
Abstract Research on generative models plays a central role in the emerging field
of network science, studying how statistical patterns found in real networks can be
generated by formal rules. During the last two decades, a variety of models has been
proposed with an ultimate goal of achieving comprehensive realism for the generated
networks. In this study, we (a) introduce a new generator, termed ReCoN; (b) explore
how models can be fitted to an original network to produce a structurally similar
replica, and (c) aim for producing much larger networks than the original exemplar. In
a comparative experimental study, we find ReCoN often superior to many other state-
of-the-art network generation methods. Our design yields a scalable and effective tool
for replicating a given network while preserving important properties at both micro-
and macroscopic scales and (optionally) scaling the replica by orders of magnitude
in size. We recommend ReCoN as a general practical method for creating realistic
test data for the engineering of computational methods on networks, verification,
and simulation studies. We provide scalable open-source implementations of most
studied methods, including ReCoN.

1 Introduction
Context. When engineering algorithms, the ability to create good synthetic test data
sets is valuable to estimate effectiveness and scalability of the proposed methods. A
shortage of real data for this purpose can for example arise if they are proprietary,
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sensitive, or unavailable in different scales. In the context of developing network
analysis algorithms, realistic synthetic graphs allow us to produce experimental
results that are representative for what can be observed for real data. Among the main
use cases are obfuscation (replacing restricted real data with similar synthetic data),
compression (storing only a generator and its parameters instead of large graphs), as
well as extrapolation and sampling (generating data at larger or smaller scales).
Problem definition. We envision two usage scenarios: Given an original (or real)
network O = (V,E) (no = |V |, and mo = |E|) that cannot be freely shared, we would
like to be able to create a synthetic network R (with nr nodes) that matches the
original in essential structural properties, so that computational results obtained from
processing this network are representative for what the original network would yield.
We refer to R as a replica. We assume that whoever creates the replica has access to O
and can pass it to a model fitting algorithm which uses it to parametrize a generative
model.

More importantly, in addition to producing scale-1 replicas (where nr = no), in
the second scenario we want to use the generative model for extrapolation: We want
to parametrize it so that it produces a scaled replica Rx that has nr = x · no nodes,
where x is called the scaling factor. The structural properties of Rx should be such
that they resemble a later growth stage of the original (also see Sec. 2). This should
enable users of the replica to extrapolate the behavior of their methods when the
network data is significantly scaled.

Finally, with respect to performance, we would like the generator algorithm and
implementation as well as the fitting scheme to be efficient enough to produce large
data sets (on the order of several millions of nodes and edges) quickly in practice.
State of the art. Many generative models for complex networks exist. We point the
interested reader to a survey [12] for a more comprehensive overview. A widely used
model intended for model fitting uses exponential random graph models (ERGM), cf.
e. g. [25]. Unfortunately, ERGM are so expensive that graphs with tens of thousands
of nodes are already considered big for these models [3].

Other generative models admit fast generators and are thus in our focus. Among
those models are RMAT [6], BTER [16], and Hyperbolic Unit Disk Graphs
(HUDG) [17]. Initially, they can fit only few properties of the original network
by design, though. A previous fitting scheme by Leskovec et al. [20] for RMAT
graphs is quite time-consuming already for medium-sized networks [28, 29].

Editing models create a synthetic network by editing the original network. The
MUSKETEER generator [14] implements a multiscale editing model and is effective
for obfuscation purposes. However, its current implementation [13] is not fast enough
to generate sufficiently scaled replicas of large graphs.
Outline and contribution. In this paper we develop and evaluate a sufficiently fast
generator that focuses on creating realistic scaled replicas of complex networks.

We point out in Section 2 which criteria we consider important for calling a
(scaled) replica realistic. In particular we conceptualize realism in two ways: (i)
matching an original graph in a set of important structural properties, and (ii) match-
ing the running time behavior of various graph algorithms.
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Our new generator ReCoN, short for Replication of Complex Networks and
described in Section 3, uses and extends ideas of LFR, a generator used for bench-
marking community detection algorithms. Using the original degrees and a found
community structure we are able to capture a much-more detailed signature of the
network than a parametrization of the LFR generator. In Section 4 we discuss the
generative models that we use for comparison (among them RMAT, HUDG, and
BTER) and develop model fitting schemes for them.

Our comparative experimental study in Section 5 indicates that ReCoN performs
overall quite well and usually better than other generators in terms of realism. We
can also conclude that the ReCoN implementation is fast, as it is capable of creating
realistic scaled replicas on the scale of 108 edges in minutes. The ReCoN code is
publicly available in the open-source network analysis package NetworKit [31].

2 Realistic Replicas
We consider a generative model realistic if there is high structural similarity between
the synthetic graphs produced and relevant real-world networks. It is neither our
goal nor generally desirable to obtain an exact correspondence between original and
replica. First, this would exclude the use case of obfuscation. Secondly, obtaining
an isomorphic graph is rarely required for generalizable experiments. Note that we
consider a single “realism score” for each model inappropriately reductionist. Rather,
we quantify diverse aspects of realism in our experimental evaluation and leave it to
the reader to decide about their relative importance.

For 1-scale replicas (with the same size as the original), we measure the similarity
in terms of a set of commonly used metrics: Sparsity (number of edges vs number of
nodes); degree distribution (more precisely its Gini coefficient); maximum degree
as a proxy for the connectedness of hub nodes; average local clustering coefficient
to measure the local presence of triangles; diameter to monitor the small-world
effect; number of connected components and number of communities as additional
non-local features. These metrics cover both local and global properties and are
deemed important characteristics of networks [23].

How can we extend the notion above regarding realism to scaled replicas of a
network? To answer this question, let us look at the scaling behavior of a set of 100
Facebook social networks [32]. These networks were collected at an early stage of
the Facebook online social networking service in which networks were still separated
by universities. Fig. 1 plots basic structural measures of these Facebook networks
against the number of nodes n, as well as a regression line and confidence intervals
(shaded area) to emphasize the trend. While linear regression may not always seem
completely appropriate for these data, the general trend is still captured.

We can observe from Fig. 1 a growth of the number of edges m that is linear in
n, an increase in the skew of the node degree distribution as measured by the Gini
coefficient, a growing maximum node degree, a slightly falling average local cluster-
ing coefficient, a nearly constant small diameter of the largest connected component,
and a slightly growing number of connected components (which can be explained
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Fig. 1: Scaling behavior of 100 Facebook networks; from left to right and top to
bottom: number of edges, maximum degree, Gini coefficient of degree distribution,
average local clustering coefficient, diameter, number of components, number of
communities found by PLM

by some small connected components that exist in addition to a giant component).
We detect communities using PLM (Parallel Louvain Method), a modularity-based
community detection heuristic [30], and report the number of communities minus
the number of these small connected components. It can be observed that the number
of non-trivial communities grows slightly.

While we do not propose that these scaling laws are universal, the trends repre-
sented here are commonly observed [4, 5, 27]. Thus, we use them to define desired
scaling properties for the remainder of the study as follows: m grows linearly with n;
the diameter does not change significantly, preserving the “small world property”;
the shape of the degree distribution remains skewed; the maximum node degree in-
creases; the number of connected components may grow; the number of communities
increases slightly.

Recall that one use case for our generator is testing of graph and network analysis
algorithms. Since the running time is an essential feature in such tests, we also
consider a realistic replication of running times important. To this end, we select
a set of graph algorithms that (i) compute important features of networks and are
thus frequently used in network analysis tasks and that (ii) cover a variety of patterns
of computation and data access, each of which may interact differently with the
graph structure. The set consists of algorithms for connected components (essentially
breadth-first search), PageRank (via power iteration), betweenness approximation
(according to Geisberger et al. [11]), community detection (PLM, [30]), core decom-
position (according to [9]), triangle counting (according to [15]), and spanning forest
(essentially Kruskal’s algorithm without edge weights).
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3 The Generation Algorithm ReCoN
We introduce ReCoN, a generator for replicating and scaling complex networks. Its
input is a graph and a community structure on it. For fitting a given graph without
given community structure, we use PLM [30] in order to detect a community structure
first. The basic idea of ReCoN is to randomize the edges inside communities and
the edges between communities while keeping the node degrees. This happens
separately such that each community keeps as many edges as it had before. For
scaling a graph, we first create as many disjoint copies of the graph as desired and
then apply the aforementioned steps. During the randomization of the edges between
the communities the copies usually become connected with each other.

The idea of randomizing graphs inside and between communities is inspired
by the LFR generator, a benchmark graph generator for community detection al-
gorithms [19]. There the basic building blocks are also a random subgraph per
community and a global graph. However, in the LFR generator the degrees and
communities are not given but generated using a power law degree distribution and
a power law community size distribution with nodes assigned to communities at
random, while ReCoN uses the given graph as input for them.

For randomizing graphs while preserving the degree sequence we use random edge
switches where two edges {u,v}, {y,z} chosen uniformly at random are changed
into {u,z}, {y,v} if the resulting graph is still simple, i. e. does not contain any
duplicate edges or self-loops. Similar to the edge switching implementation provided
by [33] we use 10 times the number of edges as the number of random edge switches.
Previously performed experiments (e. g. [22]) have shown that this is enough to
expect the resulting graph to be drawn uniformly at random from all graphs with the
given degree sequence.

For an original graph O= (V,E) with no = |V | nodes and a desired scaling factor x,
ReCoN executes the following steps:

1. Detect a community structure C= {C1, . . . ,Ck} on O using PLM.
2. Create H as the disjoint union of x copies of O. The community structure is

also copied such that the new community structure D= {D1, . . . ,Dx·k} consists
of x · k communities, i. e. each copy of O gets its own copy of the community
structure that is aligned with the structure of the copied graph.

3. For each community Di, 1≤ i≤ x ·k, randomize the edges of the subgraph H[Di]
that is induced by the community Di while keeping the degree distribution using
random edge switches.

4. Randomize the remaining edges, i. e. all edges in H that are not part of one of
the subgraphs H[Di] using random edge switches. Note that afterwards some
edges that were not in one of the H[Di] can now be inside a community. In order
to avoid this, rewiring steps are performed by executing edge switches of such
forbidden edges with random partners. A similar step is also used in the LFR
generator where it was observed that in practice only few rewiring steps are
necessary [18].

Note that it is not necessary to start with the original graph in step 3 and 4.
Using any graph with the same degree sequence is enough as the result is random
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anyway. Therefore, it is enough to know a community structure (as opposed to
the whole original graph) and for each node the internal and external degree, i. e.
how many neighbors it has inside and outside its community, respectively. For our
implementation we choose this alternative. Further, we execute step 3 in parallel for
all communities as the subgraphs are disjoint.

In addition to replicating important properties with high fidelity, the randomization
in step 3 and 4 naturally produces random variance among the set of replicas.

4 Fitting Generative Models to Input Graphs
Parametrized generative models require fitting schemes for learning parameters from
the original network. Because, usually, such schemes are not unique, exploring them
would be important future work. For this study, we have chosen one scheme per
model, parameters of which are summarized in Table 1 in the full version of this
paper [28]. Below we discuss a fitting scheme for power law degree distributions,
and briefly describe the generative models that are compared with ReCoN.
Fitting power law degree distribution (PLD). We apply our custom power law
fitting scheme. A practical replication of a network requires preserving the original
average (otherwise, the density will be changed) as well as minimum and maximum
degrees (applications can be sensitive to such fundamental properties as degree-1
nodes and the distribution of hubs). In general, it is assumed (and implemented in
many algorithms [8]) that PLD only holds starting with a minimum degree and that
for smaller degrees, the distribution might be different. As the LFR generator only
generates a plain PLD, we cannot apply this assumption. Therefore, we fit the PLD
exponent such that, with the given minimum and maximum degree, the average
degree of the real network is expected when a degree sequence is sampled from
this PLD. Using binary search in the range of [−6,−1], we repeatedly calculate the
expected average degree until the power law exponent is accurate up to an error of
10−3.
Erds–Rnyi, Barabasi-Albert, Chung-Lu and ESMC. Erds–Rnyi random graphs
(ER) [24] are fundamental and an important baseline with the edge probability
parameter that we set to produce the same edge-to-node ratio as in O. The Barabasi–
Albert model (BA) [2] implements a preferential attachment process by which a PLD
emerges, which has been claimed to be a typical feature of real complex networks.
In BA, we set the number of edges coming with each new node to fit the original
edge-to-node ratio. The Chung-Lu (CL) model [1] recreates a given degree sequence
in expectation. The Edge-Switching Markov Chain Generator (ESMC) generates a
graph that is randomly drawn from all graphs with exactly the given degree sequence
(see e.g. [22], [26]). In both CL and ESMC we use the original degree sequence. To
generate larger networks, x copies of this sequence are concatenated, multiplying the
number of nodes by x while keeping the relative frequency of each degree.
RMAT. The Recursive Matrix (RMAT) model [7] was proposed to recreate various
properties of complex networks, including an optional power-law degree distribution,
the small-world property and self-similarity. The RMAT model can only generate
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graphs with 2s nodes, where s is an integer scaling parameter. In order to target a
fixed number of nodes nr, we calculate s so that 2s > nr and delete 2s−nr random
nodes. The choice of other parameters as well as the running time of fitting are
discussed in [28].
Hyperbolic Unit Disk Graphs (HUDG). The random hyperbolic graph model em-
beds nodes into hyperbolic geometry and connects close nodes with higher proba-
bility [17]. The unit-disk variant HUDG we use in this paper connects only nodes
whose distance is below a certain threshold. We are focussing on the unit-disk variant
to be able to use a very fast generator for this model [21]. The model has been shown
to replicate some properties observed in real networks, such as a power-law degree
distribution. This method receives as parameters the desired number of nodes, the
average degree of the original network and a power law exponent which is fitted as
described above. As the given power law exponent must be larger than 2, we supply
at least an exponent of 2.1.
BTER. This method receives a degree distribution and the desired clustering co-
efficient per degree, i.e., for each degree to be realized the number of occurrences
and the average clustering coefficient per degree. For scaled replicas we scale the
occurrences of all degrees by the scaling factor. This leads to the target number of
nodes while also preserving the general shape of the degree distribution. In order to
retain the distribution of the clustering coefficients, we leave them unchanged while
scaling the network.
LFR. LFR was designed as a benchmark graph generator for community detection
algorithms [19]. Apart from the number of nodes it requires parameters for power law
distributions of the node degrees and the community sizes, and a mixing parameter
that determines the ratio between intra- and inter-cluster edges. We detect communi-
ties using PLM [30] and fit the parameters for the two power law distributions as
described above using the original degree sequence and the found community sizes.
The mixing parameter is set to the ratio between intra- and inter-cluster edges of the
found communities. The details are described in [28].

5 Computational Experiments
Our implementations of ReCoN and the various fitting methods are based on Net-
worKit [31], a tool suite for scalable network analysis. It also contains many of
the generators we use for comparison and provides a large set of graph algorithms
we use for our experiments. NetworKit combines C++ kernels with an interactive
Python shell to achieve both high performance and interactivity, a concept we use
for our implementations as well. All implementations are freely available as part
of the package at https://networkit.iti.kit.edu. This also includes a
faster and parallel implementation of the LFR generator (compared to the original
implementation [10]).

Our experimental platform is a shared-memory server with 256 GB RAM and
2x8 Intel(R) Xeon(R) E5-2680 cores at 2.7 GHz, using the GCC 4.8 compiler and
the openSUSE 13.1 OS. More technical details are available in [28].

https://networkit.iti.kit.edu
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Fig. 2: Scaling behavior of the different generators on the fb-Caltech36 network.
From left to right and top to bottom: number of edges, max. degree, Gini coefficient
of the degree distribution, average local clustering coefficient, diameter, number of
components, number of communities.

As described in Section 2, we are interested in how well the different generators
replicate certain structural features of the original networks as well as the running
times of various graph algorithms. The results are described subsequently.
Scaling behavior of the generators. The following experiments consider the scaling
behavior of generative models. Given the parametrization discussed before, we look
at the evolution of structural features with growing scale factor x up to x = 32. We
consider the same basic scalar features as for the real networks in Sec. 2 and, due to
space constraints, point to [29] for more results.

In Figure 2, we show the results of the scaling experiments for the fb-Caltech36
network. The number of edges of the replicas is increased almost linearly by all gen-
erators to ≈ 5 ·105 edges which approximately corresponds to 32 times the edges of
the original network. Therefore, all generators seem to keep the average degree of the
original network, which is expected as it is a parameter of all considered generators.
Surprisingly, the maximum degree strongly increases up to 10 or 15 thousand with
HUDG and BA generators, respectively. The original maximum degree is 248, so
that the new value is even significantly higher than the scaled maximum degree (i. e.
248 · 32). Actually, from the scaling study in Sec. 2, we could expect an increase,
but rather in a lower range, so the degree distribution of BA and HUDG generators
are not realistic. Concerning the Gini coefficient, one can clearly see that ER does
not generate a skewed degree distribution at all. All generators that get the exact
degree sequence as input keep the Gini coefficient constant, which is expected and
also relatively realistic from our scaling study.

The original average local clustering coefficient of 0.43 is almost exactly repro-
duced by BTER in which it is an input parameter. The HUDG method increases it
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Fig. 3: Running time replication of a set of network analysis algorithms. Running
times are in edges per second, i.e., higher is faster.

to 0.8, most others obtain very small values. Our new ReCoN generator is less far
off with 0.25 and a slightly decreasing clustering coefficient; the latter is actually
realistic as we saw in Sec. 2. LFR is able to generate a clustering coefficient above 0.2
initially. Other generators produce much lower clustering coefficients. The original
diameter of 6 is almost exactly kept by ReCoN, all other generators except BTER
produce networks with slightly lower diameters, while BTER generates networks
whose diameter is almost twice bigger. All generators show a slight increase of the
diameter when the networks are larger, which is consistent with our scaling study.
While most generators produce networks with just a single connected component,
CL and BTER generate a large number, RMAT and ReCoN a moderate number
of connected components. In the case of CL, BTER and RMAT, this is probably
due to a large number of degree-0 nodes. The original network consists of a giant
component and 3 small components; ReCoN scales them linearly, which is due to its
parametrization. The original network is split into eight non-trivial communities, that
number should increase slowly according to Sec. 2. Only in the networks generated
by BTER, ReCoN and LFR, PLM can find a significant and increasing amount of
communities. While PLM finds over 100 non-trivial communities in the network
generated by BTER, there are fewer communities detectable in the networks gener-
ated by ReCoN and even less in the ones generated by LFR. Overall, ReCoN is the
only generator that keeps the degree distribution, and produces a realistic clustering
coefficient and a small diameter while keeping the graph connected and preserving
a moderate number of communities. All other generators are either unable to keep
the diameter or the connectivity or the number of communities. It is part of future
work to investigate whether the full hyperbolic random graph model can alleviate the
weaknesses of the unit-disk case.
Replicating running times of graph algorithms. Synthetic graphs are frequently
used in algorithm engineering to estimate the running time of an algorithm assuming
that this time will be similar on real networks. We examine if this is indeed the case
with the generative models we consider. Using the previously described generators
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Fig. 4 Fitting and generating:
processing speed measured in
edges/s (size of replica graph /
total running time, measured
on 100 Facebook graphs)

and fitting schemes, we generate replicas of 100 Facebook networks and test a variety
of graph algorithms (see Sec. 2) on both the original and replica sets.

Our experiments demonstrate (see Fig. 3) that the running times on the replica
sets often do not match those on the original set. The gray segments of the box plots
represent the distribution of running times measured on a set of original networks.
Ideally, the distribution on the synthetic networks would be identical. The difference
is statistically nontrivial, though. Small variance between the models exists for
connected components and spanning forest computations, since their running time is
nearly constant per edge. Other algorithms exemplify how much running time can
depend on network structure, especially community detection, core decomposition,
triangle counting and PageRank. In general, the running time measurements obtained
on ReCoN match the originals closely in most cases. An exception is community
detection, where PLM seems to profit from ReCoN’s explicit model of communities.
BTER shows close matches, too.
Generator running times. In Fig. 4, we show the running times of parameter fitting
and generating a replica for all methods. Processing speed is given in the number
of edges per second. The entire set of Facebook networks was used to produce the
measurements, so generated replicas range from about 15000 to 1.5 million edges.
For all models, generating the graph takes up the vast majority of time. BTER’s
MATLAB-based implementation is slowest, while the ER and HUDG generators
are the fastest. Our implementations of LFR and ReCoN are not among the fastest
generators, but fast enough to produce millions of edges in minutes.

6 Conclusion
We have presented a new generator, ReCoN, for replicating and scaling existing
networks. In an extensive experimental evaluation (not all results could be shown due
to space constraints, see [28, 29] for more results) we have shown that ReCoN is
capable of generating networks which are (i) similar to the original network in terms
of important structural measures and (ii) lead to similar running times of many graph
and network analysis algorithms. Using ReCoN it is possible to realistically replicate
an existing network, and to scale the synthetic version by orders of magnitude, e. g., in
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order to test algorithms on larger data sets where they are not available. Furthermore,
it allows to create anonymized copies of such networks that can be distributed freely
and allow to conduct representative experiments on them. While other generators
sometimes perform better concerning certain criteria, none of the other generators is
capable of approximately reproducing such a wide range of properties and running
times.
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