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Abstract. Automatic vessel delineation has been challenging due to
complexities during the acquisition of retinal images. Although, great
progress have been made in this field, it remains the subject of on-going
research as there is need to further improve on the delineation of more
large and thinner retinal vessels as well as the computational speed. Tex-
ture and color are promising, as they are very good features applied for
object detection in computer vision. This paper presents an investiga-
tory study on sum average Haralick feature (SAHF) using multi-scale
approach over two different color spaces, CIElab and RGB, for the delin-
eation of retinal vessels. Experimental results show that the method pre-
sented in this paper is robust for the delineation of retinal vessels having
achieved fast computational speed with the maximum average accuracy
of 95.67% and maximum average sensitivity of 81.12% on DRIVE data-
base. When compared with the previous methods, the method investi-
gated in this paper achieves higher average accuracy and sensitivity rates
on DRIVE.
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1 Introduction

Retinal fundus imaging has been very useful to ophthalmologists for the medical
diagnosis and progression monitoring of diabetic retinopathy (DR) [2]. Although
several digital imaging modalities are used in ophthalmology, colored fundus
photography remains an important retinal imaging modality due to its safety
and cost-effective mode of retinal abnormalities documentation [2].

Image segmentation, which is an important step in image analysis, involves
the partitioning of a digital image into multiple regions having the same
attributes like intensity, texture or color [28]. It is applied for the detec-
tion of boundaries, objects or parts of images. There are several important
anatomic structures in the human retina. The robust segmentation of the differ-
ent anatomic structures of the retina is necessary for a reliable characterisation
of healthy or diseased retina. Several automated techniques have successfully
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been used to detect different anatomic features as well as retinopathy features
in retinal images [24].

As image analysis continues to assist the ophthalmologists in achieving
accurate diagnosis and efficient management of larger number of retinopathies’
patients, they focus on retinal vessel morphological feature analysis such as tor-
tuosity measurement after detecting the vessel network in the retinal images
[3,10]. Retinal vessel delineation is the process of detecting vessel network in
retinal images. Efficient retinal vessel delineation and vessel feature analysis are
of required for the diagnosis and progress monitoring of the various retinopathies
and vascular diseases.

Texture, color and shape are very good features applied for object detection
in computer vision. The investigation of texture over different color spaces for
object detection or recognition is very important [9,17]. This is due to the fact
that color and texture are two major properties of the image required for image
analysis [25], and the good performance of texture in image analysis is strongly
influenced by the color representation chosen [16,19]. While most of the auto-
matic vessel segmentation methods have often utilized the green channel of the
RGB color and the grayscale of the retinal images, there is a need to further
investigate the use of other color spaces for the delineation of the vessels. Since
the analysis of color-texture has been important in image analysis, two different
color spaces will be investigated and evaluated for the delineation of the vessels
using texture information.

2 Related Works

The retinal vessel segmentation methods that have been proposed in the lit-
erature can be categorized into supervised and unsupervised segmentation
approaches. In supervised vessel segmentation methods [12,15,20,22,23], dif-
ferent algorithms are used for learning the set of rules required for the retinal
vessel extraction. A set of manually segmented retinal vessels, by trained and
skilled personnel, is considered as the reference image. These reference images
are used for the training phase of the supervised segmentation techniques. Reli-
able training samples used during the supervised image segmentation can be
expensive or unavailable sometimes [7]. The supervised methods are also com-
putationally expensive since training time is required. Another major drawback
of the supervised vessel segmentation techniques is the high dependence of their
performance on the training samples. The methods based on unsupervised seg-
mentation [5,6,8,10,11,21], on the other hand discover and utilize the underlying
patterns of blood vessels to determine whether a particular pixel of the retinal
image is vessel-pixel or not. Training samples are, however, not required for the
unsupervised segmentation methods.

Automated retinal vessel delineation are faced with several challenges such
as the varying retinal vessel-widths, low contrast of thinner vessels and non-
homogeneous illumination across the retinal images [8]. Single scale matched
filter have weak responses due to large variation in the widths of the vessels.
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In order to handle this limitation, several authors have introduced multi-scale
filters for the segmentation of vessel networks. Martinez-Perez et al. [13] com-
bined scale space analysis with region growing to detect the vessel network.
The method, however, failed to segment the thin vessels. There are also a lot
of false vessel-like structures at the border of the optic disc. A multi-scale reti-
nal vessel segmentation method was implemented in [26]. The multi-scale line-
tracking was applied for the vessel detection and morphological was applied for
the post-processing. The drawback of the method proposed in [26] is its inability
to segment the thin vessels. Li et al. [8] applied the multi-scale production of
the matched filter (MPMF) responses as multi-scale data fusion strategy. The
proposed MPMF vessel extraction scheme applied multi-scale matched filtering,
scale multiplication in the image enhancement step and double thresholding in
the vessel classification step. This method required 8 s to detect vessels without
post-processing and required 30 s to detect vessels while combined with a post-
processing phase. Although this method achieved a faster computational time
without post-processing, the accuracy rate is relatively low. It is also noted that
this method spent most of the time on the post-processing phase.

A multi-wavelet kernels combined with multi-scale hierarchical decompo-
sition was proposed in [27] for the detection of retinal vessels. Vessels were
enhanced using matched filtering with multi-wavelet kernels. The enhanced
image was normalised using multi-scale hierarchical decomposition. A local adap-
tive thresholding technique based on the vessel edge information was used to
generate the segmented vessels. Although good accuracy rates were obtained,
this method fails to detect thin vessels. Another drawback of this method is
its average computational time of 210 s (3.5 min) required to segment vessels in
each retinal image. Patasius et al. [18] investigated different color spaces and
affirmed the usefulness of green channel of the RGB color and hue component
of HSV for the delineation of blood vessels while the S component of HSV can
be applied for reflex detection. Soares et al. [22] implemented a supervised seg-
mentation method based on two-dimensional (2-D) Gabor wavelet transform
combined with Bayesian classifier for the segmentation of the retinal vessel. A
feature vector comprising a multi-scale 2-D Gabor wavelet transform responses
and pixel intensity was generated from the retinal images for training the clas-
sifier. Each of the pixels was further classified as vessel or non-vessel using a
Bayesian classifier. Although the technique had a good performance, segmenta-
tion of thinner vessels as well as false detections around the border of the optic
disc remain a challenge. Another drawback is that the method required 9 hours
for the training phase and an average time of about 190 s (3 min, 10 s) to segment
vessels in each retinal image.

3 Methods and Techniques

The segmentation of retinal vessels are faced with several challenges from the
varying retinal vessel-widths to low contrast of thinner vessels and nonhomoge-
neous illumination across the retinal images [8]. Although existing methods have
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made great progress in this field, it remains the subject of on-going research as
there is a need to improve further on the detection of more large and thin vessels
as well as the computational speed.

Due to the non-homogeneous illumination, low contrast of thin vessels and
large variation in the widths of the retinal vessels [8], this study investigates the
use of sum average which is a Haralick texture feature [4] over different color
spaces using unsupervised segmentation approach for the delineation of large
and thin retinal vessels. This texture feature and some other Haralick [4] texture
features have been applied for through supervised image segmentation in the
literature [4]. While this texture feature has been applied supervised learning
approach, the contribution of this work lies in the investigation of sum aver-
age Haralick feature (SAHF) using multi-scale approach over two different color
spaces, CIElab and RGB in an unsupervised manner. This study further con-
tributes by investigating SAHF using multi-scale approach over an hybrid of the
two color spaces. Although, RGB is not a perceptually uniform color space, it is
widely used. CIELab on the other hand is not often used. This study investigates
the influence of these different color spaces on the use of SAHF in the detection
of retinal vessels.

The ‘L’ channel of the CIELab color space and the green channel of the
RGB color space of the retinal image is sharpen by applying an unsharp filter.
An average filter is then applied for smoothing of the image. The image contrasts
is then enhanced to improve the contrast of thin vessels in the image. A median
filter with local window size w*w is further applied to the enhanced image as

U(i, j) = H(x, y) ∗ V 1
w∗w(x, y) (1)

where U(i,j) is the filtered retinal image, V 1(x, y) is the result obtained after an
unsharp filter with mean filter has been applied, and the H(x,y) is a local median
filter with window size (w × w). The width of the retinal vessels can vary from
very large (15 pixels) to very small (3 pixels) [8]. The window size (15 × 15) is
selected based on the adequate spectrum it provides for the very large vessels.
In order to achieve illumination balance across the image, an image D(x,y) is
computed as

D(x, y) = U(i, j) − V 1(x, y) (2)

This is followed by the computation of the local adaptive threshold based on
the SAHT information. Sum average feature [4] is extracted from the ‘a’ channel
of CIELAB color space. Since the width of retinal vessels can vary from very
large (15 pixels) to very small (3 pixels) [8], a multi-scale approach is applied
on the SAHF information considering the pixel of interest in relationship with
its spacial neighbourhood to compute a local adaptive threshold. The multi-
scale thresholding approach handles the challenge of vessel width variation. The
multi-scale approach applied investigates the distances (di)i=1,...,4 across the
four orientations (horizontal: 0◦, diagonal: 45◦, vertical: 90◦ and anti-diagonal:
135◦) as it covers adequate spectrum of vessel texture information (4 × 4 =
16) to compute the local threshold for each pixel of interest. The grey level
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co-occurrence matrix (GLCM) for the retinal fundus image is first computed
(For more information on computing GLCM, see [4]).

The sum average feature over the varying distances, d, and orientation, Φ, is
computed as

SA =
2Ng−2∑

k=0

kPx+y(k) (3)

where px+y(k) =
Ng−1∑

i=0

Ng−1∑

j=0

i+j=k

p(i, j), Ng is the number of gray scales, and p(i, j) is

the (i, j)th entry in a normalised grey level co-occurrence matrix of the retinal
fundus image.

A feature matrix is computed using the multi-scale feature measurement of
the sum average over the varying distances ‘d’ and orientations ‘Φ’ as:

SAfmatrix = (SAij), 1 ≤ i, j ≤ 4 (4)

such that
SAij = SA(di,Φj), 1 ≤ i, j ≤ 4 (5)

where Φ1= 0◦, Φ2= 45◦, Φ3= 90◦ and Φ4 = 135◦, and (di)i=1,...,4.
The adaptive thresholding value applied for the vessel segmentation is then

computed as

T (x, y) =
min1≤i≤4 ‖ max1≤j≤4(SAij) − min1≤j≤4(SAij) ‖

max(d)
(6)

such that max(d) = 4.
The delineated vessel network is

Simage(x, y) =

{
0, if D(x, y) ≤ T (x, y)
1, otherwise

(7)

where Simage represents the detected vessels obtained from ‘L’ channel of
CIELab or the green channel of RGB.

In order to further improve the vessel detection performance rate, the com-
bination of the detected vessels obtained from ‘L’ channel of CIELab and the
green channel of RGB was investigated. The two different vessel networks are
combined using an ‘OR’ operation as shown in the Eq. 8:

SL⊕G
image = SL

image(x, y) ⊕ SG
image(x, y) (8)

where SL
image is the detected vessels obtained from ‘L’ channel of CIELab

and SG
image is the detected vessels obtained from green channel of RGB.

Due to the presence of false vessel-like structures, there is a need for post-
processing. Mophological operator based on area opening and median filter of a
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Fig. 1. (a) Color retinal image 4 on DRIVE (b) Ground truth of image 4 on DRIVE
(c) Manual delineation of the second observer of image 4 on DRIVE (d) Result of
the investigated technique based ‘L’ channel of CIELAB on image 4 of DRIVE (e)
Result of the investigated technique based green channel of RGB on image 4 of DRIVE
(f) Result of the investigated hybrid technique on image 4 of DRIVE.

moving 2 × 2 sliding-window are applied in the postprocessing phase to Simage

obtained from the adaptive thresholding technique and SL⊕G
image to remove the

false vessel-like structures. This is followed by subtracting the FOV mask from
the result obtained after removing the false vessel-like structures to obtain the
final delineated vessel networks in the circular field of view.

4 Experimental Results and Discussion

This experiment is conducted using matlab 2014a. The dataset utilized in this
paper is the DRIVE database [1] which is publicly available. The time required
to detect the vessel from the ‘L’ channel of CIELAB color space, green channel of
RGB color space and the hybrid techniques are 2.8 s, 2.6 s and 3.7 s respectively.
Figure 1 shows a color retinal image on DRIVE [1], the ground truth, the manual
delineation of the second observer and the results obtained from the three dif-
ferent techniques investigated in this paper. Figure 2 shows two results obtained
from two different images through the hybrid technique and their ground truth.

The performance measures utilized in this paper are sensitivity, specificity
and accuracy measures (see Eqs. (9)–(11)). The ability of a method to detect
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Fig. 2. (a) Result of the investigated hybrid technique on image 9 of DRIVE (b) Ground
truth of image 9 on DRIVE (c) Result of the investigated hybrid technique on image
12 of DRIVE (d) Ground truth of image 12 on DRIVE

vessels in the retinal images is indicated using the sensitivity while the ability
of a segmentation method to detect the background in retinal images is indi-
cated using specificity. The degree to which the overall segmented retinal image
conforms to an expert’s ground truth is indicated using accuracy. In order to
ascertain a good segmentation performance, the sensitivity, specificity and accu-
racy measures of a segmentation method must be high [11].

Sensitivity = TP/(TP + FN) (9)

Specificity = TN/(TN + FP ) (10)

Accuracy = (TP + TN)/(TP + TN + FP + FN) (11)

where TP, TN, FP and FN are true positive, true negative, false positive and
false negative respectively.

Table 1. Performance of our methods in comparison with other methods on DRIVE

Method Average accuracy Average sensitivity Average specificity

Human observer [1] 0.9473 0.7761 0.9725

Staal et al. [23] 0.9442 0.7345 0.9773

Niemeijer et al. [15] 0.9416 0.7145 0.9801

Soares et al. [22] 0.9466 N/A N/A

Marin et al. [12] 0.9452 N/A N/A

Martinez-Perez et al. [13] 0.9181 0.6389 0.9496

Mendonca et al. [14] 0.9463 0.7315 N/A

Saffarzadeh et al. [21] 0.9387 N/A N/A

Yin et al. [29] 0.9267 0.6522 0.9710

SAHF L-Channel of CIElab 0.9567 0.7409 0.9777

SAHF G-Channel of RGB 0.9531 0.7674 0.9712

SAHF-based hybrid 0.9421 0.8112 0.9549
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All the techniques investigated in this study achieved mean sensitivity rates
ranging from 0.7409 to 0.8112 with average accuracy rates ranging from 0.9421
to 0.9567 on DRIVE database (see Table 1). The average accuracy rates of 0.9531
and 0.9567 by the SAHF green channel of RGB and SAHF luminance channel
of CIELAB respectively compared favourably with the average accuracy rate
0.9421 obtained from the investigated hybrid technique. The average sensitivity
rate of 0.8112 obtained from the investigated hybrid technique is, however, higher
than the average sensitivity rates of 0.7674 and 0.7409 obtained by the investi-
gated SAHF green channel of RGB and SAHF luminance channel of CIELAB
respectively. This reflects the improvement in the vessel detection achieved by
the hybrid technique over the individual SAHF green channel of RGB and SAHF
luminance channel of CIELAB techniques.

The sensitivity and accuracy rates of all the investigated techniques compared
favourably with the average sensitivity rate of 0.7145 and lower average accuracy
rate of 0.9416 presented in [15]. The average sensitivity rates of all the investi-
gated techniques compared favourably with the average sensitivity rate of 0.7345
presented in [23]. Only two average accuracy rates of 0.9531 and 0.9567 by the
SAHF green channel of RGB and SAHF luminance channel of CIELAB respec-
tively are higher than the average accuracy rate of 0.9442 presented by Staal
et al. [23]. Two average accuracy rates of 0.9531 and 0.9567 by the SAHF green
channel of RGB and SAHF luminance channel of CIELAB respectively are higher
than the average accuracy rates 0.9452, 0.9387 and 0.9466 obtained by Marin
et al. [12], Saffarzadeh et al. [21] and Soares et al. [22] respectively. Martinez-
Perez et al. [13], Mendonca et al. [14] and Yin et al. [29] present lower average
sensitivity rates of 0.6389, 0.7315 and 0.6522 with average accuracy rates of
0.9181, 0.9463 and 0.9267 respectively when compared with all the SAHF based
methods investigated in this paper. The human observer [1] present a higher
average sensitivity rate of 0.7761 than the average sensitivity rates 0.7674 and
0.7409 obtained by the investigated SAHF green channel of RGB and SAHF
luminance channel of CIELAB respectively. The human observer [1], however,
present a lower average sensitivity rate of 0.7761 as compared to the average
sensitivity rate 0.8112 obtained by the investigated SAHF hybrid technique.

5 Conclusion and Future Work

This paper implemented the delineation of vessel in retinal images through sum
average Haralick feature (SAHF) using multi-scale approach over two different
color spaces, CIElab and RGB. This paper presented an investigation of sum
average Haralick feature (SAHF) using multi-scale approach over two different
color spaces, CIElab and RGB. This paper also presented a study of SAHF
using multi-scale approach over an hybrid of the two color spaces. Experimental
results presented in this paper show that the hybrid method for the delineation
of retinal vessels made a significant improvement when compared to (SAHF)
using multi-scale approach over two different color spaces, CIElab and RGB
on DRIVE database. Experimental results also showed that the hybrid method
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and the multi-scale approach over two different color spaces, CIElab and RGB
achieved higher average sensitivity and accuracy rates with faster computational
time when compared with the previous methods on DRIVE. In the future, we
shall consider a study on the efficient ways of characterising the delineated retinal
vessels.
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