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Preface

This book contains the papers of the 9th Computer and Games Conference (CG 2016)
held in Leiden, The Netherlands. The conference took place from June 29 to July 1,
2016, in conjunction with the 19th Computer Olympiad and the 22nd World
Computer-Chess Championship.

The Computers and Games Conference series is a major international forum for
researchers and developers interested in all aspects of artificial intelligence and computer
game playing. During the Leiden conference, a Workshop on Neural Networks in Games
was organized; the exciting results on Go from 2015–2016 were in everybody’s mind.
Moreover, there was an invited talk by Aja Huang (Google DeepMind) on Alpha Go,
titled “Alpha Go: Combining Deep Neural Networks with Tree Search.” Earlier confer-
ences took place in Tsukuba (1998), Hamamatsu (2000), Edmonton (2002), Ramat-Gan
(2004), Turin (2006), Beijing (2008), Kanazawa (2010), and Yokohama (2013).

The Program Committee (PC) was pleased to see that so much progress was made in
new games and that new techniques were added to the recorded achievements. In this
conference, 30 papers were submitted. Each paper was sent to at least three reviewers.
If conflicting views on a paper were reported, the reviewers themselves arrived at a
final decision. With the help of external reviewers (see after the preface), the PC
accepted 20 papers for presentation at the conference and publication in these pro-
ceedings. As usual we informed the authors that they submitted their contribution to a
post-conference editing process. The two-step process is meant (a) to give authors the
opportunity to include the results of the fruitful discussion after the lecture in their
paper, and (b) to maintain the high-quality level of the CG series. The authors enjoyed
this procedure.

The aforementioned set of 20 papers covers a wide range of computer games and
many different research topics. We grouped the topics into the following four main
classes, which determined the order of publication: Monte Carlo Tree Search (MCTS)
and its enhancements (seven papers), concrete games (seven papers), theoretical
aspects and complexity (five papers), and cognition model (one paper). The paper
“Using Partial Tablebases in Breakthrough” by Andrew Isaac and Richard Lorentz
received the Best Paper Award.

We are sure that the readers will enjoy the research efforts presented by the authors.
Below, we introduce them in the topics investigated by brief characterizations of the
papers largely paraphrased by ideas as submitted by the authors, in particular in the
abstract. The aim is to show a connection between the contributions and to provide
insights into the research progress.



Monte Carlo Tree Search

The seven topics discussed in the area of MCTS are as follows (the game area is
mentioned in brackets); Partial Tablebases (Breakthrough), Deep Convolutional Neural
Network (Go), Parameterized Poker Squares (Poker), Robust Exploration (Go),
Pruning Playouts (Havannah), Fast Seed Learning (Go), and Heuristic Function
Evaluation Framework (several games).

“Using Partial Tablebases in Breakthrough” is written by Andrew Isaac and Richard
Lorentz. In the game of Breakthrough the endgame is reached when there are still many
pieces on the board. This means that there are too many possible positions to be able to
construct a reasonable endgame tablebase on the standard 8 � 8 board, or even on a
6 � 6 board. The fact that Breakthrough pieces only move forward allows researchers
to create partial tablebases on the last n rows of each side of the board. The authors
show how this construction results in a much stronger MCTS-based 6 � 6 player and
even allows positions to be solved that would otherwise be out of reach.

“Using Deep Convolutional Neural Networks in Monte Carlo Tree Search” is
authored by Tobias Graf and Marco Platzner. Deep Convolutional Neural Networks
have revolutionized Computer Go. Large networks have emerged as state-of-the-art
models for move prediction and are used not only as stand-alone players but also inside
MCTS to select and bias moves. Using neural networks inside the tree search is a
challenge due to their slow execution time even if accelerated on a GPU. In this paper
the authors evaluate several strategies to limit the number of nodes in the search tree in
which neural networks are used. All strategies are assessed using the freely available
cuDNN library. The authors compare the strategies against an optimal upper bound that
can be estimated by removing timing constraints. They show that the best strategies are
only 50 ELO points worse than this upper bound.

“Monte Carlo Approaches to Parameterized Poker Squares” is written by Todd
Neller, Zuozhi Yang, Colin Messinger, Calin Anton, Karo Castro-Wunsch, William
Maga, Steven Bogaerts, Robert Arrington, and Clay Langley. Parameterized Poker
Squares (PPS) is a generalization of Poker Squares where players must adapt to a point
system supplied at play time and thus dynamically compute highly varied strategies.
The authors detail the top three performing AI players in a PPS research competition,
all three of which make use of a variety of Monte Carlo techniques.

“Monte Carlo Tree Search with Robust Exploration” is authored by Takahisa
Imagawa and Tomoyuki Kaneko. This paper presents a new MCTS method that
focuses on identifying the best move. By minimizing the cumulative regret, UCT has
achieved remarkable success in Go and other games. However, recent studies on
straight-forward regret reveal that there are better exploration strategies. To improve the
current performance, a leaf to be explored is determined not only by the mean but also
by the whole reward distribution. The authors adopt a hybrid approach to obtain
reliable distributions. A negamax-style backup of reward distributions is used in the
shallower half of a search tree, and UCT is adopted in the rest of the tree. Experiments
on synthetic trees show that the presented method outperformed UCT and other similar
methods, except for trees having uniform width and depth.
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“Pruning Playouts in Monte Carlo Tree Search for the Game of Havannah” is
written by Joris Duguépéroux, Ahmad Mazyad, Fabien Teytaud, and Julien Dehos.
MCTS is a popular technique for playing multi-player games. In the paper, the authors
propose a new method to bias the playout policy of MCTS. The idea is to prune the
decisions that seem “bad” (according to the previous iterations of the algorithm) before
computing each playout. Thus, the method evaluates the estimated “good” moves more
precisely. The improvement is tested for the game of Havannah and compared with
several classic improvements. The method outperforms the classic version of MCTS
(with the RAVE improvement) and the different playout policies of MCTS that have
been submitted to experiments.

“Fast Seed-Learning Algorithms for Games” is authored by Jialin Liu, Olivier
Teytaud, and Tristan Cazenave. Recently, a methodology was presented for boosting
the computational intelligence of randomized game-playing programs. The authors
propose faster variants of these algorithms, namely, rectangular algorithms (fully
parallel) and bandit algorithms (faster in a sequential setup). They check the perfor-
mance on several board games and card games. In addition, in the case of Go, they
check the methodology when the opponent is completely distinct to the opponent used
in the training.

“Heuristic Function Evaluation Framework” is written by Nera Nešić and Stephan
Schiffel. The authors present a heuristic function evaluation framework that allows one
to quickly compare a heuristic function’s output with benchmark values that are pre-
computed for a subset of positions in the state space of the game. The framework
reduces the time to evaluate a heuristic function drastically while also providing some
insight into where the heuristic is performing well or below par. The authors analyze
the feasibility of using MCTS to compute benchmark values instead of relying on game
theoretic values that are hard to obtain in many cases. They also propose several
metrics for comparing heuristic evaluations with benchmark values and discuss the
feasibility of using MCTS benchmarks with those metrics.

Concrete Games

Seven papers discussed six concrete games. They are: 2048, Werewolf Game (two
articles), Mastermind, Domineering, Reverse Hex, and Computer-Aided Go.

“Systematic Selection of N-tuple Networks for 2048” is authored by Kazuto Oka
and Kiminori Matsuzaki. The puzzle game 2048 is a single-player stochastic game
played on a 4 � 4 grid. It is the most popular game among similar slide-and-merge
games. One of the strongest computer players for 2048 uses temporal difference
learning (TD learning) with N-tuple networks. Here, it matters a great deal how to
design the N-tuple networks. In the paper, the authors thoroughly study the N-tuple
networks for the game 2048. In the first set of experiments, they conduct TD learning
by selecting 6- and 7-tuples exhaustively, and evaluate the usefulness of those tuples.
In the second set of experiments, they conduct TD learning with high-utility tuples,
varying the number of tuples. The best player with ten 7-tuples achieves good results. It
utilizes no game-tree search and plays a move in about 12 microseconds.
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“Human-Side Strategies in the Werewolf Game Against the Stealth Werewolf
Strategy” is written by Xiaoheng Bi and Tetsuro Tanaka. The werewolf game contains
unique features, such as persuasion and deception, which are not included in games that
have been previously studied in AI research. The authors concentrate on a
werewolf-side strategy called “stealth werewolf.” With this strategy, each of the
werewolf-side players behaves like a villager, and the player does not pretend to have a
special role. Even though the strategy is thought to be suboptimal, this has not been
proved. The authors restrict the human-side strategies such that (1) the seer reveals
his/her role on the first day, (2) the bodyguard never reveals his/her role, and (3) the
advantage of the werewolves in determining the player to be eliminated by vote is
nullified. They calculate the e-Nash equilibrium of strategies for both sides under these
three restrictions, and discuss implications.

“Werewolf Game Modeling Using Action Probabilities Based on Play Log Anal-
ysis” is authored by Yuya Hirata, Michimasa Inaba, Kenichi Takahashi, Fujio Toriumi,
Hirotaka Osawa, Daisuke Katagami, and Kousuke Shinoda. In the study, the authors
construct a non-human agent that can play the werewolf game (i.e., AI wolf) with the
aims of creating more advanced intelligence and acquiríng more advanced communi-
cation skills for AI-based systems. They build a behavioral model using information
regarding human players and the decisions made by such players; all such information
is obtained from play logs of the werewolf game. To confirm the model, simulation
experiments are conducted of the werewolf game using an agent based on the proposed
behavioral model, as well as a random agent for comparison. An 81.55% coincidence
ratio of agent behavior versus human behavior is obtained.

“Nash Equilibrium in Mastermind” is written by François Bonnet and Simon
Viennot. Mastermind is a famous two-player deduction game. A Codemaker chooses a
secret code and a Codebreaker tries to guess this secret code in as few guesses as
possible, with feedback information after each guess. Many existing works have
computed optimal worst-case and average-case strategies of the Codebreaker, assuming
that the Codemaker chooses the secret code uniformly at random. However, the
Codemaker can freely choose any distribution probability on the secret codes. An
optimal strategy in this more general setting is known as a Nash Equilibrium. In the
current research, the authors compute such a Nash Equilibrium for all instances of
Mastermind up to the most classic instance of four pegs and six colors, showing that the
uniform distribution is not always the best choice for the Codemaker. They also show
the direct relation between Nash Equilibrium computations and computations of
worst-case and average-case strategies.

“11 � 11 Domineering Is Solved: The First Player Wins” is authored by Jos
Uiterwijk. The author has developed a program called MUDoS (Maastricht University
Domineering Solver) that solves Domineering positions in a very efficient way.
MUDoS enables the solution of currently known positions (up to the 10 � 10 board)
much quicker (measured in number of investigated nodes) than has happened to date.
More importantly, MUDoS enables the solution of the 11 � 11 Domineering board.
This board was until now far out of reach of previous Domineering solvers. The
solution needed the investigation of 259,689,994,008 nodes, using almost half a year of
computation time on a single simple desktop computer. The results show that under
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optimal play the first player wins, irrespective of whether Vertical or Horizontal starts
the game. In addition, several other boards hitherto unsolved are also solved.

“A Reverse Hex Solver” is written by Kenny Young and Ryan Hayward. The
authors present Solrex, an automated solver for the game of Reverse Hex. Reverse Hex,
also known as Rex or Misère Hex, is the variant of the game of Hex in which the player
who joins his/her two sides loses the game. Solrex performs a mini-max search of the
state space using Scalable Parallel Depth First Proof Number Search, enhanced by the
pruning of inferior moves and the early detection of certain winning strategies. Solrex
is implemented on the same code base as the Hex program Solver, and can solve
arbitrary positions on board sizes up to 6 � 6, with the hardest position taking less than
four hours on four threads.

“Computer-Aided Go: Chess as a Role Model” is authored by Ingo Althöfer.
Recently, computers have gained strength in the Asian board game Go. Similar to the
experience in Chess some 15–30 years ago, teams with humans and computers may be
much stronger than each of their Go components. The paper claims that time is ripe for
computer-aided Go on a large scale, although so far neither most users nor the Go
programmers have thought about it. A main part of the paper describes successful
pioneers in playing Go with computer help. Progress in computer-aided Go may also
lead to progress in human Go and in computer Go itself.

Theory and Complexity

The five topics discussed are: Polyhedral Uncertainty Set (two-person zero-sum
games), A Class Grammar (General Games), the Number of Legal Go Positions (Go),
A Googleplex of Games (Go), and Majority Systems (Subtraction Game).

“Quantified Integer Programs with Polyhedral Uncertainty Set” is written by
Michael Hartisch, Thorsten Ederer, Ulf Lorenz, and Jan Wolf. Quantified Integer
Programs (QIPs) are integer programs with variables being either existentially or
universally quantified. They can be interpreted as a two-person zero-sum game with an
existential and a universal player, where the existential player tries to meet all con-
straints and the universal player intends to force at least one constraint to be not
satisfied. Originally, the universal player is only restricted to set the universal variables
within their upper and lower bounds. This idea is extended by adding constraints for
the universal variables, i.e., restricting the universal player to some polytope instead
of the hypercube created by bounds. It is also shown how this extended structure can be
reduced from a polynomial-time algorithm to a QIP.

“A Class Grammar for General Games” is authored by Cameron Browne. While
there exist a variety of game description languages (GDLs) for modeling various
classes of games, the GDLs discussed are aimed at game playing rather than the more
particular needs of game design. The paper describes a new approach to general game
modeling that arose from this need. A class grammar is automatically generated from a
given library of source code, i.e., from the constructors and associated parameters
found along its class hierarchy, to give a context-free grammar that provides access to
the underlying code while hiding its implementation details.
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“The Number of Legal Go Positions” is written by John Tromp. The number of legal
19 � 19 Go positions has been determined as

2081681993819799846994786333448627702865224
5388453054842563945682092741961273801537852
5648451698519643907259916015628128546089888
314427129715319317557736620397247064840935

which is approximately 2 � 10170. This is roughly 1.2% of the total number of positions,
being 319�19. The proof uses a correspondence between legal positions and paths
through a graph of so-called border states. It requires considerable computing power,
taking over 250,000 CPU-hours and 30 PB of disk IO.

“A Googolplex of Go Games” is authored by Matthieu Walraet and John
Tromp. The authors establish the existence of 1010

100
Go games on the 19 �19 board.

Players can produce very long games: They fill in their eyes and continue capturing
each other, restricted only by the superko rule that forbids repeating the whole board
position. The challenge in proving a lower bound is to make a single game as long as
possible, by visiting as many of the roughly 2 � 10170 legal positions as possible. It will
then turn out that there are sufficient choices along the way to lift the game length into
the exponent.

“An Analysis of Majority Systems with Dependent Agents in a Simple Subtraction
Game” is written by Raphael Thiele and Ingo Althöfer. It is common knowledge that a
majority system is typically better than its components, when the components are
stochastically independent. However, in practice the independency assumption is often
not justified. The authors investigate systems of experts that are constituted by couples
of dependent agents. Based on recent theoretical work, they analyze their performance
in a simple two-player subtraction game. It turns out that systems with negatively
correlated couples perform better than those with a positive correlation within the
couples. From computer chess practice, it was known that systems of very positively
correlated bots were not so successful.

Cognition Model

One paper is classified under the heading Cognition Model. Still, it is an important
topic that clearly belongs to this conference.

“Do People Think Like Computers?” is authored by Bas van Opheusden, Zahy
Bnaya, Gianni Galbiati, and Wei Ji Ma. From computer-chess practice it is known that
systems of rather positively correlated bots are not always successful, since they run the
risk of missing an important variation. At first, human cognition inspired the earliest
algorithms for game-playing computer programs. Then, however, the studies of human
and computer game play quickly diverged: the artificial intelligence (AI) community
focused on theory and techniques to solve games, while behavioral scientists empiri-
cally examined the specific topic of simple decision-making in humans. In this paper,
the authors combine concepts and methods from the two fields to investigate whether
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human and AI players take similar approaches in an adversarial combinatorial game.
The authors develop and compare several models that capture human behavior, and
demonstrate that the models can predict behavior in two related tasks. At the end, they
use the models to describe what makes a strong human player.

The book would not have been produced without the help of many persons. In
particular, we would like to mention the authors and the reviewers for their
help. Moreover, the organizers of the three events in Leiden (see the beginning of this
preface) have contributed substantially by bringing the researchers together. Without
much emphasis, we recognize the work by the various committees of CG 2016 as
essential for this publication. One exception is made for Joke Hellemons, who is
gratefully thanked for all services to our games community. Finally, the editors happily
recognize the generous sponsors: NWO Exact Sciences, Museum Naturalis, Surf-
SARA, Municipality of Leiden, Digital Games Technology, Faculty of Science, ICGA,
ISSC, the Leiden Institute of Advanced Computer Science, and the Leiden Centre of
Data Science.

September 2016 Aske Plaat
Jaap van den Herik

Walter Kosters
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The Advances in Computer Chess/Games Books

The series of Advances in Computer Chess (ACC) Conferences started in 1975 as a
complement to the World Computer-Chess Championships, for the first time held in
Stockholm in 1974. In 1999, the title of the conference changed from ACC into ACG
(Advances in Computer Games). Since 1975, fourteen ACC/ACG conferences have
been held. Below we list the conference places and dates together with the publication;
the Springer publication is supplied with an LNCS series number.

London, England (1975, March)
Proceedings of the 1st Advances in Computer Chess Conference (ACC1)
Ed. M.R.B. Clarke
Edinburgh University Press, 118 pages.

Edinburgh, UK (1978, April)
Proceedings of the 2nd Advances in Computer Chess Conference (ACC2)
Ed. M.R.B. Clarke
Edinburgh University Press, 142 pages.

London, England (1981, April)
Proceedings of the 3rd Advances in Computer Chess Conference (ACC3)
Ed. M.R.B. Clarke
Pergamon Press, Oxford, UK, 182 pages.

London, England (1984, April)
Proceedings of the 4th Advances in Computer Chess Conference (ACC4)
Ed. D.F. Beal
Pergamon Press, Oxford, UK, 197 pages.

Noordwijkerhout, The Netherlands (1987, April)
Proceedings of the 5th Advances in Computer Chess Conference (ACC5)
Ed. D.F. Beal
North Holland Publishing Comp., Amsterdam, The Netherlands, 321 pages.

London, England (1990, August)
Proceedings of the 6th Advances in Computer Chess Conference (ACC6)
Ed. D.F. Beal
Ellis Horwood, London, UK, 191 pages.

Maastricht, The Netherlands (1993, July)
Proceedings of the 7th Advances in Computer Chess Conference (ACC7)
Eds. H.J. van den Herik, I.S. Herschberg, and J.W.H.M. Uiterwijk
Drukkerij Van Spijk B.V., Venlo, The Netherlands, 316 pages.

Maastricht, The Netherlands (1996, June)
Proceedings of the 8th Advances in Computer Chess Conference (ACC8)
Eds. H.J. van den Herik and J.W.H.M. Uiterwijk
Drukkerij Van Spijk B.V., Venlo, The Netherlands, 332 pages.
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Paderborn, Germany (1999, June)
Proceedings of the 9th Advances in Computer Games Conference (ACG9)
Eds. H.J. van den Herik and B. Monien
Van Spijk Grafisch Bedrijf, Venlo, The Netherlands, 347 pages.

Graz, Austria (2003, November)
Proceedings of the 10th Advances in Computer Games Conference (ACG10)
Eds. H.J. van den Herik, H. Iida, and E.A. Heinz
Kluwer Academic Publishers, Boston/Dordrecht/London, 382 pages.

Taipei, Taiwan (2005, September)
Proceedings of the 11th Advances in Computer Games Conference (ACG11)
Eds. H.J. van den Herik, S-C. Hsu, T-s. Hsu, and H.H.L.M. Donkers
Springer Verlag, Berlin/Heidelberg, LNCS 4250, 372 pages.

Pamplona, Spain (2009, May)
Proceedings of the 12th Advances in Computer Games Conference (ACG12)
Eds. H.J. van den Herik and P. Spronck
Springer Verlag, Berlin/Heidelberg, LNCS 6048, 231 pages.

Tilburg, The Netherlands (2011, November)
Proceedings of the 13th Advances in Computer Games Conference (ACG13)
Eds. H.J. van den Herik and A. Plaat
Springer Verlag, Berlin/Heidelberg, LNCS 7168, 356 pages.

Leiden, The Netherlands (2015, July)
Proceedings of the 14th Advances in Computer Games Conference (ACG14)
Eds. A. Plaat, H.J. van den Herik, and W. Kosters
Springer, Heidelberg, LNCS 9525, 266 pages.

Organization XVII



The Computers and Games Books

The series of Computers and Games (CG) Conferences started in 1998 as a
complement to the well-known series of conferences in Advances in Computer Chess
(ACC). Since 1998, nine CG conferences have been held. Below we list the conference
places and dates together with the Springer publication (LNCS series number).

Tsukuba, Japan (1998, November)
Proceedings of the 1st Computers and Games Conference (CG98)
Eds. H.J. van den Herik and H. Iida
Springer Verlag, Berlin/Heidelberg, LNCS 1558, 335 pages.

Hamamatsu, Japan (2000, October)
Proceedings of the 2nd Computers and Games Conference (CG2000)
Eds. T.A. Marsland and I. Frank
Springer Verlag, Berlin/Heidelberg, LNCS 2063, 442 pages.

Edmonton, Canada (2002, July)
Proceedings of the 3rd Computers and Games Conference (CG2002)
Eds. J. Schaeffer, M. Müller, and Y. Björnsson
Springer Verlag, Berlin/Heidelberg, LNCS 2883, 431 pages.

Ramat-Gan, Israel (2004, July)
Proceedings of the 4th Computers and Games Conference (CG2004)
Eds. H.J. van den Herik, Y. Björnsson, and N.S. Netanyahu
Springer Verlag, Berlin/Heidelberg, LNCS 3846, 404 pages.

Turin, Italy (2006, May)
Proceedings of the 5th Computers and Games Conference (CG2006)
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Abstract. In the game of Breakthrough the endgame is reached when
there are still many pieces on the board. This means there are too many
possible positions to be able to construct a reasonable endgame table-
base on the standard 8× 8 board, or even on a 6× 6 board. The fact
that Breakthrough pieces only move forward allows us to create partial
tablebases on the last n rows of each side of the board. We show how
doing this enables us to create a much stronger MCTS based 6× 6 player
and allows us to solve positions that would otherwise be out of reach.

1 Introduction

Recently the game of Breakthrough has been attracting attention among
researchers [1,4,6,7]. It has a simple set of rules, an interesting mix of strategy and
tactics, and scales easily to different sizes. In this work we describe the construc-
tion of endgame tablebases for Breakthrough, focusing on boards of size 6× 6.

Endgame tablebases are usually full board databases of a game at a stage
when very few pieces remain and are typically constructed using retrograde
analysis [8]. For example, in chess Nalimov tablebases have been used and
expanded for many years now [5]. In Breakthrough, however, the endgame is
reached while there are still many pieces on the board. Breakthrough is normally
played on an 8× 8 board and typically the endgame is reached while more than
half the pieces are still on the board. With 8 or fewer pieces per player on a 64
square board there are simply too many legal positions to consider constructing
a normal tablebase. In fact, even on a 6× 6 board it is already impractical.

The rules of Breakthrough require that pieces always move towards the goal.
Because of the forward running of pieces it is possible to recognize forced wins
in positions by just looking at rows near the goal, that is, rows near the end
of the board. The forward running also allows for a kind of iterative retrograde
approach to constructing the tablebase. Given a tablebase containing all wins for
White in the last n− 1 rows we can use it to construct wins for White from the
last n rows. Once constructed we can use the tablebases to improve the play of a
Breakthrough playing program and use them to solve positions on smaller boards
by simply applying the game playing program enhanced with the tablebase.

In Sect. 2 we briefly describe Breakthrough and give some examples of the
endgame. Section 3 is where we describe our notion of tablebases, how we build
them, and how we use them in an MCTS based Breakthrough player. In Sect. 4
c© Springer International Publishing AG 2016
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we show what we were able to accomplish using tablebases in 6 × 6 Break-
through and Sect. 5 summarizes our results and points towards future directions
of research.

2 The Game of Breakthrough and Its Endgame

Breakthrough is usually played on an 8× 8 board but our studies will focus on
the smaller 6 × 6 board. Each player begins with 12 pieces as shown on the left
of Fig. 1. White pieces move one square at a time either diagonally or vertically
to unoccupied squares and towards row 6, the goal row. White may capture a
black piece if the piece is located where a diagonal legal move could be made –
as a chess pawn might capture. A white piece cannot move straight forward if
that square is occupied by either a white or a black piece. Black moves similarly
in the other direction. The first player to have a piece reach the goal row or to
capture all of the enemy pieces is the winner. White plays first.

Fig. 1. Sample 6× 6 breakthrough positions.

The right of Fig. 1 shows a position in the middle of a game. If it is White’s
turn to play, the piece on square b4 can capture the black piece on a5 or move
to b5 or c5. If Black is to move, the black piece on square e4 can move to either
d3 or f3 but not e3.

To get a feel for the number of endgame positions possible in Breakthrough
we consider situations with six or fewer pieces for each player, with White to
move, and note that we are only interested in positions where there is no white
piece on either of the last two rows (else the game is over or White has a win-in-1)
and there is no black piece on the first row (else Black has already won). In the
case of a 6 × 6 board, for each placement of 1 through 6 white pieces in the first
4 rows, we place 6 black pieces on the last 5 rows on the unoccupied squares. We
underestimate the true total by assuming that all white pieces occupy squares
that a black piece might also occupy, even though this is not true if a black piece
is on one of its first two rows. It leads us to Eq. (1) as an estimate of the number
of positions possible with six or fewer pieces of each color.
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6∑

i=1

((
24
i

)
×

6∑

k=1

(
30 − i

k

))
≈ 4.03 × 1010 (1)

Similarly, Eq. (2) estimates the number of endame positions on an 8× 8 board
with no more than 8 pieces of any color.

8∑

i=1

((
48
i

)
×

8∑

k=1

(
56 − i

k

))
≈ 2.25 × 1017 (2)

Both of the above counts include illegal positions, e.g., all of the white pieces
are on the first 3 rows of column a and b. However, the number of illegal positions
is quite small given how few pieces are on the board and so the estimates given
above are reasonable.

3 Endgame Tablebases

Any board configuration with White to move that has a white piece on row 5 is
a win-in-1 because White can simply move to the goal row. An effective win-in-3
is a board configuration where White can make a move that preserves a win-in-
1 against any black defense. This either means that Black has no defense and
White will win on the next move or Black can prevent the immediate win but
White can follow with a move that restores it.

For example, in the position on the left of Fig. 2 White has a win-in-3 by
moving 1. d4–d5. Black must continue to defend the win-in-1 by capturing the
advanced piece, which White in turn recaptures until White finally lands on row
5 and is invulnerable to capture. Thus the win-in-3 actually takes a total of 7
moves.

The position in the middle of Fig. 2 shows an effective win-in-5 that actually
requires 9 moves to complete. The idea is that White must clear the Black d6
piece so that White will be able to play f3–f4–e5–f6. After 1. c3× b4 Black is
forced to play 2. c5× b4 else White wins by moving to or capturing a5. White
then plays 3. c4–c5, Black is forced to capture and White wins with the f4 piece.
Since Black must reply to White’s first two moves, it is an effective win-in-5.

The rightmost position of Fig. 2 shows an effective win-in-9. It is a win-in-9
because two preparatory moves need to be made in the process of advancing to
the goal. The main line is: 1. b3× c4, 2. e5 × d4, 3. c3×d4, 4. a5–a4, 5. f3–e4, 6.
f5× e4, 7. e3–f4, 8. a4–a3, 9. f4–f5, 10. e6× f5, 11. d4–d5, 12. c6×d5, 13. c4× d5,
14. a3–a2, 15. d5–e6. We can see that most of the moves are either forcing moves
or moves advancing towards the goal, but moves 1 and 7 are extra moves needed
to prepare for the breakthrough at d5.

Using this concept of a forced win, where defensive moves by the opponent
are not counted towards the move count, board configurations can be stored in
a tablebase along with their effective number of moves required to win. During
game play a player can consult the tablebase to determine if a forced win exists
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Fig. 2. Forced wins.

and in how many effective moves. By comparing any forced wins White or Black
may have it is possible to determine who will win the game even with a significant
portion of the game left to play.

The rules of Breakthrough require pieces to move in one direction up or down
the board, so once an opponent’s piece has progressed beyond a certain row, it
is no longer defensively relevant to a win involving pieces in rows that it has
already passed. For example, a forced win that only requires White to use pieces
in the top 3 rows is certain to be an effective forced win-in-3 because every move
threatens a win-in-1 and so must be responded to. A forced win that requires
White to use pieces in the top 4 rows must be at least a forced win-in-5, since
there will be at least one time when white moves from row 3 to row 4 and after
Black answers at best a win-in-3 will have been created. In this case if Black has
an effective win-in-3 moves (or less) after White makes its move, Black will have
the winning position.

Any board configuration can be represented as an integer using Gödel num-
bering, so if a certain configuration can be identified as a forced win, the integer
value of that configuration can be added to a database of forced wins, along
with any other information related to the configuration, such as the effective
number of moves required or the next move the player needs to make to achieve
the forced win. If every forced win can be identified, the game itself would be
solved. To limit the size of the tablebase of forced wins to be solely resident in
RAM and to be able to construct the tablebase in a reasonable amount of time,
only forced wins that involve pieces located on the last n rows, for some suitable
n, are included. During game play, the current board state in those n rows can
be converted to its integer value and the endgame tablebase can be consulted to
determine if a forced win has been achieved.

3.1 Building an Endgame Tablebase for Breakthrough

Below we discuss the following three topics. Building an endgame tablebase for
Breakthrough in Sect. 3.1; n x 6 tablebases in Sect. 3.2; using endgame tablebases
in Sect. 3.3.
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To construct a tablebase for 6× 6 Breakthrough that is limited in size and
can be quickly queried, the top 3 rows are first examined to identify any effec-
tive forced wins-in-3. This is done by iterating through all valid configurations
of pieces that may exist in the top 3 rows. Assuming White to move, any white
pieces in row 6 can be skipped, since that is already a win, as well as any white
pieces in row 5 as that is a trivial win-in-1. Only configurations where there are
some white pieces on row 4 and Black pieces on any of the top 2 rows need to be
examined as possible forced wins. We start with 1 white piece and build up to
more pieces. Configurations that either have White to move to row 5 and where
it is invulnerable to capture, or that will eventually lead to White being able to
move to row 5 and be invulnerable to capture as the result of responses by Black
get added to the tablebase until all possible forced wins in 3 moves are found.

Once all forced wins only requiring pieces that belong to the top three rows
are found, this process is repeated for the all possible combinations within the
top 4 rows, skipping any forced wins already found in the top 3 rows from the
previous step. We repeat the process similarly for the top five rows.

The order the pieces are placed goes from fewer to more white pieces and
within a fixed number of white pieces from higher numbered to lower numbered
rows. This allows us to fill the tablebase in a single pass.

In order for a configuration to be added to the tablebase it has to be deter-
mined if White has a forced win. For every possible white move, all possible
black responses are tested. For every black response, if White has a forced win
that is already in the tablebase the configuration is added to the tablebase.

To determine the total number of moves required for the forced win once
it is identified it is assumed that White will choose the move that leads to the
shortest previously found forced win, while Black will choose the move that leads
to longest inevitable loss. In order to determine the effective number of moves
of a forced win, an imaginary offensive move by Black is applied. If making the
offensive move by Black results in a better forced win for White, it is assumed
that Black instead will choose to make a defensive move. If the effective number of
moves for a forced win is the same whether Black makes a defensive or offensive
move, it is assumed that Black will use the opportunity to make an offensive
move over a defensive move.

For every board configuration entered into the tablebase, the symmetric con-
figuration is added as well. An important feature of this optimization when
combined with the order that white pieces are added to the board as described
above is that all forced wins get added to the tablebase in a single run. Without
the addition of symmetries or by using a poor ordering of positions, forced wins
may go undetected when the forced win testing program is run a single time,
requiring a second run (or more) to find the remaining wins.

3.2 n × 6 Tablebases

A summary of the complete tablebase that we created for 6 × 6 Breakthrough
can be seen in Table 1. Notice that there are no wins-in-3 for the 4-row tablebase.
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Table 1. Tablebase contents

Rows 3 4

Wins-in-3 227,547 0

Wins-in-5 0 19,888,955

Wins-in-7 0 642, 417

Wins-in-9 0 6,170

Wins-in-11 0 190

Wins-in-13 0 5

Wins-in-15 0 0

Total forced wins 227, 547 20,537,737

Time to generate 15 s 2.5 h

This is because it is impossible for a White piece on row 3 or lower to affect such
a fast win.

In contrast, it is possible to have a win-in-5 that involves row 2 or 1. Consider
the first diagram in Fig. 3. After White has moved d2–d3 Black is in zugwang
and once Black moves White has a straightforward short win. It is because of
the zugzwang that White is suddenly presented with a shorter win than was
available before Black moved.

The right side of Fig. 3 shows one of the longest wins in the tablebase. Being
a win-in-13 means that White will make a total of 7 moves. Three of the moves
advance the piece from row 3 to row 6 and the other 4 moves aid in this advance-
ment.

It is worth pointing out that Black actually has a shorter win in this position
but the tablebase only reports wins for White. When the tablebase is actually
used, after finding the win-in-13 for White it will make White’s first move and
query the database to see if Black indeed has a faster win. Here is a summary of
White’s win-in-13 with a shorter win for Black pointed out. 1. e3–e4, (the key to
the winning attack is to breakthrough using the c4 square) 2. f5× e4, 3. f3 × e4,

Fig. 3. 5 row win-in-5 (left) and 5 row win-in-13 (right).
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4. f4–f3, 5. a3–a4, 6. c5–d4, 7. a4×b5, 8. a6 ×b5, (a forced move by Black
and does not count towards the mate count) 9. b3–b4, (as far as the tablebase is
concerned, Black is now in zugzwang, but in this particular board position Black
can make a move that threatens a win that is shorter than White’s) 10. d4–e3,
11. b4–a5, 12. b6× a5, (forced) 13. d3–d4, and now White has an obvious win-
in-3 that completes the original win-in-13, though Black has an equally obvious
win-in-3 and so would actually win this game.

3.3 Using Endgame Tablebases

There are a number of natural places in an MCTS based program one might
use tablebases. We have an EPT (early playout termination [3]) program named
Wanderer [4] that plays the game of Breakthrough and we use it to study the
various options.

In the spirit of EPT it makes sense to access the tablebases during the random
playouts. The simplest approach would be to augment the evaluation function
to test if either player has a faster forced win than the other and if so, return
accordingly. In contrast, if at any time during the playout, not just at the end
when the evaluation is invoked, it can be determined that a player has a forced
win it would be a shame to ignore this important information. But it is not cheap
to query the tablebase so the multiple queries could prove to be too expensive. As
it turns out the advantage of immediately recognizing the forced win overshadows
the cost of the queries and so checking the tablebase after every move in the
playout is to be preferred. This is not entirely surprising because in a similar
way with both Havannah and Breakthrough we have shown it is preferable to
detect a win-in-1 and make that move during a playout rather than just make a
random move [2,4].

The other place to consider querying the tablebase is during tree expansion.
When expanding a node in the MCTS tree, if the tablebase shows that a child
node allows a forced win by the opponent there is no need to add the node to
the tree as a player will never select a move that allows the opponent to win.
A simplified version of this is already done in Wanderer in order to aid the
MCTS solver: if a position is found that allows a win-in-1 by the opponent (or
an easy to see win-in-3) then that child is not added to the tree.

But querying the tablebase at every node creation can be very slow. Our
tests show that given a fixed amount of time the size of the tree we are able to
create when doing these queries is less than half the size than when we do not
make the queries. Further, the tests show that this is too high a price to pay and
the version of Wanderer without the queries easily outperforms the one with
them under normal time constraints (see Table 2 in Sect. 4).

It is possible that a forced win for White requiring pieces in the top 5 rows
can actually be a shorter effective win than a forced win for White only requiring
pieces in the top 4 rows, and likewise an effective forced win requiring all 6 rows
can be a shorter forced win than a forced win requiring fewer rows. Since the
tablebase only holds entries for all forced wins located 5 rows or less from the
winning row, it is possible that a forced win requiring all 6 rows, which is not
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contained within the tablebase due to size and time limitations, could be a better
effective forced win. The best forced win requiring pieces located 6 rows from
winning would be at least an effective win in nine moves, so only effective forced
wins in the tablebase that are nine moves or less are considered to be reliable
forced wins when the tablebase is queried.

We are also interested in solving Breakthrough positions with an ultimate
goal of solving 6× 6 Breakthrough. So far the best results along these lines are
by [6] where they solve 5 × 6 Breakthrough. When trying to solve positions the
faster we can eliminate nodes, the better. In this case it is more important to
prove and remove nodes quickly than to find promising moves. Our tests show
that by querying the tablebase at the time of node creation and not adding losing
nodes we can solve positions eight or more times faster and use comparably less
RAM.

4 Results

In order to gauge any change in performance we ran a number of tests that
are summarized in Table 2. TBnrows denotes a version of Breakthrough using a
tablebase that checks n or fewer rows and noTB represents a version of Break-
through using no tablebases at all. TBtree denotes a version of Wanderer that
queries the 4-row tablebase both in the random playouts and when adding nodes
to the tree. None of the other versions check during node expansion.

Tests showed that versions of Wanderer that use the tablebase performed
considerably better than the version that did not. Additionally we found that,
despite the slowdown required to make additional queries to the tablebase, Wan-
derer performed best when making use of the 4 or 5-row tablebase, while the
5-row tablebase did not seem to show significant game playing improvement over
the 4-row tablebase.1 Test #7 shows that querying the tablebase when building
the tree is too expensive for real-time play.

When trying to solve positions, however, querying the tablebase when build-
ing the tree is fruitful. In order to aid in the solving, we made some plain mod-
ifications to Wanderer (mainly in terms of its evaluation function) and found
that adding tablebase queries as the tree is being built reduces the solving times
by at least a factor of six. We have been able to solve every position we have tried
6 moves from the beginning of the game, most positions 5 moves from the start
of the game, and many from 4 moves. We have not found any positions after just
3 moves that we can solve, indicating we are still some distance from actually
solving 6× 6 Breakthrough. Our hope is to be able to solve 6× 6 Breakthrough
by simply using existing tools of tablebases and Wanderer.

1 Time and space requirements prevented us from creating a complete 5-row tablebase
so we created an abbreviated version where we further restricted the number of pieces
on the board.
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Table 2. Test results with 6× 6 breakthrough

Test # Player A Player B Player A white Player B white Player A vs. player B

1 noTB noTB 124–76 127–73 197–203

2 TB3rows noTB 157–43 65–135 292–108

3 TB4rows noTB 173–27 38–162 335–65

4 TB5rows noTB 182–18 35–165 347–53

5 TB4rows TB3rows 175–25 77–123 298–102

6 TB5rows TB4rows 132–68 127–73 205–195

7 TB4rows TBtree 159–41 96–104 263–137

5 Conclusions and Future Work

We have shown that incomplete tablebases can significantly improve the perfor-
mance of a 6 × 6 Breakthrough playing program. Even a straightforward 3-row
tablebase provides significant improvement and adding a 4th row improves quite
a bit more. We were unable to complete a full 5-row tablebase, but we were still
a bit surprised that adding the partial 5th row did not improve the program.
This point requires further research.

Ultimately we want to extend these ideas to 8 × 8 Breakthrough and improve
Wanderer, our competitive program. The increase in size from 6 × 6 to 8 × 8
provides some difficulties. We can produce a 3-row tablebase and expect some
improvement from that, but a complete 4-row tablebase is just too big. As a
result, we plan to create a 4 × 6 tablebase and query that on both sides of the
8 × 8 board.

Finally, though we are still some distance from solving 6× 6 Breakthrough we
conjecture that it is a win for White since all reasonable positions that we have
solved after 4 or 5 opening moves have proven to be wins for White. This goes
against the opinion of most Breakthrough players because (1) 5× 5 Breakthrough
is a win for Black and (2) there are a number of common positions reached in
competitive 8 × 8 Breakthrough games where Black has the forced win.
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Abstract. Deep Convolutional Neural Networks have revolutionized
Computer Go. Large networks have emerged as state-of-the-art models
for move prediction and are used not only as stand-alone players but also
inside Monte Carlo Tree Search to select and bias moves. Using neural
networks inside the tree search is a challenge due to their slow execution
time even if accelerated on a GPU. In this paper we evaluate several
strategies to limit the number of nodes in the search tree in which neural
networks are used. All strategies are assessed using the freely available
cuDNN library. We compare our strategies against an optimal upper
bound which can be estimated by removing timing constraints. We show
that the best strategies are only 50 ELO points worse than this upper
bound.

1 Introduction

Deep Convolutional Neural Networks (DCNNs) have changed Computer Go
substantially [5,11,12,14]. They can predict expert moves at such a high qual-
ity that they even can play Go themselves at a reasonable level [14]. Used in
Monte Carlo Tree Search (MCTS) [2] to select and bias moves they can increase
playing strength by hundreds of ELOs. During the writing of this paper Google
DeepMind has released their program AlphaGo [12] which uses neural networks
not only for move prediction but also for positional evaluation. For the first time
in Computer Go their program has beaten a professional player and is going to
challenge one of the best players in the world.

DCNNs achieved remarkable improvements but they pose a challenge for
MCTS as their execution time is too slow to be used in the whole search tree.
While a remedy is to use several GPUs [12] this paper focuses on single GPU
scenarios where not all nodes in the search tree can use the DCNN as a move
predictor. To decide which nodes profit the most from DCNN knowledge several
strategies are possible. This paper evaluates four typical strategies to replace
knowledge from fast classifiers with DCNN predictions. All strategies are assessed
within the same Go program to decide which is best. Moreover, we construct
an upper bound on playing strength by using an equal test environment but
removing timing constraints. We then compare the strategies with this upper
bound to show the loss in playing strength resulting from the use of replacement
strategies.
c© Springer International Publishing AG 2016
A. Plaat et al. (Eds.): CG 2016, LNCS 10068, pp. 11–21, 2016.
DOI: 10.1007/978-3-319-50935-8 2
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The contributions of our paper are as follows.

– We demonstrate that replacing traditional move prediction knowledge in Com-
puter Go programs can yield remarkable improvements in playing strength.

– We investigate the scalability of knowledge in MCTS, i.e., in how far do better
neural networks lead to stronger MCTS-players.

– As DCNNs are too slow to be used in the complete search tree we explore
several strategies to decide which nodes profit the most from DCNNs.

– We look into technical aspects of using GPUs inside MCTS.

The remainder of this paper is structured as follows: In Sect. 2 we describe
the settings and architectures of the deep convolutional neural networks we use
in the paper. In Sect. 3 we outline several replacement strategies for an efficient
application of slow knowledge in MCTS. In Sect. 4 we show the results of sev-
eral experiments regarding the quality of DCNNs and replacement strategies. In
Sect. 5 we present related work. Finally, in Sect. 6 we draw our conclusion and
point to future directions.

2 Deep Convolutional Neural Networks

In this section we outline the Deep Convolutional Neural Networks which are
used in this paper. The architecture of our DCNNs is similar to [11]. We use
several convolutional layers (3, 6 or 12) with 5× 5 filter in the first one and 3× 3
in the others. The width of each layer is 128, 192 or 256. After all convolutional
layers we add an extra 3× 3 convolutional layer with one output feature followed
by a softmax layer. The position is encoded with black to move (if white moves
the colors of the stones are reversed). The 20 input features of the neural network
are:

– Black, White, Empty, Border
– Last 5 moves
– Legality
– Liberties (1, 2, 3, ≥4)
– Liberties after move (1, 2, 3, 4, 5, ≥6)

We used the Caffe framework [10] to train all DCNNs. We trained the networks
with plain SGD with mini-batch size 128 for 3 million iterations (one iteration is
one mini-batch). The learning rate is 0.05 for the first 1.5 million iterations and
then halved for the rest of the training every 500,000 iterations. We used a weight
decay of 1e-6 and initialized all weights with the msra-filler [8]. As dataset of Go
games we used KGS games1 with players having at least 4 dan strength using
only no-handicap games which have at least 150 moves. The positions are split
into a validation set with 1,280,000 positions and a training set with 60,026,402
positions. Positions of both sets are from distinct games. The positions in the
training set are randomly rotated and mirrored to one of 8 possible orientations.

1 http://u-go.net/gamerecords-4d/.

http://u-go.net/gamerecords-4d/
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Fig. 1. Accuracy on validation set during training

Figure 1 shows the accuracy on the validation set during training. Accuracy is
the percentage of positions where the top model prediction equals the move of the
expert. After 1.5, 2.0 and 2.5 million iterations sharp increases in accuracy due
to the learning-rate schedule can be observed. The achieved validation accuracy
after training is comparable to those reached in [11].

3 Integration of DCNNs into MCTS

Deep Convolutional Neural Networks need considerably more computing time
than conventional models used in MCTS. This section surveys several techniques
to include DCNNs into MCTS without hampering the speed of the search.

3.1 Selection Formula

To include knowledge into MCTS we use the following formula which includes
RAVE [6] and progressive bias [3].

(1 − β) · QUct(s, a) + β · QRave(s, a) + K
π(s, a)√
visits(s, a)

where π(s, a) ∈ [0, 1] is the output of the move prediction model.
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3.2 Using GPUs Inside MCTS

To include deep convolutional neural networks into MCTS we make use of the
cuDNN library version 3.02 of Nvidia [4]. The GPU-accelerated library contains
primitives for deep neural networks which are highly tuned. It supports multi-
threading and allows using separate streams. While the library is much more
low level than the Caffe framework it provides the necessary functionality for an
efficient use inside MCTS.

We use a batch-size of one for each DCNN execution on the GPU. To increase
the utilization of the GPU each thread of the MCTS gets a dedicated CUDA
stream. In this way memory transfers and kernels from different threads can be
executed concurrently. Moreover, in case of asynchronous replacement strategies
we use CUDA events. This allows to efficiently continue the work on the CPU
while the GPU evaluates the DCNN.

Table 1 shows the execution times of all DCNNs from the previous section
on a system with two Intel Xeon E5-2670 (16 cores, 2.6 GHz) and a Tesla K20
GPU. In contrast to the baseline which only uses shape and common fate graph
patterns [7] larger DCNNs are more than 10 times slower in execution time and
achieve less than half the playout-rate.

Table 1. Execution time, playout-rate in MCTS and accuracy

Execution time Playout-rate MCTS Accuracy validation-set

Baseline 0.38 ms 11552 p/s 42.1%

DCNN-3-128 0.94 ms 10734 p/s 49.6%

DCNN-6-128 1.70 ms 8939 p/s 52.7%

DCNN-12-128 3.23 ms 5458 p/s 54.4%

DCNN-12-192 7.52 ms 3111 p/s 55.4%

DCNN-12-256 10.07 ms 2338 p/s 55.9%

3.3 Replacement Strategies

In this paper we explore four replacement strategies for knowledge inside MCTS.
We assume that a fast move predictor (e.g., [7,13]) is available in addition to the
slower DCNN. This allows to specify different strategies to decide which knowl-
edge can be used. All replacement strategies try to predict which nodes inside
the search tree are important. In these nodes they apply the slow knowledge as
soon as possible. All strategies can be formulated in a synchronous and an asyn-
chronous version. On the one hand, the advantage of the synchronous version is
that MCTS does not waste iterations with low quality knowledge. On the other
hand, asynchronous versions can continue with the search. They will use more
low quality knowledge in the beginning but in return can search faster and build
a deeper search tree.
2 We also tested the release candidate of version 4. We observed faster single execution

times but a small slowdown when used in parallel MCTS.
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Replace by Depth. This strategy decides which node gets DCNN knowledge
by the depth of each node in the search tree. We specify a parameter D and
every node with depth ≤D gets DCNN knowledge while all others nodes only use
the fast classifier. At an extreme with D = 0 only the root node receives DCNN
knowledge. The reasoning behind this strategy is that decisions near the root are
the most important and should use the best knowledge available. Disadvantages
are that the parameter D is highly dependent on the overall time spent for
the search and thus has to be changed for different thinking times. Moreover,
MCTS builds up a very irregular search tree where some promising branches are
searched very deeply while others are not. On the one hand, specifying an overall
depth threshold cannot capture this important aspect of MCTS. On the other
hand, this strategy does its decision at node initialization so that knowledge can
be fully utilized.

The strategy can be turned into an asynchronous version by initializing each
node with fast knowledge and for nodes with depth ≤D immediately a request
is sent to the GPU. Once the DCNN execution has been finished it replaces the
fast knowledge of the node.

Replace in Principal-Variation. Beginning from the root node we can follow
in each node of the search tree the move which has been investigated most.
The sequence of moves resulting from this is called the principal variation and
represents best play from both sides. The following strategy tries to identify the
principal variation of the search and initializes all nodes of this variation with
slow DCNN knowledge. All other nodes are interpreted as less important and are
using fast knowledge. In MCTS the principal variation changes during the search
quite often so we also want to include variations which are close. This leads to
the following strategy with the parameter ε ∈ [0, 1]: When starting MCTS at
the root we set a flag PV ← true. If the move a is selected and the count of
the move na is smaller than ε · maxana then PV ← false else it is unchanged.
When a new node is expanded we initialize the node with DCNN knowledge if
PV is true. Otherwise, the node is initialized with the fast classifier. Moreover,
if we encounter nodes during tree traversal which do not have DCNN knowledge
we replace it with DCNN knowledge if PV is true. In the synchronous version we
wait until the knowledge is available. In the asynchronous version we continue
the work.

The advantage of the strategy is that DCNN knowledge can be utilized early
in the search as important nodes are identified before expansion. In contrast to
the depth-replacement strategy it is also independent of the overall search time
and adapts to the irregular shape of the search tree. The disadvantage is that
if the principal variation is not followed early on in the search, abrupt changes
can occur. Then all nodes in the new principal variation do not have the DCNN
knowledge and are thus promoted only now which can be very late in the search.

Replace by Threshold. This strategy initializes the knowledge in each node
with the fast classifier. If a node is searched more than T times the fast knowledge
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is replaced by the DCNN. In the synchronous version a node is locked for other
threads and the current thread waits for the GPU to finish the DCNN execution.
In the asynchronous version a node is not locked for other threads and the current
thread just sends a request to the GPU and continues the MCTS. Once the GPU
has finished work the DCNN knowledge is used in the node.

The advantage of this strategy is that the threshold is mostly independent
of the overall search time and can thus be easily tuned. Moreover, the more a
node is searched by MCTS the more important it is. So this strategy identifies
all significant nodes. The disadvantage is that this only happens quite late so
that DCNN knowledge cannot be fully utilized in early stages.

Increase Expansion Threshold. MCTS expands nodes after a certain amount
of simulations have passed through the node. The default value of Abakus is 8,
i.e., if a move has more than 8 simulations a new node is expanded. While the
value of 8 is optimized for a fast classifier we can increase the value to fit the slow
DCNN. The synchronous version of this strategy initializes each node by DCNN
knowledge and controls the rate at which nodes are expanded with a threshold
E. The asynchronous version initializes each node with the fast classifier and
immediately sends a request to the GPU and replaces the knowledge once the
DCNN data is available.

The disadvantage of this strategy is that smaller trees are searched when the
expansion threshold E is set too high. However, the DCNN knowledge can be
exploited in each node from the beginning.

4 Experiments

In this section we show the results of our experiments. We run several tour-
naments of our program Abakus against the open source program Pachi [1].
Abakus makes use of RAVE [6], progressive widening [9], progressive bias [3]
and a large amount of knowledge (shape and common fate graph patterns [7])
in the tree search part. With the addition of DCNNs it holds a 5-Dan rank on
the internet server KGS3.

As Pachi is weaker than Abakus we used handicap games to level the
chances. One challenge for the experiments was the great range of strength which
results from using DCNNs. Therefore, we used a handicap of 7 stones and komi
of 0.5 in all the experiments.

In our first experiments we wanted to illustrate the raw strength improvement
one can get by using DCNNs. The DCNN knowledge is used whenever a new
node in the search tree is expanded. In this way the shallow knowledge is never
used. To achieve a direct comparison we performed games with a fixed amount of
playouts. This can also be seen as the maximum strength improvement possible
by using the specific DCNN. In practice, these gains cannot be achieved as appli-
cation of DCNNs; they need considerably more time than the shallow knowledge.

3 www.gokgs.com.

www.gokgs.com
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Table 2. Playing strength of Abakus (white) against Pachi (black, 7 handicap
stones), 512 games played for each entry, 95% confidence intervals, Abakus 11,000
playouts/move, Pachi 27,500 playouts/move

Winrate vs. ELO vs. Pachi ELO vs. Average speed

Pachi baseline

Baseline 9.8% ± 2.6 −386 [−444, −341] 0 12,092 Playouts/s

DCNN-3-128 49.3%± 4.3 −5 [−35, 25] 381 11,349 Playouts/s

DCNN-6-128 67.4%± 4.1 126 [95, 159] 512 9,277 Playouts/s

DCNN-12-128 78.9%± 3.5 229 [194, 269] 615 5,661 Playouts/s

DCNN-12-192 81.9%± 3.3 263 [226, 305] 649 3,258 Playouts/s

DCNN-12-256 85.6%± 3.0 310 [271, 358] 696 2,456 Playouts/s

The number of playouts per move was chosen as 11,000 for Abakus and 27,500
for Pachi. This is approximately the same amount of playouts which each pro-
gram can achieve in 1 s on an empty board. In this way the experiments are
comparable to later experiments which use 1 s thinking time.

The results are shown in Table 2. The better the DCNN is the stronger the
program plays against Pachi. But we can also see that the strength improvement
declines for the last DCNNs. Moreover, the average speed reduces quickly as more
powerful networks are used (which here is not taken into account as the number
of playouts is fixed per move).

The next experiments evaluate the four replacement schemes by using a fixed
amount of time. We used 1 s per move so that the above results give an approxi-
mate upper bound on the playing strength. As the gain by large networks dimin-
ishes we used the DCNN-12-128 for the following experiments as it gives a good
trade-off between quality and execution time.

In Table 3 we see the results for the replacement scheme depth. The column
“DCNN Apply/Coun” shows the average number of simulations of a node when
the DCNN knowledge is applied and how often this is done during a search. The
depth replacement strategy applies knowledge once a node is expanded but as
the search-tree is reused on the next move several old nodes are upgraded with
the knowledge. This explains the quite high number of D = 0 for apply, whereas
the application only uses knowledge in the root.

In Table 4 we see the results for the strategy to increase the expansion thresh-
old to lower the rate of new nodes in the search tree. As long as E is not set too
high this strategy achieves as good results as the threshold strategy. It’s advan-
tage is that knowledge is applied very early (at about 8 simulations on average)
but the search tree is not as big as usual.

In Table 5 we see the results for the principal variation replacement scheme.
While the scheme tries to use the DCNN as soon as possible knowledge is often
applied quite late (e.g., in the synchronous case for ε = 0.5 if the DCNN is used
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Table 3. Replace by depth: evaluation with DCNN-12-128 and various parameters
D, playing strength of Abakus against Pachi, 512 games played for each entry, 95%
confidence intervals, 1 s/move

D Winrate ELO ELO vs UB DCNN
apply/count

Playouts/s

Upper bound 78.9%± 3.5 229 [194,269] 0

Synchronous 0 42.6%± 4.3 −52 [−83, −22] −281 2169.1/1.2 12077 p/s

4 59.6%± 4.3 67 [37, 99] −162 28.8/201 10892 p/s

8 63.4%± 4.2 95 [65, 127] −134 3.0/539 7694 p/s

12 60.4%± 4.2 74 [43, 105] −155 0.6/629 6125 p/s

Asynchronous 0 41.2%± 4.3 −62 [−93, −31] −291 2233.3/1.2 12109 p/s

4 64.7%± 4.1 106 [75, 138] −123 35.9/228 11804 p/s

8 68.2%± 4.0 132 [101, 166] −97 10.7/637 9180 p/s

12 62.5%± 4.2 89 [58, 121] −140 8.1/704 7252 p/s

in a node on average 46 simulations have already passed through it) which shows
that the principal variation often changes during a search.

In Table 6 we see the results for the replacement scheme threshold. As soon
as the threshold is sufficiently high to not disturb the search the winrate stays
quite high. Only for large thresholds the winrate starts to drop as knowledge is
applied too late in the nodes.

In conclusion, the strategies to replace knowledge by a simulation threshold
or to increase the expansion threshold of MCTS achieve the best results. The
depth replacement scheme cannot adapt to the search tree which results in worse
playing strength. Using knowledge exclusively in the principal variation accom-
plished better results but it seems difficult to identify the final principal variation
in a search. All strategies performed better when executed asynchronously.

Table 4. Increase expansion-threshold: evaluation with DCNN-12-128 and various
parameters E, playing strength of Abakus against Pachi, 512 games played for each
entry, 95% confidence intervals, 1 s/move

E Winrate ELO ELO vs UB DCNN
apply/count

Playouts/s

Upper bound 78.9%± 3.5 229 [194, 269]

Synchronous 8 58.1%± 4.3 57 [27, 88] −172 0.0/634 5513 p/s

16 64.8%± 4.1 106 [75, 139] −123 0.0/449 9551 p/s

24 69.1%± 4.0 140 [109, 174] −89 0.0/313 10743 p/s

32 72.2%± 3.9 166 [133, 201] −63 0.0/236 11167 p/s

Asynchronous 8 67.1%± 4.1 124 [93,157] −105 7.5/710 6669 p/s

16 72.7%± 3.9 170 [137, 205] −59 7.4/531 12002 p/s

24 70.4%± 4.0 151 [119, 185] −78 8.1/344 12329 p/s

32 65.8%± 4.2 114 [82, 148] −115 9.1/252 12443 p/s
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Table 5. Replace in principal-variation: evaluation with DCNN-12-128 and various
parameters ε, playing strength of Abakus against Pachi, 512 games played for each
entry, 95% confidence intervals, 1 s/move

ε Winrate ELO ELO vs UB DCNN
apply/count

Playouts/s

Upper bound 78.9%± 3.5 229 [194,269] 0

Synchronous 0.1 63.1%± 4.2 93 [62, 125] -136 3.1/590 6827 p/s

0.2 68.1%± 4.0 131 [100, 165] −98 8.3/473 8514 p/s

0.3 63.6%± 4.2 97 [66, 129] −132 15.8/338 9838 p/s

0.4 67.3%± 4.1 125 [94, 159] −104 27.3/228 10639 p/s

0.5 68.2%± 4.0 132 [101, 166] −97 46.0/148 11180 p/s

Asynchronous 0.1 61.7%± 4.2 83 [52,115] −146 11.6/691 7947 p/s

0.2 65.6%± 4.1 112 [81, 145] −117 17.8/592 9728 p/s

0.3 71.3%± 3.9 158 [126, 193] −71 26.0/447 10810 p/s

0.4 66.6± 4.1 120 [89, 153] −109 36.7/317 11375 p/s

0.5 64.3%± 4.2 102 [71, 134] −127 51.2/219 11707 p/s

Table 6. Replace by threshold: evaluation with DCNN-12-128 and various para-
meters T, playing strength of Abakus against Pachi, 512 games played for each entry,
95% confidence intervals, 1 s/move

T Winrate ELO ELO vs UB DCNN Playouts/s

apply/count

Upper bound 78.9%± 3.5 229 [194,269]

Synchronous 0 58.1%± 4.3 57 [27, 88] −172 0.0/634 5513 p/s

8 67.0%± 4.1 123 [92, 156] −106 8.0/493 8026 p/s

16 70.3%± 4.0 150 [118, 184] −79 16.0/382 9174 p/s

32 67.6%± 4.1 128 [96, 161] −101 32.0/256 10052 p/s

64 66.5%± 4.1 119 [88, 152] −110 64.0/153 10678 p/s

128 68.8%± 4.0 137 [105, 171] −92 128.0/85 11195 p/s

Asynchronous 0 67.1%± 4.1 124 [93, 157] −105 7.5/710 6669 p/s

8 73.2%± 3.8 175 [142, 211] −54 16.1/653 10886 p/s

16 69.0%± 4.0 139 [108, 173] −90 23.5/484 11711 p/s

32 71.5%± 3.9 160 [127, 195] −69 40.6/307 11981 p/s

64 70.8%± 3.9 154 [122, 189] −75 74.8/175 12066 p/s

128 66.9%± 4.1 122 [91, 155] −107 141.7/94 12118 p/s

5 Related Work

Deep Convolutional Neural Networks have been first used as stand-alone players
[5] without using MCTS. Later DCNNs were used inside MCTS [11] with the help
of asynchronous node evaluation. A large mini-batch size of 128 taking 150ms for
evaluation is used and every node in the search tree is added to the mini-batch
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in FIFO order. Once the mini-batch is complete it is submitted to the GPU.
The disadvantage of the method is a large lag due to using a big mini-batch.
According to the authors the main reason for using such a large mini-batch size
was that reducing the size was not beneficial in their implementation. As shown
in this paper using the freely available cuDNN library of Nvidia allows to reduce
the mini-batch size to one which substantially reduces the lag.

The Darkforest [14] program uses a synchronized expansion. Whenever a
node is added the GPU evaluates the DCNN while the MCTS waits for the result
and only then expands the search tree (Synchronous Replace by Threshold with
T = 0).

AlphaGo [12] uses the strategy which we call in our paper Increase-
Expansion-Threshold. Knowledge inside the MCTS is initialized with a fast clas-
sifier and asynchronously updated once the GPU has evaluated the DCNN. They
use a threshold of 40 which in relation to our experiments is quite large but they
use DCNNs for move prediction and positional evaluation which results in twice
as many neural networks to evaluate.

6 Conclusions and Future Work

In this paper we demonstrated that using Deep Convolutional Neural Networks
in Monte Carlo Tree Search yields large improvements in playing strength. We
showed that in contrast to the baseline program which already uses a great
deal of knowledge DCNNs can boost the playing strength by several hundreds
of ELO. Ignoring execution time better move predictors led to better playing
strength with improvements close to 700 ELO.

Because DCNNs have slow execution times we suggested to use the cuDNN
library of Nvidia to accelerate them on the GPU. Using different CUDA streams
for each MCTS search thread fully utilizes the GPU. CUDA events allowed to
asynchronously execute the DCNN on the GPU while continuing with the tree
search on the CPU.

To decide which nodes in the search tree profit most from DCNN knowledge
we investigated several replacement strategies. The results show that the best
strategy is to initialize the knowledge used inside MCTS with a fast classifier and
when sufficient simulations have passed through a node in the search tree replace
it with the DCNN knowledge. A second possibility is to increase the expansion
threshold inside MCTS. As long as the threshold is not large the results were close
to the best strategy. In the experiments in all replacement schemes asynchronous
execution on the GPU yielded better results than synchronous execution. This
shows that it is important to not disturb the speed of search even if DCNN
knowledge is of much higher quality than the initial knowledge.

All replacement strategies in this paper focus on using neural networks for
move predictions inside MCTS. Future work includes extending these schemes
for positional evaluation as well. As the amount of work for the GPU doubles
strategies for the efficient use of DCNNs get even more important.
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Abstract. Parameterized Poker Squares (PPS) is a generalization of Poker
Squares where players must adapt to a point system supplied at play time and
thus dynamically compute highly-varied strategies. Herein, we detail the top three
performing AI players in a PPS research competition, all three of which make
various use of Monte Carlo techniques.

1 Introduction

The inaugural EAAI NSG Challenge1 was to create AI to play a parameterized form
of the game Poker Squares. We here describe the game of Poker Squares, our parame-
terization of the game, results of the competition, details of the winners, and possible
future directions for improvement.

2 Poker Squares

Poker Squares2 (a.k.a. Poker Solitaire, Poker Square, Poker Patience) is a folk sequen-
tial placement optimization game3 appearing in print as early as 1949, but likely having
much earlier origins. Using a shuffled 52-card French deck, the rules of [7, p. 106] read
as follows.

Turn up twenty-five cards from the stock, one by one, and place each to best
advantage in a tableau of five rows of five cards each. The object is to make as
high a total score as possible, in the ten Poker hands formed by the five rows and
five columns. Two methods of scoring are prevalent, as follows:

1 Whereas DARPA has its “grand challenges”, ours are not so grand.
2 http://www.boardgamegeek.com/boardgame/41215/poker-squares,
http://cs.gettysburg.edu/∼tneller/games/pokersquares.

3 http://www.boardgamegeek.com/geeklist/152237/sequential-placement-optimization-games.
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Hand English American

Royal flush 30 100

Straight flush 30 75

Four of a kind 16 50

Full house 10 25

Flush 5 20

Straight 12 15

Three of a kind 6 10

Two pairs 3 5

One pair 1 2

The American system is based on the relative likelihood of the hands in regular
Poker. The English system is based on the relative difficulty of forming the hands
in Poker Solitaire.

You may consider that you have “won the game” if you total 200 (American)
or 70 (English).

Note that the single remaining Poker hand classification of “high card”, which does
not fit any of the above classifications, scores no points.

3 Parameterized Poker Squares

As David Parlett observed, “British scoring is based on the relative difficulty of forming
the various combinations in this particular game, American on their relative ranking in
the game of Poker.” [9, pp. 552–553] We observe that different point systems give rise
to different placement strategies.

For example, in playing with British or American scoring, one often has a row and
column where one dumps unwanted cards so as to form higher scoring combinations
in the other rows and columns. However, a very negative score (i.e., penalty) for the
“high card” category would discourage leaving any such row or column without a high
probability of alternative scoring.

In our parameterization of Poker Squares, we parameterize the score of each of the
10 hand categories as being an integer in the range [−128, 127]. Given a vector of 10
integers corresponding to the hand classification points as ordered in the table above,
the player then plays Poker Squares according to the given point system.

The goal is to design Poker Squares AI with high expected score performance across
the distribution of possible score parameters.

4 Point Systems

Contest point systems consisted of the following types.
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– Ameritish - a randomized hybrid of American and English (a.k.a. British) point sys-
tems; includes American and English systems (given above)

– Random - points for each hand category are chosen randomly in the range
[−128, 127]

– Hypercorner - points for each hand category are chosen with equal probability from
{−1, 1}

– Single Hand - only one hand category scores 1 point; all other categories score no
points

Hand categories are decided according to the rules of Poker, with higher rank-
ing hand categories taking precedence. Note that the high card hand category may be
awarded points in non-Ameritish systems.

4.1 Contest Structure and Results

For each point system tested in contest evaluation, each Java player program was given
the point system and 5min to perform preprocessing before beginning game play. For
each game, each player was given 30 s of total time for play decision-making. A player
taking more than 30 s of total time for play decision-making or making an illegal play
scored 10 times the minimum hand point score for the game.

For each point system tested, each player’s scores were summed to a total score and
this total was normalized to a floating point number ranging from 0 (lowest score of all
players) to 1 (highest score of all players). Players were ranked according to the sum
of their normalized scores across all point system tests. All testing was performed on
a Dell Precision M4800 running Windows 7 (64-bit) with and Intel Core i7-4940MX
CPU@ 3.1GHz, 32GB RAM, and running Java version 1.8.0 51. Results of the contest
can be seen in Fig. 1.

Fig. 1. Results of Contest Evaluation

Non-fixed point systems were generated with contest random seed 34412016. The
twelve point systems used for contest evaluation included American, Ameritish, British,
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Hypercorner, Random, and the following seven Single-Hand systems: High Card, One
Pair, Two Pairs, Three of a Kind, Straight, Flush, and Full House.

Detailed performance information is available online4. Final contest standings were
as follows:

1. Score: 11.821; Player: BeeMo; Students: Karo Castro-Wunsch, William Maga; Fac-
ulty mentor: Calin Anton; School: MacEwan University

2. Score: 11.763; Player: GettysburgPlayer; Students: Colin Messinger, Zuozhi Yang;
Faculty mentor: Todd Neller; School: Gettysburg College

3. Score: 11.334; Player: Tiger; Students: Robert Arrington, Clay Langley; Faculty
mentor: Steven Bogaerts; School: DePauw University

4. Score: 11.170; Player: JoTriz; Student: Kevin Trizna; Faculty mentor: David Mutch-
ler; School: Rose-Hulman Institute of Technology

5. Score: 7.149; Player: SRulerPlayer; Student: Zachary McNulty; Faculty mentor:
Timothy Highley; School: La Salle University

6. Score: 0.192; Player: MonteCarloTreePlayer; Student: Isaac Sanders; Faculty men-
tor: Michael Wollowski; School: Rose-Hulman Institute of Technology

7. Score: 0.190; Player: DevneilPlayer; Student: Adam Devigili; Faculty mentor: Brian
O’Neill; School: Western New England University

As a benchmark, a random player was evaluated alongside contestants, scoring
0.153 tournament points. We first note that a cluster of 4 players scored close to the
tournament maximum possible score of 12. The two bottom entries scored only slightly
better than random play.

In the following sections, we will provide details of the top three performing players.

5 BeeMo

BeeMo implements a parallel flat Monte Carlo search guided by a heuristic which uses
hand patterns utilities. These utilities are learned through an iterative improvement algo-
rithm involving Monte Carlo simulations and optimized greedy search. BeeMo’s devel-
opment process was focused on three domains: game state representation, search, and
learning. For each of these domains, we investigated several approaches. In the follow-
ing subsections, we present the best combination of approaches according to empirical
evaluations. For a more detailed description of all designs, see [4].

5.1 Game State Representation

We used a simple array representation for the tableau of face up cards and a bit packed
representation for the deck of face down cards. We implemented a hand encoding
scheme based on hand patterns, which are a representation of hands which retains only
the relevant hand information:

– if the hand contains a flush - 1 bit;
– if the hand contains a straight - 1 bit;

4 http://cs.gettysburg.edu/∼tneller/games/pokersquares/eaai/results/.

http://cs.gettysburg.edu/~tneller/games/pokersquares/eaai/results/
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– number of cards in the hand without a pair - 3 bits;
– number of pairs in the hand - 2 bits;
– if the hand contains three of a kind - 1 bit;
– if the hand contains four of a kind -1 bit;
– if the hand is a row - 1 bit.

The hand pattern encoding was extended with contextual information about the
number of cards of the primary rank and secondary rank remaining in the deck. These
are the ranks with the largest and second largest number of repetitions in the hand,
respectively. We also added information about the number of cards in the remaining
deck that can make the hand a flush. Instead of actual number of cards we used a coarse
approximation with three values: not enough cards, exactly enough cards, and more
than enough cards remaining to complete a certain hand. The approximation is repre-
sented on 2 bits, and so the contextual information adds 6 extra bits to the hand pattern,
for a total of 16 bits for hand pattern and contextual information. The extra informa-
tion increases the number of empirically observed unique patterns by a factor of 10.
Our experiments indicate that this added complexity is overcome by the significant
improvement in training accuracy.

5.2 Search

We implemented several game tree search algorithm classes: rule based, expectimax,
greedy, and Monte Carlo. We compared their performance using a crafted heuristic
for the American scoring system. Our empirical analysis indicated that the best search
algorithms belong to theMonte Carlo and Greedy classes. As the final agent uses a com-
bination of flat Monte Carlo and optimized greedy, we will present our implementation
of these algorithms.

Optimized Greedy implements a greedy strategy based on hand pattern utilities.
Every new card placed on the tableau of face up cards, influences only two hands: the
column and the row in which the card is placed. Thus, the value of placing the card in
any position can be estimated by the sum of the changes of the values for the column
hand and for the row hand. The change in every hand is the difference of the hand
pattern utility after and before placing the card. The optimized greedy algorithm places
the card in the position that results in the largest value. Computing these values is very
fast as it needs four look ups in a hash table of hand pattern utilities, two subtractions
and an addition. It is exactly this simplicity that makes the algorithm very fast.

The algorithm plays ten of thousand of games per second, has impressive perfor-
mances (consistently scores over 115 points on the American scoring), and it is essen-
tially the same for any scoring system - the only changes are in the hand pattern utilities’
hash table entries.

Flat Monte Carlo is a variation of the imperfect information Monte Carlo [5]. At
a given node, the algorithm evaluates each child by averaging the scores of a large
number of simulated games from that child, and then selects a move that results in the
child with the largest value. Any search algorithm can be used to guide the simulated
games, but a fast one is preferable. For this reason we used the optimized greedy search
for the simulated games.
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The resulting algorithm consistently outperformed optimized greedy by a margin
of 10 points on the American scoring. However, the time efficiency of the algorithm
was significantly worse than that of optimized greedy. Parallelization improved the
algorithm speed significantly. In its final implementation the algorithm creates several
threads of game simulations which are run in parallel on all available cores. Despite
being an order of magnitude slower than the greedy algorithm, the parallel flat Monte
Carlo is fast and has the best score performances of all the algorithms we tried.

5.3 Learning

Because the scoring scheme is not known, learning the partial hand utilities is the most
important part of the agent. We used Monte Carlo simulations for learning the hand
pattern utilities. The learning algorithm uses rounds of 10,000Monte Carlo simulations,
5,000 for training and 5,000 for evaluation.

All hand pattern utilities are initialized to zero. At the end of a training game, the
value of each final hand is recorded for every hand pattern which resulted in the hand.
For example, if a partial hand has only a 5� and at the end of the game results in a flush
with a score of 20, then a value of 20 is recorded for the pattern which encodes a hand
with only 5�. The utility of a hand pattern is estimated as the average of all recorded
values. The updated hand pattern utility set is used in the next simulated game.

Using flat Monte Carlo search for the training phase, the agent learned hand pattern
utilities which for the American scoring resulted in performance comparable to those
obtained using the crafted hand pattern utilities, and reduced running time.

While simple and fast, flat Monte Carlo search suffers from lack of specialization.
When used for learning hand pattern utilities this drawback negatively affects the accu-
racy of the estimations. For example, low frequency patterns with high utilities are
rarely updated and thus the learned values may be unreliable. To check if our learn-
ing algorithm has such a pitfall we implemented a UCT evaluation scheme inspired by
the UCB1 variation of the Upper Confidence Bound [2]. We used a small exploration
parameter which was optimized empirically. UCB1 slightly increased the number of
discovered patterns, but its influence on agent’s performance was positive only for the
American and British scoring systems. For the final agent we decided to use both eval-
uation schemes by alternating them with different frequencies.

In the evaluation phase, 5,000 simulated games are played using the set of hand
pattern utilities learned in the training phase. The average of the games’ scores is used
to evaluate the overall utility of a set of patterns. The set with the highest overall utility
is used by the final agent. The agent consistently completes 180 rounds of learning
during the allowed 300 s. However, most of the improvements are done in the first 10
rounds, after which the performance evolution is almost flat.

As indicated in the contest results, the final agent played strongly under all scoring
systems. Given that (1) players employed various heuristics and differing uses of Monte
Carlo techniques, and (2) players achieved similar peak performance, we conjecture that
these top players closely approximate optimal play.



28 T.W. Neller et al.

6 GettysburgPlayer

The GettysburgPlayer uses a static evaluation, which abstracts game states and attempts
to assess their values given any scoring system, in combination with expectimax search
limited to depth 2.

6.1 Static Evaluation

The total state space is too large to evaluate in advance, so the state space is abstracted
and on-policy Monte Carlo reinforcement learning is applied in order to simultane-
ously improve estimates of the abstracted game and improve play policy that guides
our Monte Carlo simulations.

Abstracting Independent Hands. Our Naı̈ve Abstract Reinforcement Learning
(NARL) player abstracts the state of each independent row/column and learns the
expected value of these abstractions throughMonte Carlo ε-greedy reinforcement learn-
ing. Each hand abstraction string consists of several features which we considered
significant.

– Number of cards played in the game so far
– Indication of row (“-”) or column (“|”)
– Descending-sorted non-zero rank counts and how many cards are yet undealt in each
of those ranks appended to each parenthetically

– Indication of whether or not a flush (“f”) is achievable and how many undealt cards
are of that suit

– Indication of whether or not a straight (“s”) is achievable
– Indication of whether or not royal flush (“r”) is achievable

For example, “14|1(3)1(2)1(2)f(8)s” represents a column hand abstraction
after the 14th move. There is one card in each of three ranks, two of which have two
of that rank undealt and one has three undealt. A flush is achievable with eight cards
undealt in that suit. A straight is achievable and a royal flush is not.

During Monte Carlo reinforcement learning, such hand abstractions are generated
and stored in a hash map. Each abstraction maps to the expected hand score and number
of occurrences of the hand. These are continuously updated during learning. By storing
the expected scores of each row/column complete/partial hand, the hash map allows us
to sum scoring estimates for each row and column, providing a very fast estimate of
the expected final score of the game grid as a whole. Note that this naı̈vely assumes the
independence of the hand scoring estimates.

Raising Proportion of Exploration Plays. During the Monte Carlo reinforcement
learning stage, we use an ε-greedy policy with a geometric decay applied to the ε para-
meter. Thus for most of time the player chooses an action that achieves a maximal
expected score, but also makes random plays with probability ε.

In our initial application of ε-greedy play, ε = 0.1 with geometric ε-decay
δ = 0.999975 per simulated game iteration. However, we empirically observed that



Monte Carlo Approaches to Parameterized Poker Squares 29

if we significantly raise the initial value of ε to 0.5, increasing initial exploration, the
player has a better performance.

In addition, the time cost for random play is much less than greedy play, so increas-
ing the proportion of random plays increases the number of overall learning iterations
per unit time. Empirically, this relatively higher ε will not only raise the number of
exploration plays but also will be able to leave sufficient time for exploitation plays.
However, purely random play makes certain types of hands highly improbable (e.g.,
royal flush, straight), so sufficient exploitation-heavy play time is necessary to learn the
value of long-term attempts to achieve such hands.

Considering Frequency of Partial Hand Sizes. We observed our player’s behavior
and found that it tended to spread cards evenly among rows and columns in the early
and middle stages of the game. The reason for this behavior is that the player is making
greedy plays that maximize expected score gain. In a pre-evaluation between NARL and
another player developed earlier that performed better under the single-hand Two Pairs
point system, we observed that with same card dealt, NARL tended to set up one pair
evenly among rows and columns according to the assumption of hand independence,
while the comparison player appeared to gain an advantage by preferring to focus on
developing a row/column with a pair and two single cards early.

Based on this observation, we added the current distribution of hand sizes to the
abstraction. The number of cards played in each row and column are tallied, and we
summarize the distribution in a hand size frequency vector represented as a string.
For instance, the string “721000” represents a grid hand size distribution after the 2nd
move. (The number of cards dealt can be inferred from the abstraction.) The zero-based
index of the string corresponds to hand size in a row/column. Thus, “721000” indicates
that there are seven empty hands, two with one card, one with two cards, and none with
more than two.

The previous grid hand abstraction is trained together with hand size abstraction
to learn the difference between the final score and expected score at each of the 25
states across the game. In practice, we find that adding this abstraction feature generally
improves performance for some simpler point systems.

Experiments and Data. We experimented with 3 players, all of which used ε-decay
δ = 0.999975. The first used an initial epsilon ε0 = 0.1, whereas the second and third
used ε0 = 0.5. Only the third player incorporated the hand size frequency abstraction
feature.

For each random point system (the Ameritish point system, Random point system,
Hypercorner point system) we generated a sample of 500 systems and measured the
average greedy-play performance of 2000 games for each player and system. For fixed
point systems, we collected average performance of 2000 games for each player and
system. For each point system, performance was scaled between 0 and 1 as with the
previously described tournament scoring (Fig. 2).
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Fig. 2. Comparison of learning evaluation performance. NARL with ε0 = 0.5 performed best for
most point systems.

6.2 Search Algorithm

Using the NARL static evaluation, we compared three search algorithms: (1) Flat
Monte Carlo [3, Sect. 2.3] limited to depth 5, (2) Flat UCB1 limited to depth 5 and
multiplying the exploration term

√
2ln(n)/n j by 20 to encourage greater exploration5,

and (3) expectimax with a depth limit of 2.
The three algorithms were paired with the three static evaluators and tested against

each other using the contest software, 8 scoring systems, and the seed 21347. Each
player ran 100 games per point system. The final comparison was based upon each
player’s total normalized score. A combination of depth 2 expectimax and the NARL
evaluator (ε0 = 0.5) received the highest total score and was submitted for competition.

Significance testing of the various player components revealed that our static eval-
uation function was most significant to the player’s performance [8]. Space limitations
preclude the full set of alternative designs considered. However, these and relevant
experimental data are available in [8] as well.

7 Tiger: A Heuristic-Based MCTS Player

This summary is based on a more detailed discussion available in [1]. The player uses
Monte Carlo Tree Search (MCTS) [3] with added domain knowledge to select moves.

7.1 Design and Application of the State Heuristic

This player includes a state heuristic that can accommodate any scoring system. It can
be framed as ten applications of a hand heuristic, corresponding to the ten rows and

5 The factor of 20 was chosen through limited empirical performance tuning. It is not necessarily
optimal for this problem.
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columns in the game. Five-card hands are simply scored according to the current scoring
system. One to four card hands, however, are evaluated with probability estimates.

In four-card hands, for each hand type, a weight in [0, 1] is calculated, representing
an estimated likelihood of obtaining that hand type with the next card draw given the
cards remaining in the deck. For example, suppose a 4-card hand contains a 6�, 6♣, 6♠,
and 7♠, while the deck contains only a 6�, 7�, and 8�. Here, three-of-a-kind is given a
weight of 1/3 because among the remaining cards only 8� would result in three-of-a-
kind. Once these weights are calculated for every hand type, each weight is multiplied
by the hand type value according to the current scoring system, and added together to
form a weighted sum. Note that this ignores the fact that the ten hands in the grid are
dependent on each other, both spatially and in “competition” for cards.

This approach gets much more computationally intensive for hands with fewer than
four cards, and so in this case we instead use estimated a-priori probabilities of hand
types as weights. These probabilities are then used to compute a weighted sum in the
same way as in a four-card hand. Note, however, that by this measure hands with fewer
cards will be inadvertently favored, because fewer cards will tend to mean more possible
hand-types. To counter this, we apply weights α, β, and γ to one, two, and three-card
hand heuristic values, respectively. For now, we fix these values at α = 0.2, β = 0.4,
and γ = 0.6, with tuning experiments described below.

With this heuristic, various selection strategies exist. UCT [6] is a standard measure
balancing exploration and exploitation with no domain-specific heuristic. Best Move
always chooses the single unexplored node with the highest heuristic value. Prune +

UCT prunes nodes below a heuristic score threshold and then applies standard UCT.
In simulation, Random is the standard MCTS strategy of choosing random moves

without a heuristic. Prune + Random chooses moves at random from a tree pruned via
the heuristic. Best Move chooses the single move with the highest heuristic value.

7.2 Experiments and Results

Table 1 shows results for various experiments. We begin by considering the practical
cost of calculating the heuristic itself, since time spent on heuristic calculations means
fewer iterations of the core MCTS process. Row (1) reflects standard MCTS, with UCT
selection and Random simulation. Rows (2) – (4) also use these standard strategies,
but with the “+ Calc.” notation indicating that the heuristic calculations are performed
but not actually applied. Note a total cost of 13 points (comparing rows (1) and (4))
in the American scoring system when the heuristic is calculated in both selection and
simulation, with most of the cost coming from simulation.

In simulation, ignoring for now the “Tuned” column, note that Prune + Random’s
score of 95 (row (5)) shows improvement over the 92 of standard MCTS (row (1)) and
the 80 of the added heuristic calculation cost (row (3)). Best Move simulation (row
(6)) improved more strongly to an untuned score of 112. It seems intuitive that Best
Move simulation is more effective than Prune + Random, since Best Move plays a
simulated game according to the best choices that the heuristic is capable of suggesting.
In contrast, Prune + Random gives the heuristic less control, only determining a set of
higher-scoring moves from which a random selection is made.
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Table 1.Mean scores over 2,000 games for various selection and simulation strategies

Row Selection Simulation Untuned Tuned

(1) UCT Random 92

(2) UCT + Calc Random 90

(3) UCT Random + Calc 80

(4) UCT + Calc Random + Calc 79

(5) UCT Prune + Random 95

(6) UCT Best Move 112 118

(7) Best Move Random 72

(8) Prune + UCT Random 91 94

(9) Prune + UCT Best Move 113 123

Next consider the selection strategy results, again ignoring for now the “Tuned”
column. Prune +UCT seems unhelpful when comparing rows (1) vs. (8), and (6) vs. (9)
(untuned). The final set of experiments will consider this further. Best Move selection,
in contrast, appears not merely unhelpful but harmful. With a score of 72 (row (7)), it
scores even worse than row (2) in which the calculations are performed but not applied.
This is not surprising, since such a drastic approach severely limits the number of nodes
available for exploration. That is, while Best Move simulation is a useful limitation in
contrast to Random simulation, the more principled exploration of selection with UCT
should not be so severely restricted by a Best Move approach.

Finally, consider further tuning of α, β, and γ values for weighting one-, two-, and
three-card hands, respectively. After experiments on many combinations of settings, it
was found that α = 0.1, β = 0.3, γ = 0.85 gave the best performance on the American
scoring system, with other high-scoring settings converging on those values. Results
for this setting are shown in the “Tuned” column of Table 1. This newly-tuned heuristic
sheds new light on Prune + UCT selection, which seemed ineffective in the untuned
results. Row (8) shows that Prune +UCT selection with tuned parameter settings attains
a 94, compared to the 91 with the untuned settings, and the 92 (row (1)) of standard
MCTS. Similarly, Best Move simulation now scores 118 (row (6)), showing further
improvement over the untuned 112. These experiments demonstrate that both Prune +
UCT selection and Best Move simulation can be improved and are worthwhile after
tuning the heuristic, with a final top score of 123 when both strategies are applied.

8 Conclusion

The inaugural EAAI NSG Challenge was reported to be a very positive experience by
both students and faculty. Informal evaluation indicates that more than half of entries
perform well beyond human-level play, and most were densely clustered at the top of
the distribution, lending confidence to a conjecture that optimal play is not far beyond
the performance observed.
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In the future, it would be interesting to perform more significance testing across
implementations in order to demonstrate the relative value of different design compo-
nents, e.g., the parallelization of BeeMo. Testing comparable elements of designs would
guide a hybridization of approaches, e.g., testing a single search algorithm with each
of our various static evaluation functions. We conjecture that an ensemble or hybrid
approach would yield performance improvements.
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Abstract. This paper presents a new Monte-Carlo tree search method
that focuses on identifying the best move. UCT which minimizes the
cumulative regret, has achieved remarkable success in Go and other
games. However, recent studies on simple regret reveal that there are
better exploration strategies. To further improve the performance, a leaf
to be explored is determined not only by the mean but also by the whole
reward distribution. We adopted a hybrid approach to obtain reliable
distributions. A negamax-style backup of reward distributions is used in
the shallower half of a search tree, and UCT is adopted in the rest of
the tree. Experiments on synthetic trees show that this presented method
outperformed UCT and similar methods, except for trees having uniform
width and depth.

1 Introduction

Monte Carlo tree search (MCTS) algorithms including UCT [5] have achieved
remarkable success, especially in the game of Go [10].

UCT is an algorithm based on the minimization of cumulative regret [1,13],
which is suitable for estimating the expected score at each node. However, in
game-playing algorithms, it is more important to identify the best move at the
root, than to identify its score. Both goals are closely related but still different, as
MTD(f) [16] exploits this difference in the context of αβ search. Recent studies
have shown that the performance of MCTS is improved by focusing on simple
regret instead of on cumulative regret [6,14,15,19]. However, it is also known to
be difficult to directly minimize the simple regret in tree search algorithms.

This paper presents an alternative Monte-Carlo tree search method that
focuses on the confidence when choosing the best move. Our work is based on the
careful combination of two ideas, each of which can be found in existing work:
(1) negamax-style backup of the distribution of rewards at each interior
node [4,18] in a main search tree, and (2) hybrid MCTS on top of UCT [15,19].
By using reward distributions obtained with a negamax-style backup, we can
estimate the probability that the current move will be superseded by another
move by a deeper search [4]. By using these distributions, we can identify the best
leaf that most influences the confidence at the root. The negamax-style backup

c© Springer International Publishing AG 2016
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also contributes to the convergence [18]. We adopted UCT on an extended tree
in order to obtain the distribution at each leaf in the main search tree.

The experiments on incremental random trees show that the presented
method outperforms UCT, except in trees with a uniform width and depth.

2 Background and Related Work

This section briefly reviews related work on best-first search methods including
Monte-Carlo tree search and negamax-style backup of reward distributions.

Monte Carlo tree search (MCTS) [5] is a kind of best-first algorithm that
iteratively expands and evaluates a game tree by using a random simulation.
In this section, we consider a general framework of best-first search algorithms
where each iteration consists of the following four steps.

1. leaf selection: a leaf with the highest priority is selected.
2. expansion: if necessary, the leaf is expanded, and a leaf is selected again among

newly created leaves.
3. evaluation: the leaf is evaluated or the evaluation is elaborated (e.g., by ran-

dom simulation in UCT).
4. backpropagation: the evaluated value is shared throughout the tree.

We followed the convention in which MCTS starts with a tree having only its
root and the immediate successor nodes. Then a leaf is expanded when we visit
the leaf for the first time in step 2 [3,5,8]. Sometimes, a search tree is fixed to
simplify analysis [18,19]. This is necessary in typical game programs in order to
handle expansion of the tree during the search process. The other steps—leaf
selection, evaluation, and backpropagation—characterize the search algorithms
as discussed in the Subsects. 2.1 to 2.3. In this paper, we use move a or the
position after move a interchangeably for simplicity, because a position after
move a is defined without ambiguity in deterministic games.

2.1 Monte Carlo Tree Search and UCT

UCT [13] has been applied to many games including Go and has achieved remark-
able success. For the evaluation of a leaf, it conducts random play (called simula-
tion, or roll-out) starting at the position corresponding to the leaf and observes
its outcome as a reward. In this paper, we assume reward r to be a win (1), loss
(0), or draw (0.5), following the usual convention. Focusing on wins/losses/draws
instead of raw game scores is known to be effective in Go [3,8]. Note that reward
r is replaced by 1 − r for nodes where the opponent player moves. The observed
reward is shared among the nodes between the leaf and the root in the backprop-
agation step, and the average of the rewards Xi,ti =

∑ti
t′ rt′/ti is maintained for

each node i, where ti is the number of visits to the node.
In the selection step, the algorithm descends from the root to a leaf by recur-

sively selecting the most urgent child at each node. The urgency of a node among
its siblings is determined by UCB defined by the following equation:

UCB = Xi,ti +
√

2 ln t/ti, (1)
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where t is the number of times the parent of node i is visited up to now. UCT
models a move in a game as an arm in a multi-armed bandit problem [1], assum-
ing that the reward is stochastically determined by a distribution with mean
μi when arm i is pulled. In typical game playing programs, we need to handle
terminal or solved positions where the reward is fixed [20]. We need to ignore
losing moves in the selection step by propagating win/loss information that is
found to ancestors.

2.2 Improvements in UCT

UCT works so that the cumulative regret of the root is minimized [1,13]. Cumu-
lative regret is the summation of the difference between the best choice, which
is unknown to the agent, and his or her actual choice over time,

∑T
t (r∗ − rt),

where r∗ is the mean reward of the best arm and rt is the observed reward
at time t. Therefore, it is suitable for the estimation of the expected reward
at a root. Simple regret is an alternative criterion for the accuracy of the final
choice, r∗ − rT , where rT is the mean reward of the agent’s final choice after
time T [6]. Informally, if one does more exploration of sub-optimal moves, simple
(cumulative) regret decreases (increases).

Recent studies suggest that a hybrid approach is effective. This is a primary
strategy for a root (or shallower part of a tree) to reduce simple regret at the
root, and a sub-strategy to reduce cumulative regret in the rest of the tree. For
a primary strategy, the approximated value of information (VOI) is reported to
be effective in MCTS SR+CR [19], while SHOT [7] is used in H-MCTS [15].
H-MCTS has been tested on various domains; however, it inherits the limitation
of SHOT in which the number of simulations must be fixed in advance. Our app-
roach adopts alternative primary strategies and achieves an anytime algorithm.
Additionally, Liu and Tsuruoka presented an adjustment in confidence bounds
to reduce simple regret [14].

2.3 Minimax Backup of Reward Distribution

Usually, only the average of observed rewards is maintained at each node
in MCTS. However, if a histogram of rewards is maintained in addition to
the average, more information about positions can be extracted from the
histogram1 [11,12]. Moreover, reward distribution can be propagated in negamax
style [4,18].

Bayes-UCT [18] is a Bayesian extension to UCT that selects a node having
the maximum Bayes-UCT value among the siblings:

Bayes-UCT1 := μ̂i +
√

2 ln t/Ti(t), Bayes-UCT2 := μ̂i +
√

2 ln tσi, (2)

where μ̂i is the estimated mean of child i’s reward distribution obtained by nega-
max backup, i.e., μ̂i =

∫
x
(1 − x)pi(x), where pi(x) is the probability that node i

1 http://www.althofer.de/crazy-shadows.html.

http://www.althofer.de/crazy-shadows.html


Monte Carlo Tree Search with Robust Exploration 37

Table 1. Comparison of similar work and our work. The top half of the table summa-
rizes existing methods. The column “minimax backup” indicates how the distribution
of each node is presented, where “-” means the minimax backup of reward distributions
is not adopted. The column “primary strategy” gives the main strategy of choosing
a leaf to be expanded or that for a playout. The column “sub-strategy” lists a sub-
strategy for the deeper part of a tree if a hybrid approach is adopted, or “-” otherwise.
The bottom half of the table summarizes our approaches discussed in this paper, which
respectively adopt discrete and UCT for minimax backup and hybrid.

Existing method minimax backup primary strategy sub-strategy

Baum and Smith [4] discrete QSS -

BayesUCT [18] Beta distribution UCB (Bayes) -

H-MCTS [15] - SHOT [7] UCT

MCTS SR+CR [19] - ε-greedy, UCB√
(·), VOI UCT

Yokoyama and Kitsuregawa [21] discrete [4] QSS [4], UCT αβ search

Work in this paper

HB+EExpected discrete [4] EExpected UCT

HB+ERobust ERobust

HB+ETerminal ETerminal=QSS [4]

HB+BayesUCT1 μ̂i +
√

2 ln t/ti [18]

HB+BayesUCT2 μ̂i +
√
2 ln tσi [18]

has the game theoretical value x for player to move, and σi is the standard devi-
ation of the distribution. Note that reward 1−x in a node corresponds to reward
x in a parent node because the player whose turn it is to move changes with each
move. Here, the observed average Xi in UCT (Eq. (1)) is replaced by μ̂i, and it is
shown that μ̂i converges more rapidly to the game theoretical reward of node i.
There are many differences between this approach and our work, including explo-
ration strategies and the adoption (or not) of a prior distribution or continuous
probability distribution. In this work, we used μ̂i =

∑
x∈{0,0.5,1}(1 − x)pi(x)

instead.
Before the introduction of MCTS, Baum and Smith presented a best-first

search method that utilizes the reward distribution at each node [4].
Bayes-UCT as well as Baum and Smith’s method assumes the existence of an

external function to assign a probability distribution to each leaf, as a prior or
special kind of evaluation function. In this work, the assumption is not necessary
due to the use of UCT to yield the distribution. We also present improved
strategies for exploration. The upper half of Table 1 summarizes the existing
methods.

3 Exploration with Refinement of Confidence

We present a new hybrid MCTS algorithm that iteratively refines the confidence
of the choice at the root. Our algorithm maintains the main tree for our primary
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main tree

extended tree for UCT

root

lmain

luct

random simulation

Fig. 1. Two parts of a search tree maintained with our algorithm

1. leaf selection: the most valuable leaf in the main tree is selected, with respect to
the exploration strategy defined in Sect. 3.2.

2. evaluation: evaluation of the leaf lmain is elaborated by budget times of internal
playouts in UCT with root lmain:
(a) leaf selection: the most valuable leaf luct is identified by recursively descending

successor node having the highest UCB1 value from lmain.
(b) expansion: if the same condition in step 2 in Sect. 2 is satisfied, the leaf luct is

expanded, and a new luct is then selected among newly created leaves.
(c) evaluation: the evaluation of the leaf is elaborated by a random simulation

that starts from the leaf.
(d) backpropagation: the reward is stored in each node between lmain and luct. In

addition to the usual back up of the reward, we maintain a histogram of the
rewards (i.e., the frequencies of {0, 0.5, 1}) in each node.

3. expansion: after evaluation, if there appear such nodes in the UCT tree that meet
the conditions described in Sect. 3.3, they are promoted into the main tree.

4. backpropagation: the distribution of the rewards is updated for each node between
lmain and the root, by using Eq. (4).

Fig. 2. Outline of our algorithm

strategy introduced in the next subsections, as well as the extended tree for our
sub-strategy, UCT, as depicted in Fig. 1. The algorithm iteratively extends the
whole tree and refines evaluations in a best-first manner as listed in Fig. 2. Steps
1 through 4 are for the primary strategy, and steps 2(a) through 2(d) are for
the sub-strategy, UCT (see Sect. 3.1). We first select leaf lmain in the main tree
by using a strategy introduced in Sect. 3.2. Then, it runs playouts according to
UCT budget times, where the budget is usually one. A newly created leaf is first
added to the UCT tree and will be incorporated into the main tree when they
meet the conditions described in Sect. 3.3.

3.1 Hybrid Backup of Reward Distribution

For each node in a search tree, an array of size 3 is assigned to present the reward
distribution of the node. We introduce different backup procedures for the main
tree and extended tree and call the scheme hybrid backup (HB). In each node
in the extended tree, we maintain a histogram that holds the frequency of each
reward value (i.e., {0, 0.5, 1}) and adapt it for the reward distribution of the
node. When a playout is completed, the corresponding frequency count in the
histogram in each node involved in the playout is updated by one.
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For nodes in the main tree, a negamax-style backup is adopted. Let pi(x) be
the probability that the game theoretical value of node i is x, and c(i)(x) (c(i)(x))
be the cumulative distribution function, CDF, for probability pi(x) being less
(more) than or equal to x:

c(i)(x) :=
∑

k:k≤x pi(k), and c(i)(x) :=
∑

k:k≥x pi(k). (3)

Inversely, probability pi(x) is easily computed by function c(i)(x) or c(i)(x). We
introduce the negamax backup of probability distributions, following Baum and
Smiths method [4]. The distribution of internal node n is defined based on those
of the successor nodes assuming that there is no correlation between sibling
nodes:

c(n)(1 − x) =
∏

c∈successor(n) c(c)(x). (4)

The CDF c(i)(x) in each node in the main tree is updated by using Eq. (4),
so that it represents the negamax CDF of distributions of its successors. Recall
that we limit the reward in {0, 0.5, 1} in this work. Therefore, pi or c(i)(·) can
be stored in an array of size three. Also,

∑
x pi(x) = 1 holds for any node i.

The intuition behind this design is that the estimated probability distribution
is not accurate without a carefully designed prior distribution when the number
of samples remains small. Therefore, we count the frequencies of reward values
in the deeper part of the tree to average the results. If the number of samples
is sufficient, the estimated distribution is accurate. Consequently, the negamax
backup of probability distributions is adopted in the shallower part of the tree
to achieve better convergence.

3.2 Exploration Strategy

Here, we introduce the primary strategy to select leaf lmain in the main tree to be
explored next in step 1 in Fig. 2. Let m0 be the best move at the root, estimated
so far by searching. We define the uncertainty U as the difference between the
estimated mean reward of root R and that of m0:

U := μ̂′
R − μ̂′

m0
, (5)

where each of μ̂′
R (= 1 − μ̂R) and μ̂′

m0 (= μ̂m0) is the mean of the distribution
at corresponding node (with respect to the root player). We can focus on the
identification of the best move by minimizing U rather than by minimizing the
variance of μ̂R. For example, if U is zero, we can be confident that the best
move is m0 regardless of the value of the leaves, under the given distributions.
Otherwise, there would be another move mi that potentially has a better value
than m0.

Our goal is to select leaf l with the highest priority in the main tree to
continue the exploration. Let Ul be the value of U after the exploration of leaf l,
which is not known until the exploration is completed. When Ul is much smaller
than U (Ul � U), it means that the best move become clearly distinguished
from other moves. When Ul is much larger than U (Ul � U), it means that the
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previous estimation of U was inaccurate and needed to be updated. Therefore,
in the both cases, such l has a high priority for exploration, as discussed in the
literature [4].

Below we discuss four strategies to select l (strategy four has two variants).

HB + ETerminal. One reasonable strategy is to select l that has the maximum
absolute difference |Ul − U |, averaging over all possible Ul values with its prob-
ability. Let us assume that the exploration of leaf l reveals that l is terminal
or solved with a game-theoretical value r according to its current distribution.
Let Û=r

l be the value Ul when leaf l is found to be terminal with value r. Fur-
ther assuming that the distributions of other leaves are not changed during the
exploration of l, we can directly calculate Û=r

l . Then, in strategy HB+ETerminal,
we select l that has the maximum absolute difference |U=r

l − U | averaging over
all possible U=r

l values with its probability:

arg maxl

∑
r∈{0,0.5,1} pl(r)|Û=r

l − U | (6)

This strategy is equivalent to QSS [4], though their work does not involve MCTS.

HB + EExpected. In many games, terminal nodes are relatively rarer than non-
terminal nodes. Following this observation, we introduce a model in which leaf l
is assumed to be an unsolved node after exploration with an additional playout
result r with probability pl(r). This assumption is natural when we adopt UCT
as a sub-strategy. Let Û+r

l be the value of Ul when the distribution of leaf l
is changed by observing an additional result r. Then, we select l that has the
maximum absolute difference |U+r

l − U |, averaging all over possible U+r
l values

with its probability:

arg maxl

∑
r∈{0,0.5,1} pl(r)|Û+r

l − U | (7)

HB + ERobust. This is our main strategy that identifies the worst playout result
on any leaf l that maximizes Ul. Recall that a Ul larger than the current U sug-
gests an error in the current estimation. To extend this idea further, HB+ERobust

explores l that can achieve the maximum Ul considering all U+r
l :

arg maxl maxr∈{0,0.5,1} U+r
l . (8)

A distribution obtained by the negamax procedure tends to be unstable in that
a single playout may substantially modify the distribution. This strategy is
expected to remedy the instability by exploring such nodes first.
Property 1. Value U+r

l is maximized when r is 1 (0) for a leaf l that is (is not)
the descendant of the current best move m0 at the root. Note that reward r here
is for a player to move at the root. When a player to move at leaf l differs from
that at the root, reward r at the root, corresponds to 1 − r at leaf l.

HB+BayesUCT. All strategies introduced so far are aimed at minimizing
the uncertainty U . Alternatively, we can adopt BayesUCT [18]. HB+BayesUCT
descends from the root to a leaf, choosing the node having the largest Bayes-UCB
value shown in Eq. (2). Here, μ̂i is the mean of probability p(r) for r ∈ {0, 0.5, 1}.

The lower half of Table 1 summarizes our strategies.
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3.3 Implementation Details

Nodes in the extended tree should be promoted to the main tree in step 3 in each
iteration in Fig. 2, when the sub-trees under the nodes are sufficiently searched.
In our experiments, all of leaf lmain’s children are promoted at the same time,
when the number of visits to lmain reaches at least 20 and when the minimum
number of visits to each of them reaches at least 2. The condition on the number
of visits is crucial, especially in strategies HB+ETerminal and HB+EExpected. In
these strategies, such a node has the least priority and is rarely selected for
exploration if it has a single reward of positive frequency. If the playout result of
node l up to this point is always a win, for example the same result is assumed
to be observed in the next playout in ETerminal and EExpected, then it yields that
Ul = U . Here we note that HB+ERobust is free from this problem.

In strategies HB+ETerminal, HB+EExpected and HB+ERobust, the computa-
tion of the priority of each leaf can be accelerated by first identifying the influence
of each leaf on the root [4]. We followed this technique in the current work. Still,
it requires computation proportional to the number of nodes in the main tree.
Note that this computational cost is usually concealed because the number of
nodes in the main tree is much less than that in the extended tree.

Also, the balance in the computational costs in a primary strategy and in
UCT can be adjusted by the budget, which is the number of internal playouts
performed in step 2. When the budget is more than 1, we need to estimate Ul

after multiple playouts. In HB+ERobust, such Ul is estimated without additional
computational costs because reward r giving the maximum Û+r

l remains the
same, regardless of the budget, for each leaf l by Property 1 (see 3.2). Addition-
ally, in HB+ETerminal, we assumed the same Ul for multiple playouts. However,
in HB+EExpected, Ul must be computed with additional costs.

We handled solved nodes using the method by Winands et al. [20]. Note
that the reward distribution of a solved node automatically converges when a
negamax-style backup is adopted. However, we still need to maintain solved
nodes for UCT in the extended tree. Also, in HB+BayesUCT, solved nodes of a
draw reward may be chosen in Eq. (2). Therefore, such nodes should be excluded
from the candidates for exploration because the exploration no longer contributes
to updating the probability distribution. Further it is noted that in UCT, solved
nodes of a draw reward should be kept as candidates for exploration so as to
stabilize the reward average.

4 Experimental Results

We conducted experiments on incremental random trees in order to compare the
performance of various algorithms. A random value in a uniform distribution was
assigned to each edge. The game score at a leaf was the summation of edge values
from the root, and the reward of the leaf with respect to the root player was 1
for a positive score, 0.5 for score zero, and 0 for a negative score. All trees were
generated with uniform width and depth, but some sub-trees were pruned in
advance to introduce variations in width and depth. In the pruning procedure,
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each internal node in a tree is set to be terminal with probability P , and the sub-
tree under the node is pruned. Also, exactly one edge at each node is assigned
value zero instead of a random value so that the score of the principal variation
is zero, for simplicity of analysis [9]. However, it is known that the performance
of UCT is sensitive to the rewards of moves at the root [2,12]. We introduced
the bias parameter Bi that is added to the game scores of all leaves, in order to
introduce diversity in the game score for the principal variation. Because each
edge value is an integer, the reward of each leaf cannot be a draw when the bias
is 0.5.

4.1 Failure Rates

We compared six algorithms: five variations of the proposed method with
hybrid backup, and the usual UCT for reference. Algorithms HB+ETerminal,
HB+EExpected, HB+ERobust, HB+BayesUCT1, and HB+BayesUCT2 were
introduced in Sect. 3. In this experiment, the budget in our algorithms was
fixed in 1, and all algorithms incorporated MCTS Solver for handling solved
nodes [20]. At the beginning of the search, we initialized the current best move
randomly, because all moves have an equal mean of reward distribution. The
current best move was replaced if and only if there appeared a better move with
respect to the mean of its reward distribution.

Although we generated game trees in advance, each search algorithm starts
with only its root with the immediate successor nodes and then gradually incor-
porates new leaves as explained in Sect. 3. We tested two configurations of
branching factor and depth; (4, 12) and (8, 8). In addition, its terminal prob-
ability P was 0, 0.1, or 0.2. For each configuration of trees, we generated 400
instances and ran each algorithm 200 times. We measured the effectiveness
of each algorithm through the failure rate, following the method described by
Kocsis and Szepesvári [13]. The failure rate is the rate in which the algorithm
fails to choose the optimal move at the root.

The results are summarized in Table 2. The proposed method HB+ERobust

achieved the best results among all methods in trees where terminal probability
P was not zero, while UCT achieved the best results when P was zero. These
results are consistent with previous reports that found the performance of UCT
degrades when a tree has a non-uniform width or has traps each of which is a
losing move [17,18]. The performance of both HB+ERobust and UCT improved
when bias was added to the trees. The performance of BayesUCT was not as
good as expected in these configurations. Although a detailed analysis of the
reasons for this is beyond the scope of this paper, the differences in discrete
histograms or Beta distributions in the representation of reward distributions
may affect the performance. It might also depend whether a game tree is fixed
or iteratively expanded during the search.

In Fig. 3, we can see how the failure rate decreases as the number of playouts
increases. We can observe that the failure rate of HB+ERobust decreases faster
than UCT and the other methods if the terminal probability is positive.
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Table 2. Table of failure rates when there were 4000 playouts, where B is branching
factor, D is maximum depth, P is terminal probability, and Bi is bias. In each setting,
the lowest failure rate observed is indicated in bold.

B - D P Bi Hybrid Backup (HB) UCT

ETerminal EExpected ERobust BayesUCT1 BayesUCT2

4-12 0.0 0 0.079025 0.078487 0.078575 0.037750 0.129050 0.013088

0.5 0.060987 0.058975 0.029712 0.057512 0.085550 0.016987

0.1 0 0.001275 0.001212 0.000188 0.005525 0.017175 0.040137

0.5 0.000163 0.000238 0.000000 0.001225 0.000988 0.000213

0.2 0 0.000000 0.000000 0.000000 0.000650 0.000450 0.002288

0.5 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.0 1 0.050350 0.046487 0.025087 0.066387 0.145387 0.023013

0.1 1 0.001213 0.001225 0.000325 0.034000 0.028837 0.007738

0.2 1 0.000000 0.000000 0.000000 0.001088 0.002325 0.000025

0.0 2 0.008500 0.008138 0.001512 0.003912 0.067475 0.000000

0.1 2 0.000113 0.000100 0.000000 0.001438 0.007950 0.000013

0.2 2 0.000000 0.000000 0.000000 0.000000 0.000450 0.000000

8-8 0.0 0 0.264350 0.251387 0.301200 0.777625 0.174887 0.016825

0.1 0 0.090300 0.074125 0.046825 0.093362 0.068025 0.098437

0.2 0 0.007125 0.004425 0.001187 0.036912 0.014563 0.067225

Table 3. Average milliseconds consumed by single playout.

budget P = 0.0 P = 0.1 P = 0.2

HB+ERobust 1 0.151095 0.079921 0.041580
10 0.021505 0.015718 0.011130
20 0.016167 0.012834 0.008930

budget P = 0.0 P = 0.1 P = 0.2

UCT 1 0.012968 0.008496 0.004249

4.2 Acceleration by Increasing Budget

We measured the computational efficiency of HB+ERobust, which was the most
effective algorithm in the previous experiments. The computational cost of the
primary strategy in HB+ERobust is more expensive than that of UCT. Therefore,
the computational efficiency per playout is improved by increasing the number
of internal playouts and the budget at the expense of exploration accuracy.

We measured the average consumed time for a playout by dividing the total
time consumed by the number of playouts. We used trees with branching factor
4 and depth 12 and performed 4000 playouts for each tree, which means that
the main tree is explored 4000/budget times. In our hybrid algorithms, UCT
sometimes identifies that the root of the current exploration, which is a leaf
in the main tree, is solved. In such cases, exploration on the node is stopped,
and the distributions of the main tree are updated, even before the number of
playouts reaches a given budget. We used a computer equipped with an AMD
Opteron Processor 6274, 2.2 GHz, running Linux for this experiment.
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Fig. 3. Failure rates: (branching factor, depth) is (4, 12) on left, and (8, 8) on right.
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Fig. 4. Failure rates of HB+ERobust for budgets, 1, 10, and 20.

The failure rate is slightly increased by increasing the budget, although the
difference is limited, as shown in Fig. 4. Table 3 lists the average time consumed
per playout in HB+ERobust and in UCT. We can see that the efficiency improved
by increasing the budget. Though UCT is still faster than HB+ERobust with a
budget of 20, we argue that the difference is almost negligible in typical situations
where a random simulation for each playout consumes about 1 ms.

5 Conclusion

This paper presented a new anytime Monte-Carlo tree search method that iter-
atively refines the confidence on the best move. It is estimated by the reward
distribution of each move at the root, where the distributions of interior nodes are
obtained by a negamax-style backup in the main game tree and by UCT in the
extended tree. In each iteration, the leaf that most contributes to the confidence
is explored further by UCT. The experiments on synthetic trees showed that
the presented method outperformed UCT and similar methods, except for trees
having uniform width and depth. Among several strategies, the experimental
results suggest that a strategy expecting the worst playout outcome performed
the best.



Monte Carlo Tree Search with Robust Exploration 45

Acknowledgement. This work was partially supported by Grant-in-Aid for JSPS
Fellows 16J07455.

References

1. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed
bandit problem. Mach. Learn. 47(2–3), 235–256 (2002)
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Abstract. Monte-Carlo Tree Search (MCTS) is a popular technique for
playing multi-player games. In this paper, we propose a new method
to bias the playout policy of MCTS. The idea is to prune the decisions
which seem “bad” (according to the previous iterations of the algorithm)
before computing each playout. Thus, the method evaluates the esti-
mated “good” moves more precisely. We have tested our improvement
for the game of Havannah and compared it to several classic improve-
ments. Our method outperforms the classic version of MCTS (with the
RAVE improvement) and the different playout policies of MCTS that we
have experimented.

1 Introduction

Monte-Carlo Tree Search (MCTS) algorithms are recent algorithms for decision
making problems [6,7]. They are competitively used in discrete, observable and
uncertain environments with a finite horizon and when the number of possible
states is large. MCTS algorithms evaluate a state of the problem using a Monte-
Carlo simulation (roughly, by performing numerous playouts starting from this
state). Therefore, they require no evaluation function, which makes them quite
generic and usable on a large number of applications. Many games are naturally
suited for these algorithms so games are classically used for comparing such
algorithms.

In this paper, we propose a method to improve the Monte-Carlo simulation
(playouts) by pruning some of the possible moves. The idea is to ignore the
decisions which seem “bad” when computing a playout, and thus to consider
the “good” moves more precisely. We choose the moves to be pruned thanks to
statistics established during previous playouts.

We experiment our improvement, called “Playout Pruning with Rave” (PPR)
on the game of Havannah. Classic MCTS algorithms already provide good results
with this game but our experiments show that PPR performs better. We also
compare PPR to four well-known MCTS improvements (PoolRave, LGRF1,
MAST and NAST2).

The remaining of this paper presents the game of Havannah in Sect. 2 and
the Monte-Carlo Tree Search algorithms in Sect. 3. Our new improvement is
described in Sect. 4. We present our results in Sect. 5. Finally, we conclude in
Sect. 6.
c© Springer International Publishing AG 2016
A. Plaat et al. (Eds.): CG 2016, LNCS 10068, pp. 47–57, 2016.
DOI: 10.1007/978-3-319-50935-8 5
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2 Game of Havannah

The game of Havannah is a 2-player board game created by Christian Freeling
in 1979 and updated in 1992 [26]. It belongs to the family of connection games
with hexagonal cells. It is played on a hexagonal board, meaning 6 corners and
6 edges (corner stones do not belong to edges). At each turn a player has to play
a stone in an empty cell. The goal is to realize one of these three shapes (i) a
ring, which is a loop around one or more cells (empty or occupied by any stones)
(ii) a bridge, which is a continuous string of stones connecting two corners (iii)
a fork, which is a continuous string of stones connecting three edges. If there is
no empty cell left and if no player wins then it is a draw (see Fig. 1). Previous
studies related to the Monte-Carlo Tree Search algorithm applied to the game
of Havannah can be found in [10,20,30].

Fig. 1. The three winning shapes of Havannah (wins for the white player): a ring (left),
a bridge (middle left) and a fork (middle right), and a draw (right).

3 Monte-Carlo Tree Search Algorithms

The Monte-Carlo Tree Search (MCTS) algorithm is currently a state-of-the-art
algorithm for many decision making problems [3,9,16,31], and is particularly
relevant in games [1,5,12,14,15,19,21,22,29,30]. The general principle of MCTS
is to iteratively build a tree and perform playouts to bias the decision making
process toward the best decisions [6,7,18]. Starting with the current state s0 of
a problem, the MCTS algorithm incrementally builds a subtree of the future
states. Here, the goal is to get an unbalanced subtree, where the branches with
(estimated) good states are more developed. The subtree is built in four steps:
selection, expansion, simulation and backpropagation (see Fig. 2).

The selection step is to choose an existing node among available nodes in the
subtree. The most common implementation of MCTS is the Upper Confidence
Tree (UCT) [18] which uses a bandit formula for choosing a node. A possible
bandit formula is defined as follows:

s1 ← arg max
j∈Cs1

[
wj

nj
+ K

√
ln(ns1)

nj

]
,

where Cs1 is the set of child nodes of the node s1, wj is the number of wins for
the node j (more precisely, the sum of the final rewards for j), nj is the number
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s0 s0 s0 s0

s1 s1 s1 s1
s2 s2 s2

s3

Fig. 2. The MCTS algorithm iteratively builds a subtree of the possible future states
(circles). This figure (from [4]) illustrates one iteration of the algorithm. Starting from
the root node s0 (current state of the problem), a node s1 is selected and a new node s2
is created. A playout is performed (until a final state s3 is reached) and the subtree is
updated.

of playouts for the node j and ns1 is the number of playouts for the node s1
(ns1 =

∑
j nj). K is called the exploration parameter and is used to tune the

trade-off between exploitation and exploration.
Once a leaf node s1 is selected, the expansion step creates a new child node s2.

This new node corresponds to a decision of s1 which has not been considered yet.
Then, the simulation step is to perform a playout (a random game) until a final
state s3 is reached. This final state gives a reward (for example, in games, the
reward corresponds to a win, a loss or a draw). The last step (backpropagation)
is to use the reward to update the statistics (number of wins and number of
playouts) in all the nodes encountered during the selection step.

3.1 Rapid Action Value Estimate

One of the most common improvements of the MCTS algorithm is the Rapid
Action Value Estimate (RAVE) [12]. The idea is to share some statistics about
moves between nodes: if a move is good in a certain state, then it may be good
in other ones.

More precisely, let s be a node and mi the possible moves from s, leading
to the child nodes s′

i. For the classic MCTS algorithm, we already store, in s,
the number of winning playouts ws and the total number of playouts ns (after
s was selected). For the RAVE improvement, we also store, in s and for each
move mi, the number of winning playouts w′

s,s′
i
and the total number of playouts

n′
s,s′

i
obtained by choosing the move mi. These “RAVE statistics” are updated

during the backpropagation step and indicate the estimated quality of the moves
already considered in the subtree (see Fig. 3).
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Fig. 3. Illustration of the RAVE process. In each node, an array stores the RAVE
statistics of all possible moves (left); this array is updated when a corresponding move
is played (right). In this example, a new node (SE) is created and all the moves chosen
in the selection step (m2,m0) and in the simulation step (m3,m1) are updated in the
RAVE statistics of the selected nodes (SA,SC ,SE) during the backpropagation step.

Thus, the selection step can be biased by adding a RAVE score in the bandit
formula defined previously:

s1 ← arg max
j∈Cs1

[
(1 − β)

wj

nj
+ β

w′
s1,j

n′
s1,j

+ K

√
ln(ns1)

nj

]
,

where β is a parameter approaching 0 as nj tends to infinity (for instance,

β =
√

R
R+3nj

where R is a parameter [13]).

3.2 Playout Improvements

PoolRave is an extension of RAVE [17,25]. The idea is to use the RAVE sta-
tistics to bias the simulation step (unlike the RAVE improvement which biases
the selection step). More precisely, when a playout is performed, the PoolRave
improvement firstly builds a pool of possible moves by selecting the N best moves
according to the RAVE statistics. Then, in the simulation step, the moves are
chosen randomly in the pool with probability p, otherwise (with probability 1−p)
a random possible move is played, as in the classic MCTS algorithm.

The Last-Good-Reply improvement [2,8] is based on the principle of learning
how to respond to a move. In each node, LGR stores move replies which lead
to a win in previous playouts. More precisely, during a playout, if the node has
a reply for the last move of the opponent, this reply is played, otherwise a new
reply is created using a random possible move. At the end of the playout, if
the playout leads to a win, the corresponding replies are stored in the node.
If the playout leads to a loss, the corresponding replies are removed from the
node (forgetting step). This algorithm is called LGRF1. Other algorithms have
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been proposed using the same idea but LGRF1 is the most efficient one with
connection games [27].

The principle of the Move-Average Sampling Technique (MAST) [11] is to
store move statistics globally and to use these statistics to bias the playouts.
This is similar to the PoolRave improvement, except that here, the statistics are
independent of the position of the move in the tree.

The N-gram Average Sampling Technique (NAST) is a generalization of
MAST [23,28]. The idea is to look at sequences of N moves instead of one
move only. This improvement can be costly according to N but it is already
efficient with N = 2 (NAST2) for the game of Havannah [27].

4 Pruning in the Simulation Step

We propose a new improvement of the MCTS algorithm, called “Playout Pruning
with Rave” (PPR). The idea is to prune bad moves in the simulation step in
order to focus the simulation on good playouts (see Fig. 4, left). More precisely,
before the playout, we compute a list of good moves by pruning the moves which
have a winning rate lower than a given threshold Tw′ . The winning rate of a node

j is computed using the RAVE statistics of a node sPPR, with
w′

sPPR,j

n′
sPPR,j

.

Fig. 4. During a playout (left), the PPR process discards all moves with a RAVE
winning rate lower than a given threshold, then plays a move among this pruned list
(or a random move, according to a given probability). For example (right), after 100 k
MCTS iterations for black, PPR prunes the scratched cells and finally plays the starred
cell, which seems relevant: the three scratched cells on the right cannot be used by black
to form a winning shape; at the top left of the board several white cells prevent black
from accessing the scratched cells easily; the three remaining scratched cells are seen
by PPR as functionally equivalent to other possible cells of the board.

The node sPPR, giving the RAVE statistics, has to be chosen carefully.
Indeed, the node s2, selected during the selection step of the MCTS algorithm,
may still have very few playouts, hence inaccurate RAVE statistics. To solve this
problem, we traverse the MCTS tree bottom-up, starting from s2, until we reach
a node with a minimum ratio Tn, representing the current number of playouts
for sPPR over the total number of playouts performed.
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After the PPR list is computed, the simulation step is performed. The idea is
to use the moves in the PPR list, which are believed to be good, but we also have
to choose other moves to explore other possible playouts. To this end, during
the simulation step, each move is chosen in the PPR list with a probability p,
or among the possible moves with a probability 1 − p. In the latter case, we
have observed that considering only a part of all the possible moves gives better
results; this can be seen as a default pruning with, in return, an additional bias
(see Algorithm 1).

Algorithm 1. Monte-Carlo Tree Search with RAVE and PPR
{initialization}
s0 ← create root node from the current state of the problem

while there is some time left do

{selection}
s1 ← s0
while all possible decisions of s1 have been considered do

Cs1 ← child nodes of s1

β ←
√

R
R+3nj

s1 ← argmax
j∈Cs1

[
(1 − β)

wj
nj

+ β
w′

s1,j

n′
s1,j

+ K

√
ln(ns1 )

nj

]

{expansion}
s2 ← create a child node of s1 from a possible decision of s1 not yet considered

{pruning}
sPPR ← s2
while nsPPR < Tn do

sPPR ← parent node of sPPR

PPR ← { j |
w′

sPPR,j

n′
sPPR,j

> Tw′ }

{simulation/playout}
s3 ← s2
while s3 is not a terminal state for the problem do

ξ ← random()
if ξ ≤ p then

s3 ← randomly choose next state in PPR
else

s3 ← randomly choose next state in the (1 − ξ) last part of the possible moves

{backpropagation}
s4 ← s2
while s4 �= s0 do

ws4 ← ws4+ reward of the terminal state s3 for the player of s4
ns4 ← ns4 + 1
for all nodes j belonging to the path s0s3 do

w′
s4,j ← w′

s4,j+ reward of the terminal state s3 for the player of j

n′
s4,j ← n′

s4,j + 1

s4 ← parent node of s4

return best child of s0

The PPR improvement can be seen as a dynamic version of the PoolRave
improvement presented in the previous section: instead of selecting the N best
moves in a pool, we discard the moves which have a winning rate lower than Tw′ .
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PoolRave uses a static pool size, which implies that good moves may be discarded
(if the pool size is small in front of the number of good moves) or that bad moves
may be chosen (if the pool size is large in front of the number of good moves).
PPR automatically deals with this problem since the size of the PPR list is
naturally dynamic: the list is small if there are only few good moves, and large
if there are many good moves.

5 Experiments

We have experimented with the proposed MCTS improvement (PPR) for the
game of Havannah. Since RAVE is now considered as a classic MCTS baseline,
we have compared PPR against RAVE (using the parameters R = 130 and
K = 0). To have adequate statistical properties, we have played 600 games for
each experiment. Since the first player has an advantage in the game of Havan-
nah, we played, for each experiment, half the games with the first algorithm as
the first player and the other half with the second algorithm as the first player.

Below we report on the influence of the PPR parmeters (Sect. 5.1), scalability
of the playout pruning (Sect. 5.2), and the comparison between PPR and other
playout improvements (Sect. 5.3).

5.1 Influence of the PPR Parameters

To study the influence of the three parameters of the PPR improvement (Tn,
Tw′ , P ), we have compared PPR against RAVE using 1 k MCTS iterations and
a board size of 6. For each parameter, we have experimented with various values
while the other parameters were set to default values (see Fig. 5).

Fig. 5. Influence of the PPR parameters in the game of Havannah (PPR vs RAVE, 1 k
MCTS iterations, board size 6). Each parameter is studied while the other ones are set
to default values: Tn = 1%, Tw′ = 25% and p = 80%, where Tn is the minimum ratio
of playouts for the node sPPR, Tw′ is the win rate threshold for pruning bad moves and
p is the probability for using the PPR list.
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PPR has better win rates against RAVE when Tn (the minimum ratio of
playouts for the node sPPR over the total number of playouts) is lower than
10%. A low value for Tn means that we take a node sPPR close to the node s2
which has launched the playout; thus the PPR list is built using RAVE statistics
that are meaningful for the playout but quite unreliable. When Tn is too large,
no node has sufficient playouts so the PPR list is empty and PPR is equivalent
to RAVE (win rate of 50%).

The best values for the pruning threshold Tw′ (win rate in the RAVE statistics
of sPPR) stand between 20% and 40%. The moves with a winning rate lower than
this threshold are pruned when building the PPR list. Therefore, if Tw′ is too
high, all moves are pruned (i.e., the PPR list is empty) and the algorithm is
equivalent to RAVE (win rate of 50%). In addition, if Tw′ is too low, then the
PPR list also contains bad moves (low winning rate) which lowers the efficiency
of PPR.

Finally, the best values for the parameter p (probability for using the PPR
list instead of a random sampling, to choose a move) stand between 60% and
80% in our experiments. A low value implies that the PPR list is rarely used,
making PPR almost equivalent to RAVE. With a very high value, the PPR list
is frequently used, so PPR does not explore other moves, hence a highly biased
playout computation.

5.2 Scalability of the Playout Pruning

Like classic improvements of the simulation step (for instance, PoolRave and
LGRF1), PPR is useful for small numbers of playouts and large board sizes (see
Fig. 6).

In our experiments, PPR wins almost 80% of the games against RAVE with
1 k MCTS iterations, and almost 70% with 10 k iterations. PPR wins 60% or less
of the games against RAVE with a board size lower than 5 and 80% or more of

Fig. 6. Influence of the number of MCTS iterations (left, with board size 6) and board
size (right, with 1 k MCTS iterations) in the game of Havannah (PPR vs RAVE,
Tn = 1%, Tw′ = 25% and p = 80%).
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the games with a board size larger than 7. This is not very surprising because
RAVE is already very efficient when the board size is small, so adding pruning
is useless in this case. However, large boards have many more “dead areas” (i.e.,
irrelevant cells) that PPR can detect and prune (see Fig. 4, right).

5.3 PPR Vs Other Playout Improvements

We have compared PPR against several MCTS improvements (RAVE, PoolRave,
LGRF1, MAST, NAST2) for several board sizes and numbers of MCTS iterations
(see Table 1). Since RAVE is now considered as the classic MCTS baseline, we
have implemented all playout improvements (PPR, PoolRave, LGRF1, MAST,
NAST2) based on the RAVE algorithm.

Our results indicate that PPR outperforms the previous algorithms for the
game of Havannah. For a board size of 6, PPR wins more than 70% of the games
with 1 k MCTS iterations and more than 60% of the games with 10 k or 30 k
iterations. For a board size of 10, PPR is even better (more than 70%).

Table 1. PPR vs other MCTS improvements. We have performed 200 games for the
experiments with size = 10 and playouts = 30, 000; 600 games for the other experiments.

size playouts player win rate std dev

6

1,000

Rave 74.4% ±1.78
PoolRave 70.17% ±1.87
LGRF1 71.67% ±1.84
MAST 74.0% ±1.79
NAST2 85.0% ±1.46

10,000

Rave 63.67% ±1.96
PoolRave 67.0% ±1.92
LGRF1 63.17% ±1.97
MAST 64.5% ±1.95
NAST2 76.5% ±1.73

30,000

Rave 66.33% ±1.92
PoolRave 73.66% ±1.79
LGRF1 65.66% ±1.93
MAST 65.5% ±1.94
NAST2 60.5% ±1.99

size playouts player win rate std dev

10

1,000

Rave 86.33% ±1.40
PoolRave 72.16% ±1.82
LGRF1 79.00% ±1.66
MAST 83.66% ±1.50
NAST2 85.50% ±1.43

10,000

Rave 79.16% ±1.65
PoolRave 89.00% ±1.27
LGRF1 83.83% ±1.50
MAST 79.00% ±1.66
NAST2 85.16% ±1.45

30,000

Rave 75.85% ±2.13
PoolRave 91.01% ±1.42
LGRF1 79.69% ±2.01
MAST 82.04% ±1.91
NAST2 84.08% ±1.82

6 Conclusion

In this paper, we have proposed a new improvement (called PPR) of the MCTS
algorithm, based on the RAVE improvement. The idea is to prune the moves
which seem “bad” according to previous playouts during the simulation step.
We have compared PPR to previous MCTS improvements (RAVE, PoolRave,
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LGRF1, MAST, NAST2) for the game of Havannah. In our experiments, PPR
is the most efficient algorithm, reaching win rates of at least 60 %.

In future work, it would be interesting to compare PPR with other MCTS
improvements such as Contextual Monte-Carlo [24] or with stronger bots [10]. We
would also try PPR for other games or decision making problems to determine
if the benefit of PPR is limited to the game of Havannah or if it is more general.
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Abstract. Recently, a methodology has been proposed for boosting the
computational intelligence of randomized game-playing programs. We
propose faster variants of these algorithms, namely rectangular algo-
rithms (fully parallel) and bandit algorithms (faster in a sequential
setup). We check the performance on several board games and card
games. In addition, in the case of Go, we check the methodology when
the opponent is completely distinct to the one used in the training.

1 Introduction: Portfolios of Random Seeds

Artificial intelligence (AI) has been invaded by ensemble methods [2,13]. In
games, some recent papers propose to do so, and in particular to combine variants
of a single program, thanks to tricks on random seeds.

The Impact of Random Seeds. We assume that an AI is given. This AI
is supposed to be stochastic; even with the same flow of information, it will
not always play the same sequence of moves. This is for example the case for
Monte Carlo Tree Search [5,10]. Given such an AI, we can check its performance
against a baseline program (possibly itself) as we vary the random seed, i.e.,
we can generate K different random seeds, and for each of these seeds play Kt

games against the baseline. We can then plot the success rates, sort, and compare
the differences to the standard deviations. Results are presented in Fig. 1 and
show for several games that the seed has a significant impact. The methodologies
presented in this paper are based on this phenomenon.

Related Work. Several works were dedicated to combining several AIs in the
past. [11] combines several different AIs. Nash methods have been used in [7] for
combining several opening books.

The work in [12] constructed several AIs from a single stochastic one and
combined them by the BestSeed and Nash methods, detailed in Sect. 2. The
application of the methodologies above to Go has already been investigated in
[12]. These results were tested in cross-validation. We extend these results in
Go to the case with transfer (i.e. we check the impact in terms of the suc-
cess rate against other opponents, not related to the ones in learning) and we
provide quadratically faster algorithms. We also perform experiments on addi-
tional games (Atari-Go, Breakthrough, Domineering, and several games from
the GameTestBed platform).
c© Springer International Publishing AG 2016
A. Plaat et al. (Eds.): CG 2016, LNCS 10068, pp. 58–70, 2016.
DOI: 10.1007/978-3-319-50935-8 6
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Fig. 1. Impact of the seed on the success rate. x-axis: index of seed; y-axis: success
rate. For the nth value, we consider the nth worst seed for Black and the nth seed
for White, and display their average scores against all opponent seeds. The label on
the y-axis shows the standard deviation of these averages; we see that there are good
seeds, which obtain a success rate far above 50% - by much more than the standard
deviation.

2 Known Algorithms for Boosting an AI Using Random
Seeds

This section presents an overview of two methods proposed in [12] for building
a boosted algorithm from a set of seeds: the Nash-approach and the BestSeed-
approach. We propose extensions of these methods and apply them to some
new games. Typically, a stochastic computer program uses a random seed. The
random seed ω is randomly drawn (using the clock, usually) and then a pseudo-
random sequence is generated. Therefore, a stochastic program is in fact a ran-
dom variable, distributed over deterministic program. Let us define: AI is our
game playing artificial intelligence; it is stochastic. AI(ω) is a deterministic ver-
sion; ω is a seed, which is randomly drawn in the original AI. We can easily
generate plenty of ω and therefore one stochastic AI becomes several determin-
istic AIs, termed AI1, AI2, . . . . Let us assume that one of the players plays
as Black and the other plays as White. We can do the same construction as
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Algorithm 1. Approach for boosting a game stochastic game AI.
Require: A stochastic AI playing as Black, a stochastic AI ′ playing as White.
Output: A boosted AI termed BAI playing as Black, a boosted AI BAI ′ playing as

White.
1: Build Mi,j = 1 if AIi (Black) wins against AI ′

j (White) for i ∈ {1, . . . , K} and
j ∈ {1, . . . , Kt}, otherwise Mi,j = 0.

2: Build M ′
i,j = 1 if AI ′

i (White) wins against AIj (Black) for i ∈ {1, . . . , K} and
j ∈ {1, . . . , Kt}, otherwise M ′

i,j = 0.
3: if BestSeed then � deterministic boosted AI
4: BAI is AIi where i maximizes

∑Kt
j=1 Mi,j .

5: BAI ′ is AI ′
i where i maximizes

∑Kt
j=1 M ′

i,j .
6: end if
7: if Nash then � stochastic boosted AI
8: Compute (p, q) a Nash equilibrium of M .
9: BAI is AIi with probability pi

10: Compute (p′, q′) a Nash equilibrium of M ′.
11: BAI ′ is AI ′

j with probability p′
i

12: end if
13: if Uniform then � boosted AI
14: BAI is AIi with probability 1/K.
15: BAI ′ is AI ′

j with probability 1/K.
16: end if

above for the AI playing as Black and for the AI ′ playing as White. We get
AI1, AI2,. . . for Black, and AI ′

1, AI ′
2, . . . for White. From now on, we present

the learning algorithm for Black - still, for this, we need the AI ′ for White as
well. The algorithm for enhancing the AI as White is similar. Let us define, for
i ∈ {1, . . . , K} and j ∈ {1, . . . ,Kt}, Mi,j = 1 when AIi (playing as Black) wins
against AI ′

j (playing as White). Otherwise, Mi,j = 0. Also, let us define M ′
i,j = 1

when AI ′
i (playing as White) wins against AIj (playing as Black). Thus, we have

M ′
i,j = 1 − Mj,i. [12] uses K = Kt, hence they use the same squared matrix for

Black and for White - up to a transformation M �→ 1 − M ′. The point in the
present paper is to show that we can save up time by using K �= Kt. This means
that we need two matrices: M (used for the learning for Black) is the matrix
of Mi,j for i ∈ {1, . . . , K} and j ∈ {1, . . . , Kt}; and M ′ (used for the learn-
ing for White) is the matrix of (M ′)i,j for i ∈ {1, . . . , K} and j ∈ {1, . . . , Kt}.
If Kt ≤ K, M and M ′ have Kt × Kt entries in common (up to transformation
(M ′)i,j = 1−Mj,i); therefore building M and M ′ needs simulating 2K×Kt−K2

t

games.
For arbitrary values of K and K ′, boosted AIs can be created using BestSeed

and Nash approaches, summarized in Algorithm 1. The Nash approach provides
a stochastic policy, usually stronger than the original policy [12]. This can be
done even if the matrix is not squared.
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3 Faster Methods

3.1 Rectangular Learning

At first view, the approach in [12] is simple and sound: they need one squared
matrix for both Black and White. However, their approach needs the result of
K2 games. With our rectangular approach, if we use K different seeds and Kt

opponent seeds, we need 2K × Kt − K2
t games.

Let us now check the precision of our approach. Our algorithms use averages
of rows and averages of columns. Let us define μi the average value of the ith row
of M , if Kt was infinite - this is the average success rate of AIi playing as Black
against AI playing as White. And let us define μ̂i the average value that we
get, with our finite value Kt. Hoeffding’s bound [9] tells us that with probability
1−δ, |μi−μ̂i| ≤ √− log(δ/2)/(2Kt). By Bonferroni correction (i.e. union bound),
with probability 1 − δ, for all i ≤ K, |μi − μ̂i| ≤ √− log(δ/(2K))/(2Kt). For a
requested precision ε, we can do as follows:

– Choose a value of K large enough, so that at least one seed i is optimal within
precision ε/2.

– Choose Kt such that
√− log(δ/(2K))/(2Kt) ≤ ε/2.

We see that Kt slightly more than logarithmic as a function of K is enough for
ensuring ε arbitrarily small asymptotically in K. On the other hand, we have no
bound on K necessary for having at least one seed optimal within precision ε/2.

3.2 Bandit Methods

Bandits are a natural method for finding approximate optima quickly. Rather
than computing full matrices, we consider the following approach: apply Exp3
[1], both for Black and for White, for sampling in the matrix M (evaluate Mi,j

only when you need) as a matrix game; Black is the row player and maximizes;
White is the column player and minimizes. We use far less evaluations than the
size of the matrix.

Finally, we can simply use UCB (separately for Black and White), which can
be modified [15] for handling the infinite nature of the set of seeds; we apply this
to the game of Go in 9× 9 and 19× 19.

4 Testbeds

We provide experiments on a list of games. First, we consider MCTS, applied
to four board games, namely Domineering, Atari-Go, Breakthrough and Go.
Then, we consider the randomized policy in the GameTestBed platform. Dom-
ineering is a two-player game with very simple rules: each player in turn puts
a tile on empty locations in the board. The game starts with an empty board.
The first player who can not play loses the game. Usually, one of the player
has vertical 2× 1 tiles, and the other has horizontal 1× 2 tiles. Domineering
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can be played on boards of various shapes, most classical cases are rectangles
or squares. For squared boards, Domineering is solved until board size 10× 10
[3,4]. Domineering was invented by Göran Andersson [6]. Jos Uiterwijk recently
proposed a knowledge based method that can solve large rectangular boards
without any search [14]. The Breakthrough game, invented by Dan Troyka in
2000, has very simple rules: all pieces can move straight ahead or in diagonal (i.e.
three possible target locations). Captures are possible in diagonal only. Players
play in turn, and the first player who reaches the opposite first row or captures
all opponents pieces has won. There is no draw in Breakthrough - there is always
at least one legal move, and pieces can only go forward (straight or diagonal) so
that loops can not occur. This game won the 2001 8× 8 Game Design Compe-
tition. Yasuda Yasutoshi popularized the Atari-Go variant of the game of Go;
the key difference is that the first player who makes a capture wins the game.
Atari-Go is also known as Ponnuki-Go, One-capture-Go, or Capture-Go. Last
but not least, we provide results of experiments on the GameTestBed platform
(https://gforge.inria.fr/projects/gametestbed/).

5 Experiments

Besides playing against the original stochastic AI, we consider the following
opponent (K ′ = 1 corresponds to the original opponent, whereas K ′ >> 1 is a
much stronger opponent):

– Generate K ′ seeds, randomly, for Black and K ′ seeds, randomly, for White.
– Consider the worst success rate of our boosted AI playing as White against

these K ′ strategies for Black and consider the worst success rate of our boosted
AI playing as Black against these K ′ strategies for White. Our success rate is
the average of these two success rates (Black and White).

This is a strong challenge for K ′ large; since we consider separately White and
Black, we have indeed K ′2 opponent strategies (each of the K ′ seeds for Black
and each of the K ′ seeds for White) and consider the worst success rate. We will
define this opponent as a K ′-exploiter : it is an approximator of the exploitability
property of Nash equilibria. It represents what can be done if our opponent could
play the game K ′ times and select the best outcome. For K ′ = 1, this opponent
is playing exactly as the original AI: this is the success rate against a randomly
drawn seed. A score ≥50% against K ′ = 1 means that we have outperformed
the original AI, i.e. boosting has succeeded; but it is satisfactory to have also a
better success rate, against K ′ > 1, than the original AI.

In order to validate the method, we take care that our algorithm is tested
with a proper cross-validation: the opponent uses seeds which have never been
used during the learning of the portfolio. This is done for all our experiments,
BestSeed, Uniform, or Nash. For this reason, there is no bias in our results. In
addition, we test our performance, in the case of Go, against another opponent;
therefore, this is transfer learning, as explained in Sect. 5.

https://gforge.inria.fr/projects/gametestbed/
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Fig. 2. Results for domineering, with the BestSeed and the Nash approach, against the
baseline (K′ = 1) and the exploiter (K′ > 1). x-axis: K, number of seeds optimized
for both players; y-axis: success rate. Kt = 900 in all experiments. The performance of
the uniform version (original algorithm) is also presented for comparison.

Performance of Rectangular Algorithms in Cross-Validation, for Some
Board Games. All results are averaged over 100 runs. Results for Domineering,
Atari-Go and Breakthrough are presented in Figs. 2, 3, and 4 respectively. Table 3
shows the numerical results when K = 9000 and Kt = 900.

In short, BestSeed performs well against the original algorithm (correspond-
ing to K ′ = 1), but its performance against the exploiter (K ′ > 1) is very weak.
On the other hand, the Nash approach outperforms the original algorithm both
in terms of success rate against the baseline (K ′ = 1) in all cases and against the
exploiters (K ′ > 1) in most cases (i.e. curves on the middle column in Figs. 2, 3
and 4 are better than those on the right column) - however, for Breakthrough
in large size the results were (very) slightly detrimental for K ′ > 1, i.e. the
“exploiter” could learn strategies against it.

Performance of the Bandit Method in Cross-Validation In this section,
we present results obtained by Exp3 on the GameTestBed platform. We apply
800 iterations of Exp3 with 400 seeds for each player. The arms with frequency
greater than 99% of the largest frequency are chosen as possible seeds and we
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Fig. 3. Results for Atari-Go, with the BestSeed and the Nash approach, against the
baseline (K′ = 1) and the exploiter (K′ > 1). x-axis: K, number of seeds optimized
for both players; y-axis: success rate. Kt = 900 in all experiments. The performance of
the uniform version (original algorithm) is also presented for comparison.

play them with probability proportional to their frequencies. Each learning is
repeated 100 times, and each learnt AI is tested against 400 randomly drawn
seeds which have never been used during the learning. Table 1 shows the results
against the original algorithm, and against a stronger opponents (K ′ = 16).
With the Exp3 method and most frequent arm selection, our boosted algorithm
outperforms the original AI and its success rate against the stronger opponent
K ′ = 16 is improved. Please note that the presented games are hard to learn: Nim
is a simple game but has a brute representation which makes learning hard; and
two of the games are phantom games with tricky partially observable states. The
policies are the default randomized policies in the freely available code above.

We also tested UCB with progressive widening [15]; the infinite set of arms is
handled by considering, after N simulated games, the �100N

1
3 	 first arms. UCB

was parallelized by pulling the arms with the 40 best scores simultaneously. We
get the following results (we performed the learning once, the standard deviation
refers to the success rate in cross-validation):
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Table 1. Success rate for five games of the GameTestBed platform, with the Exp3
method and most frequent arm selection, against the baseline (K′ = 1) and the stronger
exploiter (K′ = 16). In the game Morra, the AI with given random seed is still sto-
chastic. Hence, the success rate is not greatly improved.

Game Success rate (%)

Baseline Most frequently chosen

K′ = 1 K′ = 16 K′ = 1 K′ = 16

Phantom 4 in a row 50 0.50 ± 0.00 69.00 ± 0.00 8.75 ± 0.00

Nim 50 0.00 ± 0.00 73.50 ± 0.00 3.00 ± 0.00

Phantom tic-tac-toe 50 0.50 ± 0.00 65.50 ± 0.00 15.25 ± 0.00

Morra 50 47.73 ± 0.22 52.12 ± 0.23 48.11 ± 0.22

PigStupid 50 40.78 ± 0.25 50.04 ± 0.25 41.30 ± 0.25

– 9× 9 Go, MCTS with 400 simulations per move, after 60 000 simulated games,
the seed 1125 was selected for Black and the seed 898 was selected for White,
success rate 79.8%.

– 19× 19 Go, GnuGo not MCTS1, after only 3780 simulated games, the seed
606 was selected for Black and the seed 472 was selected for White, success
rate 55.9%. This algorithm is far less stochastic than MCTS.

Table 2. Performance of BestSeed-Gnugo-MCTS against various GnuGo-default pro-
grams, compared to the performance of the default Gnugo-MCTS. The results are for
GnuGoMCTS playing as Black vs GnuGo-classical playing as White, and the games
are completely independent of the learning games (which use only Gnugo-MCTS).
Results are averaged over 1000 games. All results in 5 × 5, komi 6.5, with a learning
over 100 × 100 random seeds.

Opponent Performance of
BestSeed

Performance of the original algorithm
with randomized random seed

GnuGo-classical level 1 1. (± 0 ) .995 (± 0 )

GnuGo-classical level 2 1. (± 0 ) .995 (± 0 )

GnuGo-classical level 3 1. (± 0 ) .99 (± 0 )

GnuGo-classical level 4 1. (± 0 ) 1. (± 0 )

GnuGo-classical level 5 1. (± 0 ) 1. (± 0 )

GnuGo-classical level 6 1. (± 0 ) 1. (± 0 )

GnuGo-classical level 7 .73 (± .013 ) .061 (± .004 )

GnuGo-classical level 8 .73 (± .013 ) .106 (± .006 )

GnuGo-classical level 9 .73 (± .013 ) .095 (± .006 )

GnuGo-classical level 10 .73 (± .013 ) .07 (± .004 )

1 GnuGo does not accept MCTS for 19 × 19.
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Fig. 4. Results for Breakthrough, with the BestSeed and the Nash approach, against
the baseline (K′ = 1) and the exploiter (K′ > 1). x-axis: K, number of seeds optimized
for both players; y-axis: success rate. Kt = 900 in all experiments. The performance of
the uniform version (original algorithm) is also presented for comparison.

Fig. 5. Comparison between moves played by BestSeed-MCTS (top) and the original
MCTS algorithm (bottom) in the same situations. GnugoStrong, used as an evaluator,
prefers the moves chosen by BestSeed-MCTS for situations 1, 2, 6, 7, 8; whereas 3, 4
and 5 are equivalent.
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Table 3. Success rate for Domineering, Atari-Go and Breakthrough, with the BestSeed
and Nash approaches, against the baseline (K′ = 1) and the exploiter (K′ > 1).
K = 9000 and Kt = 900. The experiments are repeated 100 times. The standard
deviations are shown after ±. K′ = 1 corresponds to the original algorithm with
randomized seed; K′ = 2 corresponds to the original algorithm but choosing optimally
(after checking their performance against its opponent) between 2 possible seeds, i.e.
it is guessing, in an omniscient manner, between 2 seeds, each time an opponent is
provided. K′ = 4, K′ = 8, K′ = 16 are similar with 4, 8, 16 seeds respectively.

Domineering

Board Method Success rate (%)

K′ = 1 K′ = 2 K′ = 4 K′ = 8 K′ = 16

5× 5 Uniform 49.03 ± 1.30 41.55 ± 0.92 32.53 ± 0.60 28.95 ± 0.45 25.06 ± 0.41

BestSeed 82.50 ± 2.41 75.00 ± 2.53 59.50 ± 1.98 53.00 ± 1.20 50.00 ± 0.00

Nash 78.50 ± 2.50 67.54 ± 2.39 55.96 ± 1.60 50.00 ± 0.00 50.00 ± 0.00

7× 7 Uniform 53.33 ± 1.41 44.33 ± 0.85 39.58 ± 0.26 37.97 ± 0.17 36.55 ± 0.13

BestSeed 67.50 ± 2.51 54.50 ± 2.03 44.50 ± 1.88 41.50 ± 1.90 28.50 ± 2.50

Nash 66.98 ± 1.39 58.01 ± 0.83 52.79 ± 0.32 50.71 ± 0.25 48.72 ± 0.19

9× 9 Uniform 50.68 ± 0.58 46.68 ± 0.43 44.06 ± 0.26 42.50 ± 0.13 41.56 ± 0.09

BestSeed 65.50 ± 3.40 36.50 ± 3.26 14.50 ± 2.50 3.50 ± 1.29 0.50 ± 0.50

Nash 58.60 ± 0.61 53.43 ± 0.46 50.04 ± 0.37 47.15 ± 0.28 45.11 ± 0.26

Atari-Go

Board Method Success rate (%)

K′ = 1 K′ = 2 K′ = 4 K′ = 8 K′ = 16

5× 5 Uniform 49.95 ± 0.54 46.72 ± 0.46 43.26 ± 0.37 40.78 ± 0.30 37.85 ± 0.26

BestSeed 69.50 ± 2.76 56.50 ± 2.83 41.00 ± 2.89 21.00 ± 2.49 7.00 ± 1.75

Nash 61.16 ± 0.48 57.91 ± 0.50 54.33 ± 0.40 51.18 ± 0.39 47.96 ± 0.26

7× 7 Uniform 49.76 ± 0.37 47.61 ± 0.30 45.10 ± 0.30 43.02 ± 0.22 41.84 ± 0.18

BestSeed 59.50 ± 3.25 45.50 ± 3.28 20.50 ± 2.68 5.00 ± 1.52 1.00 ± 0.71

Nash 57.79 ± 0.45 54.66 ± 0.42 51.40 ± 0.33 47.97 ± 0.37 45.99 ± 0.28

9× 9 Uniform 50.16 ± 0.25 48.39 ± 0.22 47.01 ± 0.16 46.04 ± 0.13 45.11 ± 0.10

BestSeed 55.50 ± 3.49 26.00 ± 3.39 12.50 ± 2.19 1.00 ± 0.71 0.00 ± 0.00

Nash 53.61 ± 0.43 50.46 ± 0.37 48.06 ± 0.24 46.02 ± 0.22 44.15 ± 0.21

Breakthrough

Board Method Success rate (%)

K′ = 1 K′ = 2 K′ = 4 K′ = 8 K′ = 16

5× 5 Uniform 50.12 ± 0.45 47.80 ± 0.35 45.42 ± 0.23 43.18 ± 0.20 42.01 ± 0.15

BestSeed 60.50 ± 3.45 42.50 ± 3.30 19.00 ± 2.75 4.50 ± 1.45 0.50 ± 0.50

Nash 57.77 ± 0.54 54.32 ± 0.36 50.75 ± 0.32 48.38 ± 0.29 45.64 ± 0.23

6× 6 Uniform 50.15 ± 0.09 49.31 ± 0.07 48.86 ± 0.05 48.51 ± 0.04 48.09 ± 0.04

BestSeed 49.00 ± 3.71 33.00 ± 3.52 11.00 ± 2.09 2.50 ± 1.10 0.00 ± 0.00

Nash 50.94 ± 0.33 47.81 ± 0.29 46.73 ± 0.22 45.13 ± 0.16 43.67 ± 0.16

7× 7 Uniform 50.08 ± 0.06 49.51 ± 0.07 49.03 ± 0.05 48.70 ± 0.05 48.36 ± 0.04

BestSeed 55.50 ± 3.19 24.50 ± 2.81 6.00 ± 1.64 1.00 ± 0.71 0.00 ± 0.00

Nash 51.16 ± 0.32 48.40 ± 0.24 46.63 ± 0.18 45.13 ± 0.16 44.12 ± 0.14

8× 8 Uniform 50.03 ± 0.07 49.60 ± 0.06 49.07 ± 0.06 48.70 ± 0.05 48.34 ± 0.04

BestSeed 49.00 ± 3.50 25.00 ± 2.99 6.50 ± 1.84 0.50 ± 0.50 0.00 ± 0.00

Nash 50.91 ± 0.28 48.89 ± 0.22 46.86 ± 0.19 45.65 ± 0.15 44.41 ± 0.16
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Performance in Transfer, in the Case of Go. Earlier results [12] and in
Sect. 5 are performed in a classical machine learning setting, i.e. with cross-
validation; we now check the transfer, i.e. the fact that we boost an AI, we get
a better performance also when we test its performance against another AI.

Transfer to GnuGo. We applied BestSeed to GnuGo, a well known AI for the
game of Go, with Monte Carlo tree search and a budget of 400 simulations. The
BestSeed approach was applied with a 100× 100 learning matrix, corresponding
to seeds {1, . . . , 100} for Black and seeds {1, . . . , 100} for White.

Then, we tested the performance against GnuGo “classical”, i.e. the non-
MCTS version of GnuGo; this is a really different AI with different playing style.
We got positive results as shown in Table 2. Results are presented for Black; for
White the BestSeed had a negligible impact.

Transfer. Validation by a MCTS with long thinking time. Figure 5 provides a
summary of differences between moves chosen (at least with some probability)
by the original algorithm, and the ones chosen in the same situation by the algo-
rithm with optimized seed. These situations are the 8 first differences between
games played by the original GnuGo and by the GnuGo with our best seed. We
use GnugoStrong, i.e. Gnugo with a larger number of simulations, for checking if
Seed 59 leads to better moves. GnugoStrong is precisely defined as << gnugo –
monte-carlo –mc-games-per-level 100000 –level 1>>. On these situations (Fig. 5)
such that BestSeed differs from the original GnuGo with the same number of
simulations, GnugoStrong played 5 games (playing both sides), all leading to the
same result in each case.

6 Conclusions

Our results (success rate of the boosted algorithm against the non-boosted base-
line) are roughly for BestSeed: 73.5%, 67.5%, 59% for Atari-Go in 5× 5, 7× 7
and 9× 9 respectively; 65.5%, 57.5%, 55.5%, 57% for Breakthrough in 5× 5,
6× 6, 7× 7 and 8× 8 respectively; 86%, 71.5%, 65.5% for Domineering in 5× 5,
7× 7 and 9× 9 respectively. On several games in Gametestbed, we got more
than 70% success rate against the baseline. We got close to 80% in 9 × 9 Go.
Against K ′ = 16, the results were usually positive, though not always (see Break-
through) - we believe that this would be solved with larger K,K ′, as proved in
[12]; asymptotically, the Nash method should be optimal against all K ′.

Usually, the boosted AIs significantly outperform the baselines, without addi-
tional computational cost. This does not require any source code development.
The rectangle versions are faster than the original algorithms, and the bandit
versions are indeed much faster.

Approximating Nash using the adversarial bandit algorithm, Exp3, does not
require computing the whole matrix. The computational cost is decreased to its
square root, up to logarithmic factors (see [8]) and with a minor cost in terms
of precision. The success rate is significantly improved.
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Our work on applying UCB with an infinite set of seeds to Go is preliminary
(the parameters of progressive widening are arbitrarily chosen and the UCB
parameters are guessed rather than optimized). Nevertheless, the fact that the
boosted AI is significantly enhanced validates the effectiveness of our approach.

Further work. The simplest further work consists in optimizing the seeds
specifically for time steps. This should provide an easy exploitation of the time
structure of the game. A work in progress is the use of Exp3 with infinite set of
seeds, handled by progressive widening (as we did for UCB - after N simulated
games, only the first �CNγ	 seeds are considered, with C ≥ 2 and γ ∈ (0, 1]).
Also, worst-so-far seed might be removed periodically.
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10. Kocsis, L., Szepesvári, C.: Bandit based Monte-Carlo planning. In: Fürnkranz, J.,
Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp.
282–293. Springer, Heidelberg (2006). doi:10.1007/11871842 29

11. Nagarajan, V., Marcolino, L.S., Tambe, M.: Every team deserves a second chance:
identifying when things go wrong (student abstract version). In: 29th Conference
on Artificial Intelligence (AAAI 2015), Texas, USA (2015)

12. Saint-Pierre, D.L., Teytaud, O.: Nash and the bandit approach for adversarial
portfolios. In: CIG 2014 - Computational Intelligence in Games, pp. 1–7. IEEE,
Dortmund, August 2014.https://hal.inria.fr/hal-01077628

13. Shapire, R., Freund, Y., Bartlett, P., Lee, W.: Boosting the margin: a new expla-
nation for the effectiveness of voting methods, pp. 322–330 (1997)

http://www.citeseer.ist.psu.edu/breiman96bagging.html
http://www.citeseer.ist.psu.edu/breiman96bagging.html
http://www.sciencedirect.com/science/article/pii/S0304397599000821
http://www.sciencedirect.com/science/article/pii/S0304397599000821
http://hal.inria.fr/inria-00484043
http://hal.inria.fr/inria-00484043
http://dx.doi.org/10.1007/11871842_29
https://hal.inria.fr/hal-01077628


70 J. Liu et al.

14. Uiterwijk, J.W.H.M.: Perfectly solving domineering boards. In: Cazenave, T.,
Winands, M.H.M., Iida, H. (eds.) CGW 2013. CCIS, vol. 408, pp. 97–121. Springer,
Heidelberg (2014). doi:10.1007/978-3-319-05428-5 8

15. Wang, Y., Audibert, J.Y., Munos, R.: Algorithms for infinitely many-armed ban-
dits. In: Advances in Neural Information Processing Systems, vol. 21 (2008)

http://dx.doi.org/10.1007/978-3-319-05428-5_8


Heuristic Function Evaluation Framework
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Abstract. We present a heuristic function evaluation framework that
allows to quickly compare a heuristic function’s output to benchmark val-
ues that are precomputed for a subset of the state space of the game. Our
framework reduces the time to evaluate a heuristic function drastically
while also providing some insight into where the heuristic is perform-
ing well or below par. We analyze the feasibility of using Monte-Carlo
Tree Search to compute benchmark values instead of relying on game
theoretic values that are hard to obtain in many cases. We also propose
several metrics for comparing heuristic evaluations to benchmark val-
ues and discuss the feasibility of using MCTS benchmarks with those
metrics.

1 Introduction

Developing heuristics for games or other search problems typically involves a
great deal of testing by playing the game repeatedly under realistic time con-
straints against several different opponents. This process is very time consuming
and slows down the development of heuristics. In addition, this form of testing
also gives little insight into where the heuristic has deficits.

We propose HEF, a heuristic function evaluation framework that is based on
comparing the heuristic values of a sample of the state space to so-called ground
truth values. Once the ground truth values for the samples are computed, HEF
allows us to quickly evaluate different heuristics. Given sufficient samples and
meta-data about those samples, it also allows to analyze in which position in
the game the heuristics are accurate or in-accurate. We propose different metrics
for this comparison that allow to focus on different aspects of the heuristic, e.g.,
whether it is more important to find the best move or the exact values of the
moves. The source code of HEF is available online1.

In this paper, we present HEF, as well as several metrics for comparing
heuristics to ground truth values. We further analyze to what extent Monte-
Carlo Tree Search (MCTS) can be used to compute the ground truth values
in absence of game theoretic values. Finally, we show some results we obtained
from analysis of a specific heuristic in the General Game Playing [5] domain
using HEF.

1 https://github.com/nnesic/HEF.
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2 Preliminaries

The development of HEF was driven by the need of evaluating heuristic func-
tions for General Game Playing (GGP) [5]. As such, the implementation of the
frameworks is aimed at deterministic, finite, perfect information games with an
arbitrary number of players. However, the principles we used naturally extend
to non-deterministic games or games with imperfect information. Only a few
changes in the framework would be required to extend it to such games.

In particular, we assume the following three properties of games.

– Finiteness: The game has finitely many reachable states, each player has
finitely many legal moves in each state, and the game ends after finitely many
steps.

– Determinacy: The successor state is fully determined by the actions of the
players and the predecessor state.

– Perfect information: All players have always sufficient information to infer
the current state of the game.

In other words, we think of games as deterministic acyclic Markov decision
processes.

We define a heuristic to be a function h: S × P × M → R associating a real
value with every legal move m ∈ M for player p ∈ P in state s ∈ S. It means
that our assumption is that heuristics provide a value for each move as opposed
to evaluating states of the game. In a turn-taking game, the evaluation of a
move is the same as the evaluation of the successor state reached by that move.
However, in games of simultaneous moves – which are often encountered in GGP
– evaluating moves directly is often more convenient.

3 Heuristic Function Evaluation Framework

We propose an evaluation paradigm that examines a heuristic function’s perfor-
mance at a per-state level. This is done by identifying some features that a good
heuristic should exhibit in each state (for example, the ability to accurately iden-
tify good moves and traps) and defining metrics which specify evaluation criteria
for individual features. The heuristic function is then evaluated by comparing its
output on a state to some ground-truth value for that state. To ensure a fast and
flexible evaluation at development time, we pre-compute benchmarks of state-
action pairs and their ground-truth values, and use these values for our metric
evaluation. Below we discuss: structure (Sect. 3.1), proposed metrics (Sect. 3.2),
and benchmark ground-truth value computation (Sect. 3.3).

3.1 Structure

We implemented our paradigm in the Heuristic Function Evaluation Framework
(HEF), which provides all the necessary infrastructure to facilitate working with
the paradigm. HEF offers utilities for benchmark generation and management,
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data access, metric analysis, and data visualization, allowing users to focus only
on defining the metrics that fit their study. HEF services are divided into three
layers: benchmark management, metric analysis, and visualization.

The first layer stores and provides access to the benchmark datasets. New
datasets can be imported from XML files containing benchmark information of
states (such as state description, depth at which the state is found in the game,
values of all available actions). Generating benchmarks requires two operations:
selecting states to include in the benchmark, and computing the ground-truth
values for each state.

HEF comes with a default implementation of a benchmark state selector
and a Monte-Carlo tree search based ground-truth evaluator, both of which
are based on the Game Definition Language (GDL) [7], allowing them to be
used seamlessly on many different games, as long as they are encoded in GDL.
The default state selector will somewhat randomly choose a specified number of
states on each depth level of the game. The ground-truth evaluator then runs
the MCTS algorithm on each selected benchmark state for a specified amount
of time, outputting the results in the HEF benchmark format.

The second layer provides an analysis pipeline that is used by HEF metrics.
This pipeline filters benchmark states according to player, depth, or other specifi-
cations, and passes them to the metric one by one. The heuristic function is then
evaluated according to criteria specified by the metric, and it is assigned a score,
which is then collected, aggregated across all examined states, and exported to
the visualization layer. HEF is designed to allow users to easily define and use
custom metrics.

The third layer provides a GUI, allowing the user to select metrics, games,
and datasets, and to specify aggregation and visualization options. Since the
topology of a game can change significantly throughout a game - for instance,
the significance of some board properties or strategies can be more relevant in
the endgame - all metric data is aggregated by depth level, allowing users to see
how the heuristic’s performance adapts to the progress of the game.

3.2 Proposed Metrics

We propose a set of basic metrics to be used with HEF, aimed mainly at Minimax
and MCTS heuristics. Each metric specifies a metric score function that is used
to evaluate different features of a heuristic’s performance.

Definition 1 (metric score function). Given an evaluation metric E, we define
the metric score function, MSE, as a function mapping a game state S and a
role R according to policy specified by E to some value v.

In this section we will briefly describe categories of our proposed metrics,
and define the most prominent ones. As many of the metrics operate on game-
theoretic values of benchmark states, in our definitions of metric score functions
we will use GTmax(S,R,M) to indicate the game-theoretical value of move
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M for role R in state S, and GTmax(S,R) and GTmin(S,R), respectively, to
indicate the maximum and minimum game-theoretical values of moves available
to role R in state S.

Game Property Metrics are a set of measurements not bound to the heuristic
functions, which instead keep track of how some properties of the game itself
are changing at different depth levels. Of these, we find the maximum score dif-
ference metric particularly useful. This metric measures the ground-truth score
difference between the best and the worst moves available to each player in a
state, and helps us identify the “critical zones” of a game where a different choice
of moves can lead to very different outcomes.

Definition 2 (maximum score difference metric). For every state S and role
R, we define the maximum score difference metric (DIFFMAX) as

MSDIFFMAX(S,R) = GTmax(S,R) − GTmin(S,R)

Best-Only Move Accuracy Metrics measure how accurately a heuristic can
identify good moves in a state. They include the K-best metric, which requires
a heuristic to identify at least one optimal move within the K moves it scores
the highest, and strict-best metric, which also penalizes a heuristic for assigning
a high score to bad moves.

Definition 3 (k-best metric). Given a state S, role R, a heuristic function H,
parameter K ∈ N, and a set of moves for role R HMK = {hm1...hmK} con-
taining K highest-scored moves according to H, we define the K-best metric
(KBEST) as

MSKBEST (S,R) =

{
1 if ∃ hm — hm∈HMK ∧ GT (S,R, hm) = GTmax(S,R)
0 otherwise

Definition 4 (strict best metric). Given a state S, role R, a heuristic function
H, and a set of moves for role R HMK = {hm1...hmn} containing all moves
hmi such that H(S,R, hmi) = H(S,R, hm1), where hm1 is the highest-scored
move according to H, we define the strict best metric (STRICT) as

MSSTRICT (S,R) =
1
n

n∑

i=1

{
1 if GT (S,R, hmi) = GTmax(S,R)
0 otherwise

We usually use the best-only metrics in conjunction with their random
baselines (showing the optimal move selection accuracy that a heuristic which
samples moves randomly would achieve) to identify areas of a game where the
accuracy score is influenced by the position configuration (e.g., if all moves result
in victory, random selection is 100% accurate).
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Expected Score Metrics are used in applications where moves are chosen
by sampling moves based on their heuristic scores according to some sampling
function. As the name suggests, they calculate the expected score of employing
the heuristic and sampling function together.

Definition 5 (expected score metric). Let F be a move sampling function that
maps a heuristic value of a move to the probability of choosing that move. Given
a role R, a state S and a set M = {m1...mn} of all moves available to R, and a
heuristic function H, we define the expected score metric (EF) for function F as

MSEF (S,R) =
n∑

i=1

GT (S,R,mi) × F (H(S,R,mi))

Move Ordering Metrics measure a heuristic’s ability to not only identify
the best moves, but also correctly distinguish between the quality of remain-
ing moves. They do so by comparing the ordering of moves according to their
heuristic scores to the ordering according to ground-truth values.

Move Categorization Metrics evaluate the heuristic’s ability to produce
scores that are similar to the ground-truth scores. These metrics are useful for
applications which rely on the absolute value of the heuristic, e.g., using a heuris-
tic as a state evaluation function for Minimax.

3.3 Benchmark Ground-Truth Value Computation

The metrics we proposed are intended to work with a benchmark of game-
theoretical values for moves. Generating such datasets, however, may not always
be feasible. Instead, we investigated the possibility of using Monte-Carlo tree
search [2] (MCTS), in particular UCT, for benchmark generation. The algorithm
uses random simulations and an exploitation-exploration policy to drive the
exploration of the search tree towards most promising areas. MCTS has seen
very successful implementations in game playing (e.g., in GGP [3] or Go [4]),
where it is used to identify the best move in a state.

However, we can typically not run MCTS to convergence, which means we
will not have the game theoretic values for the moves. Instead, we get q, the
average score achieved by taking a move over all simulations, and n, number
of times the move was included on the simulation path. Furthermore, MCTS
focuses its simulations on the best moves. Thus, the average score q of a bad
move is likely an unreliable estimate of the move’s game theoretic value.

4 Using MCTS as a Benchmark

We investigated the viability of MCTS benchmarks for HEF analysis by compar-
ing the output of our proposed metrics on a dataset with game-theoretic(GT)
move values to their output on the MCTS benchmark for the same heuristic
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function. We focused on the game of Connect Four, which has a sufficient large
search space not to be trivial, while still being solvable in relatively little time.
Both GT and MCTS datasets are composed of the same set of 498 game states.
Values in the GT dataset were computed with an optimized game solver for Con-
nect Four [9]. We compared the performance of two MCTS datasets, MCTS1H
and MCTS3H, obtained through running respectively one and three hours of
MCTS simulations per state. The number of simulations per state ranges from
approximately 1.5 million (at depth 0) to 54 million (at depth 39) for MCTS1H,
and 2 million to 151 million simulations for MCTS3H. Below we discuss the
depth score differential (Sect. 4.1), the best-only metrics (Sect. 4.2), the expected
score metrics (Sect. 4.3), and the move categorization and move ordering metrics
(Sect. 4.4).

4.1 Depth Score Differential

In our first attempt of applying the depth score metric to MCTS datasets we
used the q value in the benchmark directly for computing the score differential
between best and worst moves. We observed that the result vaguely resembled
the GT dataset results for the MCTS1H dataset (having identified the area of
greatest score difference, although losing the amplitude of the difference), while
the MCTS3H dataset preserved less information revealed by the GT dataset.
We concluded that the q value is not reliable for this kind of metric, since its
value gets diluted through simulations and it can stray far from its GT value for
less explored moves. We had more success using n to calculate the differential
by taking the logarithm of the ratio of highest to lowest n value in a state. As
we see in Fig. 1a, the two MCTS curves follow the GT one closely, and the extra
simulations in MCTS3H pay off in terms of capturing the behavior of the metric
on a GT dataset. MCTS is driven by the intention to exploit the best available
move as much as possible, so it is reasonable that the n value (counting the
number of times a moves has been exploited) would be a good indicator of good
and bad moves.

4.2 Best-Only Metrics

Best-only metrics rely on identifying a set of best moves in a benchmark state
to compare the heuristic’s choice of best moves to. In GT datasets the best
moves are easily identifiable by their score, but with MCTS datasets identifying
best moves becomes more challenging because of the unreliability of q as an
estimator of the game-theoretic value. Therefore, we investigated a method of
choosing best moves based on the n values: We order the moves according to
n, and choose a “breaking point” that distinguishes the good moves where the
difference between consecutive moves’ n values is the highest.

Overall, we found the strict-best metrics to adapt to MCTS datasets quite
well; Fig. 1b shows the benchmark comparison for the strict-best metric and
its baseline, and we can see that both MCTS metrics follow closely the trends
exhibited by the GT dataset.
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(a) Performance of score differential met-
rics using the N value on MCTS1H and
MCTS3H datasets.

(b) Performance of strict-best (SB) and
random baseline metrics on MCTS3H
dataset.

Fig. 1. Adapting HEF metrics to MCTS datasets

4.3 Expected Score Metrics

Expected score metrics proved more challenging to adapt to MCTS due to their
strong reliance on values of moves. Using q values once again proved inadequate.
The choice of sampling function had little impact on the expected score, and
the MCTS metric failed to capture the information displayed by the GT metric.
We then limited the sampling to the three moves with the highest q value, that
is, we only selected among the best three moves based on their score and never
selected any of the other moves. While the absolute values of the expected score
were much lower in the MCTS dataset compared to the GT one, we observe
the same trends and ratios between different sampling functions as we did in
the GT dataset. Thus, useability of MCTS datasets for expected score metrics
seems limited to cases where we only care about the general trends, but not the
exact scores.

4.4 Move Categorization and Move Ordering Metrics

In order for the move categorization metrics to work on MCTS datasets, there
needs to exist a mapping from benchmark MCTS values to the GT scores. We
used several classifiers offered by Weka [6] to train a model which predicts the
GT dataset score based on the q, n, total n, and depth values of a move in a state.
The best accuracy of categorizing moves was of 67%, although the performance
varied depending on players and depths – with the second player performing
as low as 25% accuracy in certain states. With this much inaccuracy in the
benchmark itself, we do not believe the move categorization metrics to be viable
with MCTS datasets. Likewise, the move ordering metrics rely on the absolute
ordering of moves in the benchmark – which, as we saw, is not the case with
MCTS – and only achieved an accuracy of 57% in matching GT results.
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5 Case Study: Analyzing Heuristics with HEF

Heuristics for General Game Playing need to be adaptable and applicable to
many different games. Action heuristic [10], for example, is automatically con-
structed at the beginning of a match by regression on GDL rules of the game, and
used in conjunction with MCTS to steer the random simulations towards more
significant moves. The impact of the heuristic was evaluated on several games
by pitching the heuristic-MCTS player against the pure MCTS one. In many
games the use of heuristic produced in improvement in score for the heuristic
player; in some cases it did not produce a difference, and in two cases it made
the performance drop.

We used HEF to investigate the behavior of the Action heuristic on various
games and to obtain a better insight into the results of the matches. Of particular
interest are games of Pentago, where the heuristic player performed the best,
winning approximately 73% of 400 test matches against the vanilla player, and
Checkers-small, in which the heuristic player lost 90% of matches. To analyze
these games, we precomputed benchmarks of 200 states for Pentago and 1100
for Checkers-small, using one hour of MCTS simulations per state. In Fig. 2
we show the score differential, strict-best, and random baseline metrics for the
Action heuristic on these two games.

Fig. 2. HEF analysis of Action heuristic

In case of Pentago, we see that strict-best metric overtakes its random base-
line strongly in the second half of the game. We also see that the accuracy of
the heuristic peaks in sync with the score differential; this is a good thing to
observe, as it tells us that the heuristic performs well in the critical areas of the
game. Moreover, Pentago is a game with a large branching factor, reaching 38
moves available in some state. As such, the ability of the heuristic to identify
good moves and steer the MCTS search in relevant directions has helped the
heuristic player achieve much better results.

In the case of Checkers-small, we see that the strict-best metric consistently
lags behind its baseline – telling us that the heuristic is actually preferring sub-
optimal moves. Moreover, we see that the accuracy drops in states at depths
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65–85 where the depth differential metric exhibits the highest peak, meaning
that at the critical points in the game the heuristic performs on its worst.

This kind of analysis gives us an insight into how the heuristic behaves at
different points of the game, and lets us ask targeted questions, expressed in the
form of metrics, to investigate various aspects of the heuristic. Having already
pre-computed the benchmark, we can change and refine the heuristic and change
the metrics as needed, and have the results of our analysis in a matter of minutes.

More case studies and more detailed results can be found in [8].

6 Related Work

In [1], Anantharaman proposes a position-based evaluation scheme for chess
heuristics in which he compares the performance of the heuristic coupled with
minimax search against the same heuristic and minimax search, but allowing
much longer search time in the second case. Anantharaman then proposes sev-
eral metrics to compare the performance of the heuristic relative to the reference
program, and measures the correlation between these metrics and the USCF rat-
ing system, concluding that some of the metrics can be used reliably to evaluate
heuristic functions, with only one day of computation needed.

Our approach to evaluating the heuristics is similar to Anantharaman’s in
that we are focusing on evaluating the heuristic’s performance on individual
states using some user defined metrics. Our emphasis is, however, on producing
a paradigm which can recycle computation, while the approach proposed by
Anantharaman still requires substantial search time to compute the reference
for each specific heuristic. Moreover, we aim for generality of use – we would like
our paradigm to be applicable to functions designed to be used with a variety
of search algorithms (we can, for example, analyze functions intended for both
minimax and MCTS random search guidance) and a large variety of games.

7 Conclusion

We proposed a paradigm for evaluating heuristics in games and we presented
a framework that implements it. Our main goal was to provide a fast and
focused evaluation method for intermediate stages of heuristic function design.
We achieve this by pre-calculating a benchmark dataset containing a set of states
that have a value assigned to each action, and using this dataset to answer ques-
tions about the heuristic’s performance – such as evaluating the accuracy with
which it identifies the best move. The Heuristic function Evaluation Framework
provides all the infrastructure needed to work with this paradigm, from bench-
mark generation to data visualization; the users only need to formulate their
questions in the form of metrics which verify the heuristics’ answers against the
benchmark values.

For cases where game-theoretic values are not available, we propose using
Monte Carlo Tree Search for generating benchmark datasets. These are less
accurate, but easily obtainable. We found that these datasets are usable when we
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are interested in identifying the best moves in a state, while we do not recommend
using them if the correct ordering of moves or estimating the value of a move is
of importance. So far, these conclusions are based only on the results in Connect
Four. Studying more games is necessary to confirm these findings.

Finally, we presented a case study showing how HEF can provide useful
insights into the behavior of heuristics. The conclusions are again not definitive.

Future Work. Currently, we leave the responsibility of deciding the significance of
various metrics for given applications to the user of the paradigm. For example,
the move categorization metrics are not overly relevant for the heuristics intended
to find best moves for MCTS random simulations, so achieving a high score
under these metrics does not mean that the heuristic will perform well in the
actual MCTS search. In the future, we would like to investigate methods for
determining the correlation between scores assigned by a metric to a heuristic
and the actual performance of the program on relevant problems.
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Abstract. The puzzle game 2048, a single-player stochastic game played
on a 4 × 4 grid, is the most popular among similar slide-and-merge
games. One of the strongest computer players for 2048 uses temporal
difference learning (TD learning) with N -tuple networks, and it matters
a great deal how to design N -tuple networks. In this paper, we study
the N -tuple networks for the game 2048. In the first set of experiments,
we conduct TD learning by selecting 6- and 7-tuples exhaustively, and
evaluate the usefulness of those tuples. In the second set of experiments,
we conduct TD learning with high-utility tuples, varying the number
of tuples. The best player with ten 7-tuples achieves an average score
234,136 and the maximum score 504,660. It is worth noting that this
player utilize no game-tree search and plays a move in about 12µs.

1 Introduction

The puzzle game 2048 [4], a single-player stochastic game played on a 4×4 grid,
is the most popular among similar slide-and-merge games like Threes and 1024.
One of the reasons why the game attracts so many people is that it is very easy
to learn but hard to master. The game also attracts researchers in the field of
artificial intelligence and computational complexity. The difficulty of the game
was discussed from the viewpoint of computational complexity by Abdelkader
et al. [2] and Langerman and Uno [6]. As a testbed of artificial intelligence
methods, there have been some competitions of computer players for the game
2048 [5,18] and a two-player version of 2048 [1,8].

One of the strongest computer players for 2048 uses temporal difference learn-
ing (TD learning for short) with N -tuple networks together with the expecti-
max algorithm [16]. An N -tuple network consists of a number of N -tuples: each
N -tuple covers N cells on the grid and it contributes a number of features each for
one distinct occurrence of tiles on the covered cells. Given an N -tuple network,
the evaluation function simply calculates the summation of feature weights for
all occurring features, where the weights can be obtained through TD learning
over a number of self-plays.

In this approach, it matters a great deal how to design (or select) N -tuple
networks. The authors of the previous work used hand-designed networks: Wu
et al. [16] used a network with four 6-tuples; former work by Szubert and
Jaśkowski [14] used a network with two 6-tuples and two 4-tuples. As we can
c© Springer International Publishing AG 2016
A. Plaat et al. (Eds.): CG 2016, LNCS 10068, pp. 81–92, 2016.
DOI: 10.1007/978-3-319-50935-8 8
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Fig. 1. The N -tuple network (with two 4-tuples and two 6-tuples) by Szubert and
Jaśkowski [14]

Fig. 2. The N -tuple network (with four 6-tuples) by Wu et al. [16]

easily imagine, the more and the larger tuples we use, the higher score we would
obtain. The resources such as memory size or computation time, however, limit
the available number and/or size of tuples.

In this paper, we study the N -tuple networks for the game 2048. In the first
set of experiments, we conduct TD learning exhaustively for 6- and 7-tuples,
and evaluate the usefulness of those tuples. By looking closely at the usefulness
of those tuples, we find several interesting facts about them. In the second set
of experiments, we conduct TD learning with high-utility tuples, varying the
number of tuples. We confirm that the more tuples we use the higher score we
obtain up to around 20 tuples where the score peaks for the case of 6-tuples.

The main contributions of the paper are summarized as follows.

– A systematic way of selecting N -tuple networks. The way we select N -tuple
networks in this paper does not rely on heuristics or human knowledge of the
games.

– Comparing usefulness of N -tuples. We evaluate the usefulness of tuples from
exhaustive experiments. The results are consistent with the heuristics of the
game.

– The best player with ten 7-tuples achieves the average score 234,136 and the
maximum score 504,660. It is worth noting that this player does not utilize
game-tree search like expectimax and plays a move in about 12µs (about
88,000 moves per second).

Rules of 2048. The game 2048 is played on a 4 × 4 grid. The objective of the
original 2048 game is to reach a 2048 tile by moving and merging the tiles on
the board according to the rules below. A new tile will be put randomly with
number 2 (with probability of 90 %) or 4 (with probability 10 %). In the initial
state, two tiles are put randomly (Fig. 3). The player selects a direction (either
of up, left, down, and right), and then all the tiles will move in that direction.
When two tiles of the same number combine they create a tile with the sum
value and the player get the sum as the score. Here, the merges occur from the
far side and a newly created tile do not merge again on the same move: moves to
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(a) (b) (c)

(a) An example of the initial state. Two tiles are put randomly.
(b) After moving up. A new 2-tile appears at the lower-left corner.
(c) After moving right. Two 2-tiles are merged to a 4-tile, and score 4 is given.

Fig. 3. The process of the game 2048

the right from 222�, �422 and 2222 result in ��24, ��44, and ��44, respectively.
Note that the player cannot select a direction in which no tiles move nor merge.
After each move, a new tile appears at an empty cell. If the player cannot move
the tiles, the game ends.

Paper Overview. The rest of the paper is organized as follows. Section 2
reviews the idea of applying N -tuple networks and TD learning to the game
2048. In Sect. 3, we analyze the usefulness of 6- and 7-tuples by experiments
that selects those tuples exhaustively. Based on the analysis of usefulness of
tuples, we select a number of high-utility tuples and conduct experiments in
Sect. 4. Section 5 discusses related work and Sect. 6 concludes the paper.

2 N -Tuple Networks and Temporal Difference
Learning for 2048

In this section, we review the idea of applying N -tuple networks (in Sect. 2.1)
and TD learning to the game 2048 (in Sect. 2.2). The algorithm was given by
Szubert and Jaśkowski [14] and it was called TD-afterstate in their paper.

2.1 Evaluation Function with N-Tuple Networks
and Playing Algorithm

An N -tuple network consists of a number of N -tuples where each N -tuple covers
N cells on the grid. In this paper, N denotes the number of cells in a tuple, and
m the number of tuples in the network. If each cell in the tuple may have one of
K values an N -tuple contributes KN features, that is, we assign a feature weight
for each of KN features. We use K = 16, which means the maximum value of
a tile is 32768. (We did not know any player that achieved a 65536 tile, at the
time we did the experiments. Recently, Yeh et al. [19] reported their success of
a 65536 tile.) Note that 6- and 7-tuples require 64 MB and 1 GB, respectively,
under the condition of K = 16 and 32 bits for each feature weight.
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Given an N -tuple network and corresponding set of feature weights, we cal-
culate the value of an evaluation function of a state as follows. Since the board of
the game 2048 is symmetric in terms of rotation and reflection, we can consider
8 sampling for each N -tuple. We take the feature weight for each sampling, and
compute the sum of those values as the evaluation value of the state. Given a
state s, the evaluation value V (s) of the state is the sum of the feature weights
for all N -tuple and all symmetric boards.

Let us see an example in Fig. 4 where we use an N -tuple network with two
3-tuples. We have eight symmetric boards for a state s, and each board has two
feature weights for each tuple. Therefore, in this example, the evaluation value of
a state is the sum of 16 feature weights. If we have a network with m N -tuples,
then the evaluation value of a state is the sum of 8m feature weights.

Fig. 4. An example for calculating an evaluation value of a state

The 2048 player in this paper greedily selects a move such that the sum
of score and evaluation value is the maximum. For a state s, let the set of
possible moves, the score given by move a, and the next state by move a be
A(s) ⊆ {N,E,S,W}, R(s, a) and N(s, a), respectively, the player selects

arg max
a∈A(s)

(R(S, a) + V (N(S, a))) .

2.2 Temporal Difference Learning

Temporal difference learning (TD learning) is one of the reinforcement learning
algorithms. Though the idea of TD learning was introduced by Sutton [13], its
origins reach back to the 1950’s referring to the famous program for checkers [11].
TD learning has been adapted to several games such as backgammon [15],
Othello [9], and Go [12].
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In our algorithm, the evaluation values are adjusted by TD learning as fol-
lows. Let st be a state at time t. The player selects a move a such that the sum
of score and evaluation value of the state after the move is the maximum. Let
r = R(st, a) and s′

t be the score and the state after the move, respectively (note
that s′

t �= st+1 because st+1 is given by putting a tile on s′
t). Then, the TD error

Δ for the evaluation value is defined as follows.

Δ = r + V (s′
t) − V (s′

t−1)

To reduce the TD error, we update the evaluation values Vj(st−1) for all the
N -tuples by a certain portion of Δ:

V ′
j (St−1) = Vj(St−1) + αΔ

where the rate α is called learning rate and it was set to α = 2−10 throughout
the experiments.

3 Exhaustive Analysis of Usefulness of N -Tuples

Though the game 2048 is a small game, there are still a large number of N -tuples.
Table 1 shows the number of all the N -tuples and connected ones. (We count
N -tuples that are the same after rotation or reflection once.) In the following, we
only consider connected 6- and 7-tuples to keep the number of tuples manageable.

Table 1. Number of N -tuples

N 3 4 5 6 7 8 9 10 11 12 13

All 77 252 567 1051 1465 1674 1465 1051 567 252 77

Connected CN 8 17 33 68 119 195 261 300 257 169 66

As a first task, we would like to order the N -tuples in terms of their usefulness.
When we form N -tuple networks by randomly selecting tuples and conduct

TD learning, the (average) scores differ to a degree. Therefore, we have made
the following two assumptions on the usefulness of N -tuples: (1) N -tuples con-
tribute independently from each other; (2) N -tuples contribute linearly. With
these assumptions, we consider scores come simply from the sums of partial
scores of N -tuples selected in the networks.

Let 6-tuples be indexed from 1 to C6 = 68 and 7-tuples be from 1 to C7 = 119.
Let pi be the partial score of the i-th tuple, and sji be the 0–1 variable showing
that the i-th tuple is selected in the j-th experiment. We assume that the score
Pj of the j-th experiment is the sum of partial scores of selected tuples, Pj =∑C

i=1 sjipi. Then, given a set of experimental results with the selected tuples
and scores, we can estimate the partial scores by the least squares method: we
reduce the squared error E =

∑
j(Pj − ∑C

i=1 sjipi)2.
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Fig. 5. Partial scores of 6-tuples
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Fig. 6. Partial scores of 7-tuples

Here are the details of the experiments. For each experiment, we randomly
selected 10 tuples and executed TD learning with 1,000,000 self-play games.
We used the average of the scores of the last 10,000 games as the score of the
experiment. We conducted 680 experiments for 6-tuples and 1190 experiments
for 7-tuples so that each tuple was selected 100 times on average.

Figures 5 and 6 plot the partial scores in descending order. The medians
of partial scores are M6 = 13,066 for 6-tuples and M7 = 12,566 for 7-tuples:
those of the best tuples are 31,161 = 2.38M6 and 32,900 = 2.61M7, respectively;
those of the worst tuples are 9,052 = 0.69M6 and 7,683 = 0.61M7, respectively.
(The absolute values of partial scores may not be comparable, since we stop the
experiments at 1,000,000 games before the scores saturate.)

Table 2 shows the four best and the four worst tuples for N = 6 and N = 7.
In both cases, the best tuples 〈6-01〉 and 〈7-001〉 include an edge connecting
two adjacent corners and are closely connected. This is reasonable for the slide-
and-merge property and keep-large-tile-on-corner heuristics of the game. Seven
out of the 8 worst tuples do not include corner cells and it is according to our
expectation. The worst 7-tuple 〈7-119〉, however, includes two corner cells. We
consider the following reason for this: since either of the two diagonal corners is
often empty, the tuples with two diagonal corner cells have less information. We
will see this again later.

Table 3 shows the results of other interesting tuples. Wu et al. [16] used the
four 6-tuples 〈6-01〉 and 〈6-04〉 in Table 2 and 〈6-40〉 and 〈6-48〉 in Group 1 of
Table 3. Although it is a common technique to make N -tuples by sliding existing
(better) N -tuples, those N -tuples are not necessary good ones.

Group 2 of Table 3 shows N -tuples that apparently look good but are not so
good. From the keep-large-tile-on-corner heuristics, one may design the 6-tuples
〈6-24〉 that covers the cells near a corner, but it is ranked 24th out of 68 and
not so good. The case of 7-tuples is very surprising. One may design the 7-tuple
〈7-096〉 that has two edges among three corners, but it seems useless. This is
more evidence of the reason of the worst 7-tuple. In fact, all tuples that include
two diagonal corners (〈7-119〉 in Table 2 and 〈7-096〉, 〈7-087〉, 〈7-079〉 in Group
2 of Table 3) seem useless.
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Table 2. Four best and four worst 6-tuples and 7-tuples

N 4 best tuples 4 worst tuples

6-01 6-02 6-03 6-04 6-65 6-66 6-67 6-68

6

31,161 24,530 22,207 20,576 9,644 9,642 9,563 9,052

7-001 7-002 7-003 7-004 7-116 7-117 7-118 7-119

7

32,900 23,504 23,483 23,338 8,543 8,204 7,918 7,683

Table 3. Other interesting tuples

group 1 group 2

6-40 6-48 6-24 7-096 7-087 7-079

12,190 11,330 14,320 10,573 10,988 11,521

group 3

6-08 7-007 7-012 7-034 7-086 7-096

18,990 21,766 17,394 14,018 10,995 10,573

Group 3 of Table 3 tells an interesting fact. Adding a cell to an existing (good)
N -tuple is a possible way of generating an N + 1-tuple. It usually works well
but not in some cases. By adding to a cell to the useful 6-tuple 〈6-08〉 we can
generate five 7-tuples, among which two are useful but other two are useless.
The converse does not hold in some cases either. The 6-tuple 〈6-08〉 is the best
among those given by removing a cell from 〈7-007〉, 〈6-16〉 from 〈7-016〉, and
〈6-17〉 from 〈7-017〉. Note that the numbers of 6-tuples and 7-tuples are 68 and
119, respectively.

4 Performance with Respect to Number of N -Tuples

In the previous section, we ordered the N -tuples by their usefulness. Now we
select the first m tuples to conduct TD learning with them.

In the second set of experiments, we selected at most 45 6-tuples or at most
10 7-tuples. Since a 6-tuple requires 64 MB and a 7-tuple does 1 GB to store
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Fig. 7. Average scores with 6-tuples
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Fig. 8. Average scores with 7-tuples
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Fig. 9. Maximum scores with 6-tuples
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Fig. 10. Maximum scores with 7-tuples

feature weights, the program with N = 6 and m = 45 consumes about 3 GB of
memory and that with N = 7 and m = 10 does about 10 GB of memory. The
experiments were conducted on a PC with two Intel Xeon E5645 CPU (6 cores,
2.4 GHz), 12 GB of memory, with the CentOS 5.5 (kernel 2.6.18–194.e15) and
g++ 4.6.3.

For each set of N -tuples, we executed TD learning with 6,000,000 self-play
games, and then had additional 10,000 games with the obtained feature weights.
During the self-play and learning, we output the summary of the average score
and the maximum score once every 10,000 games. For the additional games, in
addition to the average and maximum scores, we measured the execution time
to calculate the time for selecting a move, and the ratio of reaching 2048, 4096,
8192, 16384 and 32768 tiles. We conducted the experiments five times for each
set of N -tuples and all the results (including the maximum score) were averaged
among the five experiments.

Figures 7, 8, and 11 plot the average scores with respect to the number of
games learned. Figures 9, 10, and 12 plot the maximum scores with respect to
the number of games learned.
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In general, we confirmed the fact that the more N -tuples we use the higher
score we obtain up to a certain number of N -tuples. For the case of N = 6, the
more N -tuples we use the higher average score we obtain up to around m = 20,
and the higher maximum score up to around m = 10. In terms of the learning
speed, the more tuples we use the faster the learning proceeds. In the case of
N = 6 and m = 40, after 1,000,000 games the learning seems to converge. For
the case of N = 7, the more N -tuples we use the higher score we obtain (for
m ≤ 10).

Comparing N = 6 and N = 7, we can see that the learning proceeds faster
for N = 6. This is due to the difference of numbers of features that an N -tuple
contributes. For the N = 7 cases, 6,000,0000 games seem to be not sufficient to
converge. Nonetheless, the results with N = 7 and m = 10 finally outperform
all the results with N = 6.

Figure 13 plots the average scores to the time for selecting a move. The time
for selecting a move is almost linear in the number m of used N -tuples. For the
same number m, the program with 7-tuples took about 1.5 times as much time
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Table 4. Ratio when the program achieves 2048, 4096, 8192, 16384, and 32768

N = 6
tile m = 1 m = 2 m = 4 m = 6 m = 8 m = 10 m = 12

2048 78.41 88.36 95.66 96.00 97.45 97.16 97.78
4096 36.05 62.77 90.32 91.36 93.87 94.05 95.17
8192 0.07 0.33 56.38 70.28 75.67 79.29 84.08

16384 0.00 0.00 0.04 0.07 0.05 29.64 39.02
32768 0.00 0.00 0.00 0.00 0.00 0.00 0.00

N = 6
tile m = 16 m = 20 m = 25 m = 30 m = 35 m = 40 m = 45

2048 97.87 98.38 98.45 98.42 98.46 98.41 98.30
4096 95.42 96.11 96.25 95.97 95.91 95.89 95.64
8192 85.01 86.51 87.61 86.41 86.14 85.75 86.45

16384 38.96 49.75 56.00 52.61 52.76 50.09 51.42
32768 0.00 0.00 0.00 0.00 0.00 0.00 0.00

N = 7
tile m = 1 m = 2 m = 4 m = 6 m = 8 m = 10

2048 82.54 90.74 96.43 97.16 98.27 98.50
4096 40.39 71.75 86.97 89.18 93.59 96.87
8192 0.31 26.08 63.22 73.28 84.87 83.63

16384 0.00 0.00 6.71 27.91 47.17 56.57
32768 0.00 0.00 0.00 0.00 0.00 0.03

as that with 6-tuples did. The program with N = 7 and m = 10 obtained better
results in less time than that with N = 6 and m = 40 (Weak points are the
memory size and the cost of learning process).

In Fig. 13, the curves are the Logistic curves through the origin at the mid-
point f(x) = L (1−e−kx)

(1+e−kx)
, fitted to the points (the average scores with respect to

the computing times). We can see the fact that the average score peaks for the
case of N = 6. Since the average score does not peak for N = 7 up to m = 10, we
fitted the curve with an additional result for m = 30 (the average score 249,625
and the computation time 40µs)1. These facts suggest that we should combine
N -tuples with another game-tree-search technique.

Table 4 shows the ratio when the program successfully achieves tiles 2048,
4096, 8192, 16384 and 32768. Since the program did not use any game-tree-
search technique, it failed suddenly with a little probability (missing 1.5 % for
2048) even with 40 6-tuples or 10 7-tuples. In contrast, with 40 6-tuples or 10
7-tuples, the program succeeded to make 16,384 once for two tries. Furthermore,
the program with N = 7 and m = 10 happened to reach 32,768.

1 Since it requires 30 GB of memory to conduct the experiment, we used a PC with
32 GB memory for this additional experiment.
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5 Related Work

Several game-playing algorithms have been adapted to the game 2048 [3,7,10,
14,16,17,20]. Among them, the state-of-the-art algorithm combines expectimax
with TD learning or some other heuristics.

The first application of TD learning to the 2048 player was done by Szubert
and Jaśkowski [14]. They utilized hand-selected two 4-tuples and two 6-tuples
and the player learned with 1,000,000 self-play games achieved the average score
100,178. The two 4-tuples were extended to two 6-tuples by Wu et al. [16] and the
extension increased the average score to 142,727. The hand-selected four 6-tuples
achieved better score than our systematically selected four 6-tuples (the average
score was 109,983). Wu et al. also proposed the multi-staged extension of the
learning algorithm, and by the combination with expectimax search the player
achieved the average score 328,946 (multi-staged TD, expectimax depth = 5).
They recently achieved a 65536-tile [19].

The expectimax algorithm takes much more time when the depth is large.
In the competition of computer players for the game 2048, it is often required
to play a move in 1–10 ms [5,18]. Our player with N = 7 and m = 10 requires a
large memory (about 10 GB) but runs much faster (about 12µs for a move).

6 Conclusion

In this paper we designed experiments, with which we can systematically evalu-
ate the usefulness of N -tuples. In addition to confirming the usefulness of previ-
ous hand-selected N -tuples, we found several interesting properties of N -tuples
for the game 2048. By selecting the N -tuples from the head of the lists, we can
easily obtain N-tuple networks. From the second set of experiments, we con-
firmed the fact that the more N -tuples we use the higher scores we obtain up to
a certain number of tuples where the score peaks. With 10 7-tuples, the program
achieved the average score 234,136 and the maximum score 504,660. As far as
the authors know, these scores are the highest among the TD learning players
(without game-tree-search techniques).

Our future work includes the following two tasks. First, we would like to
confirm the performance of our 7-tuples with expectimax search. Second, we
would like to propose a better way of selecting N -tuples from the ordered list.
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IACP cluster of the Kochi University of Technology.
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Abstract. The werewolf game contains unique features, such as per-
suasion and deception, which are not included in games that have been
previously studied in AI research. Studying the werewolf game could be
one of the next challenging targets for AI research. In this paper, we
concentrate on a werewolf-side strategy called the “stealth werewolf”
strategy. With this strategy, each of the werewolf-side players behaves
like a villager, and the player does not pretend to have a special role.
Even though the strategy is thought to be suboptimal, so far this has not
been proved. In this paper, we limit the human-side strategies such that
the seer reveals his/her role on the first day and the bodyguard never
reveals his/her role. So, the advantage of the werewolves in determining
the player to be eliminated by vote is nullified. We calculated the ε-Nash
equilibrium of strategies for both sides under this limitation. The solu-
tion shows that the winning rates of the human-side are more than half
when the number of werewolves is assigned as in common play. Since it is
thought to be fair and interesting for the winning rate to stay near 50%,
the result suggests that the “stealth werewolf” strategy is not a good
strategy for werewolf-side players. Furthermore, the result also suggests
that there exist unusual actions in the strategies that result in an ε-Nash
equilibrium.

1 Introduction

The werewolf game is a popular party game played in many countries. Studying
the werewolf game could make contributions to multiple fields because it includes
many aspects such as gathering information, judging information, and natural
language processing. Studying this game could be one of the next challenging
targets for AI research.

Each player in the werewolf game belongs to either the human-side or the
werewolf-side1. The goal of human-side players is to eliminate all werewolf-side
players, and the goal of werewolf-side players is to attack and kill human-side
players and gain a majority.

1 Some variants of the werewolf game have third-side players. This paper does not
treat these variants.

c© Springer International Publishing AG 2016
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Each player has one of the following roles:

Villager (human-side) has no special abilities.
Seer (human-side) targets a player during night turns and identifies whether

the player is a human.
Bodyguard (human-side) selects a player to protect during night turns. If

the target coincides with the werewolf-side target, the attack fails.
Medium (human-side) recognizes whether the player eliminated by voting on

the last day was a human.
Freemasons (human-side) a pair of human-side players who can recognize

each other.
Werewolf (werewolf-side) communicate by gestures during night turns and

decide whom to target for an attack. The attack fails if the target player is
protected by the bodyguard, otherwise it succeeds and the target dies.

Possessed (werewolf-side) has no special abilities. The player belongs to the
werewolf-side but will be identified by the seer or recognized by the medium
as human.

By default, one werewolf player is assigned in games with less than eight
players, two werewolves are assigned in games with eight to fifteen players, and
three werewolves are assigned in games with sixteen to nineteen players.

The games progress as follows.

Daytime turns. Players talk freely, which includes revealing their roles and
any other information that is relevant to their roles. At the end of a daytime
turn, the players eliminate one player by voting. If the eliminated player is
the last werewolf, the human-side wins.

Night turns. All the players close their eyes. Players who have special roles
perform actions according to their roles. If the number of werewolves exceeds
or equals the number of humans, the werewolf-side wins.

Several simplified variants of the werewolf game have been studied.
Braverman et al. [1] studied the optimal strategies in the mafia game which
is a variant of the werewolf game, and tried to calculate the winning rates. They
analyzed situations with and without a seer. In the situation where no seer exists,
the number of werewolves needs to be O(

√
R) to ensure that the winning rate

is fair where R is the number of players. Conversely, the number of werewolves
needs to be O(R) if a seer exists.

There are also studies of the werewolf game that concentrate on aspects other
than strategies. Katagami et al. [2] studied the nonverbal information in the
werewolf game. They investigated how nonverbal information, such as gestures
and facial expressions, contribute to the winning rate. After the investigation,
they found that nonverbal information plays an important role in winning or
losing the game. Furthermore, a match system for humans with life-like agents
was developed by Katagami et al. [3]. With that system, Katagami et al. [4]
tried to analyze nonverbal information from movies of games played by humans
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to verify whether a life-like agent can give impressions like a human if they mount
the analyzed movements on a life-like agent.

In this paper, we concentrate on a werewolf-side strategy called the “stealth
werewolf” strategy. With this strategy, all werewolf-side players act as villagers,
and they do not pretend to have special roles. Even though this strategy is
thought to be suboptimal, so far this has not been proved. We impose a simple
limitation of the human-side strategies such that the seer reveals his/her role on
the first day and the bodyguard never reveals his/her role, and the advantage of
the werewolves on vote turns is nullified. We calculated the ε-Nash equilibrium
of both strategies using this limitation.

In this paper, we first introduce the limitations of the strategies. Next, we
calculate the ε-Nash equilibrium of both strategies in small games using the
CFR+ algorithm. Then, we show the results of our experiment and discuss their
implications. Finally, we formulate our conclusion.

2 Human-Side Strategies Against the Stealth Werewolf
Strategy

In this paper, we only treat four roles: villager, seer, bodyguard, and werewolf.
We can ignore the “possessed” because his/her actions are the same as those of
a villager in the used strategy. Even though ignoring the two human-side roles,
“medium” and “freemasons” is disadvantageous to the human-side, we permit
this handicap.

With the stealth werewolf strategy, each of the werewolf-side players acts
as a villager from the human-side players’ point of view. Therefore, if a villager
does nothing during daytime turns with the human-side strategy, a werewolf-side
player must also do nothing during daytime turns.

Because it is difficult to calculate the optimal strategy against the stealth
werewolf strategy, we limit the actions of human-side players as described below.

2.1 Deciding to Eliminate a Player

As the players eliminate a player by a majority vote, the werewolves can raise
the probability of the target of the vote to be a human player. To remove this
advantage to the werewolf-side, human-side players can randomly select a player
from the candidate list using the following method.

All players share the candidate list, which includes all suspicious players.
Although the dices are not used in a werewolf game, we may assume that players
can send messages simultaneously; thus, the players can mimicking to roll a dice.
Considering there are m players in the candidate list, each player can thus roll a
virtual dice from 0 to m−1 and send out their results as messages. By taking the
modulo of the sum of the players’ messages including the number they rolled,
we can earn a result (the modulo itself) which is random and uncontrollable.
Note that it is a strategy for human-side and there is no guarantee that all the
werewolves will follow human-side’s strategy. However, as long as the number of
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human-side players excceeds the one of werewolves2 and each human-side player
follows the strategy, werewolves can do nothing to prevent the strategy from
being applied. As a result, every candidate has the same probability of being
eliminated.

Even though players can only talk one by one in real situations, virtually
simultaneous messages can be achieved using the following protocol.

– The player i (1 ≤ i ≤ n) composes a message mi and generates a string ri
with randomized numbers.

– From player 1 to player n, each player i reveals a value H(miri) which is
calculated by sufficiently strong one-way hash function H.

– From player 1 to the player n, each player i reveals miri.

To make the above protocol meaningful, a premise stating that it is difficult
to find a pair of values where H(mr) = H(m′r′) is necessary. With this premise,
the protocol is easier to implement than the one proposed in [1].

Because the candidate list is uniquely determined by the history of the game,
the deciding process can be treated as a chance node of a game tree in the model
of extensive games.

2.2 Actions of the Seer

In the strategy proposed in this paper, the seer reveals his/her role on the first
day. Because all the players know that the werewolf-side has selected the stealth
werewolf strategy, the seer is trusted completely. Therefore, the seer is removed
from the candidate list.

During night turns, the seer randomly identifies a player from the candidate
list. The seer opens the result the next morning. If the identified player is a were-
wolf, he/she is eliminated during the daytime. Otherwise the identified player is
removed from the candidate list. The action of the seer can also be treated as a
chance node of a game tree in the model of extensive games.

2.3 Actions of the Bodyguard

Even though revealing the role of the bodyguard with proper timing is effective,
we do not add these actions to the human-side strategies in this paper.

We limit the bodyguard’s action to only choosing a target to protect. The
bodyguard protects a target each night. The bodyguard selects one of the fol-
lowing groups to protect.

– The seer
– White villagers—who have been identified to be villager
– Villagers who have been attacked but not killed because the bodyguard pro-

tected the player
2 As mentioned above, if the number of human-side players fail to excceed the one of

werewolves, the game has already ended with werewolves’ victory.
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– Gray players—who are still unidentified, each of them is either a villager or a
werewolf

The bodyguard protects one player from the selected group randomly. Select-
ing which group to protect is important for human-side strategies. The human-
side strategy is determined by the probabilities of this choice for each human-side
information set.

2.4 Actions of Werewolves

Because each of the werewolf-side players is assumed to act as a villager, the only
available action is to select the target to attack during night turns. Werewolves
select their target from the following groups:

– The seer
– White villagers—the bodyguard may be included
– Attack failed villagers—a werewolf recognizes the targets of failed attacks from

previous nights
– Others—the bodyguard may be included

The werewolves attack one player from the selected group randomly. Selecting
which group to attack is important in the werewolf-side strategies. The werewolf-
side strategy is determined by the probabilities of this choice for each werewolf-
side information set.

3 Calculating ε-Nash Equilibrium

Even though the werewolf game may appear to have many players, it is theo-
retically a two-player zero-sum game with the limitations described. This means
that the Nash equilibrium will exist for the strategies and that the utilities for
every strategy are certain. The strategies of both sides proposed in the previous
section have ambiguity in selecting the group to protect or attack.

To calculate the ε-Nash equilibrium, we use the CFR+ algorithm studied by
Bowling et al. [5]. This algorithm is a variant of the counterfactual regret mini-
mization algorithm, which was developed by Zinkevich et al. [6]. CFR calculates
the ε-Nash equilibrium in large extensive games. Before CFR was invented, var-
ious methods based on linear programming were used to calculate the ε-Nash
equilibrium in extensive games. However, these methods cannot treat large games
that have millions of information sets. CFR and its variants enable the treatment
of large games, such as Heads-up Limit Hold’em Poker [5].

Even though the CFR+ program used in [5] is available as open source, it is
specialized for poker games. Therefore, it is not suitable to be directly applied
to the werewolf game. Consequently, we designed a general-purpose Python pro-
gram and ran it with pypy, which is a high-speed Python code interpreter and
a just-in-time compiler3.
3 The programs and outputs are available at https://github.com/u-tokyo-gps-tanaka-

lab/gpw2015.

https://github.com/u-tokyo-gps-tanaka-lab/gpw2015
https://github.com/u-tokyo-gps-tanaka-lab/gpw2015
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In our Python program, we used a standardized string, as described below,
to represent the information sets of the bodyguard and the werewolves. Because
revealing the role of the seer in the first day is a fixed action, this action was not
included in the representation of the information sets.

– There is a set number of villagers, seer, bodyguard, and werewolves as the
assignment of the number of different roles. Note that the number of seer and
bodyguard can only be zero or one.

– G is a villager who is suspicious (gray in other words).
– S is the seer.
– B is the bodyguard.
– W is a werewolf.
– V is a villager who is inpected to be human (white in other words).
– C is a villager who is white from the bodyguard’s and werewolves’ perspective

because of a failed attack. The player is still gray to the other villagers because
this player has still to be identified.

– I is the identified bodyguard who is identified to be white.
– v is the voting step, and the next character presents the result of the elimina-

tion.
– g is the step for the bodyguard and the werewolves to choose a target.

• The character after ‘g’ is the target of the bodyguard. This will be ‘−’ if
the bodyguard has died.

• The character after the bodyguard’s target is the target of the werewolves.
• The last character in this string shows whether the attack succeeded or

failed, ‘+’ and ‘−’ denote success and failure, respectively.
– d is the step where the seer identifies a player.

• The character after ‘d’ represents the player identified by the seer. This
character may be ‘−’ in two cases. The first case is when the seer has
died. The second case is when the player identified by the seer is attacked
by the werewolves on the same turn.

For example, the following string represents the information set of the body-
guard and means that four villagers, one seer, one bodyguard, and four were-
wolves were present at the start of the game, a gray villager was eliminated
after the first vote, the attack failed because the targets of both the bodyguard
and the werewolves were the seer, the seer identified the bodyguard, and a gray
villager was eliminated after the next vote.

– B, 4 1 1 4, vG, gSS-, dB, vG

The following string represents one of possible situations that are the same
situation as above for the werewolves’ information set.

– W, 4 1 1 4, vW, gSS-, dG, vG



Human-Side Strategies in the Werewolf Game 99

The differences between these two strings are that the bodyguard is not aware
of the role of the eliminated player and the werewolves are not able to identify
the bodyguard from the other villagers.

A strategy is the combination of possibilities for a player to choose from
available actions in each information set. By calculating the pair of strategies
which gives ε-Nash equilibriums, we can limit the expected utility ranges at most
ε from optimal utility.

4 The Solutions

We set up four different configurations according to the existence of seer and
bodyguard as below, and calculated the winning rates in the various setups of a
number of roles for the experiments.

1. No seer, no bodyguard
2. With seer, no bodyguard
3. No seer, with bodyguard
4. With seer, with bodyguard

Tables 1, 2, 3 and 4 shows the human-side winning rates of each group after
500 updating iterations of CFR+4. It would take too long to run the program
if the total number of players exceeds ten, therefore, the number of players was
limited to ten.

Table 1. Human-side winning rate: no seer, no bodyguard

Werewolves\Players 3 4 5 6 7 8 9 10

1 33% 25% 47% 38% 54% 45% 59% 51%

2 - - 13% 8% 23% 16% 30% 22%

3 - - - - 6% 3% 11% 7%

4 - - - - - - 3% 1%

Generally, one werewolf player is assigned in games with less than eight play-
ers, and two werewolves are assigned in games with eight to ten players. Table 4
shows that winning rates of the human-side are more than 50% with these were-
wolves/human conditions, except in the case where the number of players is four.
This result suggests that the stealth werewolf strategy is not a good strategy.

Furthermore, we analyzed the strategies that give ε-Nash equilibriums and
obtained some properties of the strategies. As mentioned in [5], giving a strategy
combination which contains a strategy for each player, then the following holds:
if for each player using his or her strategy the player can at most gain more
4 The exploitabilities of the strategies are computed, and the values are less than

3 × 10−3.
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Table 2. Human-side winning rate: with seer, no bodyguard

Werewolves\Players 3 4 5 6 7 8 9 10

1 50% 33% 50% 40% 56% 46% 60% 51%

2 - - 17% 10% 24% 17% 31% 22%

3 - - - - 7% 4% 12% 7%

4 - - - - - - 3% 1%

Table 3. Human-side winning rate: no seer, with bodyguard

Werewolves\Players 3 4 5 6 7 8 9 10

1 33% 29% 46% 42% 53% 49% 58% 54%

2 - - 13% 11% 22% 19% 29% 25%

3 - - - - 5% 5% 11% 9%

4 - - - - - - 2% 2%

Table 4. Human-side winning rate: with seer, with bodyguard

Werewolves\Players 3 4 5 6 7 8 9 10

1 50% 33% 67% 68% 80% 81% 84% 83%

2 - - 33% 27% 53% 52% 66% 64%

3 - - - - 25% 20% 42% 40%

4 - - - - - - 17% 15%

utility, but not over ε, by changing to other strategies; it means that the strategy
combination gives ε-Nash equilibriums. As a result of calculation, the ε is at most
twice the strategy’s exploitability.

4.1 The Effect of the Existence of a Seer and a Bodyguard on the
Winning Rates of Human-Side

Figure 1 shows the human-side winning rates of various assignments that all con-
tain two werewolves but a different number of players. For the game where there
is a seer but not a bodyguard, the seer, after revealing his/her role to the vil-
lagers during the first turn of the game, will definitely be attacked by werewolves.
However, since the role of the seer has been revealed, villagers will not vote for
the elimination of the seer. As a result, the possibility of a werewolf being voted
for elimination is slightly increased. Therefore, the human-side winning rate will
also slightly be increased. When a bodyguard is assigned but without seer, the
human-side winning rates will also be influenced slightly. However, if both the
seer and the bodyguard exist, the human-side winning rates will be increased
drastically, sometimes even by 48%.
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Fig. 1. Werewolves 2: comparison of winning rates

Note that there are two steps where someone will be killed, which are vote
and werewolves’ attack. In the cases that the human-side failed to eliminate a
werewolf in a vote, which certainly happens much more than the ones in which
they succeeded, there will be two villagers get killed in that turn if there is no
bodyguard. Assuming there are five villagers and one werewolf assigned into the
game, the maximum number of chances for them to vote is two. That number
will increase by one, if we add one villager into the game. However, the number
will stay the same if we add another one. However, as the number of players
increases, the possibility for human-side to eliminate a werewolf will become
lower. That is why the winning rate does not increase monotonically. Adding a
bodyguard into the game scarcely eases that effect since the possibility of the
bodyguard protecting a villager successfully is also not high.

4.2 Example 1: The Utility of the Bodyguard Protecting a Villager
but Not the Seer

From the results of CFR+, we found that in the majority of situations, the
bodyguard will have more utility by always protecting the seer. However, there
exists cases where the bodyguard gains more benefits by protecting a gray player
instead of the seer. In the following example, because there might be two were-
wolves left, it is better for the bodyguard to protect one of gray players to cause
the werewolves’ attack to fail.

– B, 4 1 1 4, vG, gGG-, dW, vW, gSG+, d-, vG, gSS-, dB, vC
– Average Strategies5 G: 1, S: 0
5 As mentioned in [5], the average of strategies calculated in every loop gives ε-Nash

equilibrium.
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4.3 Example 2: The Utility of the Bodyguard Protecting a Werewolf

If the bodyguard succeeds in protecting a player, this player will become white in
the bodyguard’s perspective. Therefore, there will be cases where the bodyguard
knows who among the gray players are werewolves. It may seem reasonable to
think that in those cases there would be no benefit of the bodyguard protecting
gray players who are werewolves. However, according to the results, cases do exist
where it is more profitable for the bodyguard to purposely protect werewolves.
In the situation below, by protecting werewolves and making the werewolves’
attacking succeed, the possibility of a werewolf being eliminated in the next vote
will be increased. Note that these cases only exist in the condition where the
bodyguard cannot reveal his/her role.

– B, 4 1 1 4, vG, gGS+, d-, vG, gGG-, d-, vC, gGG-, d-, vG, gGG-, d-, vG
– Average Strategies C: 0, G: 1

5 Conclusion

In this paper, we proposed a limitation on the human-side strategies against the
stealth werewolf strategy and calculated the strategies of both sides that result
in the ε-Nash equilibrium. The solutions show that the winning rates of the
human-side are more than 50% with the usual werewolves/human conditions.
This suggests that the stealth werewolf strategy is not very good. Furthermore,
the results also suggest that unusual actions exist in the optimal strategy.
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Abstract. In this study, we construct a non-human agent that can play
the werewolf game (i.e., AI wolf) with aims of creating more advanced
intelligence and acquire more advanced communication skills for AI-
based systems. We therefore constructed a behavioral model using infor-
mation regarding human players and the decisions made by such players;
all such information was obtained from play logs of the werewolf game.
To confirm our model, we conducted simulation experiments of the were-
wolf game using an agent based on our proposed behavioral model, as
well as a random agent for comparison. Consequently, we obtained an
81.55% coincidence ratio of agent behavior versus human behavior.

Keywords: Werewolf game · Communication game · Player modeling ·
Multi-player

1 Introduction

In the Werewolf Game (also called Mafia), werewolves appear in a village in
the form of humans during the day, attacking villagers one-by-one every night.
The villagers decide that they must execute those who are suspected of being
werewolves, but first must determine via discussions which villagers are actually
werewolves. Since villagers are not given any information about others, infor-
mation gleaned via discussion provides the only clue. Underlying the game is
how human players see through the identities of the werewolf players and how
werewolf players deceive the villagers, thus hiding their identities by providing
limited information.

Studies in game informatics that began with chess have expanded in recent
years, including games such as Go, Curling [1], and real-time simulation
(RTS) [2]. Unlike in the case of them, the werewolf game differs in a way such
that communication skills determine victory or defeat. The game requires the
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use of our advanced intellectual ability, including the ability to understand the
intention of others only from conversation, to therefore deduce the background of
an individual and determine his or her willingness to cooperate or be persuaded.
Thus, the werewolf game includes numerous communication-related problems
that are significant barriers that prohibit artificial intelligence from penetrating
the future society.

We, therefore, study agents that can play the werewolf game (i.e., AI wolf)
with aims of creating more advanced intelligence and acquiring more advanced
communication skills for AI-based systems. Construction of an AI wolf has iden-
tified numerous problems including persuading others to obtain trust, deducing
an opponent model from information gleaned only from conversations, under-
standing and expressing non-verbal information, co-operating with other players,
and applying natural language processing. We designed a protocol to discuss by
AI wolves [3], released a construction kit of an AI wolf using the given proto-
col [4], and constructed the system that can compete with each other by anthro-
pomorphic agent on the werewolf game. These initial studies aimed at solving
the AI-specific problem of acquiring advanced communication skills by creat-
ing an environment where AI wolves can play the werewolf game and gathering
collective intelligence via competitions.

To this end, in August 2015, we held the first AI wolf competition in The
Computer Entertainment Developers Conference (CEDEC2015), which is the
largest Japanese technical conference for game developers and engineers in Yoko-
hama. More than 50 teams participated in the competition. We also analyzed
human gameplay to obtain knowledge for realizing the AI wolf. For example,
we investigated the effects of non-verbal information in the werewolf game [5],
revealing gestures that impact victory or defeat by analyzing videos wherein
human gestures were annotated in conjunction with the werewolf game. All these
studies focused on constructing a strong agent for an AI wolf; such an agent
requires not only strength but also the ability to behave much like humans.

Herein, we endeavor to realize an agent that can behave like humans
by obtaining behavioral information from play logs of games played between
humans, thus constructing a sound behavioral model. We used game situations
obtained from play logs and action information of players in game situations
to construct our behavioral model. Specific game situations and attributes, for
example, the number of living villagers, number of players which have special
ability, etc., can easily be obtained using the play logs; however, we could not
obtain some information without analyzing utterance logs via natural language
processing. We, therefore, obtained two types of information: (1) coming-out
(CO) information: describing who, when, and what role is expressed, e.g., “Player
A, on the first day, expressed him/herself as a seer”; and (2) decision information:
describing who, when, and who was identified as either a villager or a werewolf,
e.g., “Player B, on the third day, detected player C as a werewolf.”
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2 What is the Werewolf Game?

2.1 Gameplay

In the game, all players are randomly allocated to roles, as summarized in
Table 1. Players are divided into two teams: humans and werewolves. To win
as a human, the goal is to kill all werewolves, whereas to win as a werewolf, the
goal is to kill humans to the number of werewolves or fewer. Players do not know
what the other players’ roles are, as the assigned roles are hidden. A basic course
of action of a human player is to find werewolves via conversation. Conversely,
werewolf players know who all of the werewolves are. A basic course of action for
a werewolf player is to engage in a variety of cooperative maneuvering without
other humans learning of their role.

In the werewolf game, there are two phases: day and night. In the day phase,
all players discuss who the werewolves are. Players who have special abilities, as
described below, lead discussions to gain an advantage for their team by using
the information gained via their abilities. After a certain period of time, players
identify and execute one player suspected as a werewolf; this player is selected via
a collective vote. The executed player cannot play the game from then on. In the
night phase, werewolf players attack human players. Attacked players are also
eliminated from the game. Moreover, players with special abilities can use their
abilities in the night phase. The day and night phases repeat until one group
meets the conditions for winning. A crucial aspect of the werewolf game is for
human players to detect the lies put forth by werewolf players. Persuading other
players by using information given by their special abilities is also important.
For werewolf players, the crucial aspect is to manipulate discussions to their
advantage. Occasionally, werewolf players must impersonate a role.

2.2 Roles

There are many variations in the werewolf game, often including roles with
special abilities. Herein, we have adopted the orthodox roles especially in Japan.
Table 1 shows these roles and the ability of each role. Seers have the ability to
identify werewolves in the night phase, thus comprising the most important role
in the werewolf game. Counter to this, werewolf players often impersonate the
role of seers to disrupt and confuse the discussion; it is not uncommon for there
to be three players impersonating the role of seers in a given game. Herein, we
therefore obtained CO information and decision information from utterance logs.

3 Werewolf BBS

We used data obtained from the Werewolf BBS1, wherein users can play the
game online. This site also provides discussion forums; overall, we could obtain
utterance logs for all players, use history of special abilities, the role of each
1 http://ninjinix.x0.com/wolf0/.

http://ninjinix.x0.com/wolf0/
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Table 1. Roles in the Werewolf Game.

Roles Special abilities

Villager Nothing

Werewolf In the night phase, werewolf players attack one human player;
werewolf players can attack one player in the whole of werewolf
side in every night phase; werewolf players can secretly talk among
themselves

Seer In the night phase, a seer can select one player and know whether
the selected player is a werewolf or not

Bodyguard In the night phase, a bodyguard can select one player and protect
the selected player from attack by a werewolf

Medium A medium can know whether a player who is executed via a vote
is a werewolf or not

Possessed A possessed is a human, but his or her objective is the same as
that of the werewolf players; a possessed is judged as human by
both a seer and a medium (and is counted as a human player when
victory or defeat judgments are made)

player, information of who is dead or alive at each date, and information as
to the cause of death (i.e., by execution or attack); however, expressing one’s
own role (i.e., CO) and speaking about other players is not included. Obtaining
information as to whether a player is a werewolf is a special ability, but the timing
in telling other players depends on the player. Moreover, there are players who
impersonate other roles. Accordingly, we analyzed utterance logs using natural
language processing to obtain such information. Note that it is difficult to obtain
this information because utterance logs are written in various colloquial styles.
Therefore, we created numerous regular expressions to obtain CO and decision
information from utterance logs to cover many such variations.

4 Acquisition of CO and Decision Information

4.1 Using Regular Expressions

We obtained CO and decision information by using regular expressions. To con-
struct regular expressions, considering the style and expressions used (on the
utterance is included CO and decision information) are efficient; however, such
an approach required tremendous time and cost to obtain utterances concerning
CO and decision information by hand from all utterances in the Werewolf BBS.

Therefore, we obtained information regarding “when did seer (or medium)
use special ability”, “which side did seer (or medium) decide”, and “who did seer
(or medium) decide” by checking the use history of special abilities employed
by players in Werewolf BBS. Next, we obtained the utterance that includes the
target player’s name and result from utterances spoken by the seer and medium
players on the day the special ability was used. These utterances included CO
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Table 2. Example utterances.

Utterance Type Regular expression

I am seer CO 〈〈USER〉〉 is 〈〈ROLE〉〉
I confirm CO of seer of Albin CO I confirm CO of 〈〈ROLE〉〉 of 〈〈USER〉〉
Peter is werewolf decision 〈〈USER〉〉 is 〈〈DECISION〉〉

and decision information; we could obtain CO information because a decision
was often reported at the same time as that of the CO. We, therefore, con-
structed regular expressions to obtain CO and decision information by using
these utterances for reference.

As we analyzed the play log, for example, when player A is identified as a
seer, other players sometimes also stated that “Player A is a seer.” Using such
utterances, we could also obtain CO information from players without special
abilities. Therefore, we used other players’ utterances on the same day to con-
struct regular expressions. As such, we constructed 477 regular expressions and
obtained CO and decision information via those regular expressions.

An example of utterances and regular expressions is shown in Table 2. In the
table, 〈〈USER〉〉 accepts first-person pronouns and a player’s name, 〈〈ROLE〉〉
accepts names of roles, and 〈〈DECISION〉〉 accepts words that represent one side
or the other, i.e., “werewolf” or “human” or the like.

4.2 Performance Evaluation of Regular Expressions

We conducted an experiment to evaluate the performance of our CO and decision
information acquisition method via regular expressions. In this experiment, we
randomly selected 50 games for CO information and 10 for decision information.
We also evaluated our method using CO and decision information acquired by
hand.

We evaluated the performance by measuring precision, recall, and the
f-measure. If CO information obtained via the regular expressions completely
matched what we acquired by hand, we noted the obtained CO information as
correct. Similarly, if decision information obtained via the regular expressions
completely matched what we acquired by hand, we noted the obtained decision
information as correct.

Consequently, there were 193 utterances containing CO information in 50
games. From our regular expressions, 193 were matched and 190 were cor-
rect. Furthermore, there were 156 utterances containing decision information
in 10 games. By our regular expression, 137 were matched and 114 were cor-
rect. Results are shown in Table 3, from which we observe that CO information
yielded a very high precision and recall. Results regarding decision information
were worse than those of CO information. In the case of decision information,
depending on whether the speaker had a special ability, the meaning of utter-
ances (e.g., “Player A is a werewolf”) was changed to a decision based on either
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Table 3. Precision and recall rates.

Precision Recall F-measure

CO 98.4(190/193) 98.4(190/193) 0.98

Decision 83.2(114/137) 73.1(114/156) 0.78

their ability or just speculation. Thus, obtaining decision information was more
difficult than obtaining CO information, as is evident in our experimental results.

5 Behavioral Model Based on Action Selection
Probabilities

Here, we describe a method used to construct our behavioral model using data
obtained from the Werewolf BBS. Our proposed model is targeted only at the
behaviors and utterances shown in Table 4.

We define the probability that a player performs action a(a ∈ A) in situation
s(s ∈ S) by the following equation:

p(a|s) =
ns,a∑

a∈A ns,a
(1)

Here, p(a|s) represents the action selection probability and ns,a is the number
of times a player has performed action a in situation s in the given play logs.
Situation s is defined based on the basis of a decision result reported by a player
who is identified as a seer or medium and number of player which expressed
him/herself as a seer or medium. For cases 1 and 2 of Table 4, A = {CO,not CO}.
For cases 3, 4, 6, 7, and 8 from Table 4, A = {p1, p2, ..., pk}, assuming pi is a player
and k is the number of players. Here, pi is defined by the number of CO players,
the CO type (i.e., seer or medium), and the reported results of their decision.
For case 5 from Table 4, A = {human side player,werewolf side player}.

To clarify our model, we describe a specific example wherein we focus on
the selection of an attack target of a werewolf. Given that there are 10 players
and a situation s, as described in Table 5, the game situation consists of two
seers, a werewolf or a possessed expressing him/herself as a seer; furthermore,
there are two players inspected as humans by those players who expressed them-
selves as seers. Other players did not express themselves and were not inspected
by any special abilities. Here, executable action a (i.e., the player that can
be an attack target) is shown in Table 6, but the werewolf is not included in
action a because a werewolf cannot attack another werewolf. We assume that
the numbers of occurrences of each action that the player took in the same
situation in the play log were ns,p1 = 854, ns,p2 = 3077, and ns,p3 = 1320.
We then obtained p(p1|s) = 854/(854 + 3077 + 1320) = 854/5251 = 0.163,
p(p2|s) = 3077/5251 = 0.586, p(p3|s) = 1320/5251 = 0.251 by Eq. (1). Accord-
ingly, given the situation of Table 5, the probability that a werewolf attacks a
player who expressed him/herself as a seer is 16.3%; as for the player who was
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Table 4. Modeled actions.

Num Action

1 Whether a seer (or medium) expresses his/her role

2 Whether a werewolf (or possessed) expresses his/her fake role

3 Selection of divination target by a seer

4 Selection of a target possessing a special ability by a werewolf
(or a possessed) impersonating a seer

5 Selection of a decision result of a special ability by a werewolf
(or a possessed) impersonating a role

6 Selection of a vote target

7 Selection of an attack target by a werewolf

8 Selection of a protected target by a bodyguard

Table 5. Examples of situation s.

Factor number of players

The number of players identified as a seer 2

The number of players inspected twice as human players by
a seer

2

The number of players who have not been identified as any
specific type and have not been inspected by a seer

6

inspected two times as a human player by a seer, this probability is 58.6%; and
for the player who did not express him/herself and was not inspected by a seer,
the probability is 25.1%.

As to why such probabilities occurred, the player who was inspected two
times as a human player by a seer is trusted by human players because the
player is very likely to be a human player. If there is a player who can be trusted,
human players can advantageously discuss because by leading discussion by the
player, werewolf players face increased difficulty in disrupting such discussions.
Thus, the werewolf players prefer to attack players inspected two times as human
players by a seer.

Table 6. Examples of action A.

A Target player

p1 The player who has been identified as a seer

p2 The player who was inspected twice as human by a seer

p3 The player who was not identified as any specific type and was
not inspected by a seer
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6 Degree of Coincidence Between Agents
and the Play Logs

6.1 Outline

In this section, we investigate the degree of coincidence between agents using
action selection probabilities and human behaviors from play logs. For compari-
son, we also created a random agent that randomly selects its action. Herein, we
created our agents using the AI wolf server [4] released on the Artificial Intelli-
gence Werewolf site2. We used data from 467 instances of the werewolf game with
223 villager wins and 224 werewolf wins as the action selection probability of the
agent. We used K-fold cross-validation with K = 10 to calculate the coincidence
ratio; here, the coincidence ratio is the ratio that the agent’s highest-probability
action in the situations defined in Sect. 5 above coincides with all human behav-
iors in the play logs in the same situation. Actions used to calculate the coinci-
dence ratio include those of our proposed behavioral model, as shown in Table 4.
For example, “I am a villager” is not used to calculate the coincidence ratio
because it is not available in our proposed behavioral model. Furthermore, when
the situation is as summarized in Table 5, the selectable actions regarding the
attack target of a werewolf are shown in Table 6. The agent’s highest-probability
action from among selectable actions is p2 of Table 6. We could thus investigate
whether the agent’s action coincides with human behavior by comparing p2 with
human behaviors obtained from play logs from the Werewolf BBS.

6.2 Results

Figure 1 shows the degree of coincidence between the actions determined by our
behavioral model and human behavior. In this figure, green bars indicate the
number of games. As the game can be finished in five days at the earliest, the
number of games gradually decreases from the sixth day onward. The average
degree of coincidence of our proposed model was 81.55%, whereas that of the
random model was 33.73%. From Fig. 1, the agent based on our behavioral model
of action selection probability behaved like a human substantially more so than
the random agent. The number of executable actions of the agent, e.g., execute,
attack, and guard, increased in the middle days of the game given the increase
in the number of CO actions and players inspected by a seer. Therefore, as the
game reaches its middle, the degree of coincidence of the random agent further
decreases. Furthermore, the degree of coincidence of the agent based on our
behavioral model of action selection probability decreased, too, but obtained
higher values than that of the random agent.

In the final phase of the werewolf game, the coincidence ratio of the agent
based on our behavioral model of action selection probability increased; however,
the tendency that this degree of coincidence decreases was seen in days 8 and 9.
This tendency is not seen in the random agent because the action selection

2 http://www.aiwolf.org/en/.

http://www.aiwolf.org/en/
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Fig. 1. Degree of coincidence (Color figure online)

probability cannot be obtained for day 9 given that the situation information is
insufficient. There are only 74 games remaining on day 9.

6.3 Consideration

We conducted our simulation experiments 10,000 times on agents based on our
behavioral model of action selection probability to investigate its influence on
victory or defeat. In our simulation experiment, we prepared 15 agents based
on our behavioral model of action selection probability; these agents played the
werewolf game between the same agents. As noted above, we also conducted the
same simulation experiments using the random agent to compare our results.

The winning percentage of our simulation experiments is shown in Table 7.
We calculated the winning rate of actual games by using the data of the afore-
mentioned 467 instances (with 223 villager wins and 224 werewolf wins). As sum-
marized in the table, the obtained winning rate of agents based on our behavioral
model of action selection probability was closer to the winning rate of the actual
games when compared to that of the random agent; however, there is still a
substantial difference between the winning percentage of actual games and that



112 Y. Hirata et al.

Table 7. Winning percentage.

Villager win Werewolf win

Actual game 47.8% 52.2%

Proposed method 32.6% 67.4%

Random method 22.0% 78.0%

of the agents based on our behavioral model of action selection probability. This
discrepancy may have occurred because our proposed behavioral model can dis-
tinguish players by their CO and decision information; however, if players express
the same role and are given the same judgment, our proposed behavioral model
cannot distinguish between those players. More specifically, given the situation
summarized in Table 5, our behavioral model based on action selection probabil-
ity identifies actions from Table 6 as well as each action’s selection probability;
however, our behavioral model cannot distinguish a seer of p1 from another seer
of p1. Similarly, our behavioral model cannot distinguish player p2 from another
player of p2.

In actual gameplay, when a human player comparatively selects one player
as a target of an action in the above situation, the human player considers
discrepancies from past utterances, impressions of others, etc. Our future work
aims to incorporate these aspects to construct a refined behavioral model that
can distinguish between players in the same role.

7 Related Work

Related studies include Monopoly [6] and The Settlers of Catan [7,8]. Both these
games attempt to include communication in the gameplay via the computer;
however, utterances of these games target negotiation, e.g., in the trading and
exchange of properties, utilities, and the like. This only requires the ability to
estimate the intentions of others. These studies are related to automated nego-
tiation, which is widely studied in the field of multi-agent systems (e.g. [9,10]).
Conversely, in the werewolf game, the ability to persuade and earn credibility
is as important as estimating the intentions of other parties through logical
thinking.

Taylor investigated “The Resistance Game” wherein trust affects the game
result in common with the werewolf game [11]. However, this study focuses on
the game without communication among players.

There are a few existing studies on the werewolf game. Braveman [12] and
Yao [13] both showed that the probability of a werewolf-side win, w(n,m), is
proportional to m/

√
n, where n is the number of players at the start of the

game and m is the number of werewolves. Furthermore, Migdal showed the
exact formula of probability w(n,m) [14].

In these studies, players with special abilities (e.g., seers) are not included,
thus simplifying the mathematical modeling. The game is performed using only
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villagers and werewolves; however, actual games include many more roles, as
seen on the Werewolf BBS. We also note that there are substantial differences
regarding the process and nature of the game when roles other than just villager
and werewolf are included. For example, if the aforementioned Werewolf BBS
data were applied to the expression provided by Migdal (assuming the roles with
special abilities are lumped into the villager role, i.e., n = 15 and m = 3), we
obtain a werewolf winning rate of 97.1%; however, according to our research, the
actual werewolf winning percentage on the Werewolf BBS was 52.2%.

There are studies that have focused on human behavior and the psycholog-
ical aspects of playing a werewolf that used various features for determining
whether a player is a werewolf. For example, there was a study that used each
player’s utterances, utterance lengths, and the number of interruptions [15]; a
study that used hand and head movements [16]; and a study that used the num-
ber of words in each utterance [17] to determine whether a player was a werewolf.
Furthermore, several audio–visual corpus containing dialogue data in the were-
wolf game were constructed to analyze group communication [18,19]. However,
these studies do not focus on playing the werewolf game with a computer.

8 Conclusion

In this study, we constructed a behavioral model by obtaining behavioral infor-
mation from play logs describing play between humans; our model identifies an
action selection probability to realize an agent that can behave like humans. We
first obtained two types of information, i.e., CO and decision information via
regular expressions to obtain behavioral information, and then acquired infor-
mation regarding the dead or alive state at each date, the role of each player,
etc. Consequently, we obtained a precision of 98.4%, a recall of 98.4%, and an
f-measure of 0.98 for CO information acquisition; for decision information, we
obtained a precision of 83.2%, a recall of 73.1%, and an f-measure of 0.78. We
constructed a behavioral model based on action selection probability using infor-
mation acquired from play logs and conducted simulation experiments. Conse-
quently, agents based on our behavioral model of action selection probability
behaved like humans much more so than a random agent; however, action selec-
tion probabilities could not be obtained in some instances due to insufficient
situation information. In future work, we aim to include more game data and
work to distinguish between players that express themselves as the same role
and are inspected by the same side.

Acknowledgements. We heartily thank Mr. Ninjin for allowing us to use the data
of the Werewolf BBS. This study received a grant of JSPS Grants-in-aid for Scientific
Research 15K12180.
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Abstract. Mastermind is a famous two-player deduction game. A Code-
maker chooses a secret code and a Codebreaker tries to guess this
secret code in as few guesses as possible, with feedback information after
each guess. Many existing works have computed optimal worst-case and
average-case strategies of the Codebreaker, assuming that the Codemaker
chooses the secret code uniformly at random. However, the Codemaker can
freely choose any distribution probability on the secret codes. An optimal
strategy in this more general setting is known as a Nash Equilibrium. In
this research, we compute such a Nash Equilibrium for all instances of Mas-
termind up to the most classical instance of 4 pegs and 6 colors, showing
that the uniform distribution is not always the best choice for the Code-
maker. We also show the direct relation between Nash Equilibrium com-
putations and computations of worst-case and average-case strategies.

1 Introduction

1.1 A Simple Deduction Game

Before studying the famous game of Mastermind, let us start by describing a
much simpler deduction game to illustrate some notions. We consider the two-
player game Guess-A-Number, played by Alice and Bob. Initially, Alice chooses
a secret number between 1 and N , where N is a parameter of the game (known
by both players). Bob has to discover Alice’s secret number. To find this num-
ber, Bob makes successive guesses; each guess being a number. The game ends
when Bob correctly guesses her number. After each guess, Alice gives a feedback
informing Bob whether (a) his guess is the secret number, or (b) his guess is
lower than the secret number, or (c) his guess is higher. Based on that feedback,
Bob eventually finds Alice’s secret number. In this game, Bob’s goal is to win
using as few guesses as possible. Note that Alice does not have any choice except
at the beginning, when she chooses her number.

Example. Let consider the smallest non-trivial instance of this game, with N = 3,
and let us analyze what are the possible strategies of the players:

– Alice chooses a number from the set {1, 2, 3}.
– Bob is clever; he knows that his first guess should be the number 2. It is the

only first guess that guarantees him to discover Alice’s number in at most
two steps in the worst case. Indeed, (a) if Alice chose the number 2, Bob wins

c© Springer International Publishing AG 2016
A. Plaat et al. (Eds.): CG 2016, LNCS 10068, pp. 115–128, 2016.
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in a single guess; while (b) if Alice chose 1 or 3, he wins using two guesses.
Assuming that Alice chooses her number uniformly at random, Bob’s strategy
requires 2+1+2

3 � 1.67 steps in average.
– Alice is also clever; she is expecting Bob to first guess the number 2. To

counter him, she decides to avoid choosing number 2 as her secret number;
she selects now her secret number only between 1 and 3 with equal probability.
This change in her strategy increases the average number of guesses of Bob;
it becomes 2+0+2

2 = 2.
– Bob is even more clever. He knows that Alice never chooses the number 2

as her secret number. Then he updates his strategy too. Instead of guessing
first the number 2, he only needs to guess 1 and 3 successively. His average
number of guesses reduces to 1+0+2

2 = 1.5.
– Alice is . . .

Such reasoning could continue forever and Alice’s and Bob’s strategies will never
converge. Fortunately, many years ago, Nash introduced the notion of Nash
Equilibrium (NE) [11]. There exist some pairs of players’ strategies for which
none of the players benefit in changing their strategy. In the previously-described
game, when both players are playing optimal strategies (in the NE sense), Bob
discovers the number in an average of 9

5 = 1.8 guesses. Alice has to choose
number 1 with probability 2

5 , number 2 with probability 1
5 , and number 3 with

probability 2
5 .1

Mastermind is a more complex game, but a similar analysis can be done, as
we will see in this paper.

1.2 The Game of Mastermind

Mastermind is a two-player game in which Alice (aka. the Codemaker) chooses
a secret code and Bob (aka. the Codebreaker) has to discover this secret code.
The code is a sequence of n pegs, each of them taken from a set of k colors.
The original game, invented and sold in the 1970s, proposed a code of length
n = 4 and k = 6 colors, leading to 64 = 1296 possible secret codes. Later, to
increase the level of difficulty, a Super Mastermind version was commercialized
with n = 5 pegs and k = 8 colors.

After Alice has chosen her secret code, Bob makes successive guesses; each
guess being a sequence of n pegs chosen among k colors (i.e. a guess corresponds
to one of the possible codes). After each guess, Alice gives a feedback (aka. grade)
informing Bob about the quality of his guess. The grade is a pair of two integers2

(b, w), where b indicates the number of correct pegs in the guess with respect
to the secret code, and w indicates the number of pegs with correct colors but
incorrect positions (see Sect. 2 for a more formal definition).

1 The straightforward proof is left to the reader.
2 We use (b, w) since the original game use black and white pins to display the grade.
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Example. Consider the game instance with n = 5 and k = 8, where colors are
represented by numbers 1 to 8. Alice chooses the secret code 72321 and Bob
proposes the guess 23523. In Bob’s guess, only one single peg is correct (good
position, good color); the one at position 4 with color 2. There are also two pegs
with a correct color but an incorrect position: the peg with color 2 at position 1
and the peg with color 3 at position 2. Consequently, the grade is (b, w) = (1, 2).
Note that since the secret code contains a single peg with color 3; only one peg
with color 3 from Bob’s guess is counted in the number w.

1.3 Related Work

Due to its mathematical nature, the game has been widely studied. In 1976,
Knuth analyzed the original game (n, k) = (4, 6) and proved that any code can be
found using at most 5 guesses [9], and one cannot do better; there is no strategy
solving all codes in 4 guesses. After this optimal worst case result, researchers
started naturally to look for an optimal average case result. In 1993, Koyama
and Lai finally proved that the best strategy finds the code in 5625

1296 � 4.34 guesses
in average (assuming that the secret code is chosen uniformly at random among
the 1296 possible codes) [10]. Similar worst and average cases have later been
computed for larger instances; latest results up to (4, 7) are given by Ville [13].

A general average case solution for two pegs and arbitrary number of colors
is given by Goddard [5] and Chen and Lin [1]. General worst case solutions for
three pegs (and arbitrary number of colors) or two colors (and arbitrary number
of pegs) have been proposed by Jager [7]. Asymptotic bounds for large number
of pegs were first proposed in 1983 by Chvátal [2] and recently improved by
Doerr et al. [3]. Related works also include variants of the game with only black
pegs [6,8] or in a static version [2,4] where the goal is to determine the code by
asking simultaneously many guesses (without waiting for the feedback).

1.4 Motivation and Contributions

All related work mentioned in the previous paragraph deals with Codebreaker
strategies. This is quite natural, since this is what makes the game interesting for
human players. However Mastermind, similarly to the Guess-A-Number game,
is in fact a two-player game. One should also investigate the strategies of the
Codemaker. She plays only a single move in the game (choosing the secret code)
but this choice may have an impact on the strategies of the Codebreaker.

To the best of our knowledge, only one paper has been published on this
specific problem. In 1982, Pearson proposed an analysis of two person, zero sum
games and illustrated his theory using a small instance of Mastermind [12].
When playing with n = 2 pegs and k = 3 colors, the codebreaker should choose
any unicolor3 code with probability 1

6 and any bicolor code with probability 1
12 .

This distribution of secret codes guarantees the highest possible average case for

3 A unicolor (resp. bicolor) code is a code with both pegs with same (resp. different)
color. There are 3 unicolor codes and 6 bicolor codes. Note that 3 × 1

6
+ 6 × 1

12
= 1.
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the Codebreaker, namely 29
12 � 2.42 guesses (compared to 21

9 � 2.33 guesses if
the Codemaker plays uniformly at random).

In 1995, Wiener posted a message on sci.math newsgroup [14] stating that
he has “done a full game-theoretic analysis of the 4-peg, 6-colour version of
mastermind [. . . ]”. He concluded that an optimal Codemaker must not play any
unicolor code, but should play any other code uniformly at random, i.e. with
probability 1

1290 . Such distribution of code leads to an average case of 5600
1290 � 4.34

guesses for an optimal Codebreaker.
However, as far as we know, Wiener did not release any publication of this

result, except this short newsgroup message. The result has never been com-
puted independently and there is also no existing description of the compu-
tation algorithms. In this research, our goal is then to compute such optimal
Codemaker strategy (more precisely, to compute the Nash Equilibrium) for dif-
ferent instances of Mastermind. We confirm the announced result of Wiener
and we also show that smaller instances of Mastermind exhibit interesting Nash
Equilibria.

1.5 Outline

The remaining of the paper is organized as follows. Section 2 formalizes the game
and summarizes some of the known results. Section 3 explains how we computed
Nash Equilibria. Section 4 presents our results emphasizing some unexpected
cases. Section 5 finally concludes the paper.

2 Definitions and Notations

2.1 Rules of the Game

As described in the Introduction, Mastermind is a two-player game where Alice
(the Codemaker) chooses a secret code that Bob (the Codebreaker) has to dis-
cover. The game is parametrized by a pair of integers (n, k) where n denotes the
number of pegs (i.e. the length of a code) and k denotes the number of colors
(i.e. the cardinality of the alphabet). In this paper, we use integers to represent
colors; an alphabet of k colors is represented by the set {0, 1, 2, . . . , k − 1}. A
code C is therefore a sequence of n integers; C = (C1, C2, C3, . . . , Cn). Since all
proposed examples contain at most ten colors, we simplify notations as follows:
code (1, 0, 3, 2, 0) becomes 10320.

To discover the secret code, the Codebreaker makes successive guesses, each
guess being a code. The game ends when he successfully guesses the correct
code. The Codemaker grades each submitted guess with respect to her secret
code. The grading function gn,k is a symmetric function taking two codes as
inputs and returning a pair of integers (b, w) as output. For an instance (n, k)
of the game of Mastermind, a secret code S and a guess G, gn,k(S,G) = (b, w)
with:

b =
n∑

i=1

δ(Si, Gi) and w = max
G̃∈Perm(G)

(
n∑

i=1

δ(Si, G̃i)

)
− b,
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where δ denotes the Kronecker symbol and Perm(G) denotes the set of all
permutations of G (formalization inspired from [2]).

Combinatorial observations. Given an instance (n, k) of the game, there are kn

possible codes. Both integers b and w output by the grading function belong to
the set {0, . . . , n} and they satisfy the inequality b + w ≤ n. There is clearly no
pair of codes with relative grade equal to (n − 1, 1). Thus, for a given instance
(n, k) of Mastermind with k > 2, there are n(n+3)

2 possible grades.4

2.2 Strategies in the Game

In the following, we assume a fixed instance (n, k) of the game. Formally, all
functions defined below (such as wc) are parametrized with n and k (and should
be denoted wcn,k). For clarity, we do not subscript these functions.

Codemaker’s Strategies. The only move of the Codemaker is to choose a
secret code. A pure strategy is to choose a given code. Usually we consider
only mixed strategies where the Codemaker plays according to a distribution
of probability over the set of all possible codes. One particular strategy is the
Uniform strategy where she chooses a secret code uniformly at random among
the kn codes.

Codebreaker’s Strategies. The Codebreaker has to find the secret code. In
the game of Mastermind, pure strategies of the Codebreaker can easily be rep-
resented by trees where nodes are guesses and edges are grades. To play a given
strategy/tree, the Codebreaker starts with the root node as initial guess, and
then follows the edge corresponding to the grade received from the Codemaker,
until it reaches a leaf meaning that the secret code has been found.

The Codebreaker wants to win as quickly as possible. Formally, this notion
can be interpreted in (at least) three ways. Given a (pure or mixed) strategy S
of the Codebreaker, we define the three following values:

1. Worst case: wc(S) denotes the smallest integer such that S is guaranteed
to discover any secret code in at most wc(S) guesses. A strategy S is said to
be wc-optimal if there is no strategy S′ with wc(S′) < wc(S).
For a pure strategy S, wc(S) equals the height of the corresponding tree.

2. Average case: avg(S) denotes the average number of guesses required to
discover any code, assuming that the Codemaker plays her Uniform strategy.
A strategy is said to be avg-optimal if there is no strategy S′ with avg(S′) <
avg(S).
For a pure strategy S, avg(S) equals the average depth of all leaves.

4 This formula is incorrect when k = 1 since there exists a single code, hence a single
possible grade (n, 0). For k = 2 colors, there are also some unreachable grades such
as (b, w) = (0, n) when n is odd.
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3. Weakest case: weak(S) denotes the largest average number of guesses
required when playing against all possible Codemaker strategies. Said dif-
ferently, it corresponds to the average number of guesses required when the
adversary is playing the strongest possible strategy that counters the Code-
breaker’s strategy.
For a pure strategy S, weak(S) = wc(S) since the Codemaker can choose
to play (one of) the pure strategy corresponding to (one of) the worst case.
Thus this notion of weak(S) is really interesting only for mixed strategies.

When considering an instance (n, k) of Mastermind, we define WC(n, k) to
denote the value of some wc-optimal strategy. Similarly, we use the notation
AVG(n, k) for avg-optimal strategy:

WC(n, k) = min
S∈SB

(wc(S)) and AVG(n, k) = min
S∈SB

(avg(S)) ,

where SB denotes the set of all strategies of the Codebreaker, including mixed
strategies.5 As already mentioned in Sect. 1.3, existing related work deals with
computing these values WC(n, k) and AVG(n, k).

Nash Equilibrium. The definitions of WC and AVG are based on the notions
of wc-optimality and avg-optimality respectively. Similarly one can use the third
notion of weakest case to define a last optimality criteria, corresponding to the
Nash Equilibrium NE(n, k):

NE(n, k) = min
S∈SB

(weak(S)) .

2.3 Example with (n, k) = (3, 2)

To illustrate the previous definitions, let us consider a simple instance of Mas-
termind with 3 pegs and 2 colors. There are 23 = 8 codes; 000, 001, 010, 011,
100, 101, 110, 111. Figure 1 depicts a possible strategy S for the Codebreaker.
Note that there is no edge labeled (0, 0), (0, 1), (0, 3), or (1, 1) starting from the
root since no secret code can lead to such grade when compared with guess 001.

Using this strategy, in the worst case, the Codebreaker wins in four guesses
(to find the secret code 101), hence wc(S) = 4. Globally, one code is found in 1
guess, four codes in 2 guesses, two codes in 3 guesses, and one code in 4 guesses,
hence avg(S) = 1×1+4×2+2×3+1×4

8 = 19
8 � 2.38. This strategy S is neither wc-

optimal nor avg-optimal. Indeed there exists better strategies for both metrics;
WC(3, 2) = 3 and AVG(3, 2) = 18

8 = 2.25 (finding them is left to the reader).

5 To compute WC and AV G, it is sufficient to consider only pure strategies. However
for NE, it is required to consider also mixed strategies.



Nash Equilibrium in Mastermind 121

001

110

WIN

111

WIN

010

100

WIN

WIN

000

011

101

WIN

WIN

WIN

WIN

(0, 2)

(3, 0)

(1, 0
)

(3, 0)

(1
, 2
)

(1
,
2)

(3, 0)

(3
, 0)

(2, 0)

(1
, 0

)

(1
,
2)

(3, 0)

(3
, 0)

(3, 0)

(3, 0)

Fig. 1. A Codebreaker’s strategy S for the instance (3, 2) of Mastermind

Since S is a pure strategy, as already mentioned earlier, weak(S) =
wc(S) = 4. Indeed, knowing that the Codebreaker is playing S, the Codemaker
may decide to always choose the secret code 101.

2.4 Known Results

Table 1 summarizes known values of AVG for Mastermind. As far as we know,
blank entries (e.g. AVG(5, 5)) are still unknown; indeed even relatively small
instances are hard to compute due to combinatorial explosion. This table is not
exhaustive; Ville lists additional values, such as AVG(4, 7) [13].

Table 1. Some known values of AVG(n, k)

Number of colors k

2 3 4 5 6

N
b
.
o
f
p
eg

s
n 2 8/4 = 2 21/9 ≈ 2.33 45/16 ≈ 2.81 81/25 = 3.24 132/36 ≈ 3.67

3 18/8 = 2.25 73/27 ≈ 2.70 206/64 ≈ 3.22 451/125 ≈ 3.61 854/216 ≈ 3.95

4 44/16 = 2.75 246/81 ≈ 3.04 905/256 ≈ 3.54 2463/625 ≈ 3.94 5625/1296 ≈ 4.34

5 97/32 ≈ 3.03 816/243 ≈ 3.36 3954/1024 ≈ 3.86

3 How to Compute Optimal Values

This section explains how to compute WC, AVG, and NE values.

3.1 Basic Approach

The naive approach involves generating all pure strategies for the Codebreaker6

and analyzing them to obtain the desired values. Once the list of all strategies
6 Pure strategies of the Codemaker are trivially computed. There are exactly kn pure

strategies, one for each possible code.
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has been computed, one can evaluate each of them by playing them against all
pure strategies of the Codemaker. We denote with res(S) the result of a strategy
S; res(S) is an kn-tuple where the ith element indicates the number of guesses
required to find the secret code when the Codemaker has chosen the ith code
(assuming, wlog. a natural lexicographic ordering of codes).

Observing that wc(S) = max(res(S)) and avg(S) =
∑

res(S)
kn , one can com-

pute WC and AVG from the set of strategies. This approach becomes quickly
impractical due to combinatorial explosion; the number of strategies becomes
intractable. Out of curiosity, we computed the total number of strategies for the
Codebreaker. They appear as the first number of the fourth column of Table 2.
The second number of the same fourth column indicates the number of unique
strategy results. Indeed, many strategies lead to the same result. Considering
only unique results already reduces greatly the order of magnitude.

Example (continued). Considering the strategy S of Fig. 1, one can check that
res(S) = (2, 1, 2, 3, 3, 4, 2, 2).

Table 2. Some interesting numbers about the combinatorial explosion. #strategies rep-
resents the total number of strategies and the total number of unique results. #results
represents, with respect to equivalence classes, (i) the total number of unique results,
(ii) the total number after eliminating results dominated by other results, (iii) an
approximate number of non-dominated results (domination by linear combination).

(n, k) #codes #grades #strategies #classes #results (wrt classes)

(2, 2) 4 5 8 – 8 2 2 – 2 – 2

(2, 3) 9 5 26 760 – 1 278 2 33 – 3 – 3

(2, 4) 16 5 2.08 × 1011 – 6 043 176 2 188 – 6 – 3

(2, 5) 25 5 9.91 × 1021 – 2 557 – 8 – 5

(2, 6) 36 5 9.29 × 1036 – 2 1 377 – 11 – 5

(3, 2) 8 9 1 776 – 648 2 16 – 3 – 3

(3, 3) 27 9 2.47 × 1023 – 3 2 489 – 17 – ∼12

(3, 4) 64 9 1.47 × 1079 – 3 124 852 – 112 – ∼24

(3, 5) 125 9 6.72 × 10190 – 3 1 201 354 – 286 – ∼69

(3, 6) 216 9 – 3 6 793 325 – 619 – ∼123

(4, 2) 16 14 2.29 × 1011 – 14 578 420 3 230 – 4 – 4

(4, 3) 81 14 4.13 × 10107 – 4 2 669 925 – 509 – ∼143

(4, 4) 256 14 – 5 – 107 274 – ∼12 430

(4, 5) 625 14 – 5 – 4 650 433 – ∼200 604

(4, 6) 1296 14 – 5 – – ∼899 057
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Table 3. Number of codes (= kn) and number of equivalence classes

Number of colors k

2 3 4 5 6

N
b
.
o
f
p
eg

s
n 2 4 ⇒ 2 9 ⇒ 2 16 ⇒ 2 25 ⇒ 2 36 ⇒ 2

3 8 ⇒ 2 27 ⇒ 3 64 ⇒ 3 125 ⇒ 3 216 ⇒ 3

4 16 ⇒ 3 81 ⇒ 4 256 ⇒ 5 625 ⇒ 5 1 296 ⇒ 5

5 32 ⇒ 3 243 ⇒ 5 1 024 ⇒ 6 3 125 ⇒ 7 7 776 ⇒ 7

3.2 Equivalence Classes

The combinatorial explosion can be greatly limited by noting that from a theo-
retical point of view, playing a blue, red, or green peg does not make any differ-
ence. Hence any permutation of colors in a strategy S of the Codebreaker has no
effect on the values of wc(S), avg(S), and weak(S). Similarly any permutation
of the pegs has also no effect. The same reasoning applies to the strategies of the
Codemaker. Instead of evaluating Codebreaker’s strategies against all possible
codes (i.e. all pure Codemaker’s strategies), one can “simply” evaluate strategies
with respect to equivalence classes. Given a strategy S, instead of computing a
kn-tuple result, one can study a much smaller tuple whose cardinality equals the
number of equivalence classes (see Table 3). reseq(S) is computed from res(S)
by summing elements corresponding to codes belonging to the same class.

Example (continued). Based on the example of Sect. 2.3 with (n, k) = (3, 2),
the 8 codes can be grouped in 2 equivalence classes: the class of unicolor codes
{000, 111} and the class of bicolor codes {001, 010, 011, 100, 101, 110}. Based on
these classes, the new evaluation of the strategy S of Fig. 1 becomes reseq(S) =
(2 + 2, 1 + 2 + 3 + 3 + 4 + 2) = (4, 15).

3.3 Recursive Computation with Pruning

There is in fact no need to list all possible strategies of the Codebreaker for
computing the values that we are interested in. The strategies can be explored
recursively by exploring alternately all possible guesses of the Codebreaker after
some grade answer of the Codemaker (a grade node), and then exploring all
possible grades after some guess (a guess node). Figure 2 gives an example of
exploration tree for the instance (3, 3).7

The main point of this recursive exploration is that instead of listing the
strategies, we only compute the cost of grade nodes and guess nodes, which is
equivalent to prune the under-optimal strategies progressively. This recursive
exploration is classical for computations of worst-case and average-case, and
7 Figures 2, 3, 4 and 5 appear only in Appendix A.
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it can also be used for Nash Equilibrium. The only difference is the kind of
information (cost) that will be propagated upward.

3.4 Computing WC and AVG Values

In the case of the worst-case computation, the cost of a strategy corresponds
to the maximal number of guesses needed by the strategy. The cost of a grade
node is the cost of the best guess choice for the Codebreaker, hence the minimal
cost over the guesses. The cost of a guess node is the cost of the worst possible
grade, hence the maximal cost over the grades. WC computations are similar to
a mini-max algorithm.

In the case of the average-case computation, the cost of a strategy is the
total number of guesses. The cost of a grade node is still the minimal cost over
the guesses, but the cost of a guess node is now the sum of cost over the grades.
AVG computations are similar to a mini-max algorithm but with a sum operation
instead of a max operation.

3.5 Computing NE Values

The algorithm that we used to compute the Nash-Equilibrium is quite similar.
The first difference is that the cost of a strategy is now represented not by a
single number but by a list of numbers, i.e. the number of guesses needed for
each equivalence class. In the case of Sect. 2.3 example, it is a couple of numbers.
In the case of the usual (4,6) game, it is a 5-tuple. Also, for each grade and guess
node, we cannot retain the cost of a unique optimal strategy. We need to retain
the cost of all strategies that are not dominated by others.

At a grade node, the CodeBreaker can choose its next guess, so that a strategy
at a grade node is any strategy for any of the guesses. The complete list of costs
at a grade node is obtained by a union of the list of costs for each guess. At a
guess node, a strategy of the CodeBreaker is the choice of a strategy for each of
the grades. The complete list of costs is obtained by an operation that is called
a Minkowski sum over the list of costs of the possible grades.8

The final complete list of costs that is obtained can be turned into a system of
inequalities that represent the constraints on the Nash-Equilibrium. This system
can be solved with classical Linear Programming methods (we used Mathematica
in this research).

4 Our Results

NE Values. Table 4 summarizes the Nash Equilibrium values that we have
computed. We highlighted in red the differences with AVG values of Table 1.

Strategies Achieving NE Values. Table 5 gives Alice’s strategies at the equi-
librium. Strategies are given with respect to classes of equivalence ordered lex-
icographically. For example, considering the instance (4, 4), Alice should never
8 A full description will be given in a longer version of this article.
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Table 4. Computed values of NE(n, k)

Number of colors k

2 3 4 5 6

N
b
.
o
f
p
eg

s
n 2 2 29/12 ≈ 2.42 45/16 ≈ 2.81 49/15 ≈ 3.27 11/3 ≈ 3.67

3 23/10 = 2.3 73/27 ≈ 2.70 219/68 ≈ 3.22 1591/440 ≈ 3.62 619/156 ≈ 3.97

4 39/14 ≈ 2.79 67/22 ≈ 3.05 1629/460 ≈ 3.54 2463/625 ≈ 3.94 5600/1290 ≈ 4.34

5 46/15 ≈ 3.07 118/35 ≈ 3.37

Table 5. Computed Codemaker’s strategy achieving NE(n, k)

Number of colors k

2 3 4 5 6

N
b
.
o
f
p
e
g
s

n

2
1

4
,
1

4

1

6
,

1

12

1

16
,

1

16

1

15
,

1

30
∀α ∈

[ 1

36
,

1

21

]
α,

1 − 6α

30

3
1

5
,

1

10

1

27
,

1

27
,

1

27

1

34
,

1

68
,

1

68

1

110
,

1

110
,

3

440

1

156
,

1

156
,

1

312

4 0,
1

14
,

1

14
0,

1

66
,

1

66
,

1

99
0,

2

345
,

1

276
,

1

276
,

1

345

1

625
,

1

625
,

1

625
,

1

625
,

1

625
0,

1

1290
,

1

1290
,

1

1290
,

1

1290

5 0,
1

30
,

1

30
0,

3

770
,

3

770
,

1

330
,

2

385

play any of the 4 codes of the first class (class of 0000), should play each of the
48 codes of the second class (class of 0001) with probability 2

345 , each of the 36
codes of the third class (class of 0011) with probability 1

276 , each of the 144 codes
of the fourth class (class of 0012) with probability 1

276 , each of the 24 codes of
the fifth class (class of 0123) with probability 1

345 .9

Observations. These results lead to many interesting comments.

– NE values are often different from AVG value. In most cases, Alice can increase
the number of guesses required by Bob. Surprisingly, for some non-trivial
instances of the game, such as (4, 5), she cannot improve her play; playing
uniformly at random is her best option in such case.

– NE values are generally very close to AVG values. While from a theoretical
point of view, both values are different, in practice it is not so bad for Alice
to play uniformly at random.

– Results on optimal strategies are not trivial. No generic pattern can be
deduced from the current known optimal strategies.

– Intuitively, unicolor codes are easier to solve for Bob so they should be
played less frequently by Alice. This intuition is generally verified for “large”
instances (n ≥ 4), but this is not always verified, especially for small instances

9 Fortunately, 4 × 0 + 48 × 2
345

+ 36 × 1
276

+ 144 × 1
276

+ 24 × 1
345

= 1.
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of the game. Sometimes, Alice has to play these unicolor codes even more fre-
quently (e.g. for the game instance (3, 4)).

– For most of solved instances, the given optimal solution is unique.10 Only for
the game instance (2, 6), Alice has an infinite number of optimal strategies.

5 Conclusion

In this research, we have computed the Nash Equilibrium of all small instances of
Mastermind. We could confirm an announced but never published result about
the most classical size of 4 pegs and 6 colors, which states that a uniform distrib-
ution of secret codes is not the best one for the Codemaker. She should not play
unicolor secret codes. However, we found that for different numbers of pegs and
colors, there is no simple rule. In the future, we plan to extend our computations
to bigger sizes, and we are also working on a general result for the case of 2 pegs
and an arbitrary number of colors.

Acknowledgments. This research was supported in part by JSPS KAKENHI Grant
Number 26870228.

A Example for Game Instance (n, k) = (3, 3)

All Codes:

000,001,002,010. . . ,222

000 001 002

111

111

�

110,121,

211,221

120,

210,

220

120

210 220 �

210 220

∅ 011,101,

112,122,

212,222

010,021,

100,201

020,

200

000,001,

022,012,

102,202

�

. . . 012 . . . 221 222

(0, 0)

(3, 0)

(0, 1) (0, 2)

(1, 2) (2, 0) (3, 0)

(0, 3) (1, 0) (1, 1) (1, 2) (2, 0) (3, 0)

Fig. 2. Exploration tree. Squared nodes correspond to grade nodes and rounded nodes
to guess nodes. Grade nodes include the list of codes still possible as the secret code.
Edges from a guess node to a grade node are labeled with the corresponding grade.

10 We could not prove yet the uniqueness for instances (5, 3), (4, 5), and (4, 6), but it
should be obtained very soon.
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All Codes:

000,001,002,010. . . ,222

000 001 002

111

111

�

110,121,

211,221

120,

210,

220

120

210 220 �

210 220

∅ 011,101,

112,122,

212,222

010,021,

100,201

020,

200

000,001,

022,012,

102,202

�

. . . 012 . . . 221 222

(0, 0)

(3, 0)

(0, 1) (0, 2)

(1, 2) (2, 0) (3, 0)

(0, 3) (1, 0) (1, 1) (1, 2) (2, 0) (3, 0)

210
1, 22
1

220
2,, 0
1 �

33,, 0
0

120
2

210
2

220
2

min{2, 2, 2}

0, 22
2

0, 0
1

0, 11
2

0, 33
0

1, 00
2

11,, 1
2

11,, 2
2

22, 0
3

3, 0
0

max{1, 2, 2, 0, 2, 2, 2, 3, 0} + 1

002
4

000
4

001
4

012
4

221
4

222
4

All Codes:

000 001 002 010 222
min{4, 4, 4, . . . , 4, . . . , 4, 4}

4

Fig. 3. Computing WC value using Min and Max operations

All Codes:

000,001,002,010. . . ,222

000 001 002

111

111

�

110,121,

211,221

120,

210,

220

120

210 220 �

210 220

∅ 011,101,

112,122,

212,222

010,021,

100,201

020,

200

000,001,

022,012,

102,202

�

. . . 012 . . . 221 222

(0, 0)

(3, 0)

(0, 1) (0, 2)

(1, 2) (2, 0) (3, 0)

(0, 3) (1, 0) (1, 1) (1, 2) (2, 0) (3, 0)

210
1, 22
1

220
2,, 0
1 �

33,, 0
0

120
5

210
5

220
5

min{5, 5, 5}

0, 22
5

0, 0
1

0, 11
7

0, 33
0

(1, 0)0
11

11,, 1
7

11,, 2
3

(2(2, 0)
12

3, 0
0

(1 + 7 + 5 + 0 + 11 + 7 + 3 + 12 + 0) + 27

002
73

000
86

001
73

012
80

221
73

222
86

All Codes:

000 001 002 010 222
min{83, 73, 73, . . . , 80, . . . , 73, 86}

73 ⇒ 73
27 ≈ 2.70

Fig. 4. Computing AVG value using Min and Sum operations
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All Codes:

000,001,002,010. . . ,222

000 001 002

111

111

�

110,121,

211,221

120,

210,

220

120

210 220 �

210 220

∅ 011,101,

112,122,

212,222

010,021,

100,201

020,

200

000,001,

022,012,

102,202

�

. . . 012 . . . 221 222

(0, 0)

(3, 0)

(0, 1) (0, 2)

(1, 2) (2, 0) (3, 0)

(0, 3) (1, 0) (1, 1) (1, 2) (2, 0) (3, 0)

210
(1, 2)2)1 2))
S0

220
(2,, 0)(2 0)
S1 �

(3(3,, 0)(3( 0
S2

120

)) ( ) (( )1 2)) (2 0) (3( 0(3( 0
S0 ⊕ S1 ⊕ S2

120120120
S3

210
S4

220
S5

S3 ∪ S4 ∪ S5

(0, 2)2)
S6

(0, 0)0)
S7

(0, 1)1)
S8

(0, 3)3)
S9

(1, 0)0
S10

(11,, 1)
S11

(1(1,, 2)
S12

(2(2, 0)
S13

(3(3, 0)
S14

S6 ⊕ S7 ⊕ S8 ⊕ S9 ⊕ S10 ⊕ S11 ⊕ S12 ⊕ S13 ⊕ S14⊕
002
S15

000
S16

001
S17

012
S18

221
S19

222
S20

All Codes:

000 001 002 010 222
S15 ∪ S16 ∪ S17 ∪ . . . S18 ∪ S19 ∪ S20

(Large) Linear Programming problem

where ⊕ denotes the Minkowski sum of (convex) polytopes.

Fig. 5. Computing NE value using Union and MinkowskiSum operations
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11× 11 Domineering Is Solved:
The First Player Wins
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Abstract. We have developed a program called MUDoS (Maastricht
University Domineering Solver) that solves Domineering positions in a
very efficient way. It enables the solution of known positions (up to the
10 × 10 board) to be much quicker.

More importantly, it enables the solution of 11 × 11 Domineering, a
board size that up till now was far out of the reach of previous Domi-
neering solvers. The solution needed the investigation of 259,689,994,008
nodes, using almost half a year of computation time on a single simple
desktop computer. The results show that under optimal play the first
player wins 11 × 11 Domineering, irrespective whether Vertical or Hori-
zontal starts.

In addition, several other new boards were solved. Using the conven-
tion that Vertical starts, the 8 × 15, 11 × 9, 12 × 8, 12 × 15, 14 × 8, and
17 × 6 boards are all won by Vertical, whereas the 6 × 17, 8 × 12, 9 × 11,
and 11 × 10 boards are all won by Horizontal.

1 Introduction

Domineering is a two-player perfect-information game invented by Göran Ander-
sson around 1973. It was popularized to the general public in an article by Martin
Gardner [12]. It can be played on any subset of a square lattice, though mostly
it is restricted to rectangular m× n boards, where m denotes the number of
rows and n the number of columns. The version introduced by Andersson and
Gardner was the 8 × 8 board.

Play consists of the two players alternately placing a 1×2 tile (domino) on the
board, where the first player may place the tile only in a vertical alignment, the
second player only horizontally. The first player being unable to move loses the
game, his opponent (who made the last move) being declared the winner. Since
the board is gradually filled, i.e., Domineering is a converging game, the game
always ends, and ties are impossible. With these rules the game belongs to the
category of combinatorial games, for which a whole theory (the Combinatorial
Game Theory, or CGT in short) has been developed.

Among combinatorial game theorists Domineering received quite some atten-
tion, but this was limited to rather small or irregular boards [1,3,4,10,14,23].
Larger (rectangular) boards were solved using α-β search [15], leading to solving
c© Springer International Publishing AG 2016
A. Plaat et al. (Eds.): CG 2016, LNCS 10068, pp. 129–136, 2016.
DOI: 10.1007/978-3-319-50935-8 12
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all boards up to the standard 8 × 8 board [7], later extended to the 9 × 9 board
[13,17], and finally extended to larger boards up to 10 × 10 [8,9].

2 Three Approaches

The following subsections give a rough characterization of the two main programs
used to systematically solve Domineering positions so far, and of the program
used to obtain the new results, as described in this paper.

2.1 A Brute-Force Appoach: Domi

The first systematic analysis of rectangular Domineering boards was performed
by Breuker et al. [7,13,17]. They developed the program Domi, using a straight-
forward variant of the α-β technique [15], enhanced with a transposition table.
The algorithm did not use perfect domain knowledge for classifying positions as
wins or losses and hence can be characterized as a pure brute-force approach.
Transposition tables with 2M (221) entries were used with a two-level replace-
ment scheme called TwoBig [6], in which each entry can store two table positions.
Mirror symmetries are taken into account. The newest position is always stored,
overwriting the less important position in terms of nodes investigated.

2.2 A Knowledge-Based Approach: Obsequi

A few years later Nathan Bullock published results on solving Domineering
boards up to the 10 × 10 board [9]. His program Obsequi used a sophisticated
evaluation function which can determine statically the winner at a shallower
point in the search tree than Domi did. This allowed the elimination of large
portions of the search space, resulting in much more efficient solving of Domi-
neering boards. Obsequi used a transposition table (taking mirror symmetries
into account) with 223 entries with either a two-level TwoBig replacement scheme
or a one-level replacement scheme called FindFirst [8]. Also, a much better move-
ordering heuristic was used, plus the use of a dominance relation to prune prov-
ably irrelevant moves. Since the main advantage of Bullock’s program is based on
game-specific knowledge, we can characterize his approach as a knowledge-based
approach.

2.3 A Knowledge-Intensive Approach: MUDoS

Uiterwijk continued using game-specific knowledge to an even more detailed
extent. His program MUDoS incorporated deep knowledge of Domineering posi-
tions with known result. These knowledge rules are so intense, that it even
enables solving many game boards without any search at all (i.e., investigating
a single node, the empty board under consideration). This was called perfectly
solving [18]. The most important feature of these knowledge rules is the number
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of safe moves that a player provably can reach in a position [19–21]. The trans-
position table used (again taking mirror symmetries into account) contained
226 entries, with a simple one-level Deep replacement scheme. Due to the heavy
use of very knowledge-intense rules based on game-specific properties we can
characterize his approach as a knowledge-intensive approach.

3 New Results

After almost half a year of computation time, 11×11 Domineering was solved. We
give some data in Sect. 3.1. As a sidetrack, we solved several other new boards.
Data are given in Sect. 3.2. An overview of updated combinatorial-game-theoretic
values of Domineering boards is given in Sect. 3.3.

3.1 The Solution of 11 × 11 Domineering

The solution of 11 × 11 Domineering took 174 days and 15 h on a standard
desktop computer (a HP with duo core Intel E8400 3.00 GHz CPU with a 64-bit
Windows 7 operating system and 4 GB internal memory). The MUDoS program
is written in C#.

The result is that the first player under optimal play wins the game. Since
the board is square, this is irrespective of Vertical or Horizontal moving first.

To put the solution of the 11×11 board into perspective, we show in Table 1
the results and number of nodes investigated to solve square boards up to 11×11
by the three programs mentioned in the previous section.

Table 1. Results and number of nodes investigated to solve square Domineering boards.
Vertical always starts. A “1” and “2” in the results column indicate a first-player
(Vertical) and second-player (Horizontal) win, respectively. A “–” in a column indicates
that the program was unable to solve the position.

Board Result Domi [7] Obsequi [9] MUDoS

2 × 2 1 1 1 1

3 × 3 1 1 1 1

4 × 4 1 40 23 1

5 × 5 2 604 259 17

6 × 6 1 17,232 908 1

7 × 7 1 408,260 31,440 1

8 × 8 1 441,990,070 2,023,301 24,147

9 × 9 1 ∼25,000,000,000a 1,657,032,906 4,917,736

10 × 10 1 – 3,541,685,253,370 13,506,805

11 × 11 1 – – 259,689,994,008
aThis result was obtained with an improved version of Domi, around 2000 [5].
The exact number of nodes investigated was lost.
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For the result the investigation of 259,689,994,008 nodes was needed, with
an average speed of 17,211 nodes/sec. While this is some ten times slower than
Obsequi’s speed, this decrease in speed is by far compensated by the much
higher pruning efficiency, as evidenced by the ratio’s of the number of nodes
investigated by MUDoS and Obsequi. For the 8 × 8, 9 × 9 and 10 × 10 boards
these are 1.19%, 0.30%, and 0.00038%, respectively. Of course the latest number
is so low, since Obsequi solved the 10 × 10 board on a distributed network of
several computers (no further details given), without memory sharing, by which
transposition tables will be far less effective. But as a striking fact, whereas
Obsequi needed several months of computation time on this network, MUDoS
needs only 21 min on a single computer to solve the 10 × 10 board.

3.2 The Solution of New Other Domineering Boards

Besides 11×11 Domineering we were able to solve several other new Domineering
boards. The results are given in Table 2.

Table 2. Results and number of nodes investigated to solve other new Domineering
boards. Vertical always starts. A “1” and “2” in the results column indicate a first-
player (Vertical) and second-player (Horizontal) win, respectively. The 10 × 11 board
was solved before (see below). A “–” in a column indicates that the program was unable
to solve the position and hence the game-theoretic value is still unknown.

Board Result # nodes Board Result # nodes

10 × 11 1 1 11 × 10 2 1

9 × 11 2 84,145,153 11 × 9 1 23,183,077

6 × 17 2 25,670,138,842 17 × 6 1 810,774,495

8 × 12 2 273,559,795 12 × 8 1 11,960,354

8 × 14 – – 14 × 8 1 490,146,677

8 × 15 1 1 15 × 8 – –

12 × 15 1 1 15 × 12 – –

The most notable results and their consequences are given below. We there
use the notion of outcome class [1,4,10] of an m× n board, denoted by [m × n],
where an outcome class is N, P, V, or H, where N stands for a Next player win
(i.e., a win for the player to move), P for a Previous player win (i.e., a loss for
the player to move), V for a Vertical win (irrespective of who starts), and H for
a Horizontal win (irrespective of who starts).

Other Boards with Width or Height 11. Although the 10 × 11 board
was already solved (Vertical wins), using the translational symmetry rules of
Lachmann c.s. [16], and even perfectly solved [18], the 11 × 10 board was not.
However, MUDoS solves it investigating just 1 node, showing that Horizontal
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wins.1 As a result [10 × 11] = V (and [11 × 10] = H). Further, with some more
work, we were able to solve the 9 × 11 board (Horizontal wins) and the 11 × 9
board (Vertical wins). Consequently, [9 × 11] = H (and [11 × 9] = V).

Boards with Width or Height 6. The 6 × 17 and 17 × 6 boards were also
solved (wins for Horizontal and Vertical, respectively). Consequently, [6 × 17] =
H. Moreover, using the translational symmetry rules of Lachmann c.s. [16] and
the facts that [6 × 4] = N and [6×n] with n = 8, 12, and 14 are H, it follows
that [6 × 21] (17 + 4) = N or H, and [6 × 25] (17 + 8) = H, [6 × 29] (17 + 12) =
H, and [6 × 31] (17 + 14) = H. Moreover, in [11] it was shown that [6× n] for
n > 31 = N or H for widths 33, 35, 37, 39, 43, 45, 47, 51, and 59. Using the
result for [6 × 17] all these values analogously are determined to be H, the only
exception being width 35 (still N or H). This shows that the holes in the results
for boards of height 6 have considerably been filled. The outcome classes for all
6 ×n boards are known now, the only exceptions being the 6×18, 6×21, 6×23,
6 × 27, and 6 × 35 boards, all five having outcome classes N or H, which means
that Horizontal at least wins as first player. Of course the results for [m× 6] can
similarly be updated, replacing H by V.

Boards with Width or Height 8. The 8 × 12 and 12 × 8 boards were also
solved (wins for Horizontal and Vertical, respectively). Consequently, [8 × 12] =
H, but also, using the translational symmetry rules and the facts that [8 × 10]
and [8 × 16] are H, it follows that [8 × 22] (12 + 10) = H, [8 × 24] (12 + 12) = H,
and [8×28] (12 + 16) = H. Moreover, since [8×10] = H and all [8× n] for even n
from 20–28 are H, it follows that all [8× n] with even n ≥ 20 are H. This makes
the entries in the 8 ×n row completely regular for even n from n = 20 onwards,
in contrast to [11], were (in an irregular way) some of those were determined to
be H, the others as N or H. We also were able to solve the 14×8 board (Vertical
wins), but not the 8 × 14 board yet. It means that [8 × 14] = N or H. This
leaves the 8 × 14 and 8 × 18 boards as the only holes in this row for even width.
Finally, the 8 × 15 (and 12 × 15) board is trivially solved to be a Vertical win
(so outcome class N or V), but the rotated 15 × 8 (and 15 × 12) board could
not yet be determined. Again, of course the results for [m × 8] can similarly be
updated, replacing H by V, including that all [m × 8] with even m ≥ 20 are V.

3.3 Updated Table of CGT Values of Domineering

In Table 3 we give a complete updated overview of all results for solved Domi-
neering boards, as outcome classes. The results are taken from [11] and includes

1 We note that solving a board investigating a single node is not exactly the same as
perfectly solving a board, since in the latter the board is solved using characteristics
of the board solely, without generating the possible moves, whereas in the former
the possible moves are generated, but immediately proven to contain at least one
winning move or only losing moves.
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results from [3,4,7,9–11,13,16,17].2 In addition, our new results have been
added. This table is also available at [22], where any future updates will be
made public.

In this table the following notes apply: (1) the outcome classes for all n > 31
are H, except that the outcome class for n = 35 is N or H; (2) the outcome classes
for all even n ≥ 20 are H; (3) the outcome classes are alternating H (even n)
and N or H (odd n); (4)–(6): equivalent to notes (1)–(3) by replacing n with m
and H with V.

For boards with one or both dimensions larger than 31, besides the results in
the notes above, nothing is known about their outcome classes, except of course
that m× m boards have outcome classes N or P, that m × 2km boards have
outcome classes H, and that 2kn ×n boards have outcome classes V.

4 Conclusions and Future Work

As can be seen from the results it is clear that MUDoS is a very efficient
Domineering solver. All boards solved before are solved in an equal amount
(for the trivial boards) or far smaller (for the more complex boards) number of
investigated nodes than by previous solvers.

The efficiency of our solver enabled the solution of the 11 × 11 Domineering
board. The result indicates that the first player wins. Moreover, several new
rather complex boards have been solved. Applying these together with the use
of the translational symmetry rules updated the Domineering outcome class
landscape considerably.

Regarding future work, foremost this condensed overview will be extended to
a full publication. This will include a detailed description of MUDoS’ knowledge
rules and heuristics employed. Moreover, the impact of the rules and heuristics
on solving performance, separately and in combination, will be illlustrated with
experiments.

As a follow-up we moreover intend as a last step to enhance the solving
power of our Domineering program by incorporating knowledge from Combina-
torial Game Theory into our solver. A preliminary experiment using endgame
databases up to 16 squares filled with CGT values, combined with a very sim-
plistic α-β solver showed reductions up to 99% for boards up to 7 × 7 [2].
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Abstract. We present Solrex, an automated solver for the game of
Reverse Hex. Reverse Hex, also known as Rex, or Misère Hex, is the
variant of the game of Hex in which the player who joins her two sides
loses the game. Solrex performs a mini-max search of the state space
using Scalable Parallel Depth First Proof Number Search, enhanced by
the pruning of inferior moves and the early detection of certain winning
strategies.

Solrex is implemented on the same code base as the Hex program
Solver, and can solve arbitrary positions on board sizes up to 6 × 6,
with the hardest position taking less than four hours on four threads.

1 Introduction

In 1942 Piet Hein invented the two-player board game now called Hex [10].
The board is covered with a four-sided array of hexagonal cells. Each player is
assigned two opposite sides of the board. Players move in alternating turns. For
each turn, a player places one of their stones on an empty cell. Whoever connects
their two sides with a path of their stones is the winner.

In his 1957 Scientific American Mathematical Games column, Concerning
the game of Hex, which may be played on the tiles of the bathroom floor, Martin
Gardner mentions the misère version of Hex known as Reverse Hex, or Rex, or
Misére Hex: whoever joins their two sides loses [5]. See Fig. 1.

So, for positive integers n, who wins Rex on n ×n boards? Using a strategy-
stealing argument, Robert O. Winder showed that the first (resp. second) wins
when n is even (odd) [5]. Lagarias and Sleator further showed that, for all n,
each player has a strategy that can avoid defeat until the board is completely
covered [13].

Which opening (i.e. first) moves wins? Ronald J. Evans showed that for n
even, opening in an acute corner wins [4]. Hayward et al. further showed that,
for n even and at least 4, opening in a cell that touches an acute corner cell and
one’s own side also wins [9].

The results mentioned so far prove the existence of winning strategies. But
how hard is it to find such strategies? In his 1988 book Gardner commented that
“4× 4 [Rex] is so complex that a winning line of play for the first player remains
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a b c d

1

2

3

4

Fig. 1. Left: the end of a Rex game. White has joined both White sides, so loses.
Right: a Rex puzzle by Ronald J. Evans. White to play and win. [7]

unknown” [7,8]. In 2012, based on easily detected pairing strategies, Hayward
et al. explained how to find winning strategies for all but one (up to symmetry)
opening move on the 4× 4 board [9].

In this paper, we present Solrex, an automated Rex solver that solves arbi-
trary Rex positions on boards up to 6× 6. With four threads, solving the hardest
6 × 6 opening takes under 4 h; solving all 18 (up to symmetry) 6× 6 openings
takes about 7 h.

The design of Solrex is similar to the design of the Hex program Solver.
So, Solrex searches the minimax space of gamestates using Scalable Parallel
Depth-First Proof Number Search, the enhanced parallel version by Pawlewicz
and Hayward [14] of Focussed Depth-First Proof Number Search of Arneson,
Hayward, and Henderson [2]. Like Solver, Solrex enhances the search by
inferior move pruning and early win detection. The inferior move pruning is based
on Rex-specific theorems. The win detection is based on Rex-specific virtual
connections based on pairing strategies.

In the next sections we explain pairing strategies (Sect. 2), inferior cell analy-
sis (Sect. 3), win detection (Sect. 4), the details of Solrex (Sect. 5), and then
present experimental results (Sect. 6).

2 Death, Pairing, Capture, Joining

Roughly, a dead cell is a cell that is useless to both players, as it cannot contribute
to joining either player’s two sides. Dead cells can be pruned from the Rex search
tree. Related to dead cells are captured cells, roughly cells that are useless to just
one player and so can be colored for the other player. In Hex, each player wants
to capture cells; in Rex, each player wants to force the opponent to capture
cells. In Rex, such opponent-forced capture can be brought about by pairing
strategies. As we will see in a later section, pairing strategies can also be used
to force the opponent to join their two sides.

Before elaborating on these ideas, we give some basic terminology. Let X
denote the opponent of player X.

For a given position, player X colors cell c means that player X moves to cell
c, i.e., places a stone of her color on cell c. A cell is uncolored if it is unoccupied.
To X-fill a set of cells is to X-color each cell in the set; to fill a set is either to
X-fill or X-fill the set.
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Fig. 2. Shaded cells are dead. All other uncolored cells are live.

A state S = PX is a position P together with the specified player X to move
next. The winner of S is whoever has a winning strategy from S.

For a position P and a player X, a X-joinset is a minimal set of uncolored
cells which when X-colored joins X’s two sides; a joinset is an X-joinset or an
X-joinset; an uncolored cell is live if it is in a joinset, otherwise it is dead; a
colored cell is dead if uncoloring it would make it dead (Fig. 2).

For an even size subset C of uncolored cells of a position or associated state,
a pairing Π is a partition of C into pairs, i.e., subsets of size two. For a cell
c in a pair {c, d}, cell d is c’s mate. For a state S, a player Y , and a pairing
Π, a pairing strategy is a strategy for Y that guarantees that, in each terminal
position reachable from S, at most one cell of each pair of Π will be Y -colored.

For a state S = PX , Last is that player who plays last if the game ends with
all cells colored, and Notlast is the other player, i.e., she who plays second-last
if the game ends with all cells uncolored. So, Last (Notlast) is whoever plays
next if and only if the number of uncolored cells is odd (even). For example, for
S = PX with P the empty 6 × 6 board, Last is X and Notlast is X, since X
plays next and P has 36 uncolored cells.

Theorem 1. For state S and pairing Π, each player has a pairing strategy
for S.

Proof. It suffices to follow these rules. Proving that this is always possible is left
to the reader.

First assume Y is Last. In response to Y coloring a cell in Π, Y colors the
mate. Otherwise, Y colors some uncolored cell not in Π. Next assume Y is
Notlast. In response to Y coloring a cell in Π with uncolored mate, Y colors the
mate; otherwise, Y colors a cell not in Π; otherwise (all uncolored cells are in
Π, and each pair of Π has both or neither cell colored), Y colors any uncolored
cell of Π. ��

For a player X and a pairing Π with cell set C of a position P or associated
state S = PY , we say Π X-captures C if X-coloring at least one cell of each pair
of Π leaves the remaining uncolored cells of C dead; and we say Π X-joins P if
X-coloring at least one cell of each pair of Π joins X’s two sides (Fig. 3).
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Fig. 3. Left: dots show a White-captured set (the top two cells form one pair, the
bottom two form the other). Middle: Each player has colored one cell from each pair,
and the two Black cells are dead. Right: original position after filling White-captured
cells.

Notice that every captured set (as defined here, i.e., for Rex) comes from a
pairing and so has an even number of cells, as does every X-join set.

3 Inferior Cell Pruning and Early Win Detection

We now present the Rex theorems that allow our solver to prune inferior moves
and detect wins early.

For a position P , a player X, and a set of cells C, P + CX is the position
obtained from P by X-coloring all cells of C, and P −C is the position obtained
from P by uncoloring all colored cells of C. For clarity, we may also write P −CX

in this case where X is the player who originally controlled all the cells of C.
Similarly, for a state S = PY , where Y = X or X, S+CX is the state (P +CX)Y .
Also, in this context, when C has only one cell c, we will sometimes write cX
instead of {c}X .

For states S and T and player X, we write S ≥X T if X wins T whenever X
wins S, and we write S ≡ T if the winner of S is the winner of T , i.e., if S ≥X T
and T ≥X S for either player X.

An X-strategy is a strategy for player X.

Theorem 2. For an even size set C of uncolored cells of a state S, S ≥X

S + CX .

Proof. Assume π+ is a winning X-strategy for S+ = S + CX . Let π be the X-
strategy for S obtained from π+ by moving anywhere in C whenever X moves
in C. For any terminal position reachable from S, the set of cells occupied by
X will be a superset of the cells occupied by X in the corresponding position
reachable from S+, so X wins S. ��

Theorem 3. For a position P with uncolored cell c, (P + cX)Y ≥X PY .

Proof. First assume Y = X. Assume X wins S = PX . Then, for every possible
move from S by X, X can win. In particular, X can win after X colors c. So X
wins (P + cX)X .
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Next assume Y = X. Assume X wins S = PX . We want to show X wins
S′ = (P + cX)X . Let c′ a cell to which X moves from S′, let C = {c, c′}, and let
S′′ be the resulting state (P + CX)X . X wins S so, by Theorem 2, X wins S′′.
So, for every possible move from S′, X wins. So X wins S′. ��
Theorem 4. For an X-captured set C of a state S, S + CX ≥X S.

Proof. Assume X wins S+ = S + CX with strategy π+. We want to show that
X wins S. Let Π be an X-capture pairing for C, and modify π+ by adding to
it the Π pairing strategy for X.

Let Z be a terminal state reachable from S by following π. Assume by way
of contradiction that Z has an X-colored set of cells joining X’s two sides. If
such a set Q∗ exists, then such a set Q exists in which no cell is in C. (On C X
follows a Π pairing, so in Z at most one cell of each pair of Π is X-colored. Now
X-color any uncolored cells of C. Now at least one cell of each pair is X-colored,
and C is X-captured, so each X-colored cell of C is dead, and these cells can
be removed one at a time from Q∗ while still leaving a set of cells that joins
X’s two sides. Thus we have our set Q.) But then the corresponding state Z+

reachable from S+ by following π+ has the same set Q, contradicting the fact
that X wins S+. ��
Corollary 1. For an X-captured set C of a state S, S ≡ S + CX .

Proof. By Theorems 2 and 4. ��
Theorem 5. For a player X and a position P with uncolored dead cell d, (P +
dX)X ≥X PX . A move to a dead cell is at least as good as any other move.

Proof. Coloring a dead cell is equivalent to opponent-coloring the cell. So this
theorem follows by Theorem 3. ��
Theorem 6. For a position P with uncolored cells c, k with c dead in P + kX ,
(P + cX)X ≥X (P + kX)X . Prefer victim to killer.

Proof. (P + kX)X ≡ (P + kX + cX)X ≥X (P + cX)X . ��
Theorem 7. For a position P with uncolored cells c, k with c dead in P + kX ,
(P + cX)X ≥X (P + kX)X . Prefer vulnerable to opponent killer.

Proof. Assume k is a winning move for X from PX , i.e., assume X wins S =
(P + kX)X . Consider any such winning strategy π. We want to show c is also a
winning move for X from PX , i.e., that X wins S′ = (P + cX)X .

To obtain a winning X-strategy π′ for S′, modify π by replacing c with k:
whenever X (resp. X) colors c in π, X (X) colors k in π′. In P , X-coloring k
kills c: so in P , if some X-joinset J contains c, then J must also contain k. But
a continuation of π′ has both k and c X-colored if and only if the corresponding
continuation of π has them both X-colored. So, since X wins S following π, X
wins S′ following π′. ��
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Theorem 8. For a position P with uncolored cell d and set C that is X-captured
in (P +dx)X , for all c ∈ C, (P +cx)X ≥X (P +dx)X . Prefer capturee to capturer.

Proof. (P + cX)X ≥X (P + CX + dX)X ≡ (P + dX)X . ��
Our next results concern mutual fillin (Figs. 4 and 5), namely when there are

two cells a,b such that X-coloring a X-captures b and X-coloring b X-captures
a.

Theorem 9. Let P be a position with sets A,B containing cells a, b respectively,
such that A is X-captured in (P + bX), and B is X-captured in (P + aX). Then
P ≡ P + aX + bX .

Proof. By if necessary relabelling {X, a,A} and {X, b,B}, we can assume X
plays next. We claim that a X-dominates each cell in A + B. Before proving
the claim, observe that it implies the theorem, since after X colors a, all of B is
Y -captured, so Y can then color any cell of B, in particular, b.

To prove the claim, consider a strategy that X-captures A in P + bX . Now,
for all α in A + B,

(P + αX)X ≤X (P + bX)X (Theorem 3 twice: remove αX , add bX)

≡ (P + AX + bX)X (capture)

≤X (P + aX + BX)X (Theorem 3, repeatedly for X and then X)

≤X (P + aX)X (capture)

So the claim holds, and so the theorem. ��
Theorem 10. Let c be any X-colored cell in a position P as described in The-
orem 9. Then (P − c + aX)X̄ ≥X P X̄ . Prefer filled to mutual fillin creator.

Proof. Define b′ to be the mate of b in the X-capture strategy for B in (P +aX).

P X̄ ≡ (P + aX + bX̄)X̄ (Theorem 9)

≡ (P + aX + BX − b′
X̄)X̄ (filling captured cells, now b′ dead)

≡ (P + aX + BX)X (coloring b′)

≡ (P + aX)X (capture)

≤X (P − c + aX)X̄ (Theorem 3)

��
Finally, we mention join pairing strategies.

Theorem 11. For a state S = PX with an X-join pairing Π, X wins PX .

Proof. It suffices for X to follow the Π strategy. In each terminal state Z player
X will have colored at most one cell of Π. From Z obtain Z ′ by X-coloring any
uncolored cells: this will not change the winner. But in Z ′ at least one cell of
each pair of Π is X-colored, and Π is an X-join pairing. So in Z ′ X’s two sides
are joined, so in Z X’s two sides are joined. So X wins. ��
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Fig. 4. Mutual fillin. If B colors left cell, the other two cells are W-captured. If W
colors right cell, the other two cells are B-captured. So we can replace first position
with this.

Fig. 5. Mutual fillin domination. Off-board stone shows B to play. Black move would
create mutual fillin pattern. So, for these three states, Black prefers large dot to small.

4 Early Win Detection

For a position P , a X-join-pairing strategy is a pairing strategy that joins X’s
two sides, and an X-pre-join-pairing strategy is an uncolored cell k together with
an X-join-pairing strategy of P + kX ; here k is the key of this strategy. The
key to our algorithm is to find opponent (pre)-join-pairing strategies. When it is
clear from context that the strategies join a player’s sides, we call these simply
(pre)-pairing strategies.

Theorem 12. Let P be a position with an X-join-pairing strategy. Then X wins
PX and also PX .

Proof. This follows from Theorem 7 in [9]: X can force X to follow the X-join-
pairing strategy.

Theorem 13. Let P be a position with an X-pre-join-pairing strategy and with
X = Last. Then X wins PX and also PX .

Proof. This follows from Theorem 6 in [9]. X can avoid playing the key of the
pre-pairing strategy, forcing X to eventually play it.

5 Solrex

Solrex is based on Solhex, the Hex solver of the Benzene code repository [3].
The challenge in developing Solrex was to identify and remove any Hex-specific,
or Rex-unnecessary, aspects of Solhex — e.g., permanently inferior cells apply
to Hex but not Rex — and then add any Rex-necessary pieces. For instance, it
was necessary to replace the methods for finding Hex virtual connections with
methods that find Rex (pre-) pairing strategies.
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Fig. 6. Inferior cells of a Rex position. Each arrow end is inferior to its arrow head.

Search follows the Scalable Parallel Depth First variant of Proof Number
Search, with the search focusing only on a limited number of children (as ranked
by the usual electric resistance model) at one time [14].

When reaching a leaf node, using a database of fillin and inferior cell patterns,
we apply the theorems of Sect. 3. We find dead cells by applying local patterns
and by searching for any empty cells of which the neighbourhood of empty cells,
after stone groups have been removed and neighbouring empty cells contracted,
is a clique. We iteratively fillin captured cells and even numbers of dead cells
until no more fillin patterns are found. We also apply any inferior cell domination
that comes from virtual connection decompositions [2,11].

We then look into the transposition table to see if the resulting state win/loss
value is known, either because we previously solved, or because of color symmetry
(a state which looks the same for each player is a win for Notlast). Then inferior
cells are pruned. Then, using H-search [1] in which the or-rule is limited to
combining only 2 semi-connections, we find (pre)-join-pairing strategies. Then,
for X the player to move, we prune each key of every X-pre-join-strategy.

H-search is augmented by observing that semi-connections that overlap on
a captured set of endpoints do not conflict and so can be combined into a full
connection [2,11]. Notice that augmented H-search is not complete: some pairing
strategies (e.g. the mirror pairing strategy for the n × (n − 1) board [6]) cannot
be found in this way.

Figure 7 shows the start of Solrex’s solution of 1.Bd1, the only unsolved
4 × 4 opening from [9]. First, inferior cells are found: White b1 captures a1,a2;
a2 kills a1; b2 captures a2,a3; c2 leaves c1 dominated by b2; d2 captures d3,d4;
etc. See Fig. 6. Only 5 White moves remain: a1,c1,a4,b4,d4. After trying 2.Wa4,
a White pre-join-pairing strategy is found, so this loses. Similarly, 2.Wb4 and
2.Wd4 also lose. Now 2 White moves remain: a1,a3. From 2.Wa1, search even-
tually reveals that 3.Bc1 wins (a2 also wins). From 2.Wc1, search reveals that
3.Ba1 wins (b2 and d4 also win). The deepest line in solving this position is
1.Bd1 2.Wc1 3.Bd4 4.Wc4 5.Bb2 6.Wa3 7.Ba4 8.Wb4.
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Fig. 7. Solving 1.Bd1. Left: White inferior cells after 1.Bd1. Then White pre-join-pair
strategies after 2.Wa4, 2.Wb4, 2.Wd4. Search reveals that 2.Wa1 loses. Search reveals
that 2.Wc1 loses. So 1.Bd1 wins. The last diagram shows the deepest line of search
and the final pre-join-pair strategy: the shaded cells are Black-captured.

5×5 knockout tests
version time ratio

all features on 1.0 (13.9s)
no dead clique cutset .97

unaugmented H-search .99
no mutual fillin 1.00

no color symmetry pruning 1.01
no VC decomp 1.06
no dead fillin 1.07

no resistance move ordering 1.62
no capture fillin 2.02

no inferior pruning 2.30
no H-search 89.83
6×6 knockout test
version time ratio

all features on 1.0 (13646 s)
unaugmented H-search 1.10

no color symmetry pruning 1.13
no dead clique cutset 1.37

no mutual fillin 1.44
no VC decomp 1.95
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Fig. 8. Principal variation of 1.Black[e3], hardest 6 × 6 opening. From here Black forces
White to connect with pairs {C4,C5} {D6,E5}{F4,F5} and last cell D5.
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Fig. 9. Left: all losing replies. Right: all losing openings.
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Fig. 10. Three new Rex puzzles. Left: White to play: find the only winning move.
Middle: White to play: find White’s best move, and Black’s best reply. Right: White
to play: find the only winning move.

6 Experiments

We ran our experiments on Torrington, a quad-core i7-860 2.8GHz CPU with
hyper-threading, so 8 pseudo-cores. For 5× 5 Rex, our test suite is all 24 replies
to opening in the acute corner:1 this takes Solrex 13.2 s. For 6× 6 Rex, our
test suite is all 18 (up to symmetry) 1-move opening states: this takes Solrex
25900 s. To measure speedup, we also ran the 18 1-move 6 × 6 openings on a
single thread, taking 134635 s.

To show the impact of Solrex’s various features, we ran a features knock-
out test on the 5× 5 test suite. For features which showed negligible or neg-
ative contribution, we ran a further knockout test on the hardest 6× 6 posi-
tion, 1.White[d2], color-symmetric to 1.Black[e3]. The principal variation for
this hardest opening is shown in Fig. 8. The results are shown below. Figure 9
shows all losing moves after the best opening move on 5 × 5 (all opening 5× 5
moves lose), and all losing opening moves on 6× 6.

Figure 10 shows three new Rex puzzles we discovered by using Solrex. The
middle puzzle was the only previously unsolved 4× 4 position. The other two
were found by using Solrex to search for positions with few winning moves.

1 All opening 5 × 5 Rex moves lose, so we picked all possible replies to the presumably
strongest opening move.
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7 Conclusions

All features listed in the knockout tests contributed significantly to shortening
search time: the four features that contributed no improvement on 5× 5 boards
all contributed significantly on 6× 6 boards. The effectiveness of these pruning
methods – which exploit pruning via local patterns in a search space that grows
exponentially with board size — explained by Henderson for Hex, is clearly also
valid for Rex [11]:

“In almost all cases, we see that feature contributions improved with board
size. We believe this is partly because the computational complexity of most
of our algorithmic improvements is polynomial in the board size, while
the corresponding increase in search space pruning grows exponentially.
Furthermore, as the average game length increases, more weak moves are
no longer immediately losing nor easily detectable via previous methods,
and so these features become more likely to save significant search time.”

Of these features, by far the most critical was H-search, which yielded a time
ratio of about 90 on 5× 5 Rex when omitted. The enormous time savings result-
ing from H-search is presumably because our general search method does not
learn to recognize the redundant transpositions that correspond to the discovery
of a (pre-) pairing strategy. So H-search avoids some combinatorial explosion.

Solrex takes about 7 h to solve all 18 (up to symmetry) 6× 6 boardstates;
by contrast, Solhex takes only 301 h to solve all 32 (up to symmetry) 8× 8
boardstates [12]. So why is Solhex faster than Solrex?

One reason is because Hex games tend to be shorter than Rex games: in a
balanced Rex game, the loser can often force the winner to play until the board
is nearly full. A second reason is there are Hex-specific pruning features that
do not apply to Rex: for example, the only easily-found virtual connections for
Rex that we know of are pairing strategies, and there seem to be far fewer of
these than there are easily-found virtual connections in Hex. A third reason is, in
Hex, if the opponent can on the next move create more than one winning virtual
connection, then the player must make a move which interferes with each such
connection or lose the game; we know of no analogous property for Rex.

The general approach of Solhex worked well for Solrex, so this approach
might work for other games, for example connection games such as Havannah
or Twixt.

Solutions to Puzzles. Evans’ puzzle: b1 (unique). Three new puzzles: Left:
a2 (unique). Middle: Black wins; best move for White is a1, which leaves Black
with only 2 winning replies (a2, c1); all other White moves leave Black with at
least 3 winning replies (e.g., c1 leaves a1, b2, d4). Right: e3 (unique).

Acknowledgments. We thank Jakub Pawlewicz for helpful comments.
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Abstract. Recently computers have gained strength in the Asian board
game Go. The Chess community experienced some 15 to 30 years ago that
teams with humans and computers may be much stronger than each of
their components. This paper claims that time is ripe for computer-aided
Go on a large scale, although neither most users nor the Go programmers
have realized it. A central part of the paper describes successful pioneers
in Go play with computer help. Progress in computer-aided Go may also
lead to progress in human Go and in computer Go itself.

1 Introduction

As learned in Chess some decades ago (mainly between the years 1985 and 2000),
humans and computers have teamed up to achieve levels of play that are much
better than the single strengths of the agents involved [1]. A similar development
is possible in Go. Progress in computer-aided Go may also lead to progress in
computer Go as well as in the theoretical understanding of the game Go itself.

We present and discuss recent developments in computer-aided Go in differ-
ent fields: we look both at over-the-board play and at (long-time) analysis. It is
our expectation that computer-aided Go with commercial bots will surpass top
human levels soon, in particular years before commercial bots alone will achieve
this.

The paper is organised as follows. The first half deals with the histories of
computer-aided Chess and Go: in Sect. 2 the Chess scene is discussed as a role
model; Sect. 3 tells the stories of four pioneers in computer-assisted Go play. The
second half is a sort of an opinion paper: Sect. 4 contains a wish list of six points
for features in commercial Go bots; and the paper concludes with miscellaneous
thoughts in Sect. 5.

2 Chess as a Role Model

In Chess, commercial bots became interesting as opponents and for analysis pur-
poses around 1985. The approach of computer-assisted analysis made a great step
forward, when PC-based Chess programs became popular in the late 1980’s. In
particular, the leading company ChessBase engaged world champion Garry Kas-
parov from 1987 on for several PR events where the champion demonstrated how
Chess databases and analysis tools might be used to prepare for an opponent.
c© Springer International Publishing AG 2016
A. Plaat et al. (Eds.): CG 2016, LNCS 10068, pp. 149–155, 2016.
DOI: 10.1007/978-3-319-50935-8 14
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The World Championship match from 1990 was the first where one of the
teams (challenger Karpov) used a commercial Chess computer (“Fidelity Elite”)
for analysing adjourned games.

Already in 1988, one of the top Eastern German correspondence Chess players
(Heinrich Burger) used several small commercial Chess bots around the clock
to analyse positions from his games in the Correspondence Chess Olympiad.
This helped East Germany to get a Bronze medal in that tournament. In the
meantime, every serious correspondence Chess player is using intensive computer
help.

In 1994, Chess programs for the PC with k-best analysis modes came up and
made the machines interesting tools for testing new lines, refutations, and ideas
[5,6] in openings. A recent interview with Matthias Wüllenweber (chief of the
ChessBase company for 30 years already) [8] shows that even today more new
analysis features and tools for Chess programs are just around the corner, both
welcomed and are to be expected soon by strong Chess players. Currently, every
Chess professional depends on computer analysis in his or her preparation for
tournament games.

This author was successfully involved in early developments of interactive
analysis tools. He used them in settings like 3-Hirn [1,4], where in realtime a
human has the final choice amongst candidate moves provided by two different
Chess bots. It turned out that 3-Hirn plays about 200 rating points stronger
than the Chess bots involved, independently of the absolute Chess strength of
the human controller [3,5].

3 Successful Pioneers in Computer-Assisted Go

So far, commercial Go bots are not really user-friendly for interactive analysis
mode. Nevertheless, a handful of creative Go players found successful ways of
interactive analysis. Here we portrait some of them.

3.1 Thomas Redecker and His Use of Komi Fans

MCTS bots do not give expected scores, but instead winning probabilities. In
the analysis of positions (in particular endgame positions) a technique called
“komi fan” helps to find the likely score for (score-)perfect play on both sides:
the position under investigation is analysed for different values of (artificial)
komi. Figure 1 shows a sample position.

Analysing this position with the bot CrazyStone2013 gives the winning
probabilities of Table 1 for Black, depending on the komi value.

According to these data, the likely perfect score (without komi) seems to be
about +5 for Black. We analysed the same position with another bot, Many
Faces of Go, version 12.022. The outcomes are shown in Table 2. Again, the
likely perfect score seems to be +5 for Black. Funnily, both bots have a slight
anomaly at komi 3.5/4.5: Black achieved slightly better scores at komi 4.5. Each
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Fig. 1. Position on 9 × 9 board for a komi-fan test; White to move

Table 1. Winning percents computed by CrazyStone

komi 1.5 2.5 3.5 4.5 5.5 7.5 9.5

percent 72.7 68.1 61.6 62.3 46.4 34.5 22.6

Table 2. Winning percents computed by Many Faces of Go

komi 1.5 2.5 3.5 4.5 5.5 7.5 9.5

percent 69.9 69.2 54.4 57.1 44.2 30.4 22.4

of the searches in this example was performed with two minutes of computing
time on a quad core notebook.

Thomas Redecker wrote a whole book on the analysis of one specific and very
difficult Go position [9]. In several positions he used this komi fan technique with
Many Faces of Go to find the “correct” value of the position.

3.2 Strong Correspondence Go with Computer Help on 9 × 9:
Darren Cook

The internet game server www.LittleGolem.net is one of the few places where
Go with very long thinking times (i.e., in correspondence mode) can be played
with a western interface. In a typical tournament on LittleGolem the player has
in average 36 h for each of his moves.

Between 2002 and 2011, Darren Cook was the operator/player behind the
account “sm9” on LittleGolem. sm9 played only games on 9 × 9-board. In the
paper [7] Cook revealed that he had used the help of strong Go bots to find moves
for sm9. For several championship cycles on 9×9, sm9 was the dominating player,
ahead of Valkyria9 and Gerhard Knop (see in the next subsection for more
infos on them).

www.LittleGolem.net
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3.3 Strong Correspondence Go with Computer Help on 19 × 19:
Gerhard Knop

Currently (on April 15, 2016), the highest-ranked Go account (9.7 dan) on Lit-
tleGolem is the Valkyria9 bot, the bot programmed by Magnus Persson which
only plays games on 9 × 9-board. The second-highest rating has Gerhard Knop
(9.4 dan), the player on rank 3 is 6.3 dan. Knop plays with intensive computer
help (using Zen, CrazyStone and other bots).

In normal “over-the-board” Go, Knop was slightly active in tournaments
some years ago (2008–2013) with a highest EGF rating around 1,700 (meaning
4 kyu). His 9.4 dan on LittleGolem is the more impressive when one takes into
account that Knop mainly plays games on 19× 19 whereas Valkyria9 with
its 9.7 dan “works” only on 9 × 9-board. (Explanation: www.LittleGolem.net
gives only one overall Go rating for each account. In this single number the
performances for 9 × 9, 13 × 13, and 19 × 19-board are combined.)

3.4 Team “Crazy Manja” in “Over the Board”-Play

In Winter 2014/15, a team “Crazy Manja” played three games against 5-dan
amateur Stefan Kaitschick (EGF rating 2,380). Crazy Manja consisted of top
German female player Manja Marz (EGF rating 2,280) and bot CrazyS-
tone 2013 in analysis mode (running on a standard quad core notebook; esti-
mated strength around 2,300 on that hardware). Marz was free in her choice for
a move but got all the information from CrazyStone’s analysis screen.

After a loss in round 1, Crazy Manja won two games convincingly [2]. This
author was involved in the experiment, operating CrazyStone without any
influence on the move decisions. Two more games did not end so pleasantly: in
late May 2015, Crazy Manja lost a single no-handicap game narrowly against
FJ Dickhut (6-dan, EGF rating 2,537) and another exhibition match during the
European Go Congress 2015 clearly against 5-dan pro player Guo Yuan (who
gave 3 handicap stones).

It seems that it takes a lot of experience for the human in the team to read and
interpret the analysis screen of CrazyStone properly. A similar statement will
likely be true for future human players using DCNN-based Go bots in analysis
mode.

4 A Wish List for Go Bot Features

The comparative look on Chess software makes clear that there is large space
for improvement of interfaces in commercial Go bots. Here is a list of sic points
we have in mind.

– Analysis modes have to be comfortable. The current situation where up to five
mouse clicks are needed to undo and substitute a move is not satisfactorily.

www.LittleGolem.net
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– Programs need large score windows for possible komi values. Changing the
komi value in a position should become a simple task, with only few mouse
clicks.

– MCTS bots need something like a k-playout mode for small integers k. It is not
sufficient that all candidate moves with their playout numbers and percents
are shown. In particular this is not too helpful, when one candidate move gets
more than 90 percent of the playouts in normal MCTS. Instead, it should be
possible to force that each block of k playouts is distributed over k different
moves. By such a spreading no move would get more than fraction 1/k of all
playouts (rare exceptions may be positions with less than k feasible moves).

– Having in mind the analysis screen of CrazyStone 2013, it would be nice not
only to have a single histogram where the results of all playouts are collected,
but one such histogram for each (prominent) candidate move.

– Due to the probabilistic nature of MCTS and its variants, independent runs
for the same position may lead to different results. As an example one can look
at game 1 between Lee Sedol and AlphaGo in March 2016, at the position
after move 101. In post-mortem analysis, Lee Sedol remarked that 102.R10 by
AlphaGo was the winning move. Interestingly, CrazyStone 2013 proposes
this move too in its analysis mode. However, a test with 30 independent runs
(with about 3 min for each one) resulted in a first proposal of R10 for seven
times, whereas in other twenty runs R14 became at rank 1. An analysis pro-
gram should allow the “simultaneous” execution of m independent runs for
a given position. The results should automatically be put together, showing
frequencies for the (top) candidate moves.

– It would be nice to have simple switches between Japanese and Chinese rules
during analysis mode. Sometimes play and analysis under the other rule set
gives nontrivial insights into the difficulties of a position for a human con-
troller.

Another experience from the history of computer-aided Chess is as following.
As soon as Go bots become common tools in analysis, more features will surely
be proposed by strong players. In particular, programs with neural nets should
give insight into the proper values of certain “key neurons”. It would then no
longer be necessary that the programmers gave elaborate explanations what
which value means. Instead, analysing players would soon learn by themselves
to interpret neuron values in appropriate ways.

5 Miscellaneous Thoughts

This is no conclusion section in the traditional sense. The design of interactive
systems for the game of Go (and also for other games) is a never-ending work
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in permanent progress. It will also remain a relevant task for the times when
Go bots (without human help) will be stronger than all human players (without
computer help).

In March 2016 a 5-game match was played between top human professional
Lee Sedol and AlphaGo [10]. The games were transmitted to server KGS and
commented live by hundreds of spectators. It turned out that for large sections
of the games human estimates (those of professionals and amateurs) on the likely
outcome of a game were far less accurate than the evaluations of the commercial
bots CrazyStone and Zen. For many traditional Go players it will be a hard
learning process to accept commercial Go bots as strong predictors and advisors.

As sequel to the above stories, we may conclude with our conviction: Advance
in computer-aided Go is no one-way road! Progress in human+bot Go will also
lead to progress in playing strength of autonomous bots and in the theoretical
understanding of Go.
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Abstract. Quantified Integer Programs (QIPs) are integer programs
with variables being either existentially or universally quantified. They
can be interpreted as a two-person zero-sum game with an existential
and a universal player where the existential player tries to meet all con-
straints and the universal player intends to force at least one constraint
to be not satisfied.

Originally, the universal player is only restricted to set the univer-
sal variables within their upper and lower bounds. We extend this idea
by adding constraints for the universal variables, i.e., restricting the
universal player to some polytope instead of the hypercube created by
bounds. We also show how this extended structure can be polynomial-
time reduced to a QIP.

1 Introduction

Integer linear programming has become a successful modeling and solution
framework for a wide range of applications in the Operations Research commu-
nity. Today, one can solve instances with thousands up to millions of variables
and constraints. As problems get more complex, uncertainty becomes a relevant
concern. Solutions to optimization problems can be sensitive to perturbations in
the parameters, which can render them suboptimal or even infeasible in prac-
tice. Methods such as stochastic or robust programming are able to cope with
parameter uncertainty and give average-case or worst-case optimal solutions,
respectively.

A special class of optimization problems under uncertainty are quantified pro-
grams. Quantified Integer Programs (QIPs) are integer linear programs, where
variables are either existentially or universally quantified. QIPs are PSPACE-
complete [9, p. 92] and they can be interpreted as a two-person zero-sum game,
where an existential player tries to stay feasible and a universal player tries to
violate at least one constraint. In [1] it was shown that QIPs can be used to
model and solve the game Gomoku.

In the original definition, a QIP is comparable to a multi-stage robust integer
program with a cubic uncertainty set. This uncertainty set is rather conservative,
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A. Plaat et al. (Eds.): CG 2016, LNCS 10068, pp. 156–166, 2016.
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since it allows for worst-case realizations of each universal variable at the same
time. Therefore, we restrict the uncertainty set.

Such a restriction can also be seen from a gaming point of view: On the
one hand, only a certain set of moves are legal moves for the opposing player
according to the rules. On the other hand, when planning a move the aspect of
opponent modeling [7] can be seen as restricting the response of the opponent
by prohibiting unlikely moves during the analysis. This does not only help us to
adapt more efficiently to a well known opponent but also shrinks the game tree
of interest noticeably.

We will now generally and in an abstract manner define our problem. In
contrast to the original QIP problem we restrict the universal player not only
within some rigid bounds, but also dynamically, i.e., the permitted range of
the variables depends on previous and possible future universal decisions. When
setting a variable the universal player must check some conditions, depending
only on own actions.

2 Previous and Related Work

Quantified Constraint Satisfaction Problems have been studied since at least
1995 [3]. In 2003, Subramani revived the idea of universal variables in Constraint
Satisfaction Problems and coined the term Quantified Linear Program (QLP).
His QLP did not have an objective function and the universal variables could
only take values in their associated intervals. In the following year he extended
this approach by integer variables and called them Quantified Integer Programs
(QIPs) [6]. Later Wolf and Lorenz added a linear objective function [4] and
enhanced the problem to: “Does a solution exist and if yes which one is the
best.” Within the scope of his dissertation [9], Wolf gave some theoretical results
and adapted a solving procedure known from Stochastic Programming: With
his implementation of Multistage Benders Decomposition it is possible to solve
QLPs with millions of scenarios.

We will basically follow the notation used in [4]. Transposes are omitted when
they are clear.

Definition 1 (Quantified Integer Program). Let x = (x1, . . . , xn)� ∈ Z
n

be a vector of n ∈ N integer variables and l, u ∈ Z
n lower and upper bounds. Let

D = {x ∈ Z
n | x ∈ [l, u]}. Let A ∈ Q

m×n be the coefficient matrix with rational
entries, b ∈ Q

m the right-hand side vector and Q = (Q1, . . . , Qn)� ∈ {∃,∀}n

a vector of quantifiers. The term Q ◦ x ∈ D with the component wise binding
operator ◦ denotes the quantification vector (Q1x1 ∈ [l1, u1] ∩ Z, . . . , Qnxn ∈
[ln, un] ∩ Z)� such that every quantifier Qi binds the variable xi ranging in the
associated interval [li, ui]. We call a maximal consecutive subsequence of Q con-
sisting of identical quantifiers a quantifier block and denote the i-th corresponding
subsequence of x by xi and call it a variable block Bi. Let β ∈ N be the number
of such blocks. Let c ∈ Q

n be a vector of objective coefficients and let ci denote
the segment of c associated with Bi.
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We call

min
B1

(
c1x1 + max

B2

(
c2x2 + min

B3

(
c3x3 + max

B4

(
. . . + min

Bβ

cβxβ

))))

s.t. Q ◦ x ∈ D : Ax ≤ b

a quantified integer program (QIP) and denote it with (c,Q, l, u,A, b).

Note that the universal variables are only restricted to be in their associated
intervals. From now on the existential player will be referred to as “he” and the
universal player as “she”.

3 An Extension with Regard to the Uncertainty Set

We extend the idea of quantified variables by restricting the universal variables
to a polytope that can be described through a second system A∀x ≤ b∀ with
A∀ ∈ Q

m∀×n and b∀ ∈ Q
m∀

for m∀ ∈ N. For a given QIP (c,Q, l, u,A, b) we
only restrict the universal variables in such way that their range only depends
on other universal variables. In other words, we assume that existential variables
have no influence on universal decisions. Thus, we demand

A∀
i,j = 0 ∀ i ∈ {1, . . . , m∀} ∀j ∈ {k ∈ {1, . . . , n} | Qk = ∃} , (1)

i.e., each entry of A∀ belonging to an existential variable is zero.

Definition 2 (QIP with Polyhedral Uncertainty Set (QIP�∀)). Let
(c,Q, l, u,A, b) be a given QIP. Let b∀ ∈ Q

m∀
and A∀ ∈ Q

m∀×n with (1). Let
D�∀ = {x ∈ D | A∀x ≤ b∀} �= ∅. The quantified integer program with polyhedral
uncertainty set (QIP�∀) is given by (c,Q, l, u,A, b, A∀, b∀) with

min
B1

(
c1x1 + max

B2

(
c2x2 + min

B3

(
c3x3 + max

B4

(
. . . + min

Bβ

cβxβ

))))

s.t. Q ◦ x ∈ D�∀ : Ax ≤ b .

Note that we forbid an empty domain D�∀ since it would complicate the following
definitions.

Definition 3 (Legal Allocation). A legal allocation of an existential vari-
able xi demands this variable to be integer and within its bounds [li, ui]. The
same is true for universal variables in standard QIPs. In a QIP�∀, however, the
legal allocation options also depend on the (legal) allocation of previous variables
x1, . . . , xi−1. Thus, when assigning a value to the universal variable xi there must
exist a series of legal moves xi+1, . . . , xn such that the resulting vector x fulfills
A∀x ≤ b∀. The legal range [l∀i , u∀

i ] of xi can be determined by Fourier-Motzkin
elimination [8] of the domain D�∀ and fixating the previous variable allocations.



Quantified Integer Programs with Polyhedral Uncertainty Set 159

Definition 4 (Strategy). A strategy S = (V,E, c) is an edge-labeled finite
arborescence1 with a set of nodes V = V∃ ∪̇ V∀, a set of edges E and a vector of
edge labels c ∈ Q

|E|. Each level of the tree consists either of only nodes from V∃
or only of nodes from V∀, with the root node at level 0 being from V∃. The i-th
variable is represented by the inner nodes at depth i − 1. Each edge connects a
node at some level i to a node at level i + 1. Outgoing edges represent moves of
the player at the current node, the corresponding edge label encodes the variable
allocation of the move. Each node v∃ ∈ V∃ has exactly one child, and each node
v∀ ∈ V∀ has as many children as legal allocation options.

A path from the root to a leaf represents a game sequence and the edge labels
along this path encode the corresponding variable allocation. Such a leaf at the
end of a path corresponding to x has the value c�x.

Definition 5 (Winning Strategy). A strategy is called a winning strategy
(for the existential player) if all paths from the root to a leaf represent a vector
x such that Ax ≤ b.

Definition 6 (Optimal Winning Strategy). A winning strategy is optimal
if the minimax value of the root is smaller than or equal to the minimax values
of all other winning strategies. The vector x̃ representing the path which obeys
the minimax rule is called the principal variation (PV), i.e., it consists of the
optimal moves when both players play perfectly. The optimal objective value is
c�x̃.

4 The Polynomial-Time Reduction to a QIP

Hereafter we provide an easy method to transform any given QIP�∀ (with a poly-
hedral uncertainty set) into a QIP (only restricted by bounds). This enables us
to use our solver Yasol, which is specialized in solving quantified programs [2].
Further, the deterministic equivalent program can be computed much more eas-
ily. It also enables us to model problems in a straightforward way (by stating
both systems A∀x ≤ b∀ and Ax ≤ b) and transform them later into a QIP to
solve them.

Our goal is to transfer the condition A∀x ≤ b∀ out of the domain of the
variables into the system of constraints. We rewrite the problem as a QIP as
given in Definition 1. Note that we cannot simply add A∀x ≤ b∀ to the constraint
system. This would not restrict the universal player but tighten the conditions
the existential player has to meet. Instead, the universal polyhedral constraints
are not enforced a priori. We introduce helper constraints and variables that
ensure that a violation of the universal constraints is detected, with the effect
that the existential player’s constraints are relaxed. That is, “the existential
player wins by default if the universal player cheats”. In addition to making all
constraints feasible, the universal player is penalized via the objective function.

1 An arborescence is a directed, rooted tree.
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Let us consider the k-th row of the system A∀x ≤ b∀ which is given by
n∑

i=1

A∀
k,i · xi ≤ b∀

k . (2)

It is solely the universal player’s task to meet this condition, since the exis-
tential player cannot influence the left hand side because of (1). Thus

n∑

i=1

A∀
k,i · xi > b∀

k (3)

⇐⇒
n∑

i=1

A∀
k,i · xi ≥ b∀

k + εk (4)

holds for some εk > 0. To determine an assignment for the parameter εk we need
to find the smallest possible gap between the sum of integral multiples of the
coefficients A∀

k,i and b∀
k. It is sufficient to underestimate this smallest possible

gap in order to ensure (3) ⇔ (4). This can be achieved by using the reciprocal
of the (lowest) common multiplier of the denominators (LCD) of the universal
polytope’s coefficients. Let RLCD

k be the reciprocal of the LCD of b∀
k and of the

coefficients A∀
k,i for i ∈ {1, . . . , n}. Then

n∑

i=1

A∀
k,i · xi ≥ b∀

k + RLCD
k (5)

is fulfilled if and only if the original constraint (2) is not satisfied. Note, that
RLCD

k = 1 if all entries of row k are integer.
We now introduce a new binary existential variable yk ∈ {0, 1} with the

property

yk

⎧
⎪⎪⎨

⎪⎪⎩

= 0, if
n∑

i=1

A∀
k,i · xi ≤ b∀

k

∈ {0, 1}, if
n∑

i=1

A∀
k,i · xi > b∀

k

. (6)

This is achieved by using the following constraint
n∑

i=1

A∀
k,i · xi ≥ Lk + (−Lk + b∀

k + RLCD
k ) · yk (7)

with

Lk =
∑

1≤i≤n

A∀
k,i<0

A∀
k,i · ui +

n∑

1≤i≤n

A∀
k,i≥0

A∀
k,i · li (8)

which is the smallest value the left hand side of the original universal constraint
can take with respect to the bounds. Let us take a closer look at (7). If yk = 0
the constraint is always fulfilled, since

n∑

i=1

A∀
k,i · xi ≥ Lk (9)
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is always true due to the definition of Lk. If and only if the original constraint
is violated yk also can take the value 1 since (5) is met. However, if the original
constraint is satisfied yk must be bound to zero. Thus, we embedded the variable
yk in a new constraint such that (6) is fulfilled. We now introduce the binary
variable p ∈ {0, 1} with

p

{
= 0, if ∀ k ∈ {1, . . . , m∀} : yk = 0
∈ {0, 1}, if ∃ k ∈ {1, . . . , m∀} : yk = 1

. (10)

This variable can be embedded using the constraint

p ≤
m∀∑

k=1

yk . (11)

Thus, we introduced a variable that can indicate the violation of the system
A∀x ≤ b∀. If a universal constraint is violated we require each constraint of the
systems Ax ≤ b to be trivially satisfied: If the universal player did not abide
by her rules the existential player should not be punished for a violation of his
system. Thus, the system is modified as follows

Ax − Mp ≤ b (12)

using the parameter vector M ∈ Q
m with

Mk = max
x∈D

Ak,∗x − bk (13)

=
∑

1≤i≤n
Ak,i<0

Ak,i · li +
∑

1≤i≤n
Ak,i≥0

Ak,i · ui − bk (14)

for each k ∈ {1, . . . , m}. Hence, if p = 1 the inequality (12) is always satisfied.
The global indicator p is now used to punish the universal player by reducing

the objective value massively. Since the universal player is trying to maximize
the objective function we can penalize a violation of the universal constraints
by subtracting this new variable p with a sufficiently large coefficient M̃ in the
innermost term of the objective function. Note that this block is w.l.o.g. an
existential block and thus the existential player will set this variable to 1 if
possible, i.e., if the universal player did not meet her conditions. For the value
of M̃ we choose

M̃ =
∑

1≤i≤n
ci<0

ci · (li − ui) +
n∑

1≤i≤n
ci≥0

ci · (ui − li) + 1.

Note that
max
x∈D

c�x − M̃ < min
x∈D

c�x (15)

holds. Thus, when subtracting this value the objective function will definitely
yield a better objective value for the existential player than he could have
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achieved without it. However, the universal player can counteract by meeting
her system of equations and thus forcing p to be zero.

The final transformed problem looks as follows

min
B1

(
c1x1 + max

B2

(
c2x2 + min

B3

(
c3x3 + max

B4

(
. . . + min

Bβ ,y,p

(
cβxβ − M̃p

)))))

s.t. Q ◦ x ∈ D ∃y ∈ {0, 1}m∀ ∃p ∈ {0, 1} :

Ax − Mp ≤ b (16)

−A∀x − (L − b∀ − RLCD)y ≤ −L (17)

p −
m∀∑

k=1

yk ≤ 0 (18)

Note, that L ∈ Q
m∀

is a vector with entries according to (8) and RLCD ∈ Q
m∀

is
the vector of the reciprocals of the lowest common multiplier of the denominators
of the rows of A∀ and b∀. Further note, that the values for M̃ , M and L can
be calculated easily by using the upper and lower bound of x appropriately,
depending on the sign of the corresponding entries in c and A, respectively. Also
the number of auxiliary variables and constraints is linear in the input size. This
problem has the structure of a QIP since the variables are only restricted to be
within their bounds (D is a cubical integer lattice). For further investigations
the PV of a solution (a strategy) of this transformed problem will be denoted
by z = (x, y, p) ∈ D × {0, 1}m∀ × {0, 1}.

In the following we show how the transformed QIP and the QIP�∀ are con-
nected.

Theorem 1. If QIP�∀ has an optimal winning strategy with PV x̃ and objective
value v = c�x̃ the transformed QIP has an optimal winning strategy with PV
z̃ = (x̃, ỹ, p̃) with ỹi = 0 for i = 1, . . . ,m∀ and p̃ = 0 with objective value v.

Proof. Since x̃ is the PV of an optimal winning strategy of QIP�∀ it satisfies
Ax̃ ≤ b and A∀x̃ ≤ b∀. Thus, z̃ = (x̃, ỹ, p̃) with ỹ = 0 and p̃ = 0 is feasible for
the transformed problem with objective value c�x̃ − Mp̃ = v. Let ẑ = (x̂, ŷ, p̂)
be the PV of the optimal winning strategy of the transformed problem and thus
c�x̂ − Mp̂ ≤ c�x̃. If x̂ �∈ D�∀ ẑ would also fulfill p̂ = 1, since at least one row of
the system A∀x̂ ≤ b∀ is violated. However, because of (15) the resulting value
of the objective function is smaller than any other solution obeying A∀x̂ ≤ b∀.
This is a contradiction to the minimax optimality of ẑ since the universal player
can avoid this by assigning her variables such that A∀x̂ ≤ b∀ holds. Thus, the
assignment x̂ ∈ D�∀ is true and A∀x̂ ≤ b∀. Further, y = 0 and p = 0 and x̂ is also
feasible for QIP�∀ with c�x̂ ≥ c�x̃. Therefore, c�x̂ = c�x̃ = v.

Theorem 2. If QIP�∀ has no winning strategy, then the transformed QIP also
has no feasible solution.
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Proof. Let QIP�∀ have no winning strategy. Assume S = (V,E, c) were a winning
strategy for the transformed QIP, i.e., in each leaf the system of inequalities
(16)-(18) is fulfilled. Note that this arborescence has a depth of n + m∀ + 1. We
consider the arborescence S̄ = (V̄ , Ē, c̄) with V̄ ⊆ V , Ē ⊆ E and c̄(e) = c(e)
for each e ∈ Ē. V̄ contains no node of a level larger than n and Ē contains
no edges leading to such nodes. Further, edges describing illegal allocations (see
Definition 3) in terms of the QIP�∀ are deleted as well as their whole underlying
subtrees. This designed arborescence S̄ describes a strategy for the underlying
QIP�∀, because

• the depth is n and thus for each variable a decision level exists,
• nodes of universal variables have only legal allocation options leading out,
• the remaining strategy properties are adopted from S.

This strategy S̄ is also a winning strategy for QIP�∀, since each path from the root
to a leaf represents a vector x such that Ax ≤ b; for each such path A∀x ≤ b∀

holds, because illegal allocations were deleted.
Let us consider such a path x1, . . . , xn in S̄ and the unique2 associated over-

lying path z = (x1, . . . , xn, y1, . . . , ym∀ , p) in S. Since A∀x ≤ b∀ and (16)-(18)
we may conclude p = 0 and yi = 0 for all i ∈ {1, . . . , m∀}. Thus, because of
(16), also Ax ≤ b holds for the leaf. Hence, we have found a winning strategy
for QIP�∀ which contradicts the assumption.

Note that the first-stage solution of the transformed QIP is identical3 to the
first-stage solution of the QIP�∀.
Corollary 1. QIP�∀ is in PSPACE. Since the QIP with cubical uncertainty set
is a special case of the QIP�∀ it is even PSPACE-complete.

5 Example

We consider a simple graph game where one player has to traverse a given graph
while the opponent is allowed to erase some edges. However, the opponent is
not allowed to erase edges arbitrarily but must obey some rules. This problem is
closely related to the Dynamic Graph Reliability problem [5] with the difference
that edges have weights and an objective function should be minimized. Further,
edges are erased depending on the point in time instead of the location of the
player. The underlying graph is given in Fig. 1.

The starting node is labeled with 0 and the target node with 7. The
question is:

Is there a strategy for the existential player which allows him to reach the
target node no matter how the opponent acts? And if there are multiple
strategies: Which one is the winning strategy with the shortest worst-case
path to the target node (according to the weights of the edges).

2 The path is unique, because all nodes with level ≥ n belong to existential variables
and thus have only one successor in a strategy.

3 except for auxiliary variable p in single-stage instances.
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Fig. 1. Directed acyclic weighted graph with starting node 0 and target node 7

Let G = (V,E, c) describe the graph given in Fig. 1 with V being the set of
vertices, E the set of edges and c : E → Q a function assigning weights to each
edge. Let xi,j ∈ {0, 1} be variables indicating whether the existential player uses
edge (i, j) ∈ E or not. For each edge (i, j) ∈ E with i �= 0 let di,j ∈ {0, 1}
indicate whether the universal player deleted this edge or not. The turn order is
given by the following quantifier string:

∃x0,1, x0,2, x0,3 ∀d1,4, d2,4, d2,5, d2,6, d3,6 ∃x1,4, x2,4x2,5, x2,6, x3,6

∀d4,7, d4,5, d5,7, d5,6, d6,7 ∃x4,7, x4,5, x5,7, x5,6, x6,7

Both players take turns while fixing some variables. The universal player is
allowed to deactivate edges before the existential player is able to use them.
In doing so the existential player wants to meet the system of equations given
below.

∑

(0,j)∈E

x0,j = 1 (19)

∑

(i,7)∈E

xi,7 = 1 (20)

∑

(i,k)∈E

xi,k =
∑

(k,j)∈E

xk,j ∀k ∈ {1, . . . , 6} (21)

xi,j ≤ 1 − di,j ∀(i, j) ∈ E, i �= 0 (22)

It consists of constraints ensuring the flow from node 0 to 7 (viz. (19), (20)
and (21)) and constraints forbidding to use edges that have been deleted by
the universal player (22). However, the universal player is also restricted by her
system A∀x ≤ b∀ as follows:

∑

(i,j)∈E
i
=0

di,j ≤ 3 ,
∑

(i,j)∈E
i
=0

c(i, j) · di,j ≥ 3
2

,
∑

(i,j)∈E
i
=0

c(i, j) · di,j ≤ 2 (23)
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This system states that the universal player is allowed to delete at most 3 edges
and the sum of the weights of the deleted edges must be between 1.5 and 2. Note,
that we did not convert either system into a “less or equal” system in order to
make their actual use more clear. Yet, this must be done to use the transfor-
mation described in Sect. 4. The final transformed QIP is displayed below. For
convenience the repeating variable domains {0, 1} are omitted in the quantifier
string.

min
B1

(
2
3
x0,1 + x0,2 +

3
2
x0,3 + max

B2

(
min
B3

(
7
3
x1,4 +

1
2
x2,4 +

2
3
x2,5 + x2,6

+
5
6
x3,6 + max

B4

(
min

B5,y,p

(
3
2
x4,7 +

2
3
x4,5 +

4
3
x5,7 + x5,6 + x6,7 − 15p

)))))

s.t. ∃x0,1, x0,2, x0,3 ∀d1,4, d2,4, d2,5, d2,6, d3,6 ∃x1,4, x2,4, x2,5, x2,6, x3,6

∀d4,7, d4,5, d5,7, d5,6, d6,7 ∃x4,7, x4,5, x5,7, x5,6, x6,7, y1, y2, y3, p :

−
∑

(0,j)∈E

x0,j − p ≤ −1 ,
∑

(0,j)∈E

x0,j − 2p ≤ 1 (24)

−
∑

(i,7)∈E

xi,7 − p ≤ −1 ,
∑

(i,7)∈E

xi,7 − 2p ≤ 1 (25)

∑

(i,k)∈E

xi,k −
∑

(k,j)∈E

xk,j − deg−(k) · p ≤ 0 ∀k ∈ {1, . . . , 6} (26)

∑

(k,j)∈E

xk,j −
∑

(i,k)∈E

xi,k − deg+(k) · p ≤ 0 ∀k ∈ {1, . . . , 6} (27)

xi,j + di,j − p ≤ 1 ∀(i, j) ∈ E, i �= 0 (28)

4y1 −
∑

(i,j)∈E
i
=0

di,j ≤ 0 (29)

∑

(i,j)∈E
i
=0

c(i, j) · di,j + 9.5y2 ≤ 65
6

(30)

−
∑

(i,j)∈E
i
=0

c(i, j) · di,j +
13
6

y3 ≤ 0 (31)

p −
3∑

k=1

yk ≤ 0 (32)

Constraints (24)-(28) describe the transformed existential system (cf. (16)), (29)-
(31) are the embedded universal constraints (cf. (17)), and (32) is similar to
(18). In (26) and (27) the coefficients of p are the number of incoming edges
deg(k)− = |{(i, j) ∈ E | j = k}| and the number of outgoing edges of node k
deg(k)+ = |{(i, j) ∈ E | i = k}|, respectively. In (30) the coefficients result from
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L2 = − 65
6 , RLCD

2 = 1
6 and b∀

2 = − 3
2 . This standard QIP is easily solved by the

QIP-solver Yasol. It turns out that there is a winning strategy for the existential
player. The objective value of the PV is 11

3 and the optimal first decision is
moving from the starting node to node 2. The (perfect) universal player will
then delete the edge between 2 and 4. The existential player then must move
to node 5. After that the edge between node 5 and 7 is deleted and finally the
target node is reached by passing node 6.

6 Conclusion

We extended the concept of quantified integer programs to a polyhedral uncer-
tainty set. Thus, the universal variables can be restricted explicitly by using
a second linear system of inequations A∀x ≤ b∀. We also presented a general
polynomial-time transformation of this new problem statement permitting us to
solve a standard QIP instead of inventing new methods for solving QIP�∀. Thus,
the concept of QIPs can be put into practice in new areas of application in an
easy and straightforward way. In particular, rules of games that must be obeyed
by each player can be modeled easily. Therefore, the possibility of modeling and
solving more complicated two-person zero-sum games with the help of quantified
programming is provided.
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Abstract. While there exist a variety of game description languages
(GDLs) for modeling various classes of games, these are aimed at game
playing rather than the more particular needs of game design. This paper
describes a new approach to general game modeling that arose from this
need. A class grammar is automatically generated from a given library
of source code, from the constructors and associated parameters found
along its class hierarchy, to give a context-free grammar that provides
access to the underlying code while hiding its implementation details.

1 Introduction

There currently exist a number of software systems for modeling and playing
various types of games, including deterministic perfect information games [1],
combinatorial games [2], puzzle games [3], strategy games [4], card games [5],
video games [6], even complete logical game worlds [7], to name but a few.
Each system defines games using a custom game description language (GDL),
primarily for the playing of games. In this paper, we examine such GDLs from
the perspective of designing games, and propose a new approach that might
obviate the need to write a specific GDL for each different type of game.

I introduce the notion of a class grammar, which is a formal grammar derived
directly from the class hierarchy of the underlying source code. The class gram-
mar is the visible tip of the iceberg of code underneath; it provides a clean,
simple interface to the underlying code that offers full functionality, while hid-
ing the implementation details. This approach is described in the context of a
new general game system called Ludii, and has potential benefits not only for
game design but also for the modeling and playing of games.

The following sections compare some GDLs from a design perspective,
describe the syntax, operation and implementation of the class grammar,
and give some formatting guidelines for programmers for producing a cleaner
grammar.

2 Game Description Languages for Game Design

The tasks of game playing and game design, although closely linked, have differ-
ent needs. Game playing focuses primarily on the correctness of the underlying
models and the efficiency of their implementation, while game design involves
c© Springer International Publishing AG 2016
A. Plaat et al. (Eds.): CG 2016, LNCS 10068, pp. 167–182, 2016.
DOI: 10.1007/978-3-319-50935-8 16
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additional aspects, such as the ease with which game descriptions can be mod-
eled and manipulated by the designer, the expressiveness of the GDL, and how
readily the design process can be automated.

Kernighan and Pike list four principles of good software design: simplicity,
clarity, generality and automation [8]. I propose a similar set of properties that
a GDL should possess, in order to be effective for the purpose of game design.

1. Simplicity: Game descriptions should be simple to write and modify.
2. Clarity: Game descriptions should be readily comprehensible.
3. Generality: The GDL should support a wide range of games.
4. Extensibility: The GDL should be easy to extend to support new concepts.
5. Evolvability: Game descriptions should combine to produce mostly valid (i.e.,

playable) children with characteristics of their parents.

The ideal GDL, from a design perspective, would allow the designer to quickly
prototype new ideas for equipment, mechanisms and complete games, be easily
extended as required, and easily automated for the purposes of play-testing, eval-
uation, optimization of rules and equipment, and even self-guided game design.
Further, the ideal GDL should be hierarchical in nature, with useful game-related
concepts called ludemes [9] chunked into convenient building blocks, to be easily
tried in combination with other rules and equipment in other contexts.

The following subsections briefly examine some individual GDLs, and their
suitability for game design, with these points in mind. Note that the focus here
is on abstract and board game design, rather than video game design.

2.1 Zillions Rules File

Zillions Rules File (ZRF) is the proprietary game description format for Zillions
of Games, a commercial program for modeling and playing Chess-like (and
similar) games and puzzles [10]. Appendix A shows Tic-Tac-Toe described in
ZRF, by way of example.

ZRF is a scripting language, much like a C macro, which utilises a library
of pre-defined keywords for defining equipment, piece movement, and so on.
It is highly structured and excellent for modeling Chess-like games, with an
in-built AI that can provide a surprisingly responsive and tricky opponent for
Chess variants. The syntax is reasonably straightforward and extensible for those
familiar with functional programming languages.

However, games become harder to describe, and the AI less effective, the
further they diverge from a Chess-like basis, e.g., the AI is effectively random for
connection games, and some implementation choices, such as the lack of integer
state variables and 2D-only graphics, further limit the generality of the system.1

Zillions of Games has a strong following among game design hobbyists, but
has had very little academic application [11].

1 The 3D connection game Akron took hundreds of man-hours to model in ZRF.
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2.2 Stanford GDL

The Stanford Logic Group’s Game Description Language (S-GDL) [12], designed
for their associated General Game Player (GGP) [1], is the standard GDL for
academic research.2 It is a low-level language that describes games in terms of
simple, general instructions that update the game state using first order logic.
This approach allows reasonable generality at the expense of clarity, and tends
to be somewhat verbose. For example, the S-GDL description of Tic-Tac-Toe,
listed in Appendix B, uses 384 tokens, compared to the 89 used by ZRF.

S-GDL is problematic in terms of game design. Game descriptions can be
time-consuming to write and debug, and difficult to decipher for those unused
to first order logic. The equipment and rules are typically interconnected to such
an extent that any change to any aspect of the game would require significant
rewriting. For example, one of the simplest choices that a game designer might
want to experiment with is board size, but changing simply the board size from
3× 3 to 4× 4 in the Tic-Tac-Toe example would require modifying many lines
of code and adding several more.

Extending S-GDL involves defining new versions of the grammar with the
appropriate additions and dedicated implementations to support them. For
example, GDL-II supports imperfect information games [13], rtGDL supports
real-time play [14], and rtGDL-II supports both [14].

In terms of evolvability, games described in S-GDL lack high-level conceptual
structure, so it is unlikely that ludemes will pass intact from parents to offspring.
In fact, S-GDL descriptions tend to be so finely crafted that any random muta-
tion or crossover is unlikely to yield a playable result. S-GDL, to my knowledge,
has not been used except for playing known games, and in academic circles.

2.3 Ludi GDL

Ludi is a software system written for modeling, playing, evaluating and evolv-
ing combinatorial games [2]. The associated Ludi Game Description Language
(L-GDL) describes games as high-level hierarchical structures of ludemes in a
LISP-like format, and was developed with game design squarely in mind.

Complete games can be written and tested within minutes (sometimes sec-
onds), and the format proved ideal for evolving games using a genetic program-
ming (GP) approach [15]. Game descriptions are easy to comprehend even by
lay readers, with the exception of certain pre-defined keywords that require doc-
umentation, and are easily modified. For example, changing the board size in
the L-GDL Tic-Tac-Toe example shown in Appendix C simply involves changing
the board size parameter from (size 3 3) to (size 4 4).

Ludi was successful as a proof-of-concept in producing the world’s first
computer-designed games to be commercially published [16], but only supported
a small range of combinatorial games and suffered from over-specialization, with

2 The acronym “GDL” in the literature typically refers to this particular language,
but it is disambiguated here as “S-GDL” to avoid confusion.
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a strong preference for N -in-a-row games. Lack of extensibility meant that any
rule or equipment outside the scope of the language would require both the lan-
guage and the program to be modified, highlighting a drawback of the standard
approach of separating the language from the implementation. Ludi has not
been publicly released or used outside the study for which it was developed.

2.4 Ludii Class Grammar

Ludii3 is a complete general game system (GGS) [17] that builds on the princi-
ples pioneered in Ludi, but extends them to improve the key issues of generality
and extensibility. This is achieved primarily through the class grammar that con-
stitutes its GDL. The class grammar is automatically generated from the Ludii
source code library, and game descriptions expressed in the grammar are auto-
matically instantiated back into the corresponding library code for compilation,
giving a guaranteed 1:1 mapping between the source code and the grammar.

Schaul et al. point out that: any programming language constitutes a game
description language, as would a universal Turing machine [18, p. 12]. Ludii
achieves this, to some extent, by effectively making the programming language
(Java) the game description language; it can theoretically support any game
that can be programmed in Java to implement its minimal API (described in
Sect. 4.3). The programmer is free to implement whatever rule, equipment or
behavior they want, however they want, while the user only sees the simplified
view of the constructor in the grammar and not the implementation details.

Ludii has been designed with game design in mind. It is currently under
development, but the aim is to provide a solid, general framework that supports
as wide a range of games as possible, allowing scope for ever increasing func-
tionality as classes in its source code library are subclassed and extended over
time.

2.5 Comparison

Figure 1 shows a graphical comparison between these four GDLs, based on the
five key design properties. The values shown are subjective estimates only, and
are intended to highlight the relevant strengths and weaknesses of each GDL for
the purpose of game design.

Simplicity is estimated by the number of tokens required to define games, on
average, and the ease with which game descriptions can be modified. Clarity is
estimated by the degree to which game descriptions would be self-explanatory
to lay readers. Generality is based on the estimated percentage of games listed
in the BoardGameGeek (BGG) online database4 that it would be feasible to
describe. Extensibility is estimated as the ease with which the language can be
extended to incorporate new rules, behaviours, equipment, etc. Evolvability is
estimated as the likelihood with which randomly mutating and crossing-over
game descriptions will produce playable children that resemble their parents.
3 Ludii is named after its predecessor Ludi but improves on it in most respects.
4 The BGG database now lists over 80,000 games: https://www.boardgamegeek.com.

https://www.boardgamegeek.com
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Simplicity Clarity Generality Extensibility Evolvability
Z             ZRFILLIONS

Stanford GDL
L       GDLUDI

L        CGUDII

Fig. 1. Comparison of key aspects of GDLs from a design perspective.

ZRF is characterised by reasonable simplicity, clarity and extensibility.
S-GDL has reasonable generality and extensibility, but poor evolvability. L-GDL
has excellent simplicity, clarity and evolvability, but poor generality and extensi-
bility. The class grammar mechanism devised for Ludii was designed to address
the relative shortcomings of existing methods, and produce an approach for
computer-assisted and fully automated game design that performs well across
all five key design criteria. The following sections describe this approach in detail.

3 Class Grammar

The class grammar is set of production rules in which sequences of symbols on
the RHS (right hand side) are assigned to a nonterminal symbol on the LHS (left
hand side), very much like an Extended Backus-Naur Form (EBNF) grammar. It
is intrinsically bound to the underlying code library, but is a context-free gram-
mar that is self-contained and can be used without knowledge of the underlying
code. In this section we discuss context (Sect. 3.1), syntax (Sect. 3.2), generation
(Sect. 3.3), and instantiation (Sect. 3.4).

3.1 Context

The class grammar involves two main automated parsing steps.

1. Forwards: From source code to grammar.
2. Backwards: From grammar expressions back to specified source code.

The backwards step is similar in principle to existing approaches for using
grammars to generate code. These include C++ code generators [19,20], Java
code generators [21], parser generators such as ANTLR [23], and Translational
BNF (TBNF) [22], in which code actions are embedded in the grammar.



172 C. Browne

The difference is that these approaches all involve a grammar maintained sep-
arately by the user or system, whereas the class grammar’s forwards step makes
it self-generating. The resulting grammar could be described as a domain-specific
language (DSL) [23,24], although the potential generality and extensibility of the
approach would make this something of a misnomer.

3.2 Syntax

The basic syntax of the class grammar is as follows:

<class> ::= { (class [{<arg>}]) | <subClass> | terminal }

where:

<class> denotes a LHS symbol that maps to a class in the code library.
(class [{<arg>}]) denotes a class constructor and its arguments.
<subClass> denotes a subclass derived from class.
terminal denotes a terminal symbol (fundamental data type or enum).
[...] denotes an optional item.
{...} denotes a collection of one or more items.
| denotes a choice between options in the RHS sequence.

Class names typically start with an uppercase character, but are converted
to lowercase in the grammar for readability, convenience, and in keeping with
the traditional form of EBNF style grammars. Appendix E shows a sample of
the grammar generated from the Ludii code library.

3.3 Forward Mechanism (Generation)

The forward step of converting source code to grammar involves recursively pars-
ing the code library from a specified root class (Game in this case) downwards,
storing a new symbol for each new class encountered. A chain of dependency is
then created from the root class, linking the arguments of each visited construc-
tor by data type, until terminal symbols are reached. Fundamental data types
and enums constitute terminals, while all other user-defined classes constitute
non-terminals.

The grammar is then generated with each class name forming the LHS sym-
bol of a production rule, of which the RHS is a sequence of constructors that
instantiate that class (or subclasses derived from it) and their parameters. For
example, the following abstract base class with no constructors:

public abstract class Start { ... }
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and its two derived subclasses:

public class Place extends Start

{
public Place(final String what, final int where)

}

public class Store extends Start

{
public class Storepublic Store(final int who, final String what, final int count)

}

generate the following production rules:

<start> ::= <place> | <store>
<place> ::= (place (what String) (where int))
<store> ::= (store (who int) (what String) (count int))

The result is a summary of the class hierarchy, based on constructors and
parameters, that offers full functionality while hiding the implementation details.

3.4 Backward Mechanism (Instantiation)

Each individual game is described as a symbolic expression (s-expression)
compatible with the grammar. For example, Appendix D shows Tic-Tac-Toe
described in the Ludii class grammar.

Game descriptions are parsed in a top-down manner [24, p. 225], with each
(class ...) instance matched with its generating constructor, and parame-
ters recursively instantiated as required. The calling app can then use the
JavaCompiler and associated classes from the javax.tools library to compile
the assembled code and produce an executable version of the game.

To maximise extensibility, the game author can append their own custom
Java code to the end of the game description file, and call its constructors from
within the description as per any other constructor defined in the grammar. This
makes the approach quite extensible without the need to modify or recompile
the underlying code library, with the caveat that the author of such appended
code would need to be familiar with Java and would probably have to develop
it outside a Java development environment.

4 Implementation

This section describes the following relevant implementation details: program-
ming language (Sect. 4.1), algorithm (Sect. 4.2), interface (Sect. 4.3), formatting
guidelines (Sect. 4.4), and version control (Sect. 4.5).
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4.1 Programming Language

Java was chosen for the class grammar code base due to its ease of use, portability
(it runs on any device and operating system with the appropriate Java virtual
machine) and speed (it performs as well as equivalent C++ code, to within a few
percent, using current compilers). Further, Java’s reflection library is ideal for
extracting relevant class information from the code base, and its javax.tools
compilation tools are ideal for the run-time compilation of reconstructed classes.

4.2 Algorithm

The algorithm for generating the class grammar is summarised as follows:

public void generate(final String rootPath)
{

setPredefinedSymbols();
findSymbols(rootPath);
scopeSymbols();
expandRHSs();
removeSuperfluousSubclasses();
collapseSimilarConstructors();
prioritiseOrder();
trimRules();

}

First, SetPredefinedSymbols() creates predefined symbols for fundamental
Java data types such as int, float, double, boolean, String, Object, and so
on. findSymbols() then recursively finds additional symbols corresponding to
user-defined classes and enums from the specified root. These are then minimally
scoped to disambiguate symbols with identical names, by prepending superclass
names as required. For example, multiple occurrences of class or might be scoped
to start.or, move.or, end.or, etc.

expandRHSs() then creates a production rule for each symbol, with the sym-
bol name as LHS, and expands the RHS to include the constructor(s) for this
class and derived subclasses. removeSuperfluousSubclasses() removes dupli-
cate occurrences of subclasses in the RHS except for the deepest.

collapseSimilarConstructors() combines similar constructor descriptions
on the RHS where possible, identifying implicit optional parameters (discussed
shortly). prioritiseOrder() prioritises package order in depth-first order, and
rule order within each package so that base classes come first. trimRules()
removes unused and empty rules, which might occur in partially implemented
code under development.
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4.3 Interface

The root Game class implements the following minimal API:

public void create(final int viewSize);
public void start(final Episode episode);
public List<Turn> actions(final Episode episode);
public Status apply(final Episode episode, final Turn turn);
public Status playout(final Episode episode);

Every game defined in the grammar, when compiled, must implement this
basic functionality for play. The user therefore defines games in the grammar but
executes them through the API. This decouples the grammar from its implemen-
tation, from the user’s perspective, and makes it context-free. The playout()
function is for performing optimised playouts, avoiding complete legal move enu-
merations, for AI implementations such as Monte Carlo tree search (MCTS) [25].

Details regarding the internal game state representation are beyond the scope
of this paper, which focuses on the class grammar itself. Suffice it to say that
this representation is designed to be general and efficient, but can be subclassed
and overridden for the optimisation of individual cases as desired.

4.4 Formatting Guidelines

While the class grammar is conceptually decoupled from its generating code, the
programmer can make the grammar cleaner and clearer by following some basic
formatting guidelines.

Named Parameters. Constructor parameters that are simple (terminal) data
types are explicitly labeled in the grammar by their parameter name. This makes
the grammar self-documenting to some extent, easier to interpret and reduces
ambiguity. For example, this:

<what> ::= (what (who int) (where int))

is more meaningful to the reader than:

<what> ::= (what int int)

It is sometimes desirable to anonymize named parameters, where this simpli-
fies the grammar and does not create ambiguity; for example, the two parame-
ters in (add int int) do not need naming. Such parameters can be explicitly
denoted using the custom annotation @Anon to override the default behavior.

Conversely, parameters representing complex (non-terminal) data types are
not named in the grammar by default, as the data type itself usually gives
sufficient information to infer the parameter’s purpose. However, this behavior
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can also be overridden to explicitly name such parameters using the custom
annotation @Name. Note that parameter naming requires the use of Java version
8 for the relevant reflection call, but warrants the move to this version.

Optional Parameters. Constructor arguments can be explicitly specified as
[optional] items in the grammar using the custom annotation @Opt. For exam-
ple, the following code:

public Board(final Basis basis, @Opt final Modify[] modify)

will generate the following rule with an optional parameter:

<board> ::= (board <basis> [{<modify>}])

Parameters can also be implicitly made [optional] by providing multiple
constructors for a class, such that parameters that occur in one constructor but
not in another are interpreted as optional. For example, the following pair of
constructors would produce the same rule shown above:

public Board(final Basis basis)
public Board(final Basis basis, final Modify[] modify)

The explicit approach is recommended as it is simpler and less error prone.
The implicit approach, although more conceptually elegant, requires care to
avoid ambiguous cases, and complicates the initialisation of default values.

Default Values. It is useful to set default values for member variables of all
classes described in the grammar, in case their corresponding constructor para-
meters are made optional. However, this is complicated by the fact that we also
want to declare them as final and make the instantiated objects immutable if
possible, as per good object oriented design practice [26, pp. 73–80].

Java only allows final member variables to be initialised once in the class’s
execution flow. This is handled in the class grammar by passing parameter values
up the super(...) constructor chain as appropriate, and instantiating missing
values due to optional parameters with their default values in the appropriate
constructors. Care must be taken to instantiate the same default values across
all constructors for each class, for consistency.

Library Structure. The Ludii code library is organised to reflect the underly-
ing class structure, with each Java package containing the base class of the same
name and immediate subclasses that will create items in the RHS sequence for
the corresponding grammar rule. This makes it easier to navigate and maintain
the code library using the class grammar as a reference.
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Abstract Classes. The programmer can influence the format of the generated
grammar through judicious use of abstract classes. Constructors for abstract
classes are not shown in the grammar as they cannot be instantiated by the user.

Inner Classes. The programmer is free to use inner classes, but these are
private to their defining class and so will not appear in the grammar (except for
enums).

Collections. Constructor parameters denoting arrays and Java collections, such
as Lists, are all represented in the grammar as {. . . }, for the sake of brevity.
The appropriate data type is reconstructed and populated with the specified
items in the backwards (instantiation) step, during code compilation.

4.5 Version Control

As the Ludii code library is a work in progress, and could continue to expand for
years to come, regression testing is important to guarantee that future additions
to the library do not unduly affect existing code.

This will be achieved by maintaining a database of N deterministic playouts
for each game described in the grammar, seeding the RNG with a hash code
based on the game’s (unique) name, and storing the moves thus generated. Any
change to the library that makes any known game diverge from its stored playout
record will be flagged for investigation.

5 Conclusion

While the class grammar described in this paper is based on the Ludii gen-
eral game system’s source code library, the basic approach – of automatically
generating a context-free grammar from a class hierarchy’s constructors, then
instantiating expressions in that grammar by compiling the appropriately para-
meterised constructor calls – has general application to any domain for which
such a class hierarchy can be defined.

Benefits of the approach for computer-assisted and fully automated game
design include: (1) the generality implicit in effectively using the programming
language (Java) as the game description language; (2) the extensibility afforded
by the ease with which code can be added to the source code library and automat-
ically incorporated into the grammar; and (3) the evolvability of games described
in this high-level hierarchical manner. The class grammar is the ideal GDL for
Ludii as it develops and expands over the upcoming years.

Acknowledgements. This work was funded by a QUT Vice-Chancellor’s Research
Fellowship as part of the project Games Without Frontiers. Thanks to Stephen Tavener
for nudging me towards Java, which proved ideal for this task.
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Appendix

A Tic-Tac-Toe in ZRF

The following code describes Tic-Tac-Toe in the Zillions of Games Zillions
Rules File (ZRF) format [10] (88 tokens):

(define add-to-empty ((verify empty?) add))
(game

(title "Tic-Tac-Toe")
(players X O)
(turn-order X O)
(board

(grid
(start-rectangle 16 16 112 112)
(dimensions

("top-/middle-/bottom-" (0 112))
("left/middle/right" (112 0))

)
(directions (n -1 0) (e 0 1) (nw -1 -1) (ne -1 1))

)
)
(piece (name man) (drops (add-to-empty)))
(board-setup (X (man off 5)) (O (man off 5)))
(draw-condition (X O) stalemated)
(win-condition (X O)

(or (relative-config man n man n man)
(relative-config man e man e man)
(relative-config man ne man ne man)
(relative-config man nw man nw man)

)
)

)

B Tic-Tac-Toe in the Stanford GDL

The following code describes Tic Tac Toe in the Stanford GDL [12] (384 tokens):

(role white)

(role black)

(init (cell 1 1 b))

(init (cell 1 2 b))

(init (cell 1 3 b))

(init (cell 2 1 b))

(init (cell 2 2 b))

(init (cell 2 3 b))

(init (cell 3 1 b))
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(init (cell 3 2 b))

(init (cell 3 3 b))

(init (control white))

(<= (legal ?w (mark ?x ?y)) (true (cell ?x ?y b))

(true (control ?w)))

(<= (legal white noop) (true (control black)))

(<= (legal black noop) (true (control white)))

(<= (next (cell ?m ?n x)) (does white (mark ?m ?n))

(true (cell ?m ?n b)))

(<= (next (cell ?m ?n o)) (does black (mark ?m ?n))

(true (cell ?m ?n b)))

(<= (next (cell ?m ?n ?w)) (true (cell ?m ?n ?w))

(distinct ?w b))

(<= (next (cell ?m ?n b)) (does ?w (mark ?j ?k))

(true (cell ?m ?n b)) (or (distinct ?m ?j) (distinct ?n ?k)))

(<= (next (control white)) (true (control black)))

(<= (next (control black)) (true (control white)))

(<= (row ?m ?x) (true (cell ?m 1 ?x))

(true (cell ?m 2 ?x)) (true (cell ?m 3 ?x)))

(<= (column ?n ?x) (true (cell 1 ?n ?x))

(true (cell 2 ?n ?x)) (true (cell 3 ?n ?x)))

(<= (diagonal ?x) (true (cell 1 1 ?x))

(true (cell 2 2 ?x)) (true (cell 3 3 ?x)))

(<= (diagonal ?x) (true (cell 1 3 ?x))

(true (cell 2 2 ?x)) (true (cell 3 1 ?x)))

(<= (line ?x) (row ?m ?x))

(<= (line ?x) (column ?m ?x))

(<= (line ?x) (diagonal ?x))

(<= open (true (cell ?m ?n b))) (<= (goal white 100) (line x))

(<= (goal white 50) (not open) (not (line x)) (not (line o)))

(<= (goal white 0) open (not (line x)))

(<= (goal black 100) (line o))

(<= (goal black 50) (not open) (not (line x)) (not (line o)))

(<= (goal black 0) open (not (line o)))

(<= terminal (line x))

(<= terminal (line o))

(<= terminal (not open))

C Tic-Tac-Toe in the Ludi GDL

The following code describes Tic-Tac-Toe in the Ludi GDL [2] (29 tokens):

(game Tic-Tac-Toe
(players White Black)
(board (tiling square i-nbors) (shape square) (size 3 3))
(pieces (Piece All (moves

(move (pre (empty to)) (action (push))))))
(end (All win (in-a-row 3)))

)
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D Tic-Tac-Toe in Ludii Class Grammar

The following shows Tic-Tac-Toe in the Ludii class grammar (47 tokens):

(game "Tic-Tac-Toe"
(control (player "P1") (player P2") Discrete)
{

(board Board (square 3))
(disc Disc1 (owner P1))
(disc Disc2 (owner P2))

}
(rules

{
(store P1 Disc1 (count 5))
(store P2 Disc2 (count 4))

}
(play

(move
(from (generate Store Mover))
(to (generate Board empty))

)
)
(end

(line (length 3) (dirn Any) (owner Mover))
(result Mover Win)

)
)

)

The description (game "Tic-Tac-Toe") has the same effect in 2 tokens, due to
default parameter values. A full board without a winning line defaults to a Draw,
after both players are forced to pass in succession.

E Sample of the Class Grammar

The following listing shows an incomplete subset of the class grammar generated
from the Ludii code library. Rules are grouped by package.

<game> ::= (game (name String) [{<metadata>}]
[<control>] [{<equipment>}] [<rules>])

<metadata> ::= (String String)

<control> ::= (control [{<player>}] [<timeType>])
<timeType> ::= Discrete | Real

<player> ::= (player [(index int)] (name String))
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<equipment> ::= <component> | <container>

<container> ::= <board> | <store>

<board> ::= (board (label String) <basis> [{<modify>}])
<store> ::= (store (label String) (owner int))

<basis> ::= <hexHex> | <rect> | <square>
<hexHex> ::= (hexHex (dim int))
<rect> ::= (rect (rows int) (cols int))
<square> ::= (square (dim int))

<component> ::= <ball> | <disc>

<ball> ::= (ball (label String) (colour int))
<disc> ::= (disc (label String) (colour int))

<rules> ::= (rules [{<start>}] [<play>] [<end>])

<start> ::= <place> | <store>
<place> ::= (place <equipment> <site>)
<store> ::= (store <equipment> <roleType> (count int))

<play> ::= (play <move.logic>)

<end> ::= (end <bool> <result>)
<result> ::= (result <bool> <roleType> <resultType>)

<roleType> ::= None | P1 | P2 | P3 | P4 | P5 | P6 | P7 | P8 |
Any | All | Mover | NonMover | Opposite |
Next | Prev | Odd | Even

<resultType> ::= Win | Lose | Draw | Tie | Abort
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The Number of Legal Go Positions
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Abstract. The number of legal 19 × 19 Go positions has been deter-
mined as

208168199381979984699478633344862770286522453884530548425

639456820927419612738015378525648451698519643907259916015

628128546089888314427129715319317557736620397247064840935

A roughly 1.2 % fraction of the 319×19 total number of positions, this
is more naturally expressed in ternary. Replacing the usual ternary dig-
its 0,1,2 by +(empty), (black), and (white) respectively, yields the
following (illegal) position that counts all legal positions:

1 Introduction

Go [2,4] almost needs no introduction, but one can be found in the parent paper
“Combinatorics of Go” [1], which derived a dynamic programming algorithm to
compute numbers of legal positions. With the resources available at the Center
for Mathematics and Computer Science (CWI) in 2006, John Tromp and Michal
Koucký, who helped develop a file-based implementation, were able to count the
number of legal 17 × 17 positions. This was announceed on August 18, 2006,
over 10 months after the quick succession of results for 14 × 14 through 16 × 16.
c© Springer International Publishing AG 2016
A. Plaat et al. (Eds.): CG 2016, LNCS 10068, pp. 183–190, 2016.
DOI: 10.1007/978-3-319-50935-8 17
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Since then we have been on the lookout for potential new sources of computing
power for the final two steps of 18 × 18 and 19 × 19. We submitted many a
proposal, both formal and informal, academic and commercial. It was not until
early 2014 that Tromp got an offer from Piet Hut at the Institute for Advanced
Studies, to use their computing cluster, which led to the results reported here.
This paper focuses on these recent results and the software used to obtain them,
at the expense of repeating a great deal of the underlying theory detailed in the
parent paper. The reader is therefore strongly advised to have a copy of that
paper handy for filling in some of the missing details.

2 Preliminaries

A position on an m × n Go board is a mapping from the set of points {0, . . . ,
m − 1} × {0, . . . , n − 1} to the set of colors {empty, black, white}. Points are
adjacent in the usual grid sense—equal in one coordinate and differing by one
in the other. A point colored black or white is called a stone. Adjacent stones
of the same color form connected components called strings. An empty point
adjacent to a string is called a liberty of that string. A position can arise in a
game of Go if and only if all its strings have liberties. Such positions are called
legal. The number of legal m × n positions is denoted L(m,n).

3 The Border State Graph

The parent paper established a correspondence between legal positions and paths
through a graph of so-called border states, as illustrated in Fig. 1 for a small 3×3
board.

E
E

E
E
E

E

Fig. 1. A 3 × 3 position and corresponding path through the border state graph
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We number the points of the board (plus an extra point to its right) from
0 through 9, isomorphic to the ordering of border states on the right. All the
points less than a point p constitute a partial board up to p, and the position on
these points is a called partial position. Each border state on the path records
not only the colors of the previous n = 3 points (‘E’ denoting the board edge)
but also what is needed to ensure that they have liberties when extending the
partial position. This includes knowledge of which stones currently lack liberties
and how they are connected in the partial position, shown as lines pointing left
and possibly joining up.

The border state of a partial board up to p together with the color of p
uniquely determines the successor border state up to p + 1, if legal. The border
state graph consists of all border states and their successor transitions. An exam-
ple of an illegal successor would be a white stone at p = 3, preventing the top
left black stone from gaining a liberty. Now the problem of computing L(m,n)
is reduced to that of counting paths of length mn in a certain graph.

4 The Path Counting Implementation

The go counting software is publicly available at my github repository [5].
To jump right in, file modulus.h implicitly defines a list of relatively prime

numbers each of the form Mi = 264 − d, for many different small values of
0 ≤ d < 256. This allows us to split up the task of computing L(m,n) into many
smaller independent jobs that each compute modulo some Mi. The resulting set
of equations

L(m,n) = ai mod Mi,

is readily solved using the Chinese Remainder Theorem [3], as implemented in
the Haskell program CRT.hs. For L(18, 18), a 508 bit number, we need � 508

64 � = 8
jobs, while for L(19, 19), � 566

64 � = 9 jobs suffice.
File golegal is a shell script for computing modular path counts, to be

invoked as

./golegal width modulus [y [ x [incpus [memsize [height [ncpus]]]]]]

For example, if we want to compute L(13, 13) modulo M1 = 264 − 3, using
3 GB of memory and 2 cores, (and we already ran make all to create the start
and legal executables), we would run

./golegal 13 1 0 0 2

This creates a top-level directory 13.1 with data sets in subdirectories yx.00.00
through yx.13.00, each one computed from the previous with multiple invoca-
tions of legal, one for each cpu. If problems arise necessitating a restart, then
we can invoke golegal with appropriate values of y and x. For historical rea-
sons, this implementation works row by row rather than column by column as
in Fig. 1.

Within each yx.*.* subdirectory are the start and end timestamps, the
cpu.* logs containing the standard output of all legal invocations, and finally
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the fromto.*.* directories holding the actual counts. Let us look at what hap-
pens in the sample execution

time ./legal 13 1 12 10 2 2 1 500M &> 13.1/yx.12.11/cpu.1

The shell script chose a default memory footprint of 500MB, which is allocated
to hold blocks of state-count pairs. The executable starts with opening all files in
13.1/yx.12.10/fromto.*.1/ directories in order to merge their already sorted
records into a single stream of state-count pairs (see instream.c). This stream
is processed in the legal.c code fragment

for (; (mb = minstream(gin))->state != FINALSTATE; nin++,deletemin(gin)) {

sn.cnt = mb->cnt;

nnew = expandstate(mb->state, x, newstates);

for (i=0; i<nnew; i++) {

sn.state = newstates[i];

jtinsert(jts, &sn);

}

if (nnew < 3) // nnew == 2

modadd(modulus, &nnewillcnt, mb->cnt);

if (jtfull(jts))

dumpstates(go, jts, noutfiles++, mb->state);

}

The call to expandstate (in states.c) generates the 2 or 3 successor states,
each of which is paired with the state count and inserted into the custom jtset
data structure from sortstates.c. State expansions involve first unpacking the
highly compressed representation (using only 3 bits per border point), then try-
ing all 3 possible colors for the next point to record the effects on liberties and
connections, and packing the results back into the highly compressed represen-
tation. The sum count of missing, i.e., newly illegal, successors is maintained
in nnewillcnt to be logged and cross-checked. Whenever the jtset reaches its
capacity, routine dumpstates from outstream.c is called to dump the state-
count pairs to files. This involves first (radix) sorting all pairs by state, merging
identical ones by summing their counts, and then partitioning them over all cpus,
writing one file for each.

The partition boundaries have been precomputed in partition.c1 to ensure
an almost uniform distribution of states over cpus. The first line of output

width=13 bump=11 tot=48744371 part=24372185

shows the width, the bump (x-coordinate) of new states, the number of states,
and the boundary between states for cpu 0 and states for cpu 1. Each state pair
is written as a state delta followed by the 64 bit count. With the states being
sorted, the delta is just over 1 byte on average. Each file ends with a checksum
record, that uses a sentinel FINALSTATE and a count such that the sum of all
counts equals zero (for the given modulus).
1 This is probably the trickiest part of the code, and was still found to contain bugs

during the 18 × 18 run (affecting efficiency rather than correctness).
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In a typical file name of 13.1/yx.12.11/fromto.1.0/1.6546124577333, the
basename consists of the number of dumpstates calls, followed by the next state
in the input stream (in octal). This helps with mid-step restarts using manual
invocations of legal, an advanced feature best avoided.

If the memory allocated is too small then dumpstates will be called hundreds
of time, which might require thousands of files to be opened for reading in the
next step, creating IO bottlenecks. For the 19×19 jobs I liked to use a minimum
of 20 GB.

The final lines of output are

(12,10) size 24313729 xsize 24391897 mod 18446744073709551613
newillegal 8421059390853372058 needy 15106516706600782168

legal 17975594761389357431 at (12,11)

The first summarizes the input stream, giving the merged size and total size
in number of states, as well as reminding us of the modulus used. The next shows
the sum count of illegal successors, of states with some border stones in need of
liberties, and of states with no such stones.

Apart from setting up the directory structure and iterating over all the steps
and cpus, the golegal shell script also conserves space by removing files that
can be considered obsolete, and takes care to protect against accidental damage
by making files and directories read-only.

The perl script gocheck performs many checks and balances on these num-
bers. For instance, the total of newillegal + needy + legal should be congru-
ent to 3 times the previous step’s total of needy + legal. It also checks that
L(m,n) = L(n,m) if the latter has been previously computed, as is usually the
case when n < m. These checks, in addition to the file checksums make it very
hard for disk/memory corruption errors to go undetected. And if any of jobs
manages to produce even a slightly wrong result, then Chinese Remaindering
will amplify this to a huge difference in the reconstructed result, which will then
no longer match the highly accurate approximation formula (see below).

5 Results

Table 1 shows the number of legal positions for 18 × 18 and 19 × 19.
The L(18, 18) computation ran from summer 2014 through March 2015,

taking over 50,000 CPU-hours and 4PB of disk IO, generously provided by
the Intel x86 Linux Cluster of the IAS School of Natural Sciences in Prince-
ton. It used 8 jobs with modulo indices 1,2,3,4,5,6,7,8. The smaller of two
prime factors found with Dario Alejandro Alpern’s ECM implementation is
7176527950749135946361.

The 18 × 18 result was announced on Hacker News on March 9, 2015 [6]
accompanied by a request for yet more computing power to tackle 19 × 19.

The L(19, 19) computation ran from March 9, 2015 through December 26,
2015, taking over 250,000 CPU-hours and 30PB of disk IO, generously provided
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Table 1. Number of legal n× n positions.

n #digits L(n, n)

18 153 6697231142888292128927401888417065435099377806401787328103183

3769694562442854721810521432601277437139718484889097011183628

3470468812827907149926502347633

19 171 2081681993819799846994786333448627702865224538845305484256394

5682092741961273801537852564845169851964390725991601562812854

6089888314427129715319317557736620397247064840935

by the Intel x86 Linux clusters at the IAS School of Natural Sciences in Prince-
ton, the IDA Center for Communications Research, also in Princeton, and on a
HP Helion Cloud server. It used 9 jobs with modulo indices 0,1,2,3,4,5,6,11,19.
Due to delays in transferring log files, the actual reconstruction of the number
didn’t happen until January 20, 2016.

Factorizing L(19, 19) results in 8 prime factors, the first 7 of which are
5, 401, 4821637, 964261621, 2824211368611548437, 219846696500237600175961
3307922757, and 65948646836807567941440434317404197. An interesting obser-
vation about this deconstruction is that what allows us to do this in just a few
hours is that the ECM factoring algorithm is exponential, not in the number
of digits itself, but in the square root thereof. Similarly, our construction of
L(19, 19) is only possible due to the path counting algorithm being exponential,
not in the number of board points, but in the square root thereof.

This final result was announced on Hacker News on January 22, 2016 [7],
and has been reported on (with various inaccuracies) by the popular press [9] as
well as by several enthusiast sites [8,10].

6 The Base of Liberties

If we take the mn’th root of the number of all 3mn positions on an m×n board,
we of course get the base of 3. If we count only legal positions, then the mn’th
root can be shown to converge to some number L < 3. Since this single number
characterizes the growth rate of stones having liberties, we call it the base of
liberties. The parent paper showed that, conditional on some conjecture about
vanishing error terms,

L(m,n) = A Bm+nLmn(1 + O(mφm))

for some constants A, B, φ < 1, and n = Θ(m). The constants A, B, and L
can all be computed as limits of expressions involving legal counts of square and
almost-square boards.
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L = lim
n→∞

L(n, n)L(n + 1, n + 1)
L(n, n + 1)2

,

B = lim
n→∞

L(n, n + 1)
L(n, n)Ln

= lim
n→∞

L(n, n)
L(n, n − 1)Ln

,

A = lim
n→∞

L(n, n)
B2nLn2 .

Table 2. Legal counts of almost square boards.

n #digits L(n, n+ 1)

17 145 20722054276190233030395875202363901217542740727187846094339981969

33282608067036314403465202963700297341152216286750576593627459392

979397487964077

18 162 21645008927907827531439545348046842446969487357646989370951775056

32614907511229224633397451785779540083245864195480719950197794545

84564790800309660950831580481393

19 180 20020319408629769567144797301355785099698625915243038261123500773

48906207401543395415870817978902800457543055297838678738457045887

23770851289942216392403148498022616435740968427261

Of course L could also be approximated according to its definition as
L(n, n)n

−2
but the above formula offers much better convergence. Using the

almost-square legal counts in Table 2, as computed by our algorithm, our best
estimates using L(19, 19), L(19, 18), and L(18, 18) are

L ≈ 2.975734192043357249381,
B ≈ 0.96553505933837387,
A ≈ 0.8506399258457145.

Table 3 shows the rapid convergence of L(n, n)L(n + 1, n + 1)/L(n, n + 1)2.

Table 3. Convergence to the base of liberties L.

n L(n, n)L(n + 1, n + 1)/L(n, n + 1)2

15 2.97573419204335724932

16 2.975734192043357249362

17 2.9757341920433572493811

18 2.97573419204335724938097

Although the formula for L(m,n) is only asymptotic, convergence turns out
to be quite fast. Compared to the exact results in Table 1, it achieves relative
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accuracy 0.99993 at n = 5, 0.99999999 at n = 9, and 1.00000000000023 at
n = 13. It is consistent with all the simulated results. For n = 99 it gives the
same result of 4 · 104638. Accuracy is also excellent far away from the diagonal.
For instance, at L(7, 268), the relative accuracy is still 1.0000007, witnessing the
wide range of application of the asymptotic formula.

Acknowledgements. We are indebted to Piet Hut and Lee Colbert for supporting
both the 18×18 and 19×19 computations, and to Michael Di Domenico for supporting
and helping script the 19 × 19 computation.
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Abstract. We establish the existence of 1010
100

Go games, addressing
an open problem in “Combinatorics of Go” by Tromp and Farnebäck.

1 Introduction

The board game of Go is well known for its combination of simple rules [3]
and profound complexity. That complexity is in part due to the large boardsize,
allowing for long games and hundreds of choices at every turn. Estimates on the
number of ‘practical’ n × n games take the form bl where b and l are estimates
on the number of choices per turn (branching factor) and game length, respec-
tively [1]. A reasonable and minimally arbitrary upper bound sets b = l = n2,
while for a lower bound, values of b = n and l = 2

3n2 seem both reasonable
and not too arbitrary. This gives us bounds for the ill-defined number P19 of
‘practical’ 19 × 19 games of

10306 < P19 < 10924

Wikipedia’s page on Game complexity [5] combines a somewhat high estimate
of b = 250 with an unreasonably low estime of l = 150 to arrive at a not
unreasonable 10360 games.

But the rules also allow for less sensible games where players fill in their
eyes and continue capturing each other, restricted only by the superko rule that
forbids repeating the whole board position. It is this precisely defined set of all
possible games that we want to bound.

Let us denote by N(n) the number of Go games on an n×n board using the
rules of [3]. Tromp and Farnebäck [2] established

1010
48

< N(19) < 1010
171

,

and list this rather huge gap as one of the open problems.
The challenge in proving a lower bound is to make a single game as long as

possible, by visiting as many of the roughly 2·10170 legal positions as possible [4].
There will then turn out to be sufficient choices along the way to lift the game
length into the exponent.

While [2] used properties of binary Gray codes to prove their lower bound,
we obtain much stronger bounds by subdividing the board and iterating over all
legal sub-board positions. Supporting materials can be found at [6].
c© Springer International Publishing AG 2016
A. Plaat et al. (Eds.): CG 2016, LNCS 10068, pp. 191–201, 2016.
DOI: 10.1007/978-3-319-50935-8 18
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2 Basic Scheme

For the 5 × 5 board (Fig. 1), consider the 25 points in row-major order from top
left to bottom right. The central 3 control points marked ‘c’ split the board into
two other symmetric sub-boards: the 11 point top and 11 point bottom.

Fig. 1. Basic scheme Fig. 2. A pair of legal sub-board posi-
tions

The 5 points of the top directly preceding the control are reserved for a
black border; which means they are either black or empty. The rest of the top,
consisting of 6 points, can be anything that forms a legal position in combination
with the black border.

Definition 1. For some odd board size n ≥ 3, a legal top position is a position
on n2−3

2 points, ending in n black border points, that is legal on the sub-board.
It is called pseudo-legal if the position is legal on the sub-board plus an empty
control. Let Hn be the number of legal sub-board positions (H for half).

We have computed and manually verified that H5 = 323. Similarly, the 5
points following the control are reserved for a white border, which allow for 323
corresponding legal bottom positions, which can be defined analogously. Figure 2
shows a pair of legal sub-board positions.

In the basic scheme, we alternate setting up top and bottom positions, using
the control to mark the different phases as follows (see Table 1).

To set up a position, pick any permutation of its stones (non-empty points),
and play them in that order, passing in between if necessary. To complete a
position setup, let us say in the black-bordered top, white plays in the control
center. This “freezes” the top position, and moves the scheme into the next fill
phase.

To fill up a position, say on top, first grow all white strings until they have
only one liberty, possibly capturing black stones in the process. Note that the
black border string is safe from capture because of its liberty in the control. Then,
play black stones in any order until they fill the whole sub-board, capturing all
expanded white strings in the process. The fillup phase is completed by a white
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Table 1. Overview sub-boards of 5× 5 board

control state top sub-board bottom sub-board

setup

setup frozen

frozen fillup

frozen setup

fillup frozen

play on the control liberty, capturing the entire black block and clearing the
sub-board.

Lemma 1. For n odd, let T (resp. B) denote the set of legal top (resp. bottom)
positions. For every permutation of T , every permutation of B, every permuta-
tion of stones and every permutation of empty points in every t ∈ T , and every
permutation of stones and every permutation of empty points in every b ∈ B,
there is a unique game of Go.

An example game serves to illustrate the proof (see Figs. 3, 4 and 5).

Fig. 3. W 2,6,10 pass Fig. 4. B 13,15,17,19,
21,25 pass

Fig. 5. B 29,31 pass

With an empty control, the game sets up the first top position in some order
(see Fig. 3), with consecutive stones of the same color requiring an intermediate
pass by the other side. Move 11 changes the control, entering the next phase.
The first top setup is unique not only in using an empty control, but also in
skipping the bottom fillup afterwards, a fact that will be exploited later. Now
the first bottom position is set up in some more arbitrary order. Move 27 changes
the control again, to start a top fill (see Fig. 4). First White expands her strings
until they have only 1 liberty (see Fig. 5).

Then Black plays the originally empty points in some order, except for having
to play e5 first to vacate the other points (see Fig. 6). But one of the original
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Fig. 6. W 34,36,38,40,
42 pass

Fig. 7. Top captured Fig. 8. B 55 pass

white stones, say at a5, can assume its place in the order. White 44 captures the
entire top (see Fig. 7) while changing the control yet again, preparing to set up
the next top position (see Fig. 8). Let us fast-forward to the end of the game.
This will be thousands of moves later, but for notational convenience we will
pretend it is move 78.

Fig. 9. W 80,84,86
pass

Fig. 10. B 91 pass Fig. 11. B 93,95,97 pass

After the last of the top positions has been filled up and captured at move 78
we set up the first top position again, but this time, with move 88 (see Fig. 9),
proceed to the fillup of the last bottom position (see Fig. 10), after which the
game ends (a Black play at ‘c’ is prohibited by superko; see Fig. 11).

Proof. The existence of the permutation implied move sequence is clear from the
sample game. What is left to show is that every move is legal, i.e. no position
is repeated. By construction, every single setup phase is repetition free. In the
fillup phase, say, on top, the first part of expanding white strings to a single
liberty is repetition free, and so is the second part of forming a solid black block.
Since capture of a white string in the second part removes white stones present
at the fillup start, there is no repetition across the two parts either. Since every
phase except the initial setup and final fillup, has half the board frozen in a sub-
board position that gets set up only once, there is no repetition across phases
either. •
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Lemma 2. Each combined setup and fillup of a sub-board position allows for
at least �K

2 �! �K
2 �! ≈ πK(K

2e )
K permutations, where K is the sub-board size in

points.

Proof. Let the position have 0 ≤ k ≤ K non-empty points. The setup allows
for k! permutations, while the fillup allows for at least (K − k)! permutations.
Minimizing the product of these gives the stated lower bound. •

Our lemmas combine to prove

Theorem 1. For n odd, N(n) ≥ (�K
2 �! �K

2 �!)2HnHn!2 ≈ 2πHn

(
πK(K

2e )
K

Hn

e

)2Hn , where K = n2−3
2 is the sub-board size.

In order to apply this to n = 19 we need a good lower bound on H19. We com-
puted the number of legal 11×9 positions ending in an 11-stone black border as
250022411912498300328152248672940333961060, and the number of legal 8×10
positions ending in an 10-stone black border as 68382625113316114872620308594
11923. Multiplying these together provides the lower bound H19 > 1.7 · 1075.

Corollary 1. There are at least (5! 6!)646 323!2 > 104314 Go games on 5 × 5,
and at least (89! 90!)2H19H19!2 > 1010

77
Go games on 19 × 19.

The theorem in fact applies to pseudo-legal sub-board positions as well but
we refrain from a formal proof, as we will need the legal ones in the next section.

3 Nested Scheme

With the basic scheme, we can play games visiting all legal positions of roughly
half the board. To improve our lower bounds, we need to increase the fraction of
the board iterated over beyond a half. While one half of the board is frozen, we
have a lot of freedom in the other half. Instead of just setting up one sub-board
position there, let us run a nested scheme in advance. This requires additional
main control states, to distinguish these parts. Yet, we want to limit this control
to 3 points. So instead, we consider the control state in context, where the
context can be the color of a point horizontally adjacent to the control (marked
‘x’ for don’t-care), or whether a stone in the control is capturable, denoted by a
triangle (see Table 2).

Figures 12 and 13 show the nested controls on 13 × 13 and 15 × 15 boards,
respectively. The main control is marked ‘C’, and the sub-control, situated about
either halfway above or halfway below the center, is marked ‘c’, and acts just as
the basic scheme control. For n ≡ 1 mod 4, the sub-control splits the sub-board
evenly into two sub-sub-boards, but for n ≡ 3 mod 4, one side is necesarily larger
by 1 point. To allow for alternating positions from the two sets of legal sub-sub-
board positions, we truncate the bigger set to match the size of the smaller,
which we denote Qn (Q for quarter).
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Table 2. Overview sub-boards in a nested scheme

Control state top sub-board bottom sub-board

setup

play sub frozen

play sub frozen

play sub frozen

last play in sub frozen

setup frozen

frozen fillup

frozen play sub

frozen play sub

frozen play sub

frozen last play in sub

frozen setup

fillup frozen

Fig. 12. Nested controls, 13× 13 Fig. 13. Nested controls, 15× 15

Lemma 3. For a position p ∈ T (resp. B), denote the possibly truncated set
of legal top-left (resp. bottom-left) positions as pL, and the possibly truncated
set of legal top-right (resp. bottom-right) positions as pR. For every Lemma 1
game, for every sub-board position p in T ∪B, for every permutation of pR, every
permutation of pL, every permutation of stones and every permutation of empty
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Fig. 14. W 2,6,8,14,20,22 B 11,25 pass Fig. 15. W 42 B 27,29,33,35,37,. . .
pass

Fig. 16. W 58 pass Fig. 17. W 68,70,72 pass

points in every r ∈ pR, and every permutation of stones and every permutation
of empty points in every l ∈ pL, there is a unique game of Go.

Again we illustrate the proof with an example game.
With an empty control, the game sets up the first top position in some order.

Move 23 changes the control, entering bottom play (see Fig. 14). In bottom play,
vacated main control points are always filled, as with moves 24 and 26, except
in the final sub-game cleanup. With the sub-control empty, we then set up a
bottom-left position, ending with the sub-control move at 54 (see Fig. 15).

Next a bottom-right position is set up, and move 66 changes sub-control to
the first quarter fill (see Fig. 16). Black expands her string to a single liberty to
be captured by White 74 (see Fig. 17).

White then fills the whole bottom-left and is captured by Black 91, starting a
new bottom-left setup (see Fig. 18). For clarity we show move numbers modulo
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Fig. 18. B 75,77,79,81,83,85,87,89 pass Fig. 19. B 93,95, . . . pass

Fig. 20. B 23,25,27 pass Fig. 21. W 30,32,34,36,38,40,42,44
pass

100. The setup ends with move 21 starting a bottom-right fillup phase (see
Fig. 19).

Now that the black border has one string not adjacent to the sub-control,
we must take care to avoid capturing it during white string expansion (always
possible due to White’s multiple choice) (see Fig. 20). As in the basic scheme, we
can iterate through all quarter-board positions in this sub-game (see Fig. 21).

Fast forward to the capture of the last of the bottom-left positions in this
sub-game with Black 1 (see Fig. 22). We now add back the white border but
skip adding white stones to the main Control. Next, we fill up the last of the
bottom-right positions, effectively concluding the bottom sub-game. From move
55, we basically play a bottom fillup (see Fig. 23).
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Fig. 22. many moves later Fig. 23. B 3,5,. . .W 44,46,. . . pass

Fig. 24. B 57,59,. . . pass Fig. 25. B 13,15,17,19,21,23,25 pass

White 110 adds the single liberty stone to the main control, letting Black
clear the whole bottom with 111. We now set up the first bottom position,
freezing it with White 74 (see Fig. 24). The following top fillup will be concluded
by a White capture at ‘A’, initiating a top sub-game (see Fig. 25).

Proof (sketch). As before, it remains to show that no position is repeated. Our
previous proof of the basic scheme applies to each sub-game, up until the last
sub-sub-board fillup. Then the fillup phase of sub-board is safe from repetition
as the main control is left with two liberties. The last move of this fillup, its
capture and the setup of next sub-board position, the fillup of the previous main
position and its capture, are all protected by distinct main control codes. Thus
there can be no repetition during a sub-board position freeze. Furthermore, as
each of these sub-board positions gets used only once, there is no repetition
across main phases. •
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Fig. 26. Triple nesting

Lemma 4 Each combined setup and fillup of a sub-sub-board position allows for
at least 10

33
4 permutations for n ≥ 9, and at least 10

402
4 permutations for n ≥ 19.

Proof This follows from Lemma 2. The n = 9 sub-sub-board positions consist of
at least 15 points, giving a choice of 7! 8! = 203212800 > 108.25 permutations.
The n = 19 sub-sub-board positions consist of at least 83 points, giving a choice
of 41! 42! > 10100.5 permutations. •

Since each of the constructed games has 2Hn sub-games each consisting of
2Qn combined sub-sub-board setup/fills, we immediately obtain.

Theorem 2 For n ≥ 9 odd, N(n) ≥ 1033QnHn , while for n ≥ 19 odd, N(n) ≥
10402QnHn .

We computed H9 = 95276398927407 and Q9 > 10000. We showed earlier
that H19 > 1.7 · 1075, and computed Q19 > 8.4 · 1030.

Corollary 2 There are at least 1010
19

Go games on 9 × 9, and at least 1010
108

Go games on 19 × 19, well over a “googolplex”.
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4 And Beyond . . .

We need not stop nesting at 2 levels. Figure 26 shows a triple nesting, with even
less uniformity in shape, and diminishing returns, of what can be estimated as
1010

117
games. Considering the burden of proof, and how big of a gap remains

with the known upper bound of 1010
171

, we leave that as an exercise for the
reader.

5 Conclusion

The original lower bound of 1010
48

on the number of 19×19 games, proved in [2],
uses approximately half the board to cycle through binary configurations. This
paper obtains a much stronger result by improving on both aspects. The nesting
subdivision construction allows a majority of the area to be used for cycling
through configurations, and these can be ternary rather than binary. Combined,
these improvements push the number of games beyond 1010

100
, popularly known

as a “googolplex”.

Acknowledgments. Many thanks to Arnaud Knippel for comments on early versions.
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Abstract. It is common knowledge that a majority system is typically
better than its components, when the components are stochastically inde-
pendent. However, in practice the independency assumption is often not
justified. We investigate systems of experts which are constituted by cou-
ples of dependent agents. Based on recent theoretical work we analyse
their performance in a simple 2-player subtraction game. It turns out that
systems with negatively correlated couples perform better than those
with positive correlation within the couples. From computer chess prac-
tice it was at least known that systems of very positively correlated bots
were not too successful.

1 Introduction

Consider a situation with finitely many options, for instance, a game position
with finitely many feasible moves. Several agents or experts may be combined
by majority voting: each agent is asked independently for her favorite option,
and the option with most votes is selected. Ties are broken by fair coin flips.

Majority systems have been applied to groups of bots in different games [14],
such as Chess [1], Shogi [12], and Go [8,11]. Successes were mixed. In particular,
it sometimes turned out to be a problem, when the bots were too similar in their
inner structure or evaluation functions.

In political sciences the name of Condorcet is famous for a jury theorem. In
its basic form [7] it deals with a group of n stochastically acting experts who form
a jury and have to vote on a yes/no-question. In case of independence between
the experts and uniform strength, the voting decision of the group will have
higher expected quality than the decision of its single members. Furthermore,
the competence converges to 1, if the number of experts goes to infinity.

Non-independence of agents means that probabilities cannot simply be mul-
tiplied and added. However, under certain conditions the systems can neverthe-
less be analysed. In this paper we look at a situation where the group of experts
(called jury) has even size and is split in independent couples. Within each cou-
ple dependencies may occur. One situation where such a structure occurs can
be a group of N women and N men which form altogether N married couples.
c© Springer International Publishing AG 2016
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Each woman depends on her husband and vice versa. However, dependencies
between different couples may be much looser or even completely missing. In
game programming, one may think of 2N bots from N different programmers
where each programmer has designed two of the bots.

In this paper we investigate coupled groups of experts and their performance
in a very basic 2-player subtraction game. It turns out that negative correlation
within the couples is the best one can have. The paper is organised as follows.
In Sect. 2 we present an abstract stochastic model for a simple voting situation.
In Sect. 3 the simple (1,2)-subtraction game is analysed, with results for jury vs.
single player and jury vs. jury. The paper concludes in Sect. 4.

2 The N-couple Model in General

First, we present the basic N-couple model by Althöfer and Thiele [2]. In the
second part of this section, the main theoretical findings for the model are sum-
marized.

2.1 Model

The jury consists of 2N experts. Always two of these experts form a couple.
Every expert has to choose one of two given options (good or bad). Each expert
of couple i picks the good option with probability pi ∈ (

1
2 , 1

)
. Thus qi = 1 − pi

is the probability of the bad option. The vector p = (p1, . . . , pN ) is called the
competence structure of the jury.

The experts of a couple influence each other, but they decide independently
of the other 2N − 2 experts. Thus, we have correlation within the couples and
independence between the couples. For each couple i we model the dependence
like in Bahadur [3] and Boland et al. [5] as follows:

πi,0 = q2i + ci piqi ,

πi,1 = 2 (piqi − ci piqi) ,

πi,2 = p2i + ci piqi .

(1)

In this formulation πi,0, πi,1 and πi,2 are the probabilities for 0, 1 and 2 good
votes within couple i, respectively. The probability πi,1 includes both mixed
cases [(good,bad) and (bad, good)].

We model the strength and direction of the dependence between the experts
in a couple i by the correlation coefficient ci. Positive ci mean positive corre-
lation, negative ci negative correlation. The vector c = (c1, . . . , cN ) is called
the dependence structure of the jury. However, not all correlation coefficients
ci ∈ [−1, 1] generate valid distributions. So we need better bounds for the ci.
From Bahadur [3] we get the following tight bounds for our model:

− qi
pi

≤ ci ≤ 1. (2)
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The correct votes within the couples are summarized. So the set {0, 1, 2}N
contains all possible voting profiles for the N -couple jury. We split this set into
disjoint sets V N

k0,k1,k2
with k0 + k1 + k2 = N and

V N
k0,k1,k2

=
{

{0, 1, 2}N | k0 times 0, k1 times 1, k2 times 2
}

.

k0 is the number of couples with 0 good votes, k1 the number of couples with
1 good vote, and k2 the number of couples with 2 good votes.

With these disjoint sets we are able to calculate the probability eNt (p, c) that
exactly 0 ≤ t ≤ 2N experts choose the good option.

eNt (p, c) =
�N− t

2�∑

k=max{0,N−t}

∑

v∈V N
k,2N−2k−t,t−N+k

N∏

i=1

πi,vi
. (3)

By adding up the probabilities of all voting profiles with at least N good
votes we get the jury competence MN (p, c). Fair coin tosses resolve possible
N:N-ties (first term in the following equation).

MN (p, c) =
1
2
eNN (p, c) +

2N∑

t=N+1

eNt (p, c) (4)

2.2 Theoretical Results

This subsection summarizes the main theoretical findings for the model of Sub-
sect. 2.1. For a proof of these results see Althöfer and Thiele [2].

Theorem 1. If N ≥ 2 and pi > 1
2 for all i, then the following four statements

hold.

(i) Positive correlation within the couples decreases the jury competence.
(ii) Negative correlation within the couples increases the jury competence.
(iii) The dependence structure cworst = (1, . . . , 1) minimizes the jury compe-

tence.
(iv) The dependence structure cbest = (− q1

p1
, . . . ,− qN

pN
) maximizes the jury com-

petence.

By applying the dependence structures of Theorem 1 in Eq. (4) we get the
following tight bounds for the jury competence.

Corollary 1. If pi > 1
2 for all i, then the jury competence MN (p, cbest) can be

calculated as follows for the best dependence structure cbest from Theorem 1:

MN (p, cbest) = 1 − 2N−1
N∏

i=1

(1 − pi).
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Corollary 2. If pi > 1
2 for all i, then N couples with the worst dependence

structure cworst from Theorem 1 are exactly as competent as N independent
experts with the respective competence structure (p1, ..., pn).

To prove the Condorcet jury theorem for couples, we use the following two
results of Ben-Yashar and Paroush [4] and Owen et al. [13]. These theorems
extend the classical Condorcet jury theorem, while allowing agents with different
competences.

Theorem 2 (Theorem in Ben-Yashar and Paroush [4]). A jury with an
odd number (greater than one) of independent experts is always more competent
than the expected competence of a randomly chosen expert.

Theorem 3 (Theorem II, statement (1) in Owen et al. [13]). If the aver-
age competence of the agents is uniformly higher than 1

2 then the jury competence
converges to 1, if the number of agents goes to infinity.

Now, we have all ingredients to prove the Condorcet jury theorem for couples.

Theorem 4 (Condorcet jury theorem for couples). If pi > 1
2 for all i,

then the following two statements hold for the N -couple model.

(i) A jury with an odd number N > 1 of couples is always more competent
than the expected competence of a randomly chosen expert from this jury.
Formally, MN (p, c) > 1

N

∑N
i=1 pi holds.

(ii) If the average competence of the experts is uniformly higher than 1
2 then the

jury competence converges to 1, if the number of couples goes to infinity.

Proof. If the Condorcet jury theorem for couples is valid for the worst depen-
dence structure, it holds also for all other dependence structures. We transform
the worst case according Corollary 2 into the independent case. Afterwards, the
statements follows instantly from Theorems 2 and 3. ��

3 Subtraction Games

The results of Sect. 2 give the performance in single game positions. But what
happens if a majority jury has to play a whole game, with repeated voting
situations? In this section we numerically analyse the situation for a simple
2-player game.

3.1 The Classical (1,2)-Subtraction Game

A heap with m ∈ N matches is given. Two players alternatingly reduce this
heap by picking either one or two matches. Finally, the player who picks the
last match wins. For this game the positions of win (W) and loss (L) can be
calculated via backward analysis. In Table 1 we illustrate the results for the ten
smallest heap sizes. It is obvious that all positions with m ≡ 0 mod 3 are loss
positions.
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Table 1. Win and loss positions for the (1,2)-subtraction game

Heap 1 2 3 4 5 6 7 8 9 10

Value W W L W W L W W L W

3.2 The (1,2)-Subtraction Game with Stochastic Experts

We have two experts which we call Agent A and Agent B. “Expert” means that
Agent A chooses the winning move with probability a > 1

2 . Analogously, Agent
B chooses the winning move with probability b > 1

2 . The agents play randomly,
if the current position is a loss position. T. Fischer in his doctoral dissertation
[6] already investigated the symmetric case a = b. We analyse what happens
between agents of different strength. In particular, we look at situations where
at least one of the agents is a majority jury.

Assume that in play between agents A and B, Agent A wins the game with
probability xA(m) if it is his turn in position m. We recursively calculate the
probabilities xA(m) for m > 2. For that we use the start values xA(1) = 1,
xA(2) = a, xB(1) = 1, and xB(2) = b. Thus we get the following rules of
recursion for all m > 2:

xA(m) =

⎧
⎪⎨

⎪⎩

1
2 [1 − xB(m − 1)] + 1

2 [1 − xB(m − 2)] , if m ≡ 0mod 3
a [1 − xB(m − 1)] + (1 − a) [1 − xB(m − 2)] , if m ≡ 1mod 3
(1 − a) [1 − xB(m − 1)] + a [1 − xB(m − 2)] , if m ≡ 2mod 3

(5)

Analogously, for Agent B we get:

xB(m) =

⎧
⎪⎨

⎪⎩

1
2 [1 − xA(m − 1)] + 1

2 [1 − xA(m − 2)] , if m ≡ 0mod 3
b [1 − xA(m − 1)] + (1 − b) [1 − xA(m − 2)] , if m ≡ 1mod 3
(1 − b) [1 − xA(m − 1)] + b [1 − xA(m − 2)] , if m ≡ 2mod 3

(6)

From the recursions it is clear that the xA− and the xB−values mutually
depend on each other.

3.3 Jury vs. Single Agent

We apply the model of Subsect. 3.2 by assuming Agent A to be a jury. The jury
is modeled according to the N-couple model of Subsect. 2.1. In this subtraction
game the good option is the move which leads to an L-position (loss for the oppo-
nent). Consequently, the bad option is the move which leads to a W-position.
To simplify, we assume that all experts have the same individual competence
p and all couples have the identical dependence parameter c. The jury chooses
her move by simple majority voting. Thus the probability a is equal to MN (p, c)
from Eq. (4) in Subsect. 2.1. Agent B gets the same individual competence like
the other single experts (b = p).
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A fair coin flip decides whether Agent A or Agent B has the first move in the
game. This is necessary because the heap size m can be a win or loss position.
Thus the agent has an advantage if it is a win position and a disadvantage by a
loss position. In combination with Eqs. (5) and (6) we are able to calculate the
probability wA(m) that A wins the subtraction game with initial heap size m.

wA(m) =
1
2
xA(m) +

1
2

[1 − xB(m)]

In the four diagrams of Fig. 1 we illustrate the influence of the individual
competence p, the dependence c, and the number of couples N on the probability
wA(m). The initial heap size is always m = 40. For a better overview we only
plot the best case c = − 1−p

p (negative correlation) and the worst case c = 1
(both drawn with solid lines). Furthermore the independent case c = 0 is also
plotted (dotted line). All other combinations with c < 0 are located above the
dotted line while the combinations with c > 0 are located below (we checked
this for several parameters; a formal proof, however, is still missing).
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Fig. 1. Probability of a jury win in the (1,2)-subtraction game with heap size m = 40
for a jury with N couples against a single agent (best and worst case given by solid
lines, independent case dotted)
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In the best case the success rate wA(m) of the jury rises first with increasing
individual competence. The probability of success decreases again after her max-
imum in pbest, because now also the opposing single agent makes wrong moves
more and more seldomly. If we increase the number of couples N (from 2 to 3 to
4 to 5) then the maximum point pbest drops (from 0.89 to 0.84 to 0.81 to 0.79).
We conjecture that pbest converges to 1

2 if N goes to infinity. Also, the related
success probabilities of win rise with an increasing number of couples, but the
differences decrease. (We mean that the difference between 2 and 3 couples is
approximately 0.1 while the difference between 4 and 5 couples is only about
0.02). For N = ∞ we know by Theorem 4 that a = MN (p, c) = 1. So Agent A
plays optimal while Agent B makes mistakes. Altogether it is obvious that for
fixed initial heap size m this probability converges to some limit value (near 1
for large m) if N goes to infinity.

The statements for the best case are applicable also to the worst case, except
for one minor difference. A jury with N = 2k couples wins always with the same
probability as a jury with N = 2k − 1 couples (for k ≥ 1). This is because by
Corollary 2 in the worst case N couples are as competent as N independent
experts; and for the independent case it is well-known that 2k experts are as
competent as 2k − 1 experts. An early proof of this result can be found in [10].

Finally, we investigate the influence of the initial heap size on the probability
of a win. The four diagrams in Fig. 2 represent the results for N = 3 couples and
four different individual competence levels p. For each example only the best
(negatively correlated) and worst case is plotted.

A staircase pattern with stairs of length three exists, if the heap size is larger
than three. This period-3 structure is already known from the classical (1,2)-
subtraction game of Subsect. 3.1. Within a period, the probabilities of a win
are approximately identical, while they increase after each period. However, the
respective improvement drops with rising heap size. For the heap size going to
infinity, the winning probabilities converge to some constant (dependent on p)
which is smaller than 1. Observe that, for instance, for p = 0.8 this limit seems
to be larger than the limit for p = 0.9. For fixed couple size N this was to be
expected.

3.4 Jury vs. Jury

In this subsection both players are assumed to be juries. Again, the juries are
modeled according to Subsect. 2.1. The juries may have different numbers of
couples and correlations. But the individual competences are assumed to be
equal in both juries.

First, we compare juries with the same number of couples, but different
correlations. An example for such scenarios is illustrated in Fig. 3 (left). The
juries with less positive correlations always have an advantage. The amount of
this advantage depends on the individual competence. Like in Subsect. 3.3, there
exists a medium individual competence pbest with a maximal advantage.

In a second run, we freeze the correlation and change the number of couples.
For the 2 extremal correlations we present the results in Fig. 3 (right). The
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Fig. 2. Probability of a jury win in the (1,2)-subtraction game for a jury with N = 3
couples against a single agent (best and worst case)
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Fig. 3. Different juries against each other for a heap of size m = 40

advantage is with the bigger jury. Interestingly, for p < 0.8 the advantage for
the larger jury is higher in case of negative correlations, and for p > 0.8 the
advantage for the larger jury is higher in case of positive correlations.
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4 Conclusion

We conclude the paper by a summary (Subsect. 4.1) and three open questions
(Subsect. 4.2).

4.1 Summary

We investigated the (1,2)-subtraction game with stochastically acting agents. In
each win position there is exactly one winning move. Each agent was assumed to
choose this optimal move with a fixed probability higher than 1

2 . In this subtrac-
tion game larger heap sizes favor stronger agents. Concerning voting schemes, it
turns out that a team with majority voting is better than a single agent when the
team consists of independent couples with arbitrary dependence within the cou-
ples. The main finding, however, is that negative correlation within the couples
is the best that can happen - and couples with strong positive inside correlation
are not more helpful than a single agent. In the spirit of the Condorcet’s jury
theorem we found that a larger number of couples is always helpful.

4.2 Open Questions

Below we formulate three open questions. We are convinced that there are many
more, but these three are most relevant at this moment.

(i) We only investigated the simplest subtraction game with the feasible moves
1 and 2. Subtraction games with other possible moves or more than two
feasible moves could be also interesting. However, we are firmly convinced
that majority voting will exhibit the same behaviour in those games.

(ii) Most of our results for the subtraction game are based on computer calcu-
lations. The explicit relationships are still to be proven.

(iii) Kaniovski [9] and Zaigraev and Kaniovski [15] used also Bahadur’s repre-
sentation to model a jury with dependent experts. It might be interesting
to let juries with their dependency structures (pairwise dependence for all
pairs) play against “our couple juries”.

Acknowledgement. We want to thank three anonymous referees for there construc-
tive reports.
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Abstract. Human cognition inspired the earliest algorithms for game-
playing computer programs. However, the studies of human and com-
puter game play quickly diverged: the Artificial Intelligence community
focused on theory and techniques to solve games, while behavioral sci-
entists empirically examined simple decision-making in humans. In this
paper, we combine concepts and methods from the two fields to investi-
gate whether human and AI players take similar approaches in an adver-
sarial combinatorial game. We develop and compare five models that
capture human behavior. We then demonstrate that our models can pre-
dict behavior in two related tasks. To conclude, we use our models to
describe what makes a strong human player.

1 Introduction

Developing a computer program to play a given game as well as the best human
players was a significant challenge for early computer scientists, even predat-
ing the term artificial intelligence [1,2]. Much of the initial progress in game-
playing AI was inspired by examining human gameplay and formulating games as
search problems [3]. Subsequently, the Artificial Intelligence community focused
on developing algorithms, approaches and concepts in order to improve com-
puter game play for more games in more domains (Checkers [4], Poker, Chess [5]
and Go [6–8]), while generally ignoring potential similarities to human thought
processes. Meanwhile, psychologists, neuroscientists and economists have built
successful models for human reasoning in simple decision tasks, while ignoring
games with large decision spaces [9,10]. Recent approaches have begun using
human game play to train stronger AI agents [7].

In this paper, we present AI-based computational models for the behavior
of non-expert human players in a simple, adversarial, full-information game.
Our models formalize hypotheses for the cognitive processes by which a human
player makes a decision on a given task; the models we consider simulate human
responses to game positions, making similar decisions to human players. We aim
to determine whether modern AI concepts such as heuristic search [3] are useful
in explaining human play.

We compare the ability of our models to predict subjects’ choices during
regular game play. We further show that our main model can predict behavior
in two related tasks. Finally, we investigate how strongly the playing strength
of our subjects is related to our main model’s algorithmic properties, such as
search depth, tree size, and the quality of the heuristic function.
c© Springer International Publishing AG 2016
A. Plaat et al. (Eds.): CG 2016, LNCS 10068, pp. 212–224, 2016.
DOI: 10.1007/978-3-319-50935-8 20
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2 Experimental Methods

We collected data from human subjects playing a simple board game. Two play-
ers take turns placing pieces on a 4 by 9 board (Fig. 1A). The black player makes
the first move. The goal is to place four consecutive pieces in a row, column, or
diagonal. We chose this game because the rules are few and easily learned, it is
unfamiliar to our subjects, and it is sufficiently hard to master without being
computationally intractable.

We performed two experiments on human subjects with a total of four tasks:
(1) playing full games against a human opponent, (2) playing against AI oppo-
nents with different playing strengths, (3) deciding between two alternative
moves on a given board position (2AFC) (Fig. 1B), and (4) evaluating their
winning chances in a given board position (Fig. 1C).

Experiment 1: We recruited 40 subjects and divided them into 20 pairs. Sub-
jects in each pair played multiple games against each other without time con-
straints, switching colors after every game. The experiment terminated after
subjects had played for one hour and finished their last game.

Experiment 2: We recruited 40 additional subjects to perform three tasks. For
the first 30 min, subjects played games against AI opponents, switching colors
after every game. To make it less likely for subjects to latch onto any particu-
lar opponent’s idiosyncrasies, and to keep play challenging for all subjects, we
selected opponents from a set of 30 AI agents with different playing strengths.
We switched to a stronger opponent every time the subject won a game, and to a
weaker opponent whenever they lost. In the second task, subjects saw board posi-
tions and chose between two marked candidate moves (Fig. 1B). We selected the
positions and candidate moves to create difficult choices for subjects. In positions
where both candidate moves had the same game-theoretic value, the subject’s
choice indicates a subjective preference. On trials where one move was strictly
better than the alternative, the subject’s choice can be used to measure their
playing strength. The third and final task, board evaluation, required subjects
to rate board positions from 1 (‘losing’) to 7 (‘winning’) from the perspective
of the current player. In the second and third task, each subject completed 84
trials.

Fig. 1. A: Example of a game position. B: On a trial of the 2AFC task, subjects see a
board position with two possible moves, and indicate their preference. C: On a trial of
the evaluation task, subjects see a board position and estimate their winning chances
on a 7-point scale.
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3 Models of Human Behavior

Our goal is to build a computational model that mimics how human subjects play
our game. A model of behavior is an algorithm that, given a board state s, selects
a move a ∈ A(s) from the set of available moves A(s). To account for variability
in human choices, our models contain multiple sources of stochasticity. Since
players may vary in their decision processes and cognitive abilities, our models
have parameters, which we fit to individual subjects. In this section we discuss
the following seven items: heuristic function, sources of variability, myopic model,
main model, conv-net model, opt-rand model, and fitting the model parameters.

3.1 Heuristic Function

Most of our models rely on a heuristic function that assigns a value to each board
position. Our heuristic function is a weighted sum of five features. Each feature
is counted separately over a player’s own pieces and their opponent’s pieces. The
first feature, which we call the center feature and denote by f0(s, c), measures
the number of pieces of color c on the 12 central squares of the board s. The other
four features (Fig. 2), denoted by fi(s, c) with i = 1, . . . , 4, count how often the
following patterns occur on the board (horizontally, vertically, or diagonally).

1. Connected 2-in-a-row: two adjacent pieces with sufficient empty squares
around them to complete 4-in-a-row.

2. Unconnected 2-in-a-row: two non-adjacent pieces which lie on a line of four
contiguous squares, with the remaining two squares empty.

3. 3-in-a-row: three pieces which lie on a line of four contiguous squares, with
the remaining square empty. This pattern represents an immediate winning
threat.

4. 4-in-a-row: four pieces in a row. This pattern appears only in terminal boards.

We handpicked these features to reflect heuristics that are intuitive given the
goal of the game. We tested additional features, but none of them improved the
main model’s fit to human play. However, a more systematic approach to select
these features is a natural direction that we leave for future work.

Fig. 2. Patterns in the heuristic function. The four features in our heuristic func-
tion. Each feature counts how often one of these patterns occurs on board (horizontally,
vertically, or diagonally).
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Fig. 3. Heuristic function. In this position, white is to move. Black has 5 pieces on
the central squares, white has 4 (marked with blue dots). Black has two connected
two-in-a-rows (purple), one unconnected two-in-a-row (orange) and one three-in-a-row
(green). White has no instances of any pattern. The value of this board state, from
white’s perspective, is therefore H(s) = −w0 − w1 − 2w2 − w3. (Colour figure online)

We associate a weight wi to each of the five features, and write the heuristic
function as

H(s) = cself

4∑

i=0

wifi(s, own color) − copp

4∑

i=0

wifi(s, opponent color)

where cself = C and copp = 1 whenever the player is to move in state s, and
cself = 1 and copp = C when it is the opponent’s move. The scaling constant C
is a fitting parameter which can vary between subjects. Figure 3 demonstrates
a calculation of the heuristic function in an example board state, taken from
human play.

The weight parameters W = {w0, w1, . . . , w4} vary between subjects. They
encode differences in subjects’ preferences, such as their relative inclination to
make direct threats (3-in-a-row) over indirect strategic maneuvers (unconnected
2-a-in-row).

3.2 Sources of Variability

Unlike deterministic AI agents, realistic models for human behavior must sup-
port variability. Our models are required not only to identify the subject’s most
likely move given a position, but also to assign some probability to their noisy
and inconsistent decisions.

We introduce three sources of variability in our models. (a) Value noise:
We add Gaussian noise to the heuristic value of each state, reflecting a human
tendency to choose almost arbitrarily between two moves of roughly equal value.
(b) Feature dropping: When counting instances of any one of our patterns, we
exclude with probability λ every possible location-orientation combination where
that pattern may occur. This mechanism represents lapses of attention, where
a subject overlooks a pattern in some region on the board. We denote this
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Algorithm 1. Myopic-model(State s, Parameters {λ,W, lapse}):
1 if lapse then
2 return random-move

3 else
4 return argmaxa∈A(s)Hλ(T (s, a)) + N (0, 1)

modified heuristic function by Hλ(s). (c) Lapse rate: On each move, there is
some probability that the model makes a completely random move, capturing
human moves with no apparent rationale behind them. The lapse rate, feature
dropping rate (λ), and feature weights are all model parameters. We now describe
the five specific models that we test.

3.3 Myopic Model

After checking for a lapse, the Myopic model (shown in Algorithm 1) uses a
heuristic function with value noise and feature dropping to evaluate every pos-
sible move on a given board position; it then selects the move with the highest
value. We use T (s, a) to denote the resulting state by applying action a to state s.

3.4 Main Model

Our main model (described in Algorithm 2) builds a partial game tree similar to
algorithms such as Minimax, alpha-beta pruning, and Monte-Carlo Tree Search.
Each state is represented as a node in the tree. Each node n has a value estimate
V (n) and a set of successors Succ(n).

On each execution, the model initially determines whether a lapse occurs,
in which case it makes a random move (lines 1–2). Otherwise, the model builds
the root node to represent the current state (line 3) and repeats a procedure to
build a partial tree. On each iteration, the algorithm selects a node in the tree
for further exploration (line 4). The selectnode procedure recursively selects the
successor node with the maximal heuristic value until it reaches a leaf node. The
selected node is expanded (line 5) by the expand(n) procedure, which generates
successor nodes of the selected node n and assigns each of them a value using the
modified heuristic function Hλ. Successor nodes with value less than the best
move minus a threshold are pruned from the game tree; the remaining nodes are
added to the partial tree.

The backpropagate procedure (line 6) recursively updates the values of the
predecessor nodes up to the root of the tree. Each node value is assigned the
maximum value of its successors. The algorithm iterates for a random number
of iterations, with a fixed probability to stop each iteration. Finally, the model
returns the move with the highest value (line 7).
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Algorithm 2. Main-model(State s, Parameters {λ,W, lapse, stop}):
1 if lapse then
2 return random-move

3 root = node(s)
4 while !stop do
5 n=selectnode(root)
6 expand(n)
7 backpropagate()

8 return argmaxni∈Succ(root)V (ni)

3.5 Conv-net Model

We develop an alternative model based on convolutional neural networks, which
have recently been used successfully to play Go [7,8]. Our convolutional neural
network (CNN) model treats the game as a classification problem, learning to
assign 1 of 36 labels to a board, represented by a 4 × 9 × 2 binary tensor. The
network has three layers: an input layer, a hidden convolutional layer, and an
output layer. The convolutional layer contains 32 4 × 4 × 2 filters with rectified
linear activation functions. There is no pooling layer between the convolutional
layer and the fully output layer. The output layer is a fully connected layer, to
which two nonlinearities are applied: the first is a softmax function to convert
the output to a probability distribution over the 36 possible labels, the second
is a filter that forces zero probability to be assigned to occupied squares.

We fit the CNN model using stochastic gradient descent with Nesterov
momentum. To reduce overfitting, we introduce random dropout (p = 0.75)
between the hidden layer and the output layer and an early stopping condition
during training. We use a five-fold cross-validation scheme with the same splits
as used for fitting the main model, setting aside 60% of the data as training data,
20% as validation data used for the early stopping condition, and 20% as final
test data. Because we did not collect sufficient data to fit the network to each
subject individually, we aggregate the data across all subjects for training and
report the average log-likelihood per subject. Additionally, we apply reflections
to augment the training data to achieve a sufficiently large training set.

3.6 Opt-rand Model

The opt-rand model is a mixture between optimal (i.e., minimax) and random
play with only one parameter: the mixture weight. Because human subjects
do not have access to the minimax values of each state, we consider the opt-
rand model psychologically implausible. However, it still serves as an important
control to verify whether our models predict only the subjects’ frequency of
making mistakes, or more general preferences.
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3.7 Fitting the Model Parameters

We use maximum-likelihood estimation to infer the parameter values Θ that
maximize the likelihood function

∏
(at,st)∈D P (at|st, Θ) where D is the set of

all actions performed by a subject in all the states they encountered. Because
computing the likelihood analytically or numerically is intractable, we instead
estimate the log probability of a subject’s move in a given board position using
inverse binomial sampling [12]. We use a uniformly unbiased estimator with vari-
ance equal to the Cramer-Ráo bound, and optimize the log-likelihood function
with multilevel coordinate search [13]. We report log-likelihoods for all models
with five-fold cross-validation.

4 Results

We compare our models and show which of them best describe subjects’ choices.
To demonstrate that all parts of our main model are important, we compare our
model to lesion models generated by removing model components (in Sect. 4.1).
Next, we show two specific patterns in human behavior that our model accu-
rately predicts (in Sect. 4.2). We then show that our model is able to predict the
subjects’ responses in two related tasks (in Sect. 4.3). Finally, we use the model
to explain differences in the decision process between stronger and weaker sub-
jects (in Sect. 4.4). We find that the model, fitted to stronger subjects’ choices,
uses larger trees and has less noise.

4.1 Predicting Human Choices with Our Models

Fig. 4A depicts the cross-validated log-likelihood of our models (Main, Myopic,
Conv-net and Opt-Rand) for each subject, playing against a human opponent.
We also plot the log-likelihood of a completely random model (chance). Our
models’ log-likelihoods are better than chance, demonstrating their ability to
predict subjects’ responses.

We find that our main model predicts subjects’ choices better than the
Myopic model, suggesting that people indeed build decision trees. The Conv-
net model also performs worse than the main model, but this primarily reflects
its tendency to overfit training data. All our models perform much better than
the Opt-Rand mixture model, demonstrating their ability to predict more than
only the subjects’ error rates.

We next perform a lesioning comparison, examining the relative contribution
of different components in our main model by removing them, one at a time. We
remove either the pruning rule, the feature-drop procedure, or any of the five
features. All of the lesioned models perform worse than the original (Fig. 4B),
indicating that these model components are necessary to the main model’s ability
to predict human behavior. The most and least important features are the 3-in-
a-row and the center, respectively. This also demonstrates that the pruning and
feature-drop are necessary to capture the subjects’ selective attention, either to
specific patterns on the board or to a subset of the decision tree.
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Fig. 4. (A) Log-likelihood of our models for each subject. Our main model performs
better than chance, Opt-Rand, Conv-net and the Myopic model. (B) Log-likelihood
of our models and lesions, averaged across subjects. For each model, the error bars
denote the standard error of the mean log-likelihood difference with the main model.
The main model performs best, although some lesion models come close.

4.2 Summary Statistics

We have shown that our main model predicts the subjects’ choices better than
alternative models. Here, we compare the model prediction directly to the sub-
jects’ choices, using two summary statistics. For each move played by each sub-
ject, we measure (1) the distance from the square they moved on to the center of
the board, and (2) the number of pieces on the 8 neighboring squares. We plot
the average of these statistics as a function of the number of moves played in a
game (Fig. 5). We also measure these statistics for moves played by the model in
the same positions, as well as random moves. On average, subjects move closer
to the center and on squares with more neighboring pieces than random. The
model closely matches these two aspects of human play.

4.3 Generalizing Predictions of Our Model

We demonstrate our model’s ability to generalize beyond predicting the subjects’
choices during full games by inferring parameters for each individual subject
from their choices during games, and predicting their 2AFC choices and board
evaluations without additional fitting.

To predict a choice on a 2AFC trial, we execute our tree search model as
usual, except that we restrict the successor nodes of the root node to the two
candidate moves and omit the pruning step. To predict board evaluations, we
execute our model and take the value of the root node. If the model lapses, we
set this value to 0. Then, we map this value into the subject response interval
[1,7] using score = 3 + 4 tanh(value/20).

The average accuracy of the 2AFC prediction across subjects is 56.1 ± 1.1%
(Fig. 6A), and the average correlation between the predicted and observed
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Fig. 5. The predicted and the observed behavior on (A) the average distance from the
move played by a subject to the center of the board. (B) The number of pieces on
neighboring squares. Our model reproduces both these patterns. The insets illustrate
how these metrics are defined for a given board and a subject’s move (open circle).

Fig. 6. (A) Percentage of correctly predicted choices on the 2AFC task for each sub-
ject. (B) The correlation coefficients between each subject’s board evaluations and
evaluations predicted by the model. In both cases, we fitted the model parameters on
subjects’ choices during games against AI opponents. Both predictions are better than
chance for almost all subjects.

evaluations is ρ = 0.36 ± 0.04 (Fig. 6B). The prediction is better than chance for
34 out of the 40 subjects in the 2AFC task and for 38 subjects in the evaluation
task.

To put these results into context, we develop an oracle model, which selects
the optimal move on each 2AFC task (with random tie-breaking). On the board-
evaluation task, the oracle responds 1, 4 or 7 for winning, drawn and losing posi-
tions, respectively. Overall, the oracle model predicts subjects’ choices slightly
worse than our main model (percent correct 2AFC: 55.3 ± 0.6%, correlation
predicted/observed evaluation: ρ = 0.30 ± 0.03, Fig. 7).
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Fig. 7. (A) Performance of our main and oracle models on each category of candidate
moves. (B) Correlation between predicted and observed evaluations on positions with
the same game-theoretic value. In both cases, our model performs on average slightly
better than the oracle model. Importantly, our model predicts subjects’ preferences
when there is no correct decision.

To explain our model’s advantage over the oracle model, we compute the
percent of correctly predicted 2AFC choices for the main and oracle models for
each category of trials (win/win, win/draw, etc.).

For trials where one move is strictly stronger, our model performs compa-
rably to the oracle model, showing that our model does capture the subjects’
error rates. For trials where both moves are equally strong, the oracle predicts
at chance, but our model performs better, demonstrating that our model pre-
dicts the subjective preferences. In the board-evaluation task, we compute the
correlation between predicted and observed evaluations across all trials in a cat-
egory. Again, the oracle model predicts at chance, but our model can predict the
subjective evaluations, for either winning or losing positions (but no drawn).

4.4 Playing Strength

The model parameters that we infer for each individual subject reflect how
human thought processes differ between subjects, allowing us to examine the
differences between strong and weak players. We measure a subject’s playing
strength by combining 4 metrics: (1) the Elo rating [14] computed from their
results in games against AI opponents, (2) the frequency at which they make
errors in their games, (3) the percentage of correct choices in the 2AFC task,
and (4) the correlation of their board evaluations with the game-theoretic values.
All 4 performance metrics correlate with each other across subjects as shown in
Table 1.

The playing strength of heuristic search algorithms depends on properties
such as the size and depth of the game tree or the ‘quality’ of the heuristic func-
tion. Because our model is stochastic, we can also improve its playing strength
by reducing noise. Among these factors, which is responsible for differences in
human playing strength?
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Table 1. Player strength correlation matrix

Elo Success rate 2AFC Evaluation

Elo 1 0.83 0.61 0.47

Success rate 1 0.47 0.44

2AFC 1 0.43

Evaluation 1

Fig. 8. Correlation between playing strength and size of decision tree, depth of leaf
nodes, entropy of the predicted distribution, and heuristic quality. We use Spearman
correlations to mitigate the effect of outliers. Stronger players build larger trees and
have less noise but do not necessarily have better heuristics or search deeper.

For each subject in Experiment 2, we infer model parameters from their
choices in games against AI opponents. We let the model with these parameters
simulate moves in all positions from the games in Experiment 1. We measure the
size of the decision tree built by the model, the average depth of the leaf nodes,
the entropy of the model’s move distribution, and the correlation between the
heuristic function H(s) and the game-theoretic value.

In Fig. 8, we plot these 4 metrics against the playing strength of each subject.
The tree size and entropy correlate with playing strength, but the depth of search
and heuristic function quality do not; stronger players search more, have more
precise board evaluations, and make fewer attentional lapses.
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5 Summary and Future Work

We described a model inspired by heuristic search that mimics humans playing
a simple combinatorial game. We fitted the model’s parameters to individual
subjects to capture differences in playing styles. We also suggested alternative
models and compared our model to lesions in order to show that the components
of our model are necessary to predict human behavior. We then showed that
our model predicts subjects’ choices in 2AFC tasks and board evaluations. We
analyzed player strengths and conclude that stronger players build larger trees
and have less noise.

For future work, we plan to investigate whether our models can also describe
choices of expert players. We plan to run multiple sessions of Experiment 2 to
measure improvements in the subjects’ playing strength and investigate which
aspects of our model (tree size and depth, noise or heuristic quality) change
as a result of experience. We also plan to investigate the encoding of board
states in human memory by asking subjects to memorize and then reconstruct
board positions, similar to what was done previously in Chess [15]. We are also
interested in finding physiological and neural correlates of our model. We plan
to record response times, eye movements, and neural activity as measured by
an fMRI scanner, and use that as further evidence that our model captures the
cognitive processes humans use to play games.
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