
173© Springer International Publishing AG 2017
A. Carvalho (ed.), Immunogenetics of Fungal Diseases, 
DOI 10.1007/978-3-319-50842-9_8

J. Maertens (*) 
Department of Hematology, University Hospitals Leuven,  
Herestraat 49, 3000 Leuven, Belgium
e-mail: johan.maertens@uzleuven.be 

K. Lagrou 
Department of Microbiology and Immunology, KU Leuven – University of Leuven,  
Leuven, Belgium 

Department of Laboratory Medicine and National Reference Center for Medical Mycology, 
University Hospitals Leuven, Leuven, Belgium

8Biomarker Applications in Diagnostics 
of Fungal Infections

Johan Maertens and Katrien Lagrou

Abstract
Diagnosing invasive mold disease has long been problematic owing to the inabil-
ity to culture the causal fungal agent from blood or other body fluids. This has 
fueled an interest in nonculture-based techniques such as the detection of galac-
tomannan in blood and bronchoalveolar fluid, the detection of beta-D-glucan in 
blood, and the detection of fungal DNA by PCR-based platforms. The past 
decades have witnessed important improvements in our understanding of the 
strengths and limitations of the antigen assays and in the standardization of PCR- 
based DNA techniques. These assays are now being incorporated into care path-
ways and diagnostic algorithms; they help us to steward and monitor antifungal 
therapies and to predict treatment outcomes.

8.1  Introduction

Invasive fungal infections are usually caused by yeast or mold pathogens. Diagnosis 
of invasive yeast infections is often based on a positive culture from a sterile body 
site (e.g., blood culture positive for Candida spp.) or on a specific serological test 
(e.g., cryptococcal antigen test). Diagnosis of invasive mold infections is less 
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straightforward; culture is frequently negative, and non-culture-based mycological 
tests exhibit major shortcomings, although advances have been made over the past 
two decades. Herein, we will focus on the availability and the use of biomarkers for 
diagnosing invasive mold disease with a particular emphasis on invasive 
aspergillosis.

Invasive mold infections, usually affecting the respiratory tract, occur almost 
exclusively in patients with varied degrees of immunodeficiency and produce a 
wide range of clinical manifestations. The risk is determined by the nature and the 
extent of the compromised immunity as well as the prophylactic use of antifungals 
and the accommodation in protective environments [1]. Patients considered at high- 
risk include allogeneic stem cell transplant recipients, those being treated for acute 
myeloid leukemia, myelodysplastic syndromes or aplastic anemia, and subgroups 
of solid organ transplant recipients [1]. However, over the past decade, several novel 
risk groups have been identified, including (but not restricted to) patients with 
chronic obstructive lung disease, liver cirrhosis, autoimmune disorders, and influ-
enza pneumonia. Many of these latter patients do not reside in hemato-oncology or 
transplantation units but are being hospitalized in intensive care facilities [2, 3]. 
However, many cases of invasive mold disease still remain undiagnosed or are only 
identified at autopsy because of difficulties in making an early diagnosis [4]. This 
shortcoming has resulted in a widespread and well-accepted practice of starting 
antifungals prophylactically or empirically, in the absence of any confirmation of 
fungal infection or disease. Although this approach is considered “standard of care” 
by many treating physicians, this also results in unnecessary antifungal drug treat-
ment, adverse drug reactions, and increased healthcare expenditure [5]. Diagnostic 
tools targeting fungal biomarkers (galactomannan, β-D-glucan, fungal DNA) have 
been developed over the past decades. These assays display improved performance 
characteristics compared with culture and microscopic examination, the more con-
ventional diagnostic tools. In recent clinical practice, these novel tests are being 
increasingly used to determine a treatment strategy and to influence patient manage-
ment [6]. However, understanding test performance in different at-risk populations 
with different prevalence of disease and in different clinical specimens is required. 
Assessing the clinical utility of these tests and feeding back the interpretation of test 
results to treating physicians has become a key element of antifungal stewardship, 
especially in centers with a large population of immunocompromised patients.

8.2  Available Biomarkers

8.2.1  Conventional Tools

Culture and microscopic examination have always been the cornerstones for mak-
ing a microbiological diagnosis of IFD. However, culture is time-consuming and 
requires considerable expertise. In addition, blood cultures are notoriously nega-
tive (with the exception of Fusarium spp.), even in disseminated disease, and cul-
ture from any respiratory specimen has only low to moderate sensitivity and 
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predictive value [7–9]. In an attempt to minimize the overinterpretation of the 
clinical significance of a positive culture for Aspergillus species, Bouza and col-
leagues developed a helpful score based on easily obtainable clinical and microbio-
logical information, including (a) a sample obtained by invasive procedures (1 
point), (b) two or more positive samples from the same patient (1 point), (c) under-
lying leukemia (2 points), (d) presence of neutropenia (5 points), and (e) cortico-
steroid treatment (2 points) [10]. Patients with a score of 0 had only a 2.5% 
probability of invasive aspergillosis. Those with a score of 1 or 2 had an increased 
probability of 10.3%. The probabilities rose to 40% and 70%, respectively, for 
patients with a score of 3 or 4 or a score of ≥5. This score helps to rule out the 
probability of proven or probable aspergillosis in an unselected population and bet-
ter defines the subpopulation which needs more aggressive diagnostic work-up for 
the confirmation of disease. Similar scores have not yet been developed for other 
mold pathogens.

However, the lack of efficient diagnostic tools has led to the development of sur-
rogate markers, based on the detection of fungal cell wall components or fungal 
DNA in clinical specimens.

8.2.2  Galactomannan

The fungal cell wall is almost exclusively composed of polysaccharides, including 
galactomannan (GM), a molecule composed of mannose residues with side chains 
of β-(1-5)-linked galactofuranosyl units. During the initial phase of logarithmic fun-
gal growth, GM is incorporated into the cell wall, but as apical growth continues, 
the hyphal tip becomes weaker and releases GM [11]. Using an in vitro model of the 
human alveolus, Hope et al. demonstrated that the kinetics of GM release and sub-
sequent levels are closely related to the dynamics of angioinvasion, concluding that 
that GM is only released into the circulation after the fungus has invaded the endo-
thelial compartment [12].

GM can be detected in various body fluids by a commercially available sandwich 
enzyme-linked immunosorbent assay (ELISA; Platelia Aspergillus®, Bio-Rad, 
Marnes-la-Coquette, France). This test uses EB-A2, a rat monoclonal antibody 
which specifically binds to four galactofuranosyl residues, both as capture and 
detecting antibody [13]. In the presence of antigen in a clinical specimen, a mono-
clonal antibody-antigen-monoclonal antibody complex is formed. A chromogenic 
substrate is added to reveal the presence of such complexes by turning blue. 
Microplates are read using an optical reader that calculates the ratio of the optical 
density relative to a control provided by the manufacturer (the so-called optical 
density index) [14]. The test is included as a mycological criterion within the 
EORTC/MSG consensus definitions and has become the mainstay for diagnosing 
probable invasive aspergillosis [15]. This simple ELISA can be performed at the 
local laboratory level; however, no external quality control exists yet. The assay has 
been extensively evaluated and is the subject of meta-analyses and systematic 
reviews [16–18]. Sensitivities between 17% and 100% have been reported 
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depending on the index cutoff used to determine positivity and on the nature of the 
population at risk. Indeed, the test performs best in adult and pediatric neutropenic 
patients (frequently undergoing intensive chemotherapy for acute leukemia) and 
less well in non-neutropenic patients, including organ transplant recipients and stem 
cell transplant recipients with graft-versus-host disease [16–18]. This probably 
reflects differences in immunopathogenesis of disease and fungal burden and repre-
sents a serious limitation of the assay when used as a screening tool in unselected 
immunosuppressed patients [19, 20]. Earlier studies used an index of ≥1.5 to define 
positivity, as initially recommended by the manufacturer. More recently, the United 
States Food and Drug Administration (US FDA) has approved a cutoff index value 
of ≥0.5 based on testing of two separate blood samples or a single sample with a 
value of ≥1.0 (restricted to patients with hematological malignancies or recipients 
of hematopoietic stem cell transplant) [21]. The European Conference on Infections 
in Leukemia (ECIL) guidelines recommend a single value of ≥0.7 or multiple (con-
secutive) values of ≥0.5 for blood specimens [22]. Of note, the 2008 EORTC-MSG 
revised consensus document has no specified cutoffs for positivity, but refers to the 
manufacturer’s instructions [15]. However, improved sensitivity with the use of 
lower cutoffs comes with a loss of specificity.

Although fairly specific for Aspergillus species, cross-reactivity with non- 
Aspergillus molds (including but not limited to Fusarium spp., Penicillium spp., 
Acremonium spp., Alternaria spp, and Histoplasma capsulatum) may occur. In 
addition, galactofuranosyl residues are also present in other macromolecules, result-
ing in false-positive test results. Table 8.1 summarizes established causes of false 
positivity and false negativity.

GM testing can also be applied to other types of specimens, including bronchoal-
veolar lavage (BAL) fluid [23, 24]. Diagnostic bronchoscopy with lavage is per-
formed when radiographic abnormalities of the lung have been detected, usually by 
pulmonary CT-scanning. In this setting, the pretest probability of (fungal) disease is 
much higher than when screening a blood sample from an asymptomatic patient; 
hence specificity becomes crucial such that a higher threshold of positivity is 
needed. Cutoff values of 1.0 have been recommended (and approved by the US 
FDA [21]), although it is likely that even higher thresholds are needed [25]. Recently, 
an index cutoff of 1.0 has also been suggested for analyzing cerebrospinal fluid 
(CSF) samples from patients with (suspected) cerebral aspergillosis [26]. Stringent 
criteria still need to be developed for use with other body fluids (urine, abscesses, 
pleural fluid, ascites, etc.)

8.2.3  Beta-1,3-D-glucan

Unlike GM, β-D-glucan (BDG) is a polysaccharide component of the cell wall of 
many pathogenic fungi including Candida spp., Fusarium spp., and Pneumocystis. 
The main exceptions are Mucorales and some Cryptococcus species [27]. Four 
assays are now commercially available, of which the Fungitell® assay (Associates 
of Cape Cod, Inc., East Falmouth, MA, USA) has been approved by the US FDA 

J. Maertens and K. Lagrou



177

and carries the European CE label for the presumptive diagnosis of invasive fungal 
infection [28]. The remainder are only marketed in Japan. Fungitell detects BDG 
through a pathway in the Limulus amebocytes lysate (LAL), an aqueous extract of 
blood cells from the horseshoe crab, Limulus polyphemus. Bacterial endotoxins and 
BDG can activate different coagulation cascades in the LAL; bacterial endotoxins 
specifically activate factor B and C, whereas BDG activates factor G. The Fungitell 
assay uses a modified pathway in the LAL by removing factor C. Thus, in the 
absence of factor C, the coagulation cascade is activated only in the presence of 
BDG [14]. Also this test has been included in the EORTC/MSG definitions of inva-
sive fungal disease [15]. Of note, cutoff values for determining positivity differ 
markedly between these assays [14].

Table 8.1 Limitations of antigen assays in diagnosing fungal disease

Galactomannan (GM) Beta-D-glucan (BDG)

Reactivity 
with 
fungal 
species

Aspergillus sp., Fusarium sp., 
Paecilomyces sp., Acremonium 
sp., Penicillium sp., Alternaria sp., 
Histoplasma capsulatum, 
Blastomyces dermatitidis, 
Cryptococcus neoformans, 
Emmonsia sp., Wangiella 
dermatitidis, Prototheca, 
Myceliophthora, Geotrichum 
capitatum, Chaetomium globosum

Pneumocystis jiroveci, Aspergillus sp., 
Fusarium sp., Histoplasma capsulatum, 
Candida sp., Acremonium sp., Trichosporon 
sp., Sporothrix schenckii, Saccharomyces 
cerevisiae, Coccidioides immitis, Prototheca

False- 
positive 
test results

Semisynthetic β-lactam 
antibioticsa

Semisynthetic β-lactam antibiotics

Multiple myeloma Human blood products, including 
immunoglobulins, albumin, plasma, 
coagulation factor infusions, filtered through 
cellulose membranes

Blood products collected using 
Fresenius Kabi bags

Cellulose hemodialysis/hemofiltration 
membranes

Gluconate-containing plasma 
expanders (e.g., Plasmalyte)

Exposure to (surgical) gauze

Flavored ice pops/frozen dessert 
containing sodium gluconate

Bacterial bloodstream infections (e.g., 
Pseudomonas aeruginosa)

Bifidobacterium sp. (gut)

Severe mucositis or 
gastrointestinal graft-versus- host 
disease

Enteral nutritional supplements

False- 
negative 
test results

Concomitant use of mold-active 
antifungal agents

Concomitant use of antifungal agents

Mucolytic agents (BAL) such as 
Sputasol or SLsolution

aInclude ampicillin, amoxicillin-clavulanate, and piperacillin-tazobactam (currently this problem 
seems largely abated compared to previous reports)
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Any systematic review of this test is hampered by significant heterogeneity 
among the patient populations, testing strategies, and the inclusion of retrospective 
and case-controlled studies alongside prospective cohort studies with low numbers 
of documented fungal diseases [29–32]. Most studies report good sensitivity, but 
specificity and positive predictive value for diagnosing mold infections is poor due 
to a high rate of false-positive results (Table 8.1), regardless of the specimen [33]. 
However, the negative predictive value is around 80–90%. Unfortunately, the BDG 
assay is not pathogen specific and therefore cannot differentiate fungal species. In 
addition, pretest preparations may limit its routine applicability.

8.2.4  Polymerase Chain Reaction

Polymerase chain reaction (PCR)-based methods have been developed for the diag-
nosis of fungal diseases. The main advantage is the very high sensitivity for the 
real-time detection of fungal DNA. In addition, PCR-based methods can be applied 
to any specimen type, including whole blood, serum, plasma, BAL fluid, CSF, and 
tissue samples. However, lack of standardization due to the use of in-house assays 
using varied protocols involving different specimens, extraction techniques, molec-
ular targets, amplification platforms, and detection techniques has hampered the 
acceptance of these diagnostic assays. For this very reason, PCR has not yet been 
included in the EORTC/MSG consensus definitions as a reliable microbiological 
marker [15]. Fortunately, over the past decade, the European Aspergillus PCR 
Initiative (EAPCRI), established to remedy this situation for diagnosing invasive 
aspergillosis, has made tremendous progress in standardizing protocols for efficient 
DNA extraction and amplification [34–40]. Clinical validation in multicentre pro-
spective studies is ongoing.

Commercially available as well as in-house platforms using genus-/species- 
specific genes and panfungal targets have been developed, and the usefulness of 
PCR for diagnosing invasive fungal disease has been recently reviewed [41, 42]. 
Superior performance compared to the serological biomarkers has been suggested 
and high negative predictive values have been consistently documented, despite all 
methodological variabilities [43–45]. Whereas two positive results seem to be 
required to rule in disease, it has been suggested that a single negative PCR result is 
sufficient to exclude Aspergillus disease at that time point.

8.2.5  Lateral-Flow Device for Invasive Aspergillosis

A lateral-flow device (LFD) was developed for a point-of-care diagnosis of invasive 
aspergillosis. This assay uses a monoclonal antibody that is highly specific to grow-
ing Aspergillus species (but different from the one used in the Platelia assay) [46, 
47]. Compared to GM and BDG assays, the LFD test is quick (15 min to perform) 
and does not require expensive equipment or specific laboratory facilities to be run. 
Furthermore, cross-reactions with drugs or contaminants that have been shown to 
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cause false-positive reaction in the GM and BDG tests have not (yet) been seen. A 
recent meta-analysis of seven studies (with mainly solid organ transplant recipients) 
yielded a pooled sensitivity, specificity, and DOR for proven/probable versus no 
aspergillosis cases of 86%, 93%, and 65.9%, respectively when using BAL fluid and 
68%, 87%, and 11.9% when using serum samples (in which case a heating step is 
required) [48]. More data on the impact of antifungal prophylaxis or therapy on the 
performance are needed [49]. Of note, similar lateral-flow devices have proven to be 
very successful for the diagnosis of cryptococcal disease and are currently being 
developed for diagnosing non-Aspergillus mold infections (including Fusarium and 
Scedosporium species).

8.2.6  Biomarkers in Development

Despite significant recent advances, the available tools for diagnosing invasive fun-
gal disease are far from perfect and clinicians still struggle to make a timely diagno-
sis. Therefore, the search for novel targets and platforms that may further improve 
our diagnostic capabilities continues. An electronic nose (eNose) can discriminate 
various lung diseases through an analysis of exhaled volatile organic compounds. 
An eNose is cheap and noninvasive and yields results within minutes. A proof-of- 
principle study showing that neutropenic patients with aspergillosis have a distinct 
exhaled breath profile (or “breath print”) that can be discriminated with an eNose 
has recently been published. This study showed a sensitivity of 100% and a specific-
ity of 83% [50].

Using gas chromatography and mass spectrometry, US researchers were able to 
measure fungal volatile metabolites in breath samples of patients with invasive 
aspergillosis [51]. Detection of α-trans-bergamotene, β-trans-bergamotene, a 
β-vatirenene-like sesquiterpene, or trans-geranylacetone identified these patients 
with 94% sensitivity and 93% specificity. Although both techniques perform well 
for diagnosing invasive aspergillosis, more extensive validation is needed.

In recent years, gliotoxin (GT), a virulence factor during hyphal growth, has 
been proposed as a diagnostic biomarker of invasive aspergillosis. Aspergillus 
fumigatus is the most important GT-producing fungal pathogen, although also non- 
fumigatus Aspergillus species can produce GT, as well as less common opportunis-
tic pathogens such as Penicillium spp., Gliocladium spp., and Pseudallescheria spp. 
[52]. Unfortunately, GT is hard to detect in body fluids. Bis(methylthio)gliotoxin 
(bmGT), the inactive derivative of GT, is more stable and appears to be a more reli-
able indicator of infection than GT [52]. Preliminary work demonstrated that bmGT 
is produced by a higher percentage of isolates of A. fumigatus than GT. A recent 
prospective study comparing the diagnostic accuracy of bmGT detection (by high- 
performance thin layer chromatography) with GM detection (Platelia assay) in 79 
patients at risk for invasive aspergillosis suggests a higher sensitivity and positive 
predictive value for bmGT than GM and similar specificity and negative predictive 
value [53]. Importantly, combining both tests increased the predictive value of the 
individual biomarkers. Although promising, additional analysis with larger cohorts 
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of patients, as well as the development of an immunochemical method, are needed 
before this test can be implemented in clinical management.

8.3  Clinical Validity of Available Biomarkers

Assessing the clinical utility of a diagnostic test – i.e., how will the result determine 
a treatment strategy and potentially influence patient management and outcome – 
has become a key element of antifungal stewardship programs.

Based on factors related to host, underlying disease and condition, and fungal 
exposure, patients can generally be stratified into three risk groups for IFD (high, 
intermediate, and low), and risk-adapted antifungal strategies can be applied accord-
ingly [54]. One generally considers a prevalence of ≥10% as being at high risk and 
≤5% as being at low risk with intermediate lying in between. Importantly, risk 
assessment is a dynamic process and patients may gradually move to higher- or 
lower-risk categories (e.g., patients with refractory initially low-risk disease in need 
of intensive chemotherapy may become high-risk patients) [54]. Adequate risk 
assessment is an important element for the interpretation of test results. In clinical 
practice, physicians don’t usually rely on the clinical sensitivity and specificity but 
rather on the positive and negative predictive values. These latter are influenced by 
the prevalence of disease in a population which determines the pretest probability of 
disease. Hence a diagnostic test for IFD with a sensitivity of 71% and a specificity 
of 89% will have a positive predictive value of only 12% in a population with a 
pretest probability of 2% (e.g., a kidney transplant recipient or a patient with first- 
line lymphoma therapy) [55]. However, the negative predictive value of 99.3% 
enables the fungal disease to be ruled out with a high degree of confidence. Using 
the same test in a population with a pretest probability of 15% increases the positive 
predictive value to almost 60% (or a six out of ten chance that the patient has IFD), 
while the negative predictive value remains high at 94%. Unlike predictive values, 
likelihood ratios (LR) are not influenced by prevalence; they inform us on how more 
likely the patient is to have IFD after the test results have become available, allow-
ing us to calculate posttest probabilities (using Fagan’s nomogram). For instance, if 
the prevalence of disease is 15% and the test has a positive LR of 50, then the 
chances of a patient with a positive result having IFD are 90%. Conversely, for a test 
with a negative LR of 0.1, the chances of a patient with a negative result having IFD 
are only 1.7%. Such a probability increase from 15% to 90% or decrease to 1.7% is 
clinically meaningful and should be used to guide antifungal management.

The importance of pretest prevalence is further evidenced by the impact of the 
use of mold-active antifungal drugs, either as prophylaxis or as treatment, on the 
performance characteristics of diagnostic tests [56, 57]. Biomarker assays remain 
frequently negative (or falsely positive) in the presence of drugs that reduce the 
pretest probability of IFD to less than 5% (e.g., posaconazole prophylaxis during 
remission-induction therapy of acute myeloid leukemia) [58].

Finally, the results of all these assays should not be interpreted in isolation. 
Nowadays an adequate and rapid diagnosis of IFD relies heavily on a few 
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well-defined radiological features on pulmonary CT scan (nodules with or without 
a halo, cavities, and/or air crescent signs, as defined by the EORTC/MSG consensus 
criteria) [59]. Unfortunately these abnormalities are time-dependent, largely 
restricted to profoundly neutropenic patients, and nonspecific for invasive pulmo-
nary mold disease. Moreover, nonspecific radiological abnormalities may precede 
these classical signs, especially in less immunocompromised patients and in those 
with moderate or transient neutropenia [60]. Biomarkers have the capacity to 
improve the specificity of these radiological features.

8.4  Clinical Application of Biomarkers

8.4.1  Low-Risk Patients

Mold-active prophylaxis is not justified for low-risk patients (incidence ≤5%) as the 
number need to harm will exceed the number need to treat to prevent a fungal infec-
tion [61]. Also screening for biomarkers is unlikely to be clinically useful and cer-
tainly not cost-effective [58]. Only testing for biomarkers in patients with a clinical 
picture suggestive of an invasive mold infection, usually a new lung infiltrate, 
appears to be appropriate.

8.4.2  High-Risk Patient on Mold-Active Drugs

As evidenced by a recent Spanish study, the clinical utility of twice weekly bio-
marker (GM) screening on blood samples of high-risk patients is severely compro-
mised when mold-active prophylaxis is given or empirical therapy has been started 
[58]. Because of a relative high number of false-positive GM assays and the low 
incidence of IFD in effectively prophylaxed asymptomatic patients, the positive 
predictive value was only 11.8%. However, biomarkers may still be useful to con-
firm a diagnosis in the event of failure of prophylaxis or breakthrough cases of 
invasive aspergillosis. Indeed, when used to diagnose invasive aspergillosis in case 
of clinical suspicion, the positive predictive value increased to 89.6%. For these 
patients, an efficient co-positioning of effective prophylaxis and diagnostic strate-
gies seems feasible. For instance, empirical antifungal therapy could be replaced 
with a diagnostic strategy that employs early pulmonary CT scan and serum/plasma 
and BAL GM detection [62]. Given its high sensitivity and specificity, PCR detec-
tion of fungal DNA might be used as well.

8.4.3  High-Risk Patient Not Receiving Mold-Active Drugs

In a high-risk population not receiving mold-active prophylaxis (fluconazole is per-
mitted), a biomarker screening strategy using assays with high sensitivity and high 
negative predictive value can identify patients who do not have fungal infection and 
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do not need antifungal therapy. All currently available noninvasive diagnostic tests 
(GM, BDG, PCR) can be used for this [63]. Of course, the rather low prevalence of 
fungal disease (even in high-risk patients not receiving prophylaxis) and the ubiqui-
tous nature of contaminating fungal pathogens mean that false-positive assays will 
be seen. This will overestimate the need for antifungal therapy, albeit at a much 
lower rate than when empirical therapy would be initiated. Moreover, this drawback 
can be largely overcome by more frequent testing (twice or thrice weekly) or by 
combining different biomarkers [41, 64, 65]. Of note, antifungal therapy should not 
be initiated for patients with a single positive biomarker who have no clinical signs 
of invasive fungal disease; however, this should trigger repeat sampling and further 
intensive diagnostic work-up that includes imaging and, if needed, bronchoscopy 
with lavage. This approach can be used without excess morbidity or mortality [66]. 
Of course, such an approach will inevitably result in more documented cases of 
probable invasive fungal disease.

8.5  Can Biomarkers Be Used for Early Response 
Assessment?

Serum GM kinetics has been proposed as a good marker for predicting the outcome 
of patients with invasive aspergillosis, due to the excellent correlation observed in 
recent studies [67, 68]. In general, GM normalization after the initial 2 weeks of 
antifungal therapy is more prevalent in responders than in nonresponders (although 
the kinetics may depend upon the antifungal treatment), whereas persistently posi-
tive GM is associated with higher mortality [69, 70]. Given the performance char-
acteristics of the assay, the correlation between GM values and patient outcome has 
predominantly been observed in studies composed of hematological patients only 
[71]. However, at present, no data suggest that the duration of antifungal therapy 
should be adjusted to the kinetics of biomarkers, including GM. Finally, whether a 
high baseline serum GM value or persistently positive assays supports the use of 
combination antifungal therapy, as carefully suggested in a recent study, remains to 
be determined [72]. The kinetics of BDG have been less vigorously studied, but 
preliminary data shows that prolonged persistence of BDG can occur despite reso-
lution of the fungal infection.

8.6  Conclusion

Patients at risk for IFD constitute a heterogenous group and are frequently subjected 
to preventative strategies. Hence, different approaches may need to be used in dif-
ferent patient groups to maximize diagnostic accuracy. Understanding test perfor-
mance in specific patient populations as well as in different clinical specimens and 
acknowledging the strengths as well as the limitations of testing strategies is imper-
ative to maximize clinical benefit in an economically useful way.
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