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Abstract. In the game of Breakthrough the endgame is reached when
there are still many pieces on the board. This means there are too many
possible positions to be able to construct a reasonable endgame table-
base on the standard 8× 8 board, or even on a 6× 6 board. The fact
that Breakthrough pieces only move forward allows us to create partial
tablebases on the last n rows of each side of the board. We show how
doing this enables us to create a much stronger MCTS based 6× 6 player
and allows us to solve positions that would otherwise be out of reach.

1 Introduction

Recently the game of Breakthrough has been attracting attention among
researchers [1,4,6,7]. It has a simple set of rules, an interesting mix of strategy and
tactics, and scales easily to different sizes. In this work we describe the construc-
tion of endgame tablebases for Breakthrough, focusing on boards of size 6× 6.

Endgame tablebases are usually full board databases of a game at a stage
when very few pieces remain and are typically constructed using retrograde
analysis [8]. For example, in chess Nalimov tablebases have been used and
expanded for many years now [5]. In Breakthrough, however, the endgame is
reached while there are still many pieces on the board. Breakthrough is normally
played on an 8× 8 board and typically the endgame is reached while more than
half the pieces are still on the board. With 8 or fewer pieces per player on a 64
square board there are simply too many legal positions to consider constructing
a normal tablebase. In fact, even on a 6× 6 board it is already impractical.

The rules of Breakthrough require that pieces always move towards the goal.
Because of the forward running of pieces it is possible to recognize forced wins
in positions by just looking at rows near the goal, that is, rows near the end
of the board. The forward running also allows for a kind of iterative retrograde
approach to constructing the tablebase. Given a tablebase containing all wins for
White in the last n− 1 rows we can use it to construct wins for White from the
last n rows. Once constructed we can use the tablebases to improve the play of a
Breakthrough playing program and use them to solve positions on smaller boards
by simply applying the game playing program enhanced with the tablebase.

In Sect. 2 we briefly describe Breakthrough and give some examples of the
endgame. Section 3 is where we describe our notion of tablebases, how we build
them, and how we use them in an MCTS based Breakthrough player. In Sect. 4
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we show what we were able to accomplish using tablebases in 6 × 6 Break-
through and Sect. 5 summarizes our results and points towards future directions
of research.

2 The Game of Breakthrough and Its Endgame

Breakthrough is usually played on an 8× 8 board but our studies will focus on
the smaller 6 × 6 board. Each player begins with 12 pieces as shown on the left
of Fig. 1. White pieces move one square at a time either diagonally or vertically
to unoccupied squares and towards row 6, the goal row. White may capture a
black piece if the piece is located where a diagonal legal move could be made –
as a chess pawn might capture. A white piece cannot move straight forward if
that square is occupied by either a white or a black piece. Black moves similarly
in the other direction. The first player to have a piece reach the goal row or to
capture all of the enemy pieces is the winner. White plays first.

Fig. 1. Sample 6× 6 breakthrough positions.

The right of Fig. 1 shows a position in the middle of a game. If it is White’s
turn to play, the piece on square b4 can capture the black piece on a5 or move
to b5 or c5. If Black is to move, the black piece on square e4 can move to either
d3 or f3 but not e3.

To get a feel for the number of endgame positions possible in Breakthrough
we consider situations with six or fewer pieces for each player, with White to
move, and note that we are only interested in positions where there is no white
piece on either of the last two rows (else the game is over or White has a win-in-1)
and there is no black piece on the first row (else Black has already won). In the
case of a 6 × 6 board, for each placement of 1 through 6 white pieces in the first
4 rows, we place 6 black pieces on the last 5 rows on the unoccupied squares. We
underestimate the true total by assuming that all white pieces occupy squares
that a black piece might also occupy, even though this is not true if a black piece
is on one of its first two rows. It leads us to Eq. (1) as an estimate of the number
of positions possible with six or fewer pieces of each color.
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Similarly, Eq. (2) estimates the number of endame positions on an 8× 8 board
with no more than 8 pieces of any color.
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Both of the above counts include illegal positions, e.g., all of the white pieces
are on the first 3 rows of column a and b. However, the number of illegal positions
is quite small given how few pieces are on the board and so the estimates given
above are reasonable.

3 Endgame Tablebases

Any board configuration with White to move that has a white piece on row 5 is
a win-in-1 because White can simply move to the goal row. An effective win-in-3
is a board configuration where White can make a move that preserves a win-in-
1 against any black defense. This either means that Black has no defense and
White will win on the next move or Black can prevent the immediate win but
White can follow with a move that restores it.

For example, in the position on the left of Fig. 2 White has a win-in-3 by
moving 1. d4–d5. Black must continue to defend the win-in-1 by capturing the
advanced piece, which White in turn recaptures until White finally lands on row
5 and is invulnerable to capture. Thus the win-in-3 actually takes a total of 7
moves.

The position in the middle of Fig. 2 shows an effective win-in-5 that actually
requires 9 moves to complete. The idea is that White must clear the Black d6
piece so that White will be able to play f3–f4–e5–f6. After 1. c3× b4 Black is
forced to play 2. c5× b4 else White wins by moving to or capturing a5. White
then plays 3. c4–c5, Black is forced to capture and White wins with the f4 piece.
Since Black must reply to White’s first two moves, it is an effective win-in-5.

The rightmost position of Fig. 2 shows an effective win-in-9. It is a win-in-9
because two preparatory moves need to be made in the process of advancing to
the goal. The main line is: 1. b3× c4, 2. e5 × d4, 3. c3×d4, 4. a5–a4, 5. f3–e4, 6.
f5× e4, 7. e3–f4, 8. a4–a3, 9. f4–f5, 10. e6× f5, 11. d4–d5, 12. c6×d5, 13. c4× d5,
14. a3–a2, 15. d5–e6. We can see that most of the moves are either forcing moves
or moves advancing towards the goal, but moves 1 and 7 are extra moves needed
to prepare for the breakthrough at d5.

Using this concept of a forced win, where defensive moves by the opponent
are not counted towards the move count, board configurations can be stored in
a tablebase along with their effective number of moves required to win. During
game play a player can consult the tablebase to determine if a forced win exists
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Fig. 2. Forced wins.

and in how many effective moves. By comparing any forced wins White or Black
may have it is possible to determine who will win the game even with a significant
portion of the game left to play.

The rules of Breakthrough require pieces to move in one direction up or down
the board, so once an opponent’s piece has progressed beyond a certain row, it
is no longer defensively relevant to a win involving pieces in rows that it has
already passed. For example, a forced win that only requires White to use pieces
in the top 3 rows is certain to be an effective forced win-in-3 because every move
threatens a win-in-1 and so must be responded to. A forced win that requires
White to use pieces in the top 4 rows must be at least a forced win-in-5, since
there will be at least one time when white moves from row 3 to row 4 and after
Black answers at best a win-in-3 will have been created. In this case if Black has
an effective win-in-3 moves (or less) after White makes its move, Black will have
the winning position.

Any board configuration can be represented as an integer using Gödel num-
bering, so if a certain configuration can be identified as a forced win, the integer
value of that configuration can be added to a database of forced wins, along
with any other information related to the configuration, such as the effective
number of moves required or the next move the player needs to make to achieve
the forced win. If every forced win can be identified, the game itself would be
solved. To limit the size of the tablebase of forced wins to be solely resident in
RAM and to be able to construct the tablebase in a reasonable amount of time,
only forced wins that involve pieces located on the last n rows, for some suitable
n, are included. During game play, the current board state in those n rows can
be converted to its integer value and the endgame tablebase can be consulted to
determine if a forced win has been achieved.

3.1 Building an Endgame Tablebase for Breakthrough

Below we discuss the following three topics. Building an endgame tablebase for
Breakthrough in Sect. 3.1; n x 6 tablebases in Sect. 3.2; using endgame tablebases
in Sect. 3.3.



Using Partial Tablebases in Breakthrough 5

To construct a tablebase for 6× 6 Breakthrough that is limited in size and
can be quickly queried, the top 3 rows are first examined to identify any effec-
tive forced wins-in-3. This is done by iterating through all valid configurations
of pieces that may exist in the top 3 rows. Assuming White to move, any white
pieces in row 6 can be skipped, since that is already a win, as well as any white
pieces in row 5 as that is a trivial win-in-1. Only configurations where there are
some white pieces on row 4 and Black pieces on any of the top 2 rows need to be
examined as possible forced wins. We start with 1 white piece and build up to
more pieces. Configurations that either have White to move to row 5 and where
it is invulnerable to capture, or that will eventually lead to White being able to
move to row 5 and be invulnerable to capture as the result of responses by Black
get added to the tablebase until all possible forced wins in 3 moves are found.

Once all forced wins only requiring pieces that belong to the top three rows
are found, this process is repeated for the all possible combinations within the
top 4 rows, skipping any forced wins already found in the top 3 rows from the
previous step. We repeat the process similarly for the top five rows.

The order the pieces are placed goes from fewer to more white pieces and
within a fixed number of white pieces from higher numbered to lower numbered
rows. This allows us to fill the tablebase in a single pass.

In order for a configuration to be added to the tablebase it has to be deter-
mined if White has a forced win. For every possible white move, all possible
black responses are tested. For every black response, if White has a forced win
that is already in the tablebase the configuration is added to the tablebase.

To determine the total number of moves required for the forced win once
it is identified it is assumed that White will choose the move that leads to the
shortest previously found forced win, while Black will choose the move that leads
to longest inevitable loss. In order to determine the effective number of moves
of a forced win, an imaginary offensive move by Black is applied. If making the
offensive move by Black results in a better forced win for White, it is assumed
that Black instead will choose to make a defensive move. If the effective number of
moves for a forced win is the same whether Black makes a defensive or offensive
move, it is assumed that Black will use the opportunity to make an offensive
move over a defensive move.

For every board configuration entered into the tablebase, the symmetric con-
figuration is added as well. An important feature of this optimization when
combined with the order that white pieces are added to the board as described
above is that all forced wins get added to the tablebase in a single run. Without
the addition of symmetries or by using a poor ordering of positions, forced wins
may go undetected when the forced win testing program is run a single time,
requiring a second run (or more) to find the remaining wins.

3.2 n × 6 Tablebases

A summary of the complete tablebase that we created for 6 × 6 Breakthrough
can be seen in Table 1. Notice that there are no wins-in-3 for the 4-row tablebase.
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Table 1. Tablebase contents

Rows 3 4

Wins-in-3 227,547 0

Wins-in-5 0 19,888,955

Wins-in-7 0 642, 417

Wins-in-9 0 6,170

Wins-in-11 0 190

Wins-in-13 0 5

Wins-in-15 0 0

Total forced wins 227, 547 20,537,737

Time to generate 15 s 2.5 h

This is because it is impossible for a White piece on row 3 or lower to affect such
a fast win.

In contrast, it is possible to have a win-in-5 that involves row 2 or 1. Consider
the first diagram in Fig. 3. After White has moved d2–d3 Black is in zugwang
and once Black moves White has a straightforward short win. It is because of
the zugzwang that White is suddenly presented with a shorter win than was
available before Black moved.

The right side of Fig. 3 shows one of the longest wins in the tablebase. Being
a win-in-13 means that White will make a total of 7 moves. Three of the moves
advance the piece from row 3 to row 6 and the other 4 moves aid in this advance-
ment.

It is worth pointing out that Black actually has a shorter win in this position
but the tablebase only reports wins for White. When the tablebase is actually
used, after finding the win-in-13 for White it will make White’s first move and
query the database to see if Black indeed has a faster win. Here is a summary of
White’s win-in-13 with a shorter win for Black pointed out. 1. e3–e4, (the key to
the winning attack is to breakthrough using the c4 square) 2. f5× e4, 3. f3 × e4,

Fig. 3. 5 row win-in-5 (left) and 5 row win-in-13 (right).
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4. f4–f3, 5. a3–a4, 6. c5–d4, 7. a4×b5, 8. a6 ×b5, (a forced move by Black
and does not count towards the mate count) 9. b3–b4, (as far as the tablebase is
concerned, Black is now in zugzwang, but in this particular board position Black
can make a move that threatens a win that is shorter than White’s) 10. d4–e3,
11. b4–a5, 12. b6× a5, (forced) 13. d3–d4, and now White has an obvious win-
in-3 that completes the original win-in-13, though Black has an equally obvious
win-in-3 and so would actually win this game.

3.3 Using Endgame Tablebases

There are a number of natural places in an MCTS based program one might
use tablebases. We have an EPT (early playout termination [3]) program named
Wanderer [4] that plays the game of Breakthrough and we use it to study the
various options.

In the spirit of EPT it makes sense to access the tablebases during the random
playouts. The simplest approach would be to augment the evaluation function
to test if either player has a faster forced win than the other and if so, return
accordingly. In contrast, if at any time during the playout, not just at the end
when the evaluation is invoked, it can be determined that a player has a forced
win it would be a shame to ignore this important information. But it is not cheap
to query the tablebase so the multiple queries could prove to be too expensive. As
it turns out the advantage of immediately recognizing the forced win overshadows
the cost of the queries and so checking the tablebase after every move in the
playout is to be preferred. This is not entirely surprising because in a similar
way with both Havannah and Breakthrough we have shown it is preferable to
detect a win-in-1 and make that move during a playout rather than just make a
random move [2,4].

The other place to consider querying the tablebase is during tree expansion.
When expanding a node in the MCTS tree, if the tablebase shows that a child
node allows a forced win by the opponent there is no need to add the node to
the tree as a player will never select a move that allows the opponent to win.
A simplified version of this is already done in Wanderer in order to aid the
MCTS solver: if a position is found that allows a win-in-1 by the opponent (or
an easy to see win-in-3) then that child is not added to the tree.

But querying the tablebase at every node creation can be very slow. Our
tests show that given a fixed amount of time the size of the tree we are able to
create when doing these queries is less than half the size than when we do not
make the queries. Further, the tests show that this is too high a price to pay and
the version of Wanderer without the queries easily outperforms the one with
them under normal time constraints (see Table 2 in Sect. 4).

It is possible that a forced win for White requiring pieces in the top 5 rows
can actually be a shorter effective win than a forced win for White only requiring
pieces in the top 4 rows, and likewise an effective forced win requiring all 6 rows
can be a shorter forced win than a forced win requiring fewer rows. Since the
tablebase only holds entries for all forced wins located 5 rows or less from the
winning row, it is possible that a forced win requiring all 6 rows, which is not
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contained within the tablebase due to size and time limitations, could be a better
effective forced win. The best forced win requiring pieces located 6 rows from
winning would be at least an effective win in nine moves, so only effective forced
wins in the tablebase that are nine moves or less are considered to be reliable
forced wins when the tablebase is queried.

We are also interested in solving Breakthrough positions with an ultimate
goal of solving 6× 6 Breakthrough. So far the best results along these lines are
by [6] where they solve 5 × 6 Breakthrough. When trying to solve positions the
faster we can eliminate nodes, the better. In this case it is more important to
prove and remove nodes quickly than to find promising moves. Our tests show
that by querying the tablebase at the time of node creation and not adding losing
nodes we can solve positions eight or more times faster and use comparably less
RAM.

4 Results

In order to gauge any change in performance we ran a number of tests that
are summarized in Table 2. TBnrows denotes a version of Breakthrough using a
tablebase that checks n or fewer rows and noTB represents a version of Break-
through using no tablebases at all. TBtree denotes a version of Wanderer that
queries the 4-row tablebase both in the random playouts and when adding nodes
to the tree. None of the other versions check during node expansion.

Tests showed that versions of Wanderer that use the tablebase performed
considerably better than the version that did not. Additionally we found that,
despite the slowdown required to make additional queries to the tablebase, Wan-
derer performed best when making use of the 4 or 5-row tablebase, while the
5-row tablebase did not seem to show significant game playing improvement over
the 4-row tablebase.1 Test #7 shows that querying the tablebase when building
the tree is too expensive for real-time play.

When trying to solve positions, however, querying the tablebase when build-
ing the tree is fruitful. In order to aid in the solving, we made some plain mod-
ifications to Wanderer (mainly in terms of its evaluation function) and found
that adding tablebase queries as the tree is being built reduces the solving times
by at least a factor of six. We have been able to solve every position we have tried
6 moves from the beginning of the game, most positions 5 moves from the start
of the game, and many from 4 moves. We have not found any positions after just
3 moves that we can solve, indicating we are still some distance from actually
solving 6× 6 Breakthrough. Our hope is to be able to solve 6× 6 Breakthrough
by simply using existing tools of tablebases and Wanderer.

1 Time and space requirements prevented us from creating a complete 5-row tablebase
so we created an abbreviated version where we further restricted the number of pieces
on the board.
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Table 2. Test results with 6× 6 breakthrough

Test # Player A Player B Player A white Player B white Player A vs. player B

1 noTB noTB 124–76 127–73 197–203

2 TB3rows noTB 157–43 65–135 292–108

3 TB4rows noTB 173–27 38–162 335–65

4 TB5rows noTB 182–18 35–165 347–53

5 TB4rows TB3rows 175–25 77–123 298–102

6 TB5rows TB4rows 132–68 127–73 205–195

7 TB4rows TBtree 159–41 96–104 263–137

5 Conclusions and Future Work

We have shown that incomplete tablebases can significantly improve the perfor-
mance of a 6 × 6 Breakthrough playing program. Even a straightforward 3-row
tablebase provides significant improvement and adding a 4th row improves quite
a bit more. We were unable to complete a full 5-row tablebase, but we were still
a bit surprised that adding the partial 5th row did not improve the program.
This point requires further research.

Ultimately we want to extend these ideas to 8 × 8 Breakthrough and improve
Wanderer, our competitive program. The increase in size from 6 × 6 to 8 × 8
provides some difficulties. We can produce a 3-row tablebase and expect some
improvement from that, but a complete 4-row tablebase is just too big. As a
result, we plan to create a 4 × 6 tablebase and query that on both sides of the
8 × 8 board.

Finally, though we are still some distance from solving 6× 6 Breakthrough we
conjecture that it is a win for White since all reasonable positions that we have
solved after 4 or 5 opening moves have proven to be wins for White. This goes
against the opinion of most Breakthrough players because (1) 5× 5 Breakthrough
is a win for Black and (2) there are a number of common positions reached in
competitive 8 × 8 Breakthrough games where Black has the forced win.
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