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Abstract. Virtual Reality (VR) places demanding requirements on the
rendering pipeline: the rendering is stereoscopic and the refresh rate
should be as high as 95 Hz to make VR immersive. One promising tech-
nique for making the final push to meet these requirements is foveated
rendering, where the rendering effort is prioritized on the areas where the
user’s gaze lies. This requires rapid adjustment of level of detail based
on screen space coordinates. Path tracing allows this kind of changes
without much extra work. However, real-time path tracing is fairly new
concept. This paper is a literature review of techniques related to opti-
mizing path tracing with foveated rendering. In addition, we provide a
theoretical estimation of performance gains available and calculate that
94% of the paths could be omitted. For this reason we predict that path
tracing can soon meet the demanding rendering requirements of VR.

1 Introduction

Not long ago it was uncommon to own a smartphone. Nowadays everyone is
accessing the web wirelessly from all over the world, finding places on their
vacation trips without carrying maps and connecting to their relatives with video
calls. All this is done with the help of mobile devices. Virtual Reality (VR) and
Augmented Reality (AR), in other words, applications that create non-existing
3D worlds and applications that lay extra content on top of the real world, are
starting to introduce societal changes of similar scale.

VR and AR devices require refresh rates as high as 95 Hz and maximum
latency of 20 ms from user action to last photons, caused by the action, to be
sent from displays [1]. When these requirements are met, users have reported to
experience immersion, that is, the feeling of being present in another world. Con-
sequently, rendering hardware and software will have to see major improvements
to keep up with these requirements.

In this paper, we present a literature review on foveated path tracing, a
promising technique which exploits eye tracking to reduce the computational
cost of rendering. We also present a theoretical estimate of benefits available on
contemporary and future VR devices. We start by briefly covering path tracing
and fields that are most essentially connected to foveated rendering in Sect. 2.
Then we explain foveated rendering in Sect. 3. We conduct the theoretical per-
formance gain estimation in Sect. 4 and conclude the paper in Sect. 5.
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Fig. 1. Example of a
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Fig. 3. Barrel distortion
is used when rendering
VR frames (Image by
Daniel Pohl, licensed under
https://creativecommons.
org/licenses/by/4.0/)

2 Background

2.1 Path Tracing

Path tracing is a rendering method often used for offline, photorealistic render-
ing. In practice, basic forward path tracing renders images by shooting virtual
photons from the camera into the scene, which then rebound at random from
scene objects until they hit a light source. At each rebound, the light sample is
weighed by the Bidirectional Reflectance Distribution Function (BRDF) of the
surface material. Typically many such samples are taken per pixel and averaged
before the image reaches good quality: as a Monte Carlo method, path tracing
has square root convergence. Path tracing naturally models visual effects such as
diffuse lighting, reflections, refractions, shadows, focal blur and caustics, which
are approximated with special techniques in rasterization-based rendering.

A single sample in path tracing consist of tracing multiple rays in the scene.
For this reason, path tracing can be made faster with two different main strate-
gies: firstly, ray traversal can be sped up, or secondly, the amount of rays can be
reduced. Ray traversal typically means finding out closest intersection of a sin-
gle ray and the 3D geometry of the scene. There have been major leaps forward
with the ray traversal thanks to improved algorithm design to exploit parallel
hardware resources [2–4] and thanks to algorithmic improvements [5–7]. These
improvements have paved the road for the real-time ray tracing frameworks [8–
10]. However, these frameworks still require high-end desktop hardware to reach
real-time frame rates. In 2013 it was estimated that 8 to 16 times more compu-
tation power is needed to enable path traced games [11].

In addition to improving ray traversal throughput, there is a large literature
on reducing the number of rays needed for acceptable image quality. In rough
terms, importance sampling and adaptive sampling techniques aim to select the
traversed rays efficiently, while reconstruction filters out noise after rendering.
There is a recent survey of related techniques by Zwichker et al. [12]. The number
of rays can also be reduced with foveated rendering, which focuses the main
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rendering effort around the user’s gaze, measured using eye tracking equipment.
In fact, the main and the only user for virtually all rendering tasks is the human
eye [13] and that is why it is important to know how human eyes work.

2.2 Human Eye

The human eye is a complex system. In simplified terms, it consists of two main
components: the image formation system and the photoreceptor mosaic. This
structure is visible in Fig. 2. Photons travel through the image formation system
to the photoreceptor mosaic, which sends the measured light data to the brain
via the optic nerve [14].

The image formation system, like all optical systems, is not perfect, which
means that the image will be somewhat blurred [14]. However, the system sat-
isfies homogeneity and superposition, consequently, a linear system can be con-
structed which maps the input light density into the image projected on the
photoreceptor mosaic. Thanks to this property there are accurate models of
human eyes [13]. Moreover, the linearity means that there are no flaws, like
inaccuracies, in the optical system, which could be used to optimize rendering.

Fig. 4. Example of (rod) and (cone)
density as a function of the angle to
the center of the fovea

Fig. 5. A slice of the (Contrast sen-
sitivity function), which models how
much details an eye is able to resolve

On the other hand, the photoreceptor mosaic consists of more than 100 mil-
lion light sensitive cells [14]. There are two types of cells: color sensitive cones and
luminance sensitive rods. Cones require brighter lighting conditions to function.
In contrast, rods stop working at bright lighting conditions.

The center of the human photoreceptor mosaic contains only color sensitive
cones. This area is called fovea [14] and its size is around ten degrees. The lack
of rods means that dim light sources can only be seen when viewer is not looking
directly at them. More importantly, in the areas where the viewer’s gaze is not fixed
there are only few cones. Consequently, edges of the vision sense mostly changes in
the brightness and mainly at dim lighting conditions. The distribution of the cones
and rods can be seen in Fig. 4. The point where the optic nerve is attached to is
called the blind spot, because there are no photo receptor cells in that area.
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The amount of details the human eye is able to detect at certain point relative
to gaze direction can be estimated with Contrast Sensitivity Function (CSF)
visible in Fig. 5. The function has been deduced from measurements of human
eyes and it is tested in user studies. It is a kind of worst case estimate for the
use in computer graphics, meaning that it estimates the maximum amount of
details most people are able to see [15].

Photons of a computer generated images are sent to the human eyes with
various types of display devices. Conventional displays may have multiple users,
making it difficult to take advantage of characteristics of a single human eye.
However, there is a sub-class of displays called head-mounted displays, where
each display has only one user.

2.3 Head-Mounted Displays

The idea of Head-Mounted Displays (HMD) is to have displays affixed to the
head of the user. By tracking the head motion and rendering so that the virtual
camera moves correspondingly, HMDs can produce a sense of immersion in a
virtual world. Therefore, HMDs are typically used with VR and AR applications.

An important property of a HMD is its Field Of View (FOV), which measures
how much area of the sight of the user they cover [16]. The HMD’s FOV is not
to be mixed with a human’s FOV, which tells how great angle human is able to
see without rotating his/her head. A typical FOV varies from person to another,
but usually it is around 160◦ on horizontal and 135◦ on vertical axis. Increasing
the FOV of an HMD device enhances immersion, but might cause more motion
sickness [17]. Usually immersion begins when the FOV of the HMD is around
80◦ and deepens rapidly when the FOV is increased [1].

2.4 Eye Tracking

Eye tracking is the task of measuring what the user is currently looking at. The
task can be divided into two subtasks: how to measure which direction the gaze
of the user is pointing at and how to interpret the direction samples.

There are multiple ways to measure the direction of the user’s gaze [18]. Typ-
ically there is some kind of a camera taking pictures of the eye. The camera may
be, for example, an infrared camera combined with a bright infrared light [19].
Signal processing is used to determine which pixels correspond to different parts
of the eye, e.g. the pupil, the iris and the sclera. What part of the eye is actually
used in tracking depends on the camera configuration used [18]. All that is left
to do is to map the tracked part’s coordinates in the captured images to screen
space locations on the display the user is looking at.

Coordinates in the image can be mapped to screen locations by calibrating
the system at the beginning of eye tracking [18]. The user can be asked to
look at different locations on the screen, and the screen space coordinates are
connected to the tracking results. Another option is to accurately measure the
position of the eye relative to the camera and calculate the calibration results.
The main difficulty with calibrations is that they can gradually lose accuracy. For
example, if a head mounted eye tracking device changes its relative orientation
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to the user’s head, this causes drifting in the tracking results. One solution is to
track the relative position of the device on the head. Another is to use multiple
different eye tracking methods from different angles. When the calibration is in
place, the device is able to obtain accurate estimate of gaze coordinates on the
screen space. This raises the problem of interpreting the coordinates.

The other subtask of eye tracking is interpreting the gaze coordinate data.
Often the application wants to know so called fixation points of human sight,
which are the points where sight pauses to look at informative regions of interest.
Rapid movements between fixations are called saccades. The distinction between
fixations and saccades is important, because only little or no visual processing
is done by the brain during saccades [20,21].

One of the easiest ways to classify tracking data to fixations and saccades is
based on the velocity [20]. However, this is very vulnerable to noise in the data
and the selection of parameters can change the fixation points completely [22].
The problem of noise can be overcome by looking at a window of tracking samples
at once or using filtering such as Kalman filter [23].

Eye tracking enables interesting optimizations for real-time rendering tasks
because rendering can concentrate on the area where the user is looking at. Some
sources refer to this as gaze-directed or gaze-contingent rendering [21,24–26], but
nowadays foveated rendering [1,27–29] seems to be more commonly used.

3 Foveated Rendering

Foveated rendering means that only those details are rendered which the user is
actually looking at, based on eye tracking data. There is a large body of work
in optimizing rasterized rendering based on gaze-direction. In contrast, foveated
path tracing has not gained as much interest, maybe because path tracing, at
the time of the writing, has not been widely used in real-time applications.

3.1 Rasterized Foveated Rendering

One approach for adding foveated rendering to an existing rendering pipeline
is use the gaze direction as an input to complex fragment shaders. The shader
code can then run a simplified version, if it realises that the user is not looking
at the current target pixel. For example, fragment shading for the uninterest-
ing parts can be done with fewer ambient occlusion samples [26,30]. This tech-
nique increases divergence in the shader code, but neighbouring pixels are always
almost as far from the gaze point, so they usually follow the same code paths.

Significant performance gain can be achieved if the whole rendering pipeline
is designed around the estimate on how much detail the eye sees in different
angles to the gaze point, that is the CSF function. The gaze direction can be
given as an input to the Level of Detail (LoD) algorithms [21]. The idea of LoD
is to replace distant geometry with a simplified version that has fewer triangles.
In an extreme case, a distant model with thousands of triangles might take up
only a few on-screen pixels. The basic idea is straightforward, but there is a large
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literature on techniques to make the transition between levels of detail seamless
and avoid visual artifacts. In CSF based LoD, the level of detail is based on eye-
tracking data in addition to distance. This requires having multiple versions of
each model in memory, rather than changing the model only once when distance
to the object changes. Moreover, changing a model that covers great portion of
the display area often causes flickering [31].

Another idea is to reduce the amount of samples in the screen space. In
theory, perfect results could be achieved by sampling the 3D world according to
the CSF. However, such resampling is difficult to map to a rasterization pipeline.
Guenter et al. [27] render sections of the image at multiple resolutions. A final
rendering pass blends the sections into a foveated image. This approach has the
drawback that sections need to overlap. In addition, vertex and geometry shaders
are re-run for each section, but the savings in rasterized and shaded pixels are
enough to improve performance by a factor of 5–6.

Along with the gaze direction, also the gaze speed should be used as an input
to the detail reduction algorithm. In an extreme case, Ohshima et al. [21] are
not updating the image at all during saccades. A more commonly used idea is
to reduce the quality more dramatically when the eye is moving [15,27,31].

Foveated rendering can achieve significant speedups. Guenter et al. [27]
reported that a 100x speedup is possible with a FOV of 70%. Moreover, they
state that increasing the display’s FOV, which usually has a quadratic effect on
rendering requirements, has a linear effect on foveated rendering, because the
added extra display area is only adding an even lower level of quality rendering.

In summary, there are still two major difficulties with rasterization and
foveated rendering: Firstly, it is hard to sample according to the CSF in screen
space. Secondly, changing LoD based on gaze direction causes quick model
changes all the time and, therefore, requires having multiple levels of details
versions of the same model in memory.

3.2 Foveated Path Tracing

In contrast to fixed resolution of rasterization, in path tracing, rays are sent from
screen locations. It is straightforward to distribute these rays according to the
CSF. This optimization is one idea of making path tracing faster by reducing
the total ray count.

There are already a few publications of techniques for foveated ray tracing.
Murphy et al. [24] chose so called ray casting, which sends out only one ray
per pixel, because it suited better for their test cases, where they change both
the image space sampling rates and the model quality. Zhang et al. [28] use a
screen-space ray tracing technique based on depth peeling the scene, but this
approach is approximate and limited to simple scenes. Swafford et al. [30] test
different amounts of quality reduction with foveated ray casting using multi-
layer relief mapping. In fourth found paper Fujita et al. [29] call their ray tracing
foveated, even though they do not utilize eye tracking and, therefore, they have
the best quality always on the center of the screen. Siekawa et al. [25] reduce the
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rendering time of a single path traced frame from 48 min to 15 min by introducing
a simulated static gaze point to their non-real-time rendering.

4 Theoretical Performance Gain Analysis

The motivation of this analysis is to find a lower bound on the speed up foveation
can give to path tracing. CSF estimates how much details the human eye is able
to resolve as a function of the angle from the gaze fixation point. The size of the
detail is expressed as so called spatial frequency and the unit is cycles per degree
(c/deg). That is, how many of given sized details fit into one degree of human
vision. By using CSF it is possible to find out how many rays we can omit when
using foveated path tracing. Approximation model of CSF can be divided into
two separate parts

H(e, v) = M(e) × G(v) (1)

where M(e) is a function of angle e to the center of the gaze fixation point
and G(v) depends on the velocity v of the eye rotation [15]. Increasing velocity
reduces the amount of contrast human eye is able to detect. Since we are trying
to find the minimum amount of quality we can omit, we set the velocity to its
most pessimistic value of zero. That is, the situation when the eye is focused and
seeing as much details as it can, in other words G(0) = 1. Taking into account
that the smallest detail humans are able to resolve is ca. 60 c/deg, the equation
from [15] can be simplified to

H(e, 0) = M(e) =

{
60.0 0 ≤ e ≤ 5.79

449.4
(0.3e+1)2 e > 5.79

. (2)

First we examine performance gain on a perfect HMD device capable of
showing as much details as human eyes are able to resolve. A perfect HMD
device would be one capable of displaying this 60 c/deg details with the oval
FOV of 160◦ horizontal and 135◦ degrees vertical. The biggest amount details
need to be rendered when the user is looking at the center of the screen. For
this reason, to provide lower bound estimate, we substitute the angle e = 0 of
the Eq. 2 to the center of the perfect HMD’s FOV. In that case, e tells the angle
from the center of the FOV. One slice of the FOV area is shown in Fig. 5.

Then we integrate the Eq. 2 over the whole area of the oval FOV. When the
volume is compared to the maximum amount of resolvable details 60 c/deg on
the same area, the result is that 94% of the details are unresolvable.

Another interesting case to estimate in the theoretical examination is calcu-
lating the same number for one of a contemporary consumer grade VR helmet,
the HTC Vive, which is able to display details with around 15.3 c/deg [32]. We
limit the Eq. 2 to this number and calculate the integral over a circular area with
radius of 110◦. The result is that at least 70% of the details can be omitted. The
area of these omitted details is highlighted in Fig. 5. Remember that this is just
one slice of the solid of revolution around the vertical axis.
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The ratio of the details that could be omitted might not linearly correlate
to the speed up gains possible with path tracing. However, there are many ways
how details can be omitted, for example, there can be fewer paths for each pixel
or paths can, e.g., use simplified lighting instead of full path tracing. The use
of less samples produces higher frequency noise, but this can be reduced with
more intensive filtering on areas where the user is not looking at. For example,
foveated rasterized rendering can use anti-alias sampling to reduce artefacts [27].

What is the best way to reduce path tracing quality with eye-tracking is
currently an open research question and therefore the ratio of extra details can
be used as rough performance gain estimate. 94% performance gain is a bit better
than the numbers Guenter et al. [27] found in their user studies as a number
of pixels that can be reduced with rasterized rendering. Since their display is
far from the perfect HMD, their pixel saving results should be lower. Moreover,
since the FOV of their desktop display is smaller, the theoretical number of 70%
savings on HTC Vive is a lower bound and in reality higher numbers are possible.

Path tracing a arbitrary scene might require hundreds of rays per pixel.
However, a scene for adequate quality path tracing could be built so that it
requires for example around 11 rays per pixel [33,34]. This can be achieved by
using only simple materials or by using more complex post processing. HTC
Vive has a refresh rate of 90 Hz and a resolution of 2160× 1200 with 15% of the
pixels invisible to the user [32]. This results in a required number of rays per
second of around 2 180 MRays/s. According to the worst case estimate above,
at least 70% of the rays could be omitted, which makes the requirement into
654 MRays/s. This number should be reachable with a modern high-end GPU
setup [35]. In addition, the pipeline step of distortion handling [36], visualised in
Fig. 3, can be greatly simplified or even avoided with path tracing. Reduced ray
counts reflect savings in rendering computations and memory bandwidth usage.

5 Conclusions

Foveated path tracing is a promising technique for rendering VR applications. In
foveated rendering the computation effort is focused mostly to screen space area
where the user is looking at. With rasterized rendering this has already shown to
improve performance by a factor of 5–6. However, foveated rendering is even more
suited for path tracing, which is done by sending rays from screen space locations.
Recently, real-time ray tracing has been made feasible on high-end hardware.
Foveation could enable real-time path tracing on consumer devices, especially
on hand-held mobile devices. Furthermore, typically VR and AR applications
use HMD devices. Given that a HMD is specific to a single user, and covers wide
field of view, the idea of foveated rendering is even more appealing.

We derived from a theoretical worst case model that foveation can omit at
least 94% of rays required for the path tracing on future VR device which is
capable of showing as much details as humans are able to perceive. Already
on today’s VR device at least 70% rays can be omitted. Moreover, thanks to
reduced rendering work provided by the foveation, the very demanding rendering
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requirements of VR could be met today with high-end GPUs. For these reasons
we believe that path tracing is a very promising choice of rendering technique in
the future of VR. As a future work we are interested in building the proposed
system to empirically validate the numerical estimates proposed in this paper.
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