
Automatic Web Page Coloring

Polina Volkova(B), Soheila Abrishami, and Piyush Kumar

Florida State University, Tallahassee, FL 32306, USA
{volkova,abrisham,piyush}@cs.fsu.edu

Abstract. We present a new tool for automatic recoloring of web pages.
Automatic application of different color palettes to web pages is essential
for both professional and amateur web designers. However no existing
recoloring tools provide full recoloring for web pages. To recolor web
page entirely, we replace colors in .css, .html, and .svg files, and recolor
images such as background and navigation elements. We create new color
theme based on a color guide image provided by user. Evaluation shows
a high level of satisfaction with the quality of palettes and results of
recoloring. Our tool is available at http://chameleon.cs.fsu.edu/.

1 Introduction

Color is one of the most important components in web page design. The ability
to automatically recolor a web page with a given color palette would be very
valuable for web designers. Unfortunately the problem of automatic coloring of
web pages has not been fully addressed. There exists a plethora of tools that can
assist with web page coloring tasks such as palette selection, image recoloring,
and image color adjustment. However, these tasks have to be performed sepa-
rately. An automated web page recoloring tool should combine palette selection,
web page and image recoloring. To the best of our knowledge, currently no tool
provides this functionality.

The problem of web page recoloring has been partially addressed in research.
Works on website recoloring for people with vision deficiencies [1,4] focus specif-
ically on accessibility and cannot be used generically, because they do not ensure
color harmony, do not allow users pick the colors, or provide full coloring. We
found only one work that addresses a problem similar to ours, by Gu et al.
[5]. Gu et al. presented a tool for redefining web page color scheme based on
a mood board, using a genetic algorithm to generate assignment of palette col-
ors to .css colors. Their work has several weaknesses, such as simplistic palette
extraction method based on K-means, no image recoloring, and not adjusting
size of new palette to match the variety of colors on the web page. We found
patent applications for a website colorization system1, and for recoloring images
on a web page2, which confirms that our problem is of practical interest but
under researched.

1 https://www.google.com/patents/US20090031213.
2 https://www.google.com/patents/US8731289.

c© Springer International Publishing AG 2016
G. Bebis et al. (Eds.): ISVC 2016, Part I, LNCS 10072, pp. 91–100, 2016.
DOI: 10.1007/978-3-319-50835-1 9

http://chameleon.cs.fsu.edu/
https://www.google.com/patents/US20090031213
https://www.google.com/patents/US8731289

92 P. Volkova et al.

The goal of this paper was to create a web page recoloring method that fulfills
the following objectives:

• Esthetics: give users a simple way to specify a harmonious color scheme.
• Full coloring : recolor web pages including images, keeping in mind that some

images such as photos should not be recolored.
• Consistency : preserve color proportions and color variety of the original page.
• Readability : recolored web page should have proper contrast.
• Availability : the tool should be intuitive to use and publicly available.

To the best of our knowledge, our work is the first website coloring system that
achieves the above goals simultaneously. Our contributions include a novel app-
roach to palette extraction that combines human input and automation, and
a method for palette expansion that preserves consistency of the color theme
and ensures proper contrast. Our system works as follows: users submit their
web page and a color guide image via a web interface. Based on the submitted
image, a new color palette is created, and assignment for substituting colors
in .css, .html, and .svg files is computed. Images such as logos, banners, and
background tiles are recolored to reflect the new palette. Figure 1 gives an exam-
ple of recoloring produced by our system. A survey conducted for evaluation
shows that our palette extraction method outperforms other methods, and that
recoloring results are rated well by users.

(a) Original web page (b) Color guide image (c) Recolored web page

Fig. 1. Web page recoloring example

Notation. Vectors are denoted by lower-case Roman letters. For a vector p, pi

denotes its ith component. i, j, k, l,m, n are positive integers. We reserve w to
denote weight and d(·) to denote Euclidean distance. Scalars are represented by
lower-case Greek letters. Upper-case script letters are used for all other objects
such as sets, images, and matchings. LAB denotes LAB space and RGB denotes
RGB space. x̂ denotes a weighted version of x, for instance if x is a color, x =
{ι, α, β}, where ι, α, β are coordinates in LAB space, then x̂ = {ι, α, β, w},
where 0 ≤ w < 1 is weight. ̂LAB denotes LAB space with additional weight
coordinate, as in x̂ ∈ ̂LAB. We will use LAB space for all color manipulation,
and K-means algorithm for all clustering tasks.

Automatic Web Page Coloring 93

2 Automatic Web Page Recoloring

This section describes our approach to automatic recoloring of web pages. In
Sect. 2.1 we introduce common color operations. Section 2.2 describes related
work, and our method for automatic palette selection based on a guide image.
Section 2.3 explains the steps of web page recoloring, which are color extrac-
tion from the web page, assignment of colors, and additional color generation.
In Sect. 2.4 we describe images classification for recolorability, and explain our
method for image recoloring. Figure 2 shows the organization of our system.
Users submit a query consisting of an image and a web page URL. Query is
queued and processed as described in Sects. 2.2, 2.3 and 2.4. Result is rendered
and displayed to user.

Fig. 2. System modules and data flow

2.1 Color Operations

Summarizing Images. To capture color characteristics of an image for com-
parison with other images, we summarize each image in a set of its cluster colors.
Due to perceptual uniformity of LAB space, clustering works very well for group-
ing similar colors. Although it was pointed out that clustering is not a proper
way to extract a palette from an image [6,9], it suits our purpose since we use
it not to obtain the final palette, but rather as a fast and simple way to extract
color features of an image.

We downscale an image for faster processing, represent it as an array of pixels
in LAB space, and cluster it into k clusters, k = 5. Clustering gives us centroid
colors C = {c1, ..., ck} ∈ LAB, and cluster weights Wc = {w1, ..., wk} ∈ R. As a
result, an image is represented by k weighted colors, Ĉ = {ĉ1, ..., ĉk} ∈ ̂LAB.

Matching Two Sets of Colors. The purpose of matching is to find best color-
to-color assignment for all colors in two sets. It is useful for mapping to a new
palette, and for evaluating image similarity.

Let a, b be two colors ∈ LAB. Perceptual Difference d(a, b) is a good measure
of color similarity due to perceptual uniformity of LAB space. Adding weight,
we get dw

λ (â, b̂) =
√

d(a, b)2 + λ(wa − wb)2. In our context weight w is color

94 P. Volkova et al.

proportion. We experimented with coefficient λ and found that λ ≈ 1 works
best for evaluating image similarity. Intuitively, color proportion is important
but it is secondary to color information.

We use Kuhn-Munkres algorithm [8] with cost function d(·) to find minimum
cost bipartite matching MA,B between two sets of colors A = {a1, ..., an} ∈
LAB,B = {b1, ..., bn} ∈ LAB, MA,B = {〈ai, bj〉|ai ∈ A, bj ∈ B}. We use dw

λ (·)
to find weighted matching MÂ,B̂ if weights are known.

2.2 Automatic Palette Selection from Image

Our goal is to give users an easy way to select a high-quality palette. Color
theory states that color distribution templates can be used to create harmonious
color themes [7]. However it has been shown that people do not prefer palettes
based strictly on these templates [6]. Palette extraction from images is another
popular approach. Some works use histograms [3] and clustering [2,5], but more
advanced methods involve human input. For example, a regression model trained
on color themes created by people can extract themes from images that closely
match human-extracted themes [6]. A color compatibility model learned by linear
regression on palette datasets collected online can be used for improving existing
palettes and extracting color themes from images [9].

Using an image as a color guide provides an intuitive way to specify a palette.
To ensure palette quality, we decided to combine automatic extraction with
human expertise, because experiments show that artists create better palettes
than extraction algorithms [9]. We will automatically select a palette generated
by a professional color designer using a color guide image uploaded by user.

Preprocessing. Our approach requires a palette collection. We assembled a
palette source3 where each record consists of a palette created by a color expert,
and an image on which the palette was based (Fig. 3d). We will use the palette
for recoloring, and associated image for comparison with the user image. For each
record, we retrieve palette colors P = {p1, ..., pn} ∈ LAB, |P| can be different
for different records. To compute weights for pi ∈ P, we cluster the image using

(a) User image U (b) Summary G (c) Palette
collection E

(d) Match from palette
collection I

Fig. 3. Automatic palette selection example

3 4561 palettes obtained from color blog Design Seeds, http://design-seeds.com/.

http://design-seeds.com/

Automatic Web Page Coloring 95

k = |P| into C = {c1, ..., ck} ∈ LAB and WC = {w1, ..., wk} ∈ R. Next we
compute a matching MP,C = {〈pi, cj〉|pi ∈ P, cj ∈ C}, and assign weights wj to
palette colors pi, WP = {wj |〈pi, cj〉 ∈ MP,C}. Now we have a weighted palette
P̂ = {p̂1, ..., p̂n} ∈ ̂LAB. Finally, we re-cluster the image with k = 5 to get
summary R̂ = {r̂1, ..., r̂5} ∈ ̂LAB. R̂ and P̂ for all records comprise our palette
collection E = {R̂i, P̂i}. This data are stored in binary files and used in palette
selection: R̂i for matching collection image to the user image, and P̂i as palette
for recoloring.

Automatic Palette Selection. To automatically select a palette T that closely
matches colors of a guide image U , we find an image I in our collection that is
most similar to U , and retrieve its palette (Fig. 3). First we cluster U with k = 5
into Ĝ = {ĝ1, ..., ĝ5} ∈ ̂LAB. Then we iterate through palette collection E to
find a record {R̂i∗ , P̂i∗} such that bipartite matching cost between Ĝ and R̂∗

i is
minimum. Finally, we retrieve the palette T̂ = P̂i∗ to be used for recoloring the
web page. We will refer to T̂ as target palette.

2.3 Automatic Web Page Coloring

To recolor webpage with palette colors T , we need to extract all colors from web
page, expand or shrink T to match the number of web page colors, map target
palette colors to web page colors, and replace colors in .css, .html, and .svg files.

Extracting Colors from Web Page. We implemented our own color extrac-
tion for the following reasons. First, we encountered an issue of unused colors
in the .css files. Web designers often reuse same .css files for multiple projects
and do not remove unused styles. If we simply take all colors from .css files, we
get many colors that do not actually appear on a web page (Fig. 4). This neg-
atively affects speed and quality of recoloring. Cleaning up .css files turned out
unreliable4 or hard to automate5. Color extraction from website did not remove

Fig. 4. Color extraction from a web page.

4 https://github.com/peterbe/mincss.
5 https://chrome.google.com/webstore/detail/css-remove-and-combine/cdfmaaeapjm

acolkojefhfollmphonoh?hl=en-GB.

https://github.com/peterbe/mincss
https://chrome.google.com/webstore/detail/css-remove-and-combine/cdfmaaeapjmacolkojefhfollmphonoh?hl=en-GB
https://chrome.google.com/webstore/detail/css-remove-and-combine/cdfmaaeapjmacolkojefhfollmphonoh?hl=en-GB

96 P. Volkova et al.

unused colors6. In addition, we needed to calculate color proportions, which is
not provided by existing tools.

We solved the problem by discarding colors that do not appear in the screen-
shot of the web page. First, we find all hexadecimal, RGB, RGBA colors in
.html, .css, and .svg files, and convert them to RGB format. Let’s call this set
H = {h1, ..., hn} ∈ RGB. Then we take screenshot of the webpage without
images. We extract all distinct colors from the screenshot and calculate their
weights, getting R = {r1, ..., rm} ∈ RGB, WR = {w1, ..., wm} ∈ R.

Next, we find mapping between colors in H and R to detect unused col-
ors. Colors in R may slightly differ from corresponding colors in H due to
image compression or use of gradients. We say that 〈ri, hj〉 is a match if
d(ri, hj) < ζ, where ζ = 20 is a threshold derived experimentally. There can
be multiple matches ri to the same hj∗ . Let Xj be the set of indexes i for
ri matched to the same hj∗ , then w′

j∗ =
∑

l∈Xj∗ wl. Now we have used col-
ors H′ = {h1, ..., hl|hj ∈ 〈ri, hj〉} ⊂ H and WH′ = {w′

1, ..., w
′
l} ∈ R. We

convert all hj ∈ H′ to LAB, getting the set of weighted web page colors
Ŝ = {ŝ1, ..., ŝl} ∈ ̂LAB.

Assigning Palette Colors to Web Elements. To replace colors in files, we
need to compute a mapping between old and new colors. As input to this step,
we have two sets of colors: target palette T̂ and web page colors Ŝ. Most likely,
|T̂ | �= |Ŝ|: T̂ can be larger or smaller than Ŝ. We need to expand or reduce
palette T̂ into a new palette T̂ ′ of size |Ŝ|.

Let Q denote the smaller palette, and G denote the larger palette. Q̂ = T̂ , Ĝ =
Ŝ if |T̂ | < |Ŝ|, otherwise Q̂ = Ŝ, Ĝ = T̂ . Let |Q| = n. First, we cluster G with k =
n to get G′ = {g′

1, ..., g
′
k} ∈ LAB, WG′ = {w′

1, ..., w
′
k} ∈ R. We replace centroids

g′
i with actual palette colors gj ∈ Ĝ such that j = arg min

i,j
d(g′

i, gj) and keep w′
i.

That gives us Ĝ′ = {ĝ1, ..., ĝk} ∈ ̂LAB. Now we can find a bipartite matching
between two sets of colors of same size n: MĜ′,Q̂ = {〈ĝj , q̂i〉 |ĝj ∈ Ĝ′, q̂i ∈ Q̂}.
If Q̂ = Ŝ, we can use T ′ = G′ for recoloring (Fig. 5(a)). Otherwise, we need to
expand palette Q (Fig. 5(b)).

Fig. 5. Palette reduction (a) and extension (b)

6 http://www.colorcombos.com/.

http://www.colorcombos.com/

Automatic Web Page Coloring 97

Palette expansion. We need to create suitable replacement colors for all colors
on the web page, staying true to palette T . It is critical to set the luminance of
new colors correctly for the recolored web page to be legible. We could achieve
same contrast as on the original web page by copying luminance of old colors to
new colors, ιt = ιs,∀t ∈ T ′,∀s ∈ S. However this changes the appearance of col-
ors, which may result in unpleasant palette, or a palette that does not represent
user image well. A better solution is to preserve the original palette colors, and
to shift ι for additional colors. This preserves contrast because new colors will
be distributed similarly to the original colors, with respect to luminance.

(a) Cluster of website colors
{g1, ..., gk} and centroid color gi∗

(b) gi∗ , qj∗ (c) qj∗ and additional colors
generated from qj∗

Fig. 6. Creating additional colors

Figure 6 demonstrates the process of creating additional colors on the exam-
ple of one color. One of web colors gi∗ ∈ G′ represents a cluster of web col-
ors {g1, ..., gk} ∈ G (Fig. 6a). gi∗ is matched to a target palette color qj∗ ∈ Q̂
(Fig. 6b), 〈gi∗ , qj∗〉 is added to final mapping FS,T . We create new shades from
qj∗ for the remaining web colors gi ∈ {g1, ..., gk} (Fig. 6c). We need to cre-
ate |{g1, ..., gk}| = m additional colors. Replacement color qi for gi starts with
qi = qj∗ , but we set ιqi = ιqj∗ +(ιgi∗ − ιgi

) for all gi ∈ {g1, ..., gk}, where ιx is the
luminance of color x ∈ LAB. We check that qi is within the boundaries of LAB
space and add 〈gi, qi〉 to FS,T . Once we compute a replacement for each web
page color, we convert colors in FS,T back to hexadecimal/RGB/RGBA format
and substitute corresponding colors in .html, .css, and .svg files.

2.4 Image Classification and Recoloring

One of our objectives was to recolor images on a web page. However, not all
images should be recolored. It makes sense to recolor images that contain few
colors, e.g. text, logos, background tiles. Art and photographs are examples of
images that should not be recolored (Fig. 7). To distinguish recolorable images,
we use a decision tree trained on a sample set of images classified by hand. We
pass only recolorable images to the image recoloring module.

Image Recoloring is a well-covered topic. Chang et al. [2] presented a tool for
image color adjustment by editing palette extracted from an image. Reinhard
et al. [10] gave a method for color correction that uses statistical analysis to
transfer color characteristics from one image to another. Xia [11] extended the
work of [10] by including saliency map into the color transfer formula.

98 P. Volkova et al.

(a) Original webpage (b) Recolorable images (top) and
non-recolorable images (bottom)

(c) Recolored result

Fig. 7. Image classification and recoloring

We borrowed ideas from Chang et al. [2] because their method is very suitable
for our task of recoloring images with a set palette. We used a simplified version
of their algorithm. The input is an image, and the target palette T . We extract
the initial palette Y of the image using K-means with k = |T |. Our setup is
different from the original algorithm by Chang et al., where it is known which
color is modified in each step of the recoloring. We start with two palettes T
and Y, unknown order of recoloring, and unknown relation between colors of the
palettes. We first perform matching to find the pairing of colors in the initial
and target palettes MT ,Y . Then, a sequential color transformation algorithm is
used to recolor the image.

The transformation function f(x) transforms a color x ∈ LAB in the original
image to a color x′ ∈ LAB in the recolored image. If |Y| = |T | = 1 we need
one transformation function x′ = f(x) as f(x) = (y − t) + x. For |T | > 1 we
need k transfer functions fi(x), i = 1 . . . k. In order to smooth the effect of the
individual transfer functions fi(x) at yi, the functions are blended with different
weights. For weight calculation details refer to Section 3.5 of [2].

We treat background separately. The old background color a ∈ S is set to
the color that appears most on the web page. The new background color b ∈ T ′

was calculated for a per Sect. 2.3. Recoloring procedure takes a, b. If a certain
percentage of pixels in the edges of the image passed for recoloring is of color a,
we say that the image has background, and we replace all pixels of color x
 a
with b (we allow for some color variance due to image compression). All other
colors are replaced as described above.

3 Experiments

Image Classification. We assembled a sample set of images from Fortune
500 websites, labeled them by hand, and extracted the following features: num-
ber of colors, aspect ratio, size, grayscale or color, and histogram. Half of the
sample set was used for training and half for testing. We experimented with
multiple classifiers from Python package sklearn7. Classification works very well,
all classifiers get above 90% of cases right (Table 1).

7 http://scikit-learn.org/stable/.

http://scikit-learn.org/stable/

Automatic Web Page Coloring 99

Table 1. Classification precision on a test set of 1063 images (510 recolorable and 553
non-recolorable).

Classifier Decision
tree

Random
forest

SVM KNN Logistic
regression

Naive
Bayes

Precision 1 0.99 0.96 0.93 0.93 0.91

Ou
r m

et
ho
d

K-
m
ea
ns

Li
n
et
al.

0.5

1

%
of

65
8
to
ta
l
re
sp

on
se
s

Best Second best Worst

Yes Somewhat No

200

400

N
um

b
er

of
re
sp

on
se
s

Is the color scheme of the recolored web page
pleasant?

Does the color scheme of the recolored web page
reflect the new palette?

Is the recolored web page readable?

Is the result of recoloring good overall?

(a) Palette rating (1-best, 3-worst) (b) Web page recoloring evaluation

Fig. 8. Survey results

Palette and Recoloring Evaluation. We conducted two surveys to confirm
that our palette extraction method produces good palettes, and to evaluate the
overall result of web page recoloring. For both surveys we collected responses
from same 86 participants in the United States, who were not compensated. In
order to evaluate the quality of palettes, we presented ten sets of three palettes,
generated as follows. Ten images were picked at random from an art collection8.
For each image, we extracted a palette using our method (Sect. 2.2), method
by Lin et al. [6], and K-means. Resulting palettes were same size and rendered
exactly same way. We asked to arrange palettes in order from best to worst.
Initial ordering of palettes in the survey was randomized. Despite the fact that
color scheme ratings are very subjective, the results are clear (Fig. 8(a)). Our
palettes received more best ratings and fewer worst ratings than other palettes.
We performed a Wilcoxon Rank-Sum test with Bonferroni correction on the
pairs of ratings, showing that the results were significant (p < .0001 for our vs.
K-means, p < .005 for our vs. Lin et al.). This is an encouraging validation of
our palette extraction method.

To evaluate the quality of web page recoloring, we presented the participants
with ten renderings of the original web page next to the web page recolored using
a randomly chosen picture from an art collection (see footnote 8) and the new
palette. We carefully selected representative websites for this experiment, aiming
to cover typical web page types. We picked an information page, a forum-style
page, and a blog; each with a light, medium, and dark color scheme, similar to
[4]. The majority of respondents rated our recoloring positively (Figure 8(b)).

8 Private digital art collection of 382 images.

100 P. Volkova et al.

For each question we found statistical significance at p < .001 using t-test on
proportion of positive answers.

4 Conclusion and Future Work

We presented a new method for automatic recoloring of web pages. We achieved
the objectives of esthetics, full coloring, consistency, and readability, and built
a publicly available web based tool. Evaluation shows that palette extraction
and overall web page recoloring results are good. We believe that our approach
produces better results than closest comparable work by Gu et al. [5]. Future
work will focus on making our tool interactive. We want users to be able to
modify palette, manually map colors, and specify which images to recolor.

References

1. Aupetit, S., Mereuta, A., Monmarché, N., Slimane, M.: Comparison of interruptible
meta heuristics for automatic recoloring of web pages with an accessibility goal.
In: AMSE - Advance in modelling, Handicap, 2012 revised selected papers. C
Automatic Control (Theory and Applications), vol. 73, pp. 11–21 (2013)

2. Chang, H., Fried, O., Liu, Y., DiVerdi, S., Finkelstein, A.: Palette-based photo
recoloring. ACM Trans. Graph. 34(4), 139:1–139:11 (2015)

3. Delon, J., Desolneux, A., Lisani, J.L., Petro, A.B.: Automatic color palette. In:
IEEE International Conference on Image Processing 2005, vol. 2, p. II-706-9, Sep-
tember 2005

4. Flatla, D.R., Reinecke, K., Gutwin, C., Gajos, K.Z.: SPRWeb: preserving subjective
responses to website colour schemes through automatic recolouring. In: Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2013,
NY, USA, pp. 2069–2078. ACM, New York (2013)

5. Gu, Z., Wu, Z., Yu, J., Lou, J.: A color schemer for webpage design using interac-
tive mood board. In: Kurosu, M. (ed.) HCI 2013. LNCS, vol. 8004, pp. 555–564.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-39232-0 60

6. Lin, S., Hanrahan, P.: Modeling how people extract color themes from images. In:
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
CHI 2013, NY, USA, pp. 3101–3110. ACM, New York (2013)

7. Matsuda, Y.: Color Design. Asakura Shoten, Tokyo (1995)
8. Munkres, J.: Algorithms for the assignment and transportation problems. J. Soc.

Ind. Appl. Math. 5(1), 32–38 (1957)
9. O’Donovan, P., Agarwala, A., Hertzmann, A.: Color compatibility from large

datasets. ACM Trans. Graph. 30(4), 63:1–63:12 (2011)
10. Reinhard, E., Adhikhmin, M., Gooch, B., Shirley, P.: Color transfer between

images. IEEE Comput. Graph. Appl. 21(5), 34–41 (2001)
11. Xia, J.: Saliency-guided color transfer between images. In: Bebis, G., et al. (eds.)

ISVC 2013. LNCS, vol. 8033, pp. 468–475. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-41914-0 46

http://dx.doi.org/10.1007/978-3-642-39232-0_60
http://dx.doi.org/10.1007/978-3-642-41914-0_46
http://dx.doi.org/10.1007/978-3-642-41914-0_46

	Automatic Web Page Coloring
	1 Introduction
	2 Automatic Web Page Recoloring
	2.1 Color Operations
	2.2 Automatic Palette Selection from Image
	2.3 Automatic Web Page Coloring
	2.4 Image Classification and Recoloring

	3 Experiments
	4 Conclusion and Future Work
	References

