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Abstract Understanding edge formation represents a key question in network analy-
sis. Various approaches have been postulated across disciplines ranging from network
growth models to statistical (regression) methods. In this work, we extend this ex-
isting arsenal of methods with a hypotheses-driven Bayesian approach that allows
to intuitively compare hypotheses about edge formation on attributed multigraphs.
We model the multiplicity of edges using a simple categorical model and propose to
express hypotheses as priors encoding our belief about parameters. Using Bayesian
model comparison techniques, we compare the relative plausibility of hypotheses
which might be motivated by previous theories about edge formation based on pop-
ularity or similarity. We demonstrate the utility of our approach on synthetic and
empirical data. This work is relevant for researchers interested in studying mecha-
nisms explaining edge formation in networks.

1 Introduction

Understanding edge formation in networks is a key interest of our research commu-
nity. For example, social scientists are frequently interested in studying relations
between entities within social networks, e.g., how social friendship ties form between
actors and explain them based on attributes such as a person’s gender, race, political
affiliation or age in the network [18]. Similarly, the complex networks community
suggests a set of generative network models aiming at explaining the formation of
edges focusing on the two core principles of popularity and similarity [15]. Thus,
a series of approaches to study edge formation have emerged including statistical
(regression) tools [10, 23] and model-based approaches [6, 15, 24] specifically estab-
lished in the physics and complex networks communities. Other disciplines such as
the computer sciences, biomedical sciences or political sciences use these tools to
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Fig. 1: Example: This example illustrates an unweighted attributed multigraph. (a)
Shows a multigraph where nodes represent academic researchers, and edges scientific
articles in which they have collaborated together. (b) Shows the adjacency matrix of
the graph, where every cell represents the total number of edges between two nodes.
(c) Decodes some attribute values per node. For instance, node D shows information
about an Austrian researcher who started his academic career in 2001.

answer empirical questions; e.g., co-authorship networks[12], wireless networks of
biomedical sensors [19], or community structures of political blogs [1].

Problem Illustration. For illustration, consider Fig. 1; nodes represent authors, and
(multiple) edges between them refer to co-authored scientific articles. Node attributes
provide additional information about the authors, e.g., their home country and gender.
An exemplary research question could be: “Can co-authorship be better explained
by a mechanism that assumes more collaborations between authors from the same
country or by a mechanism that assumes more collaborations between authors with
the same gender?”. These and similar questions motivate the main objective of this
work, which is to provide a Bayesian approach for understanding how edges emerge
in networks based on some characteristics of the nodes.

While several methods for tackling such questions have been proposed, they
come with certain limitations. For example, statistical regression methods based on
QAP [5] or mixed-effects models [20] do not scale to large-scale data and results
are difficult to interpret. For network growth models [15], it is necessary to find the
appropriate model for a given hypothesis about edge formation and thus, it is often
not trivial to intuitively compare competing hypotheses that sometimes might even
go beyond simple popularity and similarity mechanisms. Consequently, we want
to extend the methodological toolbox for studying edge formation in networks by
proposing a first step towards a hypotheses-driven generative Bayesian framework.

Approach and methods. We focus on understanding edge formation in node-
attributed multigraphs. We are interested in modeling and understanding the multi-
plicity of edges based on node attributes. Our approach follows a generative storyline.
First, we define the model that can characterize the edge formation at interest. We
focus on the simple categorical model, from which edges are independently drawn
from. Motivated by previous work on sequential data [21], the core idea of our
approach is to specify generative hypotheses about how edges emerge in a network.
These hypotheses might be motivated by previous theories such as popularity or
similarity [15]—e.g., for Fig. 1 we could hypothesize that authors are more likely
to collaborate with each other if they are from the same country. Technically, we
elicit these types of hypotheses as beliefs in parameters of the underlying categorical
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model and encode and integrate them as priors into the Bayesian framework. Using
Bayes factors with marginal likelihood estimations allows us to compare the relative
plausibility of expressed hypotheses as they are specifically sensitive to the priors.
The final output is a ranking of hypotheses based on their plausibility given the data.

Contributions. Our main contributions are: (i) We present a first step towards a
Bayesian approach for comparing generative hypotheses about edge formation in
networks. (ii) We provide simple categorical models based on local and global
scenarios allowing the comparison of hypotheses for multigraphs. (iii) We provide
guidelines for building hypotheses based on node attributes. (iv) We demonstrate
the applicability of our approach on synthetic and empirical data. (v) We make an
implementation of this approach openly available! on the Web.

2 Background

We start by introducing the underlying concepts of our approach.

Attributed Multigraphs. In this paper, we focus on multigraphs with attributed
nodes and unweighted edges without own identity. That means, each pair of nodes
can be connected by multiple indistinguishable edges, and there are features for the
individual nodes available.

We formally define this as: Let G = (V,E, F) be an unweighted attributed multi-
graph with V = (v1,...,v,) being a list of nodes, E = {(v;,v;)} € V x V a multiset of
either directed or undirected edges, and a set of feature vectors F = (f1,..., f). Each
feature vector f; = (f;[1], ..., fi[c])T maps a node v; to ¢ (numeric or categorical) at-
tribute values. The graph structure is captured by an adjacency matrix My, = (m;;),
where m;; is the multiplicity of edge (v;,v;) in E (i.e., number of edges between
nodes v; and v;). By definition, the total number of multiedges is [ = |E| = }.;;m;;.

Fig. 1a shows an example unweighted attributed multigraph: nodes represent
authors, and undirected edges represent co-authorship in scientific articles. The
adjacency matrix of this graph—counting for multiplicity of edges—is shown in Fig.
1b. Feature vectors (node attributes) are described in Fig. 1c. Thus, for this particular
case, we account for n = 4 nodes, / = 44 multiedges, and ¢ = 6 attributes.

Bayesian Hypothesis Testing. Our approach compares hypotheses on edge forma-

tion based on techniques from Bayesian hypothesis testing [11, 21]. The elementary

Bayes’ theorem states for parameters 6, given data D and a hypothesis H that:
likelihood prior

posterior [P A
~——~ P(D|0,H)P(0|H

P(D|H)
marginal likelihood
As observed data D, we use the adjacency matrix M, which encodes edges counts. 6
refers to the model parameters, which in our scenario correspond to the probabilities
of individual edges. H denotes a hypothesis under investigation. The likelihood
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Fig. 2: Multigraph models: This figure shows two ways of modeling the undirected
multigraph shown in Fig. 1. That is, (a) global or graph-based model models the
whole graph as a single distribution. (b) Local or neighbour-based model models
each node as a separate distribution.

describes, how likely we observe data D given parameters 6 and a hypothesis H. The
prior is the distribution of parameters we believe in before seeing the data; in other
words, the prior encodes our hypothesis H. The posterior represents an adjusted
distribution of parameters after we observe D. Finally, the marginal likelihood (also
called evidence) represents the probability of the data D given a hypothesis H.

In our approach, we exploit the sensitivity of the marginal likelihood on the
prior to compare and rank different hypotheses: more plausible hypotheses imply
higher evidence for data D. Formally, Bayes Factors can be employed for comparing
two hypotheses. These are computed as the ratio between the respective marginal
likelihood score. The strength of a Bayes factor can be judged using available
interpretation tables [7]. While in many cases determining the marginal likelihood
is computationally challenging and requires approximate solutions, we can rely on
exact and fast-to-compute solutions in the models employed in this paper.

3 Approach

In this section, we describe the main steps towards a hypotheses-driven Bayesian
approach for understanding edge formation in unweighted attributed multigraphs. To
that end, we propose intuitive models for edge formation (Section 3.1), a flexible
toolbox to formally specify belief in the model parameters (Section 3.2), a way of
computing proper (Dirichlet) priors from these beliefs (Section 3.2), computation
of the marginal likelihood in this scenario (Section 3.3), and guidelines on how to
interpret the results (Section 3.4). We subsequently discuss these issues one-by-one.

3.1 Generative Edge Formation Models

We propose two variations of our approach, which employ two different types of
generative edge formation models in multigraphs.

Global model. First, we utilize a simple global model, in which a fixed number of
graph edges are randomly and independently drawn from the set of all potential edges
in the graph G by sampling with replacement. Each edge (v;,v;) is sampled from
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Fig. 3: Prior belief: This figure illustrates the three main phases of prior elicitation.
That is, (a) a matrix representation of belief By, where authors are more likely to
collaborate with each other if they are from the same country. (b) B; normalized
row-wise using the local model interpretation. (c) Prior elicitation for k = 4; i.e.,
(X,‘j = % X K+ 1.

a categorical distribution with parameters 6,1 <i<n,1 < j<n,Vij:Y,;:0;j =
1: (vi,v;) ~ Categorical(6;;). This means that each edge is associated with one
probability 8;; of being drawn next. Fig. 2a shows the maximum likelihood global
model for the network shown in Fig. 1. Since this is an undirected graph, inverse
edges can be ignored resulting in n(n + 1) /2 potential edges/parameters.

Local models. As an alternative, we can also focus on a local level. Here, we model
to which other node a specific node v will connect given that any new edge starting
from v is formed. We implement this by using a set of n separate models for the outgo-
ing edges of the ego-networks (i.e., the 1-hop neighborhood) of each of the n nodes.
The ego-network model for node v; is built by drawing randomly and independently
a number of nodes v; by sampling with replacement and adding an edge from v; to
this node. Each node v; is sampled from a categorical distribution with parameters
0;j,1 <i<n,1<j<nVi:Y;0;=1:v;~ Categorical(8;;). The parameters 6;;
can be written as a matrix; the value in cell (i, j) specifies the probability that a new
formed edge with source node v; will have the destination node v;. Thus, all values
within one row always sum up to one. Local models can be applied for undirected
and directed graphs (cf. also discussion in Section 6). In the directed case, we model
only the outgoing edges of the ego-network. Fig. 2b depicts the maximum likelihood
local models for our introductory example .

3.2 Hypothesis Elicitation

The main idea of our approach is to encode our beliefs in edge formation as Bayesian
priors over the model parameters. As a common choice, we employ Dirichlet distri-
butions as the conjugate priors of the categorical distribution. Thus, we assume that
the model parameters 6 are drawn from a Dirichlet distribution with hyperparameters
o: 6 ~ Dir(a). Similar to the model parameters themselves, the Dirichlet prior (or
multiple priors for the local models) can be specified in a matrix. We will choose the
parameters ¢ in such a way that they reflect a specific belief about edge formation.
For that purpose, we first specify matrices that formalize these beliefs, then we
compute the Dirichlet parameters o from these beliefs.
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Constructing Belief Matrices. We specify hypotheses about edge formation as
belief matrices B = b;;. These are n x n matrices, in which each cell b;; € IR represents
a belief of having an edge from node v; to node v;. To express a belief that an edge
occurs more often (compared to other edges) we set b;; to a higher value. In general,
users have a large freedom to generate belief matrices. However, typical construction
principles are to assume that nodes with specific attributes are more popular and thus
edges connecting these attributes receive higher multiplicity, or to assume that nodes
that are similar with respect to one or more attributes are more likely to form an edge,
cf. [15]. Ideally, the elicitation of belief matrices is based on existing theories.

For example, based on the information shown in Fig. 1, one could “believe” that
two authors collaborate more frequently together if: (1) they both are from the same
country, (2) they share the same gender, (3) they have high positions, or (4) they are
popular in terms of number of articles and citations. We capture each of these beliefs
in one matrix. One implementation of the matrices for our example beliefs could be:

e By (same country): b;; := 0.9 if fi[country] = fj[country] and 0.1 otherwise
e B; (same gender): b;; := 0.9 if fi[gender] = fj[gender] and 0.1 otherwise

e B3 (hierarchy): b;; := fi[position]- f;|position]

o B, (popularity): b;; := filarticles| + fjlarticles| + fi[citations] + fj[citations]

Fig. 3a shows the matrix representation of belief By, and Fig. 3b its respective
row-wise normalization for the local model case. While belief matrices are identically
structured for local and global models, the ratio between parameters in different rows
is crucial for the global model, but irrelevant for local ones.

Eliciting a Dirichlet prior. In order to obtain the hyperparameters o of a prior
Dirichlet distribution we utilize the pseudo-count interpretation of the parameters
o;; of the Dirichlet distribution, i.e., a value of @;; can be interpreted as o;; — 1
previous observations of the respective event for o;; > 1. We distribute pseudo-
counts proportionally to a belief matrix. Consequently, the hyperparameters can be

expressed as: o;; = % x K+ 1, where K is the concentration parameter of the prior.
The normalization constant Z is computed as the sum of all entries of the belief
matrix in the global model, and as the respective row sum in the local case. We
suggest to set Kk = n x k, k = {0, 1,...,10}. A high value of x expresses a strong
belief in the prior parameters. A similar alternative method to obtain Dirichlet priors
is the trial roulette method [21]. For the global model variation, all & values are
parameters for the same Dirichlet distribution, whereas in the local model variation,

each row parametrizes a separate Dirichlet distribution.

3.3 Computation of the Marginal Likelihood

For comparing the relative plausibility of hypotheses we use the marginal likelihood.
This is the aggregated likelihood over all possible values of the parameters 6 weighted
by the Dirichlet prior. For our set of local models we can calculate them as:
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Recall, ;; encodes our prior belief connecting nodes v; and v; in G, and m;; are
the actual edge counts. Since we evaluate only a single model in the global case, the
product over rows i of the adjacency matrix can be removed, and we obtain:

CEi X 06g) o T (o +mij) 3
I(Xi, Xy oij+mij) I' (o) ©

Equation (3) holds for directed networks. In the undirected case, indices j go
from i to n accounting for only half of the matrix including the diagonal. For a
detailed derivation of the marginal likelihood given a Dirichlet-Categorical model
see [22, 25]. For both models we focus on the log-marginal likelihoods in practice to
avoid underflows.

P(D|H) =
i=1j=1

Bayes Factor. Formally, we compare the relative plausibility of hypotheses by using
so-called Bayes factors [7], which simply are the ratios of the marginal likelihoods
for two hypotheses H; and H,. If it is positive, the first hypothesis is judged as more
plausible. The strength of the Bayes factor can be checked in an interpretation table
provided by Kass and Raftery [7].

3.4 Application of the Method and Interpretation of Results

We now showcase an example application of our approach featuring the network
shown in Fig. 1, and demonstrate how results can be interpreted. For that purpose
and due to space limitations, we focus on the local models variant.

Hypotheses. We compare four hypotheses (represented as belief matrices) By, B,
B3, and By elaborated in Section 3.2. Additionally, we use the uniform hypothesis
as a baseline. It assumes that all edges are equally likely, i.e., b;; = 1 for all i, j.
Hypotheses that are not more plausible than the uniform cannot be assumed to
capture relevant underlying mechanisms of edge formation. We also use the data
hypothesis as an upper bound for comparison, which employs the observed adjacency
matrix as belief: b;; = m;;.

Calculation and visualization. For each hypothesis H and every x, we can elicit
the Dirichlet priors (cf. Section 3.2), determine the aggregated marginal likelihood
(cf. Section 3.3), and compare the plausibility of hypotheses compared to the uni-
form hypothesis at the same k by calculating the logarithm of the Bayes factor as
log(P(D|H)) — log(P(D|Hyniform)). We suggest two ways of visualizing the results,
i.e., ploting the marginal likelihood values (Fig. 4a) or showing the Bayes factors
(Fig. 4b) on the y-axis. In both cases, the x-axis refers to the concentration parameter
k. While the visualization showing directly the marginal likelihoods carries more
information, visualizing Bayes factors makes it easier to spot smaller differences
between the hypotheses.

Interpretation. Every line in both figures represents a hypothesis. In Fig. 4a, higher
evidence values mean higher plausibility. Similarly, in Fig. 4b positive Bayes factors
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Fig. 4: Ranking of hypotheses for the introductory example. Rankings can be
visualized using (a) the marginal likelihood or evidence (y-axis), or (b) Bayes factors
(y-axis) by setting the uniform hypothesis as a baseline to compare with; higher values
refer to higher plausibility. The x-axis depicts the concentration parameter k. For this
example, authors from the multigraph shown in Fig. 1 appear to prefer to collaborate
more often with researchers of the same country rather than due to popularity (i.e.,
number of articles and citations). Note that all hypotheses outperform the uniform,
meaning that they all represent reasonable explanations of edge formation for the
given graph.

mean that for a given k, the hypothesis is judged to be more plausible than the
uniform baseline hypothesis; here, the relative Bayes factors also provide a ranking.
If evidences or Bayes factors are increasing with k, we can interpret this as further
evidence for the plausibility of expressed hypothesis as this means that the more we
believe in it, the higher the Bayesian approach judges its plausibility. As a result for
our example, we see that the hypothesis believing that two authors are more likely
to collaborate if they are from the same country is the most plausible one (after the
data hypothesis). In this example, all hypotheses appear to be more plausible than
the baseline, but this is not necessarily the case in all applications.

4 Experiments

We demonstrate the utility of our approach on both synthetic and empirical networks.
Due to space limitations, we only showcase the local model results.

4.1 Synthetic Attributed Multigraph

We start with experiments on a synthetic attributed multigraph. Here, we control the
underlying mechanisms of how edges in the network emerge and thus, expect these
also to be good hypotheses for our approach.

Network. The network contains 100 nodes where each node is assigned one of
two colors with uniform probability. For each node, we then randomly drew 200
undirected edges where each edge connects randomly with probability p = 0.8 to a
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Fig. 5: Ranking of hypotheses for synthetic network. In (a), we show the adjacency
matrix of the 2-color random multigraph with a node correlation of 80% for nodes
of the same color and 20% otherwise. One can see homophily based on more
connections between nodes of the same color; the diagonal is zero as there are no self-
connections. In (b), we show the ranking of hypotheses based on Bayes factors when
compared to the uniform hypothesis. As expected, the homophily hypothesis explains
the edge formation best (positive Bayes factor), and the heterophily and selfloop
hypotheses show negative Bayes factors—i.e., they provide no good explanations for
edge formation.

different node of the same color, and with p = (.2 to a node of the opposite color.
The adjacency matrix of this graph is visualized in Fig. 5a.

Hypotheses. In addition to the uniform baseline hypothesis, we construct two intu-
itive hypotheses based on the node color that express belief in possible edge formation
mechanics. First, the homophily hypothesis assumes that nodes of the same color
are more likely to have more edges between them. Therefore, we arbitrary set belief
values b;; to 80 when nodes v; and v; are of the same color, and 20 otherwise. Second,
the heterophily hypothesis expresses the opposite behavior; i.e., b;; = 80 if the color
of nodes v; and v; are different, and 20 otherwise. An additional selfloop hypothesis
only believes in self-connections (i.e., diagonal of adjacency matrix).

Results. Fig. 5b shows the ranking of hypotheses based on their Bayes factors com-
pared to the uniform hypothesis. Clearly, the homophily hypothesis is judged as the
most plausible. This is expected and corroborates the fact that network connections
are biased towards nodes of the same color. The heterophily and selfloop hypotheses
show negative Bayes factors; thus, they are not good hypotheses about edge formation
in this network. Due to the fact that the multigraph lacks of selfloops, the selfloop
hypothesis decreases very quickly with increasing strength of belief k.

4.2 Empirical Attributed Multigraph

Here, we focus on a real-world contact network based on wearable sensors.
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Fig. 6: Ranking of hypotheses for Kenya contact network. (a) Shows the adja-
cency matrix of the network with node ordering according to household membership.
Darker cells indicate more contacts. (b) Displays the ranking of hypotheses based
on Bayes factors, using the uniform hypothesis as baseline. The same household
hypothesis (people are more likely to contact people from the same household) ranks
highest. While the similar age hypothesis also provide positive Bayes Factors, the
same and different gender hypotheses are less plausible than the baseline (uniform
edge formation). Results are consistent for all k.

Network. We study a network? capturing interactions of 5 households in rural Kenya
between April 24 and May 12, 2012 [9]. The undirected unweighted multigraph
contains 75 nodes (persons) and 32 643 multiedges (contacts) which we aim to
explain. For each node, we know information such as gender and age (encoded
into 5 age intervals). Interactions exist within and across households. Fig. 6a shows
the adjacency matrix (i.e., number of contacts between two people) of the network.
Household membership of nodes (rows/columns) is shown accordingly.

Hypotheses. We investigate edge formation by comparing—next to the uniform
baseline hypothesis—four hypotheses based on node attributes as prior beliefs. (i)
The similar age hypothesis expresses the belief that people of similar age are more
likely to interact with each other. Entries b;; of the belief matrix B are set to the
inverse age distance between members: ik (i1) The same household

1+abs(f; [a;e] —filage
hypothesis believes that people are more likely to interact with people from the same
household. We arbitrarily set b;; to 80 if person v; and person v; belong to the same
household, and 20 otherwise. (iii) With the same gender hypothesis we hypothesize
that the number of same-gender interactions is higher than the different-gender
interactions. Therefore, every entry b;; of B is set to 80 if persons v; and v; are of the
same gender, and 20 otherwise. Finally, (iv) the different gender hypothesis believes
that it is more likely to find different-gender than same-gender interactions; b;; is set
to 80 if person v; has the opposite gender of person v;, and 20 otherwise.

Results. The results shown in Fig. 6b indicate that the same household hypothesis
explains the data the best, since it has been ranked first and it is more plausible than
the uniform. The similar age hypothesis also indicates plausibility due to positive

http://www.sociopatterns.org/datasets/kenyan-households—contact
-network/
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Bayes factors. Both the same and different gender hypotheses show negative Bayes
factors when compared to the uniform hypothesis suggesting that they are not good
explanations of edge formation in this network. This gives us a better understanding
of potential mechanisms producing underlying edges. People prefer to contact people
from the same household and similar age, but not based on gender preferences.
Additional experiments could further refine these hypotheses (e.g., combining them).

5 Related Work

We provide a broad overview of research on modeling and understanding edge for-
mation in networks; i.e., edge formation models and hypothesis testing on networks.

Edge formation models. A variety of models explaining underlying mechanisms of
network formation have been proposed. Here, we focus on models explaining linkage
between dyads beyond structure by incorporating node attribute information. Promi-
nently, the stochastic blockmodel [6] aims at producing and explaining communities
by accounting for node correlation based on attributes. The attributed graph [16]
models network structure and node attributes by learning the attribute correlations in
the observed network. Furthermore, the multiplicative attributed graph [8] takes into
account attribute information from nodes to model network structure. This model
defines the probability of an edge as the product of individual attribute link formation
affinities. Exponential random graph models [17] (also called the p* class of models)
represent graph distributions with an exponential linear model that uses feature-
structure counts such as reciprocity, k-stars and k-paths. In this line of research, p/
models [4] consider expansiveness (sender) and popularity (receiver) as fixed effects
associated with unique nodes in the network [3], in contrast to the p2 models [17]
which account for random effects and assume dyadic independence conditionally to
node-level attributes. While many of these works focus on binary relationships, [27]
proposes an unsupervised model to estimate continuous-valued relationship strength
for links from interaction activity and user similarity in social networks.

Hypothesis testing on networks. Previous works have implemented different tech-
niques to test hypotheses about network structure. For instance, the work in [13]
proposes an algorithm to determine whether two observed networks are significantly
different. Another branch of research has specifically focused on dyadic relationships
utilizing regression methods accounting for interdependencies in network data. Here,
we find the state-of-the-art Multiple Regression Quadratic Assignment Procedure
(MRQAP) [10] and its predecessor QAP [5] which permute nodes in such a way
that the network structure is kept intact; this allows to test for significance of effects.
Mixed-effects models [20] add random effects to the models allowing for variation to
mitigate non-independence between responses (edges) from the same subject (nodes)
[26]. Based on the quasi essential graph the work in [14] proposes to compare two
graphs (i.e., Bayesian networks) by testing and comparing multiple hypotheses on
their edges. Recently, the generalized hypergeometric ensembles [2] have been pro-
posed as a framework for model selection and statistical hypothesis testing of finite,
directed and weighted networks that allow to encode several topological patterns
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such as block models where homophily plays an important role in linkage decision.
In contrast to our work, neither of these approaches is based on Bayesian hypothesis
testing, which avoids some fundamental issues of classic frequentist statistics.

6 Discussion

Next, we discuss some aspects and open questions related to the proposed approach.

Inconsistency of local model. For directed networks, the local ego-network models
can assemble a full graph model by defining a probability distribution for the degrees
of the source nodes of edges. For undirected networks, this is not directly possible
as e.g., the ego-network model for v4 generated an edge from v4 to vg, but the
ego-network model for node v did not generate any edge to v4. Note that this does
not affect our comparison of hypotheses as we characterize the network.

Sparse data-connections. Most real networks exhibit small world properties such
as high clustering coefficient and fat-tailed degree distributions meaning that the
adjacency matrices are sparse. While comparison still relatively judges the plausi-
bility, our hypotheses do not approximate the data curve as shown in Fig. 6b. As
an alternative, one might want to limit our beliefs to only those edges that exist in
the network, i.e., we would then only build hypotheses on how edge multiplicity
varies between edges. Ultimately, our models also warrant extensions to adhere to the
degree sequence in the network, e.g., in the direction of multivariate hypergeometric
distributions as recently proposed in [2].

Other limitations and future work. The main intent of this work is the introduction
of a hypotheses-driven Bayesian approach for understanding edge formation in
networks. To that end, we showcased this approach on simple categorical models
that warrant extensions, e.g., by incorporating appropriate models for other types of
networks such as weighted or temporal networks. We can further investigate how to
build good hypotheses by leveraging all node attributes, and infer subnetworks that
fit best each of the given hypotheses. Moreover, there can be alternatives for non-
attributed networks. For instance, one could use other networks (same nodes, different
connections) to verify whether edges from a specific network can be explained by the
mechanisms of other networks. In the future, we also plan an extensive comparison
to other methods such as MRQAP, mixed-effects models and p* models.

7 Conclusions

In this paper, we have presented a Bayesian framework that facilitates the understand-
ing of edge formation in attributed multigraphs. The main idea is based on expressing
hypotheses as beliefs in parameters (i.e., multiplicity of edges), incorporate them
as priors, and utilize Bayes factors for comparing their plausibility. We proposed
simple local and global Dirichlet-categorical models and showcased their utility on
synthetic and empirical data. For illustration purposes our examples are based on
small networks. We tested our approach with larger networks obtaining identical
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results. In future, our concepts can be extended to further models such as models
adhering to fixed degree sequences. We hope that our work contributes new ideas to
the research line of understanding edge formation in complex networks.
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