations (see
Definition 3) in terms of the QIP�∀ are deleted as well as their whole underlying
subtrees. This designed arborescence S̄ describes a strategy for the underlying
QIP�∀, because

• the depth is n and thus for each variable a decision level exists,
• nodes of universal variables have only legal allocation options leading out,
• the remaining strategy properties are adopted from S.

This strategy S̄ is also a winning strategy for QIP�∀, since each path from the root
to a leaf represents a vector x such that Ax ≤ b; for each such path A∀x ≤ b∀

holds, because illegal allocations were deleted.
Let us consider such a path x1, . . . , xn in S̄ and the unique2 associated over-

lying path z = (x1, . . . , xn, y1, . . . , ym∀ , p) in S. Since A∀x ≤ b∀ and (16)-(18)
we may conclude p = 0 and yi = 0 for all i ∈ {1, . . . , m∀}. Thus, because of
(16), also Ax ≤ b holds for the leaf. Hence, we have found a winning strategy
for QIP�∀ which contradicts the assumption.

Note that the first-stage solution of the transformed QIP is identical3 to the
first-stage solution of the QIP�∀.
Corollary 1. QIP�∀ is in PSPACE. Since the QIP with cubical uncertainty set
is a special case of the QIP�∀ it is even PSPACE-complete.

5 Example

We consider a simple graph game where one player has to traverse a given graph
while the opponent is allowed to erase some edges. However, the opponent is
not allowed to erase edges arbitrarily but must obey some rules. This problem is
closely related to the Dynamic Graph Reliability problem [5] with the difference
that edges have weights and an objective function should be minimized. Further,
edges are erased depending on the point in time instead of the location of the
player. The underlying graph is given in Fig. 1.

The starting node is labeled with 0 and the target node with 7. The
question is:

Is there a strategy for the existential player which allows him to reach the
target node no matter how the opponent acts? And if there are multiple
strategies: Which one is the winning strategy with the shortest worst-case
path to the target node (according to the weights of the edges).

2 The path is unique, because all nodes with level ≥ n belong to existential variables
and thus have only one successor in a strategy.

3 except for auxiliary variable p in single-stage instances.
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Fig. 1. Directed acyclic weighted graph with starting node 0 and target node 7

Let G = (V,E, c) describe the graph given in Fig. 1 with V being the set of
vertices, E the set of edges and c : E → Q a function assigning weights to each
edge. Let xi,j ∈ {0, 1} be variables indicating whether the existential player uses
edge (i, j) ∈ E or not. For each edge (i, j) ∈ E with i �= 0 let di,j ∈ {0, 1}
indicate whether the universal player deleted this edge or not. The turn order is
given by the following quantifier string:

∃x0,1, x0,2, x0,3 ∀d1,4, d2,4, d2,5, d2,6, d3,6 ∃x1,4, x2,4x2,5, x2,6, x3,6

∀d4,7, d4,5, d5,7, d5,6, d6,7 ∃x4,7, x4,5, x5,7, x5,6, x6,7

Both players take turns while fixing some variables. The universal player is
allowed to deactivate edges before the existential player is able to use them.
In doing so the existential player wants to meet the system of equations given
below. ∑

(0,j)∈E

x0,j = 1 (19)

∑
(i,7)∈E

xi,7 = 1 (20)

∑
(i,k)∈E

xi,k =
∑

(k,j)∈E

xk,j ∀k ∈ {1, . . . , 6} (21)

xi,j ≤ 1 − di,j ∀(i, j) ∈ E, i �= 0 (22)

It consists of constraints ensuring the flow from node 0 to 7 (viz. (19), (20)
and (21)) and constraints forbidding to use edges that have been deleted by
the universal player (22). However, the universal player is also restricted by her
system A∀x ≤ b∀ as follows:

∑
(i,j)∈E

i
=0

di,j ≤ 3 ,
∑

(i,j)∈E
i
=0

c(i, j) · di,j ≥ 3
2

,
∑

(i,j)∈E
i
=0

c(i, j) · di,j ≤ 2 (23)
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This system states that the universal player is allowed to delete at most 3 edges
and the sum of the weights of the deleted edges must be between 1.5 and 2. Note,
that we did not convert either system into a “less or equal” system in order to
make their actual use more clear. Yet, this must be done to use the transfor-
mation described in Sect. 4. The final transformed QIP is displayed below. For
convenience the repeating variable domains {0, 1} are omitted in the quantifier
string.

min
B1

(
2
3
x0,1 + x0,2 +

3
2
x0,3 + max

B2

(
min
B3

(
7
3
x1,4 +

1
2
x2,4 +

2
3
x2,5 + x2,6

+
5
6
x3,6 + max

B4

(
min

B5,y,p

(
3
2
x4,7 +

2
3
x4,5 +

4
3
x5,7 + x5,6 + x6,7 − 15p

)))))

s.t. ∃x0,1, x0,2, x0,3 ∀d1,4, d2,4, d2,5, d2,6, d3,6 ∃x1,4, x2,4, x2,5, x2,6, x3,6

∀d4,7, d4,5, d5,7, d5,6, d6,7 ∃x4,7, x4,5, x5,7, x5,6, x6,7, y1, y2, y3, p :

−
∑

(0,j)∈E

x0,j − p ≤ −1 ,
∑

(0,j)∈E

x0,j − 2p ≤ 1 (24)

−
∑

(i,7)∈E

xi,7 − p ≤ −1 ,
∑

(i,7)∈E

xi,7 − 2p ≤ 1 (25)

∑
(i,k)∈E

xi,k −
∑

(k,j)∈E

xk,j − deg−(k) · p ≤ 0 ∀k ∈ {1, . . . , 6} (26)

∑
(k,j)∈E

xk,j −
∑

(i,k)∈E

xi,k − deg+(k) · p ≤ 0 ∀k ∈ {1, . . . , 6} (27)

xi,j + di,j − p ≤ 1 ∀(i, j) ∈ E, i �= 0 (28)

4y1 −
∑

(i,j)∈E
i
=0

di,j ≤ 0 (29)

∑
(i,j)∈E

i
=0

c(i, j) · di,j + 9.5y2 ≤ 65
6

(30)

−
∑

(i,j)∈E
i
=0

c(i, j) · di,j +
13
6

y3 ≤ 0 (31)

p −
3∑

k=1

yk ≤ 0 (32)

Constraints (24)-(28) describe the transformed existential system (cf. (16)), (29)-
(31) are the embedded universal constraints (cf. (17)), and (32) is similar to
(18). In (26) and (27) the coefficients of p are the number of incoming edges
deg(k)− = |{(i, j) ∈ E | j = k}| and the number of outgoing edges of node k
deg(k)+ = |{(i, j) ∈ E | i = k}|, respectively. In (30) the coefficients result from
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L2 = − 65
6 , RLCD

2 = 1
6 and b∀

2 = − 3
2 . This standard QIP is easily solved by the

QIP-solver Yasol. It turns out that there is a winning strategy for the existential
player. The objective value of the PV is 11

3 and the optimal first decision is
moving from the starting node to node 2. The (perfect) universal player will
then delete the edge between 2 and 4. The existential player then must move
to node 5. After that the edge between node 5 and 7 is deleted and finally the
target node is reached by passing node 6.

6 Conclusion

We extended the concept of quantified integer programs to a polyhedral uncer-
tainty set. Thus, the universal variables can be restricted explicitly by using
a second linear system of inequations A∀x ≤ b∀. We also presented a general
polynomial-time transformation of this new problem statement permitting us to
solve a standard QIP instead of inventing new methods for solving QIP�∀. Thus,
the concept of QIPs can be put into practice in new areas of application in an
easy and straightforward way. In particular, rules of games that must be obeyed
by each player can be modeled easily. Therefore, the possibility of modeling and
solving more complicated two-person zero-sum games with the help of quantified
programming is provided.
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