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Abstract. Segmenting Magnetic Resonance images plays a critical role
in radiotherapy, surgical planning and image-guided interventions. Tra-
ditional differential filter-based segmentation algorithms are predefined
independently of image features and require extensive post processing.
Convolutional Neural Networks (CNNs) are regarded as a powerful visual
model that yields hierarchies of features learned from image data, how-
ever, its usage is limited in medical imaging field as it requires large-scale
data for training. In this paper, we propose a simple binary detection
algorithm to bridge CNNs and medical imaging for accurate medical
image segmentation. It applies high-capacity CNNs to extract features
from image data. When labeled training medical images are scarce, the
proposed algorithm splits data into small regions, and labels them to
boost training data size automatically. Rather than replaces classic seg-
mentation methods, this paper presents an alternative that is unique and
provides more desirable segmentation results.. . .

1 Introduction

In computer vision, the goal of segmentation is to simplify and/or change the
representation of an image into something that is more meaningful and easier to
analyze. Image segmentation is typically used to locate objects and boundaries
in image [1]. More precisely, image segmentation is the process of assigning a
label to every pixel in an image such that pixels with the same label share certain
common characteristics [2]. Many applications require image segmentation, such
as content-based image retrieval, machine vision, medical imaging [3], object
detection [4], recognition tasks [5], control systems, and video surveillance.

Computer-aided image analysis systems can enhance the diagnostic capa-
bilities of physicians and reduce the time required for accurate diagnosis [6].
As one of the major techniques, medical image segmentation plays a significant
role in clinical diagnosis. It is considered challenging because medical images
often have low contrast, various types of noise, and missing or diffused bound-
aries [7]. Research efforts have been devoted to processing and analyzing medical
images to segment meaningful information such as volume, shape, and motion
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of organs, to detect abnormalities, and to quantify changes in follow-up studies
[8]. Many image segmentation techniques are available in the literature. Some
use only the gray level histogram [1] or spatial details and others use fuzzy set
theoretic approaches. Most of these techniques are sensitive to noise, and thus
not suitable for medical imaging. The Markov Random Field model is robust to
noise, but involves a huge amount of computations [9]. Manual segmentation is
an expensive, time consuming task. It is subject to manual variation and subjec-
tive judgments, which increases the possibility that different observers will reach
different conclusions about the presence or absence of tumors. Even the same
observer will occasionally reach different conclusions on different occasions [10].
An efficient and consistent medical image segmentation algorithm would help
avoid these confusions.

Deep learning algorithms have shown remarkable results in various image
processing fields for most benchmark image datasets including MNIST (classify
handwritten digits) [11], CIFAR-10 (classify 32 × 32 color images for 10 cate-
gories) [12], CIFAR-100 (classify 32 × 32 color images for 100 categories) [13],
STL-10 (similar to CIFAT-10 but with 96×96 images)[14], and SVHN (the street
view house numbers dataset)[15], etc. Convolutional Neural Networks (CNNs),
as a milestone model of deep learning, are driving advances in image analy-
sis. CNNs not only improve the performance of whole-image classification, but
also make progress on extracting features. CNNs make a prediction for every
pixel and are able to take the advantage of the detailed features of an object
image. Krizhevsky et al. made a significant improvement in image classification
accuracy on the ImageNet large-scale visual recognition challenge (2012) [16].
Different from traditional image processing methods (e.g. SIFT [17], HOG [18],
etc.), which involve a hand-crafted feature descriptor, CNNs are deep architec-
tures for learning features. All the features are learned hierarchically from pixels
to classifier, and each layer extracts features from the output of previous layers
[19]. However, to obtain superior performance, CNNs usually require a large-
scale training process. To collect an abundance of medical images is costly and
not feasible. The training process also consumes too much time and resources to
provide manually annotated training datasets.

In this paper, we propose a brand new concept on how to use CNNs for brain
image segmentation with implicit features that link medical imaging to deep
learning. We divide training images into regions and label them automatically
to boost the size of the training dataset. A CNN learning framework is designed
to capture the local structure of the ROIs and automatically learn the most
relevant features.

After a brief introduction to the background, the problem formulation along
with the data generation is provided in Sect. 2. In Sect. 3, we present the details of
a CNN architecture. Section 4 shows the results and includes discussion. Finally,
the paper is summarized and concluded with future research directions in Sect. 5.
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Fig. 1. Segmentation system overview. (1) Brain MRI input image, (2) region extrac-
tion, (3) feature computation for each region using a convolutional neural network, and
(4) region classification to detect ROI pixels.

2 Region-Based Segmentation

Image segmentation is a process of assigning a label to every pixel in an image
such that pixels with the same label share certain characteristics. Therefore,
assigning pixel labels using CNNs based on the features obtained from the image
data is a reasonable strategy for segmentation. The main highlight of a deep
learning algorithm is that all features are learned from the image data directly.
The neural network architecture has more than 60 million parameters, which
makes training on GPUs a necessity. A straightforward way to improve the
performance of CNNs is by increasing the size of training data. Acquiring such
data is not always feasible for medical imaging. In order to take the advantage
of CNNs to obtain accurate segmentation, we propose a method that can solve
the limited training data problem from which CNNs generally suffer. Figure 1
presents an overview of our method. After boosting the size of training data, we
perform the stochastic gradient descent (SGD) training of CNN parameters using
this large dataset. The result is a customizable segmentation operation whose
performance and behavior reflect the segmentation criteria learned directly from
the training data. The proposed method is composed of three main steps:

1. Generate enough training data from the limited original data
2. Label data efficiently
3. Augment the dataset

2.1 Generate Training Data

In dealing with Magnetic Resonance Imaging (MRI) images, one of the most
challenging aspect is the process of partitioning some specific cells and tissues
from the rest of the image. An MRI image from our dataset is shown in Fig. 2(a).
Experienced doctors segment out the tumor area (white area in the lower half)
in the image manually to get the binary ground-truth segmentation as shown in
Fig. 2(b) (zoomed in for clarity). In Fig. 2(b), pixels in the tumor area are set to
black and pixels in the background are set to white. In order to provide enough
annotated training images for CNN, a sliding window of n×m pixels is applied
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to extract small regions’ proposals. These patches from one image sample are
used for training.

2.2 Label Training Data

To label the patches obtained with a sliding window, the image regions tightly
enclosing ROI pixels are regarded as positive examples (e.g. window c in
Fig. 2(b), while the non-ROI regions, which have nothing to do with the tumor
area, are treated as negative examples (window d). Regions that partially overlap
the ROI are treated with a central area overlapping process. The ground-truth
segmentation is also regarded as positive example if it goes through the central
area of a region’s proposals. Otherwise, the region is considered as negative.
Figures 2(c–f) show the zoomed in areas in four boxes in Fig. 2(b).

2.3 Augment Positive Data

After data generation and labeling, we convert one image into a large dataset
which includes around 300 positive regions and 20, 000 negative regions. Because
the size of the positive training set is much smaller than the negative training set,
data augmentation is necessary to improve classification performance. According
to the characteristics of our data, we choose 2 ways flips (horizontal and vertical)
and 35 rotations (10◦, 20◦, 30◦, . . . , 340◦, 350◦). Here, we rotate the whole
original image and ground truth image by different angles, then use the same
algorithm mentioned above to obtain the positive patches. After this step, we
increase the positive training examples from 300 to 11, 400.

Fig. 2. An overview of data generation. (a) The original brain MRI image, (b) zoomed
in segmentation labeled by doctors, (c) positive sample which tightly encloses the
ROI pixels, (d) negative sample which is background pixels (e) positive sample which
ground-truth segmentation line (the boundary) falls within the central area, (f) nega-
tive sample which the boundary does not pass through the central box.
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Fig. 3. Illustration of Convolutional Neural Network (CNN) architecture

3 CNN Architecture and Model Learning

The architecture of the CNN used in this paper is illustrated in Fig. 3. This CNN
has three convolution-max pooling layers followed by a 2-way softmax output
layer. The CNN is configured with Rectified Linear Units (ReLUs), as they train
several times faster than their equivalents with tanh connections. This section
articulates details of those layers. 21×21 patches were used as data for the CNN
in this study. Patches are all gray images, and 1 channel is used for the input
data. The first convolutional layer uses 96 kernels of size 5 × 5 with a stride of
4 pixels and padding of 2 pixels on the edges, followed by a 3 × 3 max pooling
layer with a stride of 2. A Local Response Normalization (LRN) layer is applied
after the first pooling layer. The second convolutional layer uses 128 filters of
size 3×3 with a stride of 2 pixels and padding of 2 pixels on the edges. A second
pooling layer has the same specification as the first one. The third convolutional
layer uses 128 filters of size 3×3 with stride and padding of 1. The third pooling
layer also has the same configuration as the two before it and leads to a softmax
output layer with two labels corresponding to ROI pixel (1) and non-ROI pixel
(−1) classes.

4 Experiments and Discussions

The algorithm learned the segmentation model after all regions were trained
using our CNN. We tested our segmentation algorithm on different brain MRI
slices. Our goal was to output a same size binary segmentation image similar to
the ground-truth image the doctors segmented manually. For the test images,
we applied a sliding window of the same size 21 × 21 to obtain the region pro-
posals, then forward propagated the proposal through the CNN model in order
to determine the class to be positive or negative. We recorded the location of
each region’s central pixel in the original image for constructing the binary seg-
mentation. If the region was classified as positive, which means the center of
this region is considered as a ROI pixel, the central pixel was set to 0 (black)
in the segmentation output image. Otherwise, the central pixel was considered
a non-ROI pixel or background and was set to 1 (white).

In clinical MRI applications, transverse plane, coronal plane, and sagittal
plane are three main planes of the body used to describe the location of body



Brain MRI Image Segmentation Using CNN 633

parts in relation to one another. The transverse plane is a horizontal plane
that divides the body into superior and inferior parts, the coronal plane is any
vertical plane that divides the body into ventral and dorsal sections, and the
sagittal plane is any vertical plane which divides the body into right and left
halves. Scans of different plane vary significantly. We trained different models
for different planes in Sect. 4.1. We also experimented with creating one general
model to detect tumors in images from all three scans. Since our model is based
on deep learning, this challenge is easily addressed by extending the training
data set to cover all three cases, The results are shown in Sect. 4.2.

In general, a primary brain tumor has only one large lesion. It is usually
associated with extensive local edema and is easy to be detected. Whereas, a
secondary brain tumor usually has several very small lesions without local edema
and is hard to be detected. We chose images with secondary brain tumors as our
test samples to demonstrate the superiority of our method. All images chosen
for study had small brain tumors, and they were not all visible in all slices.
Because of the limitation of the medical image resource, in our experiments, we
used the MRI images from 5 patients (A–E). The patients’ information is listed
in Table 1. We picked the slices in which the tumor can be seen and labeled by
experienced doctors.

Table 1. The information of patients

Number Gender Age Occupy Diagnosis

A F 52 Farmer Brain metastases of breast carcinoma

B F 74 Worker Brain metastases of breast carcinoma

C F 46 Farmer Brain metastases of lung carcinoma

D F 28 Farmer Brain metastases of breast carcinoma

E F 57 Farmer Brain metastases of lung carcinoma

In each SGD iteration of our training, we uniformly sample 32 positive regions
and 32 negative examples to construct a minibatch of size 64. We biased the
sampling towards positive regions, because they are extremely rare compared to
the background or negative regions. The CNN portion of our experiments used
Caffe framework [20] running on the NVIDIA Kepler series K40 GPUs. We used
Matlab to produce the final segmentation results. The CNN model presented
in Fig. 3 was trained using region images several times to increase its ability to
automatically detect ROI pixels in any test image with a variant resolution.

4.1 Three Plane Models

We performed two experiments for each plane. In the first experiment (Test 1,
3 and 5), we used different slices from the same patient for training and testing.
For the second experiment (Test 2, 4 and 6), we picked slices from multiple
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patients (excluded testing patient) for training. Table 2 shows the detail of the
experiments’ setup. Experiment results are shown in Figs. 4 and 5. All training
images are listed in the Appendix A. To evaluate the performance, we compared
our method with Otsu’ method [21]. Test 1 shown in Fig. 4(a–d) used one slice for
training. The algorithm was able to detect the tumor areas accurately although
with some noise. Segmentation result for Test 2 shown in Fig. 4(g) is almost
identical to the doctors’ labeling. Result of Test 2 was better than Test 1 mostly
because more slices were used for training. Results of Test 1 to 2 show the
algorithm was able to effectively and accurately locate the tumor.

Table 2. The details of experiments’ setup

Transverse Coronal Sagittal

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6

Training A A C D B C E A B C D

Testing A B B B A A

Fig. 4. Transverse plane segmentation. Test 1: (a) One transverse slice from patient
A as the testing image, (b) ground-truth of (a), (c) our segmentation, (d) Otsu’s seg-
mentation. Test 2: (e) One transverse slice from patient B as the testing image, (g)
ground-truth of (e), (g) our segmentation, (h) Otsu’s segmentation.

Compared with Otsu’s method, our method was able to distinguish boundary
pixels of the skull from tumor pixels. However, Otsu’s method failed to differ-
ential tumor area from the skull boundary. So we had to apply morphological
post-processing to remove the boundary of the results for comparison (‘Otsu-p’)
as shown in Table 3. As mentioned before, since we chose 3 × 3 central window,
this would dilate the final result. For a fair comparison, we also applied a simple
erosion method to our raw result, where ‘Ours-1’ means the erosion operation
was applied once, and ‘Ours-2’ means the erosion operation was applied twice.
The comparison performance is presented in Table 3.
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Fig. 5. Coronal and sagittal plane segmentations. (a) Testing image in Test 3 and 4,
(b) segmentation of (a) labeled by doctors, (c) our segmentation in Test 3, (d) our
segmentation in test 4, (e) Otsu’s segmentation of (a), (f) testing image in Test 5 and
6, (g) segmentation of (f) labeled by doctors, (h) our segmentation in Test 5, (i) our
segmentation in Test 6, (j) Otsu’s segmentation of (f).

Test 3 and 4 used the same image Fig. 5(a) to test, and both can locate the
tumor with high recall scores listed in Table 3. However, for Test 4, there are
only two patients whose tumors could be seen in coronal plane scan. Since the
training data were scarce and much different from the test image, the result of
Test 4 presented in Fig. 5(d) showed some contour noise which can be removed
by simple post processing techniques, e.g. ‘Ours-2’ boosted the precision score
to 0.64 from 0.29. Tests 5 and 6 show our method has a strong response for the
two tumor areas, which outperformed Otsu’s method. Test 6 has better recall
and precision scores than Test 5, since Test 6 took use of more training images.
Better accuracy could be obtained if more training data were available.

Table 3. Comparison results in Test 1–6

Methods Ours Otsu’ Otsu’-p Ours-1 Ours-2

Transvers Test 1 Recall 0.9640 0.0661 0.1178 0.8921 0.7587

Precision 0.3929 0.0070 0.0661 0.6060 0.7140

Test 2 Recall 0.8900 0.7613 0.9824 0.7945 0.6621

Precision 0.8429 0.1053 0.2945 0.9131 0.9114

Coronal Test 3 Recall 0.8845 0.5961 0.5961 0.8362 0.7509

Precision 0.6878 0.0530 0.1650 0.7957 0.8364

Test 4 Recall 0.9184 0.5961 0.5961 0.8785 0.8011

Precision 0.2940 0.0530 0.1650 0.5005 0.6423

Sagittal Test 5 Recall 0.9856 0.1150 0.1150 0.8802 0.6166

Precision 0.4901 0.0060 0.0152 0.7905 0.8355

Test 6 Recall 0.9984 0.1150 0.1150 0.9217 0.7252

Precision 0.6250 0.0060 0.0152 0.8266 0.8566
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Fig. 6. Test 7 results, (a–c) transvers plane, (d–f) coronal plane, (g–i) sagittal plane.

Table 4. Comparison results in Test 7.

Methods Ours Otsu’ Otsu’-p Ours-1 Ours-2

Transvers Recall 0.9910 0.7993 0.7993 0.9595 0.8815

Precision 0.2851 0.0643 0.1764 0.5664 0.7618

Coronal Recall 0.9955 0.7365 0.7365 0.9707 0.8734

Precision 0.7056 0.0978 0.2288 0.8613 0.8918

Sagittal Recall 0.7922 0.6442 0.6442 0.5136 0.3073

Precision 0.7056 0.0978 0.2288 0.8613 0.8918

As shown in the Table 3, the proposed segmentation algorithm has the best
recall score in every Test except Test 2. Otsu’s method with post processing
performed better in this case. However, its precision is pretty low. For Precision,
our method with simple post processing performed the best.

From the perspective of running speed, one pass for our CNN model takes
close to 1 ms. Each pass can be done individually to take the advantage of parallel
processing. Whereas, the Otsu’ method takes one whole second and its computa-
tion cannot be parallelized. Our method has great potential to be implemented
in hardware for real time segmentation.

4.2 General Model

We selected one slice from each of three scans from patient B as the test image
for Test 7. The general model was trained using one slice of each scan that
tumor areas were visible from all other patients. The results for this experiment
are listed in Fig. 6. We also compared our results with Otsu’ method shown in
Table 4. We observed noisier segmentation using a general model than using a
specialized model, but the general model was able to segment tumor on all three
planes. Table 4 shows our methods have the best recall and precision scores.
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5 Conclusion

In this paper, we propose to use a Convolutional Neural Network for brain
MRI image segmentation. We train a CNN with ROIs and non-ROIs patterns
iteratively so that it is able to automatically segment tumor areas effectively.
Our result is very promising. Since all features are learned from labeled data,
our model is able to accurately locate the tumor areas.

Our motivation for this work is not to replace any existing well-known seg-
mentation methods. This work proposes an interesting concept that could be
improved further. Since all important information for segmentation is learned
from the data labeled by the experts, our model has demonstrated its capability
of mimicking the expert’s segmentation style represented in the ground truth.
Other segmentation methods require fine tuning the parameters manually for
different applications. An advantage of the proposed method is its flexibility
and potential to adapt for different applications or imaging modalities without
any modifications of the algorithm. Unlike the traditional deep learning methods
that require a large scale of training data, which is often not feasible for medical
image applications, this algorithm requires only a small set of training images
and the ground truth.

The proposed method trains the CNN model with only a couple of images.
Training with more images will further improve its performance. Because our
dataset size is small, starting with a pre-trained model would also improve its
performance. Meanwhile, different experimental settings might change the per-
formance, which needs to be investigated in the future.

Appendix: A

Fig. 7. Training images. (a) Training image in Test 1 and 2, (b–d) in Test 2, (e) in
Test 3, (f–g) in Test 4, (h) training image in Test 5 and 6, (i–k) in Test 6.
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