
Abstract Many real-world networks have a nested structure. Examples range from
biological ecosystems (e.g. mutualistic networks), industry systems (e.g. New York
garment industry) to inter-bank networks (e.g. Fedwire bank network). A nested
network has a graph topology such that a vertex’s neighborhood contains the neigh-
borhood of vertices of lower degree. Thus –upon node reordering– the adjacency
matrix is stepwise, and it can be found in both bipartite and non-bipartite networks.
Despite the strict mathematical characterization and their common occurrence, it
is not easy to detect nested graphs unequivocally. Among others, there exist three
methods for detection and quantification of nestedness that are widely used: BIN-
MATNEST, NODF, and FCM. However, these methods fail in detecting nestedness
for graphs with low (NODF) and high (NODF, BINMATNEST) density or are
developed for bipartite networks (FCM). Another common shortcoming of these
approaches is the underlying asumption that all vertices belong to a nested compo-
nent. However, many real-world networks have solely a sub-component (i.e. not all
vertices) that is nested. Thus,unveiling which vertices pertain to the nested compo-
nent is an important research question, unaddressed by the methods available so far.
In this contribution, we study in detail the algorithm Nestedness detection based
on Local Neighborhood (NESTLON) [7]. This algorithm detects nestedness on a
broad range of nested graphs independently of their density and resorts solely on
local information. Further, by means of a benchmarking model we are able to tune
the degree of nestedness in a controlled manner and study its efficiency. Our results
show that NESTLON outperforms both BINMATNEST and NODF.
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1 Introduction
Two vertices are nested if the neighborhood of the one with larger degree contains
the neighborhood of the lower degree one. We call nested component of a graph the
maximum set of vertices that are nested. Following, a graph is nested if the extent
of the nested component is such that it embraces all vertices. This definition applies
in both bipartite and non-bipartite networks. Nested graphs include some common
topologies like fully-connected ones or stars. In real-world networks, some edges
violate the definition of pairwise nestedness given above; in this case, the lower the
number of these violations, the larger the degree of nestedness of the network.

In Ecology, as it was discovered in the last decade, mutualistic networks show
a pronounced degree of nestedness [4]. In Economics, e.g. the New York garment
industry including 10’000 manufacturers over a period of 18 years was found to
exhibit this property as well [15]. Among non-bipartite networks there are several
examples of networks that show large degrees of nestedness: like inter-bank networks
[13], and trade relations between countries [9].

Four methods have gained particular attention for detecting and quantifying
Nestedness in the last decade: Binary matrix nestedness temperature calculator
(BINMATNEST) [11], based on Nestedness Temperature Calculator (NTC) [2],
Nestedness metric based on overlap and decreasing filling (NODF) [1], and Fitness-
Complexity Metric (FCM) [14]. Nonetheless, these methods detect nestedness for
only a specific density range (BINMATNEST, NTC and NODF fail in detecting nest-
edness for high density networks) or a specific class of graphs (FCM was developed
for only bipartite ones).

All four methods assume that all vertices belong to a single nested component
but, in general, this is not necessarily true. Such component might include solely a
subset of vertices while the others lay outside it. Therefore, it is an important research
question to devise a method that identifies the individual vertices that belong to a
nested component. This question remains unaddressed by the methods available so
far.

The widely used BINMATNEST is based on NTC, which compares the focal
adjacency matrix with a “perfect ordered” matrix. The less these two matrices deviate
from each other, the more the graph is judged as nested. However, the matrix of
”perfect order” is a normative concept characterized by a static isocline [2] (i.e. matrix
is filled up to the secondary diagonal). Both methods judge graphs only as nested
if they have this particular ”perfect order”. They fail in detecting graphs that have
locally nested components. This static and normative concept of nestedness relies
only on global information (i.e. irrespective of local neighborhoods in the nested
components). For large datasets it is important to develop methods for detecting
nestedness that rely solely on local information, because they scale better [7].

In this contribution we review the method Nestedness detection based on Local
Neighborhood (NESTLON) that reliably detects nestedness irrespective of graph
density and network type (i.e. bipartite and non-bipartite networks) [7]. Although in
this contribution we focus on non-bipartite graphs (for the sake of simplicity), all the
results are easily extensible to bipartite ones.
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The remainder of the paper is organized as follows. In the next section section
we provide an overview about nestedness in graphs and the current methods for
detecting it. In ”Algorithm” section we review the alternative method NESTLON for
detecting nestedness. In ”Robustness Analysis” section we compare commonly used
algorithms with NESTLON on a benchmarking graph. The final section concludes
and discussed the main contributions of this Paper.

2 The Notion of Nestedness
2.1 Definition of Nestedness
We first give a colloquial definition of nestedness and later a proper mathematical
definition. In a nested graph the neighborhood of a vertex includes the neighborhoods
of vertices which have lower degrees 1. Therefore, by sorting the adjacency matrix of
a nested graph by degree (i.e. the number of direct neighbors) we obtain a stepwise
matrix. For example, a star is nested and has a stepwise matrix. A star’s central
vertex has the highest degree (i.e. this vertex is connected every other vertex) and all
other vertices have degree one (i.e. they are all connected only to the central high
degree vertex) while the neighborhoods of all lower degree vertices are included in
the neighborhood of the high degree vertex. Therefore, the adjacency matrix of a star
has just one large step (i.e. from maximum degree to one-degree).

For a proper mathematical characterization we briefly recapture the nomenclature
for graphs. The adjacency matrix, A, characterizes the topology of a graph object G.
An non-zero entry in the adjacency matrix, ai j 6= 0, indicates an edge between the
two vertices i and j. Each vertex has a degree, ki, which is the number of neighbors it
is connected to. The total number of edges is e and the total number of vertices is n.
N is the set of all vertices and E is the set of all edges. A graph can be decomposed
by the concept of degree partition [10]:

Definition 2.1. Let G = (N,E) be a graph whose distinct positive degrees are k(1) <
k(2) < .. . < k(m) and let k(0) = 0 (even if no vertex with degree 0 exists in G).
Further, define Di = {ν ∈ N : kν = k(i)} for i = 0, . . . ,m. Then the set-valued vector
D= (D0,D1, . . . ,Dm) is called the degree partition of G.

With this concept of degree partition a nested graph can be expressed as follows
[10]:

Definition 2.2. Consider a nested graph G = (N,E) and let D = (D0,D1, . . . ,Dm)
be its degree partition. Then the vertices N can be partitioned in independent sets Di,
i = 1, . . . ,bm/2c, and a dominating set

⋃m
i=bm/2c+1Di in the graph G′ = (N \D0,E).

Moreover, the neighborhoods of the vertices are nested. In particular, for each vertex
ν ∈Di, i = 1, . . . ,m, we obtain the sets of vertices as

Nν =

{⋃i
j=1Dm+1− j if i = 1, . . . ,bm/2c;⋃i
j=1Dm+1− j \{ν} if i = bm/2c+1, . . . ,m.

(1)

1 This definition is for non-bipartite graphs, for bipartite graphs a similar definition holds [4].
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An adjacency matrix is stepwise if the following definition holds [5]:

Definition 2.3. A stepwise matrix A is a symmetric, binary (n× n) matrix with
elements ai j satisfying the following condition: if i < j and ai j = 1, then ahk = 1
whenever h < k ≤ j and h≤ i.

Thus, a nested graph has a stepwise adjacency matrix and its degree partition can be
separated into an independent and a dominating sets.

A measure for determining the filling of an undirected graph is the density.

Definition 2.4. The density of an undirected graph is given by

γd =
2 · e

n · (n−1)
(2)

In the following we propose a measure for counting the number of holes in a
graph. We compare the neighborhoods of two vertices i and j. If the lower degree
vertex j has a neighbor l, which is not neighbor of i, we will count a hole (because it
appears as such in the sorted adjacency matrix). From there, the density of holes can
be computed [7]

Definition 2.5. The total number of holes in an unweighted graph is given by

γh =
∑i, j∈N Θ(ki− k j)∑l∈N(1−ali) ·al j

∑i, j∈N Θ(ki− k j)min(n− ki,k j)
(3)

with Θ(x) the Heaviside function:

Θ(x) =





0 if x < 0;
1
2 if x = 0;
1 if x > 0.

2.2 Detecting and Measuring Nestedness
In this section we briefly discuss three commonly used methods for quantifying
nestedness in graphs. These measures are BINMATNEST (based on the NTC),
NODF, and FCM.

Binary matrix nestedness temperature calculator (BINMATNEST)
NTC performs insufficiently if the number of holes in a graph is high. Therefore,
BINMATNEST uses a genetic algorithm that reorders rows and columns so that
the packing of the matrix increases. The matrix temperature T is a measure of how
equally the edges are distributed across the matrix. If all edges are in the upper left
corner the temperature is minimal (T → 0). If all edges are equally distributed in the
matrix the temperature is maximal (T → 100). The normalized temperature of the
adjacency matrix is given by the following expression [6]:

µBIN =
100−T

100
(4)

If µBIN = 1 (0) the matrix temperature will be minimal T = 0 (resp. maximal T =
100).
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Nestedness metric based on overlap and decreasing filling (NODF)
NODF was developed for bipartite networks of ecological systems [1] but it is
applicable to square matrices, too. This method is independent of row and column
order since it computes the paired nested degree for each pair of both columns and
rows. However, in contrast to BINMATNEST this method does not reshuffle the
matrix. For the whole matrix the sum of nestedness degrees of all paired rows and
columns is the total nestedness normalized by the number of all pairs. The NODF
metric assigns a value MH

i j to each neighboring pair of vertices i j:

MH
i j =

{
0, if ki = k j

ni j
min(ki,k j)

, otherwise (5)

The total number of common edges among the two vertices i and j is given by ni j.
The procedure is carried out for rows (MP

i j) and columns (MA
i j) analogously. Finally,

the total nestedness for square matrices is then given by [12]:

µNODF =
∑

P
i< j Mi j +∑

A
i< j Mi j

2·n(n−1)
n

(6)

An advantage of NODF is its independence of matrix shape because it goes
through both rows and columns [12]. However, this method fails in detecting nested-
ness for nested graphs of low and high density because it cancels out all terms for
vertices of same degree.

Fitness-Complexity Metric (FCM)
FCM ranks vertices in an iterative and non-linear process [14]. The iteration process
couples a fitness term to a complexity term. Since FCM was solely developed for
bipartite networks, we will not use it as a benchmark in this contribution.

2.3 Benchmark Graphs
We require a solid benchmarking framework for comparing robustness and reliability
among different nestedness detection methods. A benchmark graph needs to differ in
its network characteristics (i.e. degree distribution, graph density, vertex centrality,
etc.) but keep a certain level of nestedness. The authors of [8, 9] propose a coherent
formation process for generating nested graphs with a single exogenous parameter
α that influences the topology of the generated graphs fundamentally. This network
formation process has two contrasting dynamics, edge creation and severance. First,
the edge creating dynamics allows each vertex to create an edge to the most central
vertex in its second-order neighborhood (i.e. the neighbors of its own neighbors)
with a probability α . Second, each vertex may severe the edge to the least central
neighbor in its first-order neighborhood with the complementary probability 1−α .
By changing α we can tune a nested graph between two limiting cases. On the
one hand, we obtain a star topology for α → 0 and, on the other hand, we obtain a
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fully-connected graph for α → 1. A first-order phase transition exists at the critical
value α = 1/2 [8].

The degree partition for the independent set of the nested graph is given by the
following definition [9]:

Definition 2.6. For 0 < α ≤ 1/2 and n→ ∞ the asymptotic expected proportion of
vertices nk in the independent set with degrees k = 0,1, ...,k∗ if given by

nk =
1−2α

1−α

(
α

1−α

)k

(7)

where

k∗(n,α) =
ln
(
(1−2α)n
2(1−α)

)

ln
(

1−α

α

) (8)

In this contribution we utilize this network topology to create benchmark graphs.
In addition, it is possible to weaken the perfectly nested topology by an incremental
increase of random rewiring of edges. This process works as follows. First, for a
randomly chosen vertex we determine all of its next neighbors. Second, a connection
to a randomly chosen neighbor is cut and the focal vertex is connected to another
vertex to which it previously was not connected to. If a vertex is isolated or is
connected to all nodes in the network, nothing happens. The total number of rewired
edges enew is given by the parameter ρrew. These two quantities are linked in the
following way: enew = ρrew ·n. The higher ρrew the more edges get randomly rewired.
This process can be seen as a simplification of other rewiring mechanisms in nested
networks [3].

3 Algorithm
In this section we briefly review the algorithm NESTLON as a method for detecting
a nested component in graphs and its constituents [7]. The simple main concept
behind the algorithm is to follow the definition of nestedness closely. NESTLON
judges whether the neighborhood of a vertex includes the neighborhood of lower
degree vertices in an iterative manner. A vertex belongs to the nested component if it
respects the local definition of nestedness to an acceptable degree.

The method iterates through the connected component of a graph starting with the
highest degree vertex and, therefore, is applicable on both bipartite and non-bipartite
graphs. The procedure is analogous for either in-degree or out-degree (for simplicity
we refer to the term degree in the following). We use the algorithm on a graph that is
sorted by degree centrality. The algorithm performs the following steps subsequently:

Algorithm: Nestedness detection based on Local Neighborhood (NESTLON)
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Conventions:
n Number of vertices in the graph.
ki Degree of vertex i.
N

(1)
i First-order neighborhood of vertex i.

N
(1+)
i Extended first-order neighborhood of vertex i

(
N

(1)
i ∪{i}

)
.

ζi Number of positive confirmations that the neighborhood of vertex i
includes the neighborhoods of its first-order neighbors.

Λ List of candidates (i.e. vertices that might belong to nested component).
|·| Number of elements in a set.

Input:
A Adjacency matrix of the graph object.
θcon Confirmation parameter of neighborhood similarity-
θnest Parameter for counting focal vertex to nested component.

Output:
Vnest Elements of nested component (i.e. vertices that belong to nested component).

Algorithm NESTLON
1: Vnest ←{}
2: Λ ←{i∗}; i∗/ki∗ = max(ki)
3: while Λ 6= 0 do
4: for i ∈Λ do
5: ζi← 0
6: for j ∈N

(1)
i do

7: if

∣∣∣∣N
(1+)
j ∩N(1+)

i

∣∣∣∣

min

(∣∣∣∣N
(1+)
j

∣∣∣∣,
∣∣∣∣N

(1+)
i

∣∣∣∣

) > θcon then

8: ζi← ζi +1
9: Λ ←Λ ∪{ j}

10: end if
11: end for
12: if ζi∣∣∣∣N

(2)
i

∣∣∣∣
> θnest then

13: Vnest ←Vnest ∪{i}
14: end if
15: end for
16: end while

The outcome of the algorithm is a set of vertices that belong to the nested compo-
nent Vnest . Dividing the number of nested vertices by the highest degree of the graph
is then a measure of the size of the component:
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µNEST =
|Vnest |

max(ki)
, with i ∈ N (9)

This method has several important features. It is independent on the adjacency
matrix shape and size. In contrast to NODF it calculates nestedness for rows and
columns independently. Compared to NODF and BINMATNEST it can detect nested
graphs irrespective of their density. We will investigate the robustness of the algorithm
in the next section.

4 Robustness Analysis
A robust algorithm can detect the nested component independently of degree distri-
bution, graph density, matrix shape and matrix size. Such a robust algorithm should
identify all vertices that fulfill the criterion of nested neighborhoods (i.e. a higher
degree vertex includes the neighborhood of a lower degree vertex). Therefore, we
can evaluate an algorithm’s robustness on such a benchmark graphs, in which all
vertices belong to a single nested component. We create these graphs with the net-
work formation process, which we already discussed in section ”The Notion of
Nestedness”.

4.1 Calibration of NESTLON
Before we compare the values of robustness among the algorithms we need to
calibrate the two exogenous parameters of the NESTLON algorithm (i.e. θcon and
θnest). The parameter θcon is the confirmation threshold of neighborhood similarity
and the parameter θnest is the threshold for counting a focal vertex to the nested
component.
Calibration of NESTLON: Variation of θcon and θnest
In fig. 4.1 we show the values of Nestedness for the NESTLON algorithm under
variation of both parameters θcon and θnest . The number of vertices the algorithm
counts as nested does not differ for θcon < 1 but decreases for θnest ≥ 0.5. Because
we deal with a perfectly nested graph (i.e. benchmark graph with α = 0.49, ρrew =
0) both parameters shall be set so that NESTLON measures full nestedness (i.e.
µNEST

!
= 1). Thus, we choose θcon < 1 and θnest < 0.5 as reasonable for detecting

nestedness.

Calibration of NESTLON: Adding Noise
In fig. 2 we show the NESTLON’s ability in detecting the nested component on a
benchmark graph with added noise (i.e. random rewiring of edges). In absence of
rewiring (i.e. ρrew = 0) the algorithm includes all vertices as members of the nested
component. For increasing random rewiring (i.e. ρrew > 0) the algorithm counts
fewer vertices as part of the the nested component. This behavior is expected because
the graph looses its nested structure with an increasing number of edge rewiring.
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Fig. 1: Values of Nestedness
for the NESTLON algorithm
under variation of both ex-
ogenous parameters θcon and
θnest . We perform the compu-
tation on a benchmark graph
of size n = 500 and α = 0.49.
Thus, all vertices belong to
a single nested component.
As we can see in the figure
the thresholds are too rigid
for θcon = 1 and θnest ≥ 0.5.
Therefore, we choose θcon <
1 and θnest < 0.5 as reason-
able detection thresholds.

Fig. 2: Adjacency matrices of the benchmark graphs with additional noise: ρrew = 0.0
(top left), ρrew = 1.0 (top center), ρrew = 2.0 (top right), ρrew = 3.0 (bottom left),
ρrew = 5.0 (bottom center), ρrew = 7.0 (bottom right). The vertices that are counted
towards to the nested component by NESTLON are indicated by a yellow dot.

Robustness Analysis: Filling Matrix
In fig. 3 we show the values of robustness measured among the three methods
BINMATNEST, NODF and NESTLON on the benchmark graphs. By increasing α

the matrix filling (i.e. network density γd) will increase, too. The benchmark graphs
are nested by definition for every value of α ∈ [0,1].

Although every benchmark graph is perfectly nested, BINMATNEST misses to
detect all vertices as belonging to the nested component beyond the phase transition
(i.e. α > 1/2). For a fully connected network its genetic algorithm can not establish a
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better packing by reordering rows and columns. NODF fails in detecting nestedness
for graphs with low (i.e. α < 1/2) and high density (i.e. α > 1/2). Because this
method cancels out all rows and columns of same degree it has a strong bias towards
low nestedness for both low and high density graphs. However, NESTLON indicates
an entirely nested network for every graph density (i.e. µNEST = 1 for every value of
α ∈ [0,1]).

Robustness Analysis: Adding Noise
In fig. 4 we compare the measured values of robustness among the three algorithms
for increasing random rewiring ρrew. In absence of rewiring (i.e. ρrew = 0) the graph
is still perfectly nested and, thus, we expect nestedness close to µ = 1. For increasing
rewiring (i.e. ρrew > 0) we expect that the nestedness decreases because the density
of holes increases. BINMATNEST and NESTLON count all vertices to the nested
component for ρrew = 0, whereas NODF recognizes only less than half of the vertices.
By increasing noise NESTLON is significantly more parsimonious than the two other
methods in judging vertices as nested. NODF has even a minimum at ρrew ≈ 4.5.
Beyond this minimum NODF detects a larger fraction of nested vertices although the
graph increasingly converges to a random graph.

Fig. 3: Robustness in detecting the nested
component among BINMATNEST,
NODF and NESTLON on a benchmark
graph. By definition all realizations of the
benchmark graph are nested for all values
of α . We perform the computation on a
graph of size n = 200. The graph density
(i.e. γd) increases with α , whereas the
density of holes (i.e. γh) stays zero.

Fig. 4: Robustness in detecting the nested
component among BINMATNEST,
NODF and NESTLON on a benchmark
graph with added noise. With increasing
random rewiring ρrew the nested structure
of the benchmark graph dissolves (i.e.
increasing density of holes γh). We
perform the computation on a graph
of size n = 200 and with α = 0.45 (i.e.
γd ≈ 0.029).
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Conclusion
In this contribution we reviewed the novel method termed NESTLON for detecting
a nested component in graphs. As shown, widely-used algorithms such as BIN-
MATNEST and NODF compute unreasonable low values of nestedness on bench-
mark graphs with either low density (i.e. γd <

1
2 ), NODF, or high density (i.e. γd >

1
2 ),

NODF and BINMATNEST. The method NESTLON overcomes these limitations and
is applicable on both bipartite and non-bipartite graphs. The algorithm is purely based
on the mathematical definition of nestedness and utilizes, thus, only local information.
For the robustness analysis we created benchmark graphs with a network formation
process. This network formation process allows us to tune the degree of nestedness
in a controlled manner. In future work, we want to extend NESTLON to graphs with
more than a single nested component.
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