
Abstract The influence of social connections on human behaviour has been demon-
strated in many occasions. This paper presents the analysis of the dynamic properties
of longitudinal (335 days) community data (n=3,375 participants) from an online
health promotion program. The community data is unique as it describes how the
network has evolved since its inception and because the information exchanged
through the network was predominantly about the achievements of participants in the
program and therefore influencing behavior through social comparison. The analyses
show that the largest component of the community network has characteristics of a
small world network. The analyses also show that connections are formed according
to a strong attachment preference according to the gender, and a weaker homophily
for Body Mass Index. The presented analysis can serve as basis for creating novel
interventions that influence physical activity behavior through social connections.

1 Introduction
Social Network Analysis (SNA) is a broad research area, with applications in many
different disciplines, incorporating aspects of sociology, social psychology and
anthropology [19]. SNA is useful for studying nodes’ influences within a network,
and how behaviours, opinions or sentiments are spread in social networks [3, 6]. The
nodes with an important position can be used to find points of interventions to stop
or to enhance the process under study [1, 2, 9, 11, 21].

However, many of the contributions in this field are based on static networks,
without taking the time dimension into account. The dynamics of the network can
reveal more about how the network evolves over time [5, 22].
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In this paper, we investigate the dynamic properties of longitudinal (336 days)
community data (n=3,375 participants) from an online health promotion program.
This data set presents a network of people that share their physical activities and see
others’ activity levels. It is a data set specifically focusing on health promotion, in
contrast with other research which is mostly using online social networks for general
purposes, such as Facebook, Twitter, etc. [8, 15].

To build this data set, the participants wore an activity monitor device that tracks
their physical activity level (PAL). They also had access to an online system where
they could befriend other participants in order to share and see each others’ PAL. The
data sample used in this work was collected from 28/04/2010 until 30/03/2011. The
analysis of the characteristics of this social network in a health promotion context
provides a basis for answering the following questions:

1. How does the largest component of this specific social network develop over time?
2. Does this social network demonstrate the homophily phenomenon (concerning gender and

BMI)?
3. Can we use the dynamic analysis of the network to determine influential nodes?

The paper is organized as follows. Section 2 discusses the dynamic aspects of
social networks, and presents the concepts explored here. Section 3 explains the
analysis performed, metrics used and the selection process. Section 4 shows the
results of the analyses. Finally, Section 5 concludes the paper with a discussion of
the consequences and the possible applications of the findings.

2 Dynamical Social Network Analysis
The dynamic aspects of social networks can be analyzed in two ways: (1) looking at
the changes inside the network (changes in the nodes’ attributes as opinions, beliefs,
etc.), or (2) looking at the changes of the network itself (the topology of the network,
the nodes’ degrees, etc.). Dynamical networks are considered here as social networks
where the topology changes over time due to new connections or new subjects inside
the network.

Static measures of nodes’ degrees, centrality, shortest paths, etc. of one fixed
snapshot of the data are not sufficient to understand real networks that evolve over
time. How new connections are made in or removed from the social network can to
some extent be explained by these two phenomenons: homophily and preferential
attachment (‘more becomes more’) [4, 14]. These concepts will be explored further
in this work.

The dataset that we use is also used in [10]. In their work, the authors explore the
internal states of the nodes and the correlations between the characteristics of the
nodes for a shorter period (14 weeks). In [13], the same data set is the basis for a study
on the differences between people inside and outside a community, showing how
the community aspect plays a role in changing the physical activity level during an
intervention. The current work is dedicated to the topological and structural aspects
of the network and its connections over time.
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3 Methods
This section explains the data collection and the data processing. The aim is to
provide a clear understanding of how the data was collected, how the subset was
selected and how the analysis was done.

3.1 Data Set and Data Selection
The data set is the result of an online physical activity promotion program, where
the participants wore an activity monitor that tracks their physical activity level
(PAL). The devices were synchronized with an online system, which also provided
the possibility for them to join a community through connection requests. The
participants could also participate in a health promotion program, and those who
decided to do that were tagged in our data set with a ‘start plan date’. The data used
in this work spans 336 days, from 28/04/2010 until 30/03/2011.

As the decision to join the community was optional for the participants, around
10% of them decided to join the social network to exchange their information about
the PAL tracked by their devices. In total there are almost 5,000 nodes that opted to
join the online community at some moment during the experiment.

Due to changes in the system, some cleaning was necessary to keep the data set
reliable for the analyses performed. From the originally 5,000 nodes and around
28,000 edges, we filtered nodes and edges according to the following characteristics:

a) Nodes without ‘start plan date’ were removed;
b) Nodes were included according to the date of their started plan;
c) Nodes that dropped out the experiment (tagged with a value for ‘dropout date’)

were taken off at the day when they quit the network and the program;
d) Nodes without a value for BMI (Body Mass Index), gender and nodes in which

all information was missing were taken out;
e) Edges without ‘start date’ value were removed;
f) Edges connected to excluded nodes were removed.

From a total of 28,418 edges, 3,802 edges didn’t have information about the
date of connection, because some requests for connections in the network were not
approved from the receiving peer. As these edges are represented in two directions,
1,901 unique edges were discarded. From the 24,616 edges left, 12,047 are duplicated
edges, i.e., node A connects to B, but the edge (B,A) already exists. As all connections
are bidirectional, this is redundant data. So we have, in the end, a total of 12,569
edges representing connections that were formed during the experiment.

The data set originally contained 4,989 nodes. Of those, 1,614 nodes were not
eligible because they do not have values for all the attributes needed for the analysis
(i.e., gender, BMI and start plan date). The selected data set has 3,375 nodes left.

The nodes are only included in the network in the period between the start plan
and the drop out date (for those that dropped out). After the node leaves the network,
all its connections are deleted also. The impacts of the cleaning process are irrelevant,
because the nodes and edges removed didn’t participated in the program as demanded.
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3.2 Social Network Analysis
The network measures that are calculated are [19]: (1) degree distribution; (2) average
degree; (3) closeness centrality; (4) eigenvector centrality; (5) betweenness centrality;
and (6) average shortest path . These aspects were analyzed for each day of the
experiment.

Formula 1 shows the calculation for the combined centrality, a combination of
the betweenness and closeness values:

CombC(i) =
CC(i)+CB(i)

2
(1)

CC(i) and CB(i) are the closeness and betweenness centralities, respectively. This
formula doesn’t consider the balance between the two centrality measurements, and
might be improved for future analysis. For our analysis it is correct to say that the
Closeness centrality will influence more than the betweenness for having higher
values in general.

Homophily is the tendency of nodes to create strong connections with others
that are alike, have the same opinions, or share similar characteristics [14]. The
homophily principle can be studied in two ways: the social homophily and the value
homophily [12, 20]. In this work, the social aspects (gender and BMI) are studied in
depth, while the value aspects are left out of the analysis.

The homophily according to gender was calculated using the gender of the nodes’
edges. These edges were categorized as follows:

Edge MM (EMM): a connection between two male nodes;
Edge MF (EMF): a connection between a male node and a female node;
Edge FF (EFF): a connection between two female nodes.

As the three categories are disjoint, the total number of edges equals to EMM+
EMF + EFF . The homophily for female gender and male gender are given by
equations 2 and 3, respectively.

HomophilyF =
EFF

EFF +EMF
(2)

HomophilyM =
EMM

EMM+EMF
(3)

To calculate homophily for the BMI, we considered nodes with BMI in the same
range as equals. Two different thresholds were used: 5.0 and 6.5, which are the
respective ranges for the group of Normal and Overweight BMI in the categorization
according to [18].

The ratio between the nodes’ edges with a small difference in BMI and the total
number of edges yields the percentage that follows the homophily principle for the
BMI. The equations follow the same principles of equations 2 and 3.

The ego-network density for the nodes is used to find important nodes. The
density is calculated in two steps. First, the ego-network of all the nodes (including
the observed node) is created using 1-step neighborhood. After this step, the density
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of the ego-network was calculated as: Ego-density = |E|
n(n−1) , where |E| is the number

of edges in this subgraph, and n is the number nodes.

4 Results
This section presents the results obtained from the social network analysis. The
section is organized according to the questions from Section 1:

1. How does the largest component of this social network develop over time?
2. Does this social network demonstrate the homophily phenomenon (for gender and BMI) ?
3. Can we use the dynamic analysis of the network to determine influential nodes?

4.1 Nodes, edges and degree distribution
On day 98 of the experiment the number of nodes in the graph is stabilized at 2,996. The number of
nodes in the largest component increases until the end of the experiment, due to new connections
established among the nodes.

For the edges there is also a point of stabilization in the new connections around day 100. From
that day onward there is a very small increase in the number of connections (around 8.2%). Most of
the edges are in the largest component, as it is expected in a network that follows the Small World
Network model.

The graph follows a Power-law distribution for the degrees of the nodes for all time steps. Figure
1 shows the degree distribution for the days 1, 100 and 336 in a log-log scale (for illustration1). The
lower graphics show the coefficients for the linear regression of the correlation between the degree
of the nodes and the number of nodes with certain degree.

As shown in the lower graphic, the p value is always significant for our data set, and the
R-squared is close to 1, showing that the model explains very well the data, mainly after day 100.

The ‘more becomes more’ principle is the assumption that nodes with higher degree have a higher
chance of receiving more connections over time [16]. Figure 2 shows how the degrees of the nodes
with the fewest connections (the ‘poorest’, right) and nodes with the most connections (‘richest’,
left) evolve over time. More investigation is needed to claim that the preferential attachment is
observed here, but the information about the rich and poor nodes suggests that it could be present in
our data set.

4.2 Largest component and other components
The ‘largest component’ is the biggest connected component among all components of any graph.
Figure 3 shows the percentage of the nodes of the graph that are part of the largest component for
all time steps in two different scenarios. In the first scenario, all nodes are included in the graph. As
can be observed, the average number of nodes in the largest component is 65% after day 296 for
the entire graph. The increase in the percentage follows the inclusion of new edges after time 100
(when the number of nodes is stable).

As there are many nodes with degree 0 (isolated nodes), for the second scenario, the nodes
with degree 0 were excluded from the graph. In this scenario the percentage of nodes in the largest
component goes up to 80%.

1 The other days and other animations can be seen at http://www.cs.vu.nl/˜efo600/
cn2016/

http://www.cs.vu.nl/~efo600/cn2016/
http://www.cs.vu.nl/~efo600/cn2016/
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Figure 4 shows the evolution of the connected components over time. The upper graphic shows
the number of components over time. As edges are inserted, many components are joined, explaining
the decrease from around 1,200 connected components to almost 600 in the end. The red line shows
the number of components bigger than 1, i.e., non isolated nodes. This number goes from 39 on day
1 up to 164 in the last day of the experiment. The number of isolated nodes goes from 1,193 in day
1 down to 492, what explains the high number of components, even after the largest component
gathered more than 60% of the nodes of the network.

The correlation between the size of the components and the number of components with a
specific size (frequency of occurrence) is shown in the middle part of Figure 4 in three graphics, for
days 1, 165 and 335. The correlation is significant for all time steps. The three lower graphics show
the p value, R squared and standard error for the regression done in all the time steps of the data set.
It can be seen that the fit parameter goes from approximately 65% to less than 40% in the end of
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Fig. 1: Degree distribution in days 1, 100 and 336 (top) and p value for slope, R
squared and standard error (bottom)
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Fig. 3: Percentage of the nodes in the largest component. All nodes (lower red line)
and nodes with degree larger than 1 (higher green line)

the experiment. This can be explained by the changes in the largest component, and the joining of
previously separated components.

4.3 Centrality measurements
As the largest component has most of the nodes and edges, it is also interesting to explore the
centrality measurements for this component. The following metrics were analyzed: (1) betweenness
centrality, (2) closeness centrality, (3) eigenvector centrality, (4) average shortest path.

The betweenness centrality indicates how important a node is for the transfer of information
or any kind of spreadable element inside a network. Nodes with higher betweenness have more
shortest paths passing through themselves, and therefore can enhance their role in the network. The
closeness centrality is the proximity of a node to the rest of the network, and it is calculated by the
inverse of the sum of the shortest distances between each node and all other nodes in the network.
The eigenvector centrality is calculated based on the centrality of its neighbors.

The average centrality for all the nodes (betweenness, closeness and eigenvector) is shown in
Figure 5. The first three graphics on the left show all time steps, while the first three graphics on the
right provide a zoomed-in version between day 50 and 336.

The lower graphic in Figure 5 shows the average shortest path. The average shortest path for our
data set stabilizes around 6.5, a low value as suggested by the theory in [17].

The combined centrality is useful in finding important nodes that combine a good betweenness
centrality and closeness centrality. Figure 6 shows the combined centrality for all the nodes with
degree higher than 1.

It is possible to highlight the list of nodes with higher centrality (the most potentially influential
nodes in the network). Figure 6 shows the most central nodes measures of betweenness, closeness
and the combined centrality. As shown in Figure 6, nodes 68593 and 3335 are very important for
this data set, as they present the highest values for these measurements.

4.4 Homophily
To investigate homophily according to gender and BMI, the edges were evaluated to determine
whether the nodes they connect belong to the same category. The results for the gender analysis
follow the equations 2 and 3. The data set has 51.4% of the nodes of gender male, and 48.6%
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Fig. 4: Components analysis. Number of components in the graph over the time
(upper), the correlation between the size of the component and the frequency of the
size (days 1, 165 and 335) (middle) and the parameters from the linear regression for
all time steps (lower)

female. Regarding the BMI of the population, 0.8% are underweight, 33.6% are normal, 34.8% are
overweight and 30.8% are obese [18].

Figure 7 (left) shows the homophily according to the BMI of the nodes. Two ranges were tested
for the nodes: 5.0 and 6.5. For the range of 5.0, the ratio of edges with nodes within the same range
is around 50% after day 100, while for range 6.5 this value is increased to around 59%. For both
ranges, more than half of the connections are within nodes with close BMI.

Figure 7 (right) shows the homophily according to gender. Three calculations were made:
(a) edges connecting male-male nodes, (b) edges connecting female-female nodes and (c) edges
connecting same gender nodes (male-male plus female-female edges). In this data set, the homophily
for women holds for between 50% and 60% of the edges. That means that women connect around
half of the time with other women.

For men we observe that more than 60% of the connections are to nodes of the other gender,
female. The fact that women have more connections among themselves is know by other studies on
gender and relationships [7]. However, the figure also shows that homophily is not present for the
male-male connection (i.e., new connections of men are more often with women). When taking
both categories together, there is homophily on gender: above 60% of the edges connecting people
of the same gender.
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4.5 Identifying influential participants
The dynamic nature of the network is clearly visible from the analyses presented in the previous
sections. In previous work we have shown that the more successful participants in the program
are, the smaller is the density of their ego-network [10]. This section demonstrates that the set of
most influential participants dynamically changes over time. We identify influential participants by
comparing properties such as betweenness centrality, closeness centrality, eigenvector centrality,
ego-network density and average shortest path.

Figure 8 shows the relation between the node degree of each participant and their ego-network
density for the first and last day of the experiment. In this graph we’re interested in nodes that have
a low density yet a growing degree, as they can be bridges on spreading of emotions, for instance.
These are the participants in the top-left quadrant of the graph. Despite the fact that this is just a
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snapshot, the changes over time provided by the combination of each day’s relation can give a better
picture of what is happening inside a network.

We plotted graphs for all days of the dynamic network which revealed that the set of nodes that
emerges in the top-left quadrant are frequently changing. During the experiment, four leader nodes
were in evidence considering the ratio between the degree of the nodes and the ego-network density.
Node 409 (from day 1 to 12), node 3069 (from day 13 to 40), node 25127 (from day 41 to 254) and
node 3335 (from day 255 to 336).

5 Conclusions
In this paper, we have investigated the dynamic properties of a longitudinal study of a networked
community participating in an online health promotion program. It turned out that studying the
dynamics gives additional insights in characteristics of the network. For example, it is shown that the
number of components in the network is decreasing while the size of the components is increasing
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at the same time. The components themselves follow a Power-law distribution at all time steps:
there are a few components with many nodes, and a lot of components with only a few nodes. It is
also shown that characteristics like betweenness, closeness, eigen vector and average shortest path
at the start of the network are very different from the values after 356 days; however it turned out
that already after 50 to 100 days most measurements were relatively stable.

The dynamical data set also allowed us to evaluate whether two well-known phenomena of
evolving networks are present: homophily and preferential attachment. Our analysis showed that
homophily takes place on the aspect BMI and gender; the latter especially for female-female
connections. Apart from the possible preferential attachment, more investigation is needed to affirm
that it is present in this data set.

Finally, the combination of degree measurements and the density of the ego-network was
presented, and we aim to use it to identify people that are potentially influential in their network in
further work. Interestingly, the set of people who are influential according to this metric changes
during the evolution of the network, even after the moment that the nodes of network have stabilized.
This suggest that continuous monitoring the evolution of a network is important to identify such
people.

We believe our discoveries and methods can form the basis for automated (health) interventions
that exploit the social network for changing behaviours of individuals, and possibly lead us to future
discoveries about leadership, spreading of emotions or any other application related to the network’s
topology and dynamics.
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[13] Manzoor, A., Mollee, J.S., Araújo, E.F., van Halteren, A.T., Klein, M.C.A.: Online sharing of
physical activity: does it accelerate the impact of a health promotion program? In: Socialcom
2016 (2016)

[14] Mcpherson, M., Smith-Lovin, L., Cook, J.M.: Birds of a Feather: Homophily in Social
Networks. Annual Review of Sociology 27(1), 415–444 (2001)

[15] Mislove, A., Marcon, M., Gummadi, K.P., Druschel, P., Bhattacharjee, B.: Measurement and
analysis of online social networks. Proceedings of the 7th ACM SIGCOMM Conference on
Internet Measurement - IMC ’07 pp. 29–42 (2007)

[16] Newman, M.E.J.: The structure and function of complex networks. Siam Review 45(2),
167–256 (2003)

[17] Newman, M.E.J., Watts, D.J.: Scaling and percolation in the small-world network model.
Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics
60(6 Pt B), 7332–7342 (1999)

[18] Organization, W.H., et al.: Global database on body mass index: an interactive surveillance
tool for monitoring nutrition transition. World Health Organization: Geneva (2012)

[19] Scott, J.: Social Network Analysis. Sage (2012)
[20] Tsvetovat, M., Kouznetsov, A.: Social Network Analysis for Startups: Finding connections on

the social web. ” O’Reilly Media, Inc.” (2011)
[21] Valente, T.W.: Network models of the diffusion of innovations, vol. 2. Hampton Press (NJ)

(1995)
[22] Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small-world’ networks. Nature 393(6684),

440–2 (1998)


	61Social Connection Dynamics in a Health Promotion Network
	1 Introduction
	2 Dynamical Social Network Analysis
	3 Methods
	3.1 Data Set and Data Selection
	3.2 Social Network Analysis

	4 Results
	4.1 Nodes, edges and degree distribution
	4.2 Largest component and other components
	4.3 Centrality measurements
	4.4 Homophily
	4.5 Identifying influential participants

	5 Conclusions
	References




