
Abstract Time sliced networks describing human-human digital interactions are
typically large and sparse. This is the case, for example, with pairwise connectivity
describing social media, voice call or physical proximity, when measured over
seconds, minutes or hours. However, if we wish to quantify and compare the overall
time-dependent centrality of the network nodes, then we should account for the
global flow of information through time. Because the time-dependent edge structure
typically allows information to diffuse widely around the network, a natural summary
of sparse but dynamic pairwise interactions will generally take the form of a large
dense matrix. For this reason, computing nodal centralities for a time-dependent
network can be extremely expensive in terms of both computation and storage; much
more so than for a single, static network. In this work, we focus on the case of
dynamic communicability, which leads to broadcast and receive centrality measures.
We derive a new algorithm for computing time-dependent centrality that works
with a sparsified version of the dynamic communicability matrix. In this way, the
computation and storage requirements are reduced to those of a sparse, static network
at each time point. The new algorithm is justified from first principles and then tested
on a large scale data set. We find that even with very stringent sparsity requirements
(retaining no more than ten times the number of nonzeros in the individual time
slices), the algorithm accurately reproduces the list of highly central nodes given
by the underlying full system. This allows us to capture centrality over time with a
minimal level of storage and with a cost that scales only linearly with the number of
time points.

Francesca Arrigo (e-mail: francesca.arrigo@strath.ac.uk)� · Desmond J. Higham
(e-mail: d.j.higham@strath.ac.uk)�
University of Strathclyde, 16 Richmond St, Glasgow G1 1XQ,

The work of the authors was supported by the Engineering and Physical Sciences Research Council
under grant EP/M00158X/1.

Preserving Sparsity in Dynamic Network
Computations

Francesca Arrigo and Desmond J. Higham

© Springer International Publishing AG 2017
H. Cherifi et al. (eds.), Complex Networks & Their Applications V,
Studies in Computational Intelligence 693,
DOI 10.1007/978-3-319-50901-3_12

147

francesca.arrigo@strath.ac.uk
d.j.higham@strath.ac.uk

148 Francesca Arrigo and Desmond J. Higham

1 Introduction
In network science, centrality measures assign to each node a value that summarises
some aspect of its relative importance. Such measures arose in the social sciences, but
have now become very widely used by researchers who wish to summarise important
features of large, complex networks [5, 14, 19]. Because matrix representations of
networks are typically sparse, and because centrality measures usually involve the
solution of linear systems or eigenvalue problems, it is feasible to compute centrality
measures on a current desktop computer for networks with, say, a number of nodes
in the millions.

Our focus in this work is the case of time-dependent network sequences [8].
Such data sets may be regarded as three-dimensional tensors, where, along with the
(i, j) coordinates that capture pairwise connectivity, we also have a third coordinate
that represents time [1]. These types of connections arise, for example, when we
record human-human digital interaction through social media, telecommunication or
physical proximity. In [7] the concept of a dynamic communicability matrix was intro-
duced, which converted the time sequence of networks into a single two-dimensional
array, with (i, j) element summarising the ability of node i to communicate with
node j, using the time-dependent sequence of edges recorded in the data. From this
matrix, it is straightforward to compute centrality measures:

• dynamic broadcast centrality takes large values for nodes that are effective at
distributing information,

• dynamic receive centrality takes large values for nodes that are effective at
gathering information.

In a case study on Twitter data, this approach was seen to be successful, in the
sense of correlating well with the independent views of social media experts [10]. It
was also found to outperform the crude alternative of simply aggregating all edges
into a single static network that forgets the time-ordering of the interactions; see
[12] for further discussion. Tests in [4, 13] also showed that dynamic broadcast
centrality can be effective at quantifying the potential for the spread of disease across
time-ordered interactions.

However, as we explain in the next section, the computation of dynamic broadcast
centrality can be expensive in terms of both storage and computation, as a result of
inevitable matrix fill-in as temporal information accumulates. Our overall aim here is
to address this issue by deriving a new algorithm that delivers good approximations
to the original dynamic broadcast centrality measure while retaining the benefits of
the sparsity present in the time slices.

We note that other approaches to computation of node centrality for time-
dependent networks have been put forward. For example, [15, 16, 17] made use
of paths rather than walks, which, for our purposes, leads to an infeasibly expensive
algorithm. In [18] a block-matrix approach was suggested which allows centrality
measures for static networks to be applied. However, as mentioned in [12], that
formulation does not fully respect the arrow of time.

Preserving Sparsity in Dynamic Network Computations 149

2 Background and Notation
In this section we recall some definitions and notation that will be used throughout.
Let t0 < t1 < · · · < tM be an ordered sequence of time points and let {G[k]}M

k=0 =

{(V[k],E[k])} be a time-ordered sequence of unweighted graphs defined over n nodes.
A graph is said to be unweighted when all its edges have the same weight, which
can thus be assumed to be unitary. Consider the adjacency matrices {A[k]}M

k=0 =

{(a[k]i j)} ∈ Rn×n associated with these graphs at times {tk}M
k=0, whose entries are

defined as

a[k]i j =

{
1 if (i, j) ∈ E[k]

0 otherwise.
In [7] the concept of a dynamic walk of length p was introduced to extend to

the temporal case the well-known concept of a walk of length p in static networks.
Loosely, we have a (possibly repeated) sequence of p+1 nodes connected by edges
that appear in a suitable order. More precisely, a dynamic walk of length p from
node i1 to node ip+1 consists of a sequence of nodes i1, i2, . . . , ip+1 and a sequence
of times tr1 ≤ tr2 ≤ ·· · ≤ trp such that a[rm]

imim+1
6= 0 for m = 1,2, . . . , p. We stress that

more than one edge can share a time slot, and that time slots must be ordered but do
not need to be consecutive.

The concept of dynamic walk was used to motivate the definition of the dynamic
communicability matrix

Q[M] = (I−αA[0])−1(I−αA[2])−1 · · ·(I−αA[M])−1, (1a)
which can be defined equivalently via the iteration

Q[k] = Q[k−1](I−αA[k])−1, k = 0,1, . . . ,M, (1b)
where Q[−1] = I is the identity matrix of order n, 0 < α < 1/ρ∗, and ρ∗ =
max

k=0:M
{ρ(A[k])} is the largest spectral radius among the spectral radii of the ma-

trices {A[k]}. Here the free parameter α plays the same role as in the classical Katz
centrality measure for static networks [5, 9, 14]. For simplicity, our notation does not
explicitly record the dependence of Q upon α .

To avoid overflow in the computations, a normalisation step Q 7→ Q/|Q| should
follow each iteration in (1b). Throughout this work we use the Euclidean norm.

The requirement α < 1/ρ∗ ensures that the resolvents in (1a) exist and can be
expanded as (I−αA[k])−1 = ∑

∞
p=0(αA[k])p. It follows that the entries of Q[k] provide

a weighted count of the dynamic walks between any two nodes in the networks using
the ordered sequence of matrices A[0],A[1], . . . ,A[k], weighting walks of length p by
a factor α p. Hence, (Q[k])i j is an overall measure of the ability of node i to send
messages to node j.

Using the dynamic communicability matrix one can define and compare the
broadcast and receive centrality of nodes by taking row and column sums of the matrix
Q[M], respectively. The broadcast centrality of node i is defined as b[M]

i := eT
i Q[M]1,

where ei ∈ Rn is the ith column of I, the superscript “T ” denotes transposition,
and 1 ∈ Rn is the vector of all ones. Similarly, the receive centrality of node j is
defined as r[M]

j := 1T Q[M]e j. It is straightforward to show that the latter satisfies a

150 Francesca Arrigo and Desmond J. Higham

lower-dimensional, vector-valued iteration given by
r[k] := 1T Q[k] = r[k−1](I−αA[k])−1, k = 0,1, . . .M,

with r[−1] = 1. The receive centrality of the nodes can thus be updated at each step by
solving a single sparse linear system whose coefficient matrix is the latest network
time slice. In particular, this means that we do not need to store and update the
full matrix Q[k] to recover the receive centrality of nodes at level k. By contrast,
to compute the broadcast centrality vector, b[M] = Q[M]1, we need access to the
current dynamic communicability matrix at each step. Intuitively, this difference
arises because,

• given a summary of how much information is flowing into each node, we can
propagate this information forward when new edges emerge: receive centrality
cares about where the information terminates, but

• a summary of how much information is flowing out of each node cannot be
straightforwardly updated when new edges emerge: broadcast centrality cares
about where the information originates.

Our focus here is on the natural setting where data is processed sequentially,
with the centrality scores being updated as each new time slice A[k] arrives. As
confirmed in Section 4 on a real data set, we then face a fundamental issue with the
use of the dynamic communicability matrix: although the time slices are typically
sparse, Q[k] generally evolves into a dense matrix. At this stage, computing dynamic
communicability from (1b) requires us to store a full O(n2) matrix and solve at each
subsequent time point a corresponding full linear system. In the next section, we
therefore develop and justify an approximation where matrix fill-in is controlled so
that the benefits of sparse matrix storage and computation are recovered.

3 Sparsification
To create a sparse approximation, Q̂[k], to the dynamic communicability matrix, Q[k],
we first observe that the original iteration (1b) includes some traversals that are
not very meaningful, e.g., repeated cycles i→ j→ i→ j→ i→ j using the same
undirected edge at the same time point. We thus use an “at most one edge per time
point” alternative to (1b) so as to avoid considering these types of walks and similar
ones:

Q̂[k] = Q̂[k−1](I +αA[k]), k = 0,1, . . . ,M, (2)

with Q̂[−1] = I. As discussed in [7], this matrix product can be interpreted in terms
of network combinatorics; at each time step a dynamic traversal can either wait, as
described by the identity matrix I, or take a current edge, as described by latest adja-
cency matrix, A[k]. In the latter case, the length of the walk (i.e., the number of edges
used) has increased by one, and thus we multiply the corresponding matrix by α . An
alternative interpretation is that we are using a second order Taylor approximation for
each of the resolvents appearing in (1b). This simplification is likely to be reasonable
when either (a) α is chosen to be small, so that short walks are favoured, or (b) the

Preserving Sparsity in Dynamic Network Computations 151

powers of A[k] do not grow rapidly with k (which is typically the case for sparse
matrices).

As the time index k increases in (2) the number of nonzeros cannot decrease, and
the matrix Q̂[k] will generally fill in. In order to produce a sparse approximation we
will proceed iteratively. At each step we threshold the matrix at a level θk—this type
of approach has been widely used in large scale machine learning, data mining, and
signal processing; see, e.g., [2, 3] and references therein. Hence, for k = 0,1, . . . ,M
we redefine the iteration to be

Q̂[k] =
bQ̂[k−1](I +αA[k])cθk

‖bQ̂[k−1](I +αA[k])cθk‖2
, (3)

where Q̂[−1] = I and for any nonnegative matrix C = (ci j), the matrix bCc
θk

arises
from setting to zero all entries where ci j ≤ θk.

Remark 3.1. The matrices {Q̂[k]}M
k=0 are non-negative by construction.

3.1 A little twist
From a network science perspective, the approach just presented has a strong limi-
tation. Imagine a user i of Twitter who remains inactive for a long time after each
tweet. After such inactivity, the thresholding may zero out all entries in the ith row of
one of the matrices Q̂[k]. From that time, the ith row of the matrices appearing in (3)
will always be zero, and no subsequent activity of node i will be registered by this
approach.

To mitigate pathological behaviour of this type, we modify (3) so as to keep
track at each step of the behaviour of those nodes corresponding to zero rows in the
iteration matrix. Our final version of the iteration goes as follows:

Q̂[k] = bQ̂[k−1](I +αA[k])cθk +mkA
[k], k = 0,1, . . . ,M, (4)

followed by normalisation, where Q̂[−1] = I, mk is the smallest nonzero entry of
bQ̂[k−1](I +αA[k])cθk , A[k] = αW [k]A[k], and W [k] = diag(w1,w2, . . . ,wn) ∈ Rn×n is
a diagonal matrix whose entries are

wi =

{
1 if eT

i bQ̂[k−1](I +αA[k])cθk 1 = 0
0 otherwise.

The matrix A[k] keeps track of those edges that appear at step k and would otherwise
get lost. Indeed, the matrix product W [k]A[k] returns a matrix that has nonzero entries
(if any) only in the rows corresponding to those nodes that have either been inactive
until step k or have broadcast very little information (which thus was thresholded in a
previous iteration). The penalisation by α is added because we are taking one hop in
the network. Finally, the multiplication by mk comes from the fact that a poor choice
of the parameter α may compromise the results. Indeed, the entries of A[k] may be
too large with respect to those appearing in bQ̂[k−1](I +αA[k])cθk , thus leading to a
complete reshaping of the rankings. We refer the reader to Section 4 for an example
of this issue.

152 Francesca Arrigo and Desmond J. Higham

Remark 3.2. It is possible for the contribution added by mkA
[k] to be zero. This

happens when the zero rows in bQ̂[k−1](I +αA[k])cθk correspond to nodes that are
not broadcasting information at step k.

Remark 3.3. Note that if A[k] = 0 for some k, then Q̂[k] = Q̂[k−1], just as Q[k] = Q[k−1].

3.2 On the thresholding parameters
The thresholding parameters {θk} are a key part of the sparsification process. Before
explaining how we select these values in applications, we first describe the types of
contributions that are removed from the approximation to the dynamic communica-
bility matrix when the thresholding is performed. There are two key circumstances
where the thresholding has an effect:

• the value of α p dominates the contribution given by the products of the adjacency
matrices, i.e., there are not too many walks of length p between the two nodes
under consideration;

• the information has not moved from a certain node for a long time and the
normalisation step has made the corresponding contribution smaller than the
other entries.

In both cases, we are dismissing information that has little potential, as it is not
diffused much. Clearly, an over-stringent selection of the parameters θk may lead to
an excessive penalisation of these two types of behaviours. Our strategy is to make an
initial choice for the maximum number of nonzeros that we will allow in the matrices
Q̂[k], for k = 0,1, . . . ,M. Then, as the iteration proceeds, the thresholding value θk is
chosen so as to make bQ̂[k−1](I +αA[k])cθk have approximately this desired level of
sparsity.

We point out that the maximum number of nonzeros one wants to allow has to be
at least n+nnz(A[0]), where nnz(A[0]) is the number of nonzeros in the matrix A[0].
Consequently, θ0 < α . Indeed, if this is not the case, then we will have θk ≥ α for
all k and therefore that Q̂[k] = I for all k.

3.3 Cost Comparison
We are now in a position to quantify, at least approximately, the computational
benefits of using Q̂[k] in (4) rather than the exact matrix Q[k] in (1b) to compute
dynamic broadcast communicability. Because the exact representation Q[k] becomes
full in general, it follows that:

• We have reduced storage requirements by a factor of n.
• We have reduced the dominant computational task at each time step from solving

n sparse linear systems to multiplying two sparse matrices. For general complex
networks with no exploitable structure, if a standard iterative scheme is used to
solve a sparse linear system, each matrix vector multiplication will cost O(n)

Preserving Sparsity in Dynamic Network Computations 153

and thus the total cost to compute Q[k] by solving n such linear systems will be
at least O(n2). Instead, the overall cost of computing the product of Q̂[k−1] times
A[k] is O(n), if we assume that there is a fixed number of active nodes at each
time point. Thus, the cost has been reduced by a factor of n.

3.4 Comparing top K lists
The main goal of this work is to match the broadcast ranking of the nodes in an
evolving network using a sparse approximation to the dynamic communicability
matrix. As usual in network science, we are not interested in matching exactly the
rankings of all nodes in the network, but rather to accurately capture the top K� n
most influential broadcasters. Although there is no perfect way to summarise and
compare rankings, it is clear that generic correlation coefficients like Pearson’s
correlation coefficient or Kendall’s tau have the major drawback in this context that
they treat entire vectors, and hence all network nodes.

In order to compare the top K entries of two ranking vectors, an appropriate
index is the intersection similarity [6]. This quantity is defined as follows: given two
ranked lists x and y, consider the top K entries of each, which we denote xK and yK ,
respectively. Then, the top K intersection similarity between x and y is defined as

isimK(x,y) =
1
K

K

∑
i=1

|xi∆yi|
2i

, (5)

where ∆ is the symmetric difference operator between two sets and |S| denotes the
cardinality of the set S. When the sequences contained in x and y are completely
different, the intersection similarity between the two is maximum and equals 1. On
the other hand, when isimK(x,y) = 0 for all K, then the two lists are identical.

It happens sometimes that the two lists differ in the order, but not in the set of
labels of the nodes appearing in them. Behaviour of this type can be easily spotted
by looking at the quantity

`K(x,y) =
|xK∆yK |

2K
, K = 2,3, . . .

If `K(x,y) = 0 for some K we know that xK and yK are permutations of the same set
of nodes.

4 Numerical tests
We have tested the new algorithm on large scale data sets involving email, voice
call and on-line social interaction, and with various values of the parameter α . Due
to space limitations we give representative results with the email data set Enron
[11]. Here, a directed edge from node i to node j indicates that at least one message
was sent from i to j in a one day period, including to, cc, and bcc. We have
information over 1138 days starting 11 May 1999 for 151 Enron employees, Many
of the adjacency matrices are empty, meaning that there are days during which no

154 Francesca Arrigo and Desmond J. Higham

emails are sent. The largest spectral radius is ρ∗ = 4.17, thus the upper limit for α is
0.24.

We allowed for a number of nonzeros proportional to N = cn, where n = n+
1

M+1 ∑
M
k=0 nnz(A

[k]) and c = 10. This is motivated by our aim to work only with
matrices whose sparsity level is compatible with that of the individual network time
slices. Further testing has shown that the performance is not sensitive to c.

4.1 Adaptive Scaling
Before testing the performance of (4), in this subsection we discuss the effect of
including the multiplication by mk. In Section 3 we argue that setting mk ≡ 1 for
all k = 0,1, . . . ,M in (4) may lead to poor results. Clearly, this is not always the
case, but, as we will see here, this choice together with a compounding choice of
the downweighting parameter α , may result in a complete misplacement of the top
ranked broadcasters in the network.

We compute the broadcast centrality vector Q[M]1 and our approximation vector
Q̂[M]1 for seven different values of the downweighting parameter:

α =
0.01
ρ∗

,
0.1
ρ∗

,
0.25
ρ∗

,
0.5
ρ∗

,
0.75
ρ∗

,
0.85
ρ∗

,
0.9
ρ∗

.

Figure 1 displays the evolution of the intersection similarity between the top K =
1,2, . . . ,20 entries of the vectors Q[M]1 and Q̂[M]1 versus K for the different values
of α . The left plot contains the results when mk ≡ 1, while the right plot contains the
results when mk is adapted by setting it to be equal to the smallest nonzero entry of
the matrix bQ̂[k−1](I +αA[k])cθk at each iteration.

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

mk ≡ 1

i
s
i
m

K
(
Q

[
M

]
1
,Q̂

[
M

]
1
)

0 5 10 15 20
0

0.05

0.1

0.15

0.2

varying mk

α = 0.01/ρ∗ 0.1/ρ∗ 0.25/ρ∗ 0.5/ρ∗ 0.75/ρ∗ 0.85/ρ∗ 0.9/ρ∗

Fig. 1: Evolution of the intersection similarity isimK(Q[M]1, Q̂[M]1) versus K, for
different choices of the downweighting parameter α . Left: mk ≡ 1. Right: mk is set
at each iteration as the smallest nonzero entry of bQ̂[k−1](I +αA[k])cθk . Note the
difference in vertical axis range.

These results show that when mk ≡ 1 the intersection similarity between the two
vectors can be maximum even when comparing only a few top ranked nodes for α as

Preserving Sparsity in Dynamic Network Computations 155

Table 1: Top 10 ranked nodes: exact, approximate and with aggregate out-degree.

Q[M]1 48 67 147 73 13 50 137 49 9 139
Q̂[M]1 48 67 147 73 13 50 137 49 9 139
out-degree 67 50 141 13 48 69 107 147 73 70

small as 0.5/ρ∗. The right hand plot in the figure shows how an adaptive choice of
mk can work successfully over a wide range of α choices.

4.2 Centrality Approximation
We now assess the effectiveness of iteration (4) at approximating the broadcast
centrality rankings. Using α = 0.01, the number of nonzero entries in the dynamic
communicability matrix is nnz(Q[M]) = 21097. Note that n2 = 22801, so the matrix
is 92.5% full. Figure 2 scatter plots the resulting approximation to the broadcast and
receive centrality vectors against Q[M]1 and 1T Q[M], respectively. We observe a good
linear correlation at the high end for both cases, indicating that our method correctly
identifies important nodes. The number of nonzeros in the final approximation matrix
Q̂[M] is = 1676, so the level of sparsity has been reduced to around 7.4%.

10
-3

10
-2

10
-1

10
0

10
1

Q[M]
1

10
-3

10
-2

10
-1

10
0

10
1

Q̂
[M

] 1

BROADCAST CENTRALITY

10
-3

10
-2

10
-1

10
0

10
1

1
TQ[M]

10
-3

10
-2

10
-1

10
0

10
1

1
T
Q̂

[M
]

RECEIVE CENTRALITY

Fig. 2: Comparison of exact (horizontal) and approximate (vertical) centralities.

In Table 1 we list the top 10 ranked nodes according to the broadcast centrality.
The first row contains the true result, obtained by ranking the nodes according to
Q[M]1; in the second row we list the top 10 broadcasters according to the ranking
derived from Q̂[M]1 and, finally, the last row displays the result obtained when the
nodes are ranked according to their aggregate out-degree: ∑

M
k=0 A[k]1. As α → 0,

the ranking obtained using the dynamic communicability matrix approaches that
obtained using the aggregate out-degree; see, e.g., [4, 7]. Clearly, however, α = 0.01
is not close enough to zero for this effect to be observed.

156 Francesca Arrigo and Desmond J. Higham

Tables 2-3 contain the values of isimK(Q[M]1, Q̂[M]1) for K = 1,2, . . . ,20 and
`K(Q[M]1, Q̂[M]1) for K = 2,3, . . . ,20. We see that the new method correctly orders
the top 11 broadcasters in the network and correctly identifies the top 20.

Table 2: Intersection similarity between the top K = 1,2, . . . ,20 ranked nodes in
Q[M]1 and Q̂[M]1.

K 1 2 3 4 5 6 7 8 9 10
isimK 0 0 0 0 0 0 0 0 0 0
K 11 12 13 14 15 16 17 18 19 20
isimK 0 0.01 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03

Table 3: Evolution of `K(Q[M]1, Q̂[M]1) for K = 2,3, . . . ,20.

K 2 3 4 5 6 7 8 9 10
`K 0 0 0 0 0 0 0 0 0
K 11 12 13 14 15 16 17 18 19 20
`K 0 0.08 0.15 0.14 0.07 0 0.06 0 0.05 0

5 Conclusions
Time-dependency adds an extra dimension to network science computations, po-
tentially causing a dramatic increase in both storage requirements and computation
time. In the case of Katz-style centrality measures, which are based on the solution
of linear algebraic systems, allowing for the arrow of time leads naturally to full
matrices that keep track of all possible routes for the flow of information. Such a
build-up of intermediate data can make large-scale computations unfeasible. In this
work, we derived a sparsification technique that delivers accurate approximations
to the full-matrix centrality rankings, while retaining the level of sparsity present in
the network time-slices. With the new algorithm, as we move forward in time the
storage cost remains fixed and the computational cost scales linearly, so the overall
task is equivalent to solving a single Katz-style problem at each new time point.

References

[1] Acar, E., Dunlavy, D.M., Kolda, T.G.: Link prediction on evolving data using matrix and
tensor factorizations. In: ICDMW’09: Proceedings of the 2009 IEEE International Conference

Preserving Sparsity in Dynamic Network Computations 157

on Data Mining Workshops, pp. 262–269 (2009). DOI 10.1109/ICDMW.2009.54
[2] Achlioptas, D., Karnin, Z.S., Liberty, E.: Near-optimal entrywise sampling for data

matrices. In: C.J.C. Burges, L. Bottou, M. Welling, Z. Ghahramani, K.Q. Wein-
berger (eds.) Advances in Neural Information Processing Systems 26, pp. 1565–
1573. Curran Associates, Inc. (2013). URL http://papers.nips.cc/paper/
5036-near-optimal-entrywise-sampling-for-data-matrices.pdf

[3] Arora, S., Hazan, E., Kale, S.: A fast random sampling algorithm for sparsifying matrices. In:
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques,
pp. 272–279. Springer (2006)

[4] Chen, I., Benzi, M., Chang, H.H., Hertzberg, V.S.: Dynamic communicability and epidemic
spread: a case study on an empirical dynamic contact network. Journal of Complex Net-
works (2016). DOI 10.1093/comnet/cnw017. URL http://comnet.oxfordjournals.
org/content/early/2016/06/07/comnet.cnw017.abstract

[5] Estrada, E.: The Structure of Complex Networks. Oxford University Press, Oxford (2011)
[6] Fagin, R., Kumar, R., Sivakumar, D.: Comparing top k lists. SIAM Journal on Discrete

Mathematics 17(1), 134–160 (2003)
[7] Grindrod, P., Parsons, M.C., Higham, D.J., Estrada, E.: Communicability across evolving

networks. Physical Review E 83(4), 046,120 (2011)
[8] Holme, P., Saramäki, J.: Temporal networks. Physics Reports 519, 97–125 (2011)
[9] Katz, L.: A new status index derived from sociometric analysis. Psychometrika 18(1), 39–43

(1953)
[10] Laflin, P., Mantzaris, A.V., Grindrod, P., Ainley, F., Otley, A., Higham, D.J.: Discovering and

validating influence in a dynamic online social network. Social Network Analysis and Mining
3, 1311–1323 (2013)

[11] Leskovec, J.: SNAP: Network dataset. https://snap.stanford.edu/data/
[12] Mantzaris, A.V., Higham, D.J.: Asymmetry through time dependency. Eur. Phys. J. B 89(3),

71 (2016). DOI 10.1140/epjb/e2016-60639-0. URL http://dx.doi.org/10.1140/
epjb/e2016-60639-0

[13] Mantzaris, A.V., Higham, D.J.: Dynamic communicability predicts infectiousness. In:
P. Holme, J. Saramäki (eds.) Temporal Networks, pp. 283–294. Springer, Berlin (2103)

[14] Newman, M.E.J.: Networks: An Introduction. Oxford Univerity Press, Oxford (2010)
[15] Tang, J., Musolesi, M., Mascolo, C., Latora, V.: Temporal distance metrics for social network

analysis. In: Proceedings of the 2nd ACM SIGCOMM Workshop on Online Social Networks
(WOSN09). Barcelona (2009)

[16] Tang, J., Musolesi, M., Mascolo, C., Latora, V.: Characterising temporal distance and reacha-
bility in mobile and online social networks. SIGCOMM Comput. Commun. Rev. 40, 118–124
(2010)

[17] Tang, J., Scellato, S., Musolesi, M., Mascolo, C., Latora, V.: Small-world behavior in time-
varying graphs. Physical Review E 81, 05,510 (2010)

[18] Taylor, D., Myers, S.A., Clauset, A., Porter, M.A., Mucha, P.J.: Eigenvector-based centrality
measures for temporal networks (2015). ArXiv:1507.01266

[19] Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications. Cambridge
University Press, Cambridge (1994)

http://papers.nips.cc/paper/5036-near-optimal-entrywise-sampling-for-data-matrices.pdf
http://papers.nips.cc/paper/5036-near-optimal-entrywise-sampling-for-data-matrices.pdf
http://comnet.oxfordjournals.org/content/early/2016/06/07/comnet.cnw017.abstract
http://comnet.oxfordjournals.org/content/early/2016/06/07/comnet.cnw017.abstract
http://dx.doi.org/10.1140/epjb/e2016-60639-0
http://dx.doi.org/10.1140/epjb/e2016-60639-0

	12Preserving Sparsity in Dynamic Network Computations
	1 Introduction
	2 Background and Notation
	3 Sparsification
	3.1 A little twist
	3.2 On the thresholding parameters
	3.3 Cost Comparison
	3.4 Comparing top K lists

	4 Numerical tests
	4.1 Adaptive Scaling
	4.2 Centrality Approximation

	5 Conclusions
	References

